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Abstract. CλaSH is a recently developed system to specify and syn-
thesize hardware architectures, strongly based on the functional pro-
gramming language Haskell. Different from other existing approaches
to describe hardware in a functional style, CλaSH is not defined as an
embedded language inside Haskell, but instead, CλaSH uses Haskell itself
to specify hardware architectures. In fact, every CλaSH specification is an
executable Haskell program. Hence, the simulation of a hardware archi-
tecture is immediate, and all abstraction mechanisms that are available
in Haskell are maintained in CλaSH, insofar they are directly applicable
to the specification of hardware.

This paper describes several examples of specifications of hardware
architectures in CλaSH to illustrate the various abstraction mechanisms
that CλaSH offers. The emphasis is more on the CλaSH-style of spec-
ification, than on the concrete technical details of CλaSH. Often, the
specifications are given in plain Haskell, to avoid some of the specific
CλaSH details that will be indicated in a separate section.

The given examples include regular architectures such as a ripple carry
adder, a multiplier, vector and matrix multiplications, finite impulse
response filters, and also irregular architectures such as a simple Von Neu-
mann style processor and a reduction circuit. Finally, some specific techni-
calities of CλaSH will be discussed, among others the processing pipeline
of CλaSH and the hardware oriented type constructions of CλaSH.

1 Introduction

In this paper we describe the hardware specification environment CλaSH, which
is based on the functional programming language Haskell. The perspective from
which a CλaSH specification views a hardware architecture is that of a Mealy
Machine, that is, as a function of two arguments – one representing the state of
a component and the other the input – which yields two results – the new state
and the output. We will show several examples in CλaSH, ranging from matrix
product and FIR-filters, to a simple processor and a reduction circuit.

Since hardware architectures have specific properties, some extensions have
to be added to Haskell, and furthermore, not every Haskell program can be
translated into hardware. For example, the data type of lists, which is often
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used in a functional setting, is not suitable to describe architectures since a list
may vary in length during a computation, whereas hardware is fixed in size.
Besides, data dependent recursion is not possible in CλaSH, since that requires
transformations that are not (yet) included in the CλaSH compiler.

In the rest of this paper we first shortly discuss some related work (Sect. 2),
after which we outline the pattern along we will specify architectures (Sect. 3).
Then, in Sect. 4 we first describe some regular architectures and in Sect. 5 we
describe some irregular architectures. in both sections we give examples of state
less architectures and stateful architectures. Finally, in Sect. 6 we give an informal
description of some aspects of CλaSH itself.

2 Related Work

The most well-known specification languages for digital hardware are VHDL and
Verilog. Also in industry, the design of digital architectures is mostly expressed
in VHDL and Verilog. However, abstraction mechanisms available in these lan-
guages are not very strong and it is cumbersome to generalize a given specification
for different input/output types, or to parameterize for the functionality in a sub-
component. Over the years several attempts are made to improve the abstraction
mechanisms in these languages, leading to concepts such as generics and gener-
ate statements. With generics a design can be formulated exploiting – a limited
form of – polymorphism such that one may use the same design for different types
(see [9]).

However, full abstraction is reached only to a limited extent by these exten-
sions, such that using them is still quite verbose and error-prone. Besides, these
extensions are not fully supported by synthesis tools. This is widely recognized
by the hardware design community, and there are many attempts to base hard-
ware design on standard programming habits, notably on imperative languages
such as C/C++ or Java, leading to so-called high level synthesis. A well known
example of this approach is System-C, for an overview we refer to [6].

The perspective from which both VHDL and Verilog, as well as high level
synthesis languages view a hardware architecture is — at least partially — imper-
ative in nature. On the other hand, we argue that the concept of digital hardware
is closer to a function, than to an imperative statement : a digital circuit may
be viewed as a structure that transforms an input signal into an output signal,
exactly what a function in mathematics does, though in the case of a function
one speaks of arguments and results rather than input signals and output signals.

This observation makes it likely that a functional language might be bet-
ter suitable to specify hardware architectures than languages which are partly
based on an imperative perspective. Besides, abstraction mechanisms available
in functional programming languages are high, and include features such as
higher order functions, polymorphism, lambda abstraction, and pattern match-
ing. This observation was made several times before, dating back to the early
eighties of the 20th century, and is expressed in papers such as [4,10,15]. Since
then several languages are proposed which approach the specification of hard-
ware architectures from a functional perspective, some of the most important
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ones being Lava [3,8], Bluespec [13], ForSyDe [14]. For an overview of several of
these languages see [5].

Most of these functional hardware description languages, however, are embed-
ded languages inside a functional programming language, which has certain limi-
tations concerning the abstraction mechanisms that are available in a functional
language. For example, choice constructs that most functional language offer,
such as guards, pattern matching and case constructs, are not easily exploitable
in embedded languages, and give rise to more verbose formulations.

On the other hand, the method described in this paper, called CλaSH, uses
the functional programming language Haskell itself. Hence, all above mentioned
abstraction mechanisms that are available in Haskell are automatically also avail-
able in CλaSH. It falls outside the scope of this introduction into CλaSH to go
into further details concerning a comparison with other functional hardware
description languages.

3 Basic Program Structure for Hardware Descriptions

In this section we will give a first introduction to the general principles according
to which a CλaSH specification is built up.

3.1 Mealy Machine and Simulation

Below we assume that a hardware architecture consists of memory elements
together with a combinatorial circuit, and that it is connected to input and
output ports. The values in the memory elements form the state of the architec-
ture, whereas the combinatorial circuit generates its functionality. At every clock
cycle, the input signals and the values from the memory elements are going into
the combinatorial circuit, defined by some function f , which results in output
signals and in new values in the memory elements. Thus, the general format of
the function f is that f has two arguments (the state and the input) and the
result of f consists of two values as well (the updated state and the output):

f s x = (s′, y) (1)

where s denotes the current content of the state, x is the input, s′ is the updated
value of the state, and y is the output of the circuit described by f1. Clearly, both
the new state s′ and the output y must be defined separately, but we will come
to that later. Here only the top-level structure of the definition of a hardware
specification function f is relevant.

This function f describes the structure of the architecture, in addition we
need a function to simulate the described architecture. The simulation works by
executing the hardware function f repeatedly, on every clock cycle. The following
function simulate realizes this simulation process:

simulate f s (x:xs) = y : simulate f s′ xs
where
(s′, y) = f s x

simulate f s [ ] = [ ]
1 Note that we follow the convention used in Haskell, and write f s x instead of f(s, x).
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This definition consists of two clauses, where the difference is in the third argu-
ment (x:xs vs [], see below). The function simulate can be used for simulation
purposes by applying it to a given initial value of the state and a given list of
concrete arguments and executing that in Haskell.

The function simulate has three arguments, which can be described as follows:

– the first argument is a function f , which determines the functionality of some
hardware architecture as described above. We emphasize that f is just a formal
parameter of the function simulate, i.e., with every usage of simulate this
parameter f will be instantiated to the functionality of a concrete hardware
architecture.

Since simulate has a function as argument, simulate is called a “higher order
function”.

– the second argument is the state s, which contains all the values in all memory
elements in the architecture. Note that s need not be a simple parameter,
consisting of just one integer (say). Instead, s may be a structured parameter
which consists of several parts representing various memory elements.

– the third argument of the function simulate is the list of inputs, denoted by the
“patterns” x:xs and [ ], respectively. The second pattern denotes the empty
list, so the second clause only will be chosen when the input is empty, i.e.,
when all input values are processed by the first clause (in case an input list is
finite).

The first pattern x:xs denotes a non-empty list of input values, so the first
clause is chosen as long as the input still contains values. The colon “:” breaks
the input in its first element x and the rest xs (suggesting the plural of one x,
and pronounced as x-es). The value x will be dealt with during the present
clock cycle, and xs will be dealt with in future.

Here too, x may be a compound value, consisting of several parts which all
come in parallel during the same clock cycle.

In the result of simulate the values y and s′ are used, which are calculated by the
function f . The result of f then consists of a pair (s′, y) of two things: the output
y (which again may consist of several parallel values), and the new state s′. This
corresponds to the idea of a Mealy machine, as depicted in Fig. 1.

The global result of the simulate-function now is the output y followed by
(indicated by “:”) a recursive call of the function simulate, but with the new
state s′ and the rest of the input xs. That means that the function simulate
repeats itself, each time with the state resulting from the previous execution of
simulate, and with the rest of the input sequence. Thus, the total result of the
function simulate is a list of outputs generated by a repeated evaluation of the
architecture f , meanwhile updating the state at every step.

Note that the function simulate simulates a clock cycle at every recursive
call. Note also that we assume that at every clock cycle a new input value x is
available, though that can be weakened by choosing a Maybe type for the input
values, indicating that x can be a meaningful value, or Nothing.
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3.2 A Simple Architecture Example

In this section we will give an example of definition of a concrete architecture
by means of a function f according to the pattern as shown in Eq. (1). We will
also show the simulation of this architecture, using of the function simulate as
defined above.

