
The IDRIS Programming Language

Implementing Embedded Domain Specific Languages
with Dependent Types

Edwin Brady(B)

University of St Andrews, Fife KY16 9SX, UK
ecb10@st-andrews.ac.uk

Abstract. Types describe a program’s meaning. Dependent types, which
allow types to be predicated on values, allow a program to be given
a more precise type, and thus a more precise meaning. Typechecking
amounts to verifying that the implementation of a program matches its
intended meaning. In this tutorial, I will describe Idris, a pure func-
tional programming language with dependent types, and show how it
may be used to develop verified embedded domain specific languages
(EDSLs). Idris has several features intended to support EDSL devel-
opment, including syntax extensions, overloadable binders and implicit
conversions. I will describe how these features, along with dependent
types, can be used to capture important functional and extra-functional
properties of programs, how resources such as file handles and network
protocols may be managed through EDSLs, and finally describe a gen-
eral framework for programming and reasoning about side-effects, imple-
mented as an embedded DSL.

1 Introduction

In conventional programming languages, there is a clear distinction between types
and values. For example, in Haskell [13], the following are types, representing
integers, characters, lists of characters, and lists of any value respectively:

– Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

– 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Depen-
dent types allow types to “depend” on values — in other words, types are a first
class language construct and can be manipulated like any other value. A canon-
ical first example is the type of lists of a specific length1, Vect n a, where a
is the element type and n is the length of the list and can be an arbitrary term.
1 Typically, and perhaps confusingly, referred to in the dependently typed program-

ming literature as “vectors”.

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 115–186, 2015.
DOI: 10.1007/978-3-319-15940-9 4

116 E. Brady

When types can contain values, and where those values describe properties
(e.g. the length of a list) the type of a function can describe some of its own prop-
erties. For example, concatenating two lists has the property that the resulting
list’s length is the sum of the lengths of the two input lists. We can therefore
give the following type to the app function, which concatenates vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a

This tutorial introduces Idris, a general purpose functional programming lan-
guage with dependent types, and in particular how to use Idris to implement
Embedded Domain Specific Languages (EDSLs). It includes a brief introduction
to the most important features of the language for EDSL development, and is
aimed at readers already familiar with a functional language such as Haskell
or OCaml. In particular, a certain amount of familiarity with Haskell syntax is
assumed, although most concepts will at least be explained briefly.

1.1 Outline

The tutorial is organised as follows:

– This Section describes how to download and install Idris and build an intro-
ductory program.

– Section 2 introduces the fundamental features of the language: primitive types,
and how to define types and functions.

– Section 3 describes type classes in Idris and gives two specific examples,
Monad and Applicative.

– Section 4 describes dependent pattern matching, in particular views, which
give a means of abstracting over pattern matching.

– Section 5 introduces proofs and theorem proving in Idris, and introduces pro-
visional definitions, which are pattern definitions which require additional
proof obligations.

– Section 6 gives a first example of EDSL implementation, a well-typed inter-
preter

– Section 7 describes how Idris provides support for interactive program devel-
opment, and in particular how this is incorporated into text editors.

– Section 8 introduces syntactic support for EDSL implementation.
– Section 9 gives an extending example of an EDSL, which supports resource

aware programming.
– Section 10 describes how Idris supports side-effecting and stateful programs

with system interaction, by using an EDSL.
– Finally, Sect. 11 concludes and provides references to further reading.

Many of these sections (Sects. 2, 4, 5, 7, 8 and 10) end with exercises to rein-
force your understanding. The tutorial includes several examples, which have
been tested with Idris version 0.9.14. The files are available in the Idris distrib-
ution, so that you can try them out easily2. However, it is strongly recommended
that you type them in yourself, rather than simply loading and reading them.
2 https://github.com/idris-lang/Idris-dev/tree/master/examples.

https://github.com/idris-lang/Idris-dev/tree/master/examples

The Idris Programming Language 117

1.2 Downloading and Installing

Idris requires an up to date Haskell Platform3. Once this is installed, Idris can
be installed with the following commands:

cabal update
cabal install idris

This will install the latest version released on Hackage, along with any depen-
dencies. If, however, you would like the most up to date development version,
you can find it on GitHub at https://github.com/idris-lang/Idris-dev. You can
also find up to date download instructions at http://idris-lang.org/download.

To check that installation has succeeded, and to write your first Idris pro-
gram, create a file called “hello.idr” containing the following text:

module Main

main : IO ()
main = putStrLn "Hello world"

We will explain the details of how this program works later. For the moment,
you can compile the program to an executable by entering idris hello.idr
-o hello at the shell prompt. This will create an executable called hello,
which you can run:

$ idris hello.idr -o hello
$./hello
Hello world

Note that the $ indicates the shell prompt! Some useful options to the idris
command are:

– -o prog to compile to an executable called prog.
– --check type check the file and its dependencies without starting the inter-

active environment.
– --help display usage summary and command line options.

1.3 The Interactive Environment

Entering idris at the shell prompt starts up the interactive environment. You
should see something like Listing 1.

This gives a ghci-style interface which allows evaluation of expressions, as
well as type checking expressions, theorem proving, compilation, editing and
various other operations. :? gives a list of supported commands. Listing 2 shows
an example run in which hello.idr is loaded, the type of main is checked
and then the program is compiled to the executable hello.
3 http://haskell.org/platform.

https://github.com/idris-lang/Idris-dev
http://idris-lang.org/download
http://haskell.org/platform

118 E. Brady

Listing 1. Idris prompt

$ idris
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris>

Listing 2. Sample Interactive Run

$ idris hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr

*hello> :t main
Main.main : IO ()

*hello> :c hello

*hello> :q
Bye bye
$./hello
Hello world

Type checking a file, if successful, creates a bytecode version of the file (in this
case hello.ibc) to speed up loading in future. The bytecode is regenerated on
reloading if the source file changes.

2 Types and Functions

2.1 Primitive Types

Idris defines several primitive types: Int, Integer and Float for numeric
operations, Char and String for text manipulation, and Ptr which represents
foreign pointers. There are also several data types declared in the library, includ-
ing Bool, with values True and False. We can declare some constants with
these types. Enter the following into a file prims.idr and load it into the Idris
interactive environment by typing idris prims.idr:

module prims

x : Int
x = 42

The Idris Programming Language 119

foo : String
foo = "Sausage machine"

bar : Char
bar = ’Z’

quux : Bool
quux = False

An Idris file consists of a module declaration (here module prims) followed
by an optional list of imports (none here, however Idris programs can consist of
several modules, each of which has its own namespace) and a collection of dec-
larations and definitions. The order of definitions is significant — functions and
data types must be defined before use. Each definition must have a type declara-
tion (here, x : Int, foo : String, etc.). Indentation is significant — a new
declaration begins at the same level of indentation as the preceding declaration.
Alternatively, declarations may be terminated with a semicolon.

A library module prelude is automatically imported by every Idris pro-
gram, including facilities for IO, arithmetic, data structures and various common
functions. The prelude defines several arithmetic and comparison operators,
which we can use at the prompt. Evaluating things at the prompt gives an
answer, and the type of the answer. For example:

*prims> 6*6+6
42 : Integer

*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive
types (e.g. == above checks for equality). They are overloaded using type classes,
as we will discuss in Sect. 3 and can be extended to work on user defined types.
Boolean expressions can be tested with the if...then...else construct:

*prims> if x == 6 * 6 + 6 then "The answer!"
else "Not the answer"

"The answer!" : String

2.2 Data Types

Data types are defined in a similar way to Haskell data types, with a similar
syntax. Natural numbers and lists, for example, can be declared as follows:

data Nat = Z | S Nat −− Natura l numbers
−− (zero , s u c c e s s o r)

data List a = Nil | (::) a (List a) −− Polymorphic l i s t s

The above declarations are taken from the standard library. Unary natural num-
bers can be either zero (Z), or the successor of another natural number (S k).
Lists can either be empty (Nil) or a value added to the front of another list

120 E. Brady

(x :: xs). In the declaration for List, we used an infix operator ::. New
operators such as this can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constructors may all be given infix oper-
ators as names. They may be used in prefix form if enclosed in brackets, e.g.
(::). Infix operators can use any of the symbols:

:+-*/=_.?|&><!@$%ˆ˜.

2.3 Functions

Functions are implemented by pattern matching, again using a similar syntax
to Haskell. The main difference is that Idris requires type declarations for all
functions, and that Idris uses a single colon : (rather than Haskell’s double
colon ::). Some natural number arithmetic functions can be defined as follows,
again taken from the standard library:

−− Unary a d d i t i o n

plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)

−− Unary m u l t i p l i c a t i o n

mult : Nat -> Nat -> Nat
mult Z y = Z
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat,
and are implemented using the above functions. Unlike Haskell, there is no
restriction on whether types and function names must begin with a capital let-
ter or not. Function names (plus and mult above), data constructors (Z, S,
Nil and ::) and type constructors (Nat and List) are all part of the same
namespace. As a result, it is not possible to use the same name for a type and
data constructor.

Like arithmetic operations, integer literals are also overloaded using type
classes, meaning that we can test these functions as follows:

Idris> plus 2 2
4 : Nat
Idris> mult 3 (plus 2 2)
12 : Nat

Aside: It is natural to ask why we have unary natural numbers when our com-
puters have integer arithmetic built in to their CPU. The reason is primarily that
unary numbers have a convenient structure which is easy to reason about, and
easy to relate to other data structures, as we will see later. Nevertheless, we do
not want this convenience to be at the expense of efficiency. Idris knows about
the relationship between Nat (and similarly structured types) and numbers, so
optimises the representation and functions such as plus and mult.

The Idris Programming Language 121

where Clauses. Functions can also be defined locally using where clauses.
For example, to define a function which reverses a list, we can use an auxiliary
function which accumulates the new, reversed list, and which does not need to
be visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where

revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented
further than the outer function.

Scope. Any names which are visible in the outer scope are also visible in the
where clause (unless they have been redefined, such as xs here). A name which
appears only in the type will be in scope in the where clause if it is a parameter
to one of the types, i.e. it is fixed across the entire structure.

As well as functions, where blocks can include local data declarations, such
as the following where MyLT is not accessible outside the definition of foo:

foo : Int -> Int
foo x = case isLT of

Yes => x*2
No => x*4

where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

In general, functions defined in a where clause need a type declaration just like
any top level function. However, the type declaration for a function f can be
omitted if:

– f appears in the right hand side of the top level definition
– The type of f can be completely determined from its first application

So, for example, the following definitions are legal:

even : Nat -> Bool
even Z = True
even (S k) = odd k where

odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S 1), c Z, d (S Z)]

where c x = 42 + x
d y = c (y + 1 + z y)

where z w = y + w

122 E. Brady

2.4 Dependent Types

Vectors. A standard example of a dependent type is the type of “lists with
length”, conventionally called vectors in the dependent type literature. In the
Idris library, vectors are declared as follows:

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that we have used the same constructor names as for List. Ad-hoc name
overloading such as this is accepted by Idris, provided that the names are
declared in different namespaces (in practice, normally in different modules).
Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather
different from the simple type declarations earlier. We explicitly state the type
of the type constructor Vect—it takes a Nat and a type as an argument, where
Type stands for the type of types. We say that Vect is indexed over Nat and
parameterised by Type. Each constructor targets a different part of the family
of types. Nil can only be used to construct vectors with zero length, and ::
to construct vectors with non-zero length. In the type of ::, we state explicitly
that an element of type a and a tail of type Vect k a (i.e., a vector of length
k) combine to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way
as on simple types such as List and Nat above, by pattern matching. The type
of a function over Vect will describe what happens to the lengths of the vectors
involved. For example, ++, defined in the library, appends two Vects:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of
the input lengths. If we get the definition wrong in such a way that this does
not hold, Idris will not accept the definition. For example:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs −− BROKEN

$ idris vbroken.idr --check
vbroken.idr:3:Can’t unify Vect n a with Vect m a

Specifically:
Can’t unify n with m

This error message suggests that there is a length mismatch between two vec-
tors — we needed a vector of length m, but provided a vector of length n.

The Idris Programming Language 123

Finite Sets. Finite sets, as the name suggests, are sets with a finite number of
elements. They are declared as follows (again, in the prelude):

data Fin : Nat -> Type where
fZ : Fin (S k)
fS : Fin k -> Fin (S k)

For all n : Nat, Fin n is a type containing exactly n possible values: fZ is
the first element of a finite set with S k elements, indexed by zero; fS n is the
n+1th element of a finite set with S k elements. Fin is indexed by a Nat, which
represents the number of elements in the set. Obviously we can’t construct an
element of an empty set, so neither constructor targets Fin Z.

A useful application of the Fin family is to represent bounded natural num-
bers. Since the first n natural numbers form a finite set of n elements, we can
treat Fin n as the set of natural numbers bounded by n.

For example, the following function which looks up an element in a Vect,
by a bounded index given as a Fin n, is defined in the prelude:

index : Fin n -> Vect n a -> a
index fZ (x :: xs) = x
index (fS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is
bounded by the length of the vector (n in each case), so there is no need for
a run-time bounds check. The type checker guarantees that the location is no
larger than the length of the vector.

Note also that there is no case for Nil here. This is because it is impossible.
Since there is no element of Fin Z, and the location is a Fin n, then n can not
be Z. As a result, attempting to look up an element in an empty vector would
give a compile time type error, since it would force n to be Z.

Implicit Arguments. Let us take a closer look at the type of index:

index : Fin n -> Vect n a -> a

It takes two arguments, an element of the finite set of n elements, and a vector
with n elements of type a. But there are also two names, n and a, which are not
declared explicitly. These are implicit arguments to index. We could also write
the type of index as:

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

Implicit arguments, given in braces {} in the type declaration, are not given in
applications of index; their values can be inferred from the types of the Fin
n and Vect n a arguments. Any name with a lower case initial letter which
appears as a parameter or index in a type declaration, but which is otherwise
free, will be automatically bound as an implicit argument. Implicit arguments
can still be given explicitly in applications, using {a=value} and {n=value},
for example:

index {a=Int} {n=2} fZ (2 :: 3 :: Nil)

124 E. Brady

In fact, any argument, implicit or explicit, may be given a name. We could have
declared the type of index as:

index : (i:Fin n) -> (xs:Vect n a) -> a

It is a matter of taste whether you want to do this — sometimes it can help
document a function by making the purpose of an argument more clear.

