
The EDSL’s Struggle for Their Sources

Gergely Dévai(B), Dániel Leskó, and Máté Tejfel

Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
{deva,ldani,matej}@caesar.elte.hu

Abstract. Embedded Domain Specific Languages make language design
and implementation easier, because lexical and syntactical analysis and
part of the semantic checks can be completed by the compiler of the host
language.

On the other hand, by the nature of embedding, EDSL compilers
have to work with a syntax tree that stores no information about the
source file processed and the location of the program entities within the
source file. This makes it hard to produce user-friendly error messages
and connect the generated target code with the source code for debug-
ging and profiling purposes.

This lecture note presents this problem in detail and shows possi-
ble solutions. The first, lightweight solution uses macro preprocessing.
The second one is based on syntax tree transformations to add missing
source-related information. This is more powerful, but also more heavy-
weight. The last technique avoids the problem by turning the embedded
language implementation to a standalone one (with own parser) after
the experimental phase of the language development process: It turns
out that most of the embedded implementation can be reused in the
standalone one.

1 Introduction

As software systems become more and more complex, using appropriate lan-
guages that provide the right abstraction level and domain-specific optimization
possibilities is crucial to keep the time-to-market short, the maintenance costs
low and the product performance high.

These observations lead to the application of domain specific languages in
many different application areas. On the other hand, building applications using
DSLs adds new challenges: Designing new languages and creating well perform-
ing compilers is hard, integrating many different languages and tools into a
project may be difficult and DSLs usually lack the rich tool support (debug-
gers, profilers, static analisers) that widely used general purpose programming
languages have.

This paper addresses some of these challenges. In particular, we concentrate
on embedded domain specific languages (EDSLs), that are implemented as spe-
cial libraries in a general purpose programming languages (called the host lan-
guages). In this setup, language design is simplified to a great extent compared

Supported by EITKIC 12-1-2012-0001.

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 300–335, 2015.
DOI: 10.1007/978-3-319-15940-9 7

The EDSL’s Struggle for Their Sources 301

to standalone language development. On the other hand, good quality error
reporting, possibility of source level debugging and profiling is much harder.

This latter deficiency of EDSLs is due to the fact that the compilers of these
languages have no access to the source code of the program (unless the host
languages have special support for this). This paper presents three possible
solutions for the problem. These were developed in different EDSL projects
that the authors of this paper were involved in lately. One of these projects
is Feldspar [2,8], which stands for Functional Embedded Language for Digital
Signal Processing and Parallelism. It was originally initiated by Ericsson AB and
run by Chalmers Univerity of Technology in Gothenburg and ELTE University
in Budapest. The other project, called Miller [9], was initiated by Ericsson Hun-
gary and is run at ELTE University. The objective of this project is to create a
domain specific language for architectures with complex programmable memory
hierarchies. The topic of the third project [7] is an embedded language to express
formal specifications of programs and correctness proofs. All the three projects
created embedded languages using Haskell as the host language.

The rest of this section introduces the concept of embedding and gives the
details of the source code accessing problem. Section 2 presents a solution using
preprocessing with standard tools, while Sect. 3 describes a more advanced possi-
bility with syntax tree manipulation. Section 4 shows how to combine the devel-
opment of an embedded language with its standalone version. Finally, Sect. 5
presents related work and a summary is given in the last section.

1.1 EDSLs

DSLs are usually categorized as external or internal. External DSLs are imple-
mented as a stand alone language with own syntax and compiler, without any
particular connection to any existing language. On the other hand, internal DSLs
are created within the framework of another (usually general purpose) program-
ming language, which is called the host language. The relation between an inter-
nal DSL and its host language can be of many sort. A detailed overview can be
found in [17].

In this paper we consider a specific kind of internal DSL implementation
strategy that Hudak [11] named as domain specific embedded language (DSEL)
and is also called as embedded domain specific language (EDSL).

An EDSL is a library written in the host language. EDSL programs are
therefore programs in the host language that intensively use that library. The
border between traditional libraries and EDSLs is not always clear, but it is an
important feature of EDSLs that they have some kind of domain semantics in
addition to their meaning as plain host language programs.

There are two types of EDSL: shallow and deep embeddings. In case of a
shallow embedding, running the EDSL program as a host language program
computes the result of the EDSL program. On the other hand, executing a
program of a deeply embedded language as a host language program only creates
the abstract syntax tree of the EDSL program. This AST is then usually further
processed by the interpreter or compiler of the EDSL to execute the program

302 G. Dévai et al.

or to generate target code. In the rest of the paper we will only focus on deeply
embedded DSLs. Creating a deeply embedded DSL consists of the following
steps:

– Definition of the data types of the abstract syntax tree. We will also refer to
these data types as internal representation.

– Implementation of a front-end: a set of helper data types and functions that
can be used to build up the abstract syntax tree. The purpose of this front-
end is to provide a user-friendly way of writing EDSL programs. This frontend
determines how EDSL programs will “look like”, therefore one might say that
it defines the EDSLs “syntax”.

– Implementation of a back-end that processes the syntax tree: a code generator
to transform the EDSL program to target code or an interpreter to execute it.

Compared to a standalone language, an EDSL is usually easier to develop:

– Since the EDSL has no own syntax, there is no need for lexer and parser:
These tasks are done by the host language compiler.

– If the host language has expressive enough type system, it is also possible to
encode much of the semantic rules of the EDSL in the types of the abstract
syntax tree elements and frontend functions. This way the semantic analysis
is partly done by the host language compiler too.

– The full power of the host language can be used to write meta programs on
top of the EDSL. As EDSL programs are valid host language programs, EDSL
program fragments can be freely combined and parametrized.

These advantages make embedding particularly suitable for language design
experiments. More on this aspect will be presented in Sect. 4.

These observations are more-or-less true also for the comparison of EDSLs
with other internal language implementation techniques, like Metaborg [4]. In
case of Metaborg-style embeddings, one defines stand alone syntax for the DSL,
but the DSL code fragments are written in host language source files. These
mixed-language source files are then processed by the compiler of the DSL and
the DSL fragments are translated to pure host language code. In the next step
the compiler of the host language is used to create an executable.

Haskell is particularly well-suited to be a host language: Its syntax is minimal
and is flexible enough to support different EDSL syntax styles. The type system
of the language is advanced, allowing the language designer to encode many
EDSL semantic rules in the types.

1.2 Accessing Source Code

Compilers of traditional, standalone languages have full access to the source files.
Lexing and parsing keep track of the locations and string values of the tokens
and the syntax tree can be annotated with this information. This annotation is
then used for several different purposes:

The EDSL’s Struggle for Their Sources 303

– Quality error messages. The error messages contain exact (file, row, column)
locations of the error. It may also name the entities (functions, variables
etc.) that are involved in the error, using the same names that appear in the
source file.

– Readable target code. Many DSL compilers translate the source code to
another textual programming language instead of machine code. Program-
mers usually want to read this generated code and understand its connections
to the original DSL code. To help this understanding process, it is helpful if
the generated code uses the same names for variables, functions as the source.
It may also be a good idea to add comments to the generated code showing
connected DSL code fragments.

– Finding the connection between the source and target code is important not
only for humans but also for software: In order to a show the active source
code instruction during a debugging session or to show the values of variables
it is necessary to provide the debugger with a mapping between the source
and target code.

– The above mentioned mapping is also necessary to project profiling results
back to the source level. This enables profilers to show performance bot-
tlenecks in the source code or to provide runtime statistics on function or
instruction level.

While any parsing based DSL development methods (standalone languages,
Metaborg-style internal languages) have all the necessary information for the
above tasks, EDSLs usually lack this information. The reason for this is simple:
The EDSL compiler’s input is the abstract syntax tree that was created by
running the EDSL program as a host language program. As this syntax tree
is not the result of parsing, location and textual information is not present. In
order to have that in an EDSL syntax tree, the host language should provide
constructs to ask for location and text of any program fragment. (See the note
about the Scala language in the Related Work, Sect. 5.)

Summarizing Sects. 1.1 and 1.2, one is faced with the following tradeoff: On
the positive side, EDSLs can use the host language compiler to solve lexical, syn-
tactical and (partly) semantic analysis. Furthermore, the host language becomes
a powerful meta programming layer on top of the EDSL. On the negative side,
EDSL compilers usually lack source location and text information which pre-
vents creating good quality error messages and connecting the generated target
code for human understanding, debugging and profiling.

2 Preprocessing

2.1 Concept

Preprocessing is the process of scanning and modifying source code before the
compiler inputs it. The most widely used preprocessor is the CPP (C preproces-
sor) which is used with many languages besides C and C++, including Haskell. It
supports macro definitions (#define), conditional compilation (#if, #ifdef etc.),

304 G. Dévai et al.

inclusion of other files into the source file (#include), which is also used instead
of a proper modul system in C/C++.