Fig. 1. Mealy machine

Suppose we have to calculate the dot product of two vectors x and y of
integers, i.e., we have to calculate the following expression:

n∑

i=1

xi · yi.

Suppose further that we have only one multiplier and one adder available. Then
we clearly need a memory element acc to accumulate intermediate results of the
addition, and which should initially contain the value 0. In Fig. 2 the architecture
is shown that does the job: at each clock cycle the inputs xi and yi are first
multiplied, and then added to the value in the accumulator acc. The result of
this is put both back into the accumulator, and on the output.

Description in a Functional Language. The function macc (for “multiply-
accumulate”, see Fig. 2), which expresses the above behavior, may be defined as
follows:

macc :: Int → (Int, Int) → (Int, Int)

macc acc (x, y) = (z, z)
where
z = acc + x ∗ y

On the first line in this definition the type of the function macc is mentioned,
which expresses that macc is a function with an Int as its first argument, a pair
(int,int) as its second argument, and a pair (int,int) as its result.

We remark that the structure of the function macc matches the structure
of the function f in Eq. (1) and of the function f in the definition of simulate.
That is to say, where in the definition of simulate the pair (s′, y) is calculated
by using the function f , now the function macc is defined such that it can be
used in the role of f .
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Fig. 2. Multiply-accumulate

To explain the correspondence between macc and f in greater detail, we
observe that

– the first argument acc is the state of the architecture, and corresponds to s
in the expression “f s x” in the function simulate. In the case of macc, the
state consists of a single number only,

– the second argument (x, y) is the input that arrives at each clock cycle, and
corresponds to the parameter x in the expression “f s x” in the function
simulate. In this case the input consists of two numbers,

– the result (z, z) matches the pair (s′, y) in the definition of simulate, so in
this example both the output and the new content of the state are the same
value z. For reasons of readability we use a where-clause to define z, though
we might have written directly

macc acc (x, y) = (acc + x ∗ y, acc + x ∗ y).

Suppose we want to simulate and test this architecture with the vectors:

x = 〈1, 2, 3, 4〉
y = 〈5, 6, 7, 8〉

Then the input for the architecture is a sequence of parallel x and y values, as
follows (in Haskell notation as a list of 2-tuples):

input = [(1, 5), (2, 6), (3, 7), (4, 8)]

The initial value of the accumulator is 0, so in Haskell we can now simulate this
by evaluating:

simulate macc 0 input

The output of the simulation then is:

[5, 17, 38, 70]

The last value is the dot product of the two vectors x and y .
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Description in VHDL. In order to illustrate some differences between a func-
tional language and a standard hardware specification language, we describe the
same multiply-accumulator in VHDL. One possible specification is as follows
(leaving out the standard initial LIBRARY and USE statements):

ENTITY macc IS
PORT (x, y : IN integer;

z : OUT integer;
rst,
clk : IN std_logic);

END macc;

ARCHITECTURE behaviour OF macc IS
SIGNAL acc : integer;
SIGNAL zi : integer;

BEGIN
zi <= acc + x * y;

acc <= 0 when rst=’0’ else
zi when rising_edge(clk);

z <= zi;
END behaviour;

Assuming that the reader is not familiar with VHDL, we make some remarks
about this specification. First of all we remark that, in order to keep the VHDL
code as short as possible, we omitted the size of the type integer from the above
code.

Second, we remark that in VHDL it is not allowed to read from an OUT signal,
hence inside the architecture a local signal zi (for “z-internal”) is defined which
is used for both the OUT signal z and for the accumulator acc.

We further remark that the when statement is shorthand notation for a con-
current process.

Concerning a comparison between CλaSH and VHDL we restrict ourselves
to some obvious differences. A more detailed comparison falls outside the scope
of this text.

A first difference of course is the huge difference in syntactical notation: what
is a “type” in Haskell corresponds to a certain extent to an “entity” in VHDL,
and what is a “function definition” in Haskell, corresponds more or less to an
“architecture” in VHDL. We remark that in a functional language the concept
of “type” is wider than in VHDL, for example, in a functional language for every
type a and b, the type a → b is the type of all functions from a to b.

As a second difference we mention that in the VHDL-specification time and
space are mixed in the sense that references to the clock (clk) are present on the
same level in the code as the description of the functionality of the architecture.
In the functional specification, on the other hand, time and space are strictly
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separated: the clock is represented by the recursion in the simulate function,
whereas the circuit itself is described in the “architecture function” (such as
macc).

Note that in VHDL also a reset (rst) is present, whereas in the functional
specification a reset is not expressed. Without going into details we mention that
adding a reset to the functional specification is done on the level of the simulate
function as well, by distinguishing it as a special type of input value. That means
that for a reset too it holds that in VHDL it is part of the code describing the
architecture, whereas in a functional description it is dealt with on a separate
level.

A third difference has to do with the way how we understand the code: in a
functional specification we are strictly talking about values of variables, such that
a functional description is very close to a mathematical, structural description. In
VHDL one is more tempted to understand the code as a description of behavior,
i.e. what actions take place under certain conditions. In the macc-example one
might say that the outcome of the expression macc acc (x, y) is the value (z, z),
whereas in VHDL one has to perform an action of putting the value of an
expression on a signal (channel).

4 Regular Architectures

In this section we will discuss several examples of regular architectures, and
illustrate the power of higher order functions to specify such architectures. In
particular we will define a ripple carry adder, a multiplier, and several variants
of an FIR-filter. Besides, we will show that the fact that functions are first
class citizens in Haskell can be used to parameterize architecture specifications
beyond the level of numerical constants, i.e., we show that we can parameterize
an architecture with respect to the functionality of its subcomponents.

4.1 Introduction

To introduce the topic of this approach we start with the dot product as already
discussed in Sect. 3.2. First we repeat the definition of the dot product:

x • y =
n−1∑

i=0

xi · yi (2)

and mention that in Sect. 3.2 the dot product was calculated by an architecture
which performed one multiplication and one addition per clock cycle. Conse-
quently, there were as many clock cycles needed as there were elements in the
vectors to calculate the full dot product. It is however also possible to execute
the calculation of the dot product in a single clock cycle, by using more multipli-
ers and adders. In Fig. 3 the architecture is shown that calculates a dot product
in one clock cycle — assuming of course that all adders and multipliers also
take a single clock cycle. Clearly, there are hardware limitations to the number
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of components that can be reasonably executed in a single clock cycle. Besides,
the more components are combined in a so-called combinatorial path, the more
energy it takes. However, we will ignore such aspects here and concentrate on
the structure of the architecture and its specification.

Fig. 3. Dot product

As can be seen from Fig. 3, this is a rather regular structure, in which the same
combination of operations is repeated several times. In words the dot product
can be described as follows: multiply the corresponding values pairwise, and add
the results. In Haskell there exist the functions zipWith and foldl which perform
exactly these operations. Before we come to the definition of the dot-product
and the convolution example in Haskell, we first give the meaning in hardware
of some standard higher order functions.

Some standard higher order functions. We show the architectures indicated by
the standard higher order functions: map, zipWith, and foldl. Note that the
architectures hold for any function f and for any operation �.

Fig. 4. Some standard higher order functions
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(a) map. The function map applies a function to all elements in a given list of
elements, for example:

map (+1) [3, 5, 8, 6] = [3+1, 5+1, 8+1, 6+1]
= [4, 6, 9, 7]

Here, the function (+1) is applied to all the numbers is the list [3, 5, 8, 6].
The meaning of map as an architecture specification is shown in Fig. 4(a).

(b) zipWith. The function zipWith combines two sequences of elements by apply-
ing a given binary operation or function to the elements of the lists pairwise.
For example:

zipWith (+) [3, 5, 8, 6] [4, 6, 9, 2] = [3+4, 5+6, 8+9, 6+2]
= [7, 11, 17, 8]

The architectural meaning of zipWith is shown in Fig. 4(b). Note that both
map and zipWith are strongly parallel.

(c) Variants of fold. There are several variants of fold : foldl , foldr , foldl1, foldr1.
Here we only show foldl (for fold-left), which intuitively works as follows (see
Fig. 4(c)):

foldl (+) 0 [7, 11, 17, 8] = (((0 + 7) + 11) + 17) + 8
= 43

The “left” nature of these operations is indicated by the brackets, saying that
the operation (addition in this case) proceeds from left to right through the list.

We remark that for associative operations it is more efficient to give the
architecture of a fold function the form of a tree, but in the context of this text
we ignore such issues of efficiency.

Below we first describe some regular architectures which do not have state
and after that we describe some regular architectures which do have state. In
particular, in Sect. 4.2 we describe matrix operations and elementary arithmeti-
cal architectures, and in Sect. 4.3 we describe some variants of FIR-filters.

4.2 Regular Stateless Architectures

In this section we describe again the dot product of two vectors, followed by
matrix-vector multiplication and matrix-matrix multiplication.

