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Abstract. The traditional approach in the solution of stochastic multi-
objective programming problem involves transforming the original prob-
lem into a deterministic multiobjective programming problem. However,
due to the complexity in practical application problems, the closed form
of stochastic multiobjective programming problem is usually hard to
obtain, and yet, there is surprisingly little literature that addresses this
problem. The principal purpose of this paper is to propose a new hybrid
algorithm to solve stochastic multiobjective programming problem effi-
ciently, which is integrated with Latin Hypercube Sampling, Monte Carlo
simulation, Support Vector Regression and Artificial Bee Colony algo-
rithm. Several numerical examples are presented to illustrate the validity
and performance of the hybrid algorithm. The results suggest that the
proposed algorithm is very suitable for solving stochastic multiobjective
programming problem.

Keywords: Stochastic programming · Multiobjective programming ·
Pareto efficient solution · Hybrid algorithm

1 Introduction

Many real-life problems require considering and optimizing multiple and con-
flicting objectives from the multiobjective optimization point of view, leading
us into the area of multiobjective programming (MOP) probelm. The MOP
problem in static environment with deterministic parameters has received much
research interest [1][2][3]. However, since indeterminacy is inherent in most real
cases, where observed phenomena are disturbed by indeterministic perturba-
tions, the application of deterministic MOP methods to real-world problems
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often faces the difficulty that for a particular problem considered, the param-
eters involved take unknown or uncommensuarable values at the moment of
making the decision. With the great improvement of probability theory, the
probability distribution is widely adopted to depict such kind of indeterminis-
tic phenomenon in real-life MOP problem, which leads to the research field of
stochastic MOP problem. The stochastic MOP modeling is widely used in many
real-world decision making problems of management science, engineering, and
technology, including distributed energy resources planning [4], network design
[5], traveling salesman problem [6], capacitated arc routing problem [7], etc.

The review of these works shows that the stochastic MOP models can lead
to very large scale problems, and the solution of such problems always involves
introducing several equivalent deterministic models to remove the random ambi-
guity in original stochastic MOP problem, such as expected value model, mini-
mum variance model, etc. In this paper, we use the valuation criteria of objective
functions C in stochastic MOP problem to remove the random ambiguity and
obtain the closed form of equivalent deterministic model, where C denotes the
criteria of the specific valuation in practical application. Furthermore, we pro-
pose the definition of Pareto efficient solution in stochastic MOP problem based
on criteria C.

However, due to the complex nature of real life problem, in most cases, the
closed form of equivalent deterministic models in stochastic MOP problem is
difficult to obtain. Under these circumstances, the methods based on approx-
imation should be applied, such as Sample Average Approximation (SAA-N,
where N is the sample size) method [8]. Though the sequence of SAA-N optimal
values (N=1,2 ...) can converge almost surely to the true optimal value, it is pro-
hibitively expensive when the problem to be solved is provided with complicated
formulations and feasible set, such as NP-hard with many local extremums. In
order to improve the computation efficiency, some hybrid algorithms using Monte
Carlo simulation, artificial neural network (ANN) and genetic algorithm (GA)
have been adopted for solving stochastic programming problems [9] [10]. How-
ever, since the traditional hybrid algorithms need to generate large-scale size of
decision points through purely random sampling to obtain the desired precision
in model approximation, and need long time to obtain the optimal solution in
model optimization with GA, the computation cost of these hybrid algorithms
is very time-expensive. A new powerful and efficient hybrid algorithm should be
designed and applied to the stochastic MOP problem to reduce the computation
cost and improve the computation accuracy. For this purpose, a new hybrid algo-
rithm composed of Latin Hypercube Sampling (LHS), Monte Carlo simulation,
Support Vector Regression (SVR) and Artificial Bee Colony (ABC) algorithm
is built to obtain the Pareto efficient solutions in stochastic MOP problem in
this paper.

