
DSL for Grammar Refactoring Patterns

Ivan Halupka(B)

Technical University of Košice, Letná 9, 04200 Košice, Slovakia
ivan.halupka@tuke.sk

Abstract. Grammar refactoring is a significant cornerstone of gram-
marware engineering, aimed at adjusting a formal grammar to specific
requirements derived from the application environment, without affect-
ing the language that a grammar generates. In our research, we focus
on tackling the problems related to formal specification and automated
application of well-known and newly-discovered refactoring procedures.
One of our research results is a language for specification of the refactor-
ing patterns to which we refer to as pLERO. In this paper, we present
an extension of pLERO language aimed at expanding the scope of its
applicability to additional classes of refactoring problems, such as fold-
ing and unfolding of grammar productions.

Keywords: Grammarware engineering · Grammar refactoring ·
Structural patterns · pLERO language

1 Introduction

Grammar refactoring is a non-trivial process of changing the form in which
a formal grammar is expressed, with preserving the language that a grammar
generates. Two or more formal grammars that generate the same language are
called equivalent. The objective of the classical grammar refactoring is adjusting
the form in which a grammar is expressed to specific requirements considering the
future purpose of a grammar. In our research we focus on context-free grammars,
since they are the most commonly used formal apparatus for expressing the
abstract syntax of programming languages.

Although grammar refactoring is both of theoretical and of practical sig-
nificance, for various subdomains of gramarware engineering it is still weakly
understood and poorly practiced [1]. A current gap between state-of-art and
state-of-practice can be clearly seen in the compiler design, where current state-
of-art provides limited number of specialized refactoring procedures. This, in
turn forces language designers to perform the majority of the refactoring proce-
dures manually on the basis of their intuition. This is a problem mainly because
such refactoring can be significantly difficult and error prone, while results in
many cases cannot be verified, since proving equivalence of two grammars is in
general an undecidable problem.

In our previous work, we addressed this issue by proposing two approaches to
automated grammar refactoring, more specifically a probabilistic approach based
c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 446–458, 2015.
DOI: 10.1007/978-3-319-15940-9 12



DSL for Grammar Refactoring Patterns 447

on evolutionary algorithm, called mARTINICA (metrics Automated Refactoring
Task-driven INcremental syntactIC Algorithm) [2,3], and a deterministic app-
roach based on formal specification language called pLERO (pattern Language
of Extended Refactoring Operators) [4,5].

pLERO is the domain-specific language for specification of refactoring and
other transformations on context-free grammars. The core idea behind the app-
roach is to provide universal formal apparatus for automated application of
the knowledge of grammar engineers. The main purpose of pLERO is to uni-
formly define deterministic solutions to recurring refactoring problems, such as
left recursion removal and elimination of epsilon productions. To these solutions
we refer to as grammar refactoring patterns.

pLERO is currently being developed in two distinct dialects, namely a imper-
ative and a declarative. Refactoring patterns written in the imperative dialect
of pLERO are more process-centric, meaning that they are intended for the
specification of particular steps of a refactoring process, while refactoring pat-
terns written in the declarative dialect are more result-centric and facilitate the
understanding of a grammar’s structural changes. Detailed description of the
imperative dialect of pLERO can be found in [4], while description of the declar-
ative dialect of pLERO can be found in [5]. Refactoring patterns expressed in
both dialects currently operate on grammars expressed in BNF notation.

In this paper we consider the declarative dialect of pLERO and present
its extension aimed at addressing the following aspects of a pattern’s formal
specification:

– Parameterization of patterns, since the recently published [5] specification of
pLERO only included support for expressing parameterless refactoring trans-
formations.

– Matching of the negative grammar structures, meaning expressing structural
preconditions that grammar should not fulfill in order to be transformable by
a pattern, as opposed to previous version of pLERO, where only matching of
positive grammar structures could be formally specified.

– Equivalence precondition for grammatical structures whose properties are
expressed at multiple levels of abstraction.

– Iteration over structurally different grammar productions.

2 Grammar Refactoring Patterns

Refactoring patterns are the only first-class citizens of the pLERO language,
specifying structural transformations of grammar’s productions, and as such
they can be considered generic schemes of refactoring operations.

A grammar refactoring pattern consists of a nonempty set of transformation
rules, and a set of declarations. Each transformation rule defines alternation
of grammar’s production rules which exhibit some structural properties, while
each declaration specifies additional properties of formal structures that occur in
some of the transformation rules. We understand the term ‘structural property
of production rule’ as the ordering of symbols and symbol types production.