Dot Product. Combining the architectures of the functions foldl and zipWith,
we can describe the dot product from Fig. 3 as follows:

x .∗. y = foldl (+) 0 (zipWith (∗) x y)

Equivalently, in a somewhat more elaborate notation we may define (w and z
refer to Fig. 3):

x .∗. y = z
where
w = zipWith (∗) x y
z = foldl (+) 0 w
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We choose for “.∗.” as notation for the dot product, since the notation “•”
cannot be typed directly on a keyboard. We remark that both definitions are
valid Haskell definitions, and thus executable in a simulation.

CλaSH translates specifications given in terms of higher order functions like
zipWith and foldl , and in the case of the definition of the dot product, it indeed
yields the architecture as shown in Fig. 3.

Matrix-Vector Product. We continue the usage of higher order functions by
discussing a matrix vector product, an example being given in Fig. 5.

Fig. 5. Matrix-vector product

A fairly standard way to deal with matrices is to consider them as a sequence
of rows, thus the matrix in Fig. 5 actually is represented in Haskell as

[[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]

That is to say, a row in the matrix is in fact an element of the matrix.
Now note that the i-th element of the result of the matrix-vector multiplication

is obtained by taking the dot product of i-th row with the vector. For example,

[21, 22, 23] .∗. [1, 2, 3] = 134.

Hence, the result vector is computed by applying the dot product with the vector
[1, 2, 3] to every row in the matrix. And thus, since the matrix is a list of rows,
this can be done by the map function. In other words, if xss is a matrix (seen as a
list of lists, hence the notation “xss”), and ys is a vector, then the matrix-vector
multiplication mxv can be defined as

mxv xss ys = map (.∗. ys) xss

Matrix-Matrix Product. This can even further be extended to matrix-matrix-
multiplications, see Fig. 6.

To define matrix-matrix multiplication in Haskell, letxss and yss be two matri-
ces, then matrix-matrix multiplication is obtained by multiplying the matrix xss
with every column of matrix yss, which gives the columns of the result matrix.
Thus, when we first transpose the matrix yss, and transpose the result back, then
the above reasoning applies to the rows of yss. Hence, the multiplication of matrix
xss with matrix yss (denoted as the function mxm) may be defined as

mxm xss yss = transpose (map (mxv xss) (transpose yss))

We invite the reader to test these definitions in Haskell.
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Generating Architectures by CλaSH. In order to offer the above definitions
on vector and matrix operations to CλaSH, we first have to add an empty state
arguments, e.g., as in

mxv′ s (xss, ys) = (s, zs)
where
zs = mxv xss ys

Note that the state s remains unchanged, so it can be anything we like, the
most obvious choice being s = (). Note further, that the input of the architec-
ture formally is one item (xss, ys) again, though it consists of many elements.
Extended in this way, CλaSH translates these definitions into hardware archi-
tectures, performing the described operations directly in hardware. For matrix-
vector multiplication of the size as in Fig. 5 the resulting architecture looks as
follows, exactly as intended:

We leave it to the reader to draw the architecture for matrix-matrix multi-
plication (Fig. 7).

A Ripple-Carry Adder. The ripple-carry adder is a standard way to add inte-
ger numbers, and is an immediate translation to binary number representations
of the usual way in which we add numbers by hand. For example:

1 1 0 1 0
1 0 1 0 1 1

1 0 0 0 1 0 1

Clearly, we need the elementary logical gates for and, or, and xor :

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

0 ⊗ 0 = 0
0 ⊗ 1 = 1
1 ⊗ 0 = 1
1 ⊗ 1 = 0

We remark that Haskell recognizes Unicode, so the above definitions are valid
Haskell definitions.

The most common way to define a ripple-carry adder is by means of a half
adder and a full adder, where a half adder takes two input bits, and a full adder
additionally also the carry-bit from the right neighbor. In both cases the result
is the pair of the sum-bit of the input bits and the carry-bit. In Fig. 8 we give the

Fig. 6. Matrix-matrix product
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Fig. 7. Architecture for matrix-vector product

Fig. 8. Half adder

truth table of the half-adder, the Haskell definition which calculates this truth
table, and the architecture which is specified by the Haskell definition. In Fig. 9
we do the same for the full adder.

We will say that the Haskell definition of the full adder has two arguments
(the pair of input bits (x, y), and the carry bit c), and two results (the pair of the
carry bit c′ and the sum bit s). Although this is a somewhat inconsistent formu-
lation since we consider a pair on the input side as one value and on the output
side as two values, we nevertheless choose for that formulation, since it gives us
the possibility to connect the full adders using a general mapAccumL function:



Hardware Specification with CλaSH 349

Fig. 9. Full adder

the function mapAccumL can combine a sequence of functions of this structure
into a combined function that gets a list and a starting value a as arguments.
Figure 10 shows the Haskell definition and the corresponding architecture of the
function mapAccumL. Note that the function mapAccumL is a combination of
the function map and an accumulation (from the left, hence its name).

Fig. 10. mapAccumL

As a short explanation of the recursive structure in the where clause of the
definition of mapAccumL, we remark that the list as is developed element by
element: the first element a0 is calculated by applying f to a and the first element
x0 of xs. Then the second element a1 is calculated by applying f to a0 and x1,
and so on. The function unzip is needed, since zipWith results in a list of pairs,
and we need the lists of all first elements as and all second elements zs of these
pairs.
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Already now we remark that mapAccumL f has the same structure as needed
for f : it gets two arguments (a starting value a and a list of inputs xs), and
it results in two values as well (a final result a′ and the list of intermediate
results zs). We will use this fact later, in Sect. 4.2.

In order to define the ripple-carry adder in Haskell, assume that xs and ys are
the bit representations of two integer numbers x and y, where the first elements
of xs and ys are the least significant bits, and the last elements are the most
significant bits. Assumed is further that xs and ys are extended with leading
zeroes to a given fixed length (say 16 or 32).

Now the ripple carry adder rca can be defined by combining full adders fa by
the function mapAccumL with starting value 0 (the initial carry bit) and the list
corresponding pairs of bits from xs and ys as inputs. The result of mapAccumL
is the pair of the list of intermediate sum bits ss and the last carry bit c. Clearly,
to get the result of the ripple carry adder rca, the sum bits ss and the last carry
bit c have to be concatenated.

Fig. 11. Ripple-carry adder

As the matrix operations, we remark that in order to let CλaSH generate hard-
ware from the definition of the ripple carry adder, we have to extend the defini-
tion of rca with an empty state argument (Fig. 11).

An Elementary Multiplier. We conclude the stateless architectures with the
definition of an elementary multiplier. Again, we start from the way we would
multiply two binary numbers by hand, as in:

1 1 0 1 0
1 0 1 1 ×

1 1 0 1 0
1 1 0 1 0

0 0 0 0 0
1 1 0 1 0 +

1 0 0 0 1 1 1 1 0
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Assume that two 4-bit numbers x and y are given, whose bit sequences are xs
and ys where x0 and y0 are the least significant bits:

x3 x2 x1 x0

y3 y2 y1 y0 ×
An elementary multiplier can be constructed by using the ripple-carry adder as
defined in Sect. 4.2 and is as shown in Fig. 12.

Fig. 12. Elementary multiplier

First note that every horizontal line either consists of the bits from xs or it
consists of zeroes only, depending on the question whether the corresponding
y-bit is 1 or 0. To calculate this we have to calculate

map (∧yi) xs

on every line before the results are given to a ripple-carry adder, which then
adds it to the first four bits of the previous line, taking all zeroes at the first
line. Note that a ripple-carry adder yields one bit more than the length of the
inputs, and the last bit zi of that result is given to the total result immediately –
just as in the case of the calculation by hand. To get the total result, these last
bits resulting from all ripple-carry adders have to be concatenated with the first
four bits from the last ripple-carry adder.

Before we give the Haskell code for this elementary multiplier, we observe that
every line itself again is a function of the form as requested by the mapAccumL
function:

– every line has two inputs: the list ss of the first four sum bits from the previous
line (four zeroes on the first line), and the bit yi indicating whether the bit
sequence xs should be added or whether there should be zeroes instead,
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– and it has two outputs: the first four sum bits going to the next adder, and
the last bit z going straight to the final result.

Note that at every line the bit yi makes the choice whether or not to use the
bit sequence xs. That means that the sequence xs can be considered the same
at every line, i.e., it is a global input which is the same at every line. This global
pattern is shown in Fig. 13.

Fig. 13. Multiplier pattern

The Haskell definitions can now be given as follows:

add xs ss y = (ss′, z)
where
z:ss′ = rca ss (map (y∧) xs)

The function add takes xs as its first argument, meaning that add xs is a function
which takes sum bits ss and a single bit y, and applies the ripple-carry adder
to ss and map (∧y) xs. Note that the first bit of the result of the function rca
is the least significant bit, so that is the bit that has to be separated from the
rest. This is done by the pattern matching z:ss′ in the where-clause.

Note also that add xs is the actual addition function that is performed at
every line, and furthermore, add xs answers the pattern as described above.
hence, add xs can be given to the mapAccumL function:

mul xs ys = zs ++ ss
where
zeroes = replicate (length xs) 0
(ss, zs) = mapAccumL (add xs) zeroes ys
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Here, the function replicate produces the initial sequence of zeroes, to start the
additions. Clearly, the sum bits coming from the mapAccumL function, and
the individual z values that were given to the final output now have to be
concatenated in order to turn the result into a single number. We mention again
that the first bit of this number is the least significant bit.