“using” Notation. Sometimes it is useful to provide types of implicit argu-
ments, particularly where there is a dependency ordering, or where the implicit
arguments themselves have dependencies. For example, we may wish to state
the types of the implicit arguments in the following definition, which defines a
predicate on vectors:

data Elem : a -> List a -> Type where
Here : {x:a} -> {xs:List a} ->

Elem x (x :: xs)
There : {x,y:a} -> {xs:List a} ->

Elem x xs -> Elem x (y :: xs)

An instance of Elem x xs states that x is an element of xs. We can construct
such a predicate if the required element is Here, at the head of the list, or
There, in the tail of the list. For example:

testList : List Int
testList = 3 :: 4 :: 5 :: 6 :: Nil

inList : Elem 5 testList
inList = There (There Here)

If the same implicit arguments are being used several times, it can make a
definition difficult to read. To avoid this problem, a using block gives the types
and ordering of any implicit arguments which can appear within the block:

using (x:a, y:a, xs:List a)
data Elem : a -> List a -> Type where

Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

Note: Declaration Order and mutual Blocks. In general, functions and
data types must be declared before use, since dependent types allow functions to
appear as part of types, and their reduction behaviour to affect type checking.
However, this restriction can be relaxed by using a mutual block, which allows
data types and functions to be defined simultaneously:

mutual
even : Nat -> Bool
even Z = True
even (S k) = odd k

The Idris Programming Language 125

odd : Nat -> Bool
odd Z = False
odd (S k) = even k

In a mutual block, the Idris type checker will first check all of the type decla-
rations in the block, then the function bodies. As a result, none of the function
types can depend on the reduction behaviour of any of the functions in the block.

2.5 I/O

Computer programs are of little use if they do not interact with the user or the
system in some way. The difficulty in a pure language such as Idris — that is, a
language where expressions do not have side-effects — is that I/O is inherently
side-effecting. Therefore in Idris, such interactions are encapsulated in the type
IO:

data IO a −− IO o p e r a t i o n r e t u r n i n g a v a l u e o f t y p e a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O
operations to be executed are, rather than how to execute them. The resulting
operations are executed externally, by the run-time system. We’ve already seen
one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element
of the unit type () via an I/O action. There is a variant putStr which outputs
a string without a newline:

putStrLn : String -> IO ()
putStr : String -> IO ()

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for
reading and writing files, including:

data File −− a b s t r a c t

data Mode = Read | Write | ReadWrite

openFile : String -> Mode -> IO File
closeFile : File -> IO ()

fread : File -> IO String
fwrite : File -> String -> IO ()
feof : File -> IO Bool

readFile : String -> IO String

126 E. Brady

2.6 “do” Notation

I/O programs will typically need to sequence actions, feeding the output of one
computation into the input of the next. IO is an abstract type, however, so we
can’t access the result of a computation directly. Instead, we sequence operations
with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type IO
a, and puts the result, of type a, into the variable x. In this case, getLine
returns an IO String, so name has type String. Indentation is significant —
each statement in the do block must begin in the same column. The return
operation allows us to inject a value directly into an IO operation:

return : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.

2.7 Laziness

Normally, arguments to functions are evaluated before the function itself (that
is, Idris uses eager evaluation). However, consider the following function:

boolCase : Bool -> a -> a -> a
boolCase True t e = t
boolCase False t e = e

This function uses one of the t or e arguments, but not both (in fact, this is
used to implement the if...then...else construct as we will see later. We
would prefer if only the argument which was used was evaluated. To achieve
this, Idris provides a Lazy data type, which allows evaluation to be suspended:

data Lazy : Type -> Type where
Delay : (val : a) -> Lazy a

Force : Lazy a -> a

A value of type Lazy a is unevaluated until it is forced by Force. The Idris
type checker knows about the Lazy type, and inserts conversions where neces-
sary between Lazy a and a, and vice versa. We can therefore write boolCase
as follows, without any explicit use of Force or Delay:

boolCase : Bool -> Lazy a -> Lazy a -> a
boolCase True t e = t
boolCase False t e = e

The Idris Programming Language 127

2.8 Useful Data Types

The Idris prelude includes a number of useful data types and library functions
(see the lib/ directory in the distribution). The functions described here are
imported automatically by every Idris program, as part of Prelude.idr in
the prelude package.

List and Vect. We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

Note that the constructor names are the same for each — constructor names (in
fact, names in general) can be overloaded, provided that they are declared in dif-
ferent namespaces (in practice, typically different modules), and will be resolved
according to their type. As syntactic sugar, any type with the constructor names
Nil and :: can be written in list form. For example:

– [] means Nil
– [1,2,3] means 1 :: 2 :: 3 :: Nil

The library also defines a number of functions for manipulating these types. map
is overloaded both for List and Vect and applies a function to every element
of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect n a -> Vect n b
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, to double every element in a vector of integers, we can define the
following:

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

Then we can use map at the Idris prompt:

map> map double intVec
[2, 4, 6, 8, 10] : Vect 5 Int

For more details of the functions available on List and Vect, look in the
library, in Prelude/List.idr and Prelude/Vect.idr respectively. Func-
tions include filtering, appending, reversing, etc.

128 E. Brady

Maybe. Maybe describes an optional value. Either there is a value of the given
type, or there isn’t:

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example,
indexing a List (rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying
a function to the value, if there is one, or by providing a default value:

maybe : Maybe a -> |(def:b) -> (a -> b) -> b

The vertical bar | before the default value is a laziness annotation. Normally
expressions are evaluated eagerly, before being passed to a function. However,
in this case, the default value might not be used and if it is a large expression,
evaluating it will be wasteful. The | annotation tells the compiler not to evaluate
the argument until it is needed.

Tuples. Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means
either Pair a b or MkPair a b. Tuples can contain an arbitrary number of
values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

Dependent Pairs. Dependent pairs allow the type of the second element of a
pair to depend on the value of the first element:

data Sigma : (A : Type) -> (P : A -> Type) -> Type where
Sg_intro : {P : A -> Type} ->

(a : A) -> P a -> Sigma A P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a depen-
dent pair of A and P, where the name a can occur inside P. (a ** p)
constructs a value of this type. For example, we can pair a number with a Vect
of a particular length.

The Idris Programming Language 129

vec : (n : Nat ** Vect n Int)
vec = (2 ** [3, 4])

The type checker can infer the value of the first element from the length of the
vector; we can write an underscore in place of values which we expect the type
checker to fill in, so the above definition could also be written as:

vec : (n : Nat ** Vect n Int)
vec = (_ ** [3, 4])

We might also prefer to omit the type of the first element of the pair, since,
again, it can be inferred:

vec : (n ** Vect n Int)
vec = (_ ** [3, 4])

Without the syntactic sugar, this would be written in full as follows:

vec : Sigma Nat (\n => Vect n Int)
vec = Sg_intro 2 [3,4]

One use for dependent pairs is to return values of dependent types where the
index is not necessarily known in advance. For example, if we filter elements out
of a Vect according to some predicate, we will not know in advance what the
length of the resulting vector will be:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

If the Vect is empty, the result is easy:

filter p Nil = (_ ** [])

In the :: case, we need to inspect the result of a recursive call to filter to
extract the length and the vector from the result. We use a case expression to
inspect the intermediate value:

filter p (x :: xs)
= case filter p xs of

(_ ** xs’) => if p x then (_ ** x :: xs’)
else (_ ** xs’)

so. The so data type is a predicate on Bool which guarantees that the value
is true:

data so : Bool -> Type where
oh : so True

This is most useful for providing a static guarantee that a dynamic check has
been made. For example, we might provide a safe interface to a function which
draws a pixel on a graphical display as follows, where so (inBounds x y)
guarantees that the point (x,y) is within the bounds of a 640x480 window:

130 E. Brady

inBounds : Int -> Int -> Bool
inBounds x y = x >= 0 && x < 640 && y >= 0 && y < 480

drawPoint : (x : Int) -> (y : Int) ->
so (inBounds x y) -> IO ()

drawPoint x y p = unsafeDrawPoint x y

2.9 More Expressions

let Bindings. Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs’ = rev xs in

xs ++ xs’

We can do simple pattern matching in let bindings too. For example, we can
extract fields from a record as follows, as well as by pattern matching at the top
level:

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++
" years old"

List Comprehensions. Idris provides comprehension notation as a convenient
shorthand for building lists. The general form is:

[expression | qualifiers]

This generates the list of values produced by evaluating the expression,
according to the conditions given by the comma separated qualifiers. For
example, we can build a list of Pythagorean triples as follows:

pythag : Int -> List (Int, Int, Int)
pythag n = [(x, y, z) | z <- [1..n], y <- [1..z],

x <- [1..y],
x * x + y * y == z * z]

The [a..b] notation is another shorthand which builds a list of numbers
between a and b. Alternatively [a,b..c] builds a list of numbers between
a and c with the increment specified by the difference between a and b. This
works for any enumerable type.

case Expressions. Another way of inspecting intermediate values of simple
types, as we saw with filter on vectors, is to use a case expression. The
following function, for example, splits a string into two at a given character:

The Idris Programming Language 131

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the
point where the given function returns true. We then deconstruct the pair it
returns, and remove the first character of the second string.

Restrictions: The case construct is intended for simple analysis of intermedi-
ate expressions to avoid the need to write auxiliary functions, and is also used
internally to implement pattern matching let and lambda bindings. It will only
work if:

– Each branch matches a value of the same type, and returns a value of the
same type.

– The type of the expression as a whole can be determined without checking
the branches of the case-expression itself. This is because case expressions
are lifted to top level functions by the Idris type checker, and type checking
is type-directed.

2.10 Dependent Records

Records are data types which collect several values (the record’s fields) together.
Idris provides syntax for defining records and automatically generating field
access and update functions. For example, we can represent a person’s name
and age in a record:

record Person : Type where
MkPerson : (name : String) ->

(age : Int) -> Person

fred : Person
fred = MkPerson "Fred" 30

Record declarations are like data declarations, except that they are introduced
by the record keyword, and can only have one constructor. The names of the
binders in the constructor type (name and age) here are the field names, which
we can use to access the field values:

*record> name fred
"Fred" : String

*record> age fred
30 : Int

*record> :t name
name : Person -> String

We can also use the field names to update a record (or, more precisely, produce
a new record with the given fields updated).

132 E. Brady

*record> record { name = "Jim" } fred
MkPerson "Jim" 30 : Person

*record> record { name = "Jim", age = 20 } fred
MkPerson "Jim" 20 : Person

The syntax record { field = val, ... } generates a function which
updates the given fields in a record.

Records, and fields within records, can have dependent types. Updates are
allowed to change the type of a field, provided that the result is well-typed, and
the result does not affect the type of the record as a whole. For example:

record Class : Type where
ClassInfo : (students : Vect n Person) ->

(className : String) ->
Class

It is safe to update the students field to a vector of a different length because
it will not affect the type of the record:

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo [(MkPerson "Fred" 30)] "CS" : Class

Exercises

1. Write a function repeat : (n : Nat) -> a -> Vect n a which con-
structs a vector of n copies of an item.

2. Consider the following function types:

vtake : (n : Nat) -> Vect (n + m) a -> Vect n a
vdrop : (n : Nat) -> Vect (n + m) a -> Vect m a

Implement these functions. Do the types tell you enough to suggest what they
should do?

3. A matrix is a 2-dimensional vector, and could be defined as follows:

Matrix : Type -> Nat -> Nat -> Type
Matrix a n m = Vect (Vect a m) n

(a) Using repeat, above, and Vect.zipWith, write a function which
transposes a matrix.
Hints: Remember to think carefully about its type first! zipWith for
vectors is defined as follows:

zipWith : (a -> b -> c) ->
Vect a n -> Vect b n -> Vect c n

zipWith f [] [] = []
zipWith f (x::xs) (y::ys) = f x y :: zipWith f xs ys

(b) Write a function to multiply two matrices.

The Idris Programming Language 133

3 Type Classes

We often want to define functions which work across several different data types.
For example, we would like arithmetic operators to work on Int, Integer and
Float at the very least. We would like == to work on the majority of data
types. We would like to be able to display different types in a uniform way.

To achieve this, we use a feature which has proved to be effective in Haskell,
namely type classes. To define a type class, we provide a collection of overloaded
operations which describe the interface for instances of that class. A simple
example is the Show type class, which is defined in the prelude and provides an
interface for converting values to Strings:

class Show a where
show : a -> String

This generates a function of the following type (which we call a method of the
Show class):

show : Show a => a -> String

We can read this as “under the constraint that a is an instance of Show, take
an a as input and return a String.” An instance of a class is defined with an
instance declaration, which provides implementations of the function for a
specific type. For example, the Show instance for Nat could be defined as:

instance Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k

Idris> show (S (S (S Z)))
"sssZ" : String

Like Haskell, by default only one instance of a class can be given for a type—
instances may not overlap4. Also, type classes and instances may themselves
have constraints, for example:

class Eq a => Ord a where ...
instance Show a => Show (List a) where ...

3.1 Monads and do-Notation

In general, type classes can have any number (greater than 0) of parameters, and
the parameters can have any type. If the type of the parameter is not Type, we
need to give an explicit type declaration. For example:

class Monad (m : Type -> Type) where
return : a -> m a
(>>=) : m a -> (a -> m b) -> m b

4 Named instances are also available, but beyond the scope of this tutorial.

134 E. Brady

The Monad class allows us to encapsulate binding and computation, and is the
basis of do-notation introduced in Sect. 2.6. Inside a do block, the following
syntactic transformations are applied:

– x < − v; e becomes v >>= (\x => e)
– v; e becomes v >>= (\ => e)
– let x = v; e becomes let x = v in e

IO is an instance of Monad, defined using primitive functions. We can also define
an instance for Maybe, as follows:

instance Monad Maybe where
return = Just

Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Ints,
using the monad to encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x’ <- x −− E x t r a c t v a l u e f r om x

y’ <- y −− E x t r a c t v a l u e f r om y

return (x’ + y’) −− Add them

This function will extract the values from x and y, if they are available, or return
Nothing if they are not. Managing the Nothing cases is achieved by the >>=
operator, hidden by the do notation.