In the hybrid algorithm presented, it is broken into four phases, that is,
sample phase, simulation phase, approximation phase and optimization phase.
The problem in sample phase is addressed using Latin hypercube sampling intro-
duced by McKay et al [11], which is a very popular sampling method for use with
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computationally demanding models. It has been theoretically and experimentally
proved that LHS is more precise and robust than traditional random sampling
methods [12] [13]. The problem in simulation phase is addressed using Monte
Carlo simulation method to calculate the specified valuation meanings of func-
tions on the sample generated in sample phase. The problem in approximation
phase is addressed using a new and very promising regression technique devel-
oped by Vapnik, Steven Golowich, and Alex Smola [14] in 1996, called support
vector regression (SVR). The excellent performances of SVR in approximation
have been obtained in [15]. The problem in optimization phase is addressed using
ABC algorithm proposed by Karaboga in 2005 [16], which is a meta-heuristic
bionic algorithm based on the intelligent foraging behavior of honey bees. It has
been validated that its effectiveness and efficiency on algorithm performance are
competitive to other optimization algorithms [17][18][19]. Since every phase in
the hybrid algorithm is implanted with advanced methods, where using the LHS
and Monte Carlo simulation for model data collection, SVR for model approx-
imation, and ABC algorithm for model optimization, it is expected that it can
reduce the computation cost and improve the computation accuracy greatly.
The comparison result with traditional hybrid algorithm in a numerical example
shows that this new algorithm is more precise and efficient.

The paper is organized in the following manner. In Section 2, the mathemat-
ical formulation of stochastic MOP problem is introduced, and three equivalent
deterministic models are presented, that is, expected value model, minimum vari-
ance model, and α-optimistic value model. In Section 3, a new powerful hybrid
algorithm is built for solving the stochastic MOP problem more efficiently, and a
numerical example with many stochastic local minimums is provided to illustrate
the solution of stochastic MOP problem using the hybrid algorithm in Section 4.
Finally, a brief summary is given and some open points are stated for future
research work in Section 5.

2 Mathematical Formulation

In this section, the mathematical description of a general stochastic MOP prob-
lem is presented first, and then three equivalent deterministic models are pro-
posed to remove the random ambiguity in original stochastic MOP problem.

2.1 Description of Stochastic Multiobjective Programming Problem

Let us consider the stochastic MOP problem as follows:

min
x∈D

f(x, ξ) = (f1(x, ξ1), f2(x, ξ2), · · · , fp(x, ξn)) (2.1)

where x ∈ D is a vector of decision variables of the problem; ξ1, ξ2, · · · , ξp are
random vectors whose components are random variables, ξi = (ξi1, ξi2, · · · , ξin),
defined on the probability space (Ω ,F ,Pr); and the set of feasible solutions
D ⊂ Rn is crisp, nonempty and compact.
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Since the objective function in model (2.1) becomes dependent not only on
the solution, but also on a random influence, i.e., it becomes a random variable.
There are no methods can compare the random variables directly, it needs to
remove the random ambiguity in it before comparison. Most frequently, the prac-
tical aim is then to propose several equivalent deterministic models to optimize
the specific valuation of the objective functions in model (2.1).

2.2 Equivalent Deterministic Models

Here, the general equivalent deterministic model of original stochastic MOP
problem is described as follows:

min
x∈D

C[f(x, ξ)] = (C[f1(x, ξ1)], C[f2(x, ξ2)], · · · , C[fp(x, ξn)]) (2.2)

where C denotes the criteria of the specific valuation of the objective functions
in model (2.1).

Different real-life problems call for different criteria of valuation to satisfy
its need in practical application, when C denotes the expected value of the
objective functions, the model (2.2) is called expected value model of stochastic
MOP problem, and can be presented as follows:

min
x∈D

E[f(x, ξ)] = (E[f1(x, ξ1)], E[f2(x, ξ2)], · · · , E[fp(x, ξn)]) (2.3)

When C denotes the variance of the objective functions, the model (2.2) is called
minimum variance model of stochastic MOP problem, and can be presented
as follows:

min
x∈D

V [f(x, ξ)] = (V [f1(x, ξ1)], V [f2(x, ξ2)], · · · , V [fp(x, ξn)]) (2.4)

When C denotes the α−optimistic value of the objective functions, the model
(2.2) is called α−optimistic value model of stochastic MOP problem, and can
be presented as follows:

min
x∈D

f(x, ξ)sup(α) = (f1(x, ξ1)sup(α), f2(x, ξ2)sup(α), · · · , fp(x, ξn)sup(α))

(2.5)
Though the random ambiguity is removed, the objectives are usually in con-

flict in stochastic MOP problem, there is no optimal solution that simultaneously
minimizes all the objective functions. In this case, we have to introduce the con-
cept of Pareto efficient solution in stochastic MOP problem, which means that
it is impossible to improve any one of objectives without sacrificing on one or
more of the other objectives.