There is a clone of the C preprocessor tailored a bit to the Haskell language:
cpphs [1]. It accepts quotes and backticks in macro names to match the Haskell
identifier lexical rules. However, operator symbols still cannot be used in macro
names. Also, this tool is easier to integrate into compiler projects using Haskell
as the implementation language than the traditional C preprocessor.

When compiling (or interpreting) Haskell sources using preprocessor direc-
tives, additional parameters are needed, for example:

ghci -cpp MyFile.hs

This will call the traditional C preprocessor, while the following uses cpphs:

ghci -cpp -pgmPcpphs -optP--cpp MyFile.hs

Preprocessing can also be used as a lightweight solution to the source code
access problem of EDSLs. The transformation steps of an EDSL implementation
can be summarized as follows:

– Extend the data types of the abstract syntax tree to be able to store source
file names and line numbers, symbol names in the source etc.

– Add more parameters to selected interface functions to be able to pass these
pieces of information.

– Create macros that generate these additional values automatically and publish
these macros to the user instead of the original interface functions.

2.2 Example

This section presents examples on using the C preprocessor to reflect symbol
names of the EDSL code in the generated target code and to make helpful error
messages.

An Example EDSL. Consider the following language, called Simple, as an
example. It contains the integer and boolean types, variables, basic arithmetic
and logic operations and assignment.

Simple.hs

module Simple
(Simple
, int , bool
, (.=)
, true , f a l s e
, (&&), (| |) , not
, Num(. .)
, compi le
)

The EDSL’s Struggle for Their Sources 305

where

import Prelude h id ing ((&&) , (| |) , not)
import Simple . Frontend

An example program using this language is described in Example.hs.

Example.hs

import q u a l i f i e d Prelude
import Simple

c o r r e c t : : Simple
c o r r e c t = do : :

x <− i n t
x .= 10
x .= x + 20 − 2 ∗ x
y <− bool
y .= true && not y | | f a l s e

wrong1 : : Simple
wrong1 = do

x <− i n t
(x − 1) .= (x + 1)

Compilation can be invoked as follows:

ghci Examples.hs
*Main> compile correct
int var0;
bool var1;
var0 = 10;
var0 = ((var0+20)-(2*var0));
var1 = ((true&&(!var1))||false);

The generated code contains generated variable names, which makes it harder
to read and is really annoying in the error messages:

*Main> compile wrong1
Errors:
Non lvalue found on the left hand side of an assignment: (var0-1)

The task is to fix these problems, but first let us overview the implementation
of the EDSL presented in the appendix before modifying it.

The Implementation of Simple. The implementation consists of three files
in the Simple directory:

306 G. Dévai et al.

– Representation.hs: The data types of the abstract syntax tree of the language.
– Frontend.hs: The types and functions that can be used in Simple programs.
– Compiler.hs: Functions to check programs for errors and to generate target

code.

A Program consists of Declarations and Instructions. A declaration contains
a variable of some type a, where a is a Supported type of the language. An
instruction is an assignment, consisting of two Expressions: the left and right
hand sides of the assignment. Expressions are either Literals, Var iables or com-
pound expressions built up by arithmetic or logic operators.

Simple.Representation.hs

{−# LANGUAGE GADTs #−}

module Simple . Representat ion where

data Program =
Program
{ d e c l a r a t i o n s : : [Dec la ra t i on]
, i n s t r u c t i o n s : : [I n s t r u c t i o n]
}

data Dec la ra t i on where
Dec la ra t i on : : Supported a => Var iab le a −> Dec la ra t i on

data Var iab le a = Var iab le S t r ing

c l a s s Supported a where
d e c l a r e : : Var iab le a −> St r ing

data I n s t r u c t i o n where
Assign : : Express ion a −> Express ion a −> I n s t r u c t i o n

data Express ion a where
L i t e r a l : : S t r ing −> Express ion a
Var : : S t r ing −> Express ion a
Add : : Express ion Int

−> Express ion Int −> Express ion Int
Sub : : Express ion Int

−> Express ion Int −> Express ion Int
Mul : : Express ion Int

−> Express ion Int −> Express ion Int
And : : Express ion Bool

−> Express ion Bool −> Express ion Bool
Or : : Express ion Bool

−> Express ion Bool −> Express ion Bool
Not : : Express ion Bool −> Express ion Bool

The EDSL’s Struggle for Their Sources 307

Note that expressions are typed, this means that type errors in Simple pro-
grams will be reported already by the Haskell compiler. Consider the following
wrong3 program:

wrong3 : : Simple
wrong3 = do

x <− i n t
x .= true

The error message for this program is:

Examples.hs:31:10:
Couldn’t match expected type ‘Prelude.Int’

with actual type ‘Prelude.Bool’
Expected type: Simple.Representation.Expression Prelude.Int

Actual type: Simple.Representation.Expression Prelude.Bool
In the second argument of ‘(.=)’, namely ‘true’
In a stmt of a ’do’ block: x .= true

The frontend of the language instantiates the Num class for Expression Int
to provide integer literals and basic arithmetic in the language. The true and
false functions are the boolean literals and the standard (&&), (||) and not
operations of the Haskell Prelude are redefined as the boolean operations of
Simple.

Simple.Frontend.hs

{−# LANGUAGE Fl ex i b l e I n s t anc e s , GADTs, RankNTypes #−}

module Simple . Frontend where

import Prelude h id ing ((&&) , (| |) , not)
import Control .Monad . State

import Simple . Representat ion
import Simple . Compiler

i n s t ance Num (Express ion Int) where
f romInteger n = L i t e r a l $ show n
a + b = Add a b
a − b = Sub a b
a ∗ b = Mul a b
abs a = e r r o r ”Function ’ abs ’ i s unsupported . ”
signum a = e r r o r ”Function ’ signum ’ i s unsupported . ”

t rue : : Express ion Bool
t rue = L i t e r a l ” t rue ”

f a l s e : : Express ion Bool

308 G. Dévai et al.

f a l s e = L i t e r a l ” f a l s e ”

i n f i x r 3 &&
(&&) : : Express ion Bool −> Express ion Bool −> Express ion Bool
a && b = And a b

i n f i x r 2 | |
(| |) : : Express ion Bool −> Express ion Bool −> Express ion Bool
a | | b = Or a b

not : : Express ion Bool −> Express ion Bool
not a = Not a

data FrontendState =
FrontendState
{ program : : Program
, unique id : : I n t eg e r
}

type Simple = State FrontendState ()

addVar : : Dec la ra t i on −> Program −> Program
addVar d prg = prg { d e c l a r a t i o n s = de c l a r a t i o n s prg ++ [d] }

i n t : : State FrontendState (Express ion Int)
i n t = do

s t <− get
l e t varName = ”var ” ++ show (unique id s t)
l e t v = Var iab le varName : : Var iab le Int
put $ s t

{ program = addVar (Dec la ra t i on v) $ program s t
, unique id = unique id s t + 1
}

re turn $ Var varName

bool : : State FrontendState (Express ion Bool)
bool = do

s t <− get
l e t varName = ”var ” ++ show (unique id s t)
l e t v = Var iab le varName : : Var iab le Bool
put $ s t

{ program = addVar (Dec la ra t i on v) $ program s t
, unique id = unique id s t + 1
}

re turn $ Var varName

addInst r : : I n s t r u c t i o n −> Program −> Program
addInst r i prg = prg{ i n s t r u c t i o n s = i n s t r u c t i o n s prg ++ [i] }

i n f i x 0 .=

The EDSL’s Struggle for Their Sources 309

(.=) : : Supported a => Express ion a −> Express ion a −> Simple
v .= e = do

s t <− get
put $ s t { program = addInst r (Assign v e) $ program s t }

compi le : : Simple −> IO ()
compi le s = putStrLn $ show $ compile ’ r e s u l t

where
r e s u l t = program $ snd $ runState s empty
empty = FrontendState (Program [] []) 0

The instructions in a Simple program are written in a monadic environment.
The monad is called Simple and is a state monad with a state that collects the
declarations and instructions of the program, and an Integer used to generate
unique names for the declared variables.

The int and bool are monadic functions resulting in Expression Ints and
Expression Bools, so that they can be used to declare variables in the DSL
programs. These functions get the actual state of the program, create a new
Declaration with a Variable of the desired type inside, add this declaration to
the program, increment the integer used as unique identifier in variable names
and finally put the modified state back into the monad.