*classes> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*classes> m_add (Just 20) Nothing
Nothing : Maybe Int

3.2 Idiom Brackets

While do notation gives an alternative meaning to sequencing, idioms give an
alternative meaning to application. The notation and larger example in this
section is inspired by Conor McBride and Ross Paterson’s paper “Applicative
Programming with Effects” [12].

First, let us revisit m add above. All it is really doing is applying an operator
to two values extracted from Maybe Ints. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

Using this, we can write an alternative m add which uses this alternative notion
of function application, with explicit calls to m app:

The Idris Programming Language 135

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m app everywhere there is an application, we can
use idiom brackets to do the job for us. To do this, we use the Applicative
class, which captures the notion of application for a data type:

infixl 2 <$>

class Applicative (f : Type -> Type) where
pure : a -> f a
(<$>) : f (a -> b) -> f a -> f b

Maybe is made an instance of Applicative as follows, where < $ > is defined
in the same way as m app above:

instance Applicative Maybe where
pure = Just
(Just f) <$> (Just a) = Just (f a)
_ <$> _ = Nothing

Using idiom brackets we can use this instance as follows, where a function appli-
cation [| f a1 ... an |] is translated into pure f <$> a1 <$> ... <$> an:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = [| x + y |]

An Error-Handling Interpreter. Idiom brackets are often useful when defin-
ing evaluators for embedded domain specific languages. McBride and Paterson
describe such an evaluator [12], for a small language similar to the following:

data Expr = Var String −− v a r i a b l e s

| Val Int −− v a l u e s

| Add Expr Expr −− a d d i t i o n

Evaluation will take place relative to a context mapping variables (represented
as Strings) to integer values, and can possibly fail. We define a data type Eval
to wrap an evaluation function:

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

We begin by defining a function to retrieve values from the context during
evaluation:

fetch : String -> Eval Int
fetch x = MkEval fetchVal where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs)

= if (x == v) then Just val
else fetchVal xs

136 E. Brady

When defining an evaluator for the language, we will be applying functions in the
context of an Eval, so it is natural to make Eval an instance of Applicative.
Before Eval can be an instance of Applicative it is necessary to make Eval
an instance of Functor:

instance Functor Eval where
fmap f (MkEval g) = MkEval (\e => fmap f (g e))

instance Applicative Eval where
pure x = MkEval (\e => Just x)
(<$>) (MkEval f) (MkEval g)

= MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle
errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

By defining appropriate Monad and Applicative instances, we can overload
notions of binding and application for specific data types, which can give more
flexibility when implementing EDSLs.

4 Views and the “with” Rule

4.1 Dependent Pattern Matching

Since types can depend on values, the form of some arguments can be deter-
mined by the value of others. For example, if we were to write down the implicit
length arguments to (++), we’d see that the form of the length argument was
determined by whether the vector was empty or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} [] ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys

If n was a successor in the [] case, or zero in the :: case, the definition would
not be well typed.

The Idris Programming Language 137

4.2 The with Rule — Matching Intermediate Values

Very often, we need to match on the result of an intermediate computation. Idris
provides a construct for this, the with rule, inspired by views in Epigram [11],
which takes account of the fact that matching on a value in a dependently typed
language can affect what we know about the forms of other values —we can
learn the form of one value by testing another. For example, a Nat is either even
or odd. If it’s even it will be the sum of two equal Nats. Otherwise, it is the sum
of two equal Nats plus one:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether
it is even or odd and constructs the predicate accordingly.

parity : (n:Nat) -> Parity n

We will return to this function in Sect. 5.5 to complete the definition of parity.
For now, we can use it to write a function which converts a natural number to
a list of binary digits (least significant first) as follows, using the with rule:

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j
natToBin (S (j + j)) | odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result
of parity k depends on k. So, as well as the patterns for the result of the
intermediate computation (even and odd) right of the |, we also write how
the results affect the other patterns left of the |. Note that there is a function
in the patterns (+) and repeated occurrences of j — this is allowed because
another argument has determined the form of these patterns.

4.3 Membership Predicates

We have already seen (in Sect. 2.4) the Elem x xs type, an element of which
is a proof that x is an element of the list xs:

using (x:a, y:a, xs:List a)
data Elem : a -> List a -> Type where

Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

We have also seen how to construct proofs of this at compile time. However,
data is not often available at compile-time — proofs of list membership may
arise due to user data, which may be invalid and therefore needs to be checked.
What we need, therefore, is a function which constructs such a predicate, taking
into account possible failure. In order to do so, we need to be able to construct
equality proofs.

138 E. Brady

Propositional Equality. Idris allows propositional equalities to be declared,
allowing theorems about programs to be stated and proved. Equality is built in,
but conceptually has the following definition:

data (=) : a -> b -> Type where
refl : x = x

Equalities can be proposed between any values of any types, but the only way
to construct a proof of equality is if values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = refl

Decidable Equality. The library provides a Dec type, with two constructors,
Yes and No. Dec represents decidable propositions, either containing a proof
that a type is inhabited, or a proof that it is not. Here, | represents the empty
type, which we will discuss further in Sect. 5.1:

data Dec : Type -> Type where
Yes : a -> Dec a
No : (a -> _|_) -> Dec a

We can think of this as an informative version of Bool — not only do we know
the truth of a value, we also have an explanation for it. Using this, we can write
a type class capturing types which can not only be compared for equality, but
which also provide a proof of that equality:

class DecEq t where
decEq : (x1 : t) -> (x2 : t) -> Dec (x1 = x2)

Using DecEq, we can construct equality proofs where necessary at run-time.
There are instances defined in the prelude for primitive types, as well as many
of the types defined in the prelude such as Bool, Maybe a, List a, etc.

Now that we can construct equality proofs dynamically, we can implement
the following function, which dynamically constructs a proof that x is contained
in a list xs, if possible:

isElem : DecEq a =>
(x : a) -> (xs : List a) -> Maybe (Elem x xs)

isElem x [] = Nothing
isElem x (y :: xs) with (decEq x y)

isElem x (x :: xs) | (Yes refl) = return Here
isElem x (y :: xs) | (No f) = do p <- isElem x xs

return (There p)

This function works first by checking whether the list is empty. If so, the value
cannot be contained in the list, so it returns Nothing. Otherwise, it uses decEq

The Idris Programming Language 139

to try to construct a proof that the element is at the head of the list. If it succeeds,
dependent pattern matching on that proof means that x must be at the head of
the list. Otherwise, it searches in the tail of the list.

Exercises

1. The following view describes a pair of numbers as a difference:

data Cmp : Nat -> Nat -> Type where
cmpLT : (y : _) -> Cmp x (x + S y)
cmpEQ : Cmp x x
cmpGT : (x : _) -> Cmp (y + S x) y

(a) Write the function cmp : (n : Nat) -> (m : Nat) -> Cmp n m
which proves that every pair of numbers can be expressed in this way.

(b) Assume you have a vector xs : Vect a n, where n is unknown. How
could you use cmp to construct a suitable input to vtake and vdrop
from xs?

2. You are given the following definition of binary trees:

data Tree a = Leaf | Node (Tree a) a (Tree a)

Define a membership predicate ElemTree and a function elemInTree which
calculates whether a value is in the tree, and a corresponding proof.

data ElemTree : a -> Tree a -> Type where ...

elemInTree : DecEq a =>
(x : a) -> (t : Tree a) -> Maybe (ElemTree x t)

5 Theorem Proving

As we have seen in Sect. 4.3, Idris supports propositional equality:

data (=) : a -> b -> Type where
refl : x = x

We have used this to build membership proofs of Lists, but it is more generally
applicable. In particular, we can reason about equality. The library function
replace uses an equality proof to transform a predicate on one value into a
predicate on another, equal, value:

replace : {P : a -> Type} -> x = y -> P x -> P y
replace refl prf = prf

The library function cong is a function defined in the library which states that
equality respects function application:

cong : {f : t -> u} -> a = b -> f a = f b
cong refl = refl

140 E. Brady

Using the equality type, replace, cong and the properties of the type system,
we can write proofs of theorems such as the following, which states that addition
of natural numbers is commutative:

plus_commutes : (n, m : Nat) -> plus n m = plus m n

In this section, we will see how to develop such proofs.

5.1 The Empty Type

There is an empty type, ⊥, which has no constructors. It is therefore impossible
to construct an element of the empty type, at least without using a partially
defined or general recursive function (which will be explained in more detail
in Sect. 5.4). We can therefore use the empty type to prove that something is
impossible, for example zero is never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> _|_
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = _|_

Here we use replace to transform a value of a type which can exist, the empty
tuple, to a value of a type which can’t, by using a proof of something which
can’t exist. Once we have an element of the empty type, we can prove anything.
FalseElim is defined in the library, to assist with proofs by contradiction.

FalseElim : _|_ -> a

5.2 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine
we want to prove the following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n

We’ve written down the statement of the theorem as a type, in just the same
way as we would write the type of a program. In fact there is no real distinction
between proofs and programs. A proof, as far as we are concerned here, is merely
a program with a precise enough type to guarantee a particular property of
interest.

We won’t go into details here, but the Curry-Howard correspondence [10]
explains this relationship. The proof itself is trivial, because plus Z n nor-
malises to n by the definition of plus:

plusReduces n = refl

It is slightly harder if we try the arguments the other way, because plus is defined
by recursion on its first argument. The proof also works by recursion on the first
argument to plus, namely n.

The Idris Programming Language 141

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = refl
plusReducesZ (S k) = cong (plusReducesZ k)

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) ->
S (plus n m) = plus n (S m)

plusReducesS Z m = refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for simple theorems like these, the proofs are a little tricky to construct
directly. When things get even slightly more complicated, it becomes too much
to think about to construct proofs in this ‘batch mode’. Idris therefore provides
an interactive proof mode.

5.3 Interactive Theorem Proving

Instead of writing the proof in one go, we can use Idris’s interactive proof mode.
To do this, we write the general structure of the proof, and use the interactive
mode to complete the details. We’ll be constructing the proof by induction, so
we write the cases for Z and S, with a recursive call in the S case giving the
inductive hypothesis, and insert metavariables for the rest of the definition:

plusReducesZ’ : (n:Nat) -> n = plus n Z
plusReducesZ’ Z = ?plusredZ_Z
plusReducesZ’ (S k) = let ih = plusReducesZ’ k in

?plusredZ_S

On running Idris, two global names are created, plusredZ Z and plusredZ S,
with no definition. We can use the :m command at the prompt to find out which
metavariables are still to be solved (or, more precisely, which functions exist but
have no definitions), then the :t command to see their types and contexts:

*theorems> :m
Global metavariables:

[plusredZ_S,plusredZ_Z]

*theorems> :t plusredZ_Z

plusredZ_Z : 0 = 0

*theorems> :t plusredZ_S
k : Nat
ih : k = plus k 0

plusredZ_S : S k = S (plus k 0)

142 E. Brady

The :p command enters interactive proof mode, which can be used to complete
the missing definitions. This gives us a list of premises (above the line; there are
none here) and the current goal (below the line; named {hole0} here). At the
prompt we can enter tactics to direct the construction of the proof. In this case,
we can normalise the goal with the compute tactic:

-plusredZ_Z> compute

----------------------------- (plusredZ_Z) --------
{hole0} : Z = Z

Now we have to prove that Z equals Z, which is easy to prove by refl. To apply
a function, such as refl, we use refine which introduces subgoals for each of
the function’s explicit arguments (refl has none):

-plusredZ_Z> refine refl
plusredZ_Z: no more goals

Here, we could also have used the trivial tactic, which tries to refine by refl,
and if that fails, tries to refine by each name in the local context. When a proof
is complete, we use the qed tactic to add the proof to the global context, and
remove the metavariable from the unsolved metavariables list. This also outputs
a log of the proof:

-plusredZ_Z> qed
plusredZ_Z = proof

compute
refine refl

*theorems> :m
Global metavariables:

[plusredZ_S]

The :addproof command, at the interactive prompt, will add the proof to
the source file (effectively in an appendix). Let us now prove the other required
lemma, plusredZ S:

*theorems> :p plusredZ_S

----------------------------- (plusredZ_S) --------
{hole0} : (k : Nat) -> (k = plus k 0) -> S k = plus (S k) 0

In this case, the goal is a function type, using k (the argument accessible by
pattern matching) and ih — the local variable containing the result of the
recursive call. We can introduce these as premises using the intro tactic twice
(or intros, which introduces all arguments as premises). This gives:

k : Nat
ih : k = plus k Z

----------------------------- (plusredZ_S) --------
{hole2} : S k = plus (S k) 0

The Idris Programming Language 143

Since plus is defined is defined by recursion on its first argument, the term plus
(S k) 0 in the goal can be simplified using compute:

k : Nat
ih : k = plus k Z

----------------------------- (plusredZ_S) --------
{hole2} : S k = S (plus k 0)

We know, from the type of ih, that k = plus k 0, so we would like to use
this knowledge to replace plus k 0 in the goal with k. We can achieve this
with the rewrite tactic:

-plusredZ_S> rewrite ih

k : Nat
ih : k = plus k 0

----------------------------- (plusredZ_S) --------
{hole3} : S k = S k

-plusredZ_S>

The rewrite tactic takes an equality proof as an argument, and tries to rewrite
the goal using that proof. Here, it results in an equality which is trivially prov-
able:

-plusredZ_S> trivial
plusredZ_S: no more goals
-plusredZ_S> qed
plusredZ_S = proof

intros
rewrite ih
trivial

Again, we can add this proof to the end of our source file using the :addproof
command at the interactive prompt.