448 I. Halupka

For instance, a production rule may exhibit the structural property that its
right-hand side starts and ends with a nonterminal symbol.

A transformation rule consists of two parts, namely a predicate defining the
structure of some subset of a grammar’s production rules, and a transforma-
tion describing the way in which this structure should be changed. Although
predicates and transformations have different purposes, they are both expressed
in similar fashion using the formalism of meta-production rules. The predicate
is specified by exactly one meta-production rule, while the transformation is
defined by a set of meta-production rules.

Each meta-production rule specifies chosen structural properties exhibited by
some subset of the grammar’s productions. A meta-production rule is divided
into a left-hand side describing left-hand side of a grammar’s production rule,
and a right-hand side specifying structure of a right-hand side of a grammar’s
production rule. The left-hand side of a meta-production rule comprises exactly
one pattern variable, while the right-hand side of a meta-production rule is a
sequence of pattern variables.

Each pattern variable defines a homogeneous sequence of grammar symbols,
and as such consists of a variable name and a variable prefix. The variable pre-
fix describes a type of grammar symbols that can occur in sequences assigned
to a pattern variable, and the three possible variable prefixes are: ′t′ denoting
terminal, ′n′ denoting nonterminal and ′s′ denoting both terminal and nonter-
minal, while each of these prefixes can be followed by ′∗′, denoting sequences
of arbitrary length, or ′{m}′ denoting sequences of exactly ′m′ symbols. The
variable name serves as an identifier of a specific sequence of grammar symbols,
and it enables us using this sequence in other parts of a transformation rule
in which the pattern variable occurs (local pattern variable). It also enables us
using this sequence in other transformation rules or declarations (global pat-
tern variable) and adding a new nonterminal to the grammar (new pattern
variable).

Each pattern specification in pLERO must follow the same notion template,
as shown in Fig. 1, which has suffered minor changes since its publication [5] due
to extension of pLERO language itself.

More detailed description of the pLERO language, the pattern matching and
the pattern application processes can be found in [5]. In what follows we only
discuss pattern declarations and ways of pattern parameterization, since these
are parts of the language that have been subjected to change.

3 PLERO Extension

3.1 Pattern Parameterization

The main idea behind our previous refactoring approach to which we refer to as
mARTINICA [2,3] was to perform grammar transformation on the basis of cer-
tain mathematically expressed objectives, while the refactoring process consisted
of a series of incremental applications of the refactoring operators. In this case, we
operated with a constant set of refactoring operators, which were implemented



DSL for Grammar Refactoring Patterns 449

Fig. 1. Template of a pattern notation

in the Java language. Initially pLERO was designed as complementary to this
approach, with the intention of providing a simple DSL in which language devel-
opers can specify their own refactoring procedures and incorporate them in
the base of refactoring operators. Patterns defined using the pLERO formal-
ism were not parameterized, since in mARTINICA parameters are mostly gen-
erated randomly, and thus it was decided that any input arguments that were
needed for refactoring were to be generated by the pLERO pattern matching
environment.

However, the following two factors motivated us to incorporate support for
pattern parameterization in the pLERO formalism:

– Recognition of the potential of pLERO to be used as formalism for preserva-
tion of newly discovered refactoring procedures and as a stand-alone tool for
their application.

– Need for passing grammar-specific data that cannot be randomly generated
or inferred from grammar’s productions, such as start symbol.

Each refactoring pattern may have an arbitrary number of parameters. Each
pattern parameter consists of an argument and an annotation. An argument can
be a meta-production rule denoting the production rule of a specific structure,
a pattern variable denoting specific sequence of symbols or an integer variable
denoting the length of a sequence of symbols. Each argument has annotation
describing its meaning, and each pattern variable occurring in arbitrary argu-
ment is considered to be a global pattern variable whose value cannot be altered
during the pattern matching process. The types of the pattern arguments do not
need to be declared, since they are inferred during the matching process. The
way in which parameters are specified can be seen in Fig. 1.



450 I. Halupka

3.2 Declarations

In this section we present five declarations within the pLERO language: vari-
ables, new symbols, join, equivalence and nonequivalence. The first two were
part of the most recently published version of pLERO, however they were never
closely examined, and the rationale behind them was never provided, which is
the main reason why we also include their descriptions in this section.

