
Model-Based Multi-objective Optimization:
Taxonomy, Multi-Point Proposal,

Toolbox and Benchmark

Daniel Horn1(B), Tobias Wagner2, Dirk Biermann2,
Claus Weihs1, and Bernd Bischl1

1 Chair of Computational Statistics, Technische Universität Dortmund,
Vogelpothsweg 87, 44227 Dortmund, Germany

{dhorn,weihs,bischl}@statistik.uni-dortmund.de
2 Institute of Machining Technology (ISF), Technische Universität Dortmund,

Baroper Str. 303, 44227 Dortmund, Germany
{wagner,biermann}@isf.de

Abstract. Within the last 10 years, many model-based multi-objective
optimization algorithms have been proposed. In this paper, a taxonomy
of these algorithms is derived. It is shown which contributions were made
to which phase of the MBMO process. A special attention is given to the
proposal of a set of points for parallel evaluation within a batch. Pro-
posals for four different MBMO algorithms are presented and compared
to their sequential variants within a comprehensive benchmark. In par-
ticular for the classic ParEGO algorithm, significant improvements are
obtained. The implementations of all algorithm variants are organized
according to the taxonomy and are shared in the open-source R package
mlrMBO.

Keywords: Expected improvement · Hypervolume · Kriging · Perfor-
mance indicator · Surrogate model

1 Introduction

In recent years, the use of surrogate models for partly replacing the actual objec-
tive function allowed multi-objective optimization techniques to be applied to real-
world problems in an efficient way [16]. The resulting combinations of surrogate
models and optimization algorithms are denoted as model-based multi-objective
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optimization (MBMO) algorithms in the following. In the early algorithms, sur-
rogate models have been fitted, and have then been used for the optimization in
replacement of the actual objective functions. No sequential update has been per-
formed. If a validation is performed at all, only the finally selected solution has
been evaluated on the actual problem.

Since 2005, sequential approaches – using the surrogate to decide on new
points to evaluate and update the model in an iterative fashion – have been
proposed. Most of these approaches are based on ideas of the popular Efficient
Global Optimization (EGO) procedure [13]. Early work in the multi-objective
scenario has either scalarized the objectives [15] to allow EGO to be directly
used or has optimized EGO’s figure of merit for different models in parallel using
MOEA [11,19]. Later, also set-based improvement criteria, specifically designed
for multi-objective optimization, have been defined [1,9,14,18,23]. Until now, the
algorithms as a whole were considered as a contribution to the field of MBMO. In
order to better distinguish the actual contributions, a first taxonomy of existing
MBMO approaches is introduced in this paper.

Due to the enormous growth of parallel computing power and the advantages
of performing real experiments in batches, allowing more than one point to be
proposed per iteration (batch processing) is of great interest. Right now, only
one multi-objective approach exists [23] (see [3] for a comparison of methods and
a new approach in the single-objective case). As a consequence, possibilities to
integrate batch proposals into existing MBMO algorithms are proposed in the
paper. In particular for set-based improvement criteria in MBMO, this is done
for the first time, to the best of our knowledge.

The taxonomy is introduced in section 2. In section 3, it is shown how the
existing algorithms can be classified using the concepts of the taxonomy. The
ideas for allowing a batch proposal within specific algorithm classes are proposed
in section 4. All covered algorithms are integrated into the R toolbox mlrMBO
for model-based optimization (MBO), whose software design closely reflects the
presented taxonomy. The toolbox is briefly presented in section 5. The MBMO
algorithms are compared on a comprehensive benchmark, which is described and
evaluated in section 6. The paper is concluded by a summary of the results and
an outlook on possible further improvements.

2 Taxonomy

The taxonomy of the MBMO approaches is based on the standard procedure of
a sequential MBO algorithm, whose phases are shown on the left of Fig. 1. First,
an initial design is evaluated on the actual, expensive objective function in order
to train the surrogate model. In principle, all available design-of-experiment
(DOE) techniques can be used. Due to its connection to the established Kriging
models [13], however, Latin Hypercube Sampling (LHS) is applied in almost all
existent MBMO approaches, and hence explicitly mentioned as an option.