The reader is invited to test the above definitions in Haskell, and even more
so, to experiment with CλaSH to see that these definitions actually can be
translated into hardware and, e.g., put on an FPGA.

We conclude with the remark that this elementary multiplier is not very
efficient. More efficient, for example, is the Baugh-Whooley multiplier, but we
leave it as an exercise to define this multiplier.

4.3 Regular Architectures with State

In this section we return to the dotproduct, but now we assume that there is
an ongoing stream of input values and we repeatedly need the dotproduct of an
initial part of the input stream with a fixed vector of co-efficients. So, this is a
“sliding window” over the input stream, and the computational technique we will
discuss is called convolution. With the right choice of co-efficients, this technique
can be used to filter high or low tones from a music stream, it can be used for
video processing, in astronomy, etcetera. In such situations one often speaks of
FIR-filters (for “Finite Impulse Response” filters). In this section we will discuss
the derivation of some variants of FIR-filters, and show their architectures and
their specifications in Haskell.

We start with the formula that expresses the convolution function. Let h
be a vector of n co-efficients, and let x0, x1, x2, . . . , xt, . . . be a stream of input
values, with the index t indicating the moment in time that the value arrives.
The FIR-filter determined by the vector h is called an n-tap FIR filter, and its
output yt at time t is defined as

yt =
n−1∑

i=0

hi ∗ xt−i (3)

So the FIR-filter calculates at every moment t the dotproduct of the co-efficients
h and the last n input values xt, . . . , xt−n+1. For n = 4, Fig. 14 shows three time
steps, where the dashed lines follow the values xi from one time moment to the
next (for reasons of space we join multiplication of hi and xt−i, and addition
into one computational component). Note that y3 is the first correct result of
the convolution.

Above, time was introduced with respect to the moments that the input
values xi arrive, but it does not say anything on the scheduling of the computation
of the results yi. Even though Fig. 14 suggests that the computation is done
on an architecture that consists of (in this case) four computing units doing a
multiplication and an addition, it in fact only expresses the dependencies between
the computations. Concerning the actual scheduling of the computations, there
are many different possibilities, which each give rise to a different architecture.
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Fig. 14. Convolution on a stream

The remaining parts of this section discuss some of these possible architectures
and the way they can be derived from the dependencies expressed in Fig. 14.

FIR-Filter: Variant 1. A straightforward way to schedule the data dependen-
cies from Fig. 14 is to schedule horizontally, as indicated by the thick black lines
in Fig. 15. All operations between two thick black lines are executed within the
same time frame. In the context of this text we will assume that a time frame
takes one clock cycle. Hence, data that moves from one time frame to the next
has to be remembered, i.e., at every position where a data line crosses a time
line, a memory element will be introduced. In Fig. 15 the data lines that cross a
time line, are the dashed lines indicating the traversal of the input values xi. For
example, at the end of the first time frame, input x3 has to be put in a memory
element before it will be multiplied by h1. That is realized by memory element
u1 in the right hand side of Fig. 15. In the same way memory elements u2 and
u3 can be explained. For memory element u0 the same reasoning holds, but as
will be noted, it would not have been necessary to extend the time line as far to
the left as we did. In that case, an input value xi would be multiplied with h0

in the same clock cycle as xi arrives.

Fig. 15. FIR-filter, variant 1
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As can now be seen from Fig. 15, the dot product of the convolution has to be
applied to the co-efficients hs and to all values us in the memory elements, i.e.,
the architecture has to calculate the expression

hs .∗. us

Besides, the values in the memory elements us all have to be shifted one position
to the right, and the next value xi has to be put in u0. For this we define the
operation +>>, saying that a value has to be “shifted into” a sequence of memory
elements:

x +>> us = x : init us

For example:
5 +>> [1, 2, 3, 4] = [5, 1, 2, 3]

Since the co-efficients hs are constant during the operation of the FIR-filter on
an input stream, we take those as a parameter to the FIR-filter. Hence, the first
argument of the FIR-filter consists of the co-efficients hs, the second argument
is the state us, and the third argument is the next input value x. As before, the
result consists of the updated state us′ and the output value y. That leads to
the following definition of the first variant of the FIR-filter:

fir1 hs us x = (us′, y)
where

us ′ = x +>> us
y = hs .∗. us

Note that fir1 hs matches the pattern of an architecture description as required
by the function simulate, thus fir1 hs indeed defines an architecture. That coin-
cides with the intuition, that the co-efficients hs are part of the architecture of
the FIR-filter.

FIR-Filter: Variant 2. For the second variant of the FIR-filter we choose
the time frames as indicated by the thick lines in Fig. 16. Note that now an
input value xi is multiplied with all co-efficients hs within the same time frame,
expressed in the right hand side of Fig. 16 by the fact that an input value x is not
delayed by a memory element before all multiplications with the co-efficients hs.

The data lines that cross the time lines are now the connections that are
between the computational units. Thus, the result of each computational unit
has to be put in a memory element before it is given to the next computational
units. That is realized by the memory elements vs between the computational
units in the right hand side of Fig. 16.

In this variant, the dotproduct operation by itself is not performed within a
single time slice, so we cannot use the standard dotproduct function. Instead, we
observe that the results ws are pairwise added to the values from the memory
elements vs (plus 0 in front). That is to say, the additions correspond to a zipWith
operation. However, the zipWith with + results in a sequence of four values, the
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Fig. 16. FIR-filter, variant 2

last of which is the output y, and the initial three are the new content of the
memory elements vs. Finally, we remark that the fact that all co-efficients hs
are multiplied with the same x-value is expressed by the map function.

This gives rise to the following Haskell definition:

fir2 hs vs x = (vs′, y)
where

ws = map (∗x) hs
vs ′′ = zipWith (+) (0:vs) ws
vs ′ = init vs ′′

y = last vs ′′

We leave it to the reader to check that y indeed is the dot product of four
consecutive inputs.

FIR-Filter: Variant 3. In the third variant we choose a different slope of the
time lines, and again, we check where the data lines and the time lines cross.
Now note that there are two crossings in the lines for xi before it reaches the
next computational unit, expressed by two memory elements u2i−1 and u2i in
the right hand side of Fig. 17. As with variant 2, there again is one memory
element vi between the computational units.

To define this architecture in Haskell, we define an operation to select a
sequence of elements (indicated by a list of indexes is) from a list:

xs !!! is = map (xs!!) is

For example:
[2, 1, 6, 4, 3] !!! [0, 2, 4] = [2, 6, 3]

Finally, note that the state now consists of two lists us and vs of memory ele-
ments. This leads to the following definition:
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Fig. 17. FIR-filter, variant 3

fir3 hs (us, vs) x = ((us ′, vs ′), y)
where
ws = zipWith (∗) hs (us!!![0, 2..])
vs ′′ = zipWith (+) (0:vs) ws
(us ′, vs ′) = (x +>> us, init vs ′′)
y = last vs ′′

Again we leave it to the reader to check that indeed this architecture produces
the dotproduct of the co-efficients hs and four consecutive values from the input
stream. Apart from checking that by hand, one may also run the function simu-
late on the architecture fir3 hs for a given list hs of co-efficients, and some input
stream xs.

FIR-Filter: Variant 4. As a last variant we discuss variant 4, in which the
input stream goes from right to left. Furthermore, observe that there are only
two computational units in the same time frame. We remark that these units are
not consecutive, i.e., either the first and the third, or the second and the fourth
computational unit are in the same time frame. The consequence is that not
all elements of the input stream will be meaningfully processed, thus the input
stream has to be interleaved with arbitrary values. We leave it as an exercise
to the reader to check the crossings of the data lines and the time lines, and to
connect these to the memory elements in the right hand side of Fig. 18.

We mention that the notation us <<+x means that x is “shifted into” the
list us from the right. It is defined as follows:

us <<+x = tail us ++ [x].

For example:
[1, 2, 3, 4] <<+ 5 = [2, 3, 4, 5]

Now the Haskell definition should be straightforward:
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Fig. 18. FIR-filter, variant 4

fir4 hs (us, vs) x = ((us ′, vs ′), y)
where
ws = zipWith (∗) hs us
vs ′′ = zipWith (+) (0:vs) ws
(us ′, vs ′) = (us <<+x, init vs ′′)
y = last vs ′′

Concluding Remarks. The above architectures are derived by a systematic
method, starting from the data dependencies generated by the mathematical
formula of the dotproduct of a list of co-efficients and an equally long initial
part of the input stream. By varying on the division in time frames, the concrete
architectures can be developed by introducing memory elements on the crossings
of data lines and time lines.

The major difference between these architectures consists of the number and
positioning of memory elements, and may cause some difference in delay of the
output and in maximum clock frequency. For example, in variant 1 there is a
long combinatorial path, going from the input through the first multiplication,
followed by four additions. Clearly, the output is available in the same clock
cycle as in which the last input arrived (or very quickly after that), but the
consequence of such a long combinatorial path may be that the clock frequency
will be low.

