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Abstract. Task Oriented Programming (or shortly TOP) is a new pro-
gramming paradigm. It is used for developing applications where human
beings closely collaborate on the internet to accomplish a common goal.
The tasks that need to be done to achieve this goal are described on a
very high level of abstraction. This means that one does need to worry
about the technical realization to make the collaboration possible. The
technical realization is generated fully automatically from the abstract
description. TOP can therefore be seen as a model driven approach. The
tasks described form a model from which the technical realization is gen-
erated.

This paper describes the iTask system which supports TOP as an
Embedded Domain Specific Language (EDSL). The host language is the
pure and lazy functional language Clean.

Based on the high level description of the tasks to do, the iTask system
generates a web-service. This web-service offers a web interface to the
end-users for doing their work, it coordinates the tasks being described,
and it provides the end-users with up-to-date information about the sta-
tus of the tasks being performed by others.

Tasks are typed, every task processes a value of a particular type.
Tasks can be calculated dynamically. Tasks can be higher order: the
result of a task may be a newly generated task which can be passed
around and be assigned to some other worker later on. Tasks can be
anything. Also the management of tasks can be expressed as a task.
For example, commonly there will be many tasks assigned to someone.
A task, predefined in the library for convenience, offers the tasks to do to
the end-user much like an email application offers an interface to handle
emails. This enables the end-user to freely choose which tasks to work
on. However, one can define other ways for managing tasks.

A new aspect of the system is that tasks have become reactive: a task
does not deliver one value when the task is done, but, while the work
takes place, it constantly produces updated versions of the task value
reflecting the progress of the work taken place. This current task value
can be observed by others and may influence the things others can see
or do.
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1 The Task-Oriented Programming Paradigm

1.1 Introduction

These lecture notes are about Task-Oriented Programming (TOP). TOP is a
programming paradigm that has been developed to address the challenges soft-
ware developers face when creating interactive, distributed, multi-user applica-
tions. Interactive applications provide their users with an optimal experience and
usage of the application. Programming interactive components in an application
is challenging because it requires deep understanding of GUI toolkits. Addi-
tionally, the program structure (for instance widget-based event handling with
callback functions and state management) makes it hard to figure out what the
application is doing. Distributed applications spread their computational activ-
ities on arbitrarily many computing devices, such as desktop computers, note-
books, tablets, smart phones, each running one operating system or another.
The challenges that you face concern programming the operating systems of
each device, keeping track of the distributed computations in order to coordi-
nate these tasks correctly and effectively, and executing the required communi-
cation protocols. Multi-user applications serve users who work together in order
to achieve common goals. A simple example of a common goal could be to write,
or design something together. In this area the challenges concern keeping track
of users, aiding them with their work, and making sure that they do not get in
each other’s way. More challenging examples are modern health care institutes,
multi-national companies, command and control systems, where thousands of
people do a job in collaboration with many others, and ICT plays an important
role to connect the activities. We have written these lecture notes to show how
contemporary, state-of-art programming language concepts can be used to rise
to the challenge of creating applications in a structured way, using a carefully
balanced mixture of the novel concept of tasks with the proven concepts of types,
type systems, functional and type-indexed programming.

The Internet forms a natural habitat for the kind of applications that TOP
has been designed for (Fig. 1) because its architecture makes TOP applications
available on a wide range of equipment, such as desktop computers, notebooks,
smart phones, and tablets. In addition, it is very natural for a TOP application
to serve more than a single user. TOP applications can deploy web services, or
provide these themselves. Under the hood the application uses a clients-server
architecture. The client sides implement the front-end components of the applica-
tion, running in web browsers or as apps on smart phones and tablets. The server
side runs as a web service and basically implements the back-end coarse grain
coordination and synchronization of the front-end components. During the oper-
ations, it can use other web services, rely on sensor data, use remote procedure
calls, and synchronize data ‘in the cloud’ or back-end database systems.

Unless one can manage to separate the concerns in a well organized manner,
programming this kind of applications is a white-water canoeing experience in
which there is a myriad of rapids to be taken in the form of design issues, imple-
mentation details, operating system limitations, and environment requirements.
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Fig. 1. The Internet habitat of TOP applications

TOP steers the programmer away from these rapids and guides to placid waters.
It forces the programmer to think of the work that the intended processors
(humans and computers) of your applications are required to do, as well as the
structure of the information that is required to coordinate this work properly.
TOP offers a declarative style of programming in which what takes precedence
over how. A TOP program relates to work in a similar way as René Magritte’s
well known painting of a pipe relates to a real pipe (Fig. 2). In a TOP program
tasks are specifications of what work must be performed by the users and com-
puting machinery of an application. How the specification is executed is the con-
cern of the TOP language implementation, taking the rapids. For instance, the
task of obtaining information from users should require only a data model of the

Fig. 2. La Trahison des Images (The Treachery of Images), 1928–1929, by René
Magritte – “This is not a pipe”
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information; the TOP language implementation of this task handles the entire
user interface management. Similarly, the task of coordinating tasks should
require only the data model of the processed data; the TOP language imple-
mentation of this task handles all coordination and communication issues. Often
data models need to be transformed from one format to another. It should be
sufficient to specify the computation that is restricted on the proper domain and
range and trust that the TOP language implementation knows when to invoke
these computations on the proper data values without unexpected side-effects.

It should be clear that types play a pivotal role in TOP: they are used for
modeling information and specify the domains and ranges of computations; the
TOP language implementation uses them to generate and handle user interfaces
and coordinate work implementations.

The TOP language that we have developed and use in this paper is iTask .
Figure 3 gives a bird’s-eye view of the main components of the iTask language.
iTask is a combinator language. Combinator languages emphasize the use of
combinators to construct programs. A combinator is a named programming pat-
tern that in a very precise way states how a new piece of program is assembled
from smaller pieces of programs. iTask is also an example of an embedded lan-
guage. Embedded languages borrow key language aspects from an existing lan-
guage, the host language. In this way they receive the benefits of known language
constructs and, more importantly, do not have to re-invent the wheel. In the case
of iTask the host language is the purely functional programming language Clean.
Consequently, the combinators are expressed as functions, and the model types
can be expressed with the rich type language of Clean. iTask extends its host
language with a library that implements all type-indexed algorithms, web client
handling, server side handling, and much more.

Fig. 3. The iTask language is embedded in the functional language Clean

TOP applications developed in iTask appear as a web service to the rest of the
world and the iTask clients that connect with your application. Figure 4 shows
how iTask applications fit in the Internet habitat. An iTask application acts as a
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Fig. 4. iTask applications are Internet species

web service that can be used by other Internet applications. Users connect with
the application via a standard web browser on a personal computer, or an app
on a smart phone or tablet.

2 TOP Programming with iTasks

In this section we briefly explain how tasks and their signatures are denoted
(Sect. 2.1), and how to set up the code examples in the iTask system (Sect. 2.2).
The syntax of the host language Clean is very similar to Haskell . In AppendixA
we give a brief overview of some Clean specific parts that we use in these lecture
notes. Both the Clean programming environment and the iTask toolkit can be
obtained at wiki.clean.cs.ru.nl.

2.1 Task Signatures

A task has two components: a description of the work that has to be performed,
and the typed interface that determines the type of the task values that are
communicated to the environment in which the work is performed.

Tasks abstract from activities within software systems, regardless whether
these are executed by computer systems or humans, how long they will take,
and what resources are consumed. For instance, a task can describe the job to
interview a particular person without predetermining whether this must be done
with a human interviewer or via an online questionnaire. As another example,

http://wiki.clean.cs.ru.nl
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a task can describe the job that pieces of music must be played without predeter-
mining whether a user starts to play guitar or let some music player application
randomly pick and play a digitized music file from a play list. Work abstraction
is a good thing, because it allows the context in which tasks operate not to
trouble themselves with the way in which tasks are implemented.

Tasks do need to have up-to-date knowledge about each other’s progress.
This is where the type of a task enters the picture. Commonly, tasks process
information, and often the environment would like to know what the current state
is of a task. Other tasks can see how things are going by inspecting the current
value of a task which may change over time. The current value of the information
that is processed by a task is called its task value. The task value may change over
time, but its type remains the same. For instance, during the interviewing task
above, the task value might be the notes that are made by the human interviewer
or the current state of the online questionnaire that is filled in by the interviewee.
During the music playing task, the task value might be information about the
current song that is played or the current recording of the digitized music that
is played. In both examples, the task values change during the task, but their
type remains constant.

Tasks are typed in the following way: if the type of the task value is T, then
the corresponding task has type (Task T). So, a task with name t and task value
type T has signature t :: Task T (see signatures, page 240).

To describe what a task is about you need additional information. In these
lecture notes we describe this in a functional style. A task is represented by a
function which obtains the additional information via the function arguments. If
we require n arguments of consecutive types A1. . . An to describe a named task
t of type (Task T), then this is specified by a task function with signature t
:: A1. . . An -> Task T. Note that if n = 0, then t is the constant function that
defines a task right away. Such a function has signature t :: Task T.

To give you a feeling how to read and write signatures of tasks, we show a
few examples.

– A user who is writing a piece of text is performing a task with a task value
that reflects the current content of that text. Let’s name this task write text.
The text content can be modeled in different ways. As an example, you can
choose a basic string representation, or a structure representation of the text
that includes mark-up information, or a pdf document that tells exactly how
the document should be rendered. Let us defer the decision how to represent
the text exactly, and introduce some opaque type Text. We can define the
signature of the task to write a piece of text as follows:

write_text :: Task Text

Observe that this task requires no further arguments.
– A task to interview a certain person, identified by a value of type User, may

result in a Questionnaire document. Let’s name this task interview. If
we ignore the details of the user identification and questionnaire, then the
signature of this task is:
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interview :: User -> Task Questionnaire

This is an example of a task function with one argument, User.
– A computer that sorts a list of data is performing a computational task that

ultimately returns a list with the sorted data. Let us name this task sort data.
This task requires as argument the list of data that must be sorted. For sorting,
it suffices to know that the list elements possess an ordering relation, so this
task should work for any element type, indicated with a type variable a,
provided that an instance of the type class Ord for a is present. The signature
of the sorting task function is specified by (see overloading, page 240):

sort_data :: [a] -> Task [a] | Ord, iTask a

In a signature, the occurring type class restrictions are enumerated after the |
separator. The type of the task value must always be an instance of the iTask
type class. For this reason, the type class restriction iTask is also included
for values of type a.

– Assume that the task would be to start some given task argument at a given
point in time. Hence, when performing such a task one first needs to wait
until the given moment in time has passed, and then perform the given task
argument. Let us name this task wait to do.

wait_to_do :: Time (Task a) -> Task a | iTask a

Time is a data type that models clock time. Note that wait to do is an exam-
ple of a higher-order task function. A higher-order task function is a task
function that has at least one argument that is itself a task(function).

These examples illustrate that the functional style of programming carries
over to tasks in a natural way.

2.2 Modules and Kick-Start Wrapper Functions

We set up an infrastructure for the TOP examples that are presented in these
lecture notes.

The host language Clean is a modular language. Modules collect task defini-
tions, data types, and functions that are logically related (see modules, page 235).

We have assembled a couple of kickstart wrapper functions and put them
in the module TOPKickstart that can be imported by a TOP main module.
The kickstart wrapper functions are enumerated in Fig. 5. The one– wrapper
functions are intended for a single user and the multi– wrapper functions assume
the existence of a set of registered users. The –App wrapper functions support a
single application only and the –Apps wrapper functions provide infrastructure
to manage several applications.

The corresponding TopKickstart.dcl module is given in Fig. 6. Note that
line 2 makes the entire iTasks api available to your TOP programs if you import
TopKickstart yourself. The signatures of the four kickstart wrapper functions
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one user multi-user

single application oneTOPApp multiTOPApp
multiple applications oneTOPApps multiTOPApps

Fig. 5. The four possible kickstart wrapper functions for iTask examples.

1definition module TOPKickstart
2import iTasks
3

4oneTOPApp :: (Task a) !*World -> *World | iTask a
5multiTOPApp :: (Task a) !*World -> *World | iTask a
6oneTOPApps :: [BoxedTask] !*World -> *World
7multiTOPApps :: [BoxedTask] !*World -> *World
8

9:: BoxedTask = E.a: BoxedTask String String (Task a) & iTask a

Fig. 6. The kickstart module with four wrapper functions.

are given at lines 4–7. The –App wrapper functions expect a single task definition
as argument. The type of this task, (Task a), can be anything provided that it is
an instance of the iTask type class. The –Apps wrapper functions are provided
with arbitrarily many tasks. In order to properly model the fact that these
tasks need not have to have identical types, these are encapsulated within the
BoxedTask type. An explanation of this type can be found in Example 2 (see
algebraic types, page 241).