For model fitting, two approaches are established. In the straightforward vari-
ant, an individual surrogate model is built for each objective function. In order to
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Fig. 1. Phases and tasks within a generalized MBMO algorithm

allow established single-objective model-based optimization criteria [12], such as
the expected improvement (EI), the probability of improvement (PI) or the lower
confidence bound (LCB), to be directly used, the objectives can be scalarized
before the surrogate model is fitted. In this case, the multi-objective problem is
effectively reduced to a single-objective one. To still obtain an approximation of
the complete Pareto frontier, the parameterization or type of the scalarization
function can be varied over the iterations of the MBMO algorithm.

The candidate generation represents the step where most of the contribu-
tions have been made. In case of a single model, which predicts the value of
a scalarization of the objectives, established criteria for generating candidates
can be used [3,10,12]. If individual models for each objective are available, three
different strategies can be pursued. Due to the current focus on single-point pro-
posals and set-based multi-objective optimization, mainly criteria for an internal
single-objective optimization of an aggregating infill criterion on the model [21]
have been proposed within recent work. Also specific algorithms for performing
the internal optimization have been designed [20]. A single optimum solution is
found, which is then evaluated in order to update the training set for the model.

If a batch of solutions is desired, two alternative options can be used. In the
first one, the internal optimization is performed by an MOEA, which operates
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on single-objective infill criteria for each model. The final Pareto front approx-
imation then provides the candidates for the batch processing. In the second
variant, different single-objective subproblems (e.g. scalarizations) are optimized
in parallel based on an established infill criterion. By collecting the respective
optimum solutions, a batch of candidates is compiled. This approach has only
been performed within a single algorithm [23] until now.

In the last step, the candidate set is reduced to the desired size. It is thus
only required in case of a multi-point proposal in the candidate generation step.
As the outcome of the MOEA can be filtered to obtain a mutually nondominated
set, another, aggregating infill criterion has to be chosen for the selection if the
number of solutions exceeds the desired one. Compared to the direct optimization
of this criterion, the MOEA allows multiple points to be found, improves explo-
ration of the search space and prevents effects of oversearching. On the other
hand, it may result in suboptimal solutions with regard to the final selection
criterion. If more subproblems than the desired batch size have been internally
optimized, potentially two selection approaches can be used. The former uses a
similar, global variant of the internal criteria within in the subproblems, whereas
the latter decides based on a completely different, e.g., space-filling, explorative
criterion. Both approaches improve exploration while also retaining the optimal-
ity, at least with regard to the defined subproblems.

After each iteration, it is checked whether the optimization process can be
terminated. This decision is usually based on a budget of evaluations fixed before-
hand. Recently, however, a new method to estimate the uncertainty of the current
Pareto front approximation has been proposed [2]. In case the desired approxi-
mation quality is obtained before the total budget is spent, the remaining eval-
uations can be skipped to save expensive resources.

3 Considered MBMO Algorithms

In this subsection, the algorithms considered in the following benchmark study
are described as instantiations of the taxonomy. We only omitted algorithms
applying complex and tedious indicator-based improvement criteria (cf. para-
graph on Direct Indicator-Based MBMO), as recent studies have shown that
conceptually similar (with regard to the taxonomy), but computationally cheaper
variants, provide a comparable or even better performance [20]. By these means,
the generality of the taxonomy is demonstrated. A summary of all approaches
and their classification is provided in Table 1. All algorithms optimize a function
f : Rd → Rm, where d is the decision space dimension and m the number of
objective functions. For specific evaluation, f(x) = y holds.