The (.=) operator can be used in the language to write an assignment oper-
ation. This function is also monadic, it adds the new assignment instruction to
the state.

The compile function runs the state monad in order to obtain the abstract
syntax tree of the program and calls the compile’ function defined in the Com-
piler module to generate code.

As defined in Compiler.hs, the Result of the compilation is a list of Strings,
which is either Code or Errors.

Simple.Compiler.hs

{−# LANGUAGE GADTs #−}

module Simple . Compiler where

import Control .Monad . State
import Data . L i s t

import Simple . Representat ion

in s t ance Supported Int where
d e c l a r e (Var iab le name) = ” in t ” ++ name

in s t ance Supported Bool where
d e c l a r e (Var iab le name) = ”bool ” ++ name

data Result = Code [S t r ing] | Errors [S t r ing]

310 G. Dévai et al.

i n s t ance Show Result where
show (Code cs) = un l i n e s cs
show (Errors cs) = un l i n e s $ ” Errors :\n” : cs

type ResultM a = State Result a

addError : : S t r ing −> ResultM ()
addError s = do

s t <− get
put $ case s t o f

Code −> Errors [s]
Errors es −> Errors $ es ++ [s]

addIns t ruc t i on : : S t r ing −> ResultM ()
addIns t ruc t i on s = do

s t <− get
put $ case s t o f

Code cs −> Code $ cs ++ [s]
Errors es −> Errors es

compile ’ : : Program −> Result
compile ’ prg = snd $ runState (compile ’ ’ prg) empty

where
empty = Code []

compile ’ ’ : : Program −> ResultM ()
compile ’ ’ prg = do

mapM compi l eDec la ra t i on $ d e c l a r a t i o n s prg
mapM comp i l e In s t ru c t i on $ i n s t r u c t i o n s prg
re turn ()

c omp i l e In s t ru c t i on : : I n s t r u c t i o n −> ResultM ()
comp i l e In s t ru c t i on (Assign l e f t r i g h t) = case l e f t o f

Var name −> do
r ight ’ <− compi leExpress ion r i gh t
addIns t ruc t i on $ name ++ ” = ”

++ r ight ’ ++ ” ;”
−> do

l e f t ’ <− compi leExpress ion l e f t
addError $ ”Non l va l u e found on

the l e f t hand s i d e o f an ass ignment : ”
++ l e f t ’

compi leExpress ion : : Express ion a −> ResultM Str ing
compi leExpress ion (L i t e r a l va l) = return va l
compi leExpress ion (Var name) = return name
compi leExpress ion (Add e1 e2) = binop ”+” e1 e2
compi leExpress ion (Sub e1 e2) = binop ”−” e1 e2
compi leExpress ion (Mul e1 e2) = binop ”∗” e1 e2

The EDSL’s Struggle for Their Sources 311

compi leExpress ion (And e1 e2) = binop ”&&” e1 e2
compi leExpress ion (Or e1 e2) = binop ” | | ” e1 e2
compi leExpress ion (Not e) = do

e ’ <− compi leExpress ion e
re turn $ ” (! ” ++ e ’ ++ ”)”

binop : : S t r ing −> Express ion a −> Express ion a
−> ResultM Str ing

binop op e1 e2 = do
e1 ’ <− compi leExpress ion e1
e2 ’ <− compi leExpress ion e2
re turn $ ”(” ++ e1 ’ ++ op ++ e2 ’ ++ ”)”

compi l eDec la ra t i on : : Dec la ra t i on −> ResultM ()
compi l eDec la ra t i on (Dec la ra t i on v)

= addIns t ruc t i on $ de c l a r e v ++ ”;”

Compilation is monadic, uses a state monad with the Result type as the
state. The addInstruction and addError functions help adding new target code
lines or error messages to the state. If an error occurs, the code lines generated
so far and to be generated later are omitted and only the error messages are
collected.

The compileDeclaration, compileInstruction and compileExpression monadic
functions are used to generate code for declarations, instructions and expres-
sions respectively. The compileInstruction function also reports an error when
anything but a variable is found on the left hand side of an assignment.

Elimination of the Generated Variable Names. The first possible solution
is to modify the language frontend so that programmers can set variable names
that will appear in the generated code:

c o r r e c t : : Simple
c o r r e c t = do

x <− i n t ”x”
x .= 10
x .= x + 20 − 2 ∗ x
y <− bool ”y”
y .= true && not y | | f a l s e

We can add a parameter of type String to the frontend functions int and bool
and use this name instead of the generated one. The result of the compilation
should now look like:

i n t x ;
bool y ;
x = 10 ;
x = ((x+20)−(2∗x)) ;
y = ((t rue&&(!y)) | | f a l s e) ;

On the other hand, this solution is inconvenient for the programmers and it
is also easy to mess things up if the Haskell names and DSL names of variables
diverge: x <- int "y".

312 G. Dévai et al.

This solution can be improved by creating a header file called simple.h
and moving the import directives at the beginning of Examples.hs into it. The
header has to be included in the example file: #include "simple.h". From now
on, compilation can be invoked passing -cpp option to ghci so that ghci calls
the C preprocessor before parsing.

Two macros (int and bool) can be defined in the header file, each with one
parameter. The macro call int(x) has to expand to x <- int "x". Now, the
examples can be rewritten so that they use the newly defined macros instead of
the int and bool frontend functions:

c o r r e c t : : Simple
c o r r e c t = do

in t (x)
x .= 10
x .= x + 20 − 2 ∗ x
bool (y)
y .= true && not y | | f a l s e

This way the error messages reporting invalid assignments become a little
bit more helpful, because they refer to the variables by their original names in
the source code.

Adding File Names and Line Numbers to Error messages. First, a
function

checkDeclarations :: [Declaration] -> ResultM ()

can be defined in Compiler.hs to find duplicate variable names in the declaration
list. The function addError is useable to report error. We can call this function
in the first line of the compile’’ function:

checkDeclarations (declarations prg)

Consider the following wrong2 program:

wrong2 : : Simple
wrong2 = do

x <− i n t
x .= 0
x <− i n t
x .= 1

Now it should also result in an error message:

Variable x is redefined.

This error message could be more helpful if indicated the source file and the
lines that caused the error:

Examples.hs, line 22: Variable x is redefined. Earlier definition
is in line 20.

The EDSL’s Struggle for Their Sources 313

In order to achieve this, the following modifications have to be implemented:

– Addition of two new parameters of types String and Int is needed to the
functions int and bool to be able to pass the file name and the line number
of the variable definition.

– The macros FILE and LINE has to be used in the definition of the int
and bool macros to pass these new parameters.

– In Representation.hs, two new constructor parameters to the Variable
constructor of types String and Int is needed. The compiler’s code has to be
adapted to this change.

– In the int and bool functions the two new parameters have to be used in
the Variable constructor in order to store the file and line information in the
abstract syntax tree.

– In the checkDeclarations function we have to use the new constructor para-
meters of Variable to extend the error message with useful information.

Better Error Messages About Assignments. The techniques seen in the
previous section can be applied to make the error message about incorrect assign-
ment instructions more user friendly. In order to do this, we need to turn the
(.=) operator to a macro. This, unfortunately, will make the EDSL syntax less
pretty:

c o r r e c t : : Simple
c o r r e c t = do

in t (x)
l e t (x , 10)
l e t (x , x + 20 − 2 ∗ x)
bool (y)
l e t (y , t rue && not y | | f a l s e)

On the other hand, we can make the assignment related error message look
like this:

Examples.hs, line 14: Non lvalue found on the left hand side of an
assignment: (x-1)

In order to achieve this, we have to add new parameters to the (.=) function,
implement the let macro in the header file, add new constructor parameters
to Assign and use them in the error message inside the compileInstruction
function.

Further Possibilities. The same technique can be used for example to simplify
the definition of Simple programs. Instead of writing

c o r r e c t : : Simple
c o r r e c t = do

. . .

314 G. Dévai et al.

one might prefer using this syntax:

s imple (c o r r e c t)
. . .

This way we can further enrich the error messages with information about
the function in which the error is located.

2.3 Evaluation

To summarize the techniques we have seen in this section, we conclude that
the advantage of this solution is its simplicity and also that it only requires
easy-to-use and standard tools like the C preprocessor.

On the other hand, all the well-known pitfalls of the textual replacement of
macro expansion make this solution dangerous. Another disadvantage is that
eventual Haskell error messages will refer to the code after macro expansion,
while the user edits the one with macros.

The approach is also limited, and it affects the syntax of the EDSL as we
have seen in the examples so far.

