
Design and Implementation of Queries
for Model-Driven Spreadsheets

Jácome Cunha1,2, João Paulo Fernandes1,3, Jorge Mendes1, Rui Pereira1(B),
and João Saraiva1

1 HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
{jacome,jpaulo,jorgemendes,ruipereira,jas}@di.uminho.pt

2 CIICESI, ESTGF, Instituto Politécnico do Porto, Porto, Portugal
3 RELEASE, Universidade da Beira Interior, Covilhã, Portugal

Abstract. This paper presents a domain-specific querying language for
model-driven spreadsheets. We briefly show the design of the language
and present in detail its implementation, from the denormalization of
data and translation of our user-friendly query language to a more effi-
cient query, to the execution of the query using Google. To validate our
work, we executed an empirical study, comparing QuerySheet with an
alternative spreadsheet querying tool, which produced positive results.

Keywords: Spreadsheets · Model-driven engineering · Querying

1 Introduction

Nowadays, spreadsheets can be considered one of the most popular programming
system around, particularly in the field of business applications, and one of the
largest domain specific programming languages. With their availability on any
computing device (PC, smart-phone, etc.) and in the cloud, visual simplicity, low
learning curve for new users, and flexibility when it comes to what can be written
in a spreadsheet, the amount of users per year increases drastically. Although
spreadsheets begin as a simple, single-user software artifact, they may evolve
into a large and complex data-centric software [1]. In these cases, manipulating
a large amount of data in a traditional matrix structure becomes an arduous
task. This issue arises in spreadsheets, unlike the traditional database systems,
due to one considerable flaw: the absence of a data query language.

The problem of querying data is not new, having decades worth of attention
within the database community. Yet, only recently has it been seriously consid-
ered in the context of spreadsheets. And even then, these attempts to replicate a

This work is part funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within projects
FCOMP-01-0124-FEDER-010048, and FCOMP-01-0124-FEDER-022701. The first
author was funded by FCT grant SFRH/BPD/73358/2010.

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 459–478, 2015.
DOI: 10.1007/978-3-319-15940-9 13

https://www.FCOMP-01-0124-FEDER-010048
https://www.FCOMP-01-0124-FEDER-022701
https://www.SFRH/BPD/73358/2010

460 J. Cunha et al.

traditional database querying system have several drawbacks of their own. Most
impose restrictions on how the data must be stored, organized, and represented,
and some even have a hard-to-read query language.

To solve these problems, we propose a query language based on the Struc-
tured Query Language (SQL) where users can easily construct queries right in
their spreadsheet environment, without the need of complicated configurations,
or extra programs other than a simple add-on. Both SQL and spreadsheets can
be seen as domain-specific functional programming languages [2]. Our approach
builds upon a model-driven spreadsheet development environment, where the
queries would be expressed referencing entities in ClassSheet models, instead of
the actual data, allowing the user to not have to worry about the arrangement
of the spreadsheet’s data, but only what information is present.

This allows spreadsheet evolution to occur in the data or the arrangement of
entities within a spreadsheet model, without invalidating previously constructed
queries, as long as the entities continue to exist. The query results are then
shown as an inferred spreadsheet model, and a new worksheet in conformance
with the model. This system was named QuerySheet [3,4], and will be shown
further on.

Our goal is to make spreadsheet querying more humanized, understandable,
robust, and productive. In order to validate our achievements, we executed an
empirical study with real end users. Their experiences, productivity, and feed-
back in using the QuerySheet system were recorded and are now presented.

The results observed from this study were positive, as we will discuss fur-
ther on. Also, we plan to take on the user’s feedback to further improve our
framework.

This paper is organized as follows: Sect. 2 presents existing techniques to
query spreadsheets, detailing two specific approaches. In Sect. 3, a simple intro-
duction to model-driven spreadsheets is given. Section 3 explains the spreadsheet
querying system we propose, and shows an example of that envisioned system.
In Sect. 4 we present queries for model-driven spreadsheets. We then present in
Sect. 5 the design and implementation of our model-driven spreadsheet system,
along with a small demonstration of the actual tool in Sect. 6. Section 7 details
our empirical study and presents the results. And finally, Sect. 8 presents our
concluding thoughts and future work.

2 Spreadsheets and Queries

Before we present techniques to query spreadsheets, let us introduce a spread-
sheet to be used as a running example throughout this document. Figure 1
presents a spreadsheet to store information about the budget of a company.
This spreadsheet contains information about the Category of budget use (such
as Travel or Accommodation) and the Year. The relationship between these two
entities gives us information on the Quantity, the Cost, and the Total Costs.

As previously stated, there have been attempts to query spreadsheets using
some form of SQL. Two widely known names followed this path to create a

Design and Implementation of Queries for Model-Driven Spreadsheets 461

Fig. 1. Spreadsheet data for a Budget example

spreadsheet querying system: Microsoft and Google, with their MS-Query Tool
and Google QUERY Function respectively. The following subsections will give a
brief description of each of these approaches.