Global Variables. In general, pattern variables with the same name and pre-
fix occurring in different transformation rules represent distinct sequences of
symbols. One advantage of such approach is the relatively large separation of
concerns between individual transformation rules, which leads to a high level
of structural integrity for production rules matched against specific predicate.
This constraint also lowers the risk of the accidental structural corruption. How-
ever, in terms of generating the language, structurally diverse production rules
may be closely interlinked. Preservation of grammar’s equivalence may require
that transformation of production rules exhibiting some structure must be con-
ditioned by transformation of productions with different structures. Moreover,
such production rules may have common substructures that need to be preserved
or handled in a similar fashion, independently of structural differences that are
observable when considering production rules as a whole.

In our experience, this scenario is actually quite common and such interlink-
age is present in almost every meaningful refactoring pattern. A trivial example
of such a connection between structurally different productions can be found
in the pattern specifying the well-known procedure of immediate left-recursion
removal. If a left-recursive nonterminal is reachable in any derivation, in order
for the grammar to terminate, it must contain both left-recursive and non
left-recursive productions of such nonterminal. In the process of left-recursion
elimination both left-recursive and non-left-recursive productions need to be
transformed, while the transformation pattern is different for each of these two
structural classes of production rules. On the other hand, the recursive nontermi-
nal on the left-hand side of each transformed production needs to be preserved,
independently of the other structural properties.

In order to resolve this issue, we allowed sharing of pattern variables between
transformation rules, however all shared variables must be explicitly declared
using the ‘variables’ keyword and the template notion, as depicted in Fig. 2.
Pattern variables that are not specified using variables declaration and that are
not implicitly global (such as pattern arguments) are interpreted as local pattern
variables.

Generated Nonterminals. A refactoring process often involves the incorpo-
ration of new nonterminal symbols in a grammar. An example of a refactoring
procedure, always leading to the incorporation of one new nonterminal in a
grammar is the application of refactoring operator to which is referred to as
pack [2,3]. This operator and its formal specification are more closely examined
in Sect. 5.2



DSL for Grammar Refactoring Patterns 451

Fig. 2. Variables declaration template

Names of nonterminals that need to be incorporated in a grammar could
be passed as pattern arguments, or could be set to constants using equivalence
declaration. However, this could lead to a naming conflict with existing non-
terminals, which can break the structure of the entire language generated by a
grammar. In order to resolve this issue, we created a declaration generating non-
conflicting names of nonterminal symbols. This declaration is specified using the
‘new symbols’ keyword and the template for it is depicted in Fig. 3. Each nonter-
minal pattern variable that is specified in a new symbols declaration represents
a nonterminal with unique name that is not part of the original grammar, and
as a consequence of this, variables declared in such fashion cannot be present in
predicate, but only in the transformation part of a transformation rule.

Fig. 3. New symbols declaration template

Production Alternatives. In the process of derivation the sentences of a lan-
guage every nonterminal symbol in each derivation can be expanded by arbitrary
production rule whose left-hand side is this nonterminal. This means that from
a language standpoint, multiple productions with the same nonterminal on their
left-hand side are alternatives directing the way in which language sentences
develop. However, in BNF notation these alternatives are expressed as separate
productions, and moreover from a structural standpoint, they may significantly
differ among themselves.

In our experience, during the execution procedure of the various refactoring
transformations, it is required that productions with equivalent left-hand sides
be treated jointly, as alternatives occurring in one production whose left-hand



452 I. Halupka

side is particular nonterminal. An example of such transformations is the appli-
cation of well-known refactoring operators, which is referred to as fold and unfold
[6]. In terms of BNF, unfolding means the replacement of specific nonterminal
on the right-hand side of an arbitrary production with all right-hand sides of
productions whose left-hand side is this nonterminal, while unfolding presents
inverse transformation to fold and its execution is conditioned by existence of
productions containing each alternative, as the only structural difference between
them. The problem with the approach above is that during the language design
phase any form of iteration (with the exception of iteration deriving from pat-
tern recognition process) was excluded from pLERO, mainly for the reasons of
simplicity and computational complexity.

We addressed this issue by proposing a declaration creating special kind
of iterator over productions whose left-hand side is the same nonterminal and
which exhibit particular structural properties. This declaration is specified using
the ‘join’ keyword and the template notion, as depicted in Fig. 4. The pattern
variable before the ‘where’ keyword represents a nonterminal over which iterator
is created, while the meta-production rule after the ‘where’ keyword describes the
structure of productions included in the iterator. All pattern variables included
in this declaration are implicitly global, and in case of their occurrence in a
predicate they specify the need for matching against all possible pattern bindings
in the iterator. On the other hand, if they occur in a transformation, they specify
the creation of productions which contain all possible pattern bindings in the
iterator.