Definition 2.1 A Pareto efficient solution x∗ in model (2.2) is said to be C
Pareto efficient to the stochastic MOP problem (2.1), where the feasible solution
x∗ is said to be a Pareto efficient solution of model (2.2) if there is no feasible
solution x such that

C[fj(x, ξj)] ≤ C[fj(x∗, ξj)], j = 1, 2, . . . , p

and C[fj(x, ξj)] < C[fj(x∗, ξj)] for at least one index j.
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3 Hybrid Intelligent Algorithm for Stochastic MOP
Problem

To solve stochastic MOP problem with complicated closed form and feasible
set, the most direct approach is to nest the iterative loops by performing com-
plete Monte Carlo estimation (inner loop) for each optimization data request
(outer loop). However, this can be prohibitively expensive, for this reason, the
optimization techniques must be combined with hybrid algorithm. In this section,
the Latin Hypercube Sampling (LHS), Monte Carlo simulation, Support Vector
Regression (SVR) and Artificial Bee Colony (ABC) algorithm are integrated to
design a powerful hybrid algorithm for solving stochastic MOP problem.

3.1 Design of Hybrid Intelligent Algorithm

(1) Generation of Sample Using LHS
The goal of sampling in stochastic MOP problem is to generate a matrix of

experiments Xn = (xij)n×k from the feasible set where n is the number of exper-
iments and k is the number of variables. As an extension of stratified-random
procedure, Latin hypercube sampling has a long history and has shown its
robustness capabilities in sample generation. The LHS involves sampling ns val-
ues from the prescribed distribution of each of k decision variables X1,X2, . . . , Xk

in stochastic MOP problem. Unlike simple random sampling, LHS ensures a full
coverage of the range of each variable by maximally stratifying each marginal
distribution.As the information of design variables in stochastic MOP problem is
always hard-available beforehand, it is usually assumed that all design variables
follow uniform distribution.

(2) Computation Using Monte Carlo Simulation
Due to the complexity in stochastic MOP problem, it is hard to obtain the

closed form of its deterministic objective functions, the Monte Carlo simulation
is adopted to calculate the valuation of objective functions on the sample gener-
ated by LHS. In this paper, the Monte Carlo simulation is adopted to calculate
the expected value, variation and α−optimistic value of the objective functions
respectively.

(3) Approximation Using ABC-SVR
After obtain the sample in feasible set and the corresponding valuation of

objective functions, it needs to build a surrogate model to map the relation-
ships between them, which can be considered as a regression process. Support
Vector Regression (SVR) is a new regression method different from traditional/
statistical ones, it minimizes the generalized error bound instead of the observed
training error, so as to achieve the generalized performance. In this paper, we
start our study on the basis of the SVM toolbox—LIBSVM directly [20], rather
than discuss about the principle and algorithm of SVR. LIBSVM is a library
for SVM; its goal is to let users can easily use SVM as a tool. Since the control
parameters of SVR are very sensitive to its performance, a successful param-
eter selection is very important, especially the parameter γ in kernel function
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and the parameter c of cost. The artificial bee colony (ABC) algorithm is used
to find the optimal control parameters aiming at the best regression accuracy,
called ABC-SVR, whose regression performance will be tested in Section 4. The
main steps of the ABC-SVR application in the stochastic MOP problem can be
summarized as follows:

Step 1: Generate train data and test data based on the sample and its corre-
sponding valuation of objective functions;

Step 2: Normalize the train data and test data to improve the regression ability
of SVR;

Step 3: Denote the parameter γ in kernel function and the parameter c of cost as
a food position (c, γ), and the regression accuracy as the nectar amount;

Step 4: Adopt ABC algorithm to find the optimal control parameters of SVR
(optimal food position) on the normalized data;

Step 5: Use the optimal control parameters to build a SVR model and train it
according to the train data;

Step 6: Employ the test data to validate the accuracy of trained SVR model. If
the regression accuracy does not meet, return to Step 3 to change the
ABC options until the desired accuracy is met.