2.1 MS-Query Tool

Microsoft’s Query tool, or MS-Query, is the database query interface used by
Microsoft Word and Excel, a utility which imports databases, text files, OLAP
cubes, and other spreadsheet representations (such as csv). While these are the
main uses, it can be used to query data from a spreadsheet, placing the data into
an intermediate database-like table to be able to apply the query and represent
the findings, but in turn brings some restrictions.

To be able to query the spreadsheet data, the data itself must be in a single
tabular format, with the headers present in the first row. In other words, they
require the data to be denormalized [5] if the user wishes to completely represent
his spreadsheet information. In most cases, users tend to use their spreadsheet
for more than one entity in a single worksheet, not joining all the information
into one single unified table (as we can see in our running example in Fig. 1).
This requirement prohibits the freedom to represent the spreadsheet data how
a user wishes.

Figure 2 shows the necessary denormalized representation of the data in our
running example, having the headers of each attribute explicitly represented in
a single row, just so we may be able to query the data using the MS-Query tool.

As one may notice, the representation of the data in this way is much harder
for someone to read, manage, and analyze, and if looking at a real-life spread-
sheet, which might have the number of columns reaching the hundreds, it can
become even more difficult. Along with the previously mentioned problem, a
user with this representation, may not expand his information horizontally, but
only vertically, to conform to the table format needed to query, allowing even
less freedom to represent the data.

2.2 Google QUERY Function

Google provides a QUERY function (GQF) which allows users, using a SQL-like
syntax, to perform a query over an array of values. An example would be their
Google Docs spreadsheets, where the function is built-in.

462 J. Cunha et al.

Fig. 2. Spreadsheet data for a Budget example (denormalized)

In this setting, a query is a two part function, consisting of a range as its
first argument, to state the range of the data cells to be queried, for example
A1:B6. The second part consists of the query string itself, using a subset of the
SQL language, with column letters. The function’s input also assumes the first
row as headers, and each column of the input can only hold values of certain
types. An example function is shown in Listing 1.1. This function can actually
be written on the spreadsheet itself, allowing on-the-spot results.

Listing 1.1. Google QUERY function example

=query (A1 : F53 ; ”SELECT A, B, F WHERE D > 5”)

While being a powerful query function, it still has its flaws. The function
shares the same problems as MS-Query in regards to the data representation.
Much like MS-Query, to run the function, the data needs to be represented with
a single header row, without relationships between the entities, in other words,
also denormalized (as already shown in Fig. 2).

Along with the difficulty of managing the data in such a way, the function
has another flaw. Instead of writing the query using column names/labels, one
must use the column letters (as shown in Listing 1.1) to write the query. Even
with the small sized example we have been using, column letters and not names
can get confusing, counter-intuitive, and almost impossible to understand what
the query is supposed to do, without having the data sheet alongside. Moreover,
Google queries do not truly support evolution, since they do not adapt/evolve
when the spreadsheet data evolves. That is to say, by adding a new column
to the spreadsheet, we may turn a query invalid or incorrect because the data
changed positioning in the spreadsheet.

3 Model-Driven Spreadsheet Engineering

To overcome the issues identified in Sect. 2, and to design a language and system
which match the previously defined criteria, we turned to model-driven engineer-
ing methodologies [6,7]. Model-driven engineering is a development methodol-
ogy in software development that uses and exploits domain models, or abstract

Design and Implementation of Queries for Model-Driven Spreadsheets 463

representations of a piece of software, a solution to the handling of complex
and evolving software systems. This has been applied to spreadsheets, making
model-driven spreadsheets possible [8,9], and even a model-driven spreadsheet
environment [10,11].

One of these spreadsheet models is ClassSheets [12,13], a high-level and
object-oriented formalism, using the notion of classes and attributes, to express
business logic spreadsheet data. Using ClassSheets, we can define the busi-
ness logic of a spreadsheet in a concise and abstract manner. This results in
users being able to understand, evolve, and maintain complex spreadsheets by
just analyzing the (ClassSheet) models, avoiding the need to look at large and
complex data.

Fig. 3. ClassSheet model for a Budget example

To showcase ClassSheets, we present in Fig. 3 a ClassSheet model for the
Budget example shown in Fig. 1. In this ClassSheet model, a Budget has a
Category and Year class, expanding vertically and horizontally, respectively.
The joining of these gives us a Quantity, a Cost, and the Total of a Category
in a given Year, each with its own default value. The Total in column G gives
us the total of each Category and the Total in column A gives us the total of
each Year.

This ClassSheet model specifies the business logic of the budget spreadsheet
data from our running example. In model-driven engineering, we would say that
the spreadsheet data (Fig. 1) conforms to the model (Fig. 3), as shown in Fig. 4.