Scalarization-Based MBMO. Two scalarization-based MBMO algorithms
using the augmented Tchebycheff norm

u(x) = −max [w(f(x) − i)] + ρwT (f(x) − i) (1)
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Table 1. Summary of the approaches from literature considered in the benchmark

Algorithm Initial
design

Model fitting Candidate
Generation

Candidate
selection

Stopping
decision

ParEGO [15] LHS Model of
scalarization

single-objective
optimization of
EI

One point, same
criterion

Total
budget

MOEA/D-
EGO [23]

LHS Models for each
objective

Multiple single-
objective opti-
mizations of
scalarizations

Multi point,
same criterion
(on clusters of
subproblems)

Total
budget

Multi-
EGO [11]

LHS Models for each
objective

Multi-objective
optimization of
individual EI

Multi point,
space-filling
selection

Total
budget

MOEA using
Surrogates [19]

Other
DOE
(Sobol)

Models for each
objective

Multi-objective
optimization of
model prediction

Multi point,
space-filling
selection

Total
budget

MSPOT [22] LHS Models for each
objective

Multi-objective
optimization of
model prediction

One point,
hypervolume
contribution

Total
budget

SMS-
EGO [18]

LHS Models for each
objective

Single-objective
optimization of
the hypervolume
contribution

One point, same
criterion

Total
budget

ε-EGO [20] LHS Models for each
objective

Single-objective
optimization
of the additive
ε-indicator

One point, same
criterion

Total
budget

with ideal point i and weight vector w (
∑m

j=1 wj = 1) do exist, which differ
in model fitting, candidate generation, and candidate selection. ParEGO [15]
randomly chooses w from a uniformly distributed set in each iteration. The
surrogate model is fitted to the respective scalarization, and the EI is optimized
on this model. Only the optimum solution is evaluated on the actual problem.
In contrast, MOEA/D-EGO [23] fits models for each objective. In the internal
optimization, the EI for all weight vectors is maximized in parallel, and finally
the solutions obtaining the highest EI within N predefined weight vector clusters
are evaluated. As a consequence, the distribution of chosen solutions with respect
to the corresponding w can suffer a bias towards balanced components [7].

Pareto-Based MBMO. The algorithms summarized under the term Pareto-
based MBMO are using a multi-objective optimization of infill criteria on each
objective in order to obtain a candidate set for evaluation. In Multi-EGO [11],
the EI is used, whereas MSPOT [22] or Voutchkov’s and Keane’s surrogate-based
MOEA [19] directly optimize the model predictions ŷ(x). The final selection from
the Pareto front approximation is either distance- (Multi-EGO, Surrogate-based
MOEA) or indicator-based (MSPOT).
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Direct Indicator-Based MBMO. In indicator-based MBMO algorithms, the
contribution of an additional point to the indicator value of the current Pareto
front approximation Y∗

approx is formulated as a single-objective criterion for the
internal optimization. In the literature, two approaches can be distinguished.
The first ones directly evaluate ŷ(x) or simple combinations with the associated
uncertainty ŝ(x), such as the LCB l(x) = ŷ(x) + λŝ(x). The algorithms are
denoted as direct indicator-based (DIB) approaches. Examples are the SMS-
EGO [18] for the hypervolume and the ε-EGO [20] for the additive ε-indicator.
Whereas the former is enhanced by a check for nondominance based on additive
ε-dominance (�ε), i.e., nondominance by an additional gap of ε, and a respective
penalty Ψ(x) = max{y(i)∈Y∗

approx|y(i)�εl(x)} −1+
∏m

j=1

(
1 + max(lj(x) − y

(i)
j , 0)

)
,

the latter only uses the respective indicator.
In addition, also more complex indicator-based infill criteria have been pro-

posed. Their criteria analytically compute the expected improvement of the
respective indicator by tediously integrating over the objective space [1,9].
Despite improvements regarding their complexity [8], these indicators are hard
to implement. They are thus excluded from this benchmark study.

4 Batch Proposal for Parallel Evaluation

The structure implied by the taxonomy allows the realization of single phases
to be easily replaced. This was used to propose N points for a batch evalua-
tion within different MBMO algorithms originally designed for a single-point
setup. To accomplish this, the candidate generation and selection steps of these
algorithms were modified.

4.1 ParEGO

ParEGO was enhanced to a multi-point proposal by increasing the number of
weight vectors randomly drawn in each iteration. If N points are desired, cN
(c > 1) weight vectors are selected. Then, the pairwise distance between all
weight vectors is calculated, and one vector of the pair resulting in the minimum
distance is eliminated. This procedure is repeated until the set is reduced to the
desired size. This greedy reduction of the larger set ensures that the selected
weights cover the weight space in an almost uniform way.