5.4 Totality Checking

If we really want to trust our proofs, it is important that they are defined by
total functions. A total function is a function which is defined for all possible
inputs and is guaranteed to terminate. Otherwise we could construct an element
of the empty type, from which we could prove anything:

−− mak ing u s e o f ’ hd ’ b e i n g p a r t i a l l y d e f i n e d

empty1 : _|_
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x

144 E. Brady

−− no t t e r m i n a t i n g

empty2 : _|_
empty2 = empty2

Internally, Idris checks every definition for totality, and we can check at the
prompt with the :total command. We see that neither of the above definitions
is total:

*theorems> :total empty1
possibly not total due to: empty1, hd

not total as there are missing cases

*theorems> :total empty2
possibly not total due to recursive path empty2

Note the use of the word “possibly” — a totality check can, of course, never be
certain due to the undecidability of the halting problem. The check is, therefore,
conservative. It is also possible (and indeed advisable, in the case of proofs) to
mark functions as total so that it will be a compile time error for the totality
check to fail:

total empty2 : _|_
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to
recursive path empty2

Reassuringly, our proof in Sect. 5.1 that the zero and successor constructors are
disjoint is total:

*theorems> :total disjoint
Total

The totality check is, necessarily, conservative. To be recorded as total, a function
f must:

– Cover all possible inputs.
– Be well-founded — i.e. by the time a sequence of (possibly mutually) recursive

calls reaches f again, it must be possible to show that one of its arguments
has decreased.

– Not use any data types which are not strictly positive.
– Not call any non-total functions.

Directives and Compiler Flags for Totality. By default, Idris allows all
definitions, whether total or not. However, it is desirable for functions to be
total as far as possible, as this provides a guarantee that they provide a result
for all possible inputs, in finite time. It is possible to make total functions a
requirement, either:

The Idris Programming Language 145

– By using the --total compiler flag.
– By adding a %default total directive to a source file. All definitions after

this will be required to be total, unless explicitly flagged as partial.

All functions after a %default total declaration are required to be total. Corre-
spondingly, after a %default partial declaration, the requirement is relaxed.

5.5 Provisional Definitions

Sometimes when programming with dependent types, the type required by the
type checker and the type of the program we have written will be different (in
that they do not have the same normal form), but nevertheless provably equal.
For example, recall the parity function:

data Parity : Nat -> Type where
even : Parity (n + n)
odd : Parity (S (n + n))

parity : (n:Nat) -> Parity n

We would like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even = even {n=S j}
parity (S (S (S (j + j)))) | odd = odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of
k+2 is the same as the parity of k. Explicitly marking the value of n in even and
odd is necessary to help type inference. Unfortunately, the type checker rejects
this:

views.idr:12:Can’t unify Parity (plus (S j) (S j)) with
Parity (S (S (plus j j)))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to
the same value. This is because plus is defined by recursion on its first argument,
and in the second value, there is a successor symbol on the second argument, so
this will not help with reduction. These values are obviously equal—how can we
rewrite the program to fix this problem?

Provisional definitions help with this problem by allowing us to defer the
proof details until a later point. There are two main motivations for supporting
provisional definitions:

– When prototyping, it is useful to be able to test programs before finishing
all the details of proofs. This is particularly useful if testing reveals that we
would need to prove something which is untrue!

– When reading a program, it is often much clearer to defer the proof details so
that they do not distract the reader from the underlying algorithm.

146 E. Brady

Provisional definitions are written in the same way as ordinary definitions, except
that they introduce the right hand side with a ?= rather than =. We define
parity as follows:

parity : (n:Nat) -> Parity n
parity Z = even {n=Z}
parity (S Z) = odd {n=Z}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even ?= even {n=S j}
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}

When written in this form, instead of reporting a type error, Idris will insert
a metavariable standing for a theorem which will correct the type error. Idris
tells us we have two proof obligations, with names generated from the module
and function names:

*views> :m
Global metavariables:

[views.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type and context:

*views> :t views.parity_lemma_1
j : Nat
value : Parity (plus (S j) (S j))

parity_lemma_1 : Parity (S (S (plus j j)))

The two arguments are j, the variable in scope from the pattern match, and
value, which is the value we gave in the right hand side of the provisional
definition. Our aim is to rewrite the type so that we can use this value. We can
achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

After starting the theorem prover with :p parity lemma 1 and applying
intro twice, we have:

j : Nat
value : Parity (S (plus j (S j)))

-------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (j + j)))

We need to use compute to unfold the definition of (+).

-views.parity_lemma_1> compute

j : Nat
value : Parity (S (plus j (S j)))

-------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))

The Idris Programming Language 147

Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to j and
j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat
value : Parity (S (plus j (S j)))

-------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))

sym is a function, defined in the library, which reverses the order of the rewrite:

sym : l = r -> r = l
sym refl = refl

We can complete this proof using the trivial tactic, which finds value in the
premises. The proof of the second lemma proceeds in exactly the same way.

We can now test the natToBin function from Sect. 4.2 at the prompt. The
number 42 is 101010 in binary. The binary digits are reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

5.6 Suspension of Disbelief

Idris requires that proofs be complete before compiling programs (although
evaluation at the prompt is possible without proof details). Sometimes, especially
when prototyping, it is easier not to have to do this. It might even be beneficial
to test programs before attempting to prove things about them — if testing finds
an error, you know you should not waste your time proving something!

Therefore, Idris provides a built-in coercion function, which allows you to
use a value of the incorrect types:

believe_me : a -> b

Obviously, this should be used with caution. It is useful when prototyping, and
can also be appropriate when asserting properties of external code (perhaps in
an external C library). The “proof” of views.parity lemma 1 using this is:

views.parity_lemma_2 = proof
intro
intro
exact believe_me value

The exact tactic allows us to provide an exact value for the proof. In this case,
we assert that the value we gave was correct.

5.7 Example: Binary Numbers

Previously, we implemented conversion to binary numbers using the Parity
view. Here, we show how to use the same view to implement a verified conversion

148 E. Brady

to binary. We begin by indexing binary numbers over their Nat equivalent. This
is a common pattern, linking a representation (in this case Binary) with a
meaning (in this case Nat):

data Binary : Nat -> Type where
bEnd : Binary Z
bO : Binary n -> Binary (n + n)
bI : Binary n -> Binary (S (n + n))

bO and bI take a binary number as an argument and effectively shift it one bit
left, adding either a zero or one as the new least significant bit. The index, n
+ n or S (n + n) states the result that this left shift then add will have to
the meaning of the number. This will result in a representation with the least
significant bit at the front.

Now a function which converts a Nat to binary will state, in the type, that
the resulting binary number is a faithful representation of the original Nat:

natToBin : (n:Nat) -> Binary n

The Parity view makes the definition fairly simple — halving the number is
effectively a right shift after all — although we need to use a provisional definition
in the odd case:

natToBin : (n:Nat) -> Binary n
natToBin Z = bEnd
natToBin (S k) with (parity k)

natToBin (S (j + j)) | even = bI (natToBin j)
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))

The problem with the odd case is the same as in the definition of parity, and
the proof proceeds in the same way:

natToBin_lemma_1 = proof
intro
intro
rewrite sym (plusSuccRightSucc j j)
trivial

To finish, we’ll implement a main program which reads an integer from the user
and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show instance for Binary n:

instance Show (Binary n) where
show (bO x) = show x ++ "0"
show (bI x) = show x ++ "1"
show bEnd = ""

The Idris Programming Language 149

Exercises

1. Implement the following functions, which verify some properties of natural
number addition:

plus_nSm : (n : Nat) -> (m : Nat) -> n + S m = S (n + m)
plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_assoc : (n : Nat) -> (m : Nat) -> (p : Nat) ->

n + (m + p) = (n + m) + p

2. One way we have seen to define a reverse function for lists is as follows:

reverse : List a -> List a
reverse xs = revAcc [] xs where
revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Write the equivalent function for vectors,

vect_reverse : Vect n a -> Vect n a

Hint: You can use the same structure as the definition for List, but you will
need to think carefully about the type for revAcc, and may need to do some
theorem proving.

6 EDSL Example 1: The Well-Typed Interpreter

In this section, we will use the features we have seen so far to write a larger
example, an interpreter for a simple functional programming language, imple-
mented as an Embedded Domain Specific Language. The object language (i.e.,
the language we are implementing) has variables, function application, binary
operators and an if...then...else construct. We will use the type system
from the host language (i.e. Idris) to ensure that any programs which can be
represented are well-typed.

First, let us define the types in the language. We have integers, booleans,
and functions, represented by Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete Idris
type — remember that types are first class, so can be calculated just like any
other value:

interpTy : Ty -> Type
interpTy TyInt = Int
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T

150 E. Brady

We will define a representation of our language in such a way that only well-
typed programs can be represented. We index the representations of expressions
by their type and the types of local variables (the context), which we’ll be using
regularly as an implicit argument, so we define everything in a using block:

using (G:Vect n Ty)

The full representation of expressions is given in Listing 3. They are indexed by
the types of the local variables, and the type of the expression itself:

data Expr : Vect n Ty -> Ty -> Type

Since expressions are indexed by their type, we can read the typing rules of the
language from the definitions of the constructors. Let us look at each constructor
in turn.

Listing 3. Expression representation

data Expr : Vect n Ty -> Ty -> Type where
Var : HasType i G t -> Expr G t
Val : (x : Int) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) ->

Expr G a -> Expr G b -> Expr G c
If : Expr G TyBool ->

Lazy (Expr G a) -> Lazy (Expr G a) -> Expr G a

We use a nameless representation for variables — they are de Bruijn indexed.
Variables are represented by a proof of their membership in the context, HasType
i G T, which is a proof that variable i in context G has type T. This is defined
as follows:

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
stop : HasType fZ (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

We can treat stop as a proof that the most recently defined variable is well-
typed, and pop n as a proof that, if the nth most recently defined variable is
well-typed, so is the n+1th. In practice, this means we use stop to refer to the
most recently defined variable, pop stop to refer to the next, and so on, via
the Var constructor:

Var : HasType i G t -> Expr G t

So, in an expression \x. \y. x y, the variable x would have a de Bruijn index
of 1, represented as pop stop, and y 0, represented as stop. We find these
by counting the number of lambdas between the definition and the use.
A value carries a concrete representation of an integer:

Val : (x : Int) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there
is a new local variable of type a, which is expressed by the context index:

The Idris Programming Language 151

Listing 4. Intepreter definition

interp : Env G -> Expr G t -> interpTy t
interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam body) = \x => interp (x :: env) body
interp env (App f s) = (interp env f) (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x

then interp env t
else interp env e

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t
and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

Given these constructors, the expression \x. \y. x y above would be repre-
sented as Lam (Lam (App (Var (pop stop)) (Var stop))).

We also allow arbitrary binary operators, where the type of the operator
informs what the types of the arguments must be:

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

Finally, If expressions make a choice given a boolean. Each branch must have
the same type, and we will evaluate the branches lazily so that only the branch
which is taken need be evaluated:

If : Expr G TyBool ->
Lazy (Expr G a) -> Lazy (Expr G a) -> Expr G a

When we evaluate an Expr, we’ll need to know the values in scope, as well
as their types. Env is an environment, indexed over the types in scope. Since
an environment is just another form of list, albeit with a strongly specified
connection to the vector of local variable types, we use the usual :: and Nil
constructors so that we can use the usual list syntax. Given a proof that a variable
is defined in the context, we can then produce a value from the environment:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

152 E. Brady

Given this, an interpreter (Listing 4) is a function which translates an Expr into
a concrete Idris value with respect to a specific environment:

interp : Env G -> Expr G t -> interpTy t

To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which inter-
prets the scope of the lambda with a new value in the environment. So, a function
in the object language is translated to an Idris function:

interp env (Lam body) = \x => interp (x :: env) body

For an application, we interpret the function and its argument and apply it
directly. We know that interpreting f must produce a function, because of its
type:

interp env (App f s) = (interp env f) (interp env s)

Operators and If expressions are, again, direct translations into the equivalent
Idris constructs. For operators, we apply the function to its operands directly,
and for If, we apply the Idris if...then...else construct directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x

then interp env t
else interp env e

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x
is written as follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var stop) (Var (pop stop))))

More interestingly, we can write a factorial function (i.e. \x. if (x == 0)
then 1 else (fact (x-1) * x)) which is written as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1)
(Op (*)
(App fact (Op (-) (Var stop) (Val 1)))

(Var stop)))

To finish, we write a main program which interprets the factorial function on
user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (interp [] fact (cast x))

The Idris Programming Language 153

Here, cast is an overloaded function which converts a value from one type to
another if possible. Here, it converts a string to an integer, giving 0 if the input
is invalid. An example run of this program at the Idris interactive environment
is shown in Listing 5.

Aside: cast. The prelude defines a type class Cast which allows conversion
between types:

class Cast from to where
cast : from -> to

It is a multi-parameter type class, defining the source type and object type of
the cast. It must be possible for the type checker to infer both parameters at
the point where the cast is applied. There are casts defined between all of the
primitive types, as far as they make sense.

Listing 5. Running the well-typed interpreter

$ idris interp.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.14.

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr

*interp> :exec
Enter a number: 6
720

*interp>

7 Interactive Editing

By now, we have seen several examples of how Idris’ dependent type system
can give extra confidence in a function’s correctness by giving a more precise
description of its intended behaviour in its type. We have also seen an example of
how the type system can help with EDSL development by allowing a programmer
to describe the type system of an object language. However, precise types give
us more than verification of programs — we can also exploit types to help write
programs which are correct by construction.