Using models, we can also have a safe way to practice software evolution [14],
a term defining the process of changing an existing software system or pro-
gram, due to needs, rules, and other factors, is updated, or in other words evolves,

Fig. 4. Spreadsheet model and example in conformity

464 J. Cunha et al.

to continue to be useful in its environment. Evolution, and other techniques (such
as spreadsheet model embedding and bidirectionality) are present in the model-
driven spreadsheet framework MDSheet [11,15]. A fully detailed explanation of
ClassSheets can be found in [Our DSL”13 ClassSheets tutorial].

4 Model-Driven Spreadsheet Querying

Querying spreadsheets should be simple and intuitive as it is in the database
realm. Using a simple SQL-like query language, users should be able to easily
construct queries right in their spreadsheet environment, without the need of
complicated configurations or extra programs. This language should be human-
ized, avoiding the use of computer-like terms as column letters, and use some
form of labels or descriptive tags to point to attributes and entities. In fact, this
is in line with the results presented in [16] where authors showed that spread-
sheet users create a mental model of the spreadsheet that helps them understand
and work with the spreadsheet. These mental models are created using names
from the real world as it is the case with our ClassSheet models.

To do this, a good approach would be to build upon a model-driven spread-
sheet development environment, where we can take advantage of ClassSheets,
allowing the queries to be expressed referencing the entities in ClassSheet models
instead of the data’s positioning. This would allow the user to not have to worry
about the arrangement of the spreadsheet’s data, but only what information
is present. This is almost identical to how a database administrator or analyst
would look at the relational model of a database to construct queries, and not
the data itself.

4.1 Querying Model-Driven Spreadsheets: An Example

To show how we envision the model-driven spreadsheet querying system, we will
show an example.

Using our previous Budget model from Fig. 3, and the Budget data from
Fig. 1, we will try to answer two simple questions:

Query1: What was our budget use in 2005?
Query2: What was our total quantity per year?

By simply looking at our ClassSheet model, if we do not remember or know
the structure of our spreadsheet data, we would be able to write the following
simple SQL-like queries:

Listing 1.2. Model-driven query for Query1

SELECT Name, Qnty , Cost , Total
WHERE Year = 2005

Design and Implementation of Queries for Model-Driven Spreadsheets 465

Listing 1.3. Model-driven query for Query2

SELECT Year , Sum(Qnty)
GROUP BY Year
LABEL Sum(Qnty) ”Total Qnty”

These queries will produce the following results shown in Table 1 and Table 2
respectively.

Table 1. Results for Query1

Name Qnty Cost Total

Travel 2 525 1050

Accommodation 4 120 480

Meals 6 25 150

Table 2. Results for Query2.

Year Total Qnty

2005 12

2006 30

The two equivalent Google QUERY functions would be Listings 1.4 and 1.5
respectively:

Listing 1.4. Google QUERY function for Query1

=query (A1 :H7 ; ”SELECT C, D, E, F WHERE A = 2005”)

Listing 1.5. Google QUERY function for Query1

=query (A1 :H7 ; ”SELECT A, sum(D)
GROUP BY sum(D) LABEL sum(D) ’ Total Qnty ’ ”)

Using this model-driven approach, we eliminate the work of using column letters
when writing the query, and the need of restricting the user’s data to a specific
format. This way, the user can maintain the original spreadsheet, without having
to conform to data representation restrictions, and analyze it with references to
the entities and attributes presents.

So as one can see, our approach hopes to make querying spreadsheets more:

– Humanized - Now we can represent attributes and data areas (models) using
human designated names, instead of column letters.

– Understandable - Now we can actually understand and easily read the queries,
knowing exactly what they do.

– Robust - Unless attributes in the query are removed or renamed, the queries
can still correctly function even with spreadsheet data/model evolutions.

– Productive - No need to manually think through what spreadsheet area our
data is inn, or what column letter is a given attribute.

These four topics are what we strived to achieve. To validate these topics,
we executed an empirical study, which is presented in Sect. 7 with more details.

466 J. Cunha et al.

5 Design and Implementation

In this section we explain how the model-driven query language system we envi-
sioned has been materialized. Figure 5 presents the overall architecture of our
system which we have implemented on top of MDSheet [10].

Fig. 5. The model-driven query system

In MDSheet all mechanisms to handle models and instances are already
created. This is our starting point: in the left part of the figure we show a
spreadsheet instance and its corresponding model. The second required part is
the query over the model/instance. This will be explained in detail in the next
Subsect. 5.1. The spreadsheet instance is then denormalized, as we will explain
in Subsect. 5.2, and the query over the model is translated into a Google query,
as explained in Subsect. 5.3. The Google query and the denormalized data are
sent to Google and the result received is shown in the bottom-right part of the
figure, described in Subsect. 5.4. Finally, a new model is inferred so the result
can be used as input to a new query, as explained in Subsect. 5.5. This last step
is necessary since we want the queries to be composable, and new models to be
generated from queries.