In the following, the scalarizations implied by each weight vector are com-
puted and individual models for each scalarization are fitted and optimized with
respect to a single-objective infill criterion. The respective optima of each model
build the batch to be evaluated. As the fitting and optimization of each model
are mutually independent, they can be computed in parallel.

4.2 Pareto-Based MBMO

For the Pareto-based MBMO algorithms, the candidate generation by means
of an internal multi-objective optimization already produces enough candidates
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for the batch evaluation. In the algorithms relying on a distance-based selec-
tion [11,19], a multi-point proposal is already realized. Hence, particularly the
indicator-based candidate selection of MSPOT was enhanced to a multi-point
proposal. To accomplish this, a greedy selection was used. Until the number of
desired candidates for the batch evaluation is reached, the point of the candi-
date set having the highest contribution to the indicator is selected, added to
the Pareto front approximation, and the contributions of the remaining points
is updated. Consequently, the advantage of the multi-objective candidate gen-
eration to produce a set instead of single points is not only used for improving
the exploration of the decision space, but also for obtaining a well-spread batch
of solutions.

4.3 Direct Indicator-Based MBMO

For integrating a multi-point proposal within SMS- and ε-EGO, the concept of
simulated evaluations was used. The optimization of the respective infill criterion
is performed in its standard way, but the optimum solution is not directly eval-
uated on the actual, expensive problem. Instead, the LCB l(x∗) of the optimum
solution x∗ is added to the current Pareto front approximation without refit-
ting the model. Based on the updated approximation, the criterion is optimized
again, and the procedure is repeated until N points for a batch evaluation have
been found. As the contribution to the indicator in the vicinity of the simulated
point vanishes, particularly due to the optimistic bias implied by the LCB, it is
likely that the following optimization will focus on different areas of the objective
space. Hence, a batch of solutions distributed over the Pareto front is expected.

5 The mlrMBO R Software Package

The mlrMBO package [4] is based on the mlr package for machine learning in
R [6]. It is designed as an encompassing toolbox for general MBO techniques,
including single- and multi-objective, as well as single- and multi-point methods.
Not only Kriging can be used as a surrogate model, but every regression method
integrated into mlr. In the single-objective case, the package allows the optimiza-
tion of mixed decision spaces, including integer, categorical and dependent para-
meters1. Extensive logging into a well structured archive enables the post-hoc
inspection of runs. The archive contains the Pareto front and set, as well as all
evaluations made in optimization process. By these means, visualizations of the
runs are possible (at least for bi-objective problems). This is useful for a deeper
understanding of algorithmic aspects in order to derive potential improvements.
As real-world runs on, e.g., complicated simulators, often introduce technical
problems, the package contains various error-handling mechanisms.

The setup of an MBMO algorithm by means of the toolbox is done by special
control objects which closely follow the structure of the taxonomy. The supple-
mentary material to this paper [5] includes a simple and documented example.
1 We plan to soon provide this feature also in the multi-objective case.



MBMO: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark 71

6 Experiments

The improvements obtained by the proposed contributions are evaluated by
means of a comprehensive benchmark. To focus on specific results, our expecta-
tions are first formulated as research hypotheses. Then, the design of the exper-
imental study is described. In the main part of this section, the hypotheses are
checked using statistical testing and the respective observations are discussed.

Page limitations restrict the evaluation to the main hypotheses. The com-
plete source code of the experimental study, tables including all indicator values,
convergence plots, as well as empirical attainment surfaces on the bi-objective
problems can be found in the supplementary material [5]. In order to exploit
the full information provided by the benchmark, we strongly recommend to take
this material into account.

6.1 Research Hypotheses

Within this paper, the benchmark results are analyzed with regard to three
research hypotheses:

1. MBMO can significantly improve the approximation quality compared to
model-free approaches in case of a strictly restricted budget of evaluations.

2. Compared to a single-point proposal, a multi-point proposal can significantly
reduce clock time and preparation effort while not significantly deteriorating
the results with regard to the budget of evaluations.