The Idris REPL provides several commands for inspecting and modifying
parts of programs, based on their types, such as case splitting on a pattern
variable, inspecting the type of a metavariable, and even a basic proof search
mechanism. In this section, we explain how these features can be exploited by
a text editor, and specifically how to do so in Vim5. An interactive mode for
Emacs6 is also available.
5 https://github.com/idris-hackers/idris-vim.
6 https://github.com/idris-hackers/idris-emacs.

https://github.com/idris-hackers/idris-vim
https://github.com/idris-hackers/idris-emacs

154 E. Brady

7.1 Editing at the REPL

The REPL provides a number of commands, which we will describe shortly,
which generate new program fragments based on the currently loaded module.
These take the general form

:command [line number] [name]

That is, each command acts on a specific source line, at a specific name, and
outputs a new program fragment. Each command has an alternative form, which
updates the source file in-place:

:command! [line number] [name]

When the REPL is loaded, it also starts a background process which accepts
and responds to REPL commands, using idris --client. For example, if
we have a REPL running elsewhere, we can execute commands such as:

$ idris --client ’:t plus’
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris --client ’2+2’
4 : Integer

A text editor can take advantage of this, along with the editing commands, in
order to provide interactive editing support.

7.2 Editing Commands

:addclause. The :addclause n f command (abbreviated :ac n f) creates
a template definition for the function named f declared on line n.

For example, if the code beginning on line 94 contains. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

. . . then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs

The names are chosen according to hints which may be given by a programmer,
and then made unique by the machine by adding a digit if necessary. Hints can
be given as follows:

%name Vect xs, ys, zs, ws

This declares that any names generated for types in the Vect family should be
chosen in the order xs, ys, zs, ws.

:casesplit. The :casesplit n x command, abbreviated :cs n x, splits the
pattern variable x on line n into the various pattern forms it may take, removing
any cases which are impossible due to unification errors. For example, if the code
beginning on line 94 is. . .

The Idris Programming Language 155

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f xs ys = ?vzipWith_rhs

. . . then :cs 96 xs will give:

vzipWith f [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2

That is, the pattern variable xs has been split into the two possible cases []
and x :: xs. Again, the names are chosen according to the same heuristic. If
we update the file (using :cs!) then case split on ys on the same line, we get:

vzipWith f [] [] = ?vzipWith_rhs_3

That is, the pattern variable ys has been split into one case [], Idris having
noticed that the other possible case y :: ys would lead to a unification error.

:addmissing. The :addmissing n f command, abbreviated :am n f, adds
the clauses which are required to make the function f on line n cover all inputs.
For example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1

. . . then :am 96 vzipWith gives:

vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

That is, it notices that there are no cases for non-empty vectors, generates
the required clauses, and eliminates the clauses which would lead to unification
errors.

:proofsearch. The :proofsearch nf command, abbreviated :ps nf, attempts
to find a value for the metavariable f on line n by proof search, trying values of
local variables, recursive calls and constructors of the required family. Option-
ally, it can take a list of hints, which are functions it can try applying to solve
the metavariable. For example, if the code beginning on line 94 is. . .

vzipWith : (a -> b -> c) ->
Vect n a -> Vect n b -> Vect n c

vzipWith f [] [] = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2

. . . then :ps 96 vzipWith rhs 1 will give

[]

This works because it is searching for a Vect of length 0, of which the empty
vector is the only possibility. Similarly, and perhaps surprisingly, there is only
one possibility if we try to solve :ps 97 vzipWith rhs 2:

f x y :: (vzipWith f xs ys)

156 E. Brady

This works because vzipWith has a precise enough type: The resulting vector
has to be non-empty (::); the first element must have type c and the only way
to get this is to apply f to x and y; finally, the tail of the vector can only be
built recursively.

:makewith. The :makewith n f command, abbreviated :mw n f, adds a
with to a pattern clause. For example, recall parity. If line 10 is. . .

parity (S k) = ?parity_rhs

. . . then :mw 10 parity will give:

parity (S k) with (_)
parity (S k) | with_pat = ?parity_rhs

If we then fill in the placeholder with parity k and case split on with pat
using :cs 11 with pat we get the following patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

Note that case splitting has normalised the patterns here (giving plus rather
than +). In any case, we see that using interactive editing significantly simplifies
the implementation of dependent pattern matching by showing a programmer
exactly what the valid patterns are.

7.3 Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and interac-
tive editing support using the commands described above. Interactive editing is
achieved using the following editor commands, each of which update the buffer
directly:

– \d adds a template definition for the name declared on the current line (using
:addclause.)

– \c case splits the variable at the cursor (using :casesplit.)
– \m adds the missing cases for the name at the cursor (using :addmissing.)
– \w adds a with clause (using :makewith.)
– \o invokes a proof search to solve the metavariable under the cursor (using
:proofsearch.)

– \p invokes a proof search with additional hints to solve the metavariable under
the cursor (using :proofsearch.)

There are also commands to invoke the type checker and evaluator:

– \t displays the type of the (globally visible) name under the cursor. In the
case of a metavariable, this displays the context and the expected type.

– \e prompts for an expression to evaluate.
– \r reloads and type checks the buffer.

Corresponding commands are also available in the Emacs mode. Support for
other editors can be added in a relatively straighforward manner by using idris
--client.

The Idris Programming Language 157

Exercises

Re-implement the following functions using interactive editing mode as far as
possible:

append : Vect n a -> Vect m a -> Vect (n + m) a
vzipWith : (a -> b -> c) ->

Vect n a -> Vect n b -> Vect n b
isElem : DecEq a =>

(x : a) -> (xs : List a) -> Maybe (Elem x xs)
cmp : (n : Nat) -> (m : Nat) -> Cmp n m

When does :proofsearch succeed and when does it fail? How often does it
provide the definition you would expect?

8 Support for EDSL Implementation

Idris supports the implementation of EDSLs in several ways. For example, as
we have already seen, it is possible to extend do notation and idiom brackets.
Another important way is to allow extension of the core syntax. In this section I
describe further support for EDSL development. I introduce syntax rules and
dsl notation [8], and describe how to make programs more concise with implicit
conversions.

8.1 syntax Rules

We have seen if...then...else expressions, but these are not built in —
instead, we define a function in the prelude, using laziness annotations to ensure
that the branches are only evaluated if required. . .

boolElim : (x:Bool) -> |(t : a) -> |(f : a) -> a
boolElim True t e = t
boolElim False t e = e

. . . and extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = boolElim test t e

The left hand side of a syntax declaration describes the syntax rule, and the
right hand side describes its expansion. The syntax rule itself consists of:

– Keywords — here, if, then and else, which must be valid identifiers.
– Non-terminals — included in square brackets, [test], [t] and [e] here,

which stand for arbitrary expressions. To avoid parsing ambiguities, these
expressions cannot use syntax extensions at the top level (though they can be
used in parentheses.)

– Names — included in braces, which stand for names which may be bound
on the right hand side.

– Symbols — included in quotations marks, e.g. ":=". This can also be used
to include reserved words in syntax rules, such as "let" or "in".

158 E. Brady

The limitations on the form of a syntax rule are that it must include at least one
symbol or keyword, and there must be no repeated variables standing for non-
terminals. Any expression can be used, but if there are two non-terminals in a
row in a rule, only simple expressions may be used (that is, variables, constants,
or bracketed expressions). Rules can use previously defined rules, but may not
be recursive. The following syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val
syntax [test] "?" [t] ":" [e] = if test then t

else e
syntax select [x] from [t] where [w] = SelectWhere x t w
syntax select [x] from [t] = Select x t

Syntax rules may also be used to introduce alternative binding forms. For exam-
ple, a for loop binds a variable on each iteration:

forLoop : List a -> (a -> IO ()) -> IO ()
forLoop [] f = return ()
forLoop (x :: xs) f = do f x; forLoop xs f

syntax for {x} "in" [xs] ":" [body]
= forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:

putStrLn ("Number " ++ show x)
putStrLn "Done!"

Note that we have used the {x} form to state that x represents a bound variable,
substituted on the right hand side. We have also put "in" in quotation marks
since it is already a reserved word.

8.2 dsl Notation

The well-typed interpreter in Sect. 6 is a simple example of a common program-
ming pattern with dependent types, namely: describe an object language and its
type system with dependent types to guarantee that only well-typed programs
can be represented, then program using that representation. Using this approach
we can, for example, write programs for serialising binary data [2] or running
concurrent processes safely [6].

Unfortunately, the form of object language programs makes it rather hard to
program this way in practice. Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1)
(Op (*)
(app fact (Op (-) (Var stop) (Val 1)))

(Var stop)))

The Idris Programming Language 159

It is hard to expect EDSL users to program in this style! Therefore, Idris pro-
vides syntax overloading [8] to make it easier to program in such object lan-
guages:

dsl expr
lambda = Lam
variable = Var
index_first = stop
index_next = pop

A dsl block describes how each syntactic construct is represented in an object
language. Here, in the expr language, any Idris lambda is translated to a Lam
constructor; any variable is translated to the Var constructor, using pop and
stop to construct the de Bruijn index (i.e., to count how many bindings since
the variable itself was bound). It is also possible to overload let in this way.
We can now write fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded.
We can take this further, using idiom brackets, by declaring:

(<$>) : (f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
(<$>) = App

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an instance of Applicative,
since idiom bracket notation translates directly to the names <$> and pure,
and ad-hoc type-directed overloading is allowed. We can now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1)
(Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and type class instances, and a new syntax
rule, we can even go as far as:

syntax IF [x] THEN [t] ELSE [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0

THEN 1
ELSE [| fact (x - 1) |] * x)

160 E. Brady

8.3 Auto Implicit Arguments

We have already seen implicit arguments, which allows arguments to be omitted
when they can be inferred by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

In other situations, it may be possible to infer arguments not by type checking
but by searching the context for an appropriate value, or constructing a proof.
For example, the following definition of head which requires a proof that the
list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known
or because a proof already exists in the context, the proof can be constructed
automatically. Auto implicit arguments allow this to happen silently. We define
head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that Idris will attempt to
fill in the implicit argument using the trivial tactic, which searches through
the context for a proof, and tries to solve with refl if a proof is not found. Now
when head is applied, the proof can be omitted. In the case that a proof is not
found, it can be provided explicitly as normal:

head xs {p = ?headProof}

More generally, we can fill in implicit arguments with a default value by anno-
tating them with default. The definition above is equivalent to:

head : (xs : List a) ->
{default proof { trivial; }

p : isCons xs = True} -> a
head (x :: xs) = x

8.4 Implicit Conversions

Idris supports the creation of implicit conversions, which allow automatic con-
version of values from one type to another when required to make a term type
correct. This is intended to increase convenience and reduce verbosity. A con-
trived but simple example is the following:

The Idris Programming Language 161

implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

In general, we cannot append an Int to a String, but the implicit conversion
function intString can convert x to a String, so the definition of test is
type correct. An implicit conversion is implemented just like any other function,
but given the implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is, implicit
conversions cannot be chained. Implicit conversions of simple types, as above,
are however discouraged! More commonly, an implicit conversion would be used
to reduce verbosity in an embedded domain specific language, or to hide details
of a proof. We will see an example of this in the next section.

Exercises

1. Add a let binding construct to the Expr language from Sect. 6, and extend
the interp function and dsl notation to handle it.

2. Define the following function, which updates the value in a variable:

update : HasType i G t -> Env G -> interpTy t -> Env G

3. Using update and let, you can extend Expr with imperative features. Add
the following constructs:
(a) Sequencing actions
(b) Input and output operations
(c) for loops

Note that you will need to change the type of interp so that it supports IO
and returns an updated environment:

interp : Env G -> Imp G t -> IO (interpTy t, Env G)

For each of these features, how could you use syntax macros, dsl notation,
or any other feature to improve the readability of programs in your language?

9 EDSL Example 2: A Resource Aware Interpreter

In a typical file management API, such as that in Haskell, we might find the
following typed operations:

open : String -> Purpose -> IO File
read : File -> IO String
close : File -> IO ()

Unfortunately, it is easy to construct programs which are well-typed, but never-
theless fail at run-time, for example, if we read from a file opened for writing:

162 E. Brady

fprog filename = do h <- open filename Writing
content <- read h
close h

If we make the types more precise, parameterising open files by purpose, fprog
is no longer well-typed, and will therefore be rejected at compile-time.

data Purpose = Reading | Writing

open : String -> (p:Purpose) -> IO (File p)
read : File Reading -> IO String
close : File p -> IO ()

However, there is still a problem. The following program is well-typed, but fails
at run-time — although the file has been closed, the handle h is still in scope:

fprog filename = do h <- open filename Reading
content <- read h
close h
read h

Furthermore, we did not check whether the handle h was created successfully.
Resource management problems such as this are common in systems program-
ming — we need to deal with files, memory, network handles, etc., ensuring that
operations are executed only when valid and errors are handled appropriately.

9.1 Resource Correctness as an EDSL

To tackle this problem, we can implement an EDSL which tracks the state of
resources at any point during program execution in its type, and ensures that
any resource protocol is correctly executed. We begin by categorising resource
operations into creation, update and usage operations, by lifting them from
IO. We illustrate this using Creator; Updater and Reader can be defined
similarly.

data Creator a = MkCreator (IO a)

ioc : IO a -> Creator a
ioc = MkCreator

The MkCreator constructor is left abstract, so that a programmer can lift an
operation into Creator using ioc, but cannot run it directly. IO operations
can be converted into resource operations, tagging them appropriately:

open : String -> (p:Purpose)
-> Creator (Either () (File p))

close : File p -> Updater ()
read : File Reading -> Reader String

Here: open creates a resource, which may be either an error (represented by ()) or
a file handle that has been opened for the appropriate purpose; close updates a

The Idris Programming Language 163

Listing 6. Resource constructs

data Res : Vect n Ty -> Vect n Ty -> Ty -> Type where

Let : Creator (interpTy a) ->
Res (a :: G) (Val () :: G’) (R t) ->
Res G G’ (R t)

Update : (a -> Updater b) ->
(p : HasType i G (Val a)) ->
Res G (update G p (Val b)) (R ())

Use : (a -> Reader b) -> HasType i G (Val a) ->
Res G G (R b)

...