Before presenting the algorithms that are used by our query mechanism, let
us introduce our Haskell representation of models and instances.

data Class = Class Name Expansion [Attribute] HName VName
data Expansion = Horizontal | Vertical | Both | None
data Attribute = Attribute Name [Value]
data Value = Value Val InstanceH InstanceV
data Layout = Layout [(Name,ClassName)]

Design and Implementation of Queries for Model-Driven Spreadsheets 467

These are the four main data types for querying in our framework. The Class
data type holds the Class’s Name, Expansion direction (either Horizontal, Ver-
tical, Both, or None) a list of Attribute(s), and its horizontal/vertical class name
if it has one (HName/VName). Each attribute also has a Name, and a list of
Values, in which each Value has the value in a cell (Val), and its horizontal and
vertical instance (InstanceH and InstanceV). These instances are used to know
which relational classes to combine with. The Layout data type has the header
information of the denormalized data, including the attribute’s Name and class
name (ClassName).

We can show the top function of our system. It receives the user’s query,
along with the worksheet being used. It then passes through all the processes
previously mentioned (denormalization, translation, execution, and inference)
and returns the new model and instance.

querysheet :: Query → Worksheet → (Model , Instance)
querysheet query worksheet =
let (model , inst) = getModelInstance worksheet

(denormData, layout) = denormalize model inst
googleQueryFun = translate query layout
queryResults = runGQF googleQueryFun denormData
(newModel ,newInstance) = inferClassSheet queryResults

in (newModel ,newInstance)

In the next Subsections we will explain in more detail each of the steps of
our algorithm.

5.1 Model-Driven Query Language

The Model-Driven Query Language (MDQL) is very similar to the standard
SQL language, while also allowing some of the GQF’s clauses such as LIMIT and
LABEL. To create the MDQL, we used advanced engineering techniques, namely
generalized top-down parsers and strategic programming to traverse trees.

The syntax of our query language is defined in the grammar shown in
Listing 1.6. As we can see, instead of selecting column letters in the SELECT
clause, the user can select the ClassSheet attributes he/she wishes to query, while
also allowing him/her to further specify, as to avoid any naming conflicts which
may occur, alternative ways of naming the attribute such as:

– stating its name - (Cost)
– stating the attribute along with its classes’ name (Year.Total)
– stating both classes ((Year, Category).Total or (Category, Year).Total)
– stating all the attributes in a given class (Category.*)

468 J. Cunha et al.

Listing 1.6. Part of the model-driven query language syntax

SELECT [DISTINCT] (* | attr1, ...,agg(attrX), ...)
[FROM ClassSheet1, [JOIN ClassSheet2], ...]
[WHERE conditions]
[GROUP BY attr1, ...]
[ORDER BY attr1 [ASC|DESC], ...]
[LIMIT numRow]
[LABEL attr1 ’new_attr1’, ...]
[WITH HISTOGRAM]

attr ::= attribute
| Class .*
| (Class1, Class2).*
| Class.attribute
| (Class1, Class2). attribute

agg ::= Sum(attr)
| Count(attr)
| Avg(attr)
| Min(attr)
| Max(attr)

conditions ::= attr logic attr
| attr logic ’string ’
| attr logic number

logic :: = < | > | <= | >= | == | !=

The MDQL also has a FROM clause, very reminiscent from the same clause
in SQL, which allows the user to choose which ClassSheet model(s) to use for
the query, in cases where more than one ClassSheet is present in a spreadsheet.
Also note that as in SQL we allow JOIN operations between two ClassSheets
(nonexistent in the GQF). We also have the LIMIT clause to limit the amount
of results returned by a given number, and LABEL to rename attributes to a
given name, both originating from GQF clauses. The WHERE, GROUP BY, and
ORDER BY clauses work the same as in SQL, applying filters such as where
an attribute is equal to a given name (e.g. Category.Name = ‘Travel’), group-
ing values to apply an aggregation function, and ordering by a given attribute
either ascendant (ASC) or descendant (DESC), all three respectively. Finally,
the DISTINCT clause was also implemented (also nonexistent in the GQF) to
remove duplicated results which may occur, and WITH HISTOGRAM is used
to state if the user wishes the results produce a histogram chart to visually show
the results.

Since this language is very similar to SQL, it allows users who already know
basic SQL to simply jump into query writing in this system, avoiding the need to
learn a new language, allowing us to adapt the most used query language instead
of creating one, while also allowing queries to be more elegant, concise, robust
and understandable for spreadsheets, along with being easy to learn since the

Design and Implementation of Queries for Model-Driven Spreadsheets 469

SQL-language is often described as “English-like” because many of its statements
read like English [17].

5.2 Denormalization of Spreadsheet Data

As mentioned before, to be able to use the Google Query Function, the data
must be in a single matrix format, with the headers present in the first row.
In consequence of this restriction, for a user to be able to write all the queries
possible with the data, every bit of data from the spreadsheet has to be written
in this single matrix structure. To do so, the data has to be in a redundant
state, combining the data from multiple tables together, reminiscent of a JOIN
between tables in databases, thus duplicating the data. In other words, we have
to denormalize our spreadsheet data [18].