In variant 2 the maximal length of the combinatorial paths is much shorter,
but there still is the need to deliver the input value to many operations in parallel,
taking a lot of energy and possibly a low clock frequency. In variant 3, on the
other hand, all combinatorial paths are rather short, so the clock frequency can
be high, but there is a longer delay between the last input and the moment that
the output becomes available.

Such issues are examples of the considerations which may be relevant which
architecture suits a given situation best. This question falls outside the scope of



Hardware Specification with CλaSH 359

this text which is mainly aiming at the correspondence between an architecture
and its Haskell specification.

We conclude with a possible generalization that is made possible by the high
level abstraction mechanisms the Haskell offers: parameterization. It is possible
to generalize each of the above architectures with the functionality of subcompo-
nents. We will illustrate this for variant 1 of the FIR-filter above. If we abstract
away from the concrete functionalities of the subcomponents, and instead turn
them into arguments of the architecture, we get a higher level architecture, shown
in the following Haskell code:

genfir1 (f, g, a, hs) us x = (us′, y)
where

us ′ = x +>> us
ws = zipWith f hs us
y = foldl g a ws

Fig. 19. Parameterized filter

In this code not only the co-efficients hs are taken as parameters, but also the
functionalities f and g, and the initial value a in the application of foldl. The
corresponding architecture is shown in Fig. 19.

Note that we can now define

fir1 hs us x = genfir ((∗), (+), 0, hs) us x

It is equally well possible to define a pattern matcher, which selects subsequences
from an input stream that match a given pattern hs:

pattm hs us x = genfir ((==), (&&),True, hs) us x

This definition leads to the architecture in Fig. 20.

5 Irregular Architectures

In this section we turn to an example of an irregular architecture, the Sprockell :
a S imple processor in Haskell (see Fig. 21). It is an instruction set architecture
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Fig. 20. Pattern matcher

which has many simplifications in comparison with a real processor, for exam-
ple, we will assume that the execution of an instruction as well as fetching data
from memory takes only one clock cycle, there is no pipelining, there are no
cache memories, there is no I/O. We assume a program memory that is sepa-
rated from data memory, and only one program can be executed at the same
time. Nevertheless, the architecture together with its instruction set are Turing
complete, so it is a non-trivial processor.

The aim of showing it here is to demonstrate the natural character of its
specification by means of mathematical functions, which are all executable in
Haskell. The irregular character shows itself by the fact that no usage of higher
order functions is made, i.e., there is no repeating pattern in the architecture. On
the other hand, the way the definitions are given does show a regular pattern,
most definitions are just straightforward case-expressions.

5.1 The Sprockell

In Fig. 21 it can be seen that the program memory (pmem) contains a list of
instructions (see below for the complete instruction set). The decode function
D decodes these instructions one by one and sends signals onto all its outgoing
wires. The formulation “sends signals onto all its outgoing wires” is represented
in the definition of the function D by the fact that the result of D for every
instruction is a record consisting of 13 fields, where every field corresponds to
one of the outgoing wires of the decoder.

The Sprockell is a load-store architecture, where the load function L is able
to load data from various sources into some register in the register bank R. The
sources of these data can be a constant value delivered by the decoder, it can be
the output of the alu, or it can be a value from some address in data memory.
Which value the load function has to choose, is determined by a special code
sent to the load function by the decoder. Clearly, also the address of the register
in which the load function has to put the value, is coming from the decoder.

The store function S saves a value in data memory. As with the load function,
this value may come from different sources: it may be a constant sent by the
decoder, or it may be a value from some address in the register bank. Here too,
the decoder delivers the information which value to choose, which register to
read, and which address in data memory to save to.
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Fig. 21. Sprockell

The alu A performs an operation, indicated by an opcode, on two values
from the register bank, and sends its result to the load function L.

The last elements we mention in this introductory description are the pro-
gram counter and the stack pointer. As always, the program counter tells which
instruction from program memory should be fetched for the decoder (shown in
Fig. 21 by the indexing operation !! from Haskell). The program counter is stored
in a register which is updated by the function Upc, the program counter update
function, based on information from again the decoder. For the stack pointer the
same holds: it is stored in a register that is updated by the stack pointer update
function Usp.

So, all in all the state of the architecture consists of the register bank R,
data memory M, and two registers for the program counter pc, and for the
stack pointer sp. The Sprockell itself is defined as a function which transforms
its state every clock cycle, based on the instruction that has to be executed.
In the sections below we will formalize the above intuitive descriptions of the
various subcomponents and combine them in the definition of the Sprockell as a
whole.

We remark that in order to save space and to have some visual recognition
based on the names of the components, we choose for a more mathematical
formulation. However, this formulation may be readily translated into Haskell
in a word for word fashion, by choosing names fro the symbols, such as alu for
A, load for L, dataMemory for M, etcetera. Since Haskell recognizes Unicode,
one might also choose to leave some of the symbols unchanged, and the result
will nevertheless be an executable Haskell program, and simulation can be done
with the same function simulate as before.

The specification given below is complete in the sense that it can also be
mapped onto real hardware, e.g., onto an FPGA. However, in order to give the
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code to CλaSH to be translated into synthesizable code, still some mainly minor
transformations have to be executed on the Haskell code. We will come back to
that issue in Sect. 6.

Memory Structure. As mentioned above, the state of the Sprockell consists
of the register bank R, the data memory M, and the two registers pc and sp for
the program counter and the stack pointer, respectively. For reasons of simplicity
we choose to let all values be integers, and M and R be lists of integers:

Register bank: R :: [Int]
Data memory: M :: [Int]
Program counter: pc :: Int
Stack Pointer: sp :: Int

Note that for real hardware it is not sufficient to choose for integers, nor for lists
of integers: for integers one has to choose the number of bits with which the
integers will be represented, and also for lists one has to make a choice for the
length of the list. We will come back to this in Sect. 6.

To update the register bank or the data memory we define an update oper-
ation <∼ to put a value v on position i in a list:

xs <∼ (i, v) = ys ++ [v] ++ zs
where
(ys, :zs) = splitAt i xs

Applying this operation to the register bank or to the data memory has the
following limitations:

– register 0 of the register bank always contains the value 0, so putting a value
in this register means that the value will be lost,

– before putting a value in the data memory, it has to be enabled for writing.

The Alu A. Concerning the functional components in the Sprockell, we start
with the alu function A. As can be seen in Fig. 21, the alu has three input
signals. Thus, the function A that specifies the alu has three arguments. The
first of these arguments is the opcode opc which decides which operation the
alu should perform, the other two arguments x and y are the values on which
this operation should be performed. The opcodes are defined as an embedded
language, i.e., as an algebraic data type in Haskell, which can be extended as
desired:

data OpCode = NoOp | Id | Incr | Decr | Neg | Add | Sub | Mul | Eq | Gt | · · ·

The meaning of these opcodes become clear in the definition the alu func-
tion A, which is a simple case-expression, defined by pattern matching on the
opcode:
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A opc x y =case opc of
NoOp −> 0
Id −> x
Incr −> x + 1
Decr −> x − 1
Neg −> −x
Add −> x + y
Sub −> x − y
Mul −> x ∗ y
Eq −> tobit (x == y)
Gt −> tobit (x > y)

...
where
tobit True = 1
tobit False = 0

Note that in Haskell the relation “>” results in a boolean, so the function tobit
is needed to transform this into an integer.

The Load Function L. The load function L has several input values:

– we choose to let the result of the load function L be the updated register
bank as a whole, so also the register bank R itself is an argument to the load
function,

– three values from which the function L has to choose to put into the register
bank: an immediate value c coming from the decoder, a value from data
memory d, or the output z from the alu,

– a code ldc to tell the load function which value to put in the register bank, or
not to load anything at all,

– of course, the register r in which to put the value.

The codes which value to load is defined in an embedded language LoadCode:

data LoadCode = NoLoad | LdImm | LdAddr | LdAlu

Nowthedefinition of the load functionL again is a straightforward case-expression,
though the case where no value has to be loaded into the register bank is defined
in a separate clause:

L NoLoad R r (c, d, z) = R
L ldc R r (c, d, z) = R <∼ (r, v)

where

v = case ldc of
LdImm−> c
LdAddr−> d
LdAlu−> z
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The Store Function S. The store function S has the following input arguments:

– as with the load function L, we choose to let the result of the store function
S be the updated data memory as a whole, so also the data memory M itself
is an argument to the function S,

– two values from which the function S has to choose to put into the register
bank: an immediate value c coming from the decoder, or a value x from data
memory,

– a code stc to tell the store function which value to put in the data memory,
or not to store anything at all,

– of course, the address a at which to store the value.