When developing an application in these notes, we always tell which type of
applications of Fig. 5 we are creating, and thus which kickstart wrapper function
of Fig. 6 is required.

3 User Interaction

Having warmed up, we start our introduction on TOP with the means to interact
with the user. The type-indexed programming foundation of TOP plays a crucial
role. The information that must be displayed or received is modeled using the rich
type language of Clean. The proper interactive tasks are created by instantiating
the existing type-indexed task functions.

3.1 Displaying Information to the User

Many text books on programming languages start with a “Hello, world” pro-
gram, a tradition initiated in the well known C programming book by Kernighan
and Ritchie [1]. We follow this tradition.
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Example 1. ‘Hello, world’ as single application for a single user
We create a main module with the name MyHelloWorldApp:

Just like its host language Clean, for an iTask program the main entry point
is the Start function. Tasks, no matter how small, change the world. This is
reflected in the type of the Start function (line 4). We use the oneTOPApp
kickstart wrapper function (line 5) to create a single TOP application for a
single user. The single TOP application is the task named helloWorld. The sole
purpose of this task is to display the text "hello,�world". Because that is a value
of type String, the type of the helloWorld task is Task String (line 7). At
execution, an output similar to the one displayed to the right of the program
should be produced (see side-effects, page 239). �
The hello, world text in Example 1 is displayed with the task function
viewInformation. Its signature is:

viewInformation :: d [ViewOption m] m -> Task m | descr d & iTask m

It is an overloaded function due to the type class restrictions (| descr d &
iTask m). This task function has three arguments:

– The first argument has type d and is a descriptor to inform the user what she
is looking at. The descr type class supports several data types as instances,
of which in this section we use only two: the basic type String and the iTask
type Title, which is defined as:

:: Title = Title String

In both cases, a (typically short) text is displayed to give guidance to the user.
They only differ in the way they are rendered. In case of a String value, the
text is presented along the task rendering. In case of a Title value, the text
is displayed more prominently in a small title bar above the task rendering.

– The second argument has type [ViewOption m] and can be used to fine-tune
the visualization of the information. However, that does not concern us right
now, so we use an empty list, denoted by [ ].

– The third argument has type m and is the value that must be displayed. The
iTask type class implements the type-indexed generation of tasks from types.
Of course, this is only possible if the concrete type on which you apply this
function is (made) available. How this is done, is explained in Sect. 3.3. For
now you can assume that you can provide viewInformation with values of
almost any conceivable data type.
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Up until Sect. 6 we develop a number of very small tasks (in Sect. 6 we intro-
duce multi-user applications). It is convenient to collect the small tasks using
the kick start wrapper function oneTOPApps.

Example 2. ‘Hello, world’ as multiple applications
We create a new main module, named MyGettingStartedApps.

1module MyGettingStartedApps

2import TOPKickstart
3

4Start :: *World -> *World

5Start world = oneTOPApps apps world

6

7apps = [ BoxedTask (get_started +++ "Hello�world")

8"Hello,�world�in�TOP"

9helloWorld

10]

11where
12top = "TOP/"

13get_started = top +++ "Getting�Started/"

14

15helloWorld :: Task String

16helloWorld = viewInformation "iTasks�says:" [] "hello,�world"

Within any (task) function definition, local definitions can be introduced after
the keyword where. The scope of these definitions extends to the entire right
hand side of the function body (apps in this example). Here, this facility is used
to prepare for future extensions of this example, in which the text fragments top
and get started are shared.

We use the single user, multiple application kickstart wrapper function
oneTOPApps, and provide it with only one boxed task, helloWorld, in lines
7–10. Figure 7 shows how this application is rendered within a browser. The first
argument of this boxed task, the text "TOP/Getting�Started/Hello�world", is used to
generate the task hierarchy that is depicted in the left-top area 1 in Fig. 7 (the
function +++ concatenates its two String arguments). The second argument, the
text "Hello,�world�in�TOP", is depicted in the description area at the left bottom
2 when the task is selected by the user. If it is started, then it appears in the
task list of the user which is the right top area 3. In order to actually work on it,
it can be opened, in which case its current state is rendered in the right bottom
work area 4. In the work area it can be closed and reopened at any later time
without harm. Deleting it in the task list area removes it permanently. �

3.2 Getting Information from the User

The viewInformation task function displays information to the user. The dual
task is getting information from the user. This task is called updateInformation.
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Fig. 7. ‘Hello, world’ as one task in a multi-application context.

updateInformation :: d [UpdateOption m m] m -> Task m | descr d & iTask m

The first argument of this function has exactly the same purpose as the first
argument of viewInformation and informs the user what she is supposed to
do. The second argument is used for fine-tuning purposes, and we ignore it for
the time being, and use the empty list [ ]. The third argument is the initial
value that is rendered to the user in such a way that she can alter its content.

Example 3. What’s your name?
We extend Example 2 with a task to ask for a user’s name.

1module MyGettingStartedApps

2import TOPKickstart
3

4Start :: *World -> *World

5Start world = oneTOPApps apps world

6

7apps = [ BoxedTask (get_started +++ "Hello�world")

8"Hello,�world�in�TOP"

9helloWorld

10, BoxedTask (get_started +++ "Your�name?")

11"Please�give�your�name"

12giveName

13]

14where
15top = "TOP/"

16get_started = top +++ "Getting�Started/"

17

18helloWorld :: Task String

19helloWorld = viewInformation "iTasks�says:" [] "hello,�world"
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20

21giveName :: Task String

22giveName = updateInformation "iTasks�asks:" [] "Dr.�Livingstone?"

The only modifications are lines 10–12 in which a new boxed task is included
in the apps list, and lines 21–22 in which the new task giveName is defined.
Figure 8 shows where the new boxed task can be selected by the user in the task
hierarchy, and how the giveName task is rendered in the work area. �

Fig. 8. Two tasks in a multi-application context.

Example 3 shows how to add a (boxed) task to the multi-application infrastruc-
ture that is created by the wrapper kickstart function oneTOPApps. In the
remainder of these notes we restrict ourselves to discussing only the task functions
that are added as boxed tasks.

3.3 Working with Data Models

Rendering and updating information by means of the functions viewInformation
and updateInformation tasks works for the primitive types (booleans, integers,
reals, characters, strings). Although this is useful, it is not very exciting either.
Fortunately, the rendering mechanism also works for any custom defined type.
The point of type-indexed programming is to encourage you to think in terms of
data models and use generic functions instead of re-implementing similar tasks
over and over again.
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Example 4. Editing music tracks
Suppose we own a collection of legally acquired digitized music and want to keep
track of them in. For each piece of music we store the music storage medium (for
instance cd, dvd, blue ray), the name of the album, name of performing artist,
year of appearance, track number on album, track title, track duration, and tags.
One way to model this is with the following types:

1:: Track = { medium :: Medium

2, album :: Name

3, artist :: Name

4, year :: Year

5, track :: TrackNr

6, title :: Name

7, time :: Time

8, tags :: [Tag]

9}

10:: Medium = BlueRay | DVD | CD | MP3 | Cassette | LP | Single | Other String

11:: Name :== String

12:: Year :== Int

13:: TrackNr :== Int

14:: Tag :== String

In this definition, Track and Medium are new types. Track is a record type,
which is a collection of field names (medium, album, and so on) that have types
themselves (Medium, Name, and so on) (see record types, page 242). Medium is
an example of an algebraic type which enumerates alternative data constructors
(BlueRay, DVD, . . . , Other) that may be parameterized (Other is parameterized
with a String) (see algebraic types, page 241). Name, Year, TrackNr, and Tag
merely introduces a synonym type name for another type (see synonym types,
page 243). Although the type Time (line 7) is not a primitive type in the host
language, it happens to be predefined in the iTask toolkit. Just like Track, it is
a record type:

:: Time = { hour :: Int

, min :: Int

, sec :: Int

}

but unlike Track, its rendering differs from the default scheme that the toolkit
provides you with. �

When defining a record value you need to enumerate each and every record field
and provide it with a value. The order of record fields is irrelevant. Record fields
are separated by a comma, and the entire enumeration is delimited by { and }.
Similarly, when defining a list value you enumerate each and every element,
separated by a comma and delimited by [ and ]. As an example, we define a
value of type Track:

track = { medium = CD

, album = "Professor�Satchafunkilus�and�the�musterion�of�rock"
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, artist = "Joe�Satriani"

, year = 2008

, track = 4

, title = "Professor�Satchafunkilus"

, time = {hour=0, min=4, sec=47}

, tags = ["metal", "guitar", "rock", "instrumental", "guitar�hero"]

}

In order to make the TOP infrastructure available for a custom type t requires
the declaration derive class iTask t in the specification. In our example, this
concerns the new types Track and Medium:

derive class iTask Track, Medium

With the derived generic machinery available, Track values can be displayed
in exactly the same way as done earlier with String values:

viewTrack :: Track -> Task Track

viewTrack x = viewInformation (Title "iTasks�says:") [] x

The viewTrack task function displays any track value that it is provided with.
We can add (viewTrack track) to the list of boxed tasks in Example 2. Select-
ing this task gives the output as displayed in Fig. 9. The type-indexed algorithm
recursively analyzes the structure of the value, guided by its type, and transforms
the found components of its argument value into displays of those values and
assembles them into one large form displaying the entire record value. Observe
how the structure of the record type Track and the structure of the algebraic
type Medium is rendered by the generic algorithm. Because viewInformation is
a task that only displays its argument value, but does not alter it, the task value
of (viewTrack track) is continuously the value track.

Fig. 9. The generated view of an example track.

The same principle of recursively analyzing the structure of a value is applied
by updateInformation. In order to demonstrate this, we define this task
function:
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editTrack :: Track -> Task Track

editTrack x = updateInformation (Title "iTasks�says:") [] x

and add (editTrack track) to the collection of boxed tasks. The output is quite
a different interactive element, as witnessed by Fig. 10. Instead of generating
displays of component values, the algorithm now transforms them into interactive
elements that can be viewed and edited by the user. The data constructors of
the algebraic data type Medium can be selected with a menu, text entries are
rendered as text input fields, numbers appear with increment and decrement
facilities, and list elements can be edited, moved around in the list, deleted, and
new list elements can be added. Initially, the task value of this editor task is
track. With each user interaction, the task value is altered according to the
input. It should be noted that the generated interactive elements are type-safe.
An end-user can only type in values of appropriate type. For instance, entering
the text "four" in the track field is rejected. In most cases it is not possible to
enter illegal values. In other cases, illegal input is rejected, and replaced by the
previous (legal) value.

Fig. 10. The generated editor of an example track.

3.4 Working with Specialization

As mentioned in Example 4, the type Time is predefined in the iTask toolkit.
Figures 9 and 10 illustrate that definitions have been provided to instruct the
generic algorithm how to display and edit values of this type in a way that is
different from the default generic case. This mechanism is called specialization
and plays a significant role in the generic machinery that underlies task oriented
programming because it allows to deviate from the general behavior.
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There are many examples to be found within the iTask toolkit of special-
ized data model types. We do not wish to enumerate them all. For now we turn
our attention to two dual types, Display and Editable (Fig. 11), that interact
nicely with the viewInformation and updateInformation tasks. If x is a model
value of type t, then (Display x) is a model value of type (Display t) but it
is rendered as a display of value x (hence, a user cannot alter its content). Basi-
cally, this is the same rendering as is normally provided by viewInformation.
If x is a model value of type t, then (Editable x) is a model value of type
(Editable t) but it is rendered as an editor of value x (hence, a user can alter
its content). Basically, this is the same rendering as is normally provided by
updateInformation. Using these values within data models allows one to spec-
ify very precisely what subcomponents can only be viewed by the user, and what
subcomponents can be edited.

:: Display a = Display a
:: Editable a = Editable a

fromDisplay :: (Display a) -> a
toDisplay :: a -> Display a

fromEditable :: (Editable a) -> a
toEditable :: a -> Editable a

Fig. 11. Specialized model types for fine-tuning interaction.

3.5 Working with Types

Up until now, we have carefully provided the viewInformation and update
Information task functions with concrete values. The type inference system of
the host language Clean commonly can determine the type of the concrete value,
and hence, it can be decided what instance of the type-driven algorithm should
be used or generated. Commonly, a description of a task obtains sufficient infor-
mation to infer the type of the model value for which either viewInformation
or updateInformation need to be called.

