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Preface

EMO is a biennial international conference series devoted to the theory and practice of
evolutionary multi-criterion optimization.

The first EMO took place in 2001 in Zürich (Switzerland), with later conferences
taking place in Faro (Portugal) in 2003, Guanajuato (Mexico) in 2005, Matsushima-
Sendai (Japan) in 2007, Nantes (France) in 2009, Ouro Preto (Brazil) in 2011, and
Sheffield (UK) in 2013. The proceedings of this series of conferences have been pub-
lished as a volume in Lecture Notes in Computer Science (LNCS), respectively, in
volumes 1993, 2632, 3410, 4403, 5467, 6576, and 7811.

The 8th International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2015) took place in Guimarães, Portugal, from March 29 to April 1, 2015. The
event was organized by the University of Minho. Following the success of the two pre-
vious EMO conferences, a special track was offered aiming to foster further cooperation
between the EMO and the multiple criteria decision making (MCDM). Also, a special
track on real-world applications (RWA) was endorsed.

EMO 2015 received 90 full-length papers, which were submitted to a rigorous
single-blind peer-review process, with a minimum of three referees per paper. Follow-
ing this process, a total of 68 papers were accepted for presentation and publication in
this volume, from which 40 were chosen for oral and 24 for poster presentation. The
selected papers were distributed through the different tracks as follows: 46 main track,
6 MCDM track, and 16 RWA track.

The conference benefitted from the presentations of plenary speakers on research
subjects fundamental to the EMO field: Thomas Stüetzle, from the IRIDIA laboratory
of Université libre de Bruxelles (ULB), Belgium; Murat Köksalan, from the Industrial
Engineering Department of Middle East Technical University, Ankara, Turkey; Luís
Santos, from the University of São Paulo and Embraer, Brazil; Carlos Fonseca, from
the University of Coimbra, Portugal.

From the beginning, this conference provided significant advances in relevant sub-
jects of evolutionary multi-criteria optimization. This event aimed to continue these
type of developments, being the papers presented focused on: theoretical aspects, algo-
rithms development, many-objectives optimization, robustness and optimization under
uncertainty, performance indicators, multiple criteria decision making, and real-world
applications.

Finally, we would express our gratitude to the plenary speakers for accepting our in-
vitation, to all the authors who submitted their work, to the members of the International
Program Committee for their hard work, to the members of the Organizing Committee,
particularly Lino Costa, and to the Track Chairs Kaisa Miettinen, Salvatore Greco, and
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Robin Purshouse. We would like to acknowledge the support of the School of Engineer-
ing of the University of Minho. We would also like to thank Alfred Hofmann and Anna
Kramer at Springer for their support in publishing these proceedings.

March 2015 António Gaspar-Cunha
Carlos Henggeler Antunes

Carlos Coello Coello
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Interactive Approaches in Multiple Criteria Decision
Making and Evolutionary Multi-objective Optimization

Murat Köksalan

Industrial Engineering, Middle East Technical University
06800 Ankara, Turkey

koksalan@metu.edu.tr

Abstract. The developments related to Multiple Criteria Decision Making
(MCDM) go back a long time. It has been over 50 years since MCDM became an
active research area. There have been major developments during this time both
in theory and applications.

Evolutionary Multi-objective Optimization (EMO) is a relatively new field
that has enjoyed a fast growth. EMO, although heuristic in nature, can success-
fully handle many complex problems. EMO has started independently from
MCDM and there was very little interaction between the researchers in early
developments of EMO. Earlier approaches mostly addressed two objectives and
attempted to generate the whole PO set. Preference-based approaches that attempt
to converge preferred regions are more recent. Efforts to combine forces from the
two areas are also more recent.

Although approaches have been developed to characterize the whole Pareto
Optimal (PO) frontier/set in both MCDM and EMO, this task is neither useful
nor feasible for many complex practical problems. Many of the PO solutions may
be less attractive than many dominated solutions for the decision maker (DM). In
complex problems from practice, the available computational budget would be
more wisely spent if the search is concentrated in the regions of interest to the
DM. Therefore, obtaining preference information from the DM and using the
obtained information to converge the preferred solutions is important. Incorpo-
rating preference information in the solution process has been well-developed in
MCDM and is being addressed in EMO in recent years.

In this talk, I will briefly review the historical developments in MCDM. Then
I will concentrate on preference-based approaches in general and interactive ap-
proaches in particular. I will cover some interactive approaches developed for
different types of MCDM problems. I will also cover some of the interactive ap-
proaches developed in the EMO field. Multi-objective combinatorial optimization
(MOCO) problems are computationally complex and there is a growing interest
in this field. I will briefly cover some preference-based approaches in MOCO and
emphasize the potential of EMO to address these problems.



Towards Automatically Configured Multi-objective
Optimizers

Thomas Stützle

IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
stuetzle@ulb.ac.be

Abstract. The design of algorithms for computationally hard problems is a time-
consuming and difficult task. This is in large part due to the large number of
degrees of freedom in defining and selecting algorithm components and settings
of numerical parameters but also due to a number of aggravating circumstances
such as the NP-hardness of most of the problems to be solved and the difficulty of
algorithm analysis due to stochasticity and heuristic biases. Even when tackling
specific problems or problem classes by off-the-shelf optimizers such as high per-
forming integer programming solvers, their performance can often be improved
substantially by using appropriate settings of the parameters that influence search
behavior.

While traditionally algorithm design and the choice of specific parameter set-
tings has usually been done manually, over the recent years various automatic
algorithm configuration methods have been developed to effectively search large
parameter spaces and to support algorithm designers as well as practitioners.
These automatic algorithm configuration methods have shown to be able to iden-
tify new algorithm designs and performance improving parameter settings in a
number of applications and proved in this way to be instrumental for developing
high-performance algorithms.

In this talk, we will first introduce the scope and potential impact automatic
algorithm configuration methods have and give an overview of the main exist-
ing techniques. We will then illustrate the successful application of automatic
algorithm configuration methods by a number of case studies where they have
been crucial to obtain improved algorithm designs and reach or surpass state-
of-the-art performance. In particular, we show how these methods can be ap-
plied to automatically configure algorithms for multi-objective optimization and
we demonstrate the performance gains that can be achieved for various types of
multi-objective optimizers ranging from the two-phase and Pareto local search
framework, over multi-objective ant colony optimization algorithms to multi-
objective evolutionary algorithms. Next, we show how the same methodology
that appeared to be successful for configuring multi-objective optimizers can be
used to improve the anytime behavior of algorithms. Finally, we argue that au-
tomatic algorithm configuration will transform the way optimization algorithms
are developed in the future and give an outlook on future research challenges.



A Review of Evolutionary Multiobjective Optimization
Applications in Aerospace Engineering

Luis Santos

Universidada de São Paulo, São Paulo, Brazil
lccs13@yahoo.com

Abstract. Evolutionary Multiobjective Optimization (EMO) has been applied to
several relevant problems in Aerospace Engineering for several years. To estabil-
ish a basis of comparison a 10-year span of publications of the aerospace field is
analyzed. This basis of publications is comprised by the publications of the pro-
fessional societies AIAA, ICAS, SAE and their related journals. From the papers
selected several aspects will be compared such as:

– The choice of the evolutionary, or bio-inspired methods, such as genetic al-
gorithms or particle swarm.

– The number of objective functions and their type (continuous or discrete)
– The number of design variables and their type (continuous or discrete)
– The number of constraints, the type of constraints, and how the constraints

are implemented.
– Convergence criteria and computational cost
– The use of surrogate methods
– and any other relevant aspects regarding applications.
The analysis of these parameters will provide an idea of current level of use

and application of EMO methods in Aerospace, providing the EMO research
community with a reference to the current industrial practice in the field. The
analysis of the data presented aims to encourage potentially novel applications
incorporating the advances of the latest EMO research. That may serve as a guide
of cooperation between researchers of both fields.



Performance Evaluation of Multiobjective Optimization
Algorithms: Quality Indicators and the Attainment

Function

Carlos M. Fonseca

CISUC, Department of Informatics Engineering, University of Coimbra
Pólo II, 3030-290 Coimbra, Portugal

cmfonsec@dei.uc.pt

Abstract. The development of improved optimization algorithms and their adop-
tion by end users are intrinsically dependent on the ability to evaluate how well
they perform on the problem classes of interest. In the absence of theoretical
guarantees, performance must be evaluated experimentally. Beyond the selection
of suitable, representative problem instances, which is a crucial step in the de-
sign of such experiments, analysis of the results must take both the experimental
conditions and the nature of the data collected into account.

A posteriori approaches to multiobjective optimization typically lead to dis-
crete approximations of the true Pareto-optimal front of the given problem in
the form of sets of mutually non-dominated points in objective space. When the
algorithm is stochastic, such non-dominated point sets are random, and vary ac-
cording to some probability distribution.

In the literature, two main approaches have been proposed to deal with non-
dominated point set distributions: quality indicators and the attainment function.
Quality indicators map non-dominated point sets to real values, and make subse-
quent data analysis simpler by side-stepping the set nature of the data. In contrast,
the attainment-function approach addresses the non-dominated point set distribu-
tion directly. Distributional aspects such as location, variability, and dependence,
are captured by the moments of the set distribution, which can be estimated from
the raw non-dominated point set data.

In this presentation, quality indicators and the attainment function are
reviewed as tools for the performance evaluation of stochastic multiobjective op-
timization algorithms. Complexity issues concerning the computation, visualiza-
tion, and size of the moment estimates, as the number of objectives, number of
runs, and size of the Pareto-front approximations grow are highlighted. Recent re-
sults relating the statistical distributions of some unary quality indicators to the at-
tainment function are presented, establishing a link between the two approaches.
A discussion of opportunities for further work concludes the presentation.
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Abstract. Most evolutionary multi-objective optimization (EMO)
methods use domination and niche-preserving principles in their selection
operation to find a set of Pareto-optimal solutions in a single simulation
run. However, classical generative multi-criterion optimization methods
repeatedly solve a parameterized single-objective problem to achieve the
same. Due to lack of parallelism in the classical generative methods,
they have been reported to be slow compared to efficient EMO meth-
ods. In this paper, we use a specific scalarization method, but instead of
repetitive independent applications, we formulate a multimodal scalar-
ization of multiple objectives and develop a niche-based evolutionary
algorithm to find multiple Pareto-optimal solutions in a single simula-
tion run. Proof-of-principle results on two to 10-objective problems from
our proposed multimodal approach are compared with standard evolu-
tionary multi/many-objective optimization methods.

Keywords: Multimodal optimization · Achievement scalarization
function · Genetic algorithms · Multi-objective optimization

1 Introduction

The success in solving multi-objective optimization problems using evolutionary
algorithms comes from a balance of three aspects in their selection operation:
(i) emphasis of non-dominated solutions in a population, (ii) emphasis of less
crowded solutions in a population and (iii) emphasis of elites in a population
[3,6]. The parallel search ability introduced by the population approach and
recombination operator of an EMO algorithm aided by the above properties of
its selection operator causes it to move towards the speed. On the other hand,
classical generative multi-objective optimization methods base their search by
solving a series of parameterized single-objective problem serially [2,19]. One
criticism of the generative approaches is their lack of parallelism which makes
them computationally expensive compared to EMO methods [21].

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-15934-8 1
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When a finite set of Pareto-optimal solutions is the target, the multi-objective
optimization problem can be considered as a single-objective multimodal prob-
lem in which each Pareto-optimal solution is targeted as an independent optimal
solution. Although the idea is intriguing, what we need is a suitable scalariza-
tion method that will allow us to consider such a mapping. In this paper, we use
achievement scalarization function (ASF) method [24] and construct a multi-
modal problem for a multi-objective optimization problem. We then suggest an
efficient niching-based evolutionary algorithm [9,16] for finding multiple opti-
mal solutions in a single simulation run. The resulting multimodal EA (we call
MEMO) is shown to solve two to 10-objective optimization problems for finding
hundreds of Pareto-optimal solution efficiently. These proof-of-principle results
are encouraging and suggest immediate extension of the approach to solve more
complex multi/many-objective optimization problems.

In the remainder of the paper, we give a brief summary of niching-based evo-
lutionary multimodal optimization methods in Section 2. Section 3 discusses clas-
sical generative multi-criterion optimization methods. In Section 4, we present
the proposed MEMO algorithm. Results on multi and many-objective problems
are shown and compared with NSGA-II [8] and recently proposed NSGA-III [10]
in Section 5. Finally, conclusions and extensions to this study are discussed in
Section 6.

2 Multimodal Optimization

Multimodal function optimization problems have multiple global and/or local
optima and the task in a multimodal optimization algorithm is to find as many
such optima as possible in a single simulation. The advantage of finding mul-
tiple optimal for a single-objective optimization problem is that multiple solu-
tions provides the user with a flexibility of implementing a different solution as
and when the situation demands and also their knowledge provides additional
insights for a better understanding the problem at hand.

Since evolutionary algorithms processes a population at every generation,
they are ideally suitable for finding and maintaining multiple optimal solu-
tions. Despite some early studies [1], Goldberg and Richardson [16] suggested
a niching-based genetic algorithm with the help of a sharing function concept
to solve multi-modal problems. Later, many other principles, such as crowd-
ing [13], clearing [20], and restricted tournament selection [17], clustering [25]
have been suggested. In these methods, the usual selection operator in an EA
is restricted to compare neighboring solutions alone, thereby allowing to form
multiple niches hopefully around each optimal solution. Recently, Deb and Saha
suggested a multiobjectivization strategy for solving multimodal problems [11].
A good review of niching-based EAs can be found elsewhere [5].
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3 Classical Generative Methods for Multi-objective
Problem Solving

Multi andmany-objectiveoptimizationproblemsgive rise toasetofPareto-optimal
solutions, thereby making them more difficult to be solved than single-objective
optimization problems. While efficient evolutionary multi-objective optimization
(EMO) methods [15,18,22] were developed since early nineties to find multiple
Pareto-optimal solutions in a single simulation run, classical generative methods
were suggestedsinceearly seventies [2]. In thegenerativeprinciple, amulti-objective
optimization problem is scalarized to a single-objective function by using one or
more parameters. Weighted-sum approach use relative weights for objective func-
tions; epsilon-constraint approach uses a vector of ε-values for converting objec-
tive functions into constraints; Tchebyshev method use a weight vector for forming
the resulting objective function. The idea is then to solve the parameterized single-
objective optimization problem with associated constraints repeatedly for differ-
ent parameter values one at a time. The above scalarization methods, if solved to
their optimality, are guaranteed to converge toaPareto-optimal solutionevery time
[19].However, somescalarizationmethodsarenot capableoffindingcertainPareto-
optimal solutions in a problem no matter what parameter values are chosen [14].
These methods (such as weighted-sum or Lp-norm (for p �= ∞) methods) are rela-
tively unpopular and methods capable of finding each and every Pareto-optimal
solution for certain combination of parameter values, such as epsilon-constraint
and Tchebyshev method are popular. Here, we use one such popular scalarization
method that also guarantees to find any Pareto-optimal solution.

3.1 Achievement Scalarizing Function (ASF) Method

The achievement scalarizing (ASF) method [24] requires one reference point Z =
(z1, z2, . . . , zM )T and one weight vector w = (w1, w2, . . . , wM )T as parameters.
Both these vectors are associated with the objective space and are illustrated in
Figure 1.