3 Syntax Tree Manipulation

In case of languages with own concrete syntax and a parser, it is easy to create a
mapping between the source code and the target code, because the compiler gets
the source file and analyses it from character to character, so it gets the position
for each syntactical unit instantly and can store it in the syntax tree. But, as
described in Sect. 1.2, this is not the case for embedded languages, they use the
compiler of the host language to produce it’s own embedded representation, the
embedded compiler will not get any information about the source code.

This section presents a solution to this problem, which is more heavy weight
than macro preprocessing used in Sect. 2, but is also more powerful. The idea
is to perform a more advanced preprocessing, using the compiler of the host
language. This way we gain access to the position of each syntactical unit, and
can store it in the embedded syntax tree. For this, the we need to extend the
internal representation (abstract syntax tree) and the frontend library. Using
the extra location information, the compiler can create a mapping between the
stored positions and the corresponding position of the target code.

3.1 Extended Compilation

Compiling an embedded source is done via the following process: The inter-
preter of the host language analyses the source code, the program is executed
as a host language program and builds the internal representation of the DSL
program. Than the EDSL compiler generates the target code from the internal
representation.

The EDSL’s Struggle for Their Sources 315

Fig. 1. Compiling embedded source

In order to add location information to the internal representation, the com-
pilation workflow becomes more complex. First of all we need the host syn-
tax tree of the embedded source (the host AST). A transformation then gets
the positions of all syntactical units and extends the host AST with further
nodes that represent wrapper functions. If we transform the modified syntax
tree back to embedded source, every necessary source position will appear. In
this solution the interface library and the embedded representation need to be
extended with the wrapper functions and the corresponding data types.

During the code generation we need to save each position from the node
of the embedded syntax tree and match it up with the corresponding position
of the target code to complete the mapping. Figure 1 illustrates the differen-
ces of the original and the extended compilation process.

3.2 Transformation

The first step of the described solution is the manipulation of the host AST.
During this, each node representing a syntactical unit is labeled. The label func-
tion holds the source position of the syntactical unit that is being labelled.
The result is an extended host AST, that can be easily transformed back to
source code in which every syntactical unit’s position appears as an argument of
the corresponding label function. The transformation itself is independent of the
embedded language, it depends only on the host language. Therfore it can be
reused by any embedded language that uses the same host language.

316 G. Dévai et al.

3.3 Code Generation

Code generation also becomes a bit more complex, because it has to calculate
the absolute position of parts of the generated target code and produce a map-
ping between the target and the embedded source. For this purpose, we need
additional information to be able to generate code from each node of the embed-
ded syntax tree: the measure of the indentation, the absolute row and column
position, where the code generation should start from, the absolute row and col-
umn positions, where the code generation ends. This information, being spread
among the nodes of the abstract syntax tree is categorized as follows:

– downward spread: information that every child node gets with the same value
(eg. measure of indentation)

– upward spread: an information that the parents get from their child (eg. gen-
erated target code)

– state-like: an information that the node get from its parent and use it to
calculate other information (eg. absolute start row and column positions)

The code generator uses wrapping nodes and other nodes in the abstract
syntax tree differently: Nodes that represent language constructs are turned into
target code, while wrapper nodes are used to produce the location mapping
between the source and target files.

3.4 Embedding the While Language

The While language is a very simple imperative language which consists a
sequence of simple statements such as assignment and control statements (if-
then-else and while loop). Programmers can use logical constants and expres-
sions eg. true, false, comparison, negation and basic arithmetic operations like
addition, subtraction and multiplication. We choose this language, because it is
not too complex, so we can focus on the mapping problem.

First of all, we need to define a data type, that describes the abstract repre-
sentation of While language programs. A possible implementation of the embed-
ded syntax is the following.

data Program where
(:=) : : Var iab le a −> Expr a −> Program
Declare : : [Var iab le a] −> Program
Sequence : : [Program] −> Program
Loop : : Expr Bool −> Program −> Program
IfThenElse : : Expr Bool −> Program −> Program −> Program
Skip : : Program

Data Expr a where
Plus : : Expr Int −> Expr Int −> Expr Int
And : : Expr Bool −> Expr Bool −> Expr Bool
Compare : : Expr Int −> Expr Int −> Expr Bool

The EDSL’s Struggle for Their Sources 317

Value : : (Show a) => a −> Expr a
Var : : Var iab le a −> Expr a

data Var iab le a where
Var iab le : : Name −> Var iab le a

type Name = Str ing

The Program data type was defined as a generalised algebraic data type.
This way it is possible to use type variables in the constructor parameters that
do not appear as type variables of the Program data type itself.

So far, we defined the internal representation of the While language, but
using directly the defined data constructors is not convenient. So we need to
define an interface for the programmers, that hides the representation of the
language and helps them to build the syntax tree conveniently.

c l a s s Compare a where
(<) : : a −> a −> Expr Bool

c l a s s Equal a where
(==) : : a −> a −> Expr Bool

c l a s s Log i ca l a where
(&&), (| |) : : a −> a −> Expr Bool
(!) : : a −> Expr Bool

We make Expr Bool an instance of these type classes so that programmers
can write logical expressions in a convenient way. A question pops up here: Why
did not we use the Eq type class that is provided by Haskell’s Prelude module?
The answer is simple, the type signature does not fit:

c l a s s Eq a where
(==) : : a −> a −> Bool

In this case, if we want to examine if two integers or boolean values are equal,
the result will be a Bool, but we need an Expr Bool instead. However, when it
comes to arithmetic operations, we can use the Num a typeclass. If we make
the Expr Int type an instance of the Num a type class we can even use integer
literals in the arithmetic expressions of the DSL.

in s t ance Num (Expr Int) where
(+) = Plus
(−) = Minus
(∗) = Mul
f romInteger i = Value $ f romInteger i

In general, before the code generation process, the EDSL’s compiler is allowed
to make transformations on the embedded syntax tree to optimize it. This is not
done in our case to make the example simple. Therefore the compilation phase
contains only code generation.

318 G. Dévai et al.

c l a s s CodeGenerator a where
generate : : a −> Int −> St r ing

The CodeGenerator type class is used to generate target code from simple
nodes. The generate function takes a node from the syntax tree and an indenta-
tion value and produces the corresponding target code. We use the StateMonad,
to store the generated target code. The code function takes a String as an argu-
ment and puts it to the state of the monad. We give some example instances of
the CodeGenerator typeclass:

i n s t ance CodeGenerator Program
where
generate ((:=) (Var iab l e name) expr) indent = cSource
where

(() , cSource) = f l i p runState ”” $ do
code $ indente r indent ++ name
code $ ”=” ++ generate expr 0 ++ ”\n ; ”

. . .
i n s t ance CodeGenerator (Expr a)
where
generate (Plus l h s rhs) indent = cSource
where

(() , cSource) = f l i p runState ”” $ do
code $ ”(” ++ generate l h s 0 ++
code $ ”) + (” ++ generate rhs 0 ++ ”)”

. . .

3.5 Extending the Language

So far we have presented a possible way to embed the While language into
Haskell. However using the illustrated method the compiler does not have any
information about the source code. In this part we extend our language, step-
by-step, as mentioned in Sect. 3.1.

First, we extend the internal representation of the language and the frontend
with wrapper nodes and functions. In the next step we apply a transformation,
that manipulates the Haskell syntax tree in order to inject the positions of the
syntactical units into the DSL program source code. Because we have extended
the programmers’ interface and the embedded representation, and during the
transformation we did not break any syntactical rule of Haskell, the source
code that is pretty printed from the transformed host syntax tree will result
in valid code either in Haskell as well as in the (extended) While language.

New data constructors, so called wrapper nodes, are defined in the abstract
syntax tree to store the positions of the embedded source. These constructors
take a source position, and a node to be wrapped as an argument. In our case
we need only three wrapper nodes:

The EDSL’s Struggle for Their Sources 319

type SrcLoc = ((Int , Int) , (Int , Int))
type Name = Str ing

data Program where
. . .

LabProg : : SrcLoc −> Program −> Program

data Expr a where
. . .

LabExpr : : SrcLoc −> Expr a −> Expr a

data Var iab le a where
Var iab le : : Name −> Var iab le a
LabVar : : SrcLoc −> Var iab le a −> Var iab le a

SrcLoc represents the wrapped node’s position in the source. In the first tuple
the start row and column positions are stored, while the second tuple stores the
end row and column positions.