Sometimes this is not possible, and one has to explicitly has to define the
wanted type in the context such that the compiler can deduce the types for the
tasks involved. Given a type, the proper instance can be determined. This is very
useful in situations where it is not possible to conjure up a meaningful value of
the desired type. In the case of interactive tasks, one sometimes does not want to
specify an initial value but instead want to resort to a blank editor for values of
that type, and let the user enter the proper information. This can be done with
the following variant of updateInformation that omits the value to be altered:

enterInformation :: d [EnterOption m] -> Task m | descr d & iTask m
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Just like before, the first argument is the descriptor to tell the user what is
expected of her, and again we ignore the list of rendering options. The signature
of this task function is actually quite odd: the enterInformation task function
can generate a user-interface to produce a value of type m. This can only be done
if it can be statically determined what concrete type m has. In this situation it
becomes paramount to specify the type of the task value that is processed.

Earlier on, we used (editTrack track) to create an interactive task with
the specific initial value track to allow users to alter this value. Alternatively,
and more sensibly, we can specify the following interactive task:

inventTrack :: Task Track

inventTrack = enterInformation (Title "Invent�a�track") []

The generic algorithm, using the type information that a Track value needs to
be analyzed, generates a blank interactive component (Fig. 12).

Fig. 12. The generated editor of a blank track.

The generic algorithm knows how to deal with lists, as is witnessed by cre-
ating views for list-of-tags in the examples. In exactly the same spirit, we can
create viewers, editors, and inventors for list-of-tracks almost effortlessly:

viewTracks :: [Track] -> Task [Track]

viewTracks xs = viewInformation (Title "View�Tracks") [] xs

editTracks :: [Track] -> Task [Track]

editTracks xs = updateInformation (Title "Edit�Tracks") [] xs

inventTracks :: Task [Track]

inventTracks = enterInformation (Title "Invent�Tracks") []

The only thing that has changed is that the function signatures mention [Track]
instead of Track. More interestingly, in case of inventTracks, the specified type
dictates that an interactive element must be generated that handles a list of track
values.
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Exercise 1. “Hello, world”
Compile and run Example 1. Experiment with type class instances of the descr
type class other than String and Title. Recompile and run to see the effect.

Exercise 2. “Hello, worlds”
Compile and run Example 2. Experiment with the arguments of the BoxedTask
container by adding a few other tasks that display messages.

Exercise 3. Entering text
Add the following task to the collection of tasks of Example 2:

helloWorld2 :: Task String

helloWorld2 = updateInformation"iTasks�says:" [] "hello,�world"

Recompile and run to see what the effect is.

Exercise 4. Your favorite collection
Design a data model for your favorite collection (for instance books, movies,
friends, recipes) in a similar way as done in Example 4. Check what it looks like
using viewInformation, updateInformation, and enterInformation.

Exercise 5. Editing your favorite collection
Create tasks to view and edit your favorite collection in the same way as explained
on page 203 for collections of Task values with the functions viewTracks, edit
Tracks, and inventTracks. Recompile and run to see the effect. ��

4 Composition

In the previous section we have shown how a program exchanges information
with the user using interactive tasks. The information is put away in the corre-
sponding task value. Other tasks may need that information to proceed correctly.
In TOP the composition of tasks is specified by means of task combinators. Com-
binators are functions that define how its argument tasks are combined into a
new task. For reasons of readability, they are often specified as operators to allow
an infix style of writing in the way we are used to when dealing with arithmetic
expressions such as +, -, *, and /. In this section we introduce combinators
for sequential and parallel composition, and show that this can be combined
seamlessly with host language features such as choice and recursion.

4.1 Basic Tasks

The interactive task functions to view, update and enter information that are
presented in Sect. 3 (viewInformation, updateInformation, and enter
Information) are all examples of basic tasks. A task(function) is basic if it
cannot be dissected into other task(function)s. An example of a non-interactive
basic task is the return task function (see strictness, page 244):

return :: !a -> Task a | iTask a
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The sole purpose of (return e) is to evaluate expression e to a value x and
stick to that value. It is a task which task value is always x. Despite its apparent
simplistic form, the return task function is actually quite powerful: it allows
one to introduce arbitrary computations in e to calculate a value for further
processing.

Example 5. Sort track tags
We can use return to define a task that makes sure that the tag list of a track
is sorted (see record updates, page 243):

sortTagsOfTrack :: Track -> Task Track

sortTagsOfTrack x = return {x & tags = sort x.tags}

The function sort :: [a] -> [a] | Ord a is a library function of the host
language that sorts a list of values, provided that the ordering operator < (which
is part of the Ord type class) is available for the element types. For tags, which
are of primitive type String, the ordering operator has been defined. �

4.2 Sequential Composition

Näıve sequential composition of tasks simply puts them in succession (see oper-
ators, page 236):

(>>|) infixl 1 :: (Task a) (Task b) -> Task b | iTask a & iTask b

The combinator >>|, pronounced as then, is defined as a left-associative (infixl)
operator of very low priority (1). In (ta >>| tb), first task ta is evaluated. As
soon as it is finished, evaluation proceeds with task tb. The types of the task
values of ta and tb need not be identical. In addition, the type of the task value
of the composite task is the same as tb’s task value type. Indeed, the task value
of the composite task is the task value of tb.

As an example, we first ask the user to provide her name, and then greet her:

greet :: Task String

greet = giveName

>>| helloWorld

We adopt the notational convention to write down the task function names below
each other, as well as the task combinator functions.

The greet task is unsatisfactory, as it does bother the user to enter her name,
but does not use that input to greet her properly. If we inspect the type of the
näıve task combinator >>|, then we can tell that it is impossible for the second
task argument to have access to the result value of the first task argument.

In most cases, follow-up tasks depend on task values produced by preceding
tasks. If we express this dependency by means of a function, we obtain a non-
näıve sequential combinator function, >>=, which is pronounced as bind.

(>>=) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b
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In (ta >>= tb), first task ta is evaluated. As soon as it is finished, its task
value, x say, is applied to the second argument of bind, which is now a task
function instead of a simple task, thus resulting in the computation (tb x). The
computation can use this value to decide what to do next, which is expressed by
means of a task expression of type (Task b). We can now create an improved
version of the greet task (see lambda-abstractions, page 239):

greet :: Task String

greet = giveName

>>= \name -> viewInformation "iTask�says:" [] ("Hello,�" +++ name)

We extend the notational convention by putting also the task value names below
each other, in the lambda-abstraction after the >>= task combinator. The exam-
ple shows that the second argument of the bind combinator is a (very simple)
computation that prefixes the String value "Hello,�" to the given input of the
user of the first task.

Example 6. Binding two tasks
We bind editTrack and viewTrack and obtain a task that first allows the user
to edit a track value, and when she confirms she is ready, displays the edited
value.

editTask2 :: Track -> Task Track

editTask2 x = editTrack x

>>= \new -> viewTrack new

Note that the editTask2 task function can also be written down slightly shorter
because viewTrack is already a task function of a type that matches with the
second argument of >>=:

// Alternative definition of editTask2:
editTask2 :: Track -> Task Track

editTask2 x = editTrack x

>>= viewTrack

�

The bind combinator >>= profits optimally of the fact that its second argument
is a function that is applied to the information that is transferred from the
first argument task to whatever task is computed by the function. This has the
following advantages: (a) the information is available to all tasks that are created,
and (b) we can compute what follow-up tasks to create, using the information
and the full expressive power of the host language. We illustrate this with a
number of examples.

Example 7. Availability of information
Here is an alternative way of entering a track, by entering the fields in succession.

1enterTrack :: Task Track

2enterTrack
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3= enterInformation "Select�medium:" []

4>>= \medium -> enterInformation "Enter�album:" []

5>>= \album -> enterInformation "Enter�artist:" []

6>>= \artist -> enterInformation "Enter�year:" []

7>>= \year -> enterInformation "Enter�track:" []

8>>= \track -> enterInformation "Enter�title:" []

9>>= \title -> enterInformation "Enter�time:" []

10>>= \time -> enterInformation "Enter�tags:" []

11>>= \tags -> return

12(newTrack medium album artist year track title time tags)

13

14newTrack :: Medium Name Name Year TrackNr Name Time [Tag] -> Track

15newTrack medium album artist year track title time tags

16= { medium = medium, album = album, artist = artist, year = year

17, track = track, title = title, time = time, tags = tags}

This example demonstrates two important aspects:

– the individual task values (medium, album, . . . ) that are retrieved during the
execution can be used later in the sequence of tasks;

– the type-indexed character of the enterInformation task function is driven
by the type of the newTrack function, which in turn is enforced by the type
model of the Track record fields. In the first call of enterInformation it
must yield a task value of type Medium, in the calls on lines 4, 5, and 8 the
task value has type String, in the calls on lines 6 and 7 it is an Int, in line
9 it results in a Time task value, and finally, in line 10 it creates a task value
of type [String].

Example 8. Dependency of information
In Example 7 the user can enter any number for the year field. It is much nicer to
check for the earliest possible year depending on the value of the medium field of
the track that is about to be entered. Suppose that we know of each music storage
medium (except, of course, the Other case) when the first commercially available
products were approximately available (see pattern matching, page 237):

firstYearPossible :: Medium -> Year

firstYearPossible BlueRay = 2006

firstYearPossible DVD = 1996

firstYearPossible MP3 = 1993

firstYearPossible CD = 1981

firstYearPossible Musicassette = 1964

firstYearPossible Single = 1949

firstYearPossible LP = 1948

firstYearPossible other = 0

Using this information, we construct a task that repeatedly asks the user to
enter correct year values. The repetition is expressed recursively. Any entered
value that appears earlier than deemed possible on that particular music storage
medium is rejected.
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1enterYear :: Medium -> Task Year

2enterYear medium

3= updateInformation "Enter�year:" [] first

4>>= \year -> if (year >= first)

5(return year)

6( viewInformation "Incorrect�year:" []

7( medium +++> "s�were�not�available�before�" +++

8year +++> ".�Please�enter�another�year."

9)

10>>| enterYear medium

11)

12where first = firstYearPossible medium

The predefined operator +++> (line 7 and 8) converts its first argument to a
String value and concatenates it with the second argument. A similar operator
<+++ is available in which the arguments are flipped. They can be used for any
type of argument for which the generic iTask system has been generated. Also
note the use of the näıve then combinator >>| on line 10: the task value of the
messaging task is not relevant for asking the user again. �

4.3 Intermezzo: Task Values

Now that we are getting in the business of composing tasks, we need to be
more precise about tasks and task values. During execution, task values can
change. A task can have no task value, e.g. which is initially the case for every
enterInformation task function. A task value can be stable, e.g. which is the
case with the return task. A task value may be unstable and varies over time, e.g.
when the end-user changes information in response to an updateInformation
function. It is entirely well possible that further processing of an unstable value
eliminates the task value, for instance, when the end-user creates blank fields
within the updateInformation task. Stable values, however, remain stable. The
diagram below displays these possible transitions of task values.

Precisely these task values are available by means of the following two alge-
braic data types:

:: TaskValue a = NoValue | Value a Stability

:: Stability = Unstable | Stable
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Task combinator functions can inspect these task values and decide how they
influence the composite behavior of tasks. This is also done by the >>| and >>=
combinators. Both task combinator functions inspect the ‘stability’ of their first
task argument’s task value during execution. As soon as that task produces a
stable task value, the combinators make sure that the second task argument gets
executed. If the first argument task has an unstable task value, then it is left to
the user of the application to decide whether she is happy with that value. Hence,
infrastructure is created to allow her to confirm that the current, unstable, value
is fine to proceed with.

4.4 Parallel Composition

Alongside sequential composition is parallel composition, with which you express
that tasks are available at the same time. We discuss two parallel task combinator
functions that are often very useful. Because of their resemblance with the logical
operators && and ||, their names are written as -&&- and -||- (pronounce as
and, or respectively). Their signatures are:

(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a, b) | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) -> Task a | iTask a

The purpose of -&&- is to execute its argument tasks in parallel and assemble
their individual task values into a pair. The types of the task values need not be
of the same type, but this is of course allowed. The composite task only has a
stable task value if both argument tasks have a stable task value. If either one
of the argument tasks has no task value, then the composite task also does not
possess one. In the other cases, the composite task has an unstable task value.

The purpose of -||- is to offer the user two alternative ways to produce a
task value. For this reason, the types of its task arguments must be identical.
The only situation in which the composite task does not have a task value is
when both argument tasks have no task value. In any other case, the task value
of the composite task is the task value of the most recently changed or stable
task value.