(4) Optimization Using ABC Algorithm
Created by Karaboga [16], the artificial bee colony algorithm is a new

population-based meta-heuristic method motivated by the intelligent foraging
behaviors of honeybee swarm. There are three essential components in the basic
ABC algorithm, respectively are, food source positions, nectar-amount, and three
kinds of foraging bees (employed bees, onlookers, and scouts). Each food source
position represents a feasible solution to the optimization problem being consid-
ered and the nectar-amount of a food source corresponds to the quality (fitness)
of the solution being represented by the food source. Each kind of foraging bee
performs one particular operation for generating new candidate food source posi-
tions. Employed bees are those bees which are searching the food around the food
source in their memory currently; they are responsible for sharing the informa-
tion about food sources with onlooker bees. Onlooker bees are those bees which
are waiting in the hive for the information from the employed bees; they tend
to choose good food source with more nectar-amount shared by the employed
bees, and then further tap the foods around the selected food source. Scout
bees are those bees which are carrying out random searches for discovering new
food sources if the employed bees and onlookers cannot find a better neighbor-
ing food source. Thus, the ABC algorithm visualizes the employed and onlooker
bees as performing the job of local search (exploitation), whereas the onlookers
and scouts bees as performing the job of global search (exploration). Specifically,
unlike real bee colonies, the ABC algorithm assumes that there is a one-to-one
correspondence between the employed bees and the food sources, that is, the
number of food sources (solution) is the same as the number of employed bees.
The role conversion in the algorithm is activated when the bees cannot find a
better food source, the employed bee of an abandoned food source becomes a
scout bee, which will becomes an employed bee again after it finds a new food
source.
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Fig. 1. Main idea of hybrid algorithm for stochastic MOP problem

Straightforwardly, the main idea of the proposed hybrid algorithm for stochas-
tic MOP problem can be illustrated in Fig. 1. Firstly, the valuations of objective
functions are obtained through the corresponding surrogate models built using
ABC-SVR. Secondly, these valuations are integrated into one objective value
using solution approaches which have been proved validated in deterministic
MOP, such as linear weighted method, ideal point method, etc. Thirdly, the
ABC algorithm finds the optimal solution in feasible set according to the inte-
grated objective value, which is its optimization goal. According to Definition
2.1, the optimal solution ABC algorithm obtained is the Pareto efficient solution
in stochastic MOP problem.

Fig. 2. Framework of hybrid algorithm for stochastic MOP problem

Specifically, the framework of the proposed hybrid algorithm is illustrated in
Fig. 2, the main procedure can be summarized as follows:
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Step 1: Generate sample data from feasible set as input data using LHS;
Step 2: Calculate corresponding objective values as the output data using Monte

Carlo simulation;
Step 3: Build surrogate models for every objective function based on the approx-

imation of input and output data using ABC-SVR;
Step 4: Send the employed bees to the food sources (solution), set it as the

input data and determine the nectar amounts fi (output data) using the
SVR models built in Step 3 and the solution approaches such as linear
weighted method, ideal point method, etc.;

Step 5: Calculate the fitness values of each solution fiti and its corresponding
probability values as follows:

fiti =

{
1/(1 + fi) if fi ≥ 0
1 + abs(fi) if fi < 0

pi = fiti/
SN∑
i=1

fiti

where i = 1, 2, SN ; SN is the number of food sources;
Step 6: Send the onlooker bees to their food sources according to the probability

values;
Step 7: Send the scouts to the search area if a food source could not be improved

through ”limit” trials, and replace it with a new randomly produced
solution if the new solution is better;

Step 8: Memorize the best food source (solution) achieved so far;
Step 9: If a stopping criterion is met, then output the best food source, otherwise,

go back to Step 4.

It can be seen that the hybrid algorithm not only applies classic sample
method to generate sample data in feasible set, but also adopts advanced regres-
sion procedure to build surrogate model, and powerful optimization algorithm
for solution improvement.

3.2 Performance Test
To test the performance of the proposed hybrid algorithm, two numerical exam-
ples are presented. The first one is a stochastic single objective problem with
available closed form of expected value, which is presented as follows.⎧⎪⎨

⎪⎩
min f(x, ξ) = ξ1x

2
1 + ξ2x

2
2 + ξ3x

2
3

s.t.
−1 ≤ x1, x2, x3 ≤ 1

(3.1)

where ξ1, ξ2, ξ3 are random variables, and subject to uniform distributionU (0, 2),
normal distribution N (1, 3), and exponential distribution EXP(1), respectively.
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Due to the linearity characteristic of expected value in probability theory, we can
deduce that

E[f(x, ξ)] = E[ξ1]x2
1 + E[ξ2]x2

2 + E[ξ3]x2
3

and the optimal solution is (0, 0, 0), the corresponding optimal objective value is 0.
Numerically, let us solve (3.1) by using the hybrid algorithm proposed in this

paper. The sample size in LHS is set as 500, and the number of expected value
calculation cycle in Monte Carlo is set as 5000. Parameters set for the ABC
algorithm are given in Table 1, and the maximum number of cycles in ABC is
taken as 200. The optimal solution obtained is (−0.0109, 0.0117,−0.0048), and
the optimal approximated objective value is 2.1357E-4.