Fig. 4. Join declaration template

Notice that this declaration combines right-hand sides of production rules
whose left-hand side is a same nonterminal into one production rule of EBNF
notation, whose left-hand side is this nonterminal and whose right-hand side
consists of right-hand sides of the combined productions between which EBNF
alternative meta-operator has been put.

Equivalence and Nonequivalence. Various refactoring procedures can be
performed only in the case of structural equivalence or nonequivalence of partic-
ular sequences of grammar symbols. In most cases, the first case is not an issue,
since in pLERO, the precondition of the structural equivalence can be specified
by using same pattern variables for equivalent structures, alternatively declaring
these variables as global. However, there is an exception when this solution can-
not be used, and that is in the case when one sequence of symbols needs to be



DSL for Grammar Refactoring Patterns 453

expressed using two or more distinct sequences of pattern variables. For example,
when we specify refactoring operator which is referred to as pack, the production
rule that needs to be transformed is passed as a pattern argument, which is typed
as meta-production rule denoting arbitrary production. However, the transfor-
mation rule which specifies this operator needs to operate on more fine-grained
structures of the production that is passed as pattern argument, since the appli-
cation of the pack operator in general case requires dividing the production in
three parts (symbols before packed sequence, packed sequence itself and sym-
bols after packed sequence). Some refactoring procedures may also require that a
grammar does not exhibit some structural properties, for example if refactoring
precondition is that grammar must be in Chomsky normal form, then one of
structural preconditions is that grammar does not include epsilon productions.

The mentioned refactoring problems present our motivation to extend pLERO
with declarations of equivalence and nonequivalence. The equivalence precondi-
tion for two sequences of pattern variables (separated by ‘and’ keyword) is spec-
ified by keyword ‘equivalence’, and notion template, as depicted in Fig. 5, while
nonequivalence precondition for two sequences of variables is specified in similar
fashion, by replacing ‘equivalence’ keyword with ‘nonequivalence’. All pattern
variables used both in equivalence and nonequivalence declaration are implicitly
global.

Fig. 5. Equivalence declaration template

4 Related Work

We were not able to find related research considering grammar refactoring pat-
terns; however, any refactoring approach closely aimed for solving refactoring
issues of a particular problem domain [7–9] can in some sense be considered a
pattern.

Lämmel presented a suite of fifteen grammar transformation operators, four
considering grammar construction, five considering grammar destruction and six
considering grammar refactoring [6]. These operators are in large degree tailored
for solving issues of two specific problem domains e.g. grammar adaptation and
grammar recovery.



454 I. Halupka

Lämmel and Zaytsev recently introduced a suite of four refactoring operators,
specifically aimed for tackling refactoring tasks occurring in the process of gram-
mar extraction from multiple diverse sources of information [10].

5 Discussion

This section examines the process of formal specification of two chosen refactor-
ing operators using the pLERO language. The following discussion elaborates
on difficulty of specifying solutions to commonly occurring refactoring problems
using formal apparatus provided by previous version of pLERO. Subsequently,
it describes a way in which proposed language extensions tackle these issues
and thus provides justification of the new language features with relation to the
purpose of the pLERO language.

Domain-specific languages trade generality for expressiveness in a limited
domain [11]. We believe that a relative comparative advantage of using domain-
specific language over formal apparatus provided by general-purpose languages
should be evaluated in the terms of balance between the generality and the
expressiveness of the language. Therefore, in our view, the growth of domain-
specific language’s expressive power is generally not a sufficient reason for its
extension. In an ideal case, domain-specific languages should only be extended
in situations in which a particular extension does not have a significant negative
impact on the balance between the generality and the expressiveness of the
language in the domain (in the opposite case, benefits of its usage over using a
general-purpose language may be questioned).

In order to demonstrate, that the proposed language extensions fulfill this
condition, we have also implemented both discussed refactoring operators in
Java. However, comparison of expressive powers of different languages may be
difficult, especially since to the best of our knowledge, there is no generally
accepted methodology for performing such task. Therefore we decided to com-
pare a number of language statements used to implement refactoring operators
in both languages. For the analysis of Java code, we used tool Resource Stan-
dard Metrics (available at http://msquaredtechnologies.com), while in pLERO
we evaluated this metric as sum of number of transformation rules and number of
declarations. In the analysis of Java source code, we included only Java methods
that implement logic of refactoring operator, while other parts of source code,
such as grammar parser and grammar model were excluded from the analysis.