Example 9. Entering an album with ‘and’
Entering tracks individually is fine for albums with a small number of tracks, or
for single purchases, but it is an inconvenient way of entering albums that have
more than four tracks. We wish to enter the album information (with a task called
enterAlbumInfo) separately from entering the track list (with a task called
enterTracklist). We define the composite task enterAlbum that performs these
tasks in parallel and combines their result with the pure computation newAlbum:

enterAlbum :: Task [Track]

enterAlbum

= enterAlbumInfo -&&- enterTracklist

>>= \(info, tracks) -> return (newAlbum info tracks)
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The distinct task value results of enterAlbumInfo and enterTracklist are
called info and tracks respectively. The function newAlbum is a pure compu-
tation that creates a list of Track values (see list comprehensions, page 238):

newAlbum :: (Medium, Name, Name, Year) [(Name, Time, [Tag])] -> [Track]

newAlbum (medium, album, artist, year) tracks

= [ newTrack medium album artist year nr song t tags

\\ (song, t, tags) <- tracks & nr <- [1..]
]

The two tasks to enter the album information and the track list can proceed
as described earlier. We choose sequential input for the album information, to
allow the input of year values to be checked against the chosen medium value.
The track list is entered as a list of track fields.

enterAlbumInfo :: Task (Medium, Name, Name, Year)

enterAlbumInfo

= enterInformation "Select�medium:" []

>>= \medium -> enterInformation "Enter�album:" []

>>= \album -> enterInformation "Enter�artist:" []

>>= \artist -> enterYear medium

>>= \year -> return (medium, album, artist, year)

enterTracklist :: Task [(Name, Time, [Tag])]

enterTracklist

= enterInformation "Enter�tracks:" []

�

Exercise 6. Edit and view a track
Add (editTask2 track) of Example 6 to your collection of top level tasks
and compile and run your extended application. Manipulate the fields in the
editTrack task and see when the bind combinator >>= allows you to enter the
viewTrack task and when it prohibits you from doing that.

Exercise 7. Edit and sort track tags
Alter the editTask2 task in such a way that before viewing the new track, the
task first sorts the tag list of the new track using sortTagsOfTrack of Example 5.
Hence, after editing a track, the user always sees a tag list in alphabetic order.

Exercise 8. Edit and view a track list
Create a recursive task of signature enterTracks :: [Track] -> Task [Track]
that allows the user to enter tracks in succession. It displays the argument list of
tracks, and appends new tracks to this list until the user decides that the list is
complete. In that case, the accumulated track list is returned.

Exercise 9. Compare ‘and’ with ‘or’
Add the tasks and and or to your collection of top level tasks.
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and = updateInformation "A:" [] 42

-&&- updateInformation "B:" [] 58

>>= \x -> viewInformation "C:" [] x

or = updateInformation "A:" [] 42

-||- updateInformation "B:" [] 58

>>= \x -> viewInformation "C:" [] x

Compile and run your extended application. Explain the difference in behavior
and return values.

5 Environment Interaction

In the previous section we have shown a number of ways to compose tasks. With
these forms of composition communication between co-tasks is organized in a
structured way. However, programs sometimes exhibit ad hoc communication
patterns. This is often the case when interacting with the ‘external world’ and
external tools need to be called, or persistent information is shared using the file
system or databases.

In TOP, ad hoc communication between internal tasks and the external world
is provided by means of shared data sources. A shared data source contains infor-
mation which can be shared between different tasks or with the outside world,
and can be read and written via a typed, abstract interface. Shared data sources
abstract over the way their content is accessed in an analogous manner that tasks
abstract over the way work is performed. We depict this in the following way:

The content of a shared data source can be (part of) the file system, a shared
memory, a clock, a random stream, and so on. A shared data source can be read
from via a typed interface and written to via another typed interface . The
read and write data types need not be the same. For instance, if the shared data
source is a stopwatch, then the write type can represent stopwatch actions such
as resetting, pausing, continuing, and so on, whereas its read type can represent
elapsed time.

We explain how to get access to external resources in Sect. 5.1, and how to
create local shared data sources in Sect. 5.2. Interactive tasks turn out to interact
seamlessly with shared data sources. We integrate them in Sect. 5.3. Finally, we
discuss two subjects that are concerned with the environment: basic file handling
in Sect. 5.4 and basic time handling in Sect. 5.5.

5.1 Basic Environment Interaction

In this section we introduce the basic means to interact with external resources.
We start with an example.
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Example 10. Limiting year input values
Time is an obvious external resource. Let us enhance the enterYear task of
Example 8 (page 207) to also disallow inputs that exceed the current year. To
obtain the current date we use the expression (get currentDate), which is a
task of type (Task Date). Date is a predefined type:

:: Date = { day :: Int // 1..31
, mon :: Int // 1..12
, year :: Int }

We adopt the enterYear task to obtain the current date and use it to compare
it with the user’s input (see disambiguating records, page 242); (see guards, page
236):

1enterYear :: Medium -> Task Year

2enterYear medium

3= get currentDate

4>>= \today -> updateInformation "Enter�year:" [] first

5>>= \year -> if (year >= first && year <= today.Date.year)

6(return year)

7( viewInformation "Incorrect�year:" []

8( message year +++ ".�Please�enter�another�year." )

9>>| enterYear medium

10)

11where
12first = firstYearPossible medium

13message year

14| year < first = medium +++> ("s�were�not�available�before" <+++ year)

15| otherwise = "It�is�not�yet" <+++ year

In line 3 the current date is obtained from the environment. If the user input,
provided in line 4, lies nicely between the two bounds, checked in line 5, then
the input is returned. In the other case we provide the user with a matching
message, defined by the function message, and start over again. �

A shared data source that allows reading values of type r and writing values of
type w is of type ReadWriteShared r w. For the time being, we consider this to
be an opaque type with three access functions:

The get and set access functions are task functions that read and write the
shared data source. A frequently occurring pattern is to get a value x from a
shared data source and immediately set it to (f x). This can be shorthanded
to (update f).

In Example 10, currentDate is a shared data source that allows reading val-
ues of type Date, but it does not allow writing. This is expressed by using the triv-
ial Void type (:: Void = Void) for its write interface type. Hence, currentDate
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has type ReadWriteShared Date Void. For such read only shared data sources,
a synonym type ReadOnlyShared, is introduced to express more clearly that
you can only read values from such an entity. Analogously, for write only shared
data source, the type synonym WriteOnlyShared is introduced. Finally, because
often the read and write type interface is identical, the shorter type synonym
Shared can be used.

:: Shared rw :== ReadWriteShared rw rw

:: ReadOnlyShared r :== ReadWriteShared r Void

:: WriteOnlyShared w :== ReadWriteShared Void w

The currentDate shared data source is an example of a globally available
shared data source. One can imagine many such shared data sources, and in
these lecture notes we encounter a few more. For now, we limit ourselves to
three shared data sources that are concerned with time:

currentDate :: ReadOnlyShared Date

currentTime :: ReadOnlyShared Time

currentDateTime :: ReadOnlyShared DateTime

:: DateTime = DateTime Date Time

Unsurprisingly, currentTime allows you to access the current time. currentDate
Time is just a convenient way to get both the date and time in one go.

5.2 Ad Hoc Data Sharing

As explained above, the iTask toolkit provides you with a number of predefined
shared data sources to ‘connect’ with the external world. You can also create
shared data sources for internal purposes.

sharedStore :: !String !a -> Shared a | JSONEncode{|*|}, JSONDecode{|*|}, TC a

With (sharedStore en ev), a shared data source is created which name is the
result of evaluating en, and which initial content is the result of evaluating
ev. The details of the classes JSONEncode, JSONDecode, and TC do not concern
us right now: basically, they are available whenever you include derive class
iTask . . . for your model data types. The shared data source that you create
with this function can be accessed with the get, set, and update functions of
page 212.

Example 11. A shared Track data source
We define a shared data source that can be used to manipulate a Track value:

trackStore :: Shared Track

trackStore = sharedStore "StoreTrack" track

This creates a shared data source that is identified with the name "StoreTrack"
and that has initial value track (page 199). �
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5.3 Interactive Tasks and Data Sharing

The interactive tasks viewInformation and updateInformation manipulate a
model value. For your convenience, we repeat their signatures:

viewInformation :: d [ViewOption m ] m -> Task m | descr d & iTask m

updateInformation :: d [UpdateOption m m] m -> Task m | descr d & iTask m

These interactive tasks work in isolation on their task value, which is fine for
many situations. However, work situations in which several interactive tasks
view and update the same information require a more general version of these
interactive tasks. Instead of editing the current value of the shared data source,
they manipulate the shared data source directly.

In case of viewing the current value of a shared data source, its current value is
read and displayed. In case of updating the current value of a shared data source,
its current value is also read and displayed, but also written at each update.

Basically, this means that in the signatures above, the value type m must be
replaced by an appropriate shared data source type. When doing this, we obtain
the following, more general, interactive tasks:

viewSharedInformation :: d [ViewOption r ] (ReadWriteShared r w) -> Task r

| descr d

& iTask r

updateSharedInformation :: d [UpdateOption r w] (ReadWriteShared r w) -> Task w

| descr d

& iTask r

& iTask w

These signatures show that the interactive tasks get ‘connected’ with a shared
data source. For viewSharedInformation, this means that a task is created
that displays the current value of the argument shared data source. Hence,
whenever the shared data source obtains a new value, then this is displayed by
the viewSharedInformation task. Because it views a value, its task value type
corresponds with the read value type of the shared data source. The task always
tries to show the current value of that can be read from the shared data source.
Of course, when the shared data source is changed by someone, it may take some
time before a task is informed that a change has happened.

The updateSharedInformation task also gets connected with a shared data
source, but in addition to displaying the current value of the shared data source,
it also allows updating its value. Every time this is done, all other ‘connected’



An Introduction to Task Oriented Programming 215

tasks refresh their displayed value as well. Because updateSharedInformation
writes a value, its task value type corresponds with the write value type of the
shared data source. Its task value is always the currently written value to the
shared data source.

Viewing and updating tasks that are connected with shared data sources
allows us to create intricate networks of interactive tasks (see Fig. 13).

Fig. 13. Creating networks of interactive tasks via shared data sources

Example 12. Update and view a shared data source
In this example we wish to create two tasks: one that allows the user to view and
alter a Track value, and one that displays the result of these actions. This value
is stored in the shared data source trackStore that was created in Example 11.
Hence we need to combine two interactive tasks, one for viewing and one for
updating a shared data source. We combine them with the ‘and’ operator -&&-:

editAndView :: Task (Track, Track)

editAndView

= viewSharedInformation (Title "View�a�Track") [] trackStore

-&&-

updateSharedInformation (Title "Edit�a�Track") [] trackStore

The resulting task is depicted in Fig. 14. Any user action that is performed in
the editing task is displayed in the viewing task. �

Admittedly, in its current form Example 12 seems silly because the editing task
already allows the user to view the current task value. However, if you imagine
that the viewing task is performed by another user, then this is a sensible way
of arranging work. In Sect. 6 we show how to distribute tasks to users. Never-
theless, also for a single user this pattern can make sense if only the viewing
task processes the value of the shared data source to a more useful format and
renders it accordingly. Up until now we have ignored the option list arguments
of the interactive tasks. It is time to throw some light on this matter.

Viewing and updating tasks that are connected with a shared data source
that reads its values as type r should be allowed to transform them to another
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Fig. 14. Edit and view a shared track value.

domain of some type v using a function f :: r -> v. The tasks then display and
update values of the new domain. Hence, in case of updating tasks, the user
creates a new value of type v that must be placed back into the shared data
store that writes its values as some type w. In general, you need both the new
value of type v and the current read value of the shared data source of type r.
Hence, the new value to be stored in the shared data source is computed by a
function g :: r v -> w.
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We want to associate f with the viewing task by means of a data constructor
(ViewWith f) and the functions f and g with the updating task with data con-
structor (UpdateWith f g). The type definitions of these data constructors are:

:: ViewOption r = E.v: ViewWith (r -> v) & iTask v

:: UpdateOption r w = E.v: UpdateWith (r -> v) (r v -> w) & iTask v

Views need to be created of type v, so generic machinery for them has to be in
place. This is enforced by the iTask v class constraint. The existential encapsu-
lation E.v provides us with full freedom to choose any domain of our liking.