The frontend needs to be extended with functions that represent the wrapper
nodes. For this purpose we created the Label a typeclass containing the label
function, which takes a source position and a node from the embedded syntax
tree. It wraps the node with the corresponding wrapper data constructor. Below
is the definition of the Label typeclass and some of the necessary instances:

c l a s s Label a where
l a b e l : : ((Int , Int) , (Int , Int)) −> a −> a

in s t ance Label Program where
l a b e l = LabProg

in s t ance Label (Expr a) where
l a b e l = LabExpr

Using this modification the representation will be capable of storing infor-
mation about the source code, but the question remains: How can we label the
syntactical units with their source position? A tool is needed that can syntac-
tically analyse Haskell source and build a syntax tree containing the necessary
information. For this purpose we have chosen the haskell-src-exts package. After
syntactically analysing the source, it can produce the host AST. All we need
to do is to identify the syntactical units and extend them with new nodes that
represent the previously defined label function.

First of all, we need a helper function that retrieves source information from
a node of the Haskell syntax tree. For this purpose the Location a type class is
defined:

c l a s s Locat ion a where
ge tS ta r tL ine : : a SrcSpanInfo −> Int
ge tStar tCo l : : a SrcSpanInfo −> Int

320 G. Dévai et al.

getEndLine : : a SrcSpanInfo −> Int
getEndCol : : a SrcSpanInfo −> Int

We instantiate this type class with the types that build the host syntax tree.
Every node contains its position in the source code. The information is stored in
a value with a type of SrcSpanInfo. The haskell-src-exts package provides helper
functions to retrieve this information. Another function needs to be defined, to
extend the syntax tree with further nodes, that represent the previously intro-
duced label function. The new function has two arguments, the second will be
the node that is to be wrapped, the first argument will be the source position of
the wrapped node. The next example is simplified to make it easier to read:

wrap : : Exp SrcSpanInfo −> Exp SrcSpanInfo
wrap exp =

(App
(App

(Var
(UnQual (Ident ” l a b e l ”))

)
(Tuple

[Tuple [s t a r tL i n ePo s i t i o n
, startColumnPos it ion]

, Tuple [endLinePos i t ion
, endColumnPosition]

]
)

)
exp

)

So far we have defined the transformation on a single node. We need to apply
this on every node in the host AST. The Transform a type class is responsible
for this. From the point of view of the transformation, the significant nodes are
the nodes having type Exp, especially the function applications. The instance of
the transformation function for nodes of other types is the identical mapping.

c l a s s Transform a where
transform : : (a SrcSpanInfo) −> (a SrcSpanInfo)

i n s t ance Transform Exp
. . .

t rans form x@(App) = wrap $ transformRec x

transformRec (App i n f fun arg) =
App i n f (transformRec fun) (trans form x)

transformRec x = transform x

Note that the transformRec function can handle any function application with
arbitrary number of arguments.

The EDSL’s Struggle for Their Sources 321

So far we managed to store each syntactical unit’s position in the embedded
representation, however we do not know the nodes’ position in the generated
target code. So our task is to calculate each node’s position during the code
generation. For this purpose we need additional information for each node:

– an absolute location, where the code generation starts (state information),
– an absolute location, where the code generation ends (upwards propagated

information),
– and the measure of the indentation (downwards propagated information).

Upwards propagated information is stored in a record data structure. The Result
record has three fields

– source: contains the generated target code so far,
– mapping: mapping generated so far
– position: the target’s code absolute position generated from the latest node

from the embedded syntax tree.

Now we can define the DebugInfo and DebugInfo1 type classes which describe
the modified code generation. The latter one is used when the current node
contains a list.

type Locat ion = (Int , Int)

c l a s s DebugInfo a where
generateDebugInfo : : a −> Int −> Locat ion −> Result

c l a s s (DebugInfo a) => DebugInfo1 a where
generateDebugInfo ’ : : [a] −> Int −> Locat ion −> Result

The original version of the code generator uses a State monad, where the
state is the generated code, and the result value is unit. In the extended version,
the State monad is used again, but the state will be a tuple with three members:

– the generated source so far,
– the absolute starting line position,
– the absolute starting column position.

We need to access these members during the whole process of code generation,
so the entire procedure needs to be monadic.

Another monadic function is needed, that calculates the ending position
of the code generated from the actual node of the embedded representation. With
these helper functions the DebugInfo a typeclass can easily be implemented for
the data types defined in the internal representation. However, as we pointed out
earlier, wrapper nodes and language constructs are handled differently. In the
case of a wrapper node our task is to call the monadic wrapper function with the
wrapped node and lift the result into the monad. After that we need to retrieve
the target code’s position from the Result record’s position field, pair it with the
corresponding position in the source, then extend the list in the mapping field

322 G. Dévai et al.

with this value. On the other hand, if we are dealing with a node that represents
a language construct, the code function is used recursively for code generation
on each of the children nodes.

At the end of the compilation, the Result record will contain the generated
target code, and the mapping between the target code and the embedded source.

3.6 Example

Consider the following While program calculating the greatest common divisor
of two Int number as an example.

gcd : : Program
gcd = (Dec lare [x , y]) ++
(Loop

((!) (x == y))
(I fThenElse

(x < y)
(y := ((Var y) − (Var x)))
(x := ((Var x) − (Var y)))

)
)

x : : Var iab le Int
x = Var iab le ”x”

y : : Var iab le Int
y = Var iab le ”y”

From this source code the following target code can be generated.

i n t x ;
i n t y ;
whi l e (! (x == y))
{

i f ((x < y))
{

y = (y) − (x) ;
}
e l s e
{

x = (x) − (y) ;
}

}
The following listing introduces the textual description of the modified AST

created by adding new nodes representing the label functions.

gcd : : Program
gcd = l a b e l ((14 , 7) , (14 , 123))
((l a b e l ((14 , 8) , (14 , 22))
(Dec lare (l a b e l ((14 , 16) , (14 , 22)) [x , y])))

The EDSL’s Struggle for Their Sources 323

++
(l a b e l ((14 , 28) , (14 , 122))
(Loop
(l a b e l ((14 , 34) , (14 , 45))

((!) (l a b e l ((14 , 38) , (14 , 44)) (x == y))))
(l a b e l ((14 , 48) , (14 , 121))
(I fThenElse (l a b e l ((14 , 60) , (14 , 65)) (x < y))
(l a b e l ((14 , 68) , (14 , 92))
(y :=
(l a b e l ((14 , 74) , (14 , 91))

((l a b e l ((14 , 75) , (14 , 80)) (Var y)) −
(l a b e l ((14 , 85) , (14 , 90)) (Var x))))))

(l a b e l ((14 , 96) , (14 , 120))
(x :=
(l a b e l ((14 , 102) , (14 , 119))
((l a b e l ((14 , 103) , (14 , 108)) (Var x)) −
(l a b e l ((14 , 113) , (14 , 118)) (Var y)))))))))))

Using the extended version of the code generator and this modified AST we
can get a final result which contains the same target code we have seen before
and a mapping between the source code and the target code. The mapping can
be represented, for example, by an XML file:

<root>
<node>

<s t a r tL i n e t a r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”14”/>
<startColumn ta r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”7”/>
<endLine t a r g e tPo s i t i o n =”13” sou r c ePo s i t i on=”14”/>
<endColumn ta r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”123”/>

</node>
<node>

<s t a r tL i n e t a r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”14”/>
<startColumn ta r g e tPo s i t i o n =”1” sou r c ePo s i t i on=”8”/>
<endLine t a r g e tPo s i t i o n =”3” sou r c ePo s i t i on=”14”/>
<endColumn ta r g e tPo s i t i o n =”0” sou r c ePo s i t i on=”22”/>

</node>
. . .

</root>

3.7 Summary

Debugging existing source code is not a simple task, even in case of general
purpose languages. In case of domain specific languages, source level debugging
is more complicated by the increased abstraction level. The generated target code
can be debugged and the results have to be mapped back to the DSL level. This
task is even harder in case of embedded programming languages, because the
mapping between the generated target code and the source code is missing. This
section presented a general method to extend an existing embedded language
and its compiler to be able to produce this mapping.

The extension consists of the following elements:

324 G. Dévai et al.

– a transformation, that manipulates the host syntax tree,
– extended version of the internal representation and frontend containing wrap-

per nodes and functions,
– modified code generation to keep track of the location of the target code for

each node in the abstract syntax tree.

The extended compilation workflow is able to produce the necessary mapping.
The method can be used for every embedded language given that we have a
tool to easily produce and maipulate the syntax tree of the host language.

4 Embedding and Parsing Combined

Using classical compiler technology makes the development of new DSLs hard.
The new language usually changes quickly and the amount of the language con-
structs increases rapidly in the early period of the project. Continuous adaptation
of the parser, the type checker and the back-end of the compiler is not an easy
job.