For any variable vector x, the corresponding objective vector f is shown in the
figure. For the supplied w-vector (representing inverse of the relative preference
of objectives), the following ASF function is minimized to find a Pareto-optimal
solution:

Minimize ASF(x) = maxM
j=1

(
fi(x)−zi

wi

)
,

subject to x ∈ X.
(1)

For the illustrated objective vector F = (f1, f2)T , two components within brack-
ets are (f1(x) − z1)/w1 and (f2(x) − z2)/w2. If the point F lies on the weight
vector (ZW), that is, the point G, the above two components will be identical
and the ASF function is equal to any of the two terms (say, it is equal to the first
term, ASF(G) = (f1(x) − z1)/w1). However, since the objective vector F lies
below the weight vector, the maximum of the two components will be ASF(F) =
(f1(x)−z1)/w1. This is identical to ASF(G). In fact, for all objective vectors on
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Fig. 1. The achievement scalarizing func-
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Fig. 2. The augmented achievement
scalarizing function (AASF) approach is
illustrated

the line GH, the ASF value will be identical to the that at F. The same argu-
ment can be made with any point on the line GK. The figure also shows two
other objective vectors (A and B) and their respective iso-ASF lines. Clearly,
the ASF value for F is smaller than that of A, which is smaller than ASF value
of B. Thus, as the iso-ASF line comes closer to the reference point Z, the ASF
value gets smaller. Since the problem in Equation 1 is a minimization problem,
the ASF optimization will result in point O as the optimal solution.

It turns out that the above ASF optimization problem can result in a weakly
efficient point as well. To ensure finding a strict efficient point, the following
augmented scalarizing function (AASF) was suggested [19]:

Minimize AASF(x) = maxM
j=1

(
fi(x)−zi

wi

)
+ ρ

∑M
i=1

(
fi(x)−zi

wi

)
,

subject to x ∈ X.
(2)

A small value of ρ (≈ 10−4) is suggested. The augmented term makes the iso-AASF
lines inclined as shown in Figure 2 and avoids finding weakly efficient points. For
the example shown, the weight vector intersects the weakly efficient front at A,
but the AASF value at this point is not the minimum possible value. The point O
has a smaller AASF value as the corresponding iso-AASF lines intersect the weight
vector closer to the reference point Z. Interestingly, the use of AASF for a scenario
depicted in Figure 1 still finds the identical efficient solution O.

4 Multimodal Approach for SolvingMulti-objective
Optimization (MEMO)

In our proposed multimodal approach, we plan to scalarize the multi-objective
problem with an augmented achievement scalarizing function (AASF), requiring
a reference point Z and a weight vector w. We have noticed that for a single ref-
erence point Z, we can find a single Pareto-optimal solution by minimizing the
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corresponding AASF problem. Thus, if we specify multiple reference points (Z(k),
k = 1, 2, . . . ,K) systematically distributed in the objective space, we can obtain
multiple Pareto-optimal solutions, each corresponding to one reference point. This
principle is the main crux of our proposed multimodal approach, which we formu-
late next.

4.1 Formulating aMultimodal Problem

In the recentpast, decomposition-basedmethodshavebeenproposed to solvemulti-
and many-objective optimization problems [10,26]. In both these methods, Das
and Dennis’s [4] strategy for specifying a set of reference directions or reference
pointswere suggested.OnanM -dimensional linear hyperplanemaking equal angle
to all objective axes and intersecting each axis at one, we specify K =

(
(M+p−1)

p

)
structured points, where p is one less than the number of points along each edge of

the hyperplane. Each of the reference point Z(k) =
(
z
(k)
1 , z

(k)
2 , . . . , z

(M)
M

)T

would

then satisfy the following condition:
∑M

i=1 z
(k)
i = 1. Figure 3 shows distribution of

15 such reference points on a M = 3-objective problem with p = 5. For each pop-
ulation member x, we can calculate the AASF value (AASF(x,Z(k)) with respect
to each reference point Z(k). Thereafter, we can assign the minimum AASF value
over all reference points as the fitness to the population member x:

Fitness(x) =
K

min
k=1

AASF(x,Z(k)). (3)

This way, a separate minimum will be created at the efficient point corresponding
to each reference point.

The formulation of the AASF problem require an automatically defined weight
vector w for each reference point. The resulting multimodal AASF would then
depend on the chosen weight vector. One idea would be to use a uniform weight
vector, meaning a constant wi = 1/

√
M for all i. However, such a weight vector

Fig. 3. A diverse set of reference
points is created using Das and Den-
nis’s strategy for M = 3 and p = 5

Fig. 4.Themultimodal achievement scalarizing
function having eight minima is illustrated
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would emphasize the extreme efficient vectors more than the intermediate ones.
We suggest the following combination of reference points and weight vectors for
our purpose. Instead of using different reference points and a single weight vec-
tor, we suggest using a single reference point and multiple weight vectors. First, we
rename K diverse reference points created using Das and Dennis’s approach as piv-
otal points, p(k)i = z

(k)
i for all k = 1, 2, . . . ,K in each objective i. Then, an utopian

point is set as the only reference point: zi = f∗
i −εi, where f∗

i is the minimum value
of the i-th objective and εi is a small positive number (0.01 is usedhere).Thereafter,
each weight vector corresponding to k-th pivotal point is calculated as follows:

w
(k)
i = p

(k)
i − zi, for all i = 1, 2, . . . ,M. (4)

Theweight vector thus created is normalized to convert it into aunit vector.Due
to the use of an utopian vector as Z, the above weight values are always strictly
positive, thereby satisfying the non-negativity requirement of weights for AASF
scalarization process of solving multi-objective optimization problems. Figure 4
shows the contour plot of the above multimodal ASF for a two-objective ZDT2
problem for p = 7. The figure indicates that the ASF has eight different minimum
solutions on the efficient front. It is interesting to note how the whole objective
space is classified into eight non-overlapping niches. A similar multimodal function
also results using AASF. A suitable niching-based EA should now find these eight
efficient solutions in a single simulation run.

4.2 ProposedMultimodal Evolutionary Algorithm:MEMO

The basic framework of the proposed multi- or many-objective MEMO algorithm
is given in Algorithm 1. The main idea is to preserve individuals corresponding to
different pivotal points. One advantage of MEMO over NSGA-II or NSGA-III is
that it does not require non-dominated sorting of solutions into different fronts.
Only the first front needs to be identified for the sake of normalization. It should
be noted that the specific handling of different niched members in the selection
operation requires an extra cost, but as shown later in Section 5 that the overall
method is comparable to existing methods in terms of its computational effort.

Algorithm 1. Generation t of MEMO procedure
1: gen = 1, initialize Pt and reference points Z1,2,...,H

2: Archieve and Normalize(Pt) # Procedure 1
3: [MinAASF, ClusterID] = FitnessAssignment(Pt) # Procedure 2
4: for gen = 2 to genmax do
5: Qt ← Selection(Pt) # Procedure 3
6: Qt ← Crossover(Qt) # SBX [7]
7: Qt ← Mutation(Qt) # Polynomial Mutation [6]
8: [MinAASF, ClusterID] = FitnessAssignment(Qt)
9: Pt+1 ← Merge and Reduce(Pt, Qt) # Procedure 4

10: end for
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Procedure 1:Archieve and Normalize( ) The objective values need to be
normalized in order to handle scaled multi-objective optimization problems where
each objective function produces different magnitude of values. Normalization is
also needed for comparing MEMO population members with the chosen reference
points, which are usually introduced on the normalized hyper-plane.This is usually
the case in real-world problems. Archiving the extreme points and the normaliza-
tion procedure is identical to normalization process of NSGA-III procedure [10].

Procedure 2: FitnessAssignment( ) The computation of minimum AASF
as fitness (Eq. 3) is also used for the associating a point to a pivotal point to incor-
porate the new niching concept in the selection and Merge and Reduce operators
(Procedures 2 and 4, respectively).

Fig. 5.Fitness and cluster identification (reference point association) assignment scheme
used in Procedure 2 (FitnessAssignment())

As the first step, for each individual x, an AASF vector is first calculated for
all pivotal points, as shown in Figure 5. Then, the minimum value of each column
(Eq. 3) is assigned as the fitness value of that individual in MinAASF array and
the corresponding row index of thisminimumvalue indicates the associated pivotal
point of x. This is recorded in ClusterID array. In the initial generations, depend-
ing on the complexity of the problem, some individuals of the population might be
associated to the same cluster and therefore some of the clusters may be empty as
illustrated in Figure 9 as having third and seventh clusters being empty while the
first, second, fifth and sixth clusters having more than one individual associated.

Procedure3:Selection() Binary tournament selection is used for the reproduc-
tion process. Asmentioned before, the selection operator preserves different cluster
members in a population. At each tournament, individuals from the same cluster
are shuffled first and then compared pairwise. Two solutions are compared with
respect to their MinAASF value and the one with the smaller value is selected.
To make our procedure to find strict Pareto-optimal solutions only, we use AASF,
instead of ASF in solving all problems of this paper. Limiting these pairwise com-
parisons to only the same cluster individuals brings an extra cost of having slightly
a bigger offspring population as compared to fixed-size EMO algorithms. However
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1: initialize AASFHxN

2: for i = 1 to i = H do
3: for j = 1 to j = N do
4: AASF (i, j) ←
5: compute AASF (Zi, Pt)
6: end for
7: end for
8: for i = 1 to i = N do
9: [Fitnessi, ClusterIDi] ←

10: min(AASF (row(1:H), coli))
11: end for
12: return [MinAASF, ClusterID]

Fig. 6. Procedure 2: Fitness
Assignment(Pt)

1: tourmax = 2
2: for k = 1 to k = tourmax do
3: for cluster = 1 to cluster = H do
4: tourk = [ ]
5: tourk ←
6: suffle(cluster individual indices)
7: Ncluster ← size(tourk)
8: for j = 1 to j = Ncluster do
9: Qt ←

10: min(Fitness(tourk[j], tourk[j+1]))
11: end for
12: end for
13: end for
14: return Qt

Fig. 7. Procedure 3: Selection(Pt)

skipping the non-dominated sorting operation in MEMO or at least reducing the
computational load by searching for only the first front and having the capability of
simultaneously handling many-objective functions is an important tradeoff. This
may matter only in computationally heavy real world optimization problems.

Procedure 4: Merge and Reduce( ) Merge and Reduce( ) is another vital
niching procedure ofMEMOalgorithmwhich also ensures elite-preservation. First,
at generation t, parent Pt and offspring Qt populations are combined to create a
new population Rt of which size can be bigger than 2xNfit where Nfit is the size of
Pt (population size). However, the size of the next parent population Pt+1 obtained
at the end of this procedure is again reduced to Nfit = N .

After normalizing and evaluating the combined population Rt, niching pro-
cedure which is composed of two steps is applied. First, all clusters are filled
with the individuals having the right ClusterID value which was determined at
FitnessAssignment procedure (Section 4.2). In the same step, members of the
same cluster are sorted with respect to their fitness, i.e. MinAASF value. This is
represented in Figure 9 with circles of the same color (members of the same cluster)
being sorted from smaller radius to larger radius. In the last step, best solutions of
each cluster (i.e., those encircled with dashed line and indicated as counter = 1)
are put into Pt+1 and this procedure is repeated for the next best solutions of all
clusters (counter = 2, 3, ...) until Nfit = H solutions are stored in Pt+1. In the
early generations, some of the clusters might be empty but all of them will even-
tually be filled with at least one solution as the algorithm converges and produces
better spread solutions. At the end, each individual of the final population will be
an optimum solution with respect to a reference point and all together form the
efficient optimal set for the multi-objective optimization problem. As discussed in
the original study [23], the overall complexity of the proposed MEMO algorithm is
O(N2).
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1: Rt ← Pt ∪ Qt

2: initialize Pt+1

3: Nfit ← size(Pt)
4: Archieve and Normalize(Rt)
5: [MinAASF, ClusterID] =
6: FitnessAssignment(Rt)
7: clusters ← { } # Niching (Fig.9) starts ...
8: for i = 1 to i = H do
9: j ← 1, 2, ..., size(clustersi)

10: clustersi ← sort(clustersi{Fitnessj})
# Local sorting

11: end for
12: counter = 1
13: Nnon−empty ← size(clustersi �= 0)
14: while size(Pt+1) ≤ Nfit do
15: for k = 1 to k = Nnon−empty do
16: Pt+1 ← clustersk{individualcounter}
17: end for
18: counter ← counter + 1
19: end while # ... Niching ends
20: return Pt+1

Fig. 8. Procedure 4: Merge and Reduce
(Pt, Qt)

Fig. 9. Niching scheme used in Proce-
dure 4 (Merge and Reduce())

5 Results andDiscussions

In this section, we present the simulation results of MEMO algorithm on two to 10-
objective optimization problems. More results can be found in the original study
[23].The results of two objective problems are comparedwithNSGA-II [8],whereas
the rest of the results are compared with NSGA-III [10]. As a performance measure
of convergence as well as diversity of obtained solutions, we use the hypervolume
(HV) metric [28] for two-objective problems and the inverse generational distance
(IGD) metric [27] for higher objective problems. The smaller the IGD value indi-
catedbetterperformancewhereas it is opposite for theHVpredictor.For eachprob-
lem, the algorithms are executed 20 times with different initial populations. Best,
median and worst HV and IGD performance values evaluated using the popula-
tion members from the final generation are reported. Table 1 shows the number
of chosen reference points (H) for different number of objectives (M) for different
test problems. The population size (N) of MEMO is kept the same as H, whereas
the population size (N ′) of NSGA-III is the smallest multiple of four but equal or
higher than H.

For two-objective problems, reference points are created using p = 31 in Das
and Dennis’s method resulting in K =

(
(2+31−1)

31

)
or 32 points. We have used p =

12 for three-objective problems (H = 91) and p = 6 for five-objective problems
(H = 210). For problems having more than five objectives, to have at least one
intermediate reference point, p ≥ M is required and it results in a large number
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Table 1. The number reference points and
the population size used for different objec-
tives in MEMO and NSGA-III algorithms

Number of
objectives

(M)

Number of
reference
points (H)

MEMO
population

size (N)

NSGA-III
population
size (N’)

2 32 32 32
3 91 91 92
5 21 210 212
8 156 156 156
10 275 275 276

Table 2. Parameter values used for
MEMO and NSGA-III where n is the
number of variables

Parameters MEMO NSGA-III

SBX [7], pc 1 1
Poly. mutation [6], pm 1/n 1/n
SBX ηc 30 30
Mut. ηm 20 20

reference points. To avoid this scenario, two layers of reference points with small
values of p are chosen [10]. For instance, for the eight-objective problem, p = 3
is chosen at the outer layer (K =

(
(8+3−1)

3

)
= 120) and p = 2 is chosen for the

inner layer having half the size of the outer layer (K =
(
(8+2−1)

2

)
= 36), resulting in

total of 156 reference points. For 10-objective problems, p = 3 and p = 2 in outer
and inner layers, respectively, are used, resulting in H = 220 + 55 = 275 reference
points. Table 2 presents otherMEMOandNSGA-III parameters used in this study.

5.1 Two-Objective Problems

To start with, we show results of our MEMO procedure on two-objective ZDT1,
ZDT2 and ZDT3 problems in Figure 10.