Example 13. Update and view a shared data source, revised
We improve Example 12 by letting the viewing task only display a text message
that informs the viewer what album of which artist is being edited. For this
purpose, we add a viewing option to the viewing task (the rest of Example 12
remains unaltered):

editAndView :: Task (Track, Track)

editAndView

= viewSharedInformation (Title "View�a�Track") [ViewWith view] trackStore

-&&-

updateSharedInformation (Title "Edit�a�Track") [] trackStore

where
view :: Track -> String

view track

= "You�are�editing�album" +++ track.album +++ "�by�" +++ track.artist

The resulting view task is shown in Fig. 15. �

5.4 File Interaction

Every so often, an application is required to access data that is stored in a format
dictated externally. The application must read and write this data. Suppose that
a file is stored at a location identified by the string value filepath. The task
function (importTextFile filepath) obtains the entire content of that file as
a string value, and (exportTextFile filepath str) replaces the entire current
content of that file with str. The signatures of these task functions are:

:: FilePath :== String

importTextFile :: FilePath -> Task String

exportTextFile :: FilePath String -> Task String

Example 14. Retrieving and storing tracks to file
In this example we create two tasks: (a) a named task importTracks that
imports tracks from a text file; and (b) a named task exportTracks that exports
tracks to a text file. The format of the text file uses the newline character to
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Fig. 15. Edit and view a shared track value, revised version.

separate entire entries, and uses the tab character to separate the fields within
an entry. This is a fairly common format for simple databases.

We start with the importing task, naming it importTracks. Given a file
location, it reads the file content and returns a list of Track values. It has
signature:

importTracks :: FilePath -> Task [Track]

The function uses the importTextFile function to read in the entire contents
of the text file. This provides us with a String value. We split the conversion of
this value to a list of Track values into two steps: first, the entries and their fields
are parsed (tabSeparatedEntries), and second, this list of fields is transformed
to a list of track values (toTrackList). The signatures of these two functions
are:

tabSeparatedEntries :: String -> [[String]]

toTrackList :: [[String]] -> [Track]

With these two functions, importTracks can be defined:

importTracks :: FilePath -> Task [Track]

importTracks filepath

= importTextFile filepath

>>= \content -> return (toTrackList (tabSeparatedEntries content))

The two functions that still need to be implemented are pure computations:
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1tabSeparatedEntries :: String -> [[String]]

2tabSeparatedEntries str

3= map (split "\t") (split "\n" str)

4

5toTrackList :: [[String]] -> [Track]

6toTrackList entries

7= [ newTrack (fromString mdm) alb art (fromString yr) (fromString nr) title

8(fromString t)

9(split "," tags)

10\\ [mdm, alb, art, yr, nr, title, t, tags: _] <- entries

11]

The split function takes a separator string and source string and yields all
source fragments that are separated by the separator string. The track tags are
separated by a comma character, and hence, split can be used to create the
list of tags (line 9). The split function is part of the Text module that needs
to be imported explicitly. For converting textual representations of values to the
values themselves, the host language Clean provides a type class fromString:

class fromString a :: !String -> a

For Time values, an instance is already provided in iTask . This is not the case
for Medium values and Int values. Let us start with parsing Medium values:

1fromString "BlueRay" = BlueRay

2fromString "DVD" = DVD

3fromString "MP3" = MP3

4fromString "CD" = CD

5fromString "Musicassette" = Musicassette

6fromString "Single" = Single

7fromString "LP" = LP

8fromString other

9| startsWith prefix other = Other postfix

10where prefix = "Other�"

11postfix = other

12fromString wrong = abort ("unexpected�input�in�fromString:�" +++ wrong)

This is fairly straightforward: the only challenging bit concerns parsing Other
values. The startsWith function from the Text module can be used to check
whether the text starts with the "Other�" text (line 9), and, if this is the case, it
can produce the correct value. In any other case, the text cannot be parsed, and
a runtime error is generated (line 12).

For Int values, the situation is less complicated because the desired function-
ality is already available as the String instance of the toInt type class, which
converts a String value to an Int value. Hence, the implementation of the Int
instance of the fromString type class is trivial:

instance fromString Int where fromString str = toInt str
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The exporting task basically needs to perform the inverse operations of the
parts introduced above for the importing task. For that reason, we build this
task in inverse order as well. Converting values to descriptions of these values is
supported by the host language Clean with the type class toString:

class toString a :: !a -> String

For Time and Int values, instances are already available, but this is not the case
for Medium values. However, because Medium is an instance of the iTask class,
and hence can be serialized, its implementation is easy enough:

instance toString Medium where toString m = "" <+++ m

We proceed by defining the inverse operations of the functions toTrackList
and call it fromTrackList, and tabSeparatedEntries and call it tabSeparated
String. Both functions use the inverse operation of split, which is called join.
The join function takes a glue string and list of strings and concatenates the
list elements, using the glue string between each element.

1fromTrackList :: [Track] -> [[String]]

2fromTrackList tracks

3= [ [ toString medium, album, artist, toString year, toString track, title

4, toString time, join "," tags]

5\\ {medium, album, artist, year, track, title, time, tags} <- tracks

6]

7

8tabSeparatedString :: [[String]] -> String

9tabSeparatedString entries

10= join "\n" (map (join "\t") entries)

The tag list is joined with the comma character (line 4), and the fields and entries
with the tab and newline character respectively (line 10). With these functions,
we can define the exporting tracks task as follows:

exportTracks :: FilePath [Track] -> Task Void

exportTracks filepath tracks

= exportTextFile filepath (tabSeparatedString (fromTrackList tracks))

>>| return Void

�

5.5 Time Interaction

In Sect. 5.1 we have shown how to obtain the current date and time. In many work
situations it is important that tasks start at the right time, or are guaranteed
to terminate within some specified time limit. For this purpose iTask offers a
number of time related task functions:

waitForTime :: !Time -> Task Time

waitForDate :: !Date -> Task Date

waitForDateTime :: !DateTime -> Task DateTime

waitForTimer :: !Time -> Task Time
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The first three task functions wait until the specified time, date, or both has
elapsed. Their task value result is identical to the argument value. The last task
function waits the specified amount of time from the moment this task function
is called. Its return value is the time when the timer went off.

Example 15. Extending tasks with a deadline
In this example we create a new task combinator function that extends any given
task t with a time limit d. The intended signature of this task combinator is:

deadline :: !(Task a) !Time -> Task (Maybe a)

The Maybe type represents an optional value and is defined as:

:: Maybe a = Nothing | Just a

Hence, no value is encoded as Nothing, and a value x as (Just x).
The function (deadline t d) should execute task t. If t returns within time

limit d with a result value x, then the combined task returns (Just x). However,
if t does not terminate within time limit d, then the combined task returns
Nothing. Besides executing t this combinator executes a timing task. The first
task that completes terminates the combined task. Hence, it makes sense to use
the -||- task combinator (Sect. 4.4) for this purpose. It demands that its two
task arguments have task values of the same type. If we let the timing task return
Nothing, then all we need to do is make sure that the original task t returns
(Just x) instead of just x. We create two wrapper functions for that purpose:

just :: !(Task a) -> Task (Maybe a) | iTask a

just t = t >>= \x -> return (Just x)

nothing :: !(Task a) -> Task (Maybe b) | iTask a & iTask b

nothing t = t >>| return Nothing

(just t) executes t, and if it produces a stable task value x, it produces (Just
x). Similarly, (nothing t) also executes t, but after that produces a stable task
value it is ignored, and instead only Nothing is returned.

The timing task can use waitForTimer task function:

timer :: !Time -> Task (Maybe a) | iTask a

timer d = nothing (waitForTimer d)

Hence, this is a task that waits the specified amount of time and then returns
with Nothing. We can now implement the deadline task:

deadline :: !(Task a) !Time -> Task (Maybe a) | iTask a

deadline t d = (just t) -||- (timer d)

The argument task is executed, as well as the timer task. The first task that
terminates determines the result of the combined task. �
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Exercise 10. Limiting year input values
In Example 10, the task function enterYear repeatedly asks the user for a year
value until it lies within a given lower and upper bound value. It so happens
that the iTask toolkit provides a data model for such kind of bounded values:

:: BoundedInt = { min :: Int // the lower bound
, cur :: Int // the current value (min ≤ cur ≤ max)
, max :: Int // the upper bound
}

Use this type to define enterYear in such a way that it asks the user only once
for a proper year value.

Exercise 11. Edit a track list and view information
In Exercise 8 you have created a task that allows the user to successively enter
tracks. Enhance this task in a similar way as shown in Example 13. Display
the number of artists, number of albums, number of tracks, and total playing
time. �

6 Collaboration

Up until this point we have discussed applications that serve a single user. We
now extend this to serve arbitrarily many registered users. For this purpose we
switch to the multiTOPApp or multiTOPApps kickstart wrapper functions (see
Figs. 5 and 6). These wrapper functions add infrastructure to handle an arbitrary
number of users. They use a custom defined module, UserAdmin. It is based on
the core concept of a user. In this section, we use the functionality provided by
the UserAdmin module.

When executing an application created by means of multiTOPApp(s), the
user is first asked to provide account information (see Fig. 16). This is used by
the application to establish who it is serving. The infrastructure allows users to
enter the application anonymously. It is up to the application whether or not
this flaws the user experience. All applications maintain a shared data source
containing information about the accounts and users that can be served by the
application. The first thing to do is set up a collection of users (Sect. 6.1). As soon
as a user base is available, an application can distribute its activities amongst
the members of its user base (Sect. 6.2).

6.1 Employing Users

Employing users is actually not very different from adding tracks to a track
list that is stored in a shared data source. Each application has a shared data
source available that is called userAccounts. The involved type definitions
are given in Fig. 17. Because userAccounts is a shared data source, it can
be read with the task (get userAccounts) and written with the task (set
accounts userAccounts) where accounts is a list of user account values. The
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Fig. 16. Entering a multi-user application.

credentials consist of a user name and password. Note that the Password type
is specialized within the iTask toolkit: when an editor is created for it it displays
an edit box in which the user input is cloaked, as shown in Fig. 16. If a title is
provided, then this is used by the application to address the user instead of her
user name. Users can have different roles within an organization. Work can be
assigned to users that have particular roles.

userAccounts :: Shared [UserAccount]

:: UserAccount = { credentials :: Credentials
, title :: Maybe UserTitle
, roles :: [Role]
}

:: Credentials = { username :: Username
, password :: Password
}

:: Password = Password String
:: Username = Username UserId
:: UserId :== String
:: UserTitle :== String
:: Role :== String

Fig. 17. Fragment of module UserAdmin concerning user accounts.

Example 16. The clean company
For illustration purposes, we introduce the fictitious clean company. Its employ-
ees and their roles are displayed in Fig. 18. �

Exercise 12. Employ your users
Create a main module that uses the kickstart wrapper function multiTOPApps
to manage several top level tasks for multiple users. Fill its boxed task list with
a task called employ that adds user accounts to the userAccounts shared data
source. You can use any technique that has been discussed in the preceding
sections or use the dedicated tasks in the UserAdmin module. Compile and run
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Employee Roles

Chris team leader, sales, developer

Lucy developer, system administrator

Emma developer, system tester

Andrew system tester, HMI

Nigel finances, sales, project acquisition

Fig. 18. The clean company employees and their roles.

to sign up all employees of the clean company who are enumerated in Fig. 18.
Choose passwords of your liking. Their user names are identical to their first
names, so they do not require an additional title. �

6.2 Distributing Work

Having a user base available, it is time to assign work to them. Before we explain
how to do this, we first discuss the model types that are related with users and
their properties. They are displayed in Fig. 19.

:: User = AnonymousUser SessionId
| AuthenticatedUser UserId [Role] (Maybe UserTitle)

:: UserConstraint = AnyUser
| UserWithId UserId
| UserWithRole Role

Fig. 19. The user model types.

To an application, a user is either anonymous or belongs to the registered
set of users. In the first case, a user is identified by means of the application’s
session which, for now, we consider to be opaque. Authenticated users are con-
firmed to be part of the collection of users that the application is allowed to
serve. Their attributes originate from the user account details (Fig. 17). The
UserConstraint model is used to define a subset of the authenticated users.
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AnyUser imposes no constraint on this set, and hence, all users are eligible. In
case of (UserWithId uid), the user with username (Username uid) is selected.
In case of (UserWithRole role), any user that has role associated with her can
be chosen.