The codes which value to store are again defined in an embedded language
StoreCode:

data StoreCode = NoStore | StImm | StReg
Again, the definition of the store function S is a straightforward case-expression,
taking the NoStore case as a separate clause leaving the data memory M
unchanged:

S NoStore M a (c, x) = M
S stc M a (c, x) = M <∼ (a, v)

where
v = case stc of

StImm −> c
StReg −> x

The Program Counter Update Function Upc. The program counter is
updated by the function Upc, based on a jump code to be provided by the decoder.
The jump codes are defined in an embedded language JumpCode:

data JumpCode = NoJump | UA | UR | CA | CR | Back

The meaning of the jump codes is as follows:

– NoJump: just go to the next instruction,
– in UA, UR, CA, CR the U/C stand for Unconditional and Conditional, respec-

tively, i.e., jump in any case, or based on the value x (0 or 1) of a condition.
A/R stand for Absolute and Relative, respectively, i.e., jump to instruction
with number n, or jump a n instructions forward (backward in case n is neg-
ative) from the current instruction,

– Back says that the program counter can jump back to a previously remem-
bered instruction, to be used in case of, e.g., return from a subroutine.

The program counter update function now again is straightforwardly defined by
a case-expression (ipc is the program counter, jmpc the program counter code,
y the previously stored program counter):
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Upc (jmpc, x) (n, y) pc =case jmpc of
NoJump −> pc+1
UA −> n
UR −> pc+n
CA | x==1 −> n

| otherwise −> pc+1
CR | x==1 −> pc+n

| otherwise −> pc+1
Back −> y

The Stack Pointer Update Function Usp. The stack is a dedicated sequence
of memory locations in the data memory, starting at a freely to determine mem-
ory address. The idea of defining the stack pointer update function should be
clear by now, and we give the definitions straight away. The stack pointer update
code:

data SPCode = Up | Down | None
The stack pointer update function, where sp is the stack pointer, and spc the
stack pointer code:

Usp spc sp = case spc of
Up −> sp+1
Down −> sp−1
None −> sp

The Instruction Set. Also the instruction set is defined as an embedded
language, called Assembly :

data Assembly = Compute OpCode Int Int Int
| Jump JumpCode Int
| Load Value Int
| Store Value Int
| Push Int
| Pop Int

The type Value consists of two sorts of values: immediate values (constants) and
values indicated by their address in data memory. It is defined as follows:

data V alue = Addr Int
| Imm Int

The following table describes the meaning of the instructions:

Compute opc i0 i1 i2: the alu will perform the operation opc on the values from
registers i0 and i1, and the result will be put in register i2,

Jump jmpc n: the program counter will be changed by the number n, based on
the jump code jmpc,

Load (Imm n) j: the value n will be loaded into register j,
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Load (Addr i) j: the value from address i in data memory will be loaded into
register j,

Store (Imm n) j: the constant n will be stored in data memory at address j,
Store (Addr i) j: the value from register i will be stored in data memory at

address j,
Push i: the value from register i will be pushed onto the stack,
Pop i: the top value of the stack ill be loaded into register i.

The program memory is a list of assembly instructions, i.e., the program memory
has type [Assembly ].

The Decode Function D. The decode function D translates an instruction
into signals for all other functions in the Sprockell. That is to say, the function
D gets two arguments: the stack pointer sp and an assembly instruction α, and
produces a record consisting of 13 fields, as shown in Fig. 21 This record type
represents the “machine code” and is defined as:

data MachCode = MachCode { ldCode :: LoadCode,
stCode :: StoreCode,
opCode :: OpCode,
jmpCode :: JumpCode,
spCode :: SPCode,
jmpN :: Int ,
immvalR :: Int ,
immvalS :: Int ,
reg0 :: Int ,
reg1 :: Int ,
addr :: Int ,
toreg :: Int ,
toaddr :: Int }

We define an empty record for the machine code C0:

C0 = MachCode { ldCode=NoLoad , stCode=NoStore, opCode=NoOp,
jmpCode=NoJump, spCode=None, jmpN=0,
immvalR=0, immvalS=0,
reg0=0, reg1=0, addr=0, toreg=0, toaddr=0 }

The function D now is defined by updating the empty machine code C0 for
every instruction separately, by using a case-expression. Note that the fact that
the instruction set is defined as an embedded language, offers the possibility of
pattern matching on each instruction:

D sp α = case α of
Compute opc i0 i1 i2 −> C0 { ldCode=LdAlu, opCode=opc, reg0=i0, reg1=i1, toreg=i2 }
Jump jc n −> C0 { jmpCode=jc, jmpN=n, reg0=1, reg1=6 }
Load (Imm n) j −> C0 { ldCode=LdImm, immvalR=n, toreg=j }
Load (Addr i) j −> C0 { ldCode=LdAddr , addr=i , toreg=j }
Store (Imm n) j −> C0 { stCode=StImm, immvalS=n, toaddr=j }
Store (Addr i) j −> C0 { stCode=StReg, reg0=i, toaddr=j }
Push i −> C0 { stCode=StReg, spCode=Up, reg0=i, toaddr=sp+1 }
Pop i −> C0 { ldCode=LdAddr , spCode=Down, addr=sp, toreg=i }
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Fig. 22. Examples of the effect of instructions (color figure online)

In order to illustrate the definition of the decoder, we give two examples. In
Fig. 22(a) it is shown which extra signals (marked with red) in comparison to
the empty machine code are activated by the decode function D to execute the
compute instruction. From the corresponding clause in the definition of D we
derive that these extra signals are:

– two register addresses by which the values for the alu A are selected,
– the opcode signal directly to the alu A,
– two signals to the load function L, saying that the outcome z of A has to be

put in the register bank, and to which register that value has to be put.

Likewise, Fig. 22(b)can be compared to the clause in the decode function D to
see that the following signals are added to the empty machine code for the push
instruction:

– the value from register i has to be selected,
– the store function S should know that the value x from the register bank has

to be put in data memory M, and that it has to be stored on top of the stack,
i.e., at address sp+1,

– since an element is put on top of the stack, the stack pointer has to be increased
by one, such that the stack pointer again points to the top element of the stack.

We leave it to the reader to check the decoding of the other instructions.

The Sprockell Function. Finally we come to the function sprockell, in which
all the above defined functions are composed together. We first remark that the
function sprockell is of the pattern as described by a Mealy Machine (see Sect. 3):

– it is parameterized with a sequence αs of instructions in the program memory,
– its state (R,M, pc, sp) consists of the register bank, the data memory, and

the program counter and stack pointer,
– the input is irrelevant, since for these lecture notes we chose to leave the

processor without I/O. The input may be interpreted as a clock tick,
– the result consists of the updated state and some output, which can be freely

defined, e.g., as a specific memory element to follow the changes.
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sprockell αs (R,M, pc, sp) = ((R′,M′, pc′, sp′), out)
where
MachCode{..}= decode sp (αs!!pc)
R+ = R ++ [pc]
(x, y) = (R+!!reg0, R+!!reg1)
z = A opCode x y
d = M!!addr
R′ = L ldCode R toreg (immvalR, d, z)
M′ = S stCode M toaddr (immvalS, x)
pc′ = Upc (jmpCode, x) (jmpN, y) pc
sp′ = Usp spCode sp

out = · · ·

Note that the first line of the where-clause says that we may use the field names of
the machine code record as if they were normal variables. The next line defines an
“extended register bank” such that we can also choose the value of the program
counter by indexing this extended register. That is practical in case a value of
the program counter is saved on the stack in case of subroutine calls.

The variables x and y are defined as the values from the register bank at
addresses reg0 and reg1, which come from the machine code vector, i.e., they are
chosen by the decoder. The variable z results from applying the alu A to these
values x and y, and applying the operation indicated by opCode, again afield
from the machine code record. Likewise, d is the value from the data memory M.

In the last four lines the various parts of the state are updated by applying
the corresponding update functions to their arguments.

Simulation. The Sprockell can now be simulated by choosing an appropriate
sequence α sof instructions, and appropriate values for the initial register bank
and data memory. Clearly, the expected values to fill register bank and data
memory are zeroes. The program counter should start at 0, and the stack pointer
at that value that indicates the address in data memory where the stack starts.
Now the processor may be simulated by the following expression:

simulate (sprockell αs) (R0,M0, pc0, sp0) [0..]

The list of instructions in the program memory in Fig. 21 calculates the value of
23. It puts 2 in register 3, 3 in register 4, and puts the result in register 5. If we
define out above as

(pc,R!!1,R!!3,R!!4,R!!5)

then the simulation gives the following sequence of 5-tuples:

[(0, 0, 0, 0, 0), (1, 0, 2, 0, 0), (2, 0, 2, 3, 0), (3, 0, 2, 3, 1),
(4, 0, 2, 3, 1), (5, 0, 2, 3, 1), (6, 0, 2, 3, 2), (7, 0, 2, 2, 2), (3, 0, 2, 2, 2),
(4, 0, 2, 2, 2), (5, 0, 2, 2, 2), (6, 0, 2, 2, 4), (7, 0, 2, 1, 4), (3, 0, 2, 1, 4),
(4, 0, 2, 1, 4), (5, 0, 2, 1, 4), (6, 0, 2, 1, 8), (7, 0, 2, 0, 8), (3, 0, 2, 0, 8),
(4, 1, 2, 0, 8), (8, 1, 2, 0, 8), (∗∗∗ Exception : Prelude.(!!) : index too large
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The first line contains the initialization of the values 2, 3, 1 in the registers 3,
4, 5 (respectively), and the other lines all start with the result of instruction
3 which computes whether register 4 equals zero. Note that the values in the
registers are the values before the instruction indicated by the program counter
(on the first position each 5-tuple) is executed.