Table 1. Control parameters adopted in the ABC algorithm

Control parameters in ABC algorithm

Colony size 40
Limit 100

Number of onlookers Half of the colony size
Number of employed bees Half of the colony size

Number of scouts 1

The convergence of hybrid algorithm in the solution (3.1) are shown in Fig. 3,
from which it is easy to know that the value by simulation is almost equal to
the true optimal value by performing over 450 sample data.

Fig. 3. Convergence to the true optimal value
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The second one is a numerical example from [21], which has been solved by
the traditional hybrid algorithm⎧⎪⎨

⎪⎩
min E[

√
(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2]

s.t.
x2
1 + x2

2 + x2
3 ≤ 10

(3.2)

where ξ1, ξ2, ξ3 are random variables, subject to uniform distribution U(1, 2),
normal distribution N (3, 1), and exponential distribution EXP(4), respectively.
In the traditional hybrid algorithm, it needs to produce 2000 sample data to train
the ANN, and 300 generations in the evolution of GA. While in the new algorithm
we proposed, it just needs to produce 500 sample data, and go through 60 cycles.
Programs are run independently for each algorithm in MATLAB R2010b (version
of 7.11.0.584) on Intel(R) Core(TM) i3-2310M CPU @2.10GHz under Window
XP environment. The obtained results are shown in Table 2. It is clear that
the proposed algorithm is more precise and efficient than the traditional hybrid
algorithm.

Table 2. Performance comparison

Traditional algorithm Proposed algorithm

Optimal solution (1.1035,2.1693,2.0191) (1.1469,2.3775,1.7375)

Minimum objective 3.56 3.34

Time cost 659 seconds 165 seconds

4 Application on A Theoretical Case

Here, a numerical example is provided to illustrate the proposed new hybrid algo-
rithm. Assume that x1, x2 are two decision variables, and ξ1, ξ2 are random vari-
ables, subject to uniform distribution U (1, 5) and normal distribution N (1, 4),
respectively. The problem under consideration is the following bi-objective pro-
gramming problem involving random variables in the objective functions.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x1,x2

f1(x, ξ1, ξ2) = ξ1 sin2(ξ2x1)+ξ1 cos2(ξ2x2)

min
x1,x2

f2(x, ξ1, ξ2) =
(ξ1x1 + ξ2)2 + (ξ2x2 + ξ1)2

10
subject to :

− 2 ≤ x1, x2 ≤ 2

(4.1)

To obtain Pareto efficient solution in problem (4.1), the linear weighted
method and ideal point method are adopted. Using the linear weighted method,
the equivalent deterministic model can be presented as follows:⎧⎪⎪⎨

⎪⎪⎩
min
x1,x2

C[f(x, ξ1, ξ2)] = λ1C[f1(x, ξ1, ξ2)] + λ2C[f2(x, ξ1, ξ2)]

subject to :
− 2 ≤ x1, x2 ≤ 2

(4.2)
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where λ1, λ2 > 0, and λ1 + λ2 = 1.
Using the ideal point method, the equivalent deterministic model can be

presented as follows:
⎧
⎪⎪⎨

⎪⎪⎩

min
x1,x2

C[f(x, ξ1, ξ2)] =
√

(C[f1(x, ξ1, ξ2)]−f0
1 )2+(C[f2(x, ξ1, ξ2)]−f0

2 )2

subject to :

− 2 ≤ x1, x2 ≤ 2

(4.3)

where f0
1 and f0

2 denote the optimal values of C[f1(x, ξ1, ξ2)] and C[f2(x, ξ1, ξ2)]
without considering another objective, respectively.

Since C denotes the general meaning of valuation of random objective func-
tions, three kinds of specific meaning and corresponding deterministic models
are considered here, that is, the expected value model, the minimum variance
model and the α−optiministic value model.