Fig. 10. ZDT1, ZDT2, and ZDT3 results using proposed MEMO algorithm

Performance of ZDT4 is similar. A comparison of its performance with NSGA-
II on all four ZDT problems is presented in Table 3. ZDT1 to ZDT3 are run for 200
generations and ZDT4 is run for 500 generations. Figures and the table indicate
similar performance of MEMO to the NSGA-II procedure.

5.2 Three-Objective Problems

Next, we choose original DTLZ1 and DTLZ2 and their scaled versions [10,12].
Figure 11 shows theMEMO-obtained efficient fronts forDTLZ1 andDTLZ2 (black
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Table 3. Best, median and worst hyper-
volume values for two-objective ZDT1
to ZDT4 problems using MEMO and
NSGA-II algorithms

MEMO NSGA-II
8.555 x 10−1 8.482 x 10−1

8.481 x 10−1 8.365 x 10−1

Z
D
T1

8.534 x 10−1 8.298 x 10−1

5.218 x 10−1 5.250 x 10−1

5.172 x 10−1 5.229 x 10−1

Z
D
T2

5.096 x 10−1 5.198 x 10−1

1.037 x 100 1.034 x 100

1.035 x 100 1.029 x 100

Z
D
T3

1.034 x 100 1.007 x 100

8.601 x 10−1 8.551 x 10−1

8.568 x 10−1 8.492 x 10−1

Z
D
T4

8.382 x 10−1 8.397 x 10−1

Table 4.Best, median and worst IGD values
obtained forMEMOandNSGA-III on three-
objective DTLZ1 and DTLZ2 problems

MaxGen MEMO NSGA-III
1.413 x 10−4 4.880 x 10−4

400 2.360 x 10−4 1.308 x 10−3

D
TL

Z
1

2.008 x 10−3 4.880 x 10−3

1.045 x 10−3 1.262 x 10−3

250 1.538 x 10−3 1.357 x 10−3

D
TL

Z
2

2.311 x 10−3 2.114 x 10−3

Fig. 11. DTLZ1 and DTLZ2 results using proposed MEMO algorithm

circles), together with the set of reference points (gray circles). As it was explained
in Table 1, a nicely distributed set of 91 efficient points can be observed from both
figures. Table 4 summarizes the performance of MEMO and recently proposed
NSGA-III [10] methods using the IGD metric. MEMO works slightly better in
DTLZ1, whereas NSGA-III works slightly better in DTLZ2.

Real world optimization problems usually involve objective values having dif-
ferent order of magnitudes. To simulate such a problem, we scale i-th objective by
10i. MEMO and NSGA-III still use the same methodology [4] to create the refer-
ence set. The adaptive normalization procedure enables the use of this reference
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Fig. 12. Scaled DTLZ1 and Scaled DTLZ2 results using MEMO algorithm

set without any modification for the scaled problems. Figure 12 shows MEMO-
obtained efficient points.

Table 6 shows the IGD values of MEMO points and compares with NSGA-III-
obtained points. MEMO performs slightly better.

Crash-Worthiness Problem. Finally, we show the efficient solutions obtained
by MEMO on a practical three-objective problem, which is well-studied in the
EMO literature in Figure 13. Table 5 compares the IGD values at generation 200
of MEMO with NSGA-III. The latter performs slightly better in this problem.

Fig. 13. Crash-worthiness results using MEMO

Table 5. IGD values for Crash-
worthiness problem. Although
NSGA-III’s performance is
slightly better, MEMO finds
points close to the known opti-
mized solutions.

MEMO NSGA-III

Best 7.220 x 10−2 1.9 x 10−3

Median 7.735 x 10−2 2.2 x 10−3

Worst 7.838 x 10−2 2.6 x 10−3

5.3 Many-objective Problems

Next,we applyMEMOalgorithm tomany-objective version ofDTLZ1 andDTLZ2
problems.Table 7 presents IGDvalues for 5, 8 and10-objective problems.Although



MEMO: Multimodal Approach for EMO 15

Table 6. Best, median and worst IGD values for three-objective Scaled DTLZ1 and
DTLZ2 problems using MEMO and NSGA-III algorithms. A scaling factor of 10i, i=1,
2 and 3 is used.

Problem M
Scaling
factor

MaxGen MEMO NSGA-III

Scaled DTLZ1 3.441 x 10−4 3.853 x 10−4

3 10i 400 6.696 x 10−4 1.214 x 10−3

2.071 x 10−3 1.103 x 10−2

Scaled DTLZ2 6.983 x 10−4 1.347 x 10−3

3 10i 250 1.334 x 10−3 2.069 x 10−3

5.346 x 10−3 5.284 x 10−3

Table 7. Best, median and worst IGD val-
ues obtained for MEMO and NSGA-III on
M -objective DTLZ1 and DTLZ2 problems

M
Max
Gen MEMO NSGA-III

3.703 x 10−4 5.116 x 10−4

5 600 1.735 x 10−3 9.799 x 10−4

3.707 x 10−3 1.979 x 10−3

5.509 x 10−3 2.044 x 10−3

8 750 7.414 x 10−3 3.979 x 10−3

D
TL

Z
1

8.683 x 10−3 8.721 x 10−3

7.206 x 10−3 2.215 x 10−3

10 1000 9.244 x 10−3 3.462 x 10−3

1.201 x 10−2 6.869 x 10−3

3.584 x 10−3 4.254 x 10−3

5 350 4.499 x 10−3 4.982 x 10−3

5.561 x 10−3 5.862 x 10−3

4.379 x 10−2 1.371 x 10−2

8 500 5.872 x 10−2 1.571 x 10−2

D
TL

Z
2

6.915 x 10−2 1.811 x 10−2

5.401 x 10−2 1.350 x 10−2

10 750 6.093 x 10−2 1.528 x 10−2

6.701 x 10−2 1.697 x 10−2

Table 8. Best, median and worst IGD val-
ues for M -objective Scaled DTLZ1 and
DTLZ2 problems using MEMO and NSGA-
III algorithms

M
Scal.
fact.

Max
Gen MEMO NSGA-III

6.405 x 10−4 1.099 x 10−3

5 10i 600 1.155 x 10−3 2.500 x 10−3

3.647 x 10−3 3.921 x 10−2

1.183 x 10−2 4.659 x 10−3

8 3i 750 5.449 x 10−2 1.051 x 10−2

1.097 x 10−1 1.167 x 10−1

Sc
al
ed

D
TL

Z
1

3.912 x 10−2 3.403 x 10−3

10 2i 1000 7.133 x 10−2 5.577 x 10−3

1.328 x 10−1 3.617 x 10−2

9.603 x 10−3 1.005 x 10−2

5 10i 350 3.188 x 10−2 2.564 x 10−2

6.417 x 10−2 8.430 x 10−2

5.482 x 10−2 1.582 x 10−2

8 3i 500 8.901 x 10−2 1.788 x 10−2

1.083 x 10−1 2.089 x 10−2

Sc
al
ed

D
T
LZ

2

7.794 x 10−2 2.113 x 10−2

10 3i 750 2.320 x 10−1 3.334 x 10−2

5.224 x 10−1 2.095 x 10−1

NSGA-III’s performance is slightly better, MEMO also manages to find small IGD
metric values.

Figure 14 shows the parallel coordinate plots 10-objective for DTLZ1 and
DTLZ2 problems solved using MEMO.

Table 8 presents MEMO’s performance on scaled version of many-objective
DTLZ1 and DTLZ2 problems. The performance is comparable to NSGA-III’s per-
formance on these problems.
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Fig. 14. Parallel coordinate plots for 10-objective DTLZ1 and DTLZ2 problems using
MEMO

6 Conclusions andExtensions

In this paper,wehave suggested aprocedure for converting amulti/many-objective
optimization problem into a suitable multi-modal scalarized single-objective prob-
lem in which every optimum corresponds to a different Pareto-optimal solution
of the original multi-objective problem. Thereafter, we have suggested a niching-
based multimodal evolutionary algorithm to find multiple solutions simultane-
ously. Results on two to 10-objective test problems and on a practical design
problem have been compared with other state-of-the-art EMO methodologies and
comparable results have been reported.

The conversion is interesting and should open further viable avenues for using
other scalarization methods for finding multiple Pareto-optimal solutions. On a
similar spirit, other evolutionary multimodal optimization methods can also be
tried and this may boost the research on multimodal optimization. Moreover, an
immediate extension of the idea for handling constrained multi-objective problems
will be important.

Acknowledgments. The authors acknowledge the support provided by the Depart-
ment of Electrical and Computer Engineering, Michigan State University for executing
this study.

References

1. Cavicchio, D.J.: Adaptive Search Using Simulated Evolution. PhD thesis: University
of Michigan, Ann Arbor (1970)

2. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Method-
ology. North-Holland, New York (1983)

3. Coello,C.A.C.,VanVeldhuizen,D.A., Lamont,G.:EvolutionaryAlgorithms for Solv-
ing Multi-Objective Problems. Kluwer, Boston (2002)



MEMO: Multimodal Approach for EMO 17

4. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating
the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal
of Optimization 8(3), 631–657 (1998)

5. Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary mul-
timodal optimization - A survey of the state-of-the-art. Swarm and Evolutionary
Computation 1(2), 71–88 (2011)

6. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley,
Chichester (2001)

7. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9(2), 115–148 (1995)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

9. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic
function optimization. In: Proceedings of the Third International Conference on
Genetic Algorithms, pp. 42–50 (1989)

10. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point based non-dominated sorting approach, Part I: Solving prob-
lems with box constraints. IEEE Transactions on Evolutionary Computation
18(4), 577–601 (2014)

11. Deb, K., Saha, A.: Multimodal optimization using a bi-objective evolutionary algo-
rithms. Evolutionary Computation Journal 20(1), 27–62 (2012)

12. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multi-objective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005)

13. DeJong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis. University of Michigan, Ann Arbor (1975). Dissertation Abstracts Inter-
national 36(10), 5140B (University Microfilms No. 76–9381)

14. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2000)
15. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:

Formulation, discussion, and generalization. In: Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, pp. 416–423, Morgan Kaufmann, San
Mateo (1993)

16. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, pp. 41–49 (1987)

17. Harik, G.: Finding multi-modal solutions using restricted tournament selection. In:
Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA
1995), pp. 24–31 (1997)

18. Horn, J., Nafploitis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multi-
objective optimization. In: Proceedings of the First IEEE Conference on Evolution-
ary Computation, pp. 82–87 (1994)

19. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
20. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In:

Proceedings of Third IEEE International Conference on Evolutionary Computation
ICEC 1996, pp. 798–803. IEEE Press, Piscataway (1996)

21. Shukla, P., Deb, K.: Comparing classical generating methods with an evolutionary
multi-objective optimization method. In: Coello Coello, C.A., Hernández Aguirre,
A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 311–325. Springer, Heidelberg
(2005)



18 C.C. Tutum and K. Deb

22. Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated
sorting genetic algorithms. Evolutionary Computation Journal 2(3), 221–248 (1994)

23. Tutum, C.C., Deb, K.: A multimodal approach for evolutionary multi-objective
optimization: MEMO. COIN Report Number 2014018, Computational Optimiza-
tion and Innovation Laboratory (COIN), Electrical and Computer Engineering,
Michigan State University, East Lansing (2014)

24. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In:
Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applica-
tions, pp. 468–486. Springer, Berlin (1980)

25. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using clus-
tering analysis methods in multimodal function optimization. In: Proceedings of
International Conference on Artificial Neural Networks and Genetic Algorithms,
pp. 450–457 (1993)

26. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731
(2007)

27. Zhang, Q., Zhou, A., Zhao, S.Z., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective
optimization test instances for the cec-2009 special session and competition. Techni-
cal report, Nanyang Technological University, Singapore (2008)

28. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms -
A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P.
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Abstract. Providing self-reconfiguration at run-time amidst adverse
environmental conditions is a key challenge in the design of dynamically
adaptive systems (DASs). Prescriptive approaches to manually preload
these systems with a limited set of strategies/solutions before deploy-
ment often result in brittle, rigid designs that are unable to scale and
cope with environmental uncertainty. Alternatively, a more scalable and
adaptable approach is to embed a search process within the DAS capable
of exploring and generating optimal reconfigurations at run time. The
presence of multiple competing objectives, such as cost and performance,
means there is no single optimal solution but rather a set of valid solu-
tions with a range of trade-offs that must be considered. In order to help
manage competing objectives, we used an evolutionary multi-objective
optimization technique, NSGA-II, for generating new network configu-
rations for an industrial remote data mirroring application. During this
process, we observed the presence of a hidden search factor that restricted
NSGA-II’s search from expanding into regions where valid optimal solu-
tions were known to exist. In follow-on empirical studies, we discovered
that a variable-length genome design causes unintended interactions with
crowding distance mechanisms when using discrete objective functions.

Keywords: NSGA-II · Diversity maintenance · Crowding distance ·
Discrete objectives · Granularity · Variable-length genome

1 Introduction

Dynamically adaptive system (DAS) are intended to address the challenges
posed by adverse environmental conditions [12,14] and varying user require-
ments. Unlike traditional software systems that can be taken offline and modified
by hand, DASs must self-reconfigure at run time to avoid staggering financial
penalties and/or critical data loss [10]. Smart energy grids, telecommunication
systems, smart traffic systems, and similar emerging applications necessitate the
deployment of DASs to cope with the various forms of environmental and system
uncertainty commonly faced by these applications. These real-world applications

c© Springer International Publishing Switzerland 2015
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often contain multiple competing concerns (e.g., cost vs. performance vs. relia-
bility) where trade-offs exist among solutions for dynamic reconfiguration. Evo-
lutionary search techniques, such as genetic algorithms, that rely on biological
principles of parallel search provide one approach for the generation of candidate
solutions. This paper provides insight into how the underlying solution’s encod-
ing may have unintended interactions with specific operators of evolutionary
search that produce artificial barriers within the solution space.

In order to automate the generation of DAS configurations, a search-based
technique can be embedded within the DAS that is capable of discovering opti-
mal reconfiguration strategies at run time. One such evolutionary search-based
technique, genetic algorithms (GAs) [5,6], explores a large number of solutions in
parallel and uses stochasticity to avoid becoming trapped in suboptimal regions
of the solution space. In previous work, we developed Plato [15], a GA-based
reconfiguration tool used to evolve overlay networks [1] for a remote data mir-
roring (RDM) application. In the original Plato tool, user-specified weighting
coefficients established a prioritization among the problem’s dimensions. Upon
further inspection, we found that with this approach, large regions of the solu-
tion space were unreachable by evolutionary search, and solutions were often
misaligned with the user’s weights and therefore ill-fit for their intended envi-
ronment. To mitigate these issues, we developed Targeting Plato [2] that suc-
cessfully returned solutions from regions previously unreachable by Plato by
targeting desired, user-specified solution qualities. Without a priori knowledge
of the solution space, two critical disadvantages for using weighting coefficients
and target values to guide evolutionary search exist: (1) a trial-and-error app-
roach may be necessary to identify the correct combination of search parameters
yielding good solutions, and (2) multiple iterations of search may be necessary
to obtain a diverse solution set.

This paper proposes an approach to incorporate multi-objective evolution-
ary algorithms (MOEAs) into the decision-making process of DASs to generate
target reconfigurations at run-time in response to changing environments and
requirements. Unlike the GA-based approaches previously mentioned, MOEAs
do not require users to specify desired solution characteristics or a prioritization
among the problem’s dimensions (i.e., objectives) in order to guide evolution-
ary search. Instead, MOEAs are able to return a diverse suite of Pareto-optimal
solutions whose quality along one particular dimension cannot be improved upon
without sacrificing quality along another dimension. As a result, MOEAs can be
harnessed for DAS applications to explore the solution space landscape and
inform the end user where solution tradeoffs occur.