Listing 7. Control constructs

data Res : Vect Ty n -> Vect Ty n -> Ty -> Type where
...
Lift : IO a -> Res G G (R a)
Check : (p:HasType i G

(Choice (interpTy a) (interpTy b))) ->
Res (update G p a) (update G p c) t ->
Res (update G p b) (update G p c) t ->
Res G (update G p c) t

While : Res G G (R Bool) ->
Res G G (R ()) -> Res G G (R ())

Return : a -> Res G G (R a)
(>>=) : Res G G’ (R a) ->

(a -> Res G’ G’’ (R t)) ->
Res G G’’ (R t)

resource from a File p to a () (i.e., it makes the resource unavailable); and read
accesses a resource (i.e., it reads from it, and the resource remains available). They
are implemented using the relevant (unsafe) IO functions from the Idris library.
Resource operations are executed via a resource management EDSL, Res, with
resource constructs (Listing 6), and control constructs (Listing 7).

As we did with Expr in Sect. 6, we index Res over the variables in scope
(which represent resources), and the type of the expression. This means that
firstly we can refer to resources by de Bruijn indices, and secondly we can express
precisely how operations may be combined. Unlike Expr, however, we allow
types of variables to be updated. Therefore, we index over the input set of
resource states, and the output set:

data Res : Vect Ty n -> Vect Ty n -> Ty -> Type

164 E. Brady

We can read Res G G’ T as, “an expression of type T, with input resource
states G and output resource states G’”. Expression types can be resources,
values, or a choice type:

data Ty = R Type | Val Type | Choice Type Type

The distinction between resource types, R a, and value types, Val a, is that
resource types arise from IO operations. A choice type corresponds to Either —
we use Either rather than Maybe as this leaves open the possibility of returning
informative error codes:

interpTy : Ty -> Type
interpTy (R t) = IO t
interpTy (Val t) = t
interpTy (Choice x y) = Either x y

As with the interpreter in Sect. 6, we represent variables by proofs of context
membership:

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
stop : HasType fZ (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

As well as a lookup function for retrieving values in an environment corre-
sponding to a context, we also implement an update function:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType G i a -> Env G -> interpTy a
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

update : (G : Vect n Ty) ->
HasType G i b -> Ty -> Vect n Ty

update (x :: xs) stop y = y :: xs
update (x :: xs) (pop k) y = x :: update xs k y

The type of the Let construct explicitly shows that, in the scope of the Let
expression, a new resource of type a is added to the set, having been made by
a Creator operation. Furthermore, by the end of the scope, this resource must
have been consumed (i.e. its type must have been updated to Val ()):

Let : Creator (interpTy a) ->
Res (a :: G) (Val () :: G’) (R t) ->
Res G G’ (R t)

The Update construct applies an Updater operation, changing the type of a
resource in the context. Here, using HasType to represent resource variables
allows us to write the required type of the update operation simply as a ->
Updater b, and put the operation first, rather than the variable.

The Idris Programming Language 165

Update : (a -> Updater b) ->
(p : HasType G i (Val a)) ->
Res G (update G p (Val b)) (R ())

The Use construct simply executes an operation without updating the context,
provided that the operation is well-typed:

Use : (a -> Reader b) -> HasType G i (Val a) ->
Res G G (R b)

Finally, we provide a small set of control structures: Check, a branching con-
struct that guarantees that resources are correctly defined in each branch; While,
a loop construct that guarantees that there are no state changes during the loop;
Lift, a lifting operator for IO functions, Return to inject pure values into a
Res program, and (>>=) to support do-notation using ad-hoc name overload-
ing. Note that we cannot make Res an instance of the Monad type class to sup-
port do-notation, since the type of >>= here captures updates in the resource
set.

We use dsl-notation to overload the Idris syntax, in particular providing a
let-binding to bind a resource and give it a human-readable name:

dsl res
variable = id
let = Let
index_first = stop
index_next = pop

To further reduce notational overhead, we can make Lifting an IO operation
implicit, using an implicit conversion as described in Sect. 8.4:

implicit ioLift : IO a -> Res G G a
ioLift = Lift

The interpreter for Res is written in continuation-passing style, where each
operation passes on a result and an updated environment (containing resources):

interp : Env G -> Res G G’ t ->
(Env G’ -> interpTy t -> IO u) -> IO u

syntax RES [x] = {G:Vect n Ty} -> Res G G (R x)
syntax run [prog] = interp [] prog (\env, res => res)

The syntax rules provides convenient notations for declaring the type of a
resource aware program, and for running a program in any context. For reference,
the full interpreter is presented in Listing 8.

Listing 8. Resource EDSL Interpreter

interp : Env G -> Res G G’ t ->
(Env G’ -> interpTy t -> IO u) -> IO u

interp env (Let val scope) k =

166 E. Brady

do x <- getCreator val
interp (x :: env) scope

(\env’, scope’ => k (envTail env’) scope’)
interp env (Update method x) k =

do x’ <- getUpdater (method (envLookup x env))
k (envUpdateVal x x’ env) (return ())

interp env (Use method x) k =
do x’ <- getReader (method (envLookup x env))

k env (return x’)
interp env (Lift io) k =

k env io
interp env (Check x left right) k =

either (envLookup x env)
(\a => interp (envUpdate x a env) left k)
(\b => interp (envUpdate x b env) right k)

interp env (While test body) k
= interp env test (\env’, result =>

do r <- result
if (not r)

then (k env’ (return ()))
else (interp env’ body (\env’’, body’ =>

do v <- body’
interp env’’ (While test body) k)))

interp env (Return v) k = k env (return v)
interp env (v >>= f) k
= interp env v (\env’, v’ => do n <- v’

interp env’ (f n) k)

9.2 Example: File Management

We can use Res to implement a safe file-management protocol, where each file
must be opened before use, opening a file must be checked, and files must be
closed on exit. We define the following operations for opening, closing, reading
a line7, and testing for the end of file.

open : String -> (p:Purpose)
-> Creator (Either () (File p))

close : File p -> Updater ()
read : File Reading -> Reader String
eof : File Reading -> Reader Bool

Since these operations are now managed by the Res EDSL rather than directly
as IO operations, we should ensure that the programmer cannot use the original
IO operations. Names can be hidden using the %hide directive as follows:
7 Reading a line may fail, but for the purposes of this example, we consider this

harmless and return an empty string.

The Idris Programming Language 167

%hide openFile
%hide closeFile
...

Returning to our simple example from the beginning of this Section, we now
write the file-reading program as follows:

fprog : String -> RES String
fprog filename =

res do let h = open filename Reading
Check h

putStrLn "File error"
do content <- Use read h

Update close h

This is well-typed because the file is opened for reading, and by the end of the
scope, the file has been closed. Syntax overloading allows us to name the resource
h rather than using a de Bruijn index or context membership proof.

10 An EDSL for Managing Side Effects

The resource aware EDSL presented in the previous section handles an instance
of a more general problem, namely how to deal with side-effects and state in a
pure functional language.

In this section, I describe how to implement effectful programs in Idris using
an EDSL Effects for capturing algebraic effects [1], in such a way that they
are easily composable, and translatable to a variety of underlying contexts using
effect handlers. I will give a collection of example effects (State, Exceptions, File
and Console I/O, random number generation and non-determinism) and their
handlers, and some example programs which combine effects.

The Effects EDSL makes essential use of dependent types, firstly to verify
that a specific effect is available to an effectful program using simple automated
theorem proving, and secondly to track the state of a resource by updating its
type during program execution. In this way, we can use the Effects DSL to
verify implementations of resource usage protocols.

The framework consists of a DSL representation Eff for combining mutable
effects and implementations of several predefined effects. We refer to the whole
framework with the name Effects. Here, we describe how to use Effects;
implementation details are described elsewhere [4].

The Effects library is included as part of the main Idris distribution, but
is not imported by default. In order to use it, you must invoke Idris with the
-p effects flag, and use the following in your programs:

import Effects

168 E. Brady

10.1 Programming with Effects

An effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... ->
{ eff ==> {result} effs’ } Eff t

That is, the return type gives the effects that f supports (effs, of type List
EFFECT), the effects available after running f (effs’) which may be calculated
using the result of the operation result of type t.

A function which does not update its available effects has a type of the
following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> { eff } Eff t

In fact, the notation { eff } is itself syntactic sugar, in order to make Eff
types more readable. In full, the type of Eff is:

Eff : (x : Type) ->
List EFFECT -> (x -> List EFFECT) -> Type

That is, it is indexed over the type of the computation, the list of input effects
and a function which computes the output effects from the result. With syntax
overloading, we can create syntactic sugar which allows us to write Eff types
as described above:

syntax "{" [inst] "}" [eff] = eff inst (\result => inst)
syntax "{" [inst] "==>" "{" {b} "}" [outst] "}" [eff]

= eff inst (\b => outst)
syntax "{" [inst] "==>" [outst] "}" [eff]

= eff inst (\result => outst)

Side effects are described using the EFFECT type; we will refer to these as
concrete effects. For example:

STATE : Type -> EFFECT
EXCEPTION : Type -> EFFECT
FILE_IO : Type -> EFFECT
STDIO : EFFECT
RND : EFFECT

States are parameterised by the type of the state being carried, and exceptions
are parameterised by a type representing errors. File I/O allows a single file to
be processed, with the type giving the current state of the file (i.e. closed, open
for reading, or open for writing). Finally, STDIO and RND permit console I/O
and random number generation respectively. For example, a program with some
integer state, which performs console I/O and which could throw an exception
carrying some error type Err would have the following type:

example : { [EXCEPTION Err, STDIO, STATE Int] } Eff ()

The Idris Programming Language 169

First Example: State. In general, an effectful program implemented in the
Eff structure has the look and feel of a monadic program written with do-
notation. To illustrate basic usage, let us implement a stateful function, which
tags each node in a binary tree with a unique integer, depth first, left to right.
We declare trees as follows:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

To tag each node in the tree, we write an effectful program which, for each
node, tags the left subtree, reads and updates the state, tags the right subtree,
then returns a new node with its value tagged. The type expresses that the
program requires an integer state:

tag : Tree a -> { [STATE Int] } Eff (Tree (Int, a))

The implementation traverses the tree, using get and put to manipulate state:

tag Leaf = return Leaf
tag (Node l x r)

= do l’ <- tag l
lbl <- get; put (lbl + 1)
r’ <- tag r
return (Node l’ (lbl, x) r’)

The Effects system ensures, statically, that any effectful functions which
are called (get and put here) require no more effects than are available. The
types of these functions are:

get : { [STATE x] } Eff x
put : x -> { [STATE x] } Eff ()

A program in Eff can call any other function in Eff provided that the calling
function supports at least the effects required by the called function. In this case,
it is valid for tag to call both get and put because all three functions support
the STATE Int effect.

To run a program in Eff, it is evaluated in an appropriate computation
context, using the run or runPure function. The computation context explains
how each effectful operation, such as get and put here, are to be executed in
that context. Using runPure, which runs an effectful program in the identity
context, we can write a runTag function as follows, using put to initialise the
state:

runTag : (i : Int) -> Tree a -> Tree (Int, a)
runTag i x = runPure (do put i

tag x)

Effects and Resources. Each effect is associate with a resource, which is
initialised before an effectful program can be run. For example, in the case of
STATE Int the corresponding resource is the integer state itself. The types of
runPure and run show this (slightly simplified here for illustrative purposes):

170 E. Brady

runPure : {env : Env id xs} -> { xs } Eff a -> a
run : Applicative m =>

{env : Env m xs} -> { xs } Eff a -> m a

The env argument is implicit, and initialised automatically where possible using
default values given by instances of the following type class:

class Default a where
default : a

Instances of Default are defined for all primitive types, and many library types
such as List, Vect, Maybe, pairs, etc. However, where no default value exists
for a resource type (for example, you may want a STATE type for which there
is no Default instance) the resource environment can be given explicitly using
one of the following functions:

runPureInit : Env id xs -> { xs } Eff a -> a
runInit : Applicative m =>

Env m xs -> { xs } Eff a -> a

To be well-typed, the environment must contain resources corresponding exactly
to the effects in xs. For example, we could also have implemented runTag by
initialising the state as follows:

runTag : (i : Int) -> Tree a -> Tree (Int, a)
runTag i x = runPureInit [i] (tag x)

As we will see, the particular choice of computation context can be important.
Programs with exceptions, for example, can be run in the context of IO, Maybe
or Either.

Labelled Effects. What if we have more than one state, especially more than
one state of the same type? How would get and put know which state they should
be referring to? For example, how could we extend the tree tagging example such
that it additionally counts the number of leaves in the tree? One possibility would
be to change the state so that it captured both of these values, e.g.:

tag : Tree a ->
{ [STATE (Int, Int)] } Eff (Tree (Int, a))

Doing this, however, ties the two states together throughout (as well as not
indicating which integer is which). It would be nice to be able to call effectful
programs which guaranteed only to access one of the states, for example. In a
larger application, this becomes particularly important.

The Effects library therefore allows effects in general to be labelled so that
they can be referred to explicitly by a particular name. This allows multiple
effects of the same type to be included. We can count leaves and update the tag
separately, by labelling them as follows:

tag : Tree a -> { [’Tag ::: STATE Int,
’Leaves ::: STATE Int] }

Eff (Tree (Int, a))

The Idris Programming Language 171

The ::: operator allows an arbitrary label to be given to an effect. This label
can be any type—it is simply used to identify an effect uniquely. Here, we have
used a symbol type. In general ’name introduces a new symbol, the only purpose
of which is to disambiguate values8.

When an effect is labelled, its operations are also labelled using the :- oper-
ator. In this way, we can say explicitly which state we mean when using get
and put. The tree tagging program which also counts leaves can be written as
follows:

tag Leaf = do ’Leaves :- update (+1)
pure Leaf

tag (Node l x r)
= do l’ <- tag l

i <- ’Tag :- get
’Tag :- put (i + 1)
r’ <- tag r
pure (Node l’ (i, x) r’)

The update function here is a combination of get and put, applying a function
to the current state.

update : (x -> x) -> { [STATE x] } Eff ()

Finally, our top level runTag function now returns a pair of the number of
leaves, and the new tree. Resources for labelled effects are intialised using the
:= operator (reminiscent of assignment in an imperative language):

runTag : (i : Int) -> Tree a -> (Int, Tree (Int, a))
runTag i x = runPureInit [’Tag := i, ’Leaves := 0]

(do x’ <- treeTagAux x
leaves <- ’Leaves :- get
pure (leaves, x’))

To summarise, we have:

– ::: to convert an effect to a labelled effect.
– :- to convert an effectful operation to a labelled effectful operation.
– := to initialise a resource for a labelled effect.