The expected value model is solved first using the hybrid algorithm proposed
in Section 3. Firstly, using LHS to generate sample in the feasible set. As the
information of (x1, x2) is unknown beforehand, it is assumed that decision vari-
ables (x1, x2) follow uniform distribution U (−2, 2). The sample size is set as
500. Then Monte Carlo simulation is adopted to calculate the expected value of
E[f1(x, ξ1, ξ2)] and E[f2(x, ξ1, ξ2)] on the 500 sample points generated by LHS.
The number of expected value calculation cycle is set as 5000. The first ten
sample points and its corresponding objective values are shown in Table 3.

Table 3. The first ten sample points and corresponding objective values

Sample Point Sample Data E[f1(x, ξ1, ξ2)] E[f2(x, ξ1, ξ2)]

SP1 (0.0012,-1.2514) 1.5118 1.5695
SP2 (-0.2989,-1.2339) 2.4112 1.4701
SP3 (-0.8486,-0.9854) 3.0114 1.6675
SP4 (-1.7186,1.8216) 3.0121 6.3310
SP5 (-1.5538,0.8206) 3.0125 3.9422
SP6 (-0.9030,1.7695) 3.0114 4.4770
SP7 (-0.9130,0.5722) 3.0456 2.3637
SP8 (1.9990,-1.9940) 3.0096 7.6842
SP9 (-1.5418,-0.4542) 3.1798 2.9080
SP10 (-0.2729,0.3027) 2.8948 1.6806

After obtain the sample in feasible set and the corresponding expected values
of objective functions, we use ABC-SVR method to build the surrogate model.
We take the 1-450 sample data as the train data, and the 451-500 sample data
as the test data to validate the surrogate model. The accuracy of output predic-
tion is used to represent the regression performance, and compare the regression
performance of ABC-SVR with normal SVR using grid search method and BP
artificial neural network. In the ABC-SVR, parameters set for the ABC algo-
rithm are given in Table 1. The mean square error (MSE) and coefficient of
determination R2 are adopted to be regression performance index of these three
methods, and the comparison results are shown in Table 4 and 5.
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As shown in Table 4 and 5, the regression performance of ABC-SVR is best,
and has achieved an ideal precision.

After obtaining the two surrogate models of E[f1(x, ξ1, ξ2)] and E[f2(x, ξ1, ξ2)],
the ABC algorithm is adopted to find the optimal solution of expected value model
using linear weighted method and ideal point method. In the ABC algorithm, con-
trol parameters set for the ABC algorithm are the same as shown in Table 1.

Using linear weighted method, three scenarios are considered here, they are
λ1 = 0.7, λ2 = 0.3, λ1 = 0.5, λ2 = 0.5, λ1 = 0.3, λ2 = 0.7, respectively. The
results obtained are shown in Table 4.4.

Table 4. Regression performance comparison of three methods (ABC-SVR / SVR /
ANN) about E[f1(x, ξ1, ξ2)]

Method Parameters Regression Performance

MSE R2

ABC-SVR bestc=1.5340, bestg=3.5834 0.00012 0.99875
SVR bestc=0.4682, bestg=0.3356 0.00356 0.98499
ANN hidden layer number=10 0.01647 0.96522

Table 5. Regression performance comparison of three methods (ABC-SVR / SVR /
ANN) about E[f2(x, ξ1, ξ2)]

Method Parameters Regression Performance

MSE R2

ABC-SVR bestc=0.7462,bestg=0.164 0.00065 0.9982
SVR bestc=2.6284,bestg=0.1864 0.0017 0.9819
ANN hidden layer number=10 0.0028 0.9712

Table 6. Results obtained in expected value model using linear weighted method

Scenarios Results

λ1 = 0.7, λ2 = 0.3
E[f1(x, ξ1, ξ2)] 1.3993
E[f2(x, ξ1, ξ2)] 2.3562

Optimal solution (-0.0157,-2)

λ1 = 0.5, λ2 = 0.5
E[f1(x, ξ1, ξ2)] 1.5006
E[f2(x, ξ1, ξ2)] 1.9588

Optimal solution (-0.0200,-1.7071)

λ1 = 0.3, λ2 = 0.7
E[f1(x, ξ1, ξ2)] 1.9742
E[f2(x, ξ1, ξ2)] 1.3857

Optimal solution (-0.0236,-1.5080)

As shown in the Table 6, the results obtained are different in three scenarios,
this is due to that different weights denote different importance of the objec-
tives, higher weight implies higher importance. Therefore, the optimal solutions
obtained are different.