While leveraging a commonly-used MOEA named NSGA-II 1 for our indus-
trial RDM application, we observed that this algorithm’s search coverage was
significantly limited when compared to the overall Pareto surface where addi-
tional novel solutions existed. In an empirical study, we investigated the poten-
tial causes that might prevent search from expanding into these novel regions
by performing a set of experiments that targeted specific search operators. Our
1 Non-dominated Sorting Genetic Algorithm [4].
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results revealed that in a discrete optimization problem where the number of
solution elements can freely evolve (i.e., variable-length genome), an artificial
selective pressure is created that selects against valid regions of the objective
space. Specifically, solutions with fewer elements are able to mutate farther dis-
tances in the solution space than solutions with a greater number of elements.
As a result, solutions with fewer elements are prioritized by NSGA-II’s crowding
distance operator and search is biased into regions containing these solutions.
Despite nearly 20 years of algorithm developmental studies in EMO, this aspect
of limited search ability of an EMO due to interactions between varying genome
size and its diversity preserving operator has not been studied in depth.

The remainder of this paper is organized as follows. In Section 2, we provide
background regarding RDM systems as well as Plato and Targeting Plato. Section
3 discusses our initial observation of the underlying problem when NSGA-II was
applied to the RDM problem, where its search coverage was compared to the
entire Pareto surface. The series of experiments investigating the root cause
of NSGA-II’s restricted search performance is provided in Section 4, and its
impact on similar application domains and evolutionary approaches is discussed
in Section 5. Lastly, Section 6 overviews related work, and Section 7 summarizes
our findings and outlines future directions for this work.

2 Background

This section overviews topics fundamental to the approach described in this
paper. First, we describe the RDM application, necessitate the use of DASs
within this domain, and describe the challenges in their design. Next, we provide
an overview of genetic algorithms and discuss their utility within the original
Plato dynamic reconfiguration tool for navigating vast, complex solution spaces.

2.1 Remote Data Mirroring

In the RDM application [9] provided by an industrial collaborator, the objective
is to copy critical data residing at primary sites and remotely store (mirror) this
data on one or more secondary sites across a network in order to mitigate the
presence of site/link failure and ensure file synchronization [10,11]. Two critical
design decisions for an RDM solution, referred to as an overlay network [1], are
(1) the subset of network links to include from the underlying base network and
(2) which of two RDM networking protocol types should be used on each active
link. A synchronous protocol requires that each critical data item is received
and applied at all secondary site(s) before proceeding at the primary site. In
contrast, asynchronous protocols coalesce data items at the primary site that
are later sent to secondary sites in batch form and applied atomically after a
specified length of time. Table 1 presents the elapsed time between each batch,
the amount of data at risk should a failure occur (in GB), and the proportion of
bandwidth consumed for synchronous (P1) and asynchronous (P2-P7) protocols.
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In our experiments, we evolve overlay network solutions for a fully-connected
underlying network containing 26 remote data mirrors. The order of complexity
for this problem encompasses 2n(n−1)/2 network constructions. For 26 remote
data mirrors and 7 different RDM protocols, there are 7 * 2325 possible over-
lay network configurations. The RDM application contains multiple competing
objectives where trade-offs must be made among solutions’ operational cost,
performance in bandwidth consumption, and reliability in the face of failure.

Table 1. Properties of synchronous and asynchronous RDM protocols [10]

Protocol
Type

Communication
Protocol

Interval Data at Risk
(GB)

Bandwidth

Synchronous P1 0 minutes 0.0 1.0

Asynchronous

P2 1 minute 0.35 0.9098
P3 5 minutes 0.6989 0.8623
P4 1 hour 1.7782 0.7271
P5 4 hours 2.3802 0.5732
P6 12 hours 2.8573 0.4380
P7 24 hours 3.1584 0.3967

2.2 Plato

Plato [15] is a genetic algorithm-based tool to support RDM reconfiguration
at run time according to high-level, user-specified objectives. Within Plato, an
evolved overlay network solution is encoded as a vector where each element maps
to a specific connection (link) in the base network and stores (1) a boolean flag
for whether the connection is used in the solution, and (2) the specific RDM
protocol used by the active connection.

Three competing objectives are targeted during optimization: Cost (fcost),
Performance (fperf ), and Reliability (freliab). The aggregate formulas for deter-
mining these objective values are given in Equations (1)-(7) and were derived
from studies for optimizing data recovery systems [10]. In these equations, a
candidate solution vector (x) contains N total links from the underlying base
network. For each link (xi), the xflag

i indicates that the link is active (1) or inac-
tive (0) and xrisk

i and xbandwidth
i correspond to the data at risk and bandwidth

consumed by the link’s RDM protocol, respectively. The operational expense of
an underlying network link is denoted as Ci, while properties of a particular
RDM protocol, such as the bandwidth consumed (ex. P1bandwidth), refer to the
values in Table 1. To avoid biasing search along objectives with larger ranges of
values, each objective is normalized between 0.0 and 1.0.

In the original Plato tool, a user’s high-level goals were incorporated into a
linear-weighted sum (e.g., αcostfcost +αperffperf +αreliabfreliab) to guide evolu-
tionary search towards regions of desired solutions. As environmental conditions
and/or requirements change at run time, the system responds by automati-
cally updating these coefficients to evolve new network reconfigurations. Upon
closer inspection, we found that the “surface” containing valid solutions is non-
convex and cannot be detected [3] by the linear-weighted sum approach used
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by Plato. As a result, Plato’s evolved solutions were often misaligned with the
user’s weights and therefore ill-fit for their intended environment.

Minimize (fcost, fperf , freliab) (1)

fcost(x) =
∑N

i=0 Cix
flag
i∑N

i=0 Ci

(2)

fperf (x) =
fefficiency(x) − P1bandwidth

P1bandwidth − P7bandwidth
(3)

fefficiency(x) =
∑N

i=0 xbandwidth
i xflag

i∑N
i=0 P1bandwidthxflag

i

(4)

freliab(x) = 0.5 × freliab1(x) + 0.5 × freliab2(x) (5)

freliab1(x) = 1.0 −
∑N

i=0 xflag
i

N
(6)

freliab2(x) =
∑N

i=0 xrisk
i xflag

i∑N
i=0 P7riskxflag

i

(7)

To mitigate the aforementioned issues, we developed Targeting Plato [2] where
a user specified the desired, target values of each objective to be optimized
instead of specifying a relative prioritization via weighting coefficients. In this
approach, candidate solutions were rewarded for their proximity to the ideal solu-
tion’s target values. While Targeting Plato provided a more intuitive method for
domain experts and expanded search coverage into regions previously unreach-
able using Plato, these techniques (1) required a priori knowledge of the solution
space to ensure suboptimal solutions were not returned, (2) were highly depen-
dent on the correct specification of user inputs (e.g., weights and target values),
and (3) rewarded solutions for maximizing a combined objective function. As a
result, these approaches often sacrificed search exploration for exploitation and
returned solution sets often lacking in diversity and trade-offs made among the
objectives.

3 Problem Definition

Domain experts often seek to optimize multiple competing (orthogonal) objec-
tives simultaneously in order to assess where trade-offs exist among the prob-
lem dimensions. Multi-objective evolutionary algorithms (MOEAs) differ from
traditional genetic algorithms in that competing objectives/dimensions are not
collapsed into a single objective function but instead are treated individually in
order to find a diverse set of Pareto-optimal solutions.

3.1 Original NSGA-II

For this work, we use the Non-Dominated Sorting Genetic Algorithm (NSGA-
II) [4] whose design is particularly well-suited to mitigate the drawbacks of both
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Plato and Targeting Plato through the incorporation of two main operators: (1)
non-dominated sorting and (2) a crowding-distance operator. Non-dominated
sorting mitigates the concern of suboptimal solutions and ensures that solutions
approach true Pareto-optimality by giving priority to solutions whose objective
measures dominate (i.e., improve upon) the objective measures of other solutions
in the population. NSGA-II’s use of a crowding distance operator mitigates the
lack of diversity problem by giving priority to non-dominated solutions located
in less crowded (i.e., novel) regions of the objective space. In addition, NSGA-II
does not rely upon user-specified weighting coefficients or target values.

Using the original implementation of NSGA-II [4], we performed a series
of runs to assess its ability to evolve overlay network solutions comparable to
the experimental solutions found in previous work [15]. Each run contained a
population of 500 candidate solutions employing tournament selection (k = 5),
two-point crossover, and a 5% mutation rate for a total of 1,000 generations,
equating to roughly 3 minutes of wall-clock time. To provide adequate statisti-
cal significance, 30 replicate runs were evaluated with each run using a unique
random seed.

Using the three objective measures (Cost, Performance, and Reliability), we
plotted a three-dimensional point for each solution returned by NSGA-II (col-
ored red in Figure 1). We observed that solutions were clustered around three
distinct extrema in the objective space and that, despite the use of NSGA-
II’s crowding-distance operator, solutions were predominantly located near one
another. Moreover, a high Cost measure correlates to more active network links
and therefore, a broader range of evolvable Performance levels should exist since
each link can support one of seven different RDM protocols. As shown in Figure
1, however, NSGA-II was unable to return solutions with a diverse set of Per-
formance measures as the majority of networks with high Cost only have a Per-
formance level near 0.70. These observations suggested that NSGA-II was not
returning a solution set representative of the entire Pareto-optimal surface.

3.2 Epsilon-Constrained NSGA-II (Pareto Surface)

To assess the true shape of the underlying Pareto-optimal surface, we performed
a series of additional runs using the epsilon-constraint method for NSGA-II.
Using this method, search continues to seek Pareto-optimal solutions that min-
imize all three objective values described in Equation (1), however, subject to
the constraint that they are located within a set of user-specified boundaries.
By performing an exhaustive sweep of the objective space using interval sizes of
0.01 along both the Cost and Performance dimensions, we obtained a fine-grained
sampling of 10,000 regions across the Pareto-optimal surface.

In Figure 1, we plotted solutions (colored grey) returned by epsilon-
constrained NSGA-II and confirmed that the original NSGA-II returned only
a limited subset of the solutions on the true Pareto-optimal surface. This obser-
vation was troubling for several reasons. First, NSGA-II was unable to return
solutions from a large region of the search space where Pareto-optimal solutions
were demonstrated to exist, suggesting that hidden factors may be hindering
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search. Second, despite NSGA-II’s use of a crowding-distance operator designed
to coerce solutions into unoccupied, novel regions of the objective space, the
returned solutions are clustered closely together. Third, the overall shape of the
returned solution set tapers towards three distinct regions within the objective
space, indicating the potential presence of an artificial selective pressure biasing
solutions toward the extremes of each objective.

Fig. 1. Original NSGA-II solutions
(red) compared against solutions on
Pareto surface (grey)

Fig. 2. NSGA-II-MinEuc solutions
(green) compared against solutions on
Pareto surface (grey)

4 Experimental Design and Results

Next, we describe a series of experiments that were performed to determine the
leading causes of (i) artificial basins-of-attraction that solutions evolve towards,
(ii) high solution crowding/clustering, and (iii) large regions of undiscovered
non-dominated solutions. Each of the experimental treatments comprise 30 repli-
cate runs using the same experimental parameters discussed in Section 3, unless
stated otherwise.

4.1 NSGA-II (Minimum Euclidean Crowding-Distance)

Problem/Motivation: Upon analyzing the number of unique Pareto fronts main-
tained for each generation, we observed that the original NSGA-II rapidly con-
verged to a single Pareto front. Consequently, the distinguishing selection factor
among solutions becomes the crowding distance operator. In the original NSGA-
II [4], crowding distance is assigned by sorting each Pareto front by an objective
measure and either (1) awarding positive infinity to “boundary solutions” pos-
sessing the minimum/maximum objective values or (2) summing the distance
between adjacent solutions’ objective values for non-boundary solutions.

While priority is given to solutions maximizing their crowding distance, this
implementation may become noisy and overestimate how crowded a solution
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truly is in the objective space. Adjacent solutions within a single objective may
be quite distant when their additional objective values are taken into consid-
eration. As a result, the original crowding distance operator does not store the
distance to the nearest individual solution but rather stores the shortest dis-
tances to any solution within each objective. In addition, boundary solutions
receive the maximum achievable crowding distance thereby producing artificial
advantageous regions of the objective space.

Hypothesis 1: By assigning a crowding distance value of positive infinity to
boundary solutions, artificial basins of attraction are created that bias search in
the original NSGA-II.

Methods: To provide a more accurate distance measure and avoid producing false
optima, a new implementation (NSGA-II-MinEuc) was used to replace the original
crowding distance with the minimum Euclidean distance between solutions as a
diversity-preserving mechanism. This implementation uses every objective value
of a solution during its distance calculation while also removing the positive
infinity assignment bias.

Results: In Figure 2, we observed that the artificial basins-of-attraction anomaly
is no longer present with the removal of the positive infinity assignment, and the
returned solution set is more evenly distributed in the objective space. Despite
similar high levels of solution clustering witnessed previously, NSGA-II-MinEuc
is able to dynamically respond to boundary solutions in novel areas without
an explicit reward/bias. Therefore, in our remaining experiments, we leverage
the minimum Euclidean crowding distance operator as we address NSGA-II’s
restricted search coverage.

4.2 Epsilon-Constrained NSGA-II (Offspring Distance)

Problem/Motivation: From our previous observations, we were able to conclude
that the hidden factor restricting search coverage (1) affected the crowding dis-
tance values of solutions since NSGA-II quickly converged to a single Pareto
front and (2) placed a negative selective pressure on large networks since search
coverage tapered off as Cost increased. Taken together, these results suggested
that an evolved overlay network’s size (i.e. number of active links) might affect
the crowding distance its offspring are able to attain.

Hypothesis 2: The number of active networks links of an evolved solution pro-
duces a difference in the parent-to-offspring crowding distance values across the
objective space.

Methods: To determine whether this differential existed, we used epsilon-
constrained NSGA-II to iterate across the objective space in increments of 0.01
in order to measure the average crowding distance between parent and offspring
solutions. For each parent solution, we generated 50 offspring solutions and
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recorded the average Euclidean crowding distance to the parent. We required
100 parent solutions to be discovered within each increment to allow search to
potentially discover different solutions with similar Cost and Performance values.
In this experiment, we removed the crossover operator to measure two important
aspects of search: (1) the average parent-to-offspring mutation distance and (2)
the average distance solutions mutate away from where the crossover operator
initially places them in the objective space. Therefore, these results indirectly
measure how evolved solutions would be affected had crossover been included.

Results: After plotting the average parent-to-offspring distance across the Pareto
surface in Figure 3 and applying a color scheme to visualize its topography, we
observed that smaller networks with fewer active links (i.e. low Cost) are, on
average, able to mutate farther from their parents than networks with more
active links (i.e. high Cost). In addition, we plotted where solutions were returned
by NSGA-II-MinEuc in Figure 4. These results confirmed our initial hypothesis
and were a result of the objective functions listed in Equations (1)-(7) being
formulated as ratios and normalized, a common approach for many optimization
problems. For example, a mutation altering 3 links in a small network containing
10 links has a much greater impact (e.g., 30% change in the network’s objective
values) when compared to altering 3 links in a large network containing 100 or
500 links. The ratios of large networks experience greater “inertia,” or resistance
to change, in their objective measures and therefore, receive worse crowding
distance values than networks with fewer active links that are capable of moving
around the objective space more easily.