User, UserId, and UserConstraint values can be used to indicate users to
assign work to. If value u is of either of these types, then the task (u @: t) makes
task t available to all users who belong to u. As soon as one of them decides
to perform task t, it becomes unavailable to the other users. They receive some
notification that task t is being executed by that user. The signature of operator
@: is:

(@:) infix 3 :: user (Task a) -> Task a | iTask a & toUserConstraint user

instance toUserConstraint User

instance toUserConstraint UserId

instance toUserConstraint UserConstraint

Example 17. Addressing the Clean company users
In the Clean company case, AnyUser refers to all employees. (UserWithId
"Lucy") addresses Lucy. All sales persons, Chris and Nigel, are addressed with
the value (UserWithRole "sales"). Hence, (UserWithRole "sales") @:
t makes task t available to Chris and Nigel. The one who is the first to start on
that task can finish it, and the other is informed that the job is being processed.

�

The user model types are ordinary types and therefore can also be used as
values that are manipulated by the iTask type-driven functions. The task (get
currentUser) can be used to find out which current User a task is serving.

Example 18. Update and view a shared data source, distributed
We turn Example 12 into a distributed application. First, we assign the two sub
tasks to two users:

editAndViewDistributed :: (user1, user2) -> Task (Track, Track)

| toUserConstraint user1 & toUserConstraint user2

editAndViewDistributed (user1, user2)

= (user1 @: updateSharedInformation (Title "Edit�a�Track") [] trackStore)

-&&-

(user2 @: viewSharedInformation (Title "View�a�Track") [] trackStore)

Second, we determine who the current user is, and ask who is supposed to
perform the view task while editing a track.

editAndViewTrack :: Task Track

editAndViewTrack

= get currentUser

>>= \me -> updateInformation (Title "Enter�a�user�name") [] "user"

>>= \you -> editAndViewDistributed (me, you)

>>= \(track, _) -> return track
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Fig. 20. Nigel, editing a track.

Suppose Nigel started the application and indicated Lucy to view his editing
actions. Nigel can edit a track to his liking and tell that the sub task has been
delegated to Lucy (Fig. 20). Lucy has received an extra task in her task list to
follow Nigel’s progress (Fig. 21). �

Example 19. Making an appointment
In this example, we create a task to make an appointment with a registered
user.

1appointment :: Task (Date, Time)

2appointment

3= get currentDate

4>>= \today -> get currentTime

5>>= \now -> enterInformation (Title "Who�do�you�wish�to�meet?") []

6>>= \user -> updateInformation (Title "When�to�meet?") [] [(today, now)]
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7>>= \options -> UserWithId user

8@:

9(updateInformation (Title "Select�appropriate�date-time�pairs")

10[] (map toDisplay options)

11>>= return

12)

13>>= \selected -> if (isEmpty selected)

14appointment

15(return (fromDisplay (hd selected)))

Fig. 21. Lucy, viewing Nigel’s progress.

We obtain the current date and time (lines 3 and 4), ask the current user to
choose a registered user (line 5) and create a number of possible date-time
pairs (line 6). Hence, user and options are values of type UserId and [(Date,
Time)] respectively. We ask user to select date-time pairs. Because we do not
want her to alter these values, they are rendered as displays. She can only
alter the order of suggested date-time pairs, and remove pairs. When done,
the original user receives the selection as value selected (line 13). In case all
options were inappropriate, the task starts all over again (line 14), otherwise the
first pair is returned after stripping the Display data constructor of its model
value. �

Exercise 13. Making an appointment
Example 19 defines a task that never terminates in case the requested user con-
sistently removes all suggested date-time pairs, or simply is inactive. Alter the
example in such a way that the original user can decide to abandon this task. �
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7 Managing Work

Within an application, the various tasks need to keep track of each other’s
progress, and be able to change their course of action if necessary. In order
to achieve this, an application needs to have means to detect and signal that
its intended progress is hampered (Sects. 7.1 and 7.2) and it needs to adapt its
behavior to handle new situations (Sect. 7.3).

7.1 Monitoring Work

In Sect. 6.2, we have introduced the task (get currentUser). Shared data
sources such as currentUser prove to be a useful way for TOP applications to
leave their trace by means of model data types that capture meta-information
about their tasks. Before we discuss the model data types in detail, we first
present the shared data sources that play a role in this context:

currentUser :: ReadOnlyShared User

currentTopTask :: ReadOnlyShared TaskId

topLevelTasks :: ReadOnlyShared (TaskList Void)

They are all read-only shared data sources because they are merely a shadow
of the real tasks in progress. Similarly to currentUser, the named shared data
source currentTopTask identifies which task is currently evaluated via an opaque
value of type TaskId. For now, it suffices to know that a TaskId value uniquely
identifies a task. The shared data source topLevelTasks gives access to all
top level tasks that are being worked on. It basically gives you a list of meta-
information values for each task that is being worked on. The TaskId value
serves as key to find more information about a specific task. The meta-task
information is fairly extensive, as displayed in Fig. 22. Right now, we are only
interested in the items field that describes each and every top level task with a
(TaskListItem Void) record value. It gives you its TaskId identification value
and the current task value. The current task value may not seem very interesting
for tasks of type (Task Void), because it can only deliver Void. Still, one can
tell whether or not this value is present, and, if so, whether or not it is stable.
In the iTask system we can obtain a task list for parallel collections of tasks.
The TaskMeta information is a list of key-value pairs that is used for layout
purposes. This does not concern us right now. More interesting for keeping track
of progress are the ManagementMeta and ProgressMeta model types. With this
information, we can learn of a task’s starting time, possible deadline, when it
was last worked on, by whom it was issued, and so on.

Example 20. Monitoring tasks
The easiest way to monitor the current tasks is by adding the following task to
your application:

monitorTaskList :: Task Void

monitorTaskList

= viewSharedInformation (Title "Task�list:") [] topLevelTasks
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>>| return Void

derive class iTask TaskList, TaskListId

:: TaskList a = { listId :: TaskListId a
, items :: [TaskListItem a]
}

:: TaskListItem a = { taskId :: TaskId
, value :: TaskValue a // Section 4.3
, taskMeta :: TaskMeta
, managementMeta :: Maybe ManagementMeta
, progressMeta :: Maybe ProgressMeta
}

:: TaskMeta :== [TaskAttribute]
:: TaskAttribute :== (String, String)
:: ManagementMeta = { title :: Maybe String

, worker :: UserConstraint // Section 6.2
, role :: Maybe Role // Section 6.1
, startAt :: Maybe DateTime // Section 5.1
, completeBefore :: Maybe DateTime
, notifyAt :: Maybe DateTime
, priority :: TaskPriority
}

:: ProgressMeta = { issuedAt :: DateTime
, issuedBy :: User // Section 6.2
, status :: Stability // Section 4.3
, firstEvent :: Maybe DateTime
, latestEvent :: Maybe DateTime
}

:: TaskPriority = HighPriority
| NormalPriority
| LowPriority

Fig. 22. The model types that provide task meta-information.

Using the technique described in Sect. 5.3, it connects a display to the topLevel
Tasks shared data source, thus allowing the end user to keep an up-to-date
view of the set of top level tasks. As soon as the user chooses to continue,
monitorTaskList terminates. �

7.2 Monitoring Data

Interactive tasks can be connected with a shared data source. This is useful, as
demonstrated by Example 20, because it keeps us up-to-date with the current
value of the shared data source. However, sometimes we need to know when a
shared data source is altered. In general, we want to impose a condition on the
read value of a shared data source that acts as a trigger to continue evaluation.
This can be done with the task function wait:
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wait :: d (r -> Bool) (ReadWriteShared r w) -> Task r | descr d & iTask r

Just like interactive tasks, wait receives a description of its purpose that is
displayed to the user. The predicate p of type (r -> Bool) is a condition on the
current read value of the shared data source of type (ReadWriteShared r w).
As soon as the shared data source has a read value x for which (p x) evaluates
to True, then this also results in a stable task value x for the wait task.

Example 21. Monitoring data
Consider this application of the wait task function:

waitForChange :: (ReadWriteShared r w) -> Task r | iTask r

waitForChange rws

= get rws

>>= \current -> wait (Title "Waiting�for�new�value:") ((=!=) current) rws

The task first reads the current value of the shared data source, and then mon-
itors the shared data source until it has a different value. This difference is
determined by the generic unequality operator =!= that is part of the iTask
class. (This is also true for the generic equality operator ===.) �

7.3 Change Course of Action

In the previous two sub sections we have discussed how to monitor tasks and
shared data sources. This can be used to signal deviating or unexpected behavior,
and try to respond to these situations.

For signalling, TOP supports exception handling in a common try-catch style.
We can use the following two task functions for this purpose:

throw :: !e -> Task a | iTask a & iTask e

try :: (Task a) (e -> Task a) -> Task a | iTask a & iTask e

When a task encounters a situation that cannot be handled locally or sufficiently
gracefully, it can throw an exception value, using the task function (throw e),
where e is an arbitrary expression that is completely reduced to a value. The
expression can use the available local information to create some useful model
value. As always, any type is valid, provided that the generic machinery has
been made available for it. In (try t r), task t is evaluated. If it throws no
exceptional value then the task value of t is also the task value of (try t r).
However, if at some point within evaluation of t an exceptional value v is thrown,
then evaluation of t is abandoned. If the type of the exceptional value v can be
unified at run-time with the statically known type e of the exception handler
r, then evaluation continues with (r v). In that case this is also the result of
(try t r). If the two types cannot be unified (typically when an exception is
raised for which this exception handler has not been designed) then (try t r)
itself re-throws the very same exceptional value v, hoping that its context can
handle the exception. Uncaught exceptions that escape all exception handlers
are finally caught at the top-level, and only reported to the user.
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Example 22. File import and export exceptions
In Sect. 5.4 we have introduced the basic file import and export task functions
importTextFile and exportTextFile. Both functions might throw an excep-
tion of type FileException:

:: FileException = FileException !FilePath !FileError

:: FileError = CannotOpen | CannotClose | IOError

Here, FilePath has the same role as in the argument of the two task functions
and is supposed to point to a valid text file. The FileError values provide more
detail about the nature of the exception. In case of CannotOpen, the indicated
file could not be opened, either because it did not exist or because it was locked,
perhaps by another task or application. In case of CannotClose, the indicated
file could not be closed after reading the content. Other errors are report by
means of IOError.

With these exceptions, we can enhance the tasks that were defined in
Example 14, viz. importTracks and exportTracks that both assumed that every-
thing is executed flawlessly. For importTracks, it makes sense to alter the task
result type to a Maybe value that signals that the file was not read properly:

importTracks :: FilePath -> Task (Maybe [Track])

importTracks filepath

= try ( importTextFile filepath

>>= \content -> return (Just (toTrackList (tabSeparatedEntries content)))

) handleFileError

where
handleFileError :: FileException -> Task (Maybe [Track])

handleFileError _ = return Nothing

For exportTracks, we alter the task value type to a Bool to properly report
success or failure:

exportTracks :: FilePath [Track] -> Task Bool

exportTracks filepath tracks

= try ( exportTextFile filepath (tabSeparatedString (fromTrackList tracks))

>>| return True

) handleFileError

where
handleFileError :: FileException -> Task Bool

handleFileError _ = return False

Note how both task functions introduce an exception handler with an explicit
type. This is required by the signature of try, which needs to know for which
type the event handler is defined. �

For responding, TOP allows you to terminate currently running tasks as well as
dynamically create new tasks.
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removeTask :: !TaskId !(ReadOnlyShared (TaskList a))

-> Task Void | iTask a

appendTopLevelTaskFor :: !user !(Task a) -> Task TaskId | iTask a

& toUserConstraint user

(removeTask tid sds) locates the task that is identified by tid within the given
shared data source task list administration sds and stops and removes that
task if found. Note that for argument sds, you can use the shared data source
topLevelTasks that was defined in Sect. 7.1. (appendTopLevelTaskFor u t)
dynamically creates a new task t for (any of the) user(s) u, in a similar way to the
task assignment operator @: (Sect. 6.2). The difference is that appendTopLevel
TaskFor only spawns t and returns with the stable task value that identifies the
spawned task. In contrast, (u @: t) creates a stub in the current task that tells
the current user that task t has been spawned for (any of the) user(s) u, and
that you need to wait for its result task value.