Using ABC algorithm and ideal point method, we can obtain the minimum
values of E[f1(x, ξ1, ξ2)] and E[f2(x, ξ1, ξ2)] on the feasible set without consider-
ing other objectives. They are 1.1196, 1.2716, respectively. Then, we can solve the
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Table 7. Results obtained in expected value model using ideal point method

Results

E[f1(x, ξ1, ξ2)] 1.6053
E[f2(x, ξ1, ξ2)] 1.7532

Optimal solution (-0.0236,-1.5080)

Table 8. Results obtained in minimum variance model using linear weighted method

Scenarios Results

λ1 = 0.7, λ2 = 0.3
V [f1(x, ξ1, ξ2)] 1.1581
V [f2(x, ξ1, ξ2)] 2.3017

Optimal solution (0.1854,0.3297)

λ1 = 0.5, λ2 = 0.5
V [f1(x, ξ1, ξ2)] 1.1843
V [f2(x, ξ1, ξ2)] 1.1596

Optimal solution (-0.1419,0.2198)

λ1 = 0.3, λ2 = 0.7
V [f1(x, ξ1, ξ2)] 1.2104
V [f2(x, ξ1, ξ2)] 0.7798

Optimal solution (-0.1242,-0.1821)

Table 9. Results obtained in minimum variance model using ideal point method

Results

V [f1(x, ξ1, ξ2)] 1.1643
V [f2(x, ξ1, ξ2)] 0.8005

Optimal solution (-0.1668,-0.2527)

Table 10. Results obtained in α−optiministic value model using linear weighted
method

Scenarios Results

λ1 = 0.7, λ2 = 0.3
f1(x, ξ1, ξ2)sup(α) 0.2470
f2(x, ξ1, ξ2)sup(α) 0.4366
Optimal solution (0.0012,-1.2514)

λ1 = 0.5, λ2 = 0.5
f1(x, ξ1, ξ2)sup(α) 0.7220
f2(x, ξ1, ξ2)sup(α) 0.2138
Optimal solution (-0.2534,-1.6625)

λ1 = 0.3, λ2 = 0.7
f1(x, ξ1, ξ2)sup(α) 1.2862
f2(x, ξ1, ξ2)sup(α) 0.1168
Optimal solution (-0.6105,-1.4748)

Table 11. Results obtained in α−optiministic value model using ideal point method

Results

f1(x, ξ1, ξ2)sup(α) 0.3876
f2(x, ξ1, ξ2)sup(α) 0.3672
Optimal solution (-0.0988,-1.2830)
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expected value model using ideal point method with the same way in the solu-
tion of expected value model using linear weighted method. The results obtained
are shown in Table 7.

Following the same procedure in the solution of expected value model illus-
trated above, the results obtained in the minimum variance model and the
α−optiministic value model are shown as follows, where α is set as 0.8.

As shown in the Table 6-11, the Pareto efficient solutions obtained in three
deterministic models are different from each other, this is due to that the mean-
ings applied to remove the random ambiguity are different. Therefore, in the
practical application of stochastic MOP, it needs to specify the meanings of ran-
dom objective functions first, then remove the random ambiguity in objectives
using the meanings specified to obtain the equivalent deterministic MOP prob-
lem, and finally generate the Pareto efficient solutions under the meanings speci-
fied. Additionally, in the same deterministic MOP model, the solutions obtained
using linear weighted method and ideal point method are Pareto efficient, this
indicates that the solution approach and the new hybrid algorithm proposed in
this paper are valid.

5 Conclusions

The general purpose of this study is to propose a powerful hybrid algorithm to
address the difficulty that the closed form of converted deterministic model in
practical stochastic MOP problem is usually hard to obtain, which is integrated
with Latin Hypercube Sampling (LHS), Monte Carlo simulation, Support Vec-
tor Regression (SVR) and Artificial Bee Colony (ABC) algorithm. A numerical
example was provided to illustrate the validity of the solution approach and
the performance of the hybrid algorithm. Our study shows that, different crite-
ria of the equivalent deterministic MOP model can result in different solutions
obtained, and the hybrid algorithm built in this paper is efficient to solve stochas-
tic MOP problem. In our view, to be studied in future, a new solution method
is needed for treating stochastic MOP problem on the Pareto front directly.
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