Note also that instruction 3 puts the result in register 1, since that is the
register where the conditional jump looks to decide whether it should jump or
not (as determined by the choice reg0=1 in the definition of the decode function
for the jump instruction).

Finally, note that the simulation ends by an “index too large” error, since
instruction 4 will cause that the program counter gets the value 8, whereas the
largest index of the sequence is 7. Clearly, that is not the most elegant solution,
but in the framework of these lecture notes, we don’t elaborate this point any
further.

Concluding Remarks. Above we described a non-trivial processor in order
to show the naturality by which the components and the total processor can
be specified and simulated using Haskell. A further step would be to define a
programming language for the Sprockell, which can also be done by embedded
languages, a simplified example being:

type Variable = String
data Expression = · · ·
data Program = Program [Statement ]
data Statement = Assign Variable Expression

| If Expression [Statement ] [Statement ]
| While Expression [Statement ]

We leave it to the reader to work out the details, including the definition of
a compiler, which now can be defined as a function from these types to a list
of instructions, i.e., to the type [Assembly ]. Clearly, the compiler also needs a
lookup table in which it is registered on which memory location the value of a
variable is put.

5.2 Composition of Stateful Components

In the previous section we described the Sprockell processor as an example of an
irregular architecture. All subcomponents of the Sprockell are stateless, which
makes the composition of these subcomponents straightforward, as can be seen in
de definition of the function sprockell. In this section we will discuss an example
of an irregular architecture which is a composition of stateful subcomponents.
The example we choose for that is a reduction circuit as described in [7].

The issue with the composition of subcomponents with state is that the fact
that the state is an explicit argument and an explicit result of an architecture
definition causes that also the component that contains these subcomponents
must have the state of these subcomponents as an argument. The reason is
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that each clock cycle the resulting state of a component has to be fed back
to the same component as an argument. The consequence is that all states of
all subcomponents — and of subcomponents of subcomponents, etcetera — are
arguments and results of the top-level architecture. Because of the negative effect
of this on the readability of an architecture specification, we wish to hide the
state of subcomponents and suppress the visibility of state on a higher level then
the subcomponent to which the state belongs.

The Haskell feature that we use for this is called arrows. We will only show the
usage of arrows in the example below, for a deeper understanding of the concept
we refer to the Haskell website (www.haskell.org) where several introductions to
the concept can be found.

The Reduction Circuit. The intention of the reduction circuit presented here
is to add — on an FPGA — sequences of numbers which enter in order, for
example:

a1, . . . , ak, b1, . . . , bm, c1, . . . , cn, . . .

Thus, all numbers ai have to be added, all numbers bi have to be added, etcetera.
There are a few aspects that have to be taken into account:

– every number is marked with the row to which it belongs, but all numbers
belonging to the same row arrive consecutively,

– every number is a floating point number, meaning that addition is a pipeline
and takes several clock cycles,

– every clock cycle a number arrives and has to be processed immediately.

Clearly, the combination of the last two points make this a tricky problem, and
many architectures are published to do the reduction efficiently. The architecture
we will present uses the possibilities of the pipelined adder to process several
additions in parallel such that all additions can be executed streamingly. The
global idea of the architecture is shown in Fig. 23:

– there is a pipelined floating point adder receiving two numbers at a time, which
then travel through the adder upwards until at the top they are completely
added. Meanwhile the adder may receive new numbers, possibly belonging
to a different row. In the figure the adder is working on four additions, two
belonging to row a, and two belonging to row b.

– when the adder finished adding two numbers, the result is put in the partial
result memory on a location reserved to the row to which this result belongs.
In the figure this is row a, whereas an intermediate result of row b is stored on
another location. One clock cycle later, the adder will produce a next inter-
mediate result of row b, and together with the partial b-result from memory,
that will be sent to the adder.

– there is an input buffer (a FIFO buffer) where the numbers are received in-
order, one-by-one. From this input buffer, the numbers are sent to the pipelined
floating point adder, either two at the same time (as shown in the Fig. 23), or
one together with a result from the adder belonging to the same row.

https://www.haskell.org
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Fig. 23. Reduction circuit, schematic

There are five rules concerning the priority of the number combinations to be
sent to the adder:

1. a number from the adder together with a previous result of the same row in
memory,

2. a number from the adder together with the first number from the input buffer
if it belongs to the same row,

3. the first two numbers from the input buffer if they belong to the same row,
4. the first number from the input buffer if it is the last of a row, together with 0,
5. no number at all if none of the above rules apply.

We refer to [7] for a more extensive description of the algorithm and for a proof
that no pipeline stalls and no buffer overflows occur.

Fig. 24. Reduction circuit, architecture
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In Fig. 24 the components I, A, M correspond to the input buffer, the pipelined
adder, and the intermediate result memory, respectively. In addition to these
components there are two more components:

– a discriminator D which adds a marker to each number for the row it belongs
to. Note that this information is also sent to the partial result memory to
make a reservation for a location for the intermediate results of a row. When
the end result of a row is completely calculated, the corresponding marker can
be re-used for the numbers of a later row.

– a controller, C which checks the above rules and decides which combination of
numbers to send to the adder, and which informs the other components how
this choice influences the content of these components.

Each component has its own internal state, called SD, SI , etcetera. As an exam-
ple, we mention that the input buffer I receives every clock cycle a number x
together with its marker d. It sends its first two numbers i1 and i2 (or an unde-
fined value in case there is only zero or one cell of the input buffer filled) to
the controller and receives in return (in the same clock cycle) the number rem
telling whether there were 0, 1, or 2 of the values i1 and i2 used and which have
thus to be removed from the state of the input buffer.

Without going into the internal details of the other components, we remark
that they all are defined according to the pattern of a Mealy Machine, i.e., they
have the form

f state input = (state ′, output)

Now the state of the reduction circuit RC as a whole is the combination of the
states of all its subcomponents, i.e.,

sRC = ( sD, sI , sA, sC , sM )

The reducer as a whole is a composition of the nested states and can be defined
as follows:

reducer sRC (x, i) = (s′
RC , y)

where
( sD, sI , sA, sC , sM ) = sRC

(s′
D,(new, d)) = D sD i

(s′
I , (i1, i2)) = I sI (x, d, rem)

(s′
P ,res) = P sP (a1, a2)

(s′
R,(r, y)) = R sR (new, d, res, r′)

(s′
C , (a1, a2, rem, r′)) = C sC (i1, i2, res, r)

s′
RC = ( s′

D, s′
I , s′

A, s′
C , s′

M )

Note that the total state of the reduction circuit first has to be unpacked in
the 5-tuple of the states of its subcomponents, after which every individual
subcomponent is applied to its own state and the corresponding inputs (we
leave it to the reader to check these inputs with Fig. 24). The outcome of the
application of each subcomponent is a tuple of its updated state, and its outputs,
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after which the updated state of the reduction circuit as a whole again is the
5-tuple of the internal states of the various subcomponents.

Though straightforward, this is a cumbersome notation, the technique that
CλaSH uses to avoid it is by means of Haskell’s arrow abstraction mechanism,
written as follows (the input of the circuit consists of (x, i), and the output of
y, the total of a row):

reducer = proc (x, i) −> do rec

(new, d) <− (D ˆ̂ˆ s0D ) −< i

(i1, i2) <− ( I ˆ̂ˆ s0I ) −< (x, d, rem)
res <− (P ˆ̂ˆ s0P ) −< (a1, a2)
(r, y) <− (R ˆ̂ˆ s0R ) −< (new, d, res, r′)
(a1, a2, rem, r′) <− (C ˆ̂ˆ s0C ) −< (i1, i2, res, r)

returnA −< y

The internal state of each component is now maintained by the arrow mecha-
nism, where the notation ˆ̂ˆ instantiates a component with an adequately defined
initial component s0x. The comparison of this specification with Fig. 24 shows an
immediate correspondence between specification and figure.

The totally worked out code of the reduction circuit can be found on the
CλaSH website, clash.ewi.utwente.nl.

6 CλaSH

In the previous sections we gave several examples of architectures using Haskell
as a specification language, illustrating several aspects of such specifications. We
showed that Haskell has many powerful features which are very suitable for the
description of hardware architectures. First of all, the mathematical perspective
of the language suits the concept of transforming a signal by means of a digital
circuit, since that concept is close to th e concept of a function. But also several
more concrete features of Haskell are very powerful, for example, polymorphism
turned out to be a very pleasant feature when it comes to a first structural
design, as well as the possibility of higher order functions in case of regular
architectures. Furthermore, the flexibility in choice constructs, the possibility of
exploiting embedded languages, and the derivation of types are practical. Finally,
we mention the immediate possibility of simulating a design as a very practical
feature.