Example 23. Birthday cake at the Clean company
In the Clean company, it is a good habit to celebrate one’s birthday with cake.
We develop a task to select a time of day and invite everybody else for cake. We
get to know our colleagues via the task (get userAccounts) (Fig. 17). From
this list it is easy to obtain all names:

names :: [UserAccount] -> [UserId]

names accounts

= [uid \\ {credentials={username=Username uid}} <- accounts]

To invite everybody (except yourself) and announce your birthday, we need to
obtain our identity with (get currentUser) (Sect. 7.1) and our name.

name :: User -> UserId

name (AuthenticatedUser id _ _) = id name

anonymous = "somebody"

The invitation displays the occasion and time.

cake :: UserId Time -> Task String

cake person time

= viewInformation "Birthday�cake" [] ("To�celebrate�" <+++ person <+++

"’s�birthday,�we�have�cake�at�" <+++ time

)

All that remains to be done is to put these parts in the right order:

1birthdaycake :: Task [TaskId]

2birthdaycake

3= get userAccounts

4>>= \accounts -> get currentUser

5>>= \me -> get currentTime

6>>= \now -> updateInformation (Title "When�to�eat�cake?") [] now

7>>= \time -> let colleagues = removeMembers (names accounts) [name me]
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8invite = cake (name me) time in
9all (map (flip appendTopLevelTaskFor invite) colleagues)

The user accounts are obtained (line 3), the current user is determined (line 4),
as well as the current time (line 5). We think of a suitable time to treat to cake
(line 6) and exclude ourselves from the list of colleagues (line 7). The invitation
task (line 8) is finally sent to every colleague (line 9). The all function is a task
combinator function defined for the occasion: it receives a list of tasks, executes
them all, and collects their resulting task values for further processing:

all :: [Task a] -> Task [a] | iTask a

all [] = return []

all [t:ts] = t

>>= \v -> all ts

>>= \vs -> return [v:vs]

�

Exercise 14. Improved user feedback
In Example 22, the exception handlers do not attempt to inform the user that
anything has gone wrong. Define for both task functions better exception han-
dlers that tell the user what exception has occurred, and remind her of the file
path that was used.

Exercise 15. Remove birthday cake invitations
In Example 23, all users except the initiator receive an extra task. Of course
it is polite to remove these tasks for these users after the event. Extend the
birthdaycake task in such a way that the extra tasks are removed, using the
removeTask function that has been presented in this section.

8 Related Work

The TOP paradigm emerged during continued work on the iTask system. In its
first incarnation [2], iTask1, the notion of tasks was introduced for the specifi-
cation of dedicated workflow management systems. In iTask1 and its successor
iTask2 [3], a task is an opaque unit of work that, once completed, yields a result
from which subsequent tasks can be computed. When deploying these systems
for real-world applications, viz. in telecare [4] and modeling the dynamic task of
coordinating Coast Guard Search and Rescue operations [5,6] it was observed
that this concept of task is not adequate to express the coordination of tasks
where teams constantly need to be informed about the progress made by others.
The search for better abstraction has resulted in the TOP approach and task
concept as introduced in these lecture notes.

Task-Oriented programming touches on two broad areas of research. First
the programming of interactive multi-user (web) applications, and second the
specification of tasks.

There are many languages, libraries and frameworks for programming multi-
user web applications. Some of them are academic, and many more are in the
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open-source and proprietary commercial software markets. Examples from the
academic functional programming community include: the Haskell cgi library [7];
the Curry approach [8]; writing xml applications [9] in SMLserver [10]; WashCGI
[11]; the Hop [12,13] web programming language; Links [14] and formlets [15].
All these solutions address the technical challenges of creating multi-user web
applications. Naturally, these challenges also need to be addressed within the
TOP approach. The principal difference between TOP and these web technolo-
gies is the emphasis on using tasks both as modeling and programming unit to
abstract from these issues, including coordination of tasks that may or may not
have a value.

Tasks are an ambiguous notion used in different fields, such as Workflow
Management Systems (WFMS), human-computer interaction, and ergonomics.
Although the iTask1 system was influenced and partially motivated by the use
of tasks in WFMSs [16], iTask3 has evolved to the more general TOP app-
roach of structuring software systems. As such, it is more similar in spirit to the
WebWorkFlow project [17], which is an object oriented approach that breaks
down the logic into separate clauses instead of functions. Cognitive Task Analy-
sis methods [18] seek to understand how people accomplish tasks. Their results
are useful in the design of software systems, but they are not software devel-
opment methods. In Robotics the notion of task and even the “Task-Oriented
Programming” moniker are also used. In this field it is used to indicate a level
of autonomy at which robots are programmed. To the best of our knowledge,
TOP as a paradigm for interactive multi-user systems, rooted in functional pro-
gramming is a novel approach, distinct from other uses of the notion of tasks in
the fields mentioned above.

9 Conclusions and Future Work

In this paper we introduced Task-Oriented Programming, a paradigm for pro-
gramming interactive web-based multi-user applications in a domain specific
language, embedded in a pure functional language.

The distinguishing feature of TOP is the ability to concisely describe and
implement collaboration and complex interaction of tasks. This is achieved by
four core concepts: (1) Tasks observe intermediate values of other tasks and
react on these values before the other tasks are completely finished. (2) Tasks
running in parallel communicate via shared data sources. Shared data sources
enable useful lightweight communication between related tasks. By restricting
the use of shared data sources we avoid an overly complex semantics. (3) Tasks
interact with users based on arbitrary typed data, the interface required for this
type is derived by type driven generic programming. (4) Tasks are composed to
more complex tasks using a small set of combinators.

Commonly, web applications are heterogeneous, i.e.: they are constructed out
of components that have been developed using different programming languages
and programming tools. An advantage of the TOP approach is that even complex
applications can be defined in one formalism.
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TOP is embedded in Clean by offering a newly developed iTask3 library. We
have used TOP successfully for the development of a prototype implementation
of a Search and Rescue decision support system for the Dutch Coast Guard.
The coordination of such operations requires up-to-date information of subtasks,
which is precisely suited for TOP. The iTask system has also successfully been
used to investigate more efficient ways of working on Navy Vessels. The goal
here is to get a significant reduction of crew members and systems. There are
many application areas where the TOP approach can be of use. With industrial
partners we want to investigate and validate the suitability of the TOP paradigm
to handle complex real world distributed application areas in several domains.

Acknowledgements. The authors wish to thank the reviewers for their constructive
feedback.

A Functional Programming in Clean

This section gives a brief overview of functional programming in Clean [19].
Clean is a pure lazy functional programming language. It has many similarities
with Haskell .

A.1 Clean Nutshells

This section contains a set of brief overviews of topics in Clean. These overviews
should be short enough to read while studying other parts of this paper without
loosing the flow of those parts. The somewhat experienced functional program-
mer is introduced to particular syntax or language constructs in Clean.

Modules. A module with name M is represented physically by two text files
that reside in the same directory: one with file name M.dcl and one with file
name M.icl.

The M.icl file is the implementation module. It contains the (task) functions
and data type definitions of the module. Its first line repeats its name:

implementationmodule M

An implementation module can always use its own definitions. By importing
other modules, it can use the definitions that are made visible by those modules
as well:

import M1, M2, . . ., Mn

The M.dcl file is the definition module. It contains M ’s interface to other
modules. The first line of a definition module also gives its name:

definition module M
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A definition module basically serves two purposes.

– It exports identifiers of its own implementation module by repeating their
signature. Hence, identifiers which signatures are not repeated are cloaked for
other modules.

– It acts as a serving-hatch for identifiers that are exported by other modules
by importing their module names. In this way you can create libraries of large
collections of related identifiers.

Operators. Operators are binary (two arguments) functions that can be writ-
ten in infix style (between its arguments) instead of the normal prefix style
(before its arguments). Operators are used to increase readability of your pro-
grams. With an operator declaration you associate two other attributes as well.
The first attribute is the fixity which indicates in which direction the binding
power works in case of operators with the same precedence. It is expressed by
one of the keywords infixl, infix, and infixr. The second attribute is its
precedence which indicates the binding power of the operator. It is expressed as
an integer value between 0 and 9, in which a higher value indicates a stronger
binding power.

The snapshot below of common operators as defined in the host language
Clean illustrates this.

class (==) infix 4 a :: !a !a -> Bool

class (+) infixl 6 a :: !a !a -> a

class (-) infixl 6 a :: !a !a -> a

class (*) infixl 7 a :: !a !a -> a

class (/) infixl 7 a :: !a !a -> a

class (^) infixr 8 a :: !a !a -> a

(These operators are overloaded to allow you to instantiate them for your own
types.) Due to the lower precedence of ==, the expression x + y == y + x must
be read as (x + y) == (y + x). Due to the fixities, the expression x - y - z must
be read as (x - y) - z, and x ^ y ^ z as x ^ (y ^ z). In case of expressions that
use operators of the same precedence but with conflicting fixities you must work
out the correct order yourself using brackets ( ).

Guards. Pattern matching is an expressive way to perform case distinction
in function alternatives, but it is limited to investigating the structure of func-
tion arguments. Guards extend this with conditional expressions. Here are two
examples.

sign :: !Int -> Int

sign 0 = 0

sign x

| x < 0 = -1

sign x = 1

1instance < Date where
2< x y

3| x.year < y.year = True

4| x.year == y.year

5| x.mon < y.mon = True

6| x.mon == y.mon = x.day < y.day

7| otherwise = False

8| otherwise = False
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In sign, the first alternative matches only if the argument evaluates to the value
0. In that case, sign results in the value 0. The second alternative imposes
no pattern restrictions, but it does have a guard (| x < 0). Even though the
pattern always matches, evaluation of the guard must result in True if the second
alternative of sign is to be chosen. Therefor, the value -1 is returned only if
the argument is a negative number. Finally, the last alternative has neither a
pattern restriction nor a guarded restriction, and therefor matches all remaining
cases, which concern the positive numbers. In those cases, the result is 1.

The implementation of < for Date values illustrates nested guards. In con-
trast with top-level guards, nested guards must be completed with otherwise to
catch any remaining cases. The otherwise keyword can also be used in top-level
guards, as is shown on the last line of the < function. The < function first checks
the guard on line 3 and returns True if the first year field is smaller than the
second year field. If the guard evaluates to False, then the second guard on
line 4 is tested. In case of equal year field values, evaluation continues with the
nested guards on lines 5–7 that inspect the month fields. If the first nested guard
on line 5 evaluates to True, then the comparison also yields True. In case of a
False result, the second nested guard on line 6 is tested. In case of equal month
field values, the comparison of the day values provides the final answer. Finally,
to complete the nested guards, the last case on line 7 concludes that the first
argument is not smaller than the second, a conclusion that is shared by the last
top-level guard on line 8.

ChoiceandPatternMatching. InExample 8 the functionfirstYearPossible
uses pattern matching to relate values of type Medium with year values. The
enterYear function uses if to determine whether or not the user’s input is
valid. Unlike most programming languages, in which an if-then-else construct is
supported in the language, it can be straightforwardly incorporated as a function
in a lazy functional language, using pattern matching as well. Let’s examine the
type and implementation of if:

if :: !Bool a a -> a

if True then else = then

if _ _ else = else

The type tells you that the Bool argument is strict in if: it must always be eval-
uated in order to know whether its result is True or False. The implementation
uses the evaluation strategy of the host language to make the choice effective.
The if function has two alternatives, each indicated by repeating the function
name and its arguments. Alternatives are examined in textual order, from top
to bottom. Up until now the arguments of functions were only variables, but in
fact they are patterns. A pattern p is one of the following.
– A variable, expressed by means of an identifier that starts with a lowercase

character or simply the wildcard symbol in case the variable is not used at all.
A variable identifies and matches any computation without forcing evaluation.
Within the same alternative, the variable identifiers must be different.
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– A constant in the language, such as 0, False, 3.14, ’$’, and "hello,�world".
To match successfully, the argument is evaluated fully to determine whether
it has exactly the same constant value.

– A composite pattern, which is either a tuple (p1, . . . ,pn), a data constructor
(d p1 . . . pn) where n is the arity of d, a record {f1=p1, . . . ,fn=pn}, or a list
[p1, . . . ,pn] or [p1, . . . ,pn : pn+1]. Matching proceeds recursively to each
part that is specified in the pattern. In case of records, only the mentioned
record fields are matched. In case of lists, p1 upto pn are matched with the
first n elements of the list, if present, and pn+1 with the remainder of the list.

Patterns control evaluation of arguments until it is discovered that it either
matches or not. Only if all patterns in the same alternative match, computation
proceeds with the corresponding right-hand side of that alternative; otherwise
computation proceeds with the next alternative.

Hence, in the case of if its second argument is returned if the evaluation of
the first argument results in True. If it results in False the second alternative
is tried. Because it does not impose any restriction, and hence also causes no
further evaluation, it matches, and the third argument is returned.