5.1 Case A: Unfold

Unfold is the refactoring operator that replaces each occurrence of a nonterminal
on the right-hand side of some production rule with all possible combinations
of right-hand sides of production rules whose left-hand side is this nonterminal.
For instance, consider the grammar containing set of three production rules
{A → ‘a’ B ‘a’, B → ‘a’, B → ‘b’}. In case we unfold the nonterminal B,
the resulting grammar will contain four production rules {A → ‘a’ ‘a’ ‘a’, A →
‘a’ ‘b’ ‘a’, B → ‘a’, B → ‘b’}.

http://msquaredtechnologies.com


DSL for Grammar Refactoring Patterns 455

The unfolding operator is widely used in various procedures of grammarware
engineering, such as post-processing of inferred grammars, and grammar con-
vergence. Grammar inference is a process of extracting a correct grammar for
unknown target language from a finite set of language examples [12]. The prob-
lem is that majority of approaches to grammar inference primarily aim at extract-
ing a grammar of a correct language, focusing on issues related to over-generality
and over-specialization of inferred grammar [13], while the form in which the
extracted grammar is presented remains only a secondary concern if addressed
at all. In this case, the unfolding operator may be repeatedly used on a grammar
with the aim of reducing the count of grammar’s nonterminal symbols, or reduc-
ing depths of derivation trees constructed for sentences of language generated
by a grammar. Grammar convergence is a method of establishing and maintain-
ing the connection between grammar knowledge contained within heterogeneous
software artifacts. In this case, the unfolding operator is preferably used in the
process of transformation of software artifacts, predominantly because it leads
to semantics-preserving grammar transformations [10].

The Java method used to implement the unfolding operator consists of
37 language statements spanning over 47 effective lines of code, while the specifi-
cation of the unfolding operator in pLERO required only 2 language statements.
This pLERO specification is depicted in Fig. 6 and it consists of the proposed
join declaration and the transformation rule that defines transformation on pro-
ductions containing the unfolded nonterminal on their right-hand sides.

Fig. 6. Unfold pattern specification

Since there is an arbitrary number of productions whose left-hand side is
the unfolded nonterminal, and all such productions need to be considered in
each application of unfolding operator, it is clear that some form of iteration
over grammar’s productions is required. Iterations derived from multiple appli-
cations of pattern are in this case not sufficient. The rationale behind this claim
can be derived from the fact that between two consequent applications of pLERO
pattern no states are preserved, and thus the iterations derived from multiple
applications of pattern must preserve grammar equivalence in each step of refac-
toring procedure. In the case of formal specification of unfolding operator this



456 I. Halupka

condition cannot be satisfied without using the ‘join’ declaration, since grammar
equivalence is preserved only if all productions containing the unfolded nonter-
minal on their left-hand side are used in the transformation, and since number
of such productions is arbitrary, they generally cannot be matched in a single
transformation step.

5.2 Case B: Pack

Pack is the refactoring operator that replaces the specific sequence of symbols
contained within right-hand side of some production rule with newly created
nonterminal, and creates new production whose left-hand side is this nonterminal
and right-hand side is this sequence of symbols. Such sequence can be defined by
the position of its initial symbol within production’s right-hand side and by its
length. For instance, consider the grammar containing set of two production rules
{A → ‘a’ ‘a’ B ‘a’ ‘a’, B → ‘a’ ‘b’}. In case we pack sequence of three symbols,
starting from the second symbol of the first production the resulting grammar
will contain three production rules {A → ‘a’ NT ‘a’, NT → ‘a’ B ‘a’, B →
‘a’ ‘b’}, while NT will correspond with newly created nonterminal.

Pack may be used in various situations, with aim of reducing length of
grammar’s productions, reducing number of direct child nodes for each node of
constructed derivation trees and improving grammar comprehension. The Java
method used to implement the unfolding operator consists of 18 language state-
ments spanning over 25 effective lines of code, while the specification of the
unfolding operator in pLERO required only 4 language statements. This pLERO
specification is depicted in Fig. 7 and it consists of three declarations and one
transformation rule.