3. The structure of mlrMBO implied by the taxonomy allows the realizations
of specific steps of the algorithm to be exchanged, benchmarked, and finally
improved in a simple and efficient way.

In addition to the new candidate selection methods for the multi-point pro-
posal, the last hypothesis is tested by exchanging the infill criteria for the can-
didate generation and selection in ParEGO and MSPOT.

6.2 Experimental Setup

Algorithms. ParEGO, SMS-EGO, ε-EGO, and MSPOT were implemented
using the mlrMBO toolbox. Hence, all different classes of MBMO algorithms
(Pareto-, scalarization-, and indicator-based) are covered. As MOEA/D-EGO
applies more complex candidate generation and selection phases, and hence
would result in additional implementation and space requirements, it is omitted
within these experiments. Multi-EGO and MOEA using surrogates are adressed
by considering their alternative infill criterion within MSPOT.

The initial design size of the algorithms was set to ninit = 4d. Kriging models
were fitted with a Matern5/2 kernel. A total budget of ntotal = 40d was allowed,
resulting in 36d points proposed over the iterations. The small ninit was chosen
intentionally in order to have a high number of sequential evaluations while still
operating under a severly restricted total number of evaluations.
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In ParEGO, ρ of equation 1 was set to ρ = 0.05. The number of uniform steps
used for generating the weight vectors was adjusted in a way that approximately
100, 000 weight vectors result in total. The ideal point i was estimated using the
minimum objective values of the currently seen observations.

In SMS-EGO, the gap of the additive ε-dominance was estimated using the
adaptive formula

ε =
ΔY∗

approx

|Y∗
approx| + c · (ntotal − n)

, ΔY∗
approx = max(Y∗

approx) − min(Y∗
approx),

where n is the current number of evaluations and c = 1 − 1/(2m) corresponds
to the idealized probability of a random solution being non-dominated. min and
max are vectorized operations, i. e, the minimum (maximum) for each dimension
is returned. |Y∗

approx| denotes the number of observation in |Y∗
approx|. As reference

point for the hypervolume computations, r = max(Y∗
approx) + 1 was used.

For the evaluation of the first hypothesis, all considered MBMO algorithms
are tested against NSGA-II and random search. NSGA-II was taken from the
R package MCO and was run with a population size P = ninit for 10 genera-
tions. This allows a direct comparison to the MBMO algorithms. As variation
operators, simulated binary crossover (SBX) and polynomial mutation (PM) are
applied with their standard parameters pc = 1, ηc = 15, pm = 1

d , and ηm = 20.
Random search acts as a baseline. It starts with the same initial design as the
MBMO algorithms and randomly proposes the remaining points.

The second hypothesis is analyzed by implementing the candidate generation
and selection concepts of section 4 into mlrMBO. The number of points in a
batch was set to N = 4. To achieve a balanced set of weight vectors in parallel
ParEGO, cN = 20 (c = 5) weight vectors were randomly drawn and reduced
using the distance-based filter. As a consequence of the batch evaluation, only
9d iterations of the sequential procedure were performed.

As examples for investigating the third hypothesis, also the LCB was con-
sidered as infill criterion for optimizing the model of the scalarization within
ParEGO. In addition, the multi-objective optimization for generating the can-
didates in MSPOT was also performed based on the EI and the LCB. As in the
direct indicator-based (DIB) MBMO, the factor λ of the LCB was computed
based on a given probability level p (p = 0.5 in this study) by λ = −Φ−1(0.5 m

√
p).

Due to a full factorial combination of infill criteria and the single- and
multi-point candidate selection, in total 4 variants of ParEGO and 6 variants
of MSPOT were considered. For SMS-EGO and ε-EGO, one single- and one
multi-point variant were assessed, respectively. Hence, 14 MBMO instantiations
were benchmarked. For all algorithms, including NSGA-II and random search,
20 runs were performed. All runs with the same index were based on the same
initial design, except for NSGA-II which used a random initial population for
technical reasons.