Fig. 3. Average parent-to-offspring
Euclidean crowding distance

Fig. 4. Locations where NSGA-II-
MinEuc solutions were returned

4.3 Epsilon-Constrained NSGA-II (Additional Factors)

Problem/Motivation: One remaining issue left to address is to determine whether
NSGA-II is selecting for regions associated with large crowding distances between
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parent and offspring solutions; what additional factors are preventing NSGA-
II’s search from expanding into surrounding regions where even larger crowding
distance values were shown to exist?

One factor that may prevent search from expanding into low Cost regions
associated with larger parent-to-offspring crowding distance values is an increased
risk of offspring solutions becoming disconnected. In our RDM application, it is
critical that evolved networks remain connected meaning that, a path exists from
any data mirror to all other data mirrors to ensure copies of critical data items
can be distributed should a site failure occur. In our NSGA-II implementation,
a disconnected overlay network is considered dominated by any connected solu-
tion, regardless of its objective measures.

A second factor that may prevent search from expanding along the Perfor-
mance dimension is a decreased probability of evolved networks adopting the
same RDM protocol across an increasing number of their active links. With
seven RDM protocols, the probability of mutation alone producing networks
with optimal Performance is (1/7)N . In our experiments, a 26-mirror base net-
work requires minimally 25 active links to ensure a connected network resulting
in a probability of (1/7)25. Although selection and the crowding distance opera-
tor work to maintain these solutions, the disruptive effect of crossover and muta-
tion counteract solutions gaining additional identical links. Moreover, each time
a novel solution is selected, there is an increased likelihood that its offspring will
mutate a shorter distance than its current nearest neighbor causing the region
to become more crowded and disadvantageous in subsequent generations.

Hypothesis 3: An increased risk of offspring becoming disconnected inhibits
search into regions with higher parent-to-offspring crowding distances.

Hypothesis 4: The net effect of mutation on an evolved solution’s objectives
opposes search from expanding into novel regions of the objective space.

Methods: Using epsilon-constrained NSGA-II to iterate across the objective
space in increments of 0.01, we generated 50 offspring solutions from parent
solutions found within each increment. For each offspring solution, we recorded
(1) mutation’s net effect on Cost, Performance, and Reliability compared to its
parent as well as (2) the parent network’s edge connectivity. Edge connectivity
measures the minimum number of edges that must be removed to cause a net-
work to become disconnected. We required 100 solutions to be found within each
increment so that NSGA-II could discover different solutions with similar Cost
and Performance measures.

Results: In Figure 5, we observed that the percentage of active links required
to disconnect a network decreases with respect to network Cost, matching our
expectations since fewer active links increase the likelihood that a critical link
is removed in mutation. In addition, we observed a sudden drop in edge connec-
tivity where minimum spanning tree networks have achieved the lowest possible
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Cost since the removal of any network link disconnects the network. More impor-
tantly, Figure 5 demonstrates that NSGA-II-MinEuc returned solutions up until
this boundary, thus providing a key insight for why search did not expand further
along the Cost dimension.

Fig. 5. Percentage of active links to remove and disconnect networks

In addition, we confirmed that mutation opposes the expansion of search
into novel regions along the Performance and Reliability dimension as solutions
with low objective values experience a net increase after mutation is applied
and similarly, solutions with high objective values experience a net decrease. As
a result, these evolutionary operators produce a “funneling” effect as they work
to return solutions to a zero net effect point where there is equal probability of
activating/deactivating a network link and substituting among RDM protocols.

4.4 Increased Mutation Probability

Problem/Motivation: In previous experiments, we determined that network size
affected the parent-to-offspring mutation distance as well as the distance sim-
ilar networks are able to mutate from one another. While the original NSGA-
II appears to have responded to this differential, we have not formally tested
whether this factor affected search.

Hypothesis 5: NSGA-II’s search forgoes expanding into novel regions of the
objective space in favor of regions associated with greater mutation distances

Methods: To test our hypothesis, we divided the objective space into two equal
regions: (1) a Control region (Cost ≤ 0.50) where we maintained the original
mutation rate of 5% and (2) a Treatment region (Cost > 0.50) where we increased
the mutation rate solutions were exposed to. If our hypothesis is correct, we
expect a majority of the final NSGA-II solutions to reside within the Treatment
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region where an evolved network is more likely (not guaranteed) to experience a
greater number of mutations and therefore a greater change in their objectives
and crowding distance, than networks found in the Control region.

Results: In Figure 6, the 5% mutation rate treatment provides a baseline measure
(5.94% ± 1.33%) of solutions in the Treatment region for the original NSGA-II
when both regions’ mutation rates are equal and thus no difference is present. We
observed a significant increase (p � 0.01) in the percentage of solutions found in
the Treatment region as its mutation rate was increased, resulting in the number
of solutions found within the Control region dropping from 94.06% in the original
NSGA-II to as low as 17.24%. These results confirm our hypothesis that NSGA-
II’s search forgoes expanding into novel regions of the objective space in favor
of regions where higher crowding distances are achievable.

Fig. 6. Percentage of solutions found in the Treatment region

5 Discussion

The experiments in this paper have demonstrated the presence of a hidden inter-
action between the underlying genome representation and the crowding distance
operator found in MOEA approaches such as NSGA-II. Two factors of our appli-
cation caused this interaction to occur, namely, (1) a variable-length genome and
(2) objective functions formulated as ratios. By allowing the number of solution
elements to evolve freely, offspring generated from solutions with fewer elements
are more likely to experience a larger change to their objective measures. As a
result, offspring having a similar number of elements to their parents but that
produce larger crowding distances are likely to be created and accepted by the
NSGA-II algorithm. Therefore, NSGA-II’s search is unable to locate novel, undis-
covered regions of the Pareto front where differently structured solutions reside
since these solutions cannot simultaneously achieve similar crowding distance
values compared to the current parent members of the population.
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The implications of this hidden interaction are significant since, depending
on the impact of this interaction, the set of Pareto-optimal solutions returned
by NSGA-II may only encompass an extremely limited region of the overall
Pareto surface for a given application. More importantly, without knowledge
of the underlying Pareto surface, this hidden interaction would be difficult to
detect, and the original returned solution set might easily have been accepted
as sufficient. In various application domains, the number of solution elements
is often a free variable evolved in order to explore different designs and their
associated trade-offs. Similarly, a common and often necessary task when nor-
malizing an objective is to formulate the objective as a ratio. As such, this
interaction becomes more difficult to detect and also more likely to occur as the
dimensionality of the problem increases.

6 Related Work

To the best of the authors’ knowledge, the interaction of variable-length genomes
and the crowding distance operator as well as its effect on search coverage has not
been documented in the literature. Ishibuchi et al. [7,8] examined how discrete
objective functions with two different granularities (width of intervals within
an objective) affected search when using popular multi-objective optimization
algorithms including, NSGA-II, SPEA2, MOEA/D, and SMS-EMOA. A two-
objective 0/1 knapsack problem [16] with integer profit values for each knapsack
item was used in their experiments. By applying rounding factors of different
sizes (e.g., round by 10, 100, etc.) to each objective, they explored the effect
of different granularity combinations on search. Their results demonstrated that
when the granularities of the problem’s dimensions vary, search is biased towards
particular regions of the objective space.

While these results strongly corroborate our findings and explore a similar
problem, several key differences distinguish our work. First, the granularities of
each objective were established by applying ad hoc rounding factors and were
not attributes of the original application. As a result, both of their objectives
had uniform granularity whereby the interval width was constant within each
objective. Second, the granularity of each objective in [7,8] was static during
search meaning that the interval width did not change from one generation to
the next. In contrast, the granularities of the objectives in our work were not
established but rather they emerged from our application thus concealing the
hidden interaction and making it more difficult to detect. Third, the granularity
of objectives was non-uniform since the interval width was dependent on the
number of links within an evolved solution. Smaller networks experienced larger
granularities during mutation and larger networks experienced smaller granular-
ities. Lastly, the granularity of objectives was dynamic and evolved with respect
to network size over time. For example, two networks (network A = 10 expensive
links, network B = 30 inexpensive links) with the same Cost value of 0.30 will
experience different granularities in their Cost objective.

These key differences between our two problems also lead to orthogonal
results and conclusions. Ishibuchi et al. [7,8] observed that search was biased
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towards objectives with finer granularity whereas in this paper, solutions are
biased towards the coarse granularity region of each objective. Also, this study
found that discrete objectives with coarse granularities improve the search ability
of NSGA-II with many dimensions (objectives), whereas the coarse granularity
regions of the objective space in our work hinders NSGA-II’s search coverage.
The combined results of these two independent studies should enable the commu-
nity to make more informed decisions about which MOEAs to use for problems
with similar characteristics or at least should make the researcher more inquisi-
tive of returned solutions.

7 Conclusions and Future Work

In this paper, we first explored the use of NSGA-II for an industrial remote
data mirroring application. In this process, we observed the presence of a hidden
interaction preventing search from reaching regions on the Pareto surface where
optimal solutions were known to exist. Through a series of experiments, we deter-
mined that the root cause was the restricted search power of NSGA-II due to
an unfavorable interaction between a variable-length genome representation and
the crowding distance operator. Solutions with fewer elements experience greater
changes to their objective values due to a more coarse-grained granularity and
are able to achieve greater crowding distances. As a result, evolutionary search
is hindered from exploring regions of the objective space where larger, Pareto-
optimal solutions are known to exist. Recently [13], objective function granularity
has been highlighted as an important future research area for determining its
effects on search performance/dynamics as well as problem analysis. As a newly
discovered interaction, we believe this phenomenon is limited to NSGA-II, but
is potentially applicable to any EMO procedure, although further studies are
needed to confirm this point. These results provide a key insight in this area and
raise the level of awareness for researchers exploring multi-objective optimiza-
tion for domains where the solution’s size and/or number of features may evolve
freely during search.

Future directions for this work include (1) finding methods, such as epsilon-
dominance, that can be incorporated to handle this unintended interaction, (2)
surveying other EMO approaches that utilize a different diversity-preserving
mechanism and comparing their performance on this problem, and (3) design-
ing a formal test problem to evaluate existing and new EMO algorithms on
this rather unexplored interaction between search space properties and diver-
sity preserving operators. Several variables considered for further study include
the granularity level within each objective, variation in granularity across an
objective, and dynamic changes made to granularity during search.

Acknowledgments. This work has been supported in part by NSF grants IIP-
0700329, CCF-0820220, DBI-0939454, CNS-0854931, CNS-0915855. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation
or other research sponsors.



Unwanted Feature Interactions Between the Problem and Search Operators 33

References

1. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. SIGOPS Oper. Syst. Rev. 35(5), 131–145 (2001)

2. Byers, C.M., Cheng, B.H.: Mitigating uncertainty within the dimensions of a
remote data mirroring problem. Tech. Rep. MSU-CSE-14-10, Computer Science
and Engineering, Michigan State University, East Lansing, Michigan, September
2014

3. Das, I., Dennis, J.: A closer look at drawbacks of minimizing weighted sums of
objectives for Pareto set generation in multicriteria optimization problems. Struc-
tural Optimization 14(1), pp. 63–69 (1997)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Trans. Evol. Comp. 6(2), 182–197 (2002)

5. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

6. Holland, J.H.: Genetic algorithms. Scientific American, July 1992
7. Ishibuchi, H., Yamane, M., Nojima, Y.: Effects of discrete objective functions with

different granularities on the search behavior of emo algorithms. In: Soule, T.,
Moore, J.H. (eds.) GECCO, pp. 481–488. ACM (2012)

8. Ishibuchi, H., Yamane, M., Nojima, Y.: Difficulty in evolutionary multiobjective
optimization of discrete objective functions with different granularities. In: Pur-
shouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013.
LNCS, vol. 7811, pp. 230–245. Springer, Heidelberg (2013)

9. Ji, M., Veitch, A.C., Wilkes, J.: Seneca: remote mirroring done write. In: USENIX
Annual Technical Conf., General Track, pp. 253–268. USENIX (2003)

10. Keeton, K., Santos, C., Beyer, D., Chase, J., Wilkes, J.: Designing for disasters. In:
Proceedings of the 3rd USENIX Conf. on File and Storage Technologies, Berkeley,
CA, USA, pp. 59–62 (2004)

11. Keeton, K., Wilkes, J.: Automatic design of dependable data storage systems
(2003)

12. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

13. McClymont, K.: Recent advances in problem understanding: Changes in the land-
scape a year on. In: Proceedings of the 15th Annual Conference Companion on
Genetic and Evolutionary Computation, GECCO 2013 Companion, pp. 1071–1078,
ACM, New York (2013)

14. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. Computer 37(7), 56–64 (2004)

15. Ramirez, A.J., Knoester, D.B., Cheng, B.H., McKinley, P.K.: Applying genetic
algorithms to decision making in autonomic computing systems. In: Proceedings
of the 6th International Conference on Autonomic Computing, ICAC 2009, pp.
97–106. ACM, New York (2009)

16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. Trans. Evol. Comp. 3(4), 257–271 (1999)



Neutral but a Winner! How Neutrality Helps
Multiobjective Local Search Algorithms

Aymeric Blot1,2, Hernán Aguirre4, Clarisse Dhaenens2,3, Laetitia Jourdan2,3,
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Abstract. This work extends the concept of neutrality used in single-
objective optimization to the multi-objective context and investigates
its effects on the performance of multi-objective dominance-based local
search methods. We discuss neutrality in single-objective optimization
and fitness assignment in multi-objective algorithms to provide a gen-
eral definition for neutrality applicable to multi-objective landscapes.
We also put forward a definition of neutrality when Pareto dominance is
used to compute fitness of solutions. Then, we focus on dedicated local
search approaches that have shown good results in multi-objective com-
binatorial optimization. In such methods, particular attention is paid
to the set of solutions selected for exploration, the way the neighbor-
hood is explored, and how the candidate set to update the archive is
defined. We investigate the last two of these three important steps from
the perspective of neutrality in multi-objective landscapes, propose new
strategies that take into account neutrality, and show that exploiting
neutrality allows to improve the performance of dominance-based local
search methods on bi-objective permutation flowshop scheduling prob-
lems.

Keywords: Neutrality · Multi-objective optimization · Local search ·
Permutation flowshop scheduling

1 Introduction

In the single-objective context, solving large optimization problems with local
search approaches allows to obtain good solutions in a reasonable time [6]. These
local search methods are based on a neighborhood relation that enables to per-
form local improvements. It has been shown that such methods are sensitive to
the properties of the landscape of the problem studied, and that it is crucial to
analyze and understand such properties in order to improve the performance of
the algorithms.
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This work focuses on neutrality, a property that characterizes neighboring
solutions having the same fitness. In single objective-optimization it is known
that the degree of neutrality of a landscape impacts the behavior of local search
methods. There are also several studies showing that exploiting neutrality in a
local search method can improve performance of the method [7].