As described in Sect. 1.1, language embedding is a technique that facili-
tates this development process. Not all general purpose programming languages
are equally suitable to be host languages. Flexible and minimalistic syntax,
higher order functions, monads, expressive type system are useful features in this
respect. For this reason Haskell and Scala are widely used as host languages. On
the other hand, these are not mainstream languages. As our experience from a
previous project [2,8] shows, using a host language being unfamiliar to the major-
ity of the programmers makes it harder to make the embedded DSL accepted in
an industrial environment.

Because of this, it is reasonable to create a standalone DSL as the final
product of DSL projects. However, it would be beneficial to make use of the
flexibility provided by embedding in the language design phase. This section of
the paper presents our experience from an experiment to combine the advantages
of these two approaches. The findings are based on a university research project
initiated by Ericsson. The goal of the project is to develop a novel domain
specific language that is specialized in the IP routing domain as well as the
special hardware used by Ericsson for IP routing purposes.

The most important lessons learnt from the experiment are the following. It
was more effective to use an embedded version of the domain specific language
for language experiments than defining concrete syntax first, because embed-
ding provided us with flexibility so that we were able to concentrate on language
design issues instead of technical problems. The way we used the host language
features in early case studies was a good source of ideas for the standalone lan-
guage design. Furthermore, it was possible to reuse the majority of the embedded
language implementation in the final product, keeping the overhead of creating
two front-ends low.

This section is organized as follows. Section 4.1 introduces the architecture
of the compiler. Then in Sect. 4.2 we analyse the implementation activities using
statistics from the version control system used. Section 4.3 summarizes the learnt
lessons.

The EDSL’s Struggle for Their Sources 325

4.1 Compiler Architecture

The architecture of the software is depicted in Fig. 2. There are two main dataflows
as possible compilation processes: embedded compilation (dashed) and standalone
compilation (dotted).

The input of the embedded program compilation is a Haskell program loaded
in the Haskell interpreter. What makes a Haskell program a DSL program is
that it heavily uses the language front-end that is provided by the embedded
DSL implementation. This front-end is a collection of helper data types and
functions that, on one hand, define how the embedded program looks like (its
“syntax”), and, on the other hand, builds up the internal representation of the
program. The internal representation is in fact the abstract syntax tree (AST)
of the program encoded as a Haskell data structure.

The embedded language front-end module may contain complex functions to
bridge the gap between an easy-to-use embedded language syntax and an internal
representation suitable for optimizations and code generation. However, it is
important that this front-end does not run the DSL program: It only creates
its AST.

The same AST is built by the other, standalone compilation path. In this case
the DSL program has it’s own concrete syntax that is parsed. We will refer to the
result of the parsing as concrete syntax tree (CST). This is a direct representation
of the program text and may be far from the internal representation. For this
reason the transformation from the CST to an AST may not be completely
trivial.

Once the AST is reached, the rest of the compilation process (optimizations
and code generation) is identical in both the embedded and the standalone
version. As we will see in Sect. 4.2, this part of the compiler is much bigger
both in size and complexity than the small arrow on Fig. 2 might suggest.

Fig. 2. Compiler architecture.

326 G. Dévai et al.

The numbers on the figure show the basic steps of the workflow to create a
compiler with this architecture. The first step is to define the data types of the
internal representation. This is the most important part of the language design
since these data types define the basic constructs of the DSL. Our experience has
shown that it is easier to find the right DSL constructs by thinking of them in
terms of the internal representation then experimenting with syntax proposals.

Once the internal representation (or at least a consistent early version of it)
is available, it is possible to create embedded language front-end and code gen-
eration support in parallel. Implementation of the embedded language front-end
is a relatively easy task if someone knows how to use the host language features
for language embedding purposes. Since the final goal is to have a standalone
language, it is not worth creating too fine grained embedded language syntax.
The goal of the front-end is to enable easy-enough case study implementation
to test the DSL functionality.

Contrarily, the back-end implementation is more complicated. If the internal
representation is changed during DSL design, the cost of back-end adaptation
may be high. Fortunately it is possible to break this transformation up into
several transformation steps and start with the ones that are independent of the
DSL’s internal representation. In our case this part of the development started
with the module that pretty prints assembly programs.

When the case studies implemented in the embedded language show that the
DSL is mature enough, it is time to plan its concrete syntax. Earlier experiments
with different front-end solutions provide valuable input to this design phase.
When the structure of the concrete syntax is fixed, the data types representing
the CST can be implemented. The final two steps, parser implementation and
the transformation of the CST to AST can be done in parallel.

4.2 Detailed Analysis

According to the architecture in Sect. 4.1 we have split the source code of the
compiler as follows:

– Representation: The underlying data structures, basically the building data
types of the AST.

– Back-end: Transforms the AST to target code. Mostly optimization and code
generation.

– Embedded front-end: Functions of the embedded Haskell front-end which con-
structs the AST.

– Standalone front-end: Lexer and parser to build up the CST and the trans-
formation from CST to AST.

The following figures are based on a dataset extracted from our version con-
trol repository1. The dataset contains information from 2012 late February to
the end of the year.
1 In this project we have been using Subversion.

The EDSL’s Struggle for Their Sources 327

Figure 3 compares the code sizes (based on the eLOC, effective lines of code
metric) of the previously described four components. The overall size of the
project was almost 9000 eLOC2 when we summarized the results of the first
year.

51%

13%

7%

29% Back-end

Embedded front-end

Representation

Standalone front-end

Fig. 3. Code size comparison by components.

No big surprise there, the back-end is without a doubt the most heavyweight
component of our language. The second place goes to the standalone front-end,
partly due to the size of lexing and parsing codes3. The size of the embedded
front-end is less than the half of the standalone’s. The representation is the
smallest component by the means of code size, which means that we successfully
kept it simple.

Figure 4 shows the exact same dataset as Fig. 3 but it helps comparing the
two front-ends with the reused common components (back-end, representation).

The pie chart shows that by developing an embedded language first, we could
postpone the development of almost 30 % of the complete project, while the so-
called extra code (not released, kept internally) was only 13 %.

Figure 5 presents how intense was the development pace of the four compo-
nents. The dataset is based on the log of the version control system. Originally
it contained approximately 1000 commits which were related to at least one of
the four major components. Then we split the commits by files, which resulted
almost 3000 data-points, that we categorized by the four components. This way
each data-point means one change set committed to one file.

It may seem strange that we spent the first month of development with the
back-end, without having any representation in place. This is because we first
created a representation and pretty printer for the targeted assembly language.

The work with the representation started at late March and this was the
most frequently changed component over the next two-three months. It was
hard to find a proper, easy-to-use and sustainable representation, but after the
2 Note that this project was entirely implemented in Haskell, which allows much more

concise code than the mainstream imperative, object oriented languages.
3 We have been using the Parsec parser combinator library [12] of Haskell. Using

context free grammars instead would have resulted in similar code size.

328 G. Dévai et al.

58%
13%

29%
Common

Embedded only

Standalone only

Fig. 4. Code size comparison for embedded / standalone.

0.00

0.25

0.50

0.75

1.00

2012/03 2012/04 2012/05 2012/06 2012/07 2012/08 2012/09 2012/10 2012/11 2012/12 2013/01

Time

D
en

si
ty

Components

Back−end

Embedded front−end

Representation

Standalone front−end

Fig. 5. Development timeline.

first version was ready in early April, it was possible to start the development
of the embedded front-end and the back-end.

The back-end and code generation parts were mostly developed during the
summer, while the embedded front-end was slightly reworked in August and
September, because the first version was hard to use.

By October we almost finalized the core language constructs, so it was time
to start to design the standalone front-end and concrete, textual syntax. This
component was the most actively developed one till the end of the year. At
the end of October we had a slight architecture modification which explains the
small spike in the timeline. Approaching the year end we were preparing the
project for its first release: Every component was actively checked, documented
and cleaned.

4.3 Lessons Learnt

This section summarizes the lessons learnt from the detailed analysis presented
in Sect. 4.2.

Message 1: Do the language experiments using an embedded DSL then define
concrete syntax and reuse the internal representation and back-end! Our project
started in January 2012 and in December the same year we released the first

The EDSL’s Struggle for Their Sources 329

version of the language and compiler for the industrial partner. Even if this
first version was not a mature one, it was functional: the hash table lookups
of the multicast protocol was successfully implemented in the language as a
direct transliteration from legacy code. Since state of the art study and domain
analysis took the first quarter of the year, we had only 9 months for design and
implementation. We believe that using a less flexible solution in the language
design phase would not have allowed us to achieve the mentioned results.