The internal single-objective optimization tasks were solved using a focus-
ing random search. It performs large random searches on the decision space,
which can be evaluated in parallel to reduce technical overhead when query-
ing the machine learning model, and iteratively shrinks the boundaries of the
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Table 2. Test functions designed by combining global optimization problems

Name d m Internal test functions

gomop-22 2 2 Branin, 3-Hump-Camel (x ∈ [−2, 2]2)
gomop-25 2 5 Branin, 3-Hump-Camel (x ∈ [−2, 2]2), Hartman,

Goldstein-Price, 6-Hump-Camel (x1 ∈ [−2, 2], x2 ∈ [−1, 1])
gomop-52 5 2 Hartman, Rastrigin (x ∈ [−0.5, 0.5]5])
gomop-55 5 5 Hartman, Rastrigin (x ∈ [−0.5, 0.5]5), Rosenbrock,

Zahkharov (x ∈ [−1, 1]5), Powell (x ∈ [−1, 1]5)

sample space around the best obtained point by a factor of 0.5, enforcing local
convergence. Additionally, restarts of the whole approach were performed, for
a further global optimization effect. In the experiments, a random set of 1, 000
points is evaluated within each of the three focusing steps and three restarts are
performed, resulting in total in 9, 000 evaluations for each internal optimization.

For the multi-objective optimization in MSPOT, again the NSGA-II was
applied. For the internal optimization, the population size 100 and 90 generations
were specified in order to also allow 9000 evaluations of the surrogate models.

Test Functions. All algorithms were evaluated on 9 test functions. Two set-
tings, (d = 2, d = 5) and (m = 2, m = 5), of both, decision and objective
space, were considered, respectively. As established test functions, zdt1, zdt2,
and zdt3 with d = 5 decision and m = 2 objective space dimensions, as well
as dtlz1 with d = 5 and both m = 2 and m = 5, were used. In addition,
the concept of combined multi-objective problems from single-objective prob-
lems [17,20] was utilized in order to design 4 additional test functions. These
test functions are based on established global optimization functions and are
summarized in Table 22. In order to unify the box constraints of the decision
spaces, the respective bounds of each single-objective test function were mapped
to [0, 1]d.

Performance Assessment. The final Pareto front approximations of the algo-
rithms were compared using three performance indicators: R2, hypervolume, and
additive ε [24]. The R2 and the hypervolume indicator were used in their unary
variant. Hence, the ε and R2 indicators have to be minimized, whereas the
hypervolume has to be maximized.

For each test function, the reference sets for the binary ε-indicator were
built from the Pareto-optimal solutions of the union of all available Pareto front
approximations. All approximations and reference sets are normalized to the
interval [1, 2]m with respect to the ideal and nadir points given in table 3 before
computing the indicators.

All indicators are recommended for performance assessment based on their
favorable theoretical properties [24]. As we mainly compare algorithm variants

2 For further information: http://www.sfu.ca/∼ssurjano/optimization.html

http://www.sfu.ca/~ssurjano/optimization.html


74 D. Horn et al.

Table 3. Nadir and ideal points for each test function

gomop-22 gomop-25 gomop-52 gomop-55

Ideal (0, 0) (0, -5, 1, 0, -1.1) (-3.5, 35) (-3.5, 8.5, 35, 0, 0)
Nadir (40, 2.5) (125, 0, 15, 6, 3.1) (0, 125) (0, 3 · 106, 150, 2000, 350)

dtlz2-52 dtlz2-55 zdt1-52 zdt2-52 zdt3-52

Ideal (0, 0) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0, -1)
Nadir (2, 2) (1.25, 1.25, 1.25, 1.25, 1.25) (1, 10) (1, 10) (1, 10)

within their respective MBMO class to check our hypotheses, only the metric
corresponding to the internal selection mechanism of the respective MBMO class
is shown in the result tables.

6.3 Observations

The results of the experiments are summarized in Tables 4, 5, and 6. Significant
improvements (p = 0.05) to the baseline algorithms with respect to indepen-
dent pairwise Wilcoxon tests are indicated by subscripts (r random search, n
NSGA-II). In addition, superscripts are added in order to provide information
regarding the comparison of the multi-point variants with their original counter-
part shown in the left column of each table. + means no significant deterioration,
whereas ++ corresponds to a significant improvement.