In the multi-objective context, there are also efficient local search methods
that have been proposed to approximate the Pareto optimal set, such as the
Dominance based Multi-objective Local Search (DMLS) [4]. However, not much
is known about neutrality, its effects, and how to take advantage of it in order
to improve the performance of multi-objective algorithms. Indeed, the perfor-
mance of a DMLS algorithm is closely related to the geometry of the landscape
of the problem to solve. Moreover, the Pareto dominance relation induces land-
scapes where many solutions cannot be compared with many others (solutions
equivalent in term of quality), and one major difficulty of DMLS algorithms is,
at each iteration, to choose a selected neighbor which may be equivalent, i.e.
incomparable with the current explored solution.

This work extends the concept of neutrality to multi-objective optimization
with the aim to analyze whether exploiting neutrality is also beneficial in a multi-
objective context. We discuss neutrality in single-objective optimization and
fitness assignment in multi-objective algorithms to provide a general definition
for neutrality applicable to multi-objective landscapes. We also put forward a
definition of neutrality when Pareto dominance is used to compute fitness of
solutions. Then, we analyze existing DMLS from the point of view of neutrality,
in order to propose new efficient schemes. We focus on strategies that take into
account neutrality, particularly during the neighborhood exploration and the
creation of the candidate set of solutions to update the archive, showing that
exploiting neutrality allows to improve the performance of dominance-based local
search methods on bi-objective permutation flowshop scheduling problems.

The paper is organized as follows. Section 2 states background definitions of
multi-objective combinatorial optimization. It presents the problem that will be
used as an illustration, the Permutation Flowshop Scheduling Problem (PFSP)
and Dominance based Multi-objective Local Search approaches (DMLS). In
Section 3, we propose a multi-objective concept of neutrality, and analyze its inte-
gration in existing DMLS algorithms. This leads us to propose several improve-
ments to DMLS algorithms to efficiently incorporate this notion. In Section 4,
experiments are conducted in order to emphasize the importance of taking care
of neutrality in DMLS algorithms and to measure the impact of our propositions
on the Permutation Flowshop Scheduling Problem (PFSP). At last, Section 5
gives the conclusions of the presented work and future research interests.

2 Background

This work investigates the effects of neutrality focusing on Dominance-based
Local Search Methods using the Bi-objective Permutation Flowshop Schedul-
ing Problem as an illustrative example. This section describes the optimization
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problem and the local search methods used, together with necessary notation to
better understand the paper.

2.1 The Bi-objective Permutation Flowshop Scheduling Problem

The Permutation Flowshop Scheduling Problem (PFSP) is a multi-objective
combinatorial optimization (MoCO) problem widely investigated in the litera-
ture. The PFSP consists in scheduling a set of N jobs {J1, . . . , JN}, on a set
of M machines {M1, . . . , MM}. Machines are critical resources that can only
process one job at a time. A job Ji is composed of M tasks {ti,1, . . . , ti,M} for
the M machines respectively. A processing time pi,j is associated to each task
ti,j , and a due date di is associated with each job Ji. The operating sequence
is the same on every machine. Therefore, a schedule may be represented as a
permutation of jobs π = {π1, . . . , πN}. Ω is the set of the feasible solutions.

The two objectives, f1 and f2, considered in this paper are the makespan
Cmax (eq. 1), i.e. the total completion time, and the total tardiness T (eq. 2).
Both objectives have to be minimized.

f1 = Cmax = max
i∈{1,...,N}

{Cπi
} (1)

f2 = T =
N∑

i=1

{
max {0, Cπi

− dπi
}}

(2)

The feasible outcome vectors of the objective space are compared using Pareto
dominance �. In this minimization context, a solution x ∈ Ω is said to dominate
a solution y ∈ Ω, denoted by x � y, if they satisfy relation (3).

∀i ∈ {1, 2}, fi(x) ≤ fi(y)
∧

∃i ∈ {1, 2}, fi(x) < fi(y) (3)

If solution y is non-dominated by solution x we denote y ⊀ x.
This paper focuses on multi-objective local search methods based on a neigh-

borhood definition. The neighborhood considered in this paper uses the insertion
operator, where a job located at position i is inserted at position j �= i and the
jobs located between positions i and j are shifted. The number of neighbors per
solution is then (N − 1)2.

2.2 Dominance-Based Multi-objective Local Search

In the literature, numerous methods have been proposed to solve MoCO prob-
lems. The Dominance-based Multi-objective Local Search algorithms represent
a class of local search approaches designed to approximate the Pareto front
of a MoCO [4] problem. DMLS algorithms keep an archive of mutually non-
dominated solutions and uses a neighborhood structure to improve the solutions
of the archive. The main steps of a DMLS algorithm are as follows.
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Step 1. Initialize the archive with a randomly created solution x, A ← {x}.
Step 2. Select from the archive a set of solutions for exploration, X ⊆ A.
Step 3. For each solution x ∈ X , explore the neighborhood of x until a neighbor

z fulfilling a required criterion is found. During exploration of x, in addition
to z, neighbor solutions x′ non-dominated by x are collected as candidate
solutions to update the archive, C = {x′ ∈ N (x) | x′ ⊀ x} ∪ {z}.

Step 4. Update the archive A with the collected candidate solutions C making
sure that only non-dominated solutions remain in the archive.

Step 5. If termination criterion is not met, repeat from Step 2.
Step 6. Return the archive A.

Fig. 1. Nomenclature of DMLS algorithms

Several strategies are defined for Step 2 and Step 3, which lead to different
configurations of DMLS algorithms. A specific nomenclature and classification
of DMLS algorithms was proposed by Liefooghe et al. [4], as shown in Figure 1.
In Step 2, the candidate set for exploration X can be obtained by selecting
from the archive either one solution randomly (DMLS (1 · )) or all solutions
(DMLS (� · )). In Step 3, the neighborhood exploration of each solution x ∈ X
can be either exhaustive or partial. If it is exhaustive (DMLS ( · �)), all the
neighbors are visited and all non-dominated neighbors x′ ⊀ x are collected in
the candidate set C to update the archive. If the exploration is partial, different
strategies can be used. A possible partial exploration strategy is to accept a
random neighbor whatever its quality (DMLS ( ·1)). This strategy corresponds
to a random search. Other strategy is to explore the neighborhood of a solution
until a dominating neighbor z � x is found (DMLS ( · 1�)). A third partial
exploration strategy is to explore the neighborhood of a solution until a non-
dominated solution is found z ⊀ x (DMLS ( · 1⊀)), in which case z could
be a dominating solution z � x or mutually non-dominated with respect to x,
z ⊀ x and x ⊀ z.

Liefooghe et al. [4] experimented on the bi-objective PFSP showing that some
DMLS configurations perform better than others. In the rest of the paper, only
the following configurations DMLS (1 · 1⊀), DMLS (1 · 1�) and DMLS (� · 1�)
are considered.
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3 Neutrality Extended to Multi-objective Optimization

In this section, we discuss the concept of neutrality in single objective optimiza-
tion, propose a definition of neutrality in the multi-objective context, particularly
for Pareto dominance based approaches, clarify how neutrality has been used so
far in the DMLS algorithm, and propose new strategies for DMLS aiming to
further exploit neutrality in multi-objective optimization.

3.1 Neutrality in Single-objective Optimization

In single-objective optimization, neutrality arises when neighboring solutions
have the same quality. More formally, let us denote Ω the space of the admis-
sible solutions, N a neighborhood structure, and f a fitness function. A fitness
landscape of the problem is defined by the triplet (Ω, N , f). A neutral neighbor
of a solution s ∈ Ω is a neighbor solution s′ ∈ Ω with the same fitness value,
f(s) = f(s′). Given a solution s ∈ Ω, its set of neutral neighbors Nn(s) is defined
by:

Nn(s) = {s′ ∈ N (s) | f(s′) = f(s)}
The neutral degree of a solution is the number of its neutral neighbors |Nn(s)|.
A fitness landscape is said to be neutral if there are many solutions with a high
neutral degree |Nn(s)|.

Neutral solutions can be considered in the design of local search algorithms [1,
7,10] either to escape from a local optimum or to explore more widely the search
space. Since equivalent solutions have proved to be useful in single-objective
optimization, we propose to study the effects of exploiting equivalent solutions
in multi-objective optimization.

3.2 Neutrality in Multi-Objective Optimization

The definition of neutrality in single-objective optimization is based on neighbor
solutions that have same fitness values. In order to give a definition of neutrality
in multi-objective optimization, we need to characterize neutral neighbors in this
context. Particularly, what means equal fitness of two solutions.

In multi-objective optimization there are various approaches to compute fit-
ness of solutions. These include Pareto dominance, Pareto dominance and density
estimation, scalarization functions, and indicator functions such as the hyper-
volume IHV or the epsilon indicator Iε+ . In general, we can say that fitness
f is a function of the n single-objective fitness values f1, f2, · · · , fn computed
for a solution, i.e. f = g(f1, f2, · · · , fn). Thus, a similar definition used for
neutrality in single-objective optimization can be used for neutrality in multi-
objective optimization. Namely, a multi-objective neutral neighbor of a solution
s ∈ Ω is a neighbor solution s′ ∈ Ω with the same fitness value f(s) = f(s′),
where g(f1, f2, · · · , fn) is a function of the single-objective fitness values and
f = g(f1, f2, · · · , fn).
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It should be noted that each approach to compute fitness in multi-objective
optimization implies a different fitness function and therefore a different land-
scape. This also means that the set of neutral neighbors of a solution might vary
depending on the approach used to compute fitness. However, all approaches
aim to find the Pareto optimal set of the problem or a good approximation of
it. It will be very interesting to study the effects of neutrality in the different
approaches to multi-objective optimization. In this work, we restrict our atten-
tion to approaches that use Pareto dominance to determine fitness of solutions.

Given a a solution x to explore based on a neighborhood structure N , Pareto
dominance implies three types of neighbors x′ respect to x: dominating neighbors
x′ � x, dominated neighbors x � x′, or mutually non-dominated neighbors
x ⊀ x′ and x′ ⊀ x, as shown in Figure 2. These latter neighbors are non-
comparable solutions. Therefore, they can be viewed as equivalent neighbors, or
same fitness neighbors, that define the neutral neighbors in the multi-objective
context when fitness of solutions is computed using Pareto dominance. More
precisely, given a solution s ∈ Ω, its set of neutral neighbors is defined by:

Ne(s) = {s′ ∈ N (s) | s ⊀ s′ and s′ ⊀ s}

Note that this definition includes the case where two neighbors have the same
objective vector (s′ ∈ N (s),∀i ∈ [1, n], fi(s) = fi(s′)).

The motivation to extend neutrality from single- to multi-objective optimiza-
tion comes from the fact that single-objective local search algorithms can benefit
from equivalent/neutral solutions. These solutions allow to continue the search
when it is trapped in a local optimum without degrading. Similarly, in multi-
objective optimization that uses Pareto dominance to establish fitness of the
individuals, a local search algorithm can be trapped in a Pareto local optimum
(PLO) and some equivalent/neutral neighbors can help to escape from it. In the
following, we use the term neutral to qualify these equivalent neighbors.

f2

f1

s

dominated neighbors

neutral/equivalent neighbors

dominating neighbors

neighborhood of s

Fig. 2. Neighborhood in bi-objective optimization
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3.3 Neutrality in DMLS Algorithms

Section 2.2 briefly described the DMLS algorithms for multi-objective optimiza-
tion. Analyzing these algorithms, we can see that some of them can exploit
neutral neighbors to approach the Pareto front, but require that the neighbors
survive several steps of the algorithm. For example, during Step 3 DMLS (1 ·1⊀)
and DMLS (� · 1⊀) algorithms can generate at most one neutral neighbor solu-
tions per x ∈ X if and only if during exploration a dominating solution is not
found first. On the other hand, DMLS (1 · 1�) and DMLS (� · 1�) can generate
more than one neutral neighbor solution per x ∈ X until the first dominating
solution is found or the whole neighborhood has been explored if there is no
dominating solution. The neutral neighbors found in Step 3 become part of the
candidate solution set C to update the archive. In Step 4 these neutral neighbors
could be included in the archive only if they are non dominated by all members
of the current archive. Then in Step 2 of the next iteration the newly found
neutral neighbors can be selected for exploration. Thus, DMLS algorithms in
order to exploit a neutral neighbor of x also requires that it is non-dominated
by the archive.

Neutrality seems to be exploited to increase the performance of DMLS as
equivalent neighbors may be candidates to be archived. However, it is not clear
the contribution of neutral neighbors to the effectiveness of DMLS algorithms. In
this paper, we want to clarify and show the impact of using neutral
neighbors in multi-objective local search. To do so, we will analyze two con-
figurations of DMLS denoted DMLS (1 · 1�) and DMLS (� · 1�) where neu-
trality is never exploited and compare them with already existing strategies for
DMLS algorithms that explore to some degree neutrality. In DMLS (1 · 1�) and
DMLS (� · 1�) the neighborhood of each selected solution is explored until a
dominating solution is found and only this neighbor represents a candidate to
be archived, thus never exploiting the neutral neighbors of a solution.

3.4 New Neutrality-Based Strategies

In addition to configurations of DMLS, proposed by Liefooghe et al., where neu-
trality could be implicitly exploited if neutral neighbors are non-dominated by
the archive, we propose in this paper two new configurations where neutrality
can be exploited in two different steps of the algorithm: either during the explo-
ration of the neighborhood or in the formation of the candidate set of solutions
to be archived.

In DMLS (1·1⊀) [4], neutrality can be exploited when the first non-dominated
neighbor found during exploration of the neighborhood happens to be a neutral
neighbor and later it is non-dominated by the archive. In the 1⊀ exploration
strategy, the first non-dominated solution found could be either a neutral neigh-
bor or a dominating neighbor. It is arguable whether the first neutral neighbor
found would be the best to improve later the Pareto front in the archive, so
that neutrality could be exploited. Similarly, it is also arguable whether the first
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dominating neighbor could be the best dominating neighbor. Therefore, we pro-
pose a k⊀ exploration strategy, where the neighborhood of a solution is explored
until k different non-dominated neighbors have been found. This strategy gives
the opportunity to explore more widely the neighborhood of a solution. Indeed
more chance to find one or more dominating neighbors is given. In addition,
since all non-dominated neighbors are collected in the candidate set C to update
the archive, this strategy increases the likelihood of finding neutral neighbors
that can become part of the archive, diversifies the Pareto front, and emphasizes
the exploitation of neutrality. The new DMLS with the k⊀ exploration strategy
is denoted DMLS (1 · k⊀), where the number k is an integer defined from 1 to
the neighborhood size.

The candidate set of solutions C considered to update the archive is a key
element when dealing with neutrality. Indeed, Liefooghe et al. take into account
all neutral neighbors visited during the neighborhood exploration when a 1�
strategy is used. In this paper, in addition to collect neutral neighbors in the
candidate set C of solutions to update the archive, we propose to use some of
them for further exploration, before they are used to update the archive.

DMLS (� · 1�) [4] is a configuration where all solutions of the archive are
selected to be explored until a dominating neighbor is found for each one. This
algorithm may integrate a large number of solutions in C during a single step
of archiving. We modify Step 3 of the DMLS (� · 1�) algorithm. When a non-
dominated neighbor x′ is found, we check Pareto dominance between x′ and
those already in the set X selected for exploration. If no solution in X is dom-
inated by x′, then x′ is added to the exploration set X . Thus, the exploration
set X grows dynamically as neutral neighbors are found. This strategy allows
to explore neutral neighbors that could not be archived in Step 4 after find-
ing the dominating neighbors of solutions in X . This proposed DMLS, denoted
DMLS (� + X⊀ · 1�), takes advantage of neutrality more intensively than the
known configurations of DMLS. Figure 3 gives the complete nomenclature of
DMLS algorithms with the proposed configurations (in the red boxes) and the
most used DMLS configurations. Note that in this figure the definition of the
candidate set of solutions C used to update the archive is explicitly described.