However, in order to produce real hardware from these specifications, for
example on an FPGA, we still have to modify the Haskell code in order to make
it suitable for processing by CλaSH. Since every CλaSH specification also is an
executable Haskell program, these modifications boil down to some rather stan-
dard adaptations. In Sect. 6.1 we will describe some of these steps. In Sect. 6.2
we will sketch the processing pipeline of CλaSH, and give an informal idea of
the rewrite mechanism that CλaSH performs in order to produce synthesizable

https://www.clash.ewi.utwente.nl
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code. Finally, in Sect. 6.3 we will mention some further issues where CλaSH still
has to be improved.

6.1 Transforming Haskell Code into CλaSH Code

The modifications of Haskell code into code that can be processed by CλaSH,
can be distinguished in three different issues, discussed below:

– Bringing the Haskell code into a specific form that can be dealt with during
CλaSH simulation and translation,

– Issues concerning types, in particular number types and list types,
– Issues that have to do with typical hardware deliberations, such as fixed point

arithmetic versus floating point arithmetic.

CλaSH Syntactical Form

Types. Several types that are natural in Haskell have to be modified in order
to be usable for hardware. The limitation stems from the fact that on hardware
one has to choose explicitly how many wires to use, for example, the designer
has to decide on the bit width of the involved number types. Besides, in order
to use the available area on an FPGA optimally, a designer will often choose for
a non-standard bit width of integers, such as 18 bit integers.

Number Types. CλaSH offers several typing constructs to express these choices,
the most important ones being Signed and Unsigned for integer numbers. In
addition the bit width of these numbers has to be indicated, for example Signed16
for 16 bit signed numbers.

List Types. The same holds for lists: in Haskell a list may vary in length during
the evaluation of a program. On hardware, however, that is not possible, so the
designer has to make a choice for the length of a “list”. For this, CλaSH offers
vector types, of the following pattern: Vector 〈width〉 〈type〉, where the width
should be, e.g., 16, 24, etcetera, and the type may be any type that is acceptable
on hardware.

Polymorphism. One further point concerning this issue is polymorphism: often
a specification in Haskell holds for many different types, for example, the spec-
ification of FIR-filters in Sect. 4.3 hold for any number type, they hold for Int,
Integer, Float, etcetera, alike. As mentioned above, for hardware a choice has
to be made, but it often is sufficient to make this choice at the top level of the
specification. For many types of subexpressions of the specification, the types
will be derived by the compiler.

Algebraic Types. As we saw in Sect. 5, a very powerful usage of algebraic types
is to define embedded languages. CλaSH is able to translate these types into bit
patterns, which can be mapped onto hardware. These bit patterns are efficient
in the sense that parts of the bit pattern can be re-used for other constructors
from the same algebraic type.
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Further Transformations. The above transformations stem from the need to
adapt Haskell code to specific hardware requirements, such as decisions on bit
widths of number types. Some other transformations that may have to be nec-
essary have to do with design choices concerning the performance and the preci-
sion of the designed hardware. A typical example of such a choice concerns the
choice for floating point or fixed point arithmetic, which has to do with a trade
off between the usage of area and time on the actual hardware. In Haskell every-
thing is done in floating point, so if the design has to use fixed point arithmetic,
the Haskell code has to be adapted correspondingly.

A comparable issue arises with some arithmetical operators which may be
complex in hardware, such as division. In Haskell itself, which is evaluated as
software, the designer does not need to think about such issues. But in order to
avoid the complexity in hardware, and possibly slow execution of such operators,
a designer may choose for an approximation of such an operator.

6.2 The Processing Pipeline of CλaSH

The process performed by CλaSH is a pipeline and consists of several stages (see
Fig. 25):

Fig. 25. CλaSH pipeline

GHC Frontend. The first step is done by the standard Haskell compiler GHC,
or by GHCi, the interactive variant of GHC. GHC takes care of aspects such as
syntax analysis, desugaring, parsing, and type checking. Also type derivation is
taken care of by GHC.

Besides, GHC translates the CλaSH specification into the Core language,
a GHC internal language which is a fully fledged functional language, but has
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only a limited number of syntactical constructions. That is to say, the result of
GHCI is a Core expression which is equivalent to the original specification, but
which is easier to deal with because of its greater syntactical simplicity.

CλaSH Rewrite Rules. This phase in the CλaSH pipeline is the first step of
the CλaSH kernel itself: to rewrite a specification into a normal form (CoreNF)
which makes the hardware architecture explicit in detail. In fact, this CλaSH
normal form is close to a so-called netlist formalism, which is used in techniques
to produce actual hardware from a specification. Informally put, a netlist for-
malism describes a graph in which every wire is mentioned. The CλaSH normal
form has the following structure:

λx . let
y0 = e0
y1 = e1
y2 = e2

...
in

z

Thus, the CλaSH normal form is a lambda expression with zero or more formal
parameters which correspond to the inputs of the specified component. The body
is a let expression with a sequence of local definitions, in which every defining
expression ei is a simple expression, i.e., an expression with only variables as
subexpressions. Every variable defined in this let-expression corresponds to a
wire in the actual hardware. Finally, the in part of the let-expression also is a
single variable, which corresponds to the output of the component. In fact, every
wire in the CλaSH normal form has a name, and thus the CλaSH normal form
is close to a netlist format.

Below we will give an informal example of this part of the pipeline to show
that the normal form indeed is close to the hardware architecture.

CoreNF to VHDL. The second step of the CλaSH kernel is the translation the
CλaSH normal form into VHDL. The reason to choose for VHDL as a target
language is that VHDL is a standardized hardware specification language, and
many tools exist that map VHDL specifications to actual hardware, such as an
FPGA. In fact, the expression in CλaSH normal form already is in a structural
sense already very close to VHDL.

Mapping to Hardware. This is the last phase in the pipeline and consists of the
usage of the tools that are available for VHDL to take care of the actual mapping
of the specification onto hardware. For example, the synthesis of an FPGA is
realized by these VHDL tools.
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Example of the Rewrite Step. Assume we specify a simple alu, using pattern
matching, as follows:

alu ADD = (+)
alu MUL = (∗)
alu SUB = (−)

So the alu is only able to add, to multiply, and to subtract numbers, i.e., the
embedded language for the opcodes is as follows:

data OpCode = ADD | MUL | SUB

Note, however, that no matter how simple the specified alu is, the specification
is polymorphic and higher order. It is polymorphic in the sense that it works for
any number type, and higher order because it is defined in terms of the functions
(+), (∗), (−) only, without using individual variables for numbers.

Intuitively, the hardware architecture specified by this definition is clear, and
shown in Fig. 26.

Fig. 26. The specified alu

The first step in the rewrite process is the GHC frontend which removes
the syntactic sugar of pattern matching and turns de definition into a lambda-
abstraction:

alu = λc. case c of
ADD → (+)
MUL → (∗)
SUB → (−)

The first rewrite step chosen by CλaSH will be η-expansion, i.e., to add lambda
abstractions and corresponding arguments:

alu = λc. λx. λy.

⎛

⎜⎜⎝

case c of
ADD → (+)
MUL → (∗)
SUB → (−)

⎞

⎟⎟⎠ x y

The result of η-expansion is that all inputs of the alu (c, x, y) now correspond
to formal parameters of the specification.
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Since the case-expression is of function type, the next step is application
propagation, i.e., to move the arguments x, y into the case-expression:

alu = λc x y.case c of
ADD → (+) x y
MUL → (∗) x y
SUB → (−) x y

The next step might be called letification, i.e., the body of the lambda term is
turned into a let-expression, by introducing a name z for the expression as a
whole and having that name as the only term in the body of the let-expression.
The result is that the output of the architecture (see Fig. 26) corresponds to this
variable z. For reasons of readability we write the arithmetical operations in an
infix way:

alu = λc x y.let
z = case c of

ADD → x + y
MUL → x ∗ y
SUB → x − y

in
z

Finally, all subexpressions that are not single variables will be extracted and
defined separately, resulting in a name for every single wire in the architecture:

alu = λc x y.let
p = x + y
q = x ∗ y
r = x − y
z = case c of

ADD → p
MUL → q
SUB → r

in
z

The resulting expression now is in CλaSH normal form, and corresponds to
Fig. 26 to the extent that all wires got names with, e.g., p being the wire that
results from the addition component.

6.3 Final Remarks

As described and illustrated in these lecture notes, CλaSH is a system to specify
hardware. It is based on Haskell, and translates Haskell definitions of a specific
form into synthesizable VHDL, which can be mapped to, e.g., an FPGA. How-
ever, CλaSH is still under development, thus these lecture notes are not the final
text on CλaSH, for an in-depth presentation of CλaSH we refer to [2]. Further
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examples of architectures specified of in CλaSH can be found in, e.g., [1,12,17,18],
whereas some first introductions may be found in [1,11,16].

As an example of a topic on which CλaSH still has to be extended is the
usage of recursive definitions. At the moment there is no systematic treatment
of recursive specifications in CλaSH yet, it is future work to fill in that gap.
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