Hypothesis 1. Random search and NSGA-II were outperformed by almost
all MBMO algorithms on almost all test functions. The use of kriging models
can thus drastically reduce the number of evaluations required to solve multi-
objective optimization problems. Surprisingly, the original ParEGO (1-ei) was
not able to outperform these baselines on 4 test functions.

Hypothesis 2. The second hypothesis has to be considered separately for the
different algorithms. For ε-EGO (cf. Table 4, left), a significant deterioration of
the multi-point compared to the single-point variant was observed on only one
test function. Hence, the simulated evaluation strategy can be applied to reduce
clock time and preparation effort without a significant loss of approximation
Table 4. Results of the indicator-based EGO variants with regard to their indicator

dib-1-eps dib-4-eps

gomop-22 0.035rn 0.029+
rn

gomop-25 0.074rn 0.075+
rn

gomop-52 0.098rn 0.121+
rn

gomop-55 0.230 0.246+

dtlz2-52 0.003rn 0.004rn

dtlz2-55 0.135rn 0.137+
rn

zdt1-52 0.024rn 0.023+
rn

zdt2-52 0.043rn 0.038++
rn

zdt3-52 0.048rn 0.046+
rn

dib-1-sms dib-4-sms

1.152rn 1.136rn

1.252rn 1.235rn

0.982rn 0.959rn

1.169rn 1.221++
rn

1.011rn 1.007rn

1.476rn 1.492++
rn

1.171rn 1.169rn

1.133rn 1.132rn

1.105rn 1.103+
rn
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Table 5. Results of the ParEGO variants with regard to the R2 indicator

1-ei 4-ei

gomop-22 0.051rn 0.051+
rn

gomop-25 0.061 0.058+

gomop-52 0.176 0.177+

gomop-55 0.066 0.068+

dtlz2-52 0.123 0.123+

dtlz2-55 0.023rn 0.023+
rn

zdt1-52 0.039rn 0.040rn

zdt2-52 0.052rn 0.051+
rn

zdt3-52 0.070rn 0.070+
rn

1-lcb 4-lcb

0.051rn 0.049+
rn

0.043rn 0.043++
rn

0.103rn 0.108+
rn

0.042rn 0.042+
rn

0.110rn 0.110rn

0.024rn 0.024+
rn

0.032rn 0.032+
rn

0.045rn 0.045+
rn

0.059rn 0.059+
rn

quality. The same holds for the use of multiple weight vectors for generating
batch evaluations in ParEGO (cf. Table 5) which did not result in significant
deteriorations, except on ZDT1 (ei) and DTLZ2 with m = 2 (lcb).

For SMS-EGO (cf. Table 4, right) and MSPOT (cf. Table 6), however, this
result could not be confirmed. Only on 2 to 3 of the 9 test functions considered
in this study, the multi-point variants were not significantly worse. On two test
functions, however, a batch evaluation led to improved results for SMS-EGO.

Hypothesis 3. Also for the third hypothesis, the different MBMO algorithms
have to be considered separately. For MSPOT, the exchange of the infill criterion
does generally not result in significant performance differences. Only on two
of the GOMOP functions, the LCB deteriorates the results compared to mean
prediction and EI. Hence, it is possible to exchance specific steps of the algorithm
without detoriating the algorithm’s performance.

The exchange of the EI and the LCB in ParEGO obtained excellent
improvements. On almost all test functions, the results using the LCB are better,
sometimes by far margins. The same held for the multi-point variants. Here the
taxonomy allowed us to construct a new algorithm variant, that outperforms its
original counterpart.