In firstYearPossible the data constructors are also matched from top to
bottom. The last case always matches, and returns the value 0.

List Comprehensions. Lists are the workhorse of functional programming.
List comprehensions allow you to concisely express list manipulations. Their
simplest form is:

[ e \\ p <- g ]

Generator g is an expression that is or yields a list. (Note that g can also
evaluate to an array. In that case you need to use <-: instead of <- to extract
array elements.) From the generator, values are extracted from the front to the
back. Each value is matched with the pattern p. If this succeeds, then the pattern
variables in p are bound to the corresponding parts of the extracted value, and
expression e, that typically uses these bound pattern variables, yields an element
of the result list. If matching fails, then the next element of the generator is tried.

Besides the pattern p, elements can also be selected using a guarded condition:

[ e \\ p <- g | c ]

Here, c is a boolean expression that can use any of the pattern variables that
are introduced at generator patterns to its left. For each extracted value from
the sequence for which the pattern match succeeds, the guarded condition is
evaluated. Only if the condition also evaluates to True, a list element is added.

It is possible to use several pattern-generator pairs p <- g in one list compre-
hension. They are combined either in parallel with the & symbol or as a cartesian
product with the , symbol.

– In p1 <- g1 & p2 <- g2, values are extracted from g1 and g2 at the same index
positions and matched against p1 and p2 respectively. The shortest generator
determines termination of this value-extraction process.
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– In p1 <- g1 , p2 <- g2, for each extracted value from g1 that matches p1 all
values from g2 are extracted and matched against p2.

Each and every one of the above ways to manipulate lists is already very expres-
sive. However, they can be combined in arbitrary ways. This can be daunting at
times, but once you get used to the expressive power, list comprehensions often
prove to be the best tool for list processing tasks.

λ-Abstractions. Lambda-abstractions \x -> e allow you to introduce anony-
mous functions ‘on the spot’. They typically occur in situations where an ad hoc
function is required, for which it does not make much sense to come up with a
separate function definition. This frees you from thinking of a proper identifier
and perhaps a type signature as well. The bind combinator >>= is an excellent
example of such a situation because in general you need to give a name x to
the task value of the first task, and want to give an expression e that uses x. If
you weren’t interested in x, you would have used the näıve then combinator >>|
instead.

Modelling Side-Effects. In a pure functional programming language all results
must be explicit function results. This implies that a changed state should also
be a function result. The type of the Start function in Example 1 is *World ->
*World, this indicates that it changes the world. There are two things worth
noting at this moment:

– The basic type World is annotated with the uniqueness attribute *. In a function
type any argument can be annotated with this attribute. This enforces the prop-
erty that whenever the function is evaluated, it has the sole reference to the
corresponding argument value. This is useful because it allows the function
implementation to destructively update that value without compromising the
semantics of the functional programming language. This can only be done if the
function body itself does not violate this uniqueness property. This is checked
statically.

– The basic type World represents the ‘external’ environment of a program. If
the Start function has an argument, the language assumes that it is of type
World. The language provides no other means to create a value of type World,
so if an application is to do any interaction with the external environment, it
must have a Start function with a uniquely attributed World argument.

Incorporating side-effects safely in a functional language has received a lot of
attention in the functional language research community. For lazy functional
languages a host of techniques has been proposed. Well-known examples are
monads, continuations, and streams. For eager functional languages, the situa-
tion is less complicated because in these languages programs exhibit an execution
order that is more predictable.
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Signatures. A signature x :: t declares that identifier x has type t. An identifier
x starts with a lowercase or uppercase letter and has no whitespace characters.
The type t can be either of the following forms.

– It is one of the basic types, which are: Bool, Int, Real, Char, String, File,
and World.

– It is a type variable. Their identifiers start with a lowercase character.
– It is a composite type, using one of the language type constructors [ ], { },

(,), and ->.
• If t is a type, then [t] is the list-of-t type.
• If t is a type, then {t} is the array-of-t type.
• If t1 and t2 are types, then (t1,t2) is the tuple-of-t1-and-t2 type. This

generalizes to t1 upto tn with 2 ≤ n ≤ 32, separating each type by ,.
Hence, (t1,t2,t3), (t1,t2,t3,t4) and so on are also tuple types.

• If t1 and t2 are types, then t1 -> t2 is the function-of-t1-to-t2 type. This
generalizes to t1. . . tn -> tn+1, where t1. . . tn are the argument types,
and tn+1 is the result type. The function argument types are separated
by whitespace characters. So, t1 t2 -> t3, t1 t2 t3 -> t4 and so on are also
function types.

– It is a custom defined type, using either an algebraic type or a record type.
Their type names are easily recognized because they always start with an
uppercase character. Examples of algebraic and record types can be found in
Sect. 3.3.

Signatures can be overloaded, in which case they are extended with one or
more overloading constraints, resulting in x :: t | tc1 a1 & . . . & tcn an. A
constraint tci ai is a pair of a type class tci and a type variable ai that must
occur in t. Note that tc1 a & tc2 a & . . . & tcn a can be shorthanded to tc1, tc2,
. . . ,tcn a.

Overloading. Overloading is a common and useful concept in programming
languages that allows you to use the same identifier for different, yet related,
values or computations. In the host language Clean overloading is introduced in
an explicit way: if you wish to reuse a certain identifier x, then you declare it
via a type class:

class x a1 . . . an :: t

with the following properties:

– the type variables a1 . . . an (n > 0) must be different and start with a
lowercase character;

– the type scheme t can be any type that uses the type variables ai.

This declaration introduces the type class x with the single type class mem-
ber x. It is possible to declare a type class x with several type class members x1

. . . xk:
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class x a1 . . . an
where x1 :: t1

...
xk :: tk

It is customary, but not required, that in this case identifier x starts with an
uppercase character. The identifiers xi need to be different, and their types ti
can use any of the type variables ai.

Type classes can be instantiated with concrete types. This must always be
done for all of its type variables and all type class members. The general form
of such an instantiation is:

instance x t′1 . . . t′n | tc1 b1 & . . . & tcm bm
where . . .

with the following properties:

– the types t′1 . . . t′n are substituted for the type variables a1 . . . an of the
type class x. They are not required to be different but they are not allowed
to share type variables;

– the types t′i can be overloaded themselves, in which case their type class con-
straints tci bi are enumerated after | (which is absent in case of no constraints).
The type variable bi must occur in one of the types t′i;

– the where keyword is followed by implementations of all class member func-
tions. Of course, these implementations must adhere to the types that result
after substitution of the corresponding type schemes ti.

Algebraic and ∃-Types. The BoxedTask type in Fig. 6 is an example of
an algebraic type that is existentially quantified. Algebraic types allow you to
introduce new constants in your program, and give them a type at the same
time. The general format of an algebraic type declaration is:

:: t a1 . . . am = d1 t11 . . . t1c1 | . . . | dn tn1 . . . tncn

with the following properties:

– the type constructor t is an identifier that starts with an uppercase character;
– the type variables ai (0 ≤ i ≤ m) must be different and start with a lowercase

character;
– the data constructors di (1 ≤ i ≤ n) must be different and start with an

uppercase character;
– the data constructors can have zero or more arguments. An argument is either

one of the type variables ai or a type that may use the type variables ai.

From these properties it follows that all occurrences of type variables in data
constructors (all right hand side declarations) must be accounted for in the type
constructor (on the left hand side). With existential quantification it is possible
to circumvent this: for each data constructor one can introduce type variables
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that are known only locally to the data constructor. A data constructor can be
enhanced with such local type variables in the following way:

E. b1 . . . bk : di ti1 . . . tici & tc1 x1 & . . . & tcl xl

with the following properties:

– the type variables bj (0 ≤ j ≤ k) must be different and start with a lowercase
character;

– the arguments of the data constructor di can now also use any of the existen-
tially quantified type variables bi;

– the pairs tc x are type class constraints, in which tc indicates a type class and
x is one of the existentially quantified type variables bi.

From these properties it follows that it does not make sense to introduce
an existentially quantified type variable in a data constructor without adding
information how values of that type can be used. There are basically two ways
of doing this. The first is to add functions of the same type that handle these
encapsulated values (in a very similar way to methods in classes in object ori-
ented programming). The second is to constrain the encapsulated type variables
to type classes.

Record Types. Record types are useful to create named collections of data.
The parts of such a collection can be referred to by means of a field name. The
general format of a record type declaration is:

:: t a1 . . . am = { r1 :: t1, . . . , rn :: tn }

with the following properties:

– the type constructor t is an identifier that starts with an uppercase character;
– the type variables ai (0 ≤ i ≤ m) must be different and start with a lowercase

character;
– the pairs ri :: ti (1 ≤ i ≤ n) determine the components of the record type.

The field names ri must be different and start with a lowercase character. The
types ti can use the type variables ai.

Just like algebraic types, record types can also introduce existentially quan-
tified type variables on the right-hand side of the record type. However, unlike
algebraic types, their use can not be constrained by means of type classes. Hence,
if you need to access these encapsulated values afterwards, you need to include
function components within the record type definition.

Disambiguating Records. Within a program record field names are allowed
to occur in several record types (the corresponding field types are allowed to
be different). This helps you to choose proper field names, without worrying
too much about their existence in other records. The consequence of this useful
feature is that once in a while you need to explicit about the record value that is
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created (in case of records with exactly the same set of record field names) and
when using record field selectors (either in a pattern match or with the .field
notation). Type constructor names are required to be unique within a program,
hence they are used to disambiguate these cases.

– When creating a record value, you are obliged to give a value to each and every
record field of that type. If a record has a field with a unique name, then it
is clear which record type is intended. Only if two records have the same set
of field names, you need to include the type constructor name t within the
record value definition.

. . . { t | f1 = e1, . . . , fn = en} . . .
– If a record pattern has at least one field with a unique name, then it is

clear which record type is intended. The record pattern is disambiguated by
including the type constructor name t in the pattern in an analogous way as
described above when creating a record value, except that you do not need
to mention all record fields and that the right hand sides of the fields are
patterns rather than expressions:

. . . { t | f1 = p1, . . . , fn = pn} . . .
– If a record field selection e.f uses a unique field name f , then it is clear

which record type is intended. A record field selection can be disambiguated
by including the type constructor name t as a field selector. Hence, e.t.f
states that field f of record type t must be used.

Record Updates. Record values are defined by enumerating each and every
record field, along with a value. Example 5 shows that new record values can
also be constructed from old record values. If r is a record (or an expression that
yields a record value), then a new record value can be created by specifying only
what record fields are different. The general format of such a record update is:

{ r & f1 = e1, . . . , fn = en}

This expression creates a new record value that is identical to r, except for the
fields fi that have values ei (0 < i ≤ n) respectively. A record field should occur
at most once in this expression.

Synonym Types. Synonym types only introduce a new type constructor name
for another type. The general formal of a type synonym declaration is:

:: t′ a1 . . . an :== t

with the following properties:

– the type constructor t′ is an identifier that starts with an uppercase character;
– the type variables ai (0 ≤ i ≤ n) must be different and start with a lowercase

character;
– the type t can be any type that uses the type variables ai. However, a synonym

type is not allowed to be recursive, either directly or indirectly.

Synonym types are useful for documentation purposes of your model types, as
illustrated in Example 4. Although the name t′ must be new, t′ does not introduce
a new type: it is completely exchangeable with any occurrence of t.
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Strictness. In the signature of the basic task function return the first argument
is provided with a strictness annotation, !. Recall that iTask is embedded in
Clean, which is a lazy language. In a lazy language, computation is driven by
the need to produce a result. As a simple example, consider the function const
that does nothing but return its first argument:

const x y = x

There is absolutely no need for const to evaluate argument y to a value. However,
argument x is returned by const, so its evaluation better produces a result or
otherwise const x y won’t produce a result either.

The more general, and more technical, way of phrasing this is the following.
Suppose we have a function f that has a formal argument x. Let e be a diverging
computation (it either takes infinitely long or aborts without producing a result).
If (f e) also diverges, then argument x is said to be strict in f . Note that
this is a property of the function, and not of the argument. In case of const,
it is no problem that argument y might be a diverging computation because
it is not needed by const to compute its result. The consequence is that with
respect to termination properties, it does not matter if strict function arguments
are evaluated before the function is called. In many cases, this increases the
performance of the application because you do not need to maintain suspended
computations (due to lazy evaluation), but instead can evaluate them to a result
and use that instead.

The strictness property of function arguments is expressed in the function
signature by prefixing the argument that is strict in that function with the !
annotation. In case of const, its signature is:

const :: !a b -> a
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