To correctly do this, we must first obtain all the necessary and critical infor-
mation from the ClassSheet models, and their attributes/data. To begin, we
obtain this information from the MDSheet framework (atleast in this context),
such as which ClassSheet classes exist, their names, their expansion direction
(horizontally, vertically, both, or none at all) and most importantly the attributes
in each class.

After obtaining the ClassSheet models and data, we begin the denormaliza-
tion process, where we denormalize the models used in the query, and join the
relational models with their corresponding horizontal and vertical classes. This
denormalization process is automatic, and can always be done on the ClassSheet
data, as long as we have the ClassSheet model and the conformed data. A frag-
ment of that denormalization process can be seen next.

denormalize :: Model → Instance → (Data,Layout)
denormalize model inst =

let allClasses = merge model inst
relationClasses = findRelations allClasses
res = relationDenorm relationClasses allClasses
ssdata = getData res
layout = getLayout res

in (ssdata, layout)

As we can see, the first step is to merge the model and instance information
together into an intermediate representation we use. Using that intermediate
representation, we find the relational classes, for example (Category, Year), and
then denormalize the data in the relation, and obtain the spreadsheet data and
layout. The true process of denormalizing the data is presented next.

relationDenorm :: [Class] → [Class] → Table → Table
relationDenorm [] ac tab = tab
relationDenorm ((Class n exp attrs hName vName) : cs) ac tab =

let hClass = getClass hName ac
vClass = getClass vName ac

470 J. Cunha et al.

classResJoin = rJoin (Class n, exp, attrs, hName, vName) hClass vClass
tabRes = addTable classResJoin tab
table = relationDenorm cs ac tabRes

in table

rJoin :: Class → Class → Class → Class
rJoin (Class n exp (attr : as) hName vName) hClass vClass =

let hAttrs = getHInstances attribute (getAttributes hClass)
vAttrs = getVInstances attribute (getAttributes vClass)
clas = (Class n exp ((attr : as) ++ hAttrs ++ vAttrs) hName vName)

in clas

We obtain, through the class names, the appropriate classes, which we then
use to correctly match and join the information from the relational classes. This
process happens in the rJoin function, where we use the HInstances and VIn-
stances to properly match the relational class, with its two “parent” classes.

A more detailed explanation of the denormalization process, along with
examples, and description of certain problems automatically solved, can be found
in [15].

5.3 Translation to Google Query

The main reason we chose not to develop a new querying engine, but re-utilize
the QUERY function’s querying engine, is because we do not want to try to
compete with Google in terms of performance and speed where Google has shown
dominance in developing querying engines.

To properly run the GQF, our model-driven queries must adhere to the Visu-
alization API Query Language [19], specified by Google. So, for our model-driven
queries to function correctly, a translator was made to transform the model-
driven queries to their equivalents for the GQF. To do so, we took advantage of
a strategy language to control transformations and pattern matching, to trans-
late and inspect the query respectively.

The translator automatically calculates the range from the ClassSheet mod-
els selected, in the FROM clause for example, by using a lookup function to find
what is the new range of data after the denormalization process. It also substi-
tutes the attribute names to their corresponding column letters in the denormal-
ized data, without the user having to do so. After parsing the user’s query, and
verifying that each attribute chosen by the user exists, and has no conflicts, such
as any ambiguous attribute names due to the attribute name repeating in more
than one ClassSheet (which may be solved by adding the class name beforehand
as shown in Sect. 5.1), we apply another lookup function on each attribute, and
calculate the column letter corresponding to each attribute. A fragment of one
of the lookup functions (for translating an attribute with its class name) can be
seen in the following:

lookUp :: (Name,ClassName) → Layout → String
lookUp p (Layout l) =

Design and Implementation of Queries for Model-Driven Spreadsheets 471

let allIndices = elemIndices p l
in if (length allIndices) ≡ 1

then intToColumn (head allIndices)
else "ERROR"

Using the lookUp function, we find the matching header, and if there is
one and only one occurrence, we translate the index number to its appropriate
column letter (for example 0 = A, AA = 27). If more than one occurrence occurs,
or no occurrences, we send an error.

Now having both the denormalized data and translated model-driven query
ready, we can send the spreadsheet data to Google Spreadsheets, run the GQF
and afterwards retrieve the results for the user to view in its spreadsheet.

5.4 Google Spreadsheets

To be able to send the spreadsheet data to Google Spreadsheets and run the
GQF, we turned to the Google Spreadsheets API version 3.0 [20], an API which
enables developers to be able to create applications that can read, write and
modify the data in Google Spreadsheets. It allows us to manage the worksheets
in a Google spreadsheet, manage cells in a worksheet by position, and also allows
us to create spreadsheets, worksheets, insert and delete data, and retrieve a single
worksheet or a spreadsheet, along with authorizing requests and authentication.