Fig. 3. Nomenclature of DMLS algorithms with the proposed configurations
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4 Experiments and Discussion

The aim of this section is to compare performance of the different DMLS con-
figurations studied in this work and clarify the effects of neutrality on the Per-
mutation Flowshop Scheduling Problem (PFSP).

4.1 Experimental Protocol

Instances. Experiments are realized on classical Muti-objective PFSP instances.
These instances have been proposed by Minella et al. [8] as an extension of
the well-known random generated instances of Taillard [9], in which due dates
have been added. In the following, these instances are denoted by a triplet
(JJJ × MM × NN), where JJJ is the number of jobs, MM is the number
of machines, and NN is the identifier of the (JJJ × MM) instance.

Performance Assessment. In order to rank the different algorithms and
observe the behavior and influence of the neutral neighbors on performance,
three complementary indicators are used as recommended in [3]. Namely, unary
ε-indicator I1ε+, hypervolume difference indicator I−

H , and Spread. These indica-
tors are based on set Zall that is the union of the final sets of solutions obtained
by all algorithms and on the reference set R that contains the Pareto set of Zall.
The three performance indicators are explained below, where A stands for the
set of solutions found by an algorithm.

ε-indicator I1ε+ The unary ε-indicator is computed using the binary version given
by (4) and the reference set R, with I1ε+(A) = Iε+(A,R).

Iε+(A,R) = inf
ε∈R

{∀z1 ∈ R,∃z2 ∈ A,∀i ∈ 1 . . . n, z1i ≤ ε + z2i } (4)

Hypervolume difference indicator I−
H The hypervolume indicator IH is computed

by the measure of the hypervolume between a set of solutions and the point
z = (z1, . . . , zn) where zk is the upper bound of the kth objective considering
all solutions of Zall. The hypervolume difference indicator I−

H is then computed
with I−

H(A) = IH(R) − IH(A).

Spread. The spread indicator used in this paper is computed as follows. First,
the two solutions of Zall that reach the extrema relatively to the two objectives
are selected, and filtered out of the set of the considered solutions. Given df and
dl the distances to those extreme points, d̄ the mean of the distances, and di the
distance between solutions of the set, the spread indicator is given by (5).

Δ =
df + dl +

∑ |di − d̄|
df + dl +

∑
d̄

(5)
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Experimental Design. All DMLS implementations are realized under the Par-
adisEO 2.0 software framework [5]. Most of the performance assessment indices
are computed using the PISA platform [2] and its performance assessment mod-
ule. The spread indicator has been developed to be automatically computed into
PISA. The results are then verified with the Friedman statistical test, and a
global ranking is computed using the Wilcoxon statistical test.

Seven instances have been selected from Minella et al., spanning over seven
problem sizes. The seven algorithms of Figure 3 are compared. For the parameter
k in DMLS (1 · k⊀), two different values low and high have been tested, leading
to two versions of this algorithm: DMLS (1 ·klow

⊀ ) and DMLS (1 ·khigh
⊀ ). The low

and high values of k depend on the number of jobs of the instance as the size of
the neighborhood depends on it. Parameter k has been set arbitrarily according
to the number of jobs: k = 5 and 10 for 20 jobs, k = 15 and 25 for 50 jobs, and
k = 20 and 50 for 100 jobs.

For each instance, 20 executions have been recorded for each algorithm. A
maximal runtime has been fixed for each size of instance corresponding to N ×M
seconds. Those runtimes were sufficient for all algorithms to converge, even if
they did not reach a natural termination.

4.2 Experimental Results

Table 1 shows the rankings computed with the indicator I1ε+ for each instance
with respect to the final Pareto local set R. Similarly, Table 2 and Table 3 show
the rankings computed with I−

H indicator and spread indicator, respectively.
The Friedman statistical tests give a p-value of 2.449e−6 for the I1ε+ indi-

cator, 4.796e−6 for I−
H and 1.758e−5 for spread. Thus, the behavior of the all

algorithms is statistically different on the three indicators, and ranks give valu-
able information about performance. These tables allow several observations.

Table 1. Rankings according to I1ε+

Instance (1 · 1�) (� · 1�) (1 · 1⊀) (1 · klow
⊀ ) (1 · khigh

⊀
) (1 · 1�) (� · 1�) (� + X⊀ · 1�)

(020 × 05 × 01) 7 8 1 5 2 6 4 3
(020 × 10 × 01) 8 7 2 6 5 4 3 1
(020 × 20 × 01) 8 7 4 5 2 6 3 1
(050 × 10 × 01) 7 8 2 4 5 6 3 1
(050 × 20 × 01) 8 7 5 2 4 6 3 1
(100 × 10 × 01) 7 8 3 5 4 6 2 1
(100 × 20 × 01) 7 8 3 6 5 4 2 1

mean 7.42 7.57 2.85 4.71 3.85 5.42 2.85 1.28

No neutrality exploitation. Tables 1, 2 and 3 show that algorithms DMLS (1·1�)
and DMLS (� · 1�) share the worse results on the three indicators. These
two methods select during the neighborhood exploration one single dominat-
ing neighbor for each explored solution, without any neutrality consideration,
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Table 2. Rankings according to I−H

Instance (1 · 1�) (� · 1�) (1 · 1⊀) (1 · klow
⊀ ) (1 · khigh

⊀
) (1 · 1�) (� · 1�) (� + X⊀ · 1�)

(020 × 05 × 01) 8 7 3 4 1 6 5 2
(020 × 10 × 01) 8 7 2 6 5 4 3 1
(020 × 20 × 01) 8 7 4 5 2 6 3 1
(050 × 10 × 01) 7 8 2 4 5 6 3 1
(050 × 20 × 01) 8 7 5 2 4 6 3 1
(100 × 10 × 01) 7 8 3 6 4 5 2 1
(100 × 20 × 01) 7 8 3 6 5 4 2 1

mean 7.57 7.42 3.14 4.71 3.71 5.28 3.00 1.14

Table 3. Rankings according to the spread indicator

Instance (1 · 1�) (� · 1�) (1 · 1⊀) (1 · klow
⊀ ) (1 · khigh

⊀
) (1 · 1�) (� · 1�) (� + X⊀ · 1�)

(020 × 05 × 01) 8 7 3 5 6 4 1 2
(020 × 10 × 01) 7 8 3 6 2 4 5 1
(020 × 20 × 01) 8 7 4 6 3 5 2 1
(050 × 10 × 01) 7.5 7.5 6 3 5 4 1 2
(050 × 20 × 01) 8 7 6 5 3 4 2 1
(100 × 10 × 01) 8 7 3 6 5 4 1 2
(100 × 20 × 01) 8 7 6 5 4 3 2 1

mean 7.78 7.21 4.42 5.14 4.00 4.00 2.00 1.42

i.e. not even one neutral neighbor is considered as candidate solution to update
the archive. If this strategy allows to quickly optimize at the beginning of the
search, it does not allow to obtain a good approximation of the whole Pareto
front.

Considering neutrality to update the archive. One way to take profit from neu-
trality during the search is, as exposed before, to collect neutral neighbors dur-
ing the neighborhood exploration and use them as candidates to update the
archive. A strategy may consist in exploring the neighborhood until a dominat-
ing neighbor is reached (as in the worst versions), but keeping all equivalent
neighbors encountered. This leads to DMLS (1 · 1�) and DMLS (� · 1�). Note
that DMLS (1 · 1�) is ranked better than DMLS (1 · 1�) and DMLS (� · 1�) is
ranked better than DMLS (� ·1�). This shows that considering neutrality in the
candidate set to update the archive seems to be effective. Methods DMLS (1·1⊀),
DMLS (1 · klow

⊀ ) and DMLS (1 · khigh
⊀ ) also consider neutral neighbors as inter-

esting neighbors to update the archive and explore the neighborhood until one
or several (k) non-dominated solutions (i.e. either neutral or dominating solu-
tions) are found. Results show that these strategies perform better than methods
that only consider the first dominating neighbor encountered. Moreover, when k
neighbors are required, several potential interesting solutions may become part
of the candidate set to update the archive, which improves the quality of the
obtained approximation of the Pareto optimal set. Note that a high value of k
leads to better results.
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Considering neutrality before archiving. Another way to exploit neutral neigh-
bors is to add them dynamically to the set of solutions X to be explored in
addition to the set of candidate solutions to update the archive, as explained in
section 3.3. This leads to the method DMLS (� + X⊀ · 1�) which obtained the
best results over all the tested methods. This method outperforms the method
DMLS (� · 1�) that also takes into account neutral neighbors to update the
archive. This is because the dynamical insertion of neutral neighbors into the
set of solutions to be explored allows the method to go deeper in the search. In
addition, it also saves some computational effort.

(a) (b)

Fig. 4. Pareto Fronts for the instances 050 × 10 × 01 (a) and 100 × 20 × 01 (b)

These above observations are complemented by Figure 4 (a) and (b) that
show the Pareto fronts obtained by each method on two instances. These figures
illustrate the good average performance of DMLS (� + X⊀ · 1�) and show that
DMLS (�·1�) is able to produce very good results on large instances. These two
figures allow to confirm also that DMLS (1 · khigh

⊀ ) outperforms DMLS (1 · klow
⊀ )

as indicated on the previous tables.
In summary, these experiments show that non considering neutral neighbors

(method DMLS (1 · 1�) and DMLS (� · 1�) ) is less efficient than consider-
ing them. In particular, the diversity of the Pareto front produced is greatly
impacted. Also, as shown by the not so good performance of method DMLS (1 ·
1⊀), in particular in terms of spread, the first found neutral neighbors are not
always of good quality and it may be important to consider several of them in
order to improve results. Moreover, the exploitation of neutral neighbors that
may be dominated by the archive could lead to improve the performance of local
search Pareto dominance based approaches.
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5 Conclusion

Neutrality has obviously a critical role in multi-objective combinatorial opti-
mization, and furthermore in local search algorithms. Small changes in the way
neutral neighbors are handled greatly modify the general behavior of algorithms.
This is why the understanding of the relation between local search and neutrality
is very important in multi-objective as well as in single-objective optimization.
This paper extended the concept of neutrality to multi-objective optimization,
focused the discussions about the neutrality in the context of dominance-based
multi-objective local search algorithms, and proposed new strategies to improve
the behavior of those algorithms towards the exploitation of neutral neighbors.
We verified the proposed strategies on a classical bi-objective problem. Exper-
iments showed overall the advantage of exploiting neutral neighbors. It also
showed the importance of considering a set of neutral neighbors, instead of a
single one, in order to increase the performance in term of diversity and conver-
gence.

However, as it was shown by the not so good performance of method DMLS (1·
1⊀), first found neutral neighbors may not be of good quality, and it could be
interesting, not only to consider several of them, but to select some of them. This
is one of the further question we want to address. Another interesting question,
is to analyze how this neutrality concept may be transposed to multi-objective
problems with more than two objectives, as the number of neutral neighbors may
increase significantly with the number of objectives. Additionally, it will be inter-
esting to study neutrality under other classes of fitness assignment methods in
multi-objective optimization.
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Abstract. Differential evolution (DE) research for multi-objective opti-
mization can be divided into proposals that either consider DE as a
stand-alone algorithm, or see DE as an algorithmic component that can
be coupled with other algorithm components from the general evolu-
tionary multiobjective optimization (EMO) literature. Contributions of
the latter type have shown that DE components can greatly improve the
performance of existing algorithms such as NSGA-II, SPEA2, and IBEA.
However, several experimental factors have been left aside from that type
of algorithm design, compromising its generality. In this work, we revisit
the research on the effectiveness of DE for multi-objective optimization,
improving it in several ways. In particular, we conduct an iterative anal-
ysis on the algorithmic design space, considering DE and environmental
selection components as factors. Results show a great level of interac-
tion between algorithm components, indicating that their effectiveness
depends on how they are combined. Some designs present state-of-the-
art performance, confirming the effectiveness of DE for multi-objective
optimization.

Keywords: Multi-objective optimization · Evolutionary algorithms ·
Differential evolution · Component-wise design

1 Introduction

Differential evolution (DE) [15] plays an important role in single-objective opti-
mization and has led to the development of a number of effective optimization
algorithms for both constrained and unconstrained continuous problems [6]. In
particular, one of the most attractive features of DE is its simplicity and its abil-
ity to outperform classical genetic algorithms (GAs) [13]. As a result, a number
of research proposals have extended DE algorithms to tackle multi-objective
optimization problems (MOPs) in the Pareto sense [6,10,14]. In general, exten-
sions follow different paths on how to adapt DE to deal with Pareto optimality,
and these stand-alone algorithms have been compared to well-known GA-based
algorithms such as NSGA-II [7] or SPEA2 [20] to test their effectiveness. Inter-
estingly, two research groups independently proposed the same DE algorithm at
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 48–63, 2015.
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about the same time: DEMO [14] and GDE3 [10]. To highlight the effectiveness
of this algorithm, we remark that it ranked among the top five best-performing
algorithms at the 2009 CEC competition on multi-objective optimization [18].

In the most comprehensive study conducted so far on DE for multi-objective
optimization, Tušar and Filipič [17] have considered DEMO as a template for
instantiating DE algorithms. Concretely, DEMO uses DE for exploring the deci-
sion space, but uses the environmental selection strategy of NSGA-II. The
authors then considered the possibility of using other environmental selection
approaches, and compared three top-performing GA-based algorithms, NSGA-II,
SPEA2, and IBEA [19] with DE versions of these algorithms, aliased DEMONS-II,
DEMOSP2 and DEMOIB. By performing pairwise comparisons between algo-
rithms that differ only in the underlying search mechanism (GA or DE), the
DE operators were shown to obtain more accurate approximations of the Pareto
front and DEMOSP2 was found to best balance convergence and diversity [16].

We extend here this excellent earlier work by carrying out a more profound
component-wise analysis [3,4] of the design of DE algorithms for MOPs. Our
analysis shows that a more fine-grained view of DE components can lead to new
insights. In the original analysis only the environmental selection strategy was a
component to be set in the DEMO template. However, the DE-part of DEMO
differs from traditional GAs in more than one component. In addition to the DE
variation operator, there is an online replacement strategy, i.e., newly generated
solutions are compared to existing solutions as soon as they are created, enforcing
a higher convergence pressure. In fact, the latter component was found to be the
key improvement of DEMO over earlier DE adaptations to MOPs [14]. However,
when we consider the DEMO versions that use environmental selection strategies
from IBEA and SPEA2 instead of the original DEMO algorithm that uses the
environmental selection from NSGA-II, we show that the online replacement
strategy is not always beneficial to the effectiveness of the DEMO versions. In
other words, while DEMO was an improvement over existing NSGA-II based DE
algorithms because of its online replacement strategy, the other DEMO versions
present the same (or, sometimes, worst) performance than versions of IBEA and
SPEA2 that simply use the DE variation operator.