Fig. 7. Pack pattern specification



DSL for Grammar Refactoring Patterns 457

The general form of the pack operator, specifying pack operator for all possi-
ble sequences of symbols on right-hand side of production rule cannot be specified
without parameterization of patterns since pLERO does not provide any other
formalism for exact specification of sequences of symbols with variable length and
ambiguous structural properties. By ambiguity in the above sentence we under-
stand, the inability to exactly identify some sequence of symbols within pro-
duction on the basis of definition provided by predicate of transformation rule.
However, specific forms of pack operator (for instance, applying pack operator on
sequence of three symbols starting from the second symbol of a production) can
be described without parameterization of patterns, but since the count of such
situations is infinite, the pack cannot be specified as their unification. The same
applies for the equivalence declaration, since general form of pack operator also
cannot be specified without it, and the reason for this is that arbitrary structure
of production within pattern argument could not be unambiguously matched
against specific structure of transformation rule describing the pack operator.

6 Conclusion

The most significant contribution of this paper is the contribution to automated
grammar evolution. As such, our refactoring approach presents an appropri-
ate basis for creation of new theory concerning automated task-driven gram-
mar refactoring, while the provided patterns as well as some other experimental
results [3,5] demonstrate the correctness and the applicability of our approach.
We believe that the proposed extensions significantly increase the applicability
of pLERO language for specification of various patterns occurring in the domain
of grammar refactoring, while preserving relative balance between languages
generality and expressive power.

In the future we would like to focus on increasing the abstraction power of the
pLERO language, so it would formalize other knowledge considering refactoring
problems and context of their occurrence, such as consequences of pattern’s
application on grammar’s quality attributes. We would also like to adopt our
approach to EBNF notation, which is structurally richer and would cause pattern
matching to be more deterministic.

Acknowledgments. This work was supported by project VEGA 1/0341/13 Princi-
ples and methods of automated abstraction of computer languages and software devel-
opment based on the semantic enrichment caused by communication.

References

1. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. (TOSEM) 14(3), 331–380 (2005)

2. Halupka, I., Kollár, J.: Evolutionary algorithm for automated task-driven grammar
refactoring. In: Proceedings of International Scientific Conference on Computer
Science and Engineering (CSE 2012), pp. 47–54. Technical University of Košice,
Slovakia (2012)



458 I. Halupka

3. Halupka, I., Kollár, J., Pietriková, E.: A task-driven grammar refactoring algo-
rithm. Acta Polytech. 52(5), 51–57 (2012)

4. Kollár, J., Halupka, I.: Role of patterns in automated task-driven grammar refac-
toring. In: 2nd Symposium on Languages, Applications and Technologies (SLATE
2013), pp. 171–186. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2013)

5. Kollár, J., Halupka, I., Chodarev, S., Pietriková, E.: pLERO: language for grammar
refactoring patterns. In: 4th Workshop on Advances in Programming Languages
(WAPL 2013), Kraków, Poland (in print)

6. Lämmel, R.: Grammar adaptation. In: Oliveira, J.N., Zave, P. (eds.) FME 2001.
LNCS, vol. 2021, pp. 550–570. Springer, Heidelberg (2001)

7. Louden, K.: Compiler Construction: Principles and Practice. PWS Publishing,
Boston (1997)

8. Lohmann, W., Riedewald, G., Stoy, M.: Semantics-preserving migration of
semantic rules during left recursion removal in attribute grammars. Electron. Notes
Theoret. Comput. Sci. (ENTCS) 110, 133–148 (2004)

9. Kraft, N., Duffy, E., Malloy, B.: Grammar recovery from parse trees and metrics-
guided grammar refactoring. IEEE Trans. Softw. Eng. 35(6), 780–794 (2009)

10. Lämmel, R., Zaytsev, V.: An introduction to grammar convergence. In: Leuschel,
M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 246–260. Springer,
Heidelberg (2009)

11. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

12. Stevenson, A., Cordy, J.R.: Grammatical inference in software engineering: an
overview of the state of the art. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012.
LNCS, vol. 7745, pp. 204–223. Springer, Heidelberg (2013)

13. D’ulizia, A., Ferri, F., Grifoni, P.: A learning algorithm for multimodal grammar
inference. IEEE Trans. Syst. Man, Cybern. - Part B 41(6), 1495–1510 (2011)


	DSL for Grammar Refactoring Patterns
	1 Introduction
	2 Grammar Refactoring Patterns
	3 PLERO Extension
	3.1 Pattern Parameterization
	3.2 Declarations

	4 Related Work
	5 Discussion
	5.1 Case A: Unfold
	5.2 Case B: Pack

	6 Conclusion
	References