So before we acquire the query results, we begin by creating a temporary
worksheet which will be filled with the denormalized data, followed by creating
a second temporary worksheet where the query function string is sent to. When
the query function is inserted into a cell, it calculates the results, and now that
second worksheet contains the query results. Finally, the results are retrieved,
the temporary worksheets removed and an inference technique is ran before
presenting it to the user.

5.5 ClassSheet Inference

In order to make the queries composable, that is, to allow the output of a model-
driven query as the input of another model-driven query we must provide the
results from the GQF with a model. Without having a model, it is impossible to
make a query on a result of another query. Previous work in this field introduced
a technique to automatically infer a ClassSheet model from spreadsheet data [21].
Thus, applying this technique on the results obtained from the GQF, we can now
infer the correct ClassSheet model and have it alongside the queried results. For
example, applying the inference technique to the results from Query2 presented
in Table 2, we would obtain the ClassSheet model shown in Fig. 6, and now
present the user the results alongside its model.

472 J. Cunha et al.

Fig. 6. Model automatically inferred from the spreadsheet data shown in Table 2

6 QuerySheet

The model-driven query language and the techniques proposed in the previous
sections are the building blocks used to construct a tool, integrated in MDSheet
and OpenOffice/LibreOffice, named QuerySheet [4].

Fig. 7. A model-driven spreadsheet representing Budget information

To demonstrate QuerySheet, we will be using the same running ClassSheet
model, shown on the left in Fig. 7. Suppose we wanted to answer our previous
question:

– What was our total quantity per year?

In QuerySheet, we can express the query based on the ClassSheet model. The
tool provides a New Query button, which opens a text box to allow the user to
define a query. As we can see in Fig. 7 on the right, we have the query for our
first question, and as expected, the query looks very much like SQL, using the
same keywords and syntactic structure. Moreover, we now use the ClassSheet
entities to identify the attributes to be queried.

When executing the query, QuerySheet passes through all the phases
explained in the previous Sections and shown in Fig. 5, while also generating
the result as a ClassSheet-driven spreadsheet. In fact, two new worksheets are
added to the original spreadsheet: one containing the spreadsheet data that
results from the query (Query1.instance), and the other contains the ClassSheet
model (Query1.model), as shown in Fig. 8. This whole process is depicted in
Fig. 9.

Design and Implementation of Queries for Model-Driven Spreadsheets 473

Fig. 8. A model-driven spreadsheet inferred from Query1

Fig. 9. The architecture of QuerySheet

7 Empirical Evaluation

To validate our query system, a study was planned and executed, to obtain
results of end-user’s experiences, productivity, and feedback. We ran this study
one participant at a time. This allowed us to see each participant using our
system and learn the difficulties participants were having and how to improve
the system to overcome them.

For this study, we had seven students participating, all with basic or minimal
knowledge of SQL, who are studying informatics/computer sciences, ranging
from Bachelor to PhD students.

474 J. Cunha et al.

For this study we prepared a tutorial to teach them how to use Google’s
QUERY function and the QuerySheet system with a series of exercises using
both systems. When the users were comfortable with each system, the actual
study was performed.

In the actual study, a real-life spreadsheet was used, which we obtained, with
permission to use, from the local food bank in Braga. We then explained to the
students how the information was represented, and how to properly read the
spreadsheet, in this case, information regarding distributions of basic products
and institutions. This specific spreadsheet had information on 85 institutions
and 14 different types of basic products, giving way to over 1190 lines of unique
information.

We also denormalized the information for the students (since we wanted to
study the end-user’s interaction with the two different systems, and already knew
that denormalizing over 1000 lines of information would take a long time), and
also prepared the spreadsheet model and conformed instance in the MDSheet
environment. Since we can not show the actual spreadsheet due to revealing
private information, only the spreadsheet model (the same one used in the study)
is presented below in Fig. 10.

Fig. 10. A model-driven spreadsheet representing institutions, products, and distrib-
utions, used in the empirical evaluation

As we can see in the model, and hence the actual spreadsheet, the Dis-
tribution class is composed of a Institution class and a Product class. The
Institution class has its Code (Institution’s Code), Name (Intitution’s Name),
lunch (units used for lunch and snacks) and dinner (units used for lunch and
dinner). The Product class has a Name (Product’s Name), a Code (Prod-
uct’s Code), and Stock which represents the amount of that specific product
they have in stock. The relationship between both classes gives us information
on the quantity Distributed of a specific Product to a specific Institution.

For the study, a series of four questions were asked to the students, regarding
the information present in the distributions spreadsheet:

1. What is the total distributed for each product?
2. What is the total stock?
3. What are the names of each institution without repetitions?
4. Which were the products with more than 500 units distributed, and which

institution were they delivered to?