Message 2: Design the language constructs by creating their internal representa-
tion and think about the syntax later! The temptation to think about the new
language in terms of concrete syntax is high. On the other hand, our experience
is that it is easier to design the concepts in abstract notation. In our case this
abstract notation was the algebraic data types of Haskell: The language con-
cepts were represented by the data types of the abstract syntax tree. When the
concepts and their semantics were clear there was still large room for syntax
related discussions4, however, then it was possible to concentrate on the true
task of syntax (to have an easy to use and expressive notation) without mixing
semantics related issues in the discussion. This is analogous to model driven
development: It is easier to build the software architecture as a model and think
about the details of efficient implementation later.

Message 3: Use the flexibility of embedding to be able to concentrate on language
design issues instead of technical problems! Analysis of the compiler components
in Sect. 4.2 shows that the embedded front-end of the language is lightweight
compared to the front-end for the standalone language. This means that embed-
ding is better suited for the ever-changing nature of the language in the design
phase. It supports the evolution of the language features by fast development
cycles and quick feedback on the ideas.

Message 4: No need for a full-fledged embedded language! Creating a good qual-
ity embedded language is far from trivial. Using different services of the host
language (like monads and do notation, operator precedence definition, overload-
ing via type classes in case of Haskell) to customize the appearance of embedded
language programs can easily be more complex then writing a context free gram-
mar. Furthermore, advocates of embedded languages emphasize that part of the
semantic analysis of the embedded language can be solved by the host language
compiler. An example in case of Haskell is that the internal representation of
the DSL can be typed so that mistyped DSL programs are automatically ruled
out by the Haskell compiler. These are complex techniques, while we stated so
far that embedding is lightweight and flexible — is this a contradiction? The
goal of the embedded language in our project was to facilitate the language
design process: It was never published for the end-users. There was no need for
a mature, nicely polished embedded language front-end. The only requirement
was to have an easy-to-use front-end for experimentation — and this is easy to
4 “Wadler’s Law: The emotional intensity of debate on a language feature increases as
one moves down the following scale: Semantics, Syntax, Lexical syntax, Comments.”
(Philiph Wadler in the Haskell mailing list, February 1992, see [18].).

330 G. Dévai et al.

achieve. Similarly, there was no need to make the Haskell compiler type check
the DSL programs: the standalone language implementation cannot reuse such
a solution. Instead of this, type checking was implemented as a usual semantic
analyser function working on the internal representation. As a result of all this,
the embedded frontend in our project in fact remained a light-weight component
that was easy to adapt during the evolution of the language.

Message 5: Carefully examine the case studies implemented in the embedded
language to identify the host language features that are useful for the DSL! These
should be reimplemented in the standalone language. An important feature of
embedding is that the host language can be used to generate and to generalize
DSL programs. This is due to the meta language nature of the host language
on top of the embedded one. Our case studies implemented in the embedded
language contain template DSL program fragments (Haskell functions returning
DSL programs) and the instances of these templates (the functions called with
a given set of parameters). The parameter kinds (expressions, left values, types)
used in the case studies gave us ideas how to design the template features of the
standalone DSL. Another example is the scoping rules of variables. Sometimes
the scoping rules provided by Haskell were suitable for the DSL but not always.
Both cases provided us with valuable information for the design of the standalone
DSL’s scoping rules.

Message 6: Plan enough time for the concrete syntax support, which may be
harder to implement than expected! This is the direct consequence of the pre-
vious item. The language features borrowed from the host language (eg. meta
programming, scoping rules) have to be redesigned and reimplemented in the
standalone language front-end. Technically this means that the concrete syntax
tree is more feature rich than the internal representation. For this reason the
correct implementation of the transformation from the CST to the AST takes
time. Another issue is source location handling. Error messages have to point to
the problems by exact locations in the source file. The infrastructure for this is
not present in the embedded language.

4.4 Plans vs Reality

Our original project plan had the following check points:

– By the end of March: State of the art study and language feature ideas.
– By the end of June: Ideas are evaluated by separate embedded language exper-

iments in Haskell.
– By the end of August: The language with concrete syntax is defined.
– By the end of November: Prototype compiler is ready.
– December was planned as buffer period.

While executing it, there were three important diverges from this plan that we
recommend for consideration.

The EDSL’s Struggle for Their Sources 331

First, the individual experiments to evaluate different language feature ideas
were quickly converging to a joint embedded language. Project members work-
ing on different tasks started to add the feature they were experimenting with
modularly to the existing code base instead of creating separate case studies.

Second, the definition of the language was delayed by three months. This
happened partly because it was decided to finish the spontaneously emerged
embedded language including the back-end, and partly because a major revision
and extension to the language became necessary to make it usable in practice.
As a result, the language concepts were more or less fixed (and implemented in
the embedded language) by September. Then started the design of the concrete
syntax which was fixed in October. At first glance this seems to be an unman-
ageable delay. However, as we have pointed out previously, it was then possible
to reuse a considerable part of the embedded language implementation for the
standalone compiler.

Third, we were hoping that, after defining the concrete syntax, it will be
enough to write the parser which will trivially fit into the existing compiler as
an alternative to the embedded language front-end. The parser implementation
was, in fact, straightforward. On the other hand, it became clear that it cannot
directly produce the internal representation of the embedded language. Recall
what Sect. 4.3 tells about the template features and scoping rules to understand
why did the transformation from the parsing result to the internal representa-
tion take more time than expected. Therefore the buffer time in the plan was
completely consumed to make the whole infrastructure work.

In brief, we used much more time than planned to design the language, but
the compiler architecture of Sect. 4.1 yet made it possible to finish the project
on time.

4.5 Sustainability of the Architecture

It is still an open question if it is worth it to keep the presented compiler archi-
tecture while adding more language features.

Conclusions suggest to continue with the successful strategy and experiment
with new language features by modifying, extending the embedded language
and, once the extensions are proved to be useful and are stable enough, add
them to the standalone language.

On the other hand, this comes at a cost: The consistency of the embedded and
standalone language front-ends have to be maintained. Whenever slight changes
are done in the internal representation, the embedded language front-end has to
be adapted.

Furthermore, since the standalone syntax is more convenient than the embed-
ded language front-end, it might not be appealing to experiment with new lan-
guage concepts in the embedded language. It also takes more effort to keep in
mind two different variants of the same language.

Even if it turns out that it is not worth maintaining the embedded language
front-end and it gets removed from the compiler one day, its important positive
role in the design of the first language version is indisputable.

332 G. Dévai et al.

5 Related Work

The embedding technique as used by this lecture notes originates from Hudak
[11]. The first embedded languages, however, were interpreted and thus the
strictly compilation-related issues discussed here were not causing problems.
The foundations of compiled embedded languages are layed down in the seminal
paper about the Pan image manipulation language [10]. About the optimization
and compilation of Haskell functions over DSL types, the authors write: “The
solution we use is to extend the base types to support � variables �. Then to
inspect a function, apply it to a new variable [...] and look at the result.” The
extension with a named variable is:

data FloatE = . . . | VarFloat S t r ing

The problem of what the string value should be is not discussed in the paper. An
obvious solution of generating arbitrary fresh strings for each parameter works
well, but leads to generated variable names in the compiled code, making it hard
to read and connect to the DSL source.

Obsidian is another compiled EDSL in Haskell, targeting graphics processors.
Their authors claim [16] to build the language along the lines of Pan, mentioned
above. The cited paper does not mention the problems discussed in this lecture
notes, but there is a related code fraction in the Obsidian repository [15], related
to standard C code emission:

getC : : Conf ig
−> Program a
−> Name
−> [(Str ing , Type)]
−> [(Str ing , Type)]
−> St r ing

getC conf c name in s outs = . . .

That is, the names of the function and the input/output paremeters are fine
tuned when invoking the code generator function.

The authors of this lecture notes first met the source code access problem
when working on the Feldspar compiler [8]. That project targeted the digital
signal processing domain and the compiler produced C code. Since the project
was running in an industry-university cooperation, there was emphasis on the
generation of code that is readable and trackable back to the source code. If
the compiler is invoked from the Haskell interpreter, the generated code uses
generated variable names. On the other hand, Feldspar also has a standalone
compiler that applies a solution close to the one described in Sect. 3 (Syntax
tree manipulation): The compiler uses an off-the-shelf Haskell parser and uses it
to collect all top level function names and the names of their formal parameters.
Then a Haskell interpreter is started which loads the same source file, and then
the compilation of each of the collected functions is initiated. As the function and
parameter names are known this time, they are communicated to the compilation
function and therefore the same identifiers show up in the target C code.