Or, more formally with their types (slightly simplified to account only for the
situation where available effects are not updated):

(:::) : lbl -> EFFECT -> EFFECT
(:-) : (l : lbl) ->

{ [x] } Eff a -> { [l ::: x] } Eff a
(:=) : (l : lbl) -> res -> LRes l res

8 In practice, ’name simply introduces a new empty type.

172 E. Brady

Here, LRes is simply the resource type associated with a labelled effect. Note
that labels are polymorphic in the label type lbl. Hence, a label can be anything—
a string, an integer, a type, etc.

! -Notation. In many cases, using do-notation can make programs unneces-
sarily verbose, particularly in cases where the value bound is used once, imme-
diately. The following program returns the length of the String stored in the
state, for example:

stateLength : { [STATE String] } Eff Nat
stateLength = do x <- get

pure (length x)

This seems unnecessarily verbose, and it would be nice to program in a more
direct style in these cases. Idris provides !-notation to help with this. The above
program can be written instead as:

stateLength : { [STATE String] } Eff Nat
stateLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and
then implicitly bound. Conceptually, we can think of ! as being a prefix function
with the following type:

(!) : { xs } Eff a -> a

Note, however, that it is not really a function, merely syntax! In practice, a
subexpression !expr will lift expr as high as possible within its current scope,
bind it to a fresh name x, and replace !expr with x. Expressions are lifted depth
first, left to right. In practice, !-notation allows us to program in a more direct
style, while still giving a notational clue as to which expressions are effectful.

For example, the expression. . .

let y = 42 in f !(g !(print y) !x)

. . . is lifted to:

let y = 42 in do y’ <- print y
x’ <- x
g’ <- g y’ x’
f g’

10.2 An Effectful Evaluator

Consider an evaluator for a simple expression language, supporting variables,
integers, addition and random number generation, declared as follows:

data Expr = Var String | Val Integer
| Add Expr Expr | Random Integer

The Idris Programming Language 173

In order to implement an evaluator for this language, we will need to carry
a state, holding mappings from variables to values, and support exceptions (to
handle variable lookup failure) and random numbers. The environment is simply
a mapping from Strings representing variable names to Integers:

Vars : Type
Vars = List (String, Int)

The evaluator invokes supported effects where needed. We use the following
effectful functions:

get : { [STATE x] } Eff x
raise : a -> { [EXCEPTION a] } Eff b
rndInt : Int -> Int -> { [RND] } Eff Int

The evaluator itself (Listing 9) is written as an instance of Eff, invoking the
required effectful functions with the Effects framework checking that they are
available.

Listing 9. Effectful evaluator

eval : Expr -> { [EXCEPTION String, RND, STATE Vars] } Eff t
eval (Val x) = return x
eval (Var x) = do vs <- get

case lookup x vs of
Nothing => raise ("Error " ++ x)
Just val => return val

eval (Add l r) = [| eval l + eval r |]
eval (Random upper) = rndInt 0 upper

In order to run the evaluator, we must provide initial values for the resources
associated with each effect. Exceptions require the unit resource, random number
generation requires an initial seed, and the state requires an initial environment.
We use Maybe as the computation context to be able to handle exceptions:

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env expr = runInit [(), 123456, env] (eval expr)

Extending the evaluator with a new effect, such as STDIO is a matter of extend-
ing the list of available effects in its type. We could use this, for example, to
print out the generated random numbers:

eval : Expr ->
{ [EXCEPTION String, STDIO,

RND, STATE Vars] } Eff t
...
eval (Random upper) = do num <- rndInt 0 upper

putStrLn (show num)
return num

We can insert the STDIO effect anywhere in the list without difficulty. The
only requirements are that its initial resource is in the corresponding position in
the call to runInit, and that runInit instantiates a context which supports
STDIO, such as IO:

174 E. Brady

runEval : List (String, Int) -> Expr -> IO Int
runEval env expr

= runInit [(), (), 123456, env] (eval expr)

10.3 Implementing Effects

In order to implement a new effect, we define a new type (of kind Effect)
and explain how that effect is interpreted in some underlying context m. An
Effect describes an effectful computation, parameterised by the type of the
computation t, an input resource res, and an output resource res’ computed
from the result of the operation.

Effect : Type
Effect = (t : Type) ->

(res : Type) -> (res’ : t -> Type) ->
Type

We describe effects as algebraic data types. To run an effect, we require an
interpretation in a computation context m. To achieve this, we make effects
and contexts instances of a type class, Handler, which has a method handle
explaining this interpretation:

class Handler (e : Effect) (m : Type -> Type) where
handle : (r : res) -> (eff : e t res resk) ->

(k : ((x : t) -> resk x -> m a)) -> m a

Handlers are parameterised by the effect they handle, and the context in which
they handle the effect. This allows several different context-dependent handlers
to be written, e.g. exceptions could be handled differently in an IO setting than
in a Maybe setting. When effects are combined, as in the evaluator example, all
effects must be handled in the context in which the program is run.

An effect e t res res’ updates a resource type res to a resource type
res’, returning a value t. The handler, therefore, implements this update in
a context m which may support side effects. The handler is written in continu-
ation passing style. This is for two reasons: firstly, it returns two values, a new
resource and the result of the computation, which is more cleanly managed in a
continuation than by returning a tuple; secondly, and more importantly, it gives
the handler the flexibility to invoke the continuation any number of times (zero
or more).

An Effect, which is the internal algebraic description of an effect, is pro-
moted into a concrete EFFECT, which is expected by the Eff structure, with
the MkEff constructor:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

MkEff additionally records the resource state of an effect. In the remainder of this
section, we describe how several effects can be implemented in this way: mutable
state; console I/O; exceptions; files; random numbers, and non-determinism.

The Idris Programming Language 175

State. In general, effects are described algebraically in terms of the operations
they support. In the case of State, the supported effects are reading the state
(Get) and writing the state (Put).

data State : Effect where
Get : { a } State a
Put : b -> { a ==> b } State ()

The resource associated with a state corresponds to the state itself. So, the Get
operation leaves this state intact (with a resource type a on entry and exit) but
the Put operation may update this state (with a resource type a on entry and
b on exit). That is, a Put may update the type of the stored value. Note that
we are using the same syntactic sugar for updating the resource type as we used
earlier for giving lists of effects. In full, State would be written as:

data State : Effect where
Get : State a a (\x => a)
Put : b -> State () a (\x => b)

We can implement a handler for this effect, for all contexts m, as follows:

instance Handler State m where
handle st Get k = k st st
handle st (Put n) k = k n ()

When running Get, the handler passes the current state to the continuation as
both the return value (the second argument of the continuation k) and the new
resource value (the first argument of the continuation). When running Put, the
new state is passed to the continuation as the new resource value.

We then convert the algebraic effect State to a concrete effect usable in an
Effects program using the STATE function, to which we provide the initial
state type as follows:

STATE : Type -> EFFECT
STATE t = MkEff t State

As a convention, algebraic effects, of type Effect, have an initial upper case
letter. Concrete effects, of type EFFECT, are correspondingly in all upper case.

Algebraic effects are promoted to Effects programs with concrete effects
by using a coercion with an implicit, automatically constructed, proof argument:

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

How this function works and how the proof is calculated are beyond the scope of
this tutorial. However, its purpose is to allow a programmer to use an algebraic
effect in an Effects program without any explicit syntax. We can therefore
define get and put as follows:

get : { [STATE x] } Eff x
get = call Get

176 E. Brady

put : x -> { [STATE x] } Eff ()
put val = call (Put val)

We may also find it useful to mutate the type of a state, considering that states
may themselves have dependent types (we may, for example, add an element to
a vector in a state). The Put constructor supports this, so we can implement
putM to update the state’s type:

putM : y -> { [STATE x] ==> [STATE y] } Eff ()
putM val = call (Put val)

Finally, it may be useful to combine get and put in a single update:

update : (x -> x) -> { [STATE x] } Eff ()
update f = do val <- get; put (f val)

updateM : (x -> y) -> { [STATE x] ==> [STATE y] } Eff ()
updateM f = do val <- get; putM (f val)

Console I/O. Consider a simplified version of console I/O which supports
reading and writing strings. There is no associated resource, although in an
alternative implementation we may associate it with an abstract world state, or
a pair of handles for stdin/stdout. Algebraically we describe console I/O as
follows:

data StdIO : Effect where
PutStr : String -> { () } StdIO ()
GetStr : { () } StdIO String
PutCh : Char -> { () } StdIO ()
GetCh : { () } StdIO Char

STDIO : EFFECT
STDIO = MkEff () StdIO

The obvious way to handle StdIO is via the IO monad:

instance Handler StdIO IO where
handle () (PutStr s) k = do putStr s; k () ()
handle () GetStr k = do x <- getLine; k x ()
handle () (PutCh c) k = do putChar c; k () ()
handle () GetCh k = do x <- getChar; k x ()

Unlike the State effect, for which the handler worked in all contexts, this han-
dler only applies to effectful programs run in an IO context. We can implement
alternative handlers, and indeed there is no reason that effectful programs in
StdIO must be evaluated in a monadic context. For example, we can define I/O
stream functions:

data IOStream a
= MkStream (List String -> (a, List String))

The Idris Programming Language 177

instance Handler StdIO IOStream where
...

A handler for StdIO in IOStream context generates a function from a list of
strings (the input text) to a value and the output text. We can build a pure
function which simulates real console I/O:

mkStrFn : Env IOStream xs -> Eff IOStream xs a ->
List String -> (a, List String)

mkStrFn {a} env p input = case mkStrFn’ of
MkStream f => f input

where injStream : a -> IOStream a
injStream v = MkStream (\x => (v, []))
mkStrFn’ : IOStream a
mkStrFn’ = runWith injStream env p

This requires an alternative means of running effectful programs, runWith,
which takes an additional argument explaining how to inject the result of a
computation into the appropriate computation context:

runWith : (a -> m a) ->
Env m xs -> Eff a xs xs’ -> m a

To illustrate this, we write a simple console I/O program:

name : { [STDIO] } Eff ()
name = do putStr "Name? "

n <- getStr
putStrLn ("Hello " ++ show n)

Using mkStrFn, we can run this as a pure function which uses a list of strings
as its input, and gives a list of strings as its output. We can evaluate this at the
Idris prompt:

*name> show $ mkStrFn [()] name ["Edwin"]
((), ["Name?" , "Hello Edwin\n"])

This suggests that alternative, pure, handlers for console I/O, or any I/O effect,
can be used for unit testing and reasoning about I/O programs without executing
any real I/O.

Exceptions. The exception effect supports only one operation, Raise. Excep-
tions are parameterised over an error type e, so Raise takes a single argument
to represent the error. The associated resource is of unit type, and since raising
an exception causes computation to abort, raising an exception can return a
value of any type.

178 E. Brady

data Exception : Type -> Effect where
Raise : a -> { () } Exception a b

EXCEPTION : Type -> EFFECT
EXCEPTION e = MkEff () (Exception e)

The semantics of Raise is to abort computation, therefore handlers of exception
effects do not call the continuation k. In any case, this should be impossible since
passing the result to the continuation would require the ability to invent a value
in any arbitrary type b! The simplest handler runs in a Maybe context:

instance Handler (Exception a) Maybe where
handle _ (Raise e) k = Nothing

Exceptions can be handled in any context which supports some representation
of failed computations. In an Either e context, for example, we can use Left
to represent the error case:

instance Handler (Exception e) (Either e) where
handle _ (Raise e) k = Left err

Random Numbers. Random number generation can be implemented as an
effect, with the resource tracking the seed from which the next number will
be generated. The Random effect supports one operation, getRandom, which
requires an Int resource and returns the next number:

data Random : Type -> Type -> Type -> Type where
GetRandom : { Int } Random Int
SetSeed : Int -> { Int } Random ()

RND : EFFECT
RND = MkEff Integer Random

Handling random number generation shows that it is a state effect in disguise,
where the effect updates the seed. This is a simple linear congruential pseudo-
random number generator:

instance Handler Random m where
handle seed GetRandom k

= let seed’ = 1664525 * seed + 1013904223 in
k seed’ seed’

handle seed (SetSeed n) k = k () n

Alternative handlers could use a different, possibly more secure approach. In any
case, we can implement a function which returns a random number between a
lower and upper bound as follows:

rndInt : Int -> Int -> Eff [RND] Int
rndInt lower upper

= do v <- GetRandom
return (v ‘mod‘ (upper - lower) + lower)

The Idris Programming Language 179

Non-determinism. Non-determinism can be implemented as an effect
Selection, in which a Select operation chooses one value non-
deterministically from a list of possible values:

data Selection : Effect where
Select : List a -> { () } Selection a

We can handle this effect in a Maybe context, trying every choice in a list given
to Select until the computation succeeds:

instance Handler Selection Maybe where
handle _ (Select xs) k = tryAll xs where

tryAll [] = Nothing
tryAll (x :: xs) = case k x () of

Nothing => tryAll xs
Just v => Just v

The handler for Maybe produces at most one result, effectively performing a
depth first search of the values passed to Select. The handler runs the contin-
uation for every element of the list until the result of running the continuation
succeeds.