Design and Implementation of Queries for Model-Driven Spreadsheets 475

For each question, they would answer it using Google’s QUERY function,
and the QuerySheet system, alternating between starting with one then the
other (the starting system would also alternate between students, so one would
begin alternating starting with QuerySheet, and another would begin alternating
starting with Google’s QUERY function). This alternation was introduced in the
study so the potential learning from answering a question in one system could
not interfere with the results. Since different participants started by answering
the same question using different querying systems, the potential learning can
be ignored for both systems.

The students were asked to write down the time after carefully reading each
question, and the time after the queries were executed with no errors (the cor-
rectness of the queries and results were analyzed afterwards), repeating for each
system, so they would read the question, write down initial time, write down
concluding time, and repeat starting with reading the question once again.

Along with writing down the time, after each question, and having answered
it using both systems, the students were asked to choose which system they felt
was more: Intuitive, Faster (to write the queries), Easier (to write the queries),
Understandable (being able to explain and understand the written queries).

After finishing answering the questions, the students answered which system
they preferred and why, and what advantages/disadvantage existed between the
systems. Some of the comments can be seen below:

– “The usage of models helped alot in building the queries. And not having to
calculate the range saves time and headaches.”

– “Using attribute names instead of column letters is simple and natural.”
– “QuerySheet is much more intuitive to use, as simple as looking at the model
and attribute names and then I could begin writing queries.”

The results were gathered and analyzed, and are now presented in Fig. 11.
The left side (Y-Axis) represents the number of minutes the students took to
answer the questions. The bottom side (X-Axis) represents the Question the
students answered. The green bars represent the Google QUERY function, and
the blue bars represent the QuerySheet system.1

As we can see, users using the QuerySheet system spent significantly less
time to write the queries to answer the questions, ranging from as much as 90 %
less to 40 % less, averaging out to 68 % faster.

Regarding the system they felt was more Intuitive, Faster, Easier, and Under-
standable, almost all chose the QuerySheet system.

We also analyzed the results and queries written, and in the cases where the
queries/results were incorrect, almost all were with the Google QUERY function
system, ranging from incorrect column letters chosen, to incorrect ranges.

Furthermore, the written questions at the end also gave us positive feed-
back. Users stated that using the QuerySheet system was much easier to write
the query, being able to look at the model to understand the logic behind the
information, and not having to deal with calculating the ranges, or worry about
1 We assume colors are visible through the digital version of this document.

476 J. Cunha et al.

Fig. 11. A chart detailing the information gathered from the empirical evaluation

positing of information, while being easier to understand what is being written
and in turn was more intuitive.

With the user feedback, we were also able to understand what is still needed
in QuerySheet, such as having a way to store the previous queries for future use.
Along with the direct user feedback, we also realized that a basic knowledge of
SQL is needed, as expected, to be able to correctly answer the questions. Users
who incorrectly wrote queries in the QuerySheet system always incorrectly wrote
them in Google’s QUERY function, due to bad query construction. One of the
comments received was to have an interface to build the query visually and
not descriptively written, something we already believed would be helpful and
needed for a user not used to SQL writing.

8 Conclusion

In this paper, we presented the design and implementation of a query language
for model-driven spreadsheets. We designed the query language focusing primar-
ily on how expressive, friendly, readable, and intuitive the queries would be to
the users. As our study showed we were able to implement a system that can in
fact be used to query spreadsheets in a way users are comfortable with.

Indeed we created a query system that can be used to further knowledge
extraction from the spreadsheets. For instance, an interesting way to take advan-
tage of it, is to use it for detecting smells in spreadsheets [22–24], similarly to
Fowler’s idea of detecting bad smells in source code [25]. With our query lan-
guage, a user can easily detect a specific bad smell on a spreadsheet, before
having to handle possibly critical data. This can even be simplified using a pre-
defined set of template queries.

Design and Implementation of Queries for Model-Driven Spreadsheets 477

8.1 Future Work

Even with the good results and responses in regards to the work already accom-
plished, some interesting directions of future research were identified.

Although the empirical results we have presented are interesting, they were
the result of a study with only seven participants. We are already planing a
second study, this time with more participants so we can confirm our initial
results, and provide a more thorough analysis.

Currently, each time a user executes a query, the data is denormalized on-the-
spot. A possible way to improve this is to have it so that this full on denormal-
ization is done only once in the beginning, and further changes to data and/or
models are changed incrementally, either during the changes, or in the next query
execution. An interesting topic which can bring in another level of functionality
to the framework, and take advantage of an incremental denormalization, would
be synchronization with the query results and original data. By this we mean,
allowing a user to, e.g., update the information of one of his/her employees from
a previous query result, and in turn this update would reflect upon the orig-
inal data which the results came from. Acting almost as if the results were a
View Table on the original spreadsheet data, possibly using techniques from [26]
regarding ways to solve the update-view problems.