Table 6. Results of the MSPOT variants with regard to the hypervolume indicator

1-mean 4-mean

gomop-22 1.148rn 1.142rn

gomop-25 1.246rn 1.225rn

gomop-52 0.907rn 0.874rn

gomop-55 1.145rn 1.127+
rn

dtlz2-52 1.003rn 0.997rn

dtlz2-55 1.414rn 1.416+
rn

zdt1-52 1.116rn 1.091r

zdt2-52 1.057rn 1.029r

zdt3-52 1.051rn 1.022r

1-ei 4-ei

1.146rn 1.141+
rn

1.245rn 1.216rn

0.908rn 0.862rn

1.143rn 1.124+
rn

1.002rn 0.996rn

1.409rn 1.409+
rn

1.116rn 1.094r

1.056rn 1.034r

1.054rn 1.034r

1-lcb 4-lcb

1.136rn 1.142+
rn

1.248rn 1.226rn

0.904rn 0.880rn

1.126rn 1.126+
rn

1.002rn 0.997rn

1.411rn 1.414+
rn

1.115rn 1.099r

1.055rn 1.029r

1.051rn 1.022r



76 D. Horn et al.

General Recommendations. The original one-point ParEGO using the EI
performs worse compared to all considered MBMO algorithms. By exchanging
the EI with the LCB, however, the approach becomes competetive. The new
variant can thus be recommended as a standard choice for the future.

In case of a one-point proposal, SMS-EGO (dib-1-sms) performs better or
comparable on almost all test cases. It can be proposed as a general recommen-
dation. If a multi-point proposal is desired, the respective variants of the SMS-
EGO (dib-4-sms) and ParEGO (parego-4-lcb) show a comparable performance.
As ParEGO only requires a single model, can be parallized without simulated
evaluations, and is much faster to compute, in particular on many-objective
problems, it can recommended for this case.

6.4 Discussion

The experiments showed two main results: (1) For ParEGO and ε-EGO, no sig-
nificant deterioration of the results can be observed due to the multi-point pro-
posal; (2) The change from the EI to the LCB significantly improved ParEGO.

Regarding the first result, the infill criteria of ParEGO and ε-EGO still have
minor conceptual issues which inhibit the exploitation of the additional infor-
mation obtained by more frequent updates. ParEGO draws the weight vectors
for the scalarization at random. Hence, the implied search directions can point
to regions already crowded with observations. By choosing more weight vectors
per iteration in a space-filling way, the coverage of the Pareto front is improved.
In comparison to MOEA/D-EGO, which evaluates all weight vectors in each
generation and chooses based on the maximum EI values of a predefined, fixed
clustering, the proposed procedure does not suffer from a systematic bias towards
certain regions [7,20]. In ε-EGO, the optimization of an indicator based on two
sets is reduced to one based on a set and a single solution. This may hinder the
finetuning of Y∗

approx with regard to the global indicator.
Main result (2) can be caused by the properties of the fitness landscape

implied by the EI. It has plateaus whose size increases with decreasing uncer-
tainty of the model. The maxima of the EI lie within small basins surrounded by
these plateaus. They are hard to find for both local optimization algorithms and
global sampling strategies, such as the focusing random search. In particular, if
a weight vector pointing to crowded region is selected, the EI can show values
far below 10−6, even after only 2-3 iterations. By switching to the LCB, a global
trend is available which can be exploited during the internal optimization.

7 Conclusions and Outlook

In this paper, a taxonomy for MBMO algorithms was presented for the first
time. Based on this taxonomy, an R toolbox was designed and some established
MBMO algorithms were implemented. In order to allow batch processing, the
candidate generation step of all considered algorithms was enhanced to a multi-
point proposal. In addition, the internal infill and optimization criteria were
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exchanged and different variants of the MBMO algorithms were compared within
a comprehensive benchmark.

For ParEGO and ε-EGO, the multi-point variants did not significantly dete-
riorate the results. They even improved the approximation quality in some cases.
Moreover, the change from the EI to the LCB could improve the results of the
internal optimization within ParEGO.

In future work, the scalability of the multi-point proposal with the batch size
N has to be further evaluated. Moreover, systematic problems, such as the ran-
dom choice of the weight vector in ParEGO, should be tackled. A simple strategy
would be to redraw a weight vector in case of too low EI values. In addition,
different shifts of the ideal (ParEGO) or reference point (SMS-EGO) can be used
for constructing different subproblems for multi-point proposals. The simulated
evaluation strategy used in the DIBs can be combined with fake observations
and a refit of the model in order to improve exploration or exploitation of certain
regions. The framework created by the taxonomy and the R toolbox make this
possible in a structured and convenient way.
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