The EDSL’s Struggle for Their Sources 333

An emerging trend is to create embedded DSLs using the Scala language.
The authors do not have much experience in Scala-based DSLs, but the reflection
capabilities of the language seem to solve many of the problems discussed in this
paper [13]: “Scala reflection enables a form of metaprogramming which makes
it possible for programs to modify themselves at compile time. This compile-
time reflection is realized in the form of macros, which provide the ability to
execute methods that manipulate abstract syntax trees at compile-time.” A EDSL
compiler can use this feature to access the necessary source-related information
while generating target code.

The Metaborg approach [4,5] (and many similar projects) extend the host
language with DSL fragments using their own syntax. The applications are then
developed using the mixed language and the DSL fragments are usually compiled
to the host language. This approach requires a parsing phase to process the
extended syntax, therefore the accessibility of the actual source code is not an
issue.

Based on Spinellis’s design patterns for DSLs [14], we can categorize our
approaches. The preprocessing approach (see Sect. 2) is a combination of the lex-
ical processing and piggybacking design patterns. The syntax tree manipulation
based solution (see Sect. 3) uses the combination of the pipeline and the lexi-
cal processing approaches. Finally, the combined embedding&parsing approach
internally uses an embedded front-end, which is a realization of a piggyback
design pattern, where the new DSL uses the capabilities of an existing language.
While the final version of the language, which employs a standalone front-end,
is a source-to-source transformation.

5.1 Embedding and Parsing Combined

Combining the embedded and the parsing approach is the most advanced solu-
tion in our paper, therefore this subsection is devoted to somewhat similar
approaches and related works.

Thomas Cleenewerck states that “developing DSLs is hard and costly, there-
fore their development is only feasible for mature enough domains” [6]. Our expe-
rience shows that if proper language architecture and design methodology is in
place, the development of a new (not mature) DSL is feasible in 12 months. The
key factors for the success are to start low cost language feature experiments as
soon as possible, then fix the core language constructs based on the results and
finally expand the implementation to a full-fledged language and compiler.

Frag is a DSL development toolkit [20], which is itself a DSL embedded into
Java. The main goal of this toolkit is to support deferring architectural deci-
sions (like embedded vs. external, semantics, relation to host language) in DSL
software design. This lets the language designers to make real architectural deci-
sions instead of ones motivated by technological constraints or presumptions.
In case of our embedding&parsing approach (see Sect. 4) there were no reason
to postpone architectural decisions: It was decided early in the project to have
an external DSL with a standalone compiler. What we needed instead was to

334 G. Dévai et al.

postpone their realization and keep the language implementation small and sim-
ple in the first few months to achieve fast and painless experiment/development
cycles.

Another approach to decrease the cost of DSL design is published by
Bierhoff, Liongosari and Swaminathan [3]. They advocate incremental DSL
development, meaning that an initial DSL is constructed first based on a few
case studies, which is later incrementally extended with features motivated by
further case studies. This might be fruitful for relatively established domains,
but our experience shows that the language design iterations are mostly heavier
then simple extensions. We believe that creating a full fledged first version of the
language and then considerably rewriting it in the next iterations would have
wasted more development effort than the methodology we applied.

David Wile has summarized several lessons learnt about DSL development [19].
His messages are mostly about how to understand the domain and express that
knowledge in a DSL. Our current paper adds complementary messages related to
the language implementation methodology.

6 Summary

This paper deals with the problem that EDSLs’ compilers have no access to
their source code, which would be important for good quality error messages,
debugging and profiling. Three different solutions are outlined.

Section 2 discussed how to use standard source code preprocessing tools like
the C preprocessor to add the missing location information to the abstract syntax
tree of the EDSL.

Next, in Sect. 3, we have generalized the preprocessing solution: The method
presented there extends the AST with and the language frontend with wrappers
and reuses the host language compiler to inject the location information into the
EDSL’s AST. The code generator is then able to produce a mapping to connect
the generated target code with the corresponding source code fragments.

Finally, Sect. 4 evaluates a language development methodology that starts the
design and implementation with an embedded language, then defines concrete
syntax and implements support for it. The main advantage of the method is
the flexibility provided by the embedded language combined by the advantages
of a standalone language. Experience from a project using this methodology
shows that most of the embedded language implementation can be reused for
the standalone compiler.

References

1. cpphs: Haskell implementation of the C preprocessor. http://projects.haskell.org/
cpphs/

2. Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B.,
Persson, A., Sheeran, M., Svenningsson, J., Vajdax, A.: Feldspar: a domain spe-
cific language for digital signal processing algorithms. In: 2010 8th IEEE/ACM
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE), pp. 169–178. IEEE (2010)

http://projects.haskell.org/cpphs/
http://projects.haskell.org/cpphs/

The EDSL’s Struggle for Their Sources 335

3. Bierhoff, K., Liongosari, E.S., Swaminathan, K.S.: Incremental development of a
domain-specific language that supports multiple application styles. In: OOPSLA
6th Workshop on Domain Specific Modeling, pp. 67–78 (2006)

4. Bravenboer, M., de Groot, R., Visser, E.: MetaBorg in action: examples of domain-
specific language embedding and assimilation using stratego/XT. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 297–311. Springer,
Heidelberg (2006)

5. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. SIGPLAN Not. 39(10), 365–383
(2004)

6. Cleenewerck, T.: Component-based DSL development. In: Pfenning, F., Macko, M.
(eds.) GPCE 2003. LNCS, vol. 2830, pp. 245–264. Springer, Heidelberg (2003)

7. Dévai, G.: Embedding a proof system in haskell. In: Horváth, Z., Plasmeijer, R.,
Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 354–371. Springer, Heidelberg
(2010)

8. Dévai, G., Tejfel, M., Gera, Z., Páli, G., Gyula Nagy, Horváth, Z., Axelsson, E.,
Sheeran, M., Vajda, A., Lyckeg̊ard, B., et al.: Efficient code generation from the
high-level domain-specific language feldspar for dsps. In: ODES-8: 8th Workshop
on Optimizations for DSP and Embedded Systems (2010)

9. Dévai, G., Tejfel, M., Leskó, D.: Embedding and parsing combined for efficient
language design (accepted for publication at icsoft-ea) (2013)

10. Elliott, C., Finne, S., De Moor, O.: Compiling embedded languages. J. Funct.
Program. 13(3), 455–481 (2003)

11. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.
28(4es), 196 (1996)

12. Leijen, D., Meijer, E.: Parsec: direct style monadic parser combinators for the real
world. Electron. Notes Theor. Comput. Sci. 41(1) (2001)

13. Miller, H., Burmako, E., Haller, P.: Reflection. http://docs.scala-lang.org/
overviews/reflection/overview.html

14. Spinellis, D.: Notable design patterns for domain-specific languages. J. Syst. Softw.
56(1), 91–99 (2001)

15. Svensson, J.: Obsidian source code repository. https://github.com/svenssonjoel/
Obsidian

16. Svensson, J., Sheeran, M., Claessen, K.: Obsidian: a domain specific embedded
language for parallel programming of graphics processors. In: Scholz, S.-B., Chitil,
O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 156–173. Springer, Heidelberg (2011)

17. Tratt, L.: Domain specific language implementation via compile-time meta-
programming. ACM Trans. Program. Lang. Syst. (TOPLAS) 30(6), 31 (2008)

18. Wadler, P.: Wadler’s “Law” on language design. Haskell mailing list (1992). http://
code.haskell.org/∼dons/haskell-1990-2000/msg00737.html

19. Wile, D.: Lessons learned from real dsl experiments. Sci. Comput. Program. 51(3),
265–290 (2004)

20. Zdun, U.: A dsl toolkit for deferring architectural decisions in dsl-based software
design. Inf. Softw. Technol. 52(7), 733–748 (2010)

http://docs.scala-lang.org/overviews/reflection/overview.html
http://docs.scala-lang.org/overviews/reflection/overview.html
https://github.com/svenssonjoel/Obsidian
https://github.com/svenssonjoel/Obsidian
http://code.haskell.org/~dons/haskell-1990-2000/msg00737.html
http://code.haskell.org/~dons/haskell-1990-2000/msg00737.html

	The EDSL's Struggle for Their Sources
	1 Introduction
	1.1 EDSLs
	1.2 Accessing Source Code

	2 Preprocessing
	2.1 Concept
	2.2 Example
	2.3 Evaluation

	3 Syntax Tree Manipulation
	3.1 Extended Compilation
	3.2 Transformation
	3.3 Code Generation
	3.4 Embedding the While Language
	3.5 Extending the Language
	3.6 Example
	3.7 Summary

	4 Embedding and Parsing Combined
	4.1 Compiler Architecture
	4.2 Detailed Analysis
	4.3 Lessons Learnt
	4.4 Plans vs Reality
	4.5 Sustainability of the Architecture

	5 Related Work
	5.1 Embedding and Parsing Combined

	6 Summary
	References