References

1. Chambers, C., Scaffidi, C.: Struggling to excel: A field study of challenges faced
by spreadsheet users. In: Hundhausen, C.D., Pietriga, E., Dı́az, P., Rosson, M.B.
(eds.) VL/HCC, pp. 187–194. IEEE (2010)

2. Wadler, P.: Xquery: a typed functional language for querying xml. In: Jeuring, J.,
Jones, S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 188–212. Springer, Heidelberg
(2003)

3. Cunha, J., Mendes, J., Fernandes, J.P., Pereira, R., Saraiva, J.: Querying model-
driven spreadsheets. In: IEEE Symposium on Visual Languages and Human-
Centric Computing. IEEE CS, San Jose (2013)

4. Belo, O., Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.:
Querysheet: A bidirectional query environment for model-driven spreadsheets. In:
IEEE Symposium on Visual Languages and Human-Centric Computing, VLHCC
2013. IEEE CS, San Jose (2013)

5. Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

6. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer
39(2), 25–31 (2006)

7. Bézivin, J.: Model driven engineering: an emerging technical space. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64. Springer,
Heidelberg (2006)

8. Ireson-Paine, J.: Model master: an object-oriented spreadsheet front-end. In:
Computer-Aided Learning using Technology in Economies and Business Educa-
tion (1997)

9. Abraham, R., Erwig, M., Kollmansberger, S., Seifert, E.: Visual Specifications of
Correct Spreadsheets. In: VL/HCC 2005: IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 189–196. IEEE Computer Society (2005)

478 J. Cunha et al.

10. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A framework for
model-driven spreadsheet engineering. In: Proceedings of the 34th International
Conference on Software Engineering, pp. 1412–1415. ACM (2012)

11. Mendes, J.: Evolution of model-driven spreadsheets. Master’s thesis, University of
Minho (2012)

12. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pp. 124–133. ACM
(2005)

13. Bals, J.C., Christ, F., Engels, G., Erwig, M.: Classsheets - model-based, object-
oriented design of spreadsheet applications. In: Proceedings of the TOOLS Europe
Conference (TOOLS 2007), Zürich (Swiss), vol. 6, pp. 383–398, October 2007.
Journal of Object Technology

14. Mens, T., Demeyer, S. (eds.): Software Evolution. Springer, New York (2008)
15. Pereira, R.: Querying for model-driven spreadsheets. Master’s thesis, University of

Minho (2013)
16. Kankuzi, B., Sajaniemi, J.: An empirical study of spreadsheet authors’ mental

models in explaining and debugging tasks. In: 2013 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 15–18 (2013)

17. Melton, J.: Database language sql. In: Bernus, P., Mertins, K., Schmidt, G. (eds.)
Handbook on Architectures of Information Systems. International Handbooks on
Information Systems, pp. 103–128. Springer, Heidelberg (1998)

18. Shin, S.K., Sanders, G.L.: Denormalization strategies for data retrieval from data
warehouses. Decis. Support Syst. 42(1), 267–282 (2006)

19. Google: Google query function (2013). https://developers.google.com/chart/
interactive/docs/querylanguage. (Accessed on November 2013)

20. Google: Google spreadsheet api (2013). https://developers.google.com/
google-apps/spreadsheets. (Accessed on November 2013)

21. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: IEEE Symposium on Visual Languages and Human-Centric Com-
puting, pp. 93–100. IEEE CS (2010)

22. Cunha, J., Fernandes, J.P., Martins, P., Mendes, J., Saraiva, J.: Smellsheet detec-
tive: A tool for detecting bad smells in spreadsheets. In: Erwig, M., Stapleton, G.,
Costagliola, G. (eds.) VL/HCC, pp. 243–244. IEEE (2012)

23. Cunha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J.: Towards a catalog of spread-
sheet smells. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol.
7336, pp. 202–216. Springer, Heidelberg (2012)

24. Hermans, F., Pinzger, M., van Deursen, A.: Detecting and visualizing inter-
worksheet smells in spreadsheets. In: Proceedings of the 2012 International Con-
ference on Software Engineering, ICSE 2012. IEEE Press, Piscataway (2012)

25. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

26. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language for
updateable views. In: Principles of Database Systems (PODS) (2006). Extended
version available as University of Pennsylvania technical report MS-CIS-05-27

https://developers.google.com/chart/interactive/docs/querylanguage
https://developers.google.com/chart/interactive/docs/querylanguage
https://developers.google.com/google-apps/spreadsheets
https://developers.google.com/google-apps/spreadsheets

	Design and Implementation of Queries for Model-Driven Spreadsheets
	1 Introduction
	2 Spreadsheets and Queries
	2.1 MS-Query Tool
	2.2 Google QUERY Function

	3 Model-Driven Spreadsheet Engineering
	4 Model-Driven Spreadsheet Querying
	4.1 Querying Model-Driven Spreadsheets: An Example

	5 Design and Implementation
	5.1 Model-Driven Query Language
	5.2 Denormalization of Spreadsheet Data
	5.3 Translation to Google Query
	5.4 Google Spreadsheets
	5.5 ClassSheet Inference

	6 QuerySheet
	7 Empirical Evaluation
	8 Conclusion
	8.1 Future Work

	References