Alternatively, we can find every possible result by handling selection in a
List context:

instance Handler Selection List where
handle r (Select xs) k = concatMap (\x => k x r) xs

We can use the Selection effect to implement search problems by non-
deterministically choosing from a list of candidate solutions. For example, a
solution to the n-queens problem can be implemented as follows. First, we write
a function which checks whether a point on a chess board attacks another if
occupied by a queen:

no_attack : (Int, Int) -> (Int, Int) -> Bool
no_attack (x, y) (x’, y’)

= x /= x’ && y /= y’ && abs (x - x’) /= abs (y - y’)

Then, given a column and a list of queen positions, we find the rows on which a
queen may safely be placed in that column:

rowsIn : Int -> List (Int, Int) -> List Int
rowsIn col qs

= [x | x <- [1..8], all (no_attack (x, col)) qs]

Finally, we compute a solution by accumulating a set of queen positions, column
by column, non-deterministically choosing a position for a queen in each column.

addQueens : Int -> List (Int, Int) ->
{ [SELECT] } Eff (List (Int, Int))

addQueens 0 qs = return qs
addQueens col qs

= do row <- select (rowsIn col qs)
addQueens (col - 1) ((row, col) :: qs)

180 E. Brady

We can run this in Maybe context, to retrieve one solution, or in List context,
to retrieve all solutions. In a Maybe context, for example, we can define:

getQueens : Maybe (List (Int, Int))
getQueens = run [()] (addQueens 8 [])

Then to find the first solution, we run getQueens at the REPL:

*Queens> show getQueens
"Just [(4, 1), (2, 2), (7, 3), (3, 4),

(6, 5), (8, 6), (5, 7), (1, 8)]" : String

10.4 Dependent Effects

In the programs we have seen so far, the available effects have remained constant.
Sometimes, however, an operation can change the available effects. The simplest
example occurs when we have a state with a dependent type—adding an element
to a vector also changes its type, for example, since its length is explicit in the
type. In this section, we will see how Effects supports this. Firstly, we will see
how states with dependent types can be implemented. Secondly, we will see how
the effects can depend on the result of an effectful operation. Finally, we will see
how this can be used to implement a type-safe and resource-safe protocol for file
management.

Dependent States. Suppose we have a function which reads input from the
console, converts it to an integer, and adds it to a list which is stored in a STATE.
It might look something like the following:

readInt : { [STATE (List Int), STDIO] } Eff ()
readInt = do let x = trim !getStr

put (cast x :: !get)

But what if, instead of a list of integers, we would like to store a Vect, main-
taining the length in the type?

readInt : { [STATE (Vect n Int), STDIO] } Eff ()
readInt = do let x = trim !getStr

put (cast x :: !get)

This will not type check! Although the vector has length n on entry to readInt,
it has length S n on exit. The Effects DSL allows us to express this as follows:

readInt : { [STATE (Vect n Int), STDIO] ==>
[STATE (Vect (S n) Int), STDIO] } Eff ()

readInt = do let x = trim !getStr
putM (cast x :: !get)

The notation { xs ==> xs’ } Eff a in a type means that the operation
begins with effects xs available, and ends with effects xs’ available. Since the
type is updated, we have used putM to update the state.

The Idris Programming Language 181

Result-Dependent Effects. Often, whether a state is updated could depend
on the success or otherwise of an operation. In the readInt example, we might
wish to update the vector only if the input is a valid integer (i.e. all digits). As
a first attempt, we could try the following, returning a Bool which indicates
success:

readInt : { [STATE (Vect n Int), STDIO] ==>
[STATE (Vect (S n) Int), STDIO] } Eff Bool

readInt = do let x = trim !getStr
case all isDigit (unpack x) of

False => pure False
True => do putM (cast x :: !get)

pure True

Unfortunately, this will not type check because the vector does not get extended
in both branches of the case!

MutState.idr:18:19:When elaborating right hand side
of Main.case block in readInt:
Unifying n and S n would lead to infinite value

Clearly, the size of the resulting vector depends on whether or not the value read
from the user was valid. We can express this in the type:

readInt : { [STATE (Vect n Int), STDIO] ==>
{ok} if ok

then [STATE (Vect (S n) Int), STDIO]
else [STATE (Vect n Int), STDIO] }

Eff Bool
readInt = do let x = trim !getStr

case all isDigit (unpack x) of
False => with_val False (pure ())
True => do putM (cast x :: !get)

with_val True (pure ())

The notation { xs ==> {res} xs’ } Eff a in a type means that the effects
available are updated from xs to xs’, and the resulting effects xs’ may depend
on the result of the operation res, of type a. Here, the resulting effects are
computed from the result ok—if True, the vector is extended, otherwise it
remains the same. We also use with val to return a result:

with_val : (val : a) ->
({ xs ==> xs’ val } Eff ()) ->
{ xs ==> xs’ } Eff a

We cannot use pure here, as before, since pure does not allow the returned
value to update the effects list. The purpose of with val is to update the effects
before returning. As a shorthand, we can write

pureM val

. . . instead of. . .

182 E. Brady

with_val val (pure ())

. . . so our program is:

readInt : { [STATE (Vect n Int), STDIO] ==>
{ok} if ok

then [STATE (Vect (S n) Int), STDIO]
else [STATE (Vect n Int), STDIO] }

Eff Bool
readInt = do let x = trim !getStr

case all isDigit (unpack x) of
False => pureM False
True => do putM (cast x :: !get)

pureM True

When using the function, we will naturally have to check its return value in
order to know what the new set of effects is. For example, to read a set number
of values into a vector, we could write the following:

readN : (n : Nat) ->
{ [STATE (Vect m Int), STDIO] ==>
[STATE (Vect (n + m) Int), STDIO] } Eff IO ()

readN Z = pure ()
readN {m} (S k)

= case !readInt of
True => rewrite plusSuccRightSucc k m in

readN k
False => readN (S k)

The case analysis on the result of readInt means that we know in each
branch whether reading the integer succeeded, and therefore how many values
still need to be read into the vector. What this means in practice is that the
type system has verified that a necessary dynamic check (i.e. whether reading a
value succeeded) has indeed been done.
Aside: Only case will work here. We cannot use if/then/else because
the then and else branches must have the same type. The case construct,
however, abstracts over the value being inspected in the type of each branch.

FileManagement. A practical use for dependent effects is in specifying resource
usage protocols and verifying that they are executed correctly. For example, file
management follows a resource usage protocol with the following (informally
specified) requirements:

– It is necessary to open a file for reading before reading it
– Opening may fail, so the programmer should check whether opening was suc-

cessful
– A file which is open for reading must not be written to, and vice versa
– When finished, an open file handle should be closed
– When a file is closed, its handle should no longer be used

The Idris Programming Language 183

These requirements can be expressed formally in Effects, by creating a
FILE IO effect parameterised over a file handle state, which is either empty,
open for reading, or open for writing. The FILE IO effect’s definition is given
in Listing 10. Note that this effect is mainly for illustrative purposes—typically
we would also like to support random access files and better reporting of error
conditions.

Listing 10. File I/O Effect

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>

{ok} [FILE_IO (if ok then OpenFile m else ())] }
Eff Bool

close : { [FILE_IO (OpenFile m)] ==> [FILE_IO ()] }
Eff ()

readLine : { [FILE_IO (OpenFile Read)] } Eff String
writeLine : { [FILE_IO (OpenFile Write)] } Eff ()
eof : { [FILE_IO (OpenFile Read)] } Eff Bool

instance Handler FileIO IO

In particular, consider the type of open:

open : String -> (m : Mode) ->
{ [FILE_IO ()] ==>
{ok} [FILE_IO (if ok then OpenFile m else ())] }

Eff Bool

This returns a Bool which indicates whether opening the file was successful.
The resulting state depends on whether the operation was successful; if so, we
have a file handle open for the stated purpose, and if not, we have no file handle.
By case analysis on the result, we continue the protocol accordingly.

Listing 11. Reading a File

readFile : { [FILE_IO (OpenFile Read)] } Eff (List String)
readFile = readAcc [] where

readAcc : List String -> { [FILE_IO (OpenFile Read)] }
Eff (List String)

readAcc acc = if (not !eof)
then readAcc (!readLine :: acc)
else pure (reverse acc)

Given a function readFile (Listing 11) which reads from an open file until
reaching the end, we can write a program which opens a file, reads it, then
displays the contents and closes it, as follows, correctly following the protocol:

184 E. Brady

dumpFile : String -> { [FILE_IO (), STDIO] } Eff ()
dumpFile name = case !(open name Read) of

True => do putStrLn (show !readFile)
close

False => putStrLn ("Error!")

The type of dumpFile, with FILE IO () in its effect list, indicates that any
use of the file resource will follow the protocol correctly (i.e. it both begins and
ends with an empty resource). If we fail to follow the protocol correctly (perhaps
by forgetting to close the file, failing to check that open succeeded, or opening
the file for writing) then we will get a compile-time error. For example, changing
open name Read to open name Write yields a compile-time error of the
following form:

FileTest.idr:16:18:When elaborating right hand side
of Main.case block in testFile:
Can’t solve goal

SubList [(FILE_IO (OpenFile Read))]
[(FILE_IO (OpenFile Write)), STDIO]

In other words: when reading a file, we need a file which is open for reading, but
the effect list contains a FILE IO effect carrying a file open for writing.

Exercise

Consider the interpreter you implemented in the Sect. 8 exercises. How could
you use Effects to improve this? For example:

1. What should be the type of interp?
2. Can you separate the imperative parts from the evaluation? What are the

effects required by each?

11 Conclusion

In this tutorial, we have covered the fundamentals of dependently typed pro-
gramming in Idris, and particularly those features which support embedded
domain specific language implementation (EDSL). We have seen several exam-
ples of EDSLs in Idris:

– A well-typed interpreter for the simply typed λ-calculus, which shows how
to implement an EDSL where the type-correctness of programs in the object
language is verified by the host language’s type system.

– An interpreter for a resource-safe EDSL, capturing the state of resources
such as file handles at particular points during program execution, ensuring,
at compile time, that a program can only execute operations which are valid
at those points.

– An EDSL for managing side-effecting programs, which generalises the resource-
safe EDSL and allows several effects and resource to be managed simultane-
ously.

The Idris Programming Language 185

11.1 Further Reading

Further information about Idris programming, and programming with depen-
dent types in general, can be obtained from various sources:

– The Idris web site (http://idris-lang.org/), which includes links to tutorials,
some lectures and the mailing list. In particular, the Idris tutorial [5] describes
the language in full, including many features not discussed here such as type
providers [9], the foreign function interface, and compiling via Javascript.

– The IRC channel # idris, on chat.freenode.net.
– Examining the prelude and exploring the samples in the distribution.
– Various papers (e.g. [2,3,7,8]), which describe implementation techniques and

programming idioms.

Acknowledgements. I am grateful to the Scottish Informatics and Computer Sci-
ence Alliance (SICSA) for funding this research. I would also like to thank the many
contributors to the Idris system and libraries, as well as the reviewers for their helpful
and constructive suggestions.

References

1. Bauer, A., Pretnar, M.: Programming with Algebraic Effects and Handlers (2012).
http://arxiv.org/abs/1203.1539

2. Brady, E.: Idris - systems programming meets full dependent types. In: Program-
ming Languages Meets Program Verification (PLPV 2011), pp. 43–54 (2011)

3. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23, 552–593 (2013)

4. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: ICFP 2013: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming. ACM (2013)

5. Brady, E.: Programming in Idris : a tutorial (2013)
6. Brady, E., Hammond, K.: Correct-by-construction concurrency: using dependent

types to verify implementations of effectful resource usage protocols. Fundamenta
Informaticae 102(2), 145–176 (2010)

7. Brady, E., Hammond, K.: Scrapping your inefficient engine: using partial evaluation
to improve domain-specific language implementation. In: ICFP 2010: Proceedings
of the 15th ACM SIGPLAN International Conference on Functional Programming,
pp. 297–308. ACM, New York (2010)

8. Brady, E., Hammond, K.: Resource-safe systems programming with embedded
domain specific languages. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS,
vol. 7149, pp. 242–257. Springer, Heidelberg (2012)

9. Christiansen, D.: Dependent type providers. In: WGP 2013: Proceedings of the 9th
ACM SIGPLAN Workshop on Generic Programming. ACM (2013)

10. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P.,
Hindley, J.R. (eds.) To H.B.Curry: Essays on Combinatory Logic, Lambda Calcu-
lus and Formalism. Academic Press, New York (1980). A reprint of an unpublished
manuscript from 1969

http://idris-lang.org/
http://arxiv.org/abs/1203.1539

186 E. Brady

11. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1), 69–
111 (2004)

12. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18, 1–13 (2008)

13. Peyton Jones, S., et al.: Haskell 98 language and libraries - the revised report
(2002). http://www.haskell.org/

http://www.haskell.org/

	The IDRIS Programming Language
	1 Introduction
	1.1 Outline
	1.2 Downloading and Installing
	1.3 The Interactive Environment

	2 Types and Functions
	2.1 Primitive Types
	2.2 Data Types
	2.3 Functions
	2.4 Dependent Types
	2.5 I/O
	2.6 ``do'' Notation
	2.7 Laziness
	2.8 Useful Data Types
	2.9 More Expressions
	2.10 Dependent Records

	3 Type Classes
	3.1 Monads and do-Notation
	3.2 Idiom Brackets

	4 Views and the ``with'' Rule
	4.1 Dependent Pattern Matching
	4.2 The with Rule --- Matching Intermediate Values
	4.3 Membership Predicates

	5 Theorem Proving
	5.1 The Empty Type
	5.2 Simple Theorems
	5.3 Interactive Theorem Proving
	5.4 Totality Checking
	5.5 Provisional Definitions
	5.6 Suspension of Disbelief
	5.7 Example: Binary Numbers

	6 EDSL Example 1: The Well-Typed Interpreter
	7 Interactive Editing
	7.1 Editing at the REPL
	7.2 Editing Commands
	7.3 Interactive Editing in Vim

	8 Support for EDSL Implementation
	8.1 syntax Rules
	8.2 dsl Notation
	8.3 Auto Implicit Arguments
	8.4 Implicit Conversions

	9 EDSL Example 2: A Resource Aware Interpreter
	9.1 Resource Correctness as an EDSL
	9.2 Example: File Management

	10 An EDSL for Managing Side Effects
	10.1 Programming with Effects
	10.2 An Effectful Evaluator
	10.3 Implementing Effects
	10.4 Dependent Effects

	11 Conclusion
	11.1 Further Reading

	References