Furthermore, we consider several factors that affect the conclusions in the
original analysis. First, in the original paper, the quality indicator used by IBEA
and DEMOIB was the binary hypervolume difference, whereas strong evidence
points to a better performance of IBEA when using the binary epsilon indica-
tor [2,19]. Second, the analysis conducted in the original paper was done using
the default parameter settings traditionally adopted by the EMO community for
the benchmarks considered. However, we have recently shown that tuning the
numerical parameters of EMO algorithms can significantly improve their per-
formance [2], altering their relative performance. Finally, although the original
paper considered a representative number of benchmark functions, they all used
the same number of variables. In this work, we consider several different problem
sizes to ensure scalability issues do not compromise the generality of our results.
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Algorithm 1. componentWiseDE template

1: Initialize(pop)
2: repeat
3: Variate(pop)
4: Reduce(pop)
5: until termination criteria met
Output: pop

Algorithm 2. DE variation
Input: pop

1: repeat
2: trial ← DE operator(target)
3: OnlineReplace(pop, target, trial)
4: until #offspring produced

Algorithm 3. GA variation
Input: pop

1: pool ← Select(pop)
2: popnew ← GA operators(pool)
3: pop ← pop ∪ popnew

The remainder of this paper is organized as follows. Section 2 presents our
component-wise approach to differential evolution, and how we instantiate both
DE-based and GA-based algorithms using a flexible template. Section 3 presents
the intermediate algorithmic designs we use in this work to understand the con-
tribution of the individual DE components we consider. The experimental setup
used for this assessment is given in Section 4. We split the discussion of the
results in two parts. In Section 5, we compare algorithms grouped by environ-
mental selection strategy. In Section 6, we compare all algorithms among them-
selves and to a well-known efficient EMO algorithm, SMS-EMOA [1]. We do so
to put the results in perspective, since we have recently shown that SMS-EMOA
performs consistently well for the experimental setup considered here [2]. Finally,
we conclude and discuss future work in Section 7.

2 Differential Evolution from a Component-Wise View

Several articles in the literature propose how to adapt DE algorithms to multi-
objective optimization. However, the differences among most of these algorithms
are quite small. From a very high-level perspective, multi-objective DE algo-
rithms can be represented using the template defined by Algorithms 1 and 2.
The general template displayed in Algorithm 1 could actually represent any
of the most used evolutionary computation approaches (GA, DE or evolution
strategies). Starting from an initial population (line 1), variation operators and
environmental selection are applied to a population to promote evolution, until
a given stopping criterion is reached.

In DE algorithms, the variation procedure is carried out as displayed in
Algorithm 2. The DE operator produces a trial vector from an existing tar-
get vector of the population. Although the single-objective optimization liter-
ature presents many different strategies for this operation, the multi-objective
DE algorithms proposed so far use the DE/rand/1/bin approach [15]. The most
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significant difference between the existing DE proposals is encapsulated in pro-
cedure OnlineReplace (line 3). In earlier algorithms, the trial vector xtrial only
replaced the target vector xtarget if xtrial dominated xtarget. In this case, no
environmental replacement is necessary, since the population size is always con-
stant. Later, algorithms considered the option of adding the trial vector to the
population in case both trial and target vectors were nondominated. In this
case, the population size might double at each iteration, and hence environ-
mental replacement strategies are employed after the variation is concluded, to
reduce the population to its original size. While this prevents algorithms from
early stagnation, it may as well slow down their convergence. We refer to these
two replacement versions as online replacement strategies, since trial solutions
may replace target solutions during the variation stage, before the actual pop-
ulation management represented by procedure Reduce happens. However, some
multi-objective DE algorithms do not consider online replacement at all. In this
case, solutions are created by the DE operator, but are only compared to the
population altogether, when procedure Reduce is executed. These three different
options for online solution replacement are listed in the bottom part of Table 1.

The three different DEMO versions considered by Tušar and Filipič [17] can
be easily instantiated using this template as follows (all three versions use DE
variation and (non)dominance online solution replacement):

DEMONS-II uses environmental selection strategy proposed for NSGA-II, i.e.,
nondominated sorting with tie-breaking according to crowdedness.

DEMOSP2 uses the environmental selection strategy proposed for SPEA2,
i.e., sorting according to dominance strength and tie-breaking according to
nearest neighbor density estimation.

DEMOIB uses the environmental selection strategy proposed for IBEA, i.e.,
sorting according to the binary ε-indicator (Iε).

In an analogous fashion, the original GA-based algorithms NSGA-II, SPEA2
and IBEA can be instantiated using the same template. To do so, instead of
a DE-based variation, we use a traditional GA variation approach, outlined by
Algorithm 3. The mating selection (line 1) is done according to the fitness of
the individuals, which is computed using the same strategies adopted for the
environmental replacement in the respective GA-based algorithms. Besides the
previously discussed algorithms, the component-wise template presented here
could also be used to instantiate other algorithms. We will discuss this in more
detail in the next section.

3 Investigating Intermediate Designs

As explained in the previous section, the three original DEMO versions [17]
comprise more than a single atomic DE-related algorithmic component. Con-
cretely, it is a combination of the DE variation operator and an online replace-
ment strategy. Although the DEMO versions of NSGA-II, SPEA2, and IBEA
have indeed shown performance improvements over the original algorithms, it
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Table 1. Algorithmic options of a component-wise multi-objective DE template

Component Domain Description

Variate

{
DE variation,

GA variation
Underlying variation options

Reduce

⎧⎪⎨
⎪⎩

NSGA-II,

SPEA2,

IBEA

Environmental selection approaches

OnlineReplace

⎧⎪⎨
⎪⎩

dominance,

(non)dominance

none

Online solution replacement criterion
(this component only takes effect when
DE variation is used)

remains unclear how each of these individual components contribute to these
performance gains. To properly assess the effectiveness of these components, we
propose a set of intermediate algorithmic designs: DENS-II, DESP2, and DEIB

which are identical to the DEMO variants except that they do not use online
solution replacement. Moreover, the only difference between these DE versions
and the original versions of NSGA-II, SPEA2 and IBEA is the use of the DE
variation operator. For instance, considering the case of NSGA-II, DENS-II, and
DEMONS-II, the first uses traditional GA selection and variation, while the lat-
ter two use DE variation. However, while DEMONS-II may replace solutions as
soon as they are created, DENS-II replaces solutions only at the environmental
selection stage (procedure Reduce of Algorithm 1).

In the next section, we present the experimental setup in which we use these
intermediate designs to properly investigate the effectiveness of the DE operators
used by the different DEMO versions.

4 Experimental Setup

The benchmark sets we consider here include all unconstrained DTLZ [8] and
WFG [9] functions (DTLZ1–7 and WFG1–9). Since both benchmark sets offer
scalability as to the number of variables and objectives, we explore this feature
to increase the representativeness of our investigation. We consider versions of
these problems with three and five objectives. Concerning the number of variables
n, we consider problems with n ∈ {20, 21, . . . , 60}. Furthermore, to ensure that
numerical parameters do not affect our performance assessment of the DE com-
ponents, we initially tune all algorithms, but we use disjoint sets for tuning and
testing to prevent overfitting. More precisely, we use problems with sizes ntesting =
{30, 40, 50} for testing, and problems with sizes n ∈ {20, 21, . . . , 60} \ ntesting for
tuning. For both testing and tuning, experiments are run on a single core of Intel
Xeon E5410 CPUs, running at 2.33GHz with 6MB of cache size under Cluster
Rocks Linux version 6.0/CentOS 6.3. The remaining details about tuning and
testing are given below.
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Table 2. Parameter space for tuning all MOEAs for continuous optimization

GA variation DE variation

Parameter μ = |pop| λ = |popnew| tsize pc, pm ηc, ηm CR F

Domain {10, 20, . . . , 100} 1 or λr · μ {2, 4, 8} [0, 1] {1, 2, . . . , 50} [0, 1] [0.1, 2]
λr ∈ [0.1, 2]

4.1 Tuning Setup

The automatic parameter configuration tool we use in this work is irace [11].
Although it was originally proposed for configuring single-objective optimiza-
tion algorithms, it can be adapted for multi-objective optimization by using the
hypervolume indicator [12]. Concretely, for each problem considered by irace,
candidate configurations are run for a maximum number of function evaluations
(10 000, following [2]). The approximation fronts they produce are then normal-
ized to the range [1, 2] to prevent issues due to dissimilar domains. Finally, we
compute the hypervolume for each front using ri = 2.1, i = 1, . . . , M as reference
point, where M is the number of objectives considered.

The parameter space we consider for tuning all algorithms is given in Table 2.
Parameter μ applies to both DE-based and GA-based algorithms. The following
six parameters (λ, tsize, pc, pm, ηc, ηm) only apply to GA-based algorithms.
In particular, we highlight that all GA-based algorithms use SBX crossover and
polynomial mutation, as commonly done in the literature [1,8,9]. Parameter tsize
controls the size of the deterministic tournament used for mating selection. The
probability of applying the crossover operator to a given pair of individuals is
controlled by parameter pc. Analogously, the probability of applying the muta-
tion operator to a given individual is controlled by parameter pm. In addition,
we consider two different mutation schemes: (i) bitwise, which sets the mutation
probability per variable pv = 1/n; and (ii) fixed, where pv becomes a parameter
∈ [0.01, 1]. Finally, ηc and ηm are the distribution indices for the SBX crossover
and polynomial mutation, respectively. The remaining two parameters (CR and
F ) in Table 2 concern DE variation. They control the number of variables affected
by the operator (parameter CR) and the strength of the changes (parameter F ).

There are two additional parameters that concern only SPEA2 and IBEA.
The original version of SPEA2 contains an additional parameter k for its k-
th nearest neighborhood density estimation strategy in the mating selection.
Here, besides the default value, which is computed according to the population
size and we denote with kmethod = default, we also give irace the possibility of
configuring k directly, with k ∈ {1, 2, . . . , 9}. For IBEA, as previously discussed,
several different binary quality indicators can be used. Here we allow irace to
select between the two most commonly adopted [19], the binary hypervolume
indicator (I−

H) and the binary ε-indicator (Iε). Additionally, irace is given the
flexibility to set different quality indicators for mating and for environmental
selection if that leads the algorithm to better performance. Algorithms are tuned
for each benchmark set (DTLZ or WFG) and for each number of objectives
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(3 or 5); that is, for each algorithm X, we obtain four tuned variants: XD3, XD5,
XW3 and XW5. For brevity, the tuned settings for all algorithms considered in
this work are provided as supplementary material [5].

4.2 Testing Setup

For comparing the tuned algorithms, we run each algorithm 25 times and eval-
uate them based on the relative hypervolume of the approximation fronts they
produce w.r.t. the Pareto optimal fronts. Since the latter are typically infinite, we
generate, for each problem instance, a Pareto front with 10 000 Pareto-optimal
solutions following the methodology described in the papers where the bench-
marks were proposed [8,9]. Given an approximation front A generated by an
algorithm when applied to a problem instance and the Pareto front P of the
same problem instance, the relative hypervolume of A equals IH(A)/IH(P ). A
relative hypervolume of 1.0 means the algorithm was able to perfectly approxi-
mate the Pareto front for the problem considered.

The comparison is done visually by means of boxplots, and analytically
through rank sums. Since we generate a large set of results, we only discuss
the most representative ones here. In particular, many of the DTLZ problems
have been found to be easy for EMO algorithms, creating a ceiling effect in the
results. For this reason, we focus the discussion on the WFG benchmark and
provide the analysis on the DTLZ benchmark as supplementary material [5].
Additionaly, due to the large amount of results we produce, we present here the
results for n = 40. Similar results were found for n ∈ {30, 50}, and are also
provided as supplementary material.

5 Experimental Analysis Grouped by Environmental
Selection Strategy

To investigate how each algorithm component individually affects the perfor-
mance of the different DEMO versions, we first conduct an analysis where algo-
rithms are grouped by the environmental selection strategy they employ.

5.1 NSGA-II, DENS-II, and DEMONS-II

The boxplots of the relative hypervolume achieved by the algorithms that use the
environmental selection strategy proposed for NSGA-II are given in Figures 1
and 2. For the 3-objective problems (Figure 1), we observe very heterogeneous
results. For some problems such as WFG7 and WFG8 there is almost no dif-
ference between the algorithms, indicating that the DE components are unable
to improve the performance of the original NSGA-II. However, for problems
such as WFG1, WFG2, WFG4, and WFG6, the performance of NSGA-II can be
improved, sometimes by a large margin, such as for WFG1 and WFG2. When
we consider the effectiveness of the DE components, we see that sometimes
using both components (as in DEMONS-II) is beneficial (e.g., WFG1, WFG5,
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Table 3. Sum of ranks depicting the overall performance of algorithms grouped by
environmental selection strategy. Algorithms in boldface present rank sums not signif-
icantly higher than the lowest ranked for a significance level of 95%.

3 objectives 5 objectives

DEMONS-II
W3 DENS-II

W3 NSGA-IIW3 DENS-II
W5 DEMONS-II

W5 NSGA-IIW5

(1259.5) (1321) (1469.5) (1257) (1393) (1400)

DEMOSP2
W3 SPEA2W3 DESP2

W3 DEMOSP2
W5 DESP2

W5 SPEA2W5

(1281) (1299.5) (1469.5) (1259) (1346.5) (1444.5)

DEIB
W3 DEMOIB

W3 IBEAW3 DEMOIB
W5 DEIB

W5 IBEAW5

(1212) (1246.5) (1591.5) (1215.5) (1225.5) (1609)
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Fig. 1. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of NSGA-II (WFG problems, 40 variables, 3 objectives)

and WF8), but for other problems it is better to use the DE variation with-
out the online replacement strategy as in DENS-II (e.g., WFG2, WFG6, and
WFG9). Particularly for WFG9, using both components simultaneously wors-
ens the performance of NSGA-II. When we aggregate results for all runs and
sizes of 3-objective WFG problems in a rank sum analysis (Table 3), we see
that both DE-based algorithms improve over NSGA-II, but no significant dif-
ference can be found among DEMONS-II and DENS-II using Friedman’s test at
95% confidence level.

The performance shown by NSGA-II, DENS-II, and DEMONS-II on the 5-
objective WFG problems (see Fig. 2) is quite different. This time, using both DE
components (DEMONS-II) is only beneficial for problems WFG1, WFG4, WFG5,
and WFG8. In the other problems, the online replacement leads to results worse
even than the ones achieved by the original NSGA-II. However, when we consider
only the DE variation (DENS-II), we see that the performance of NSGA-II is
improved for most functions, except for WFG2 and WFG5. When we aggregate
results for all 5-objective problems, we see that DENS-II indeed ranks first, with
significantly lower rank sums than the remaining algorithms (Table 3).
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Fig. 2. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of NSGA-II (WFG problems, 40 variables, 5 objectives)
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Fig. 3. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of SPEA2 (WFG problems, 40 variables, 3 objectives)

5.2 SPEA2, DESP2, and DEMOSP2

The boxplots of the relative hypervolume achieved by the algorithms that use
the environmental selection strategy proposed for SPEA2 are given in Figures 3
and 4. This time the 3-objective problems (Figure 3) show a more clear sepa-
ration between problems for which DE components lead to improvements and
problems for which they worsen the performance of the original SPEA2. For
the first group (WFG1, WFG2, and WFG6), we see that there is no pattern
as to whether the online replacement is a suitable component for improving
SPEA2. However, for the problems where DE components do not lead to perfor-
mance improvements, typically the version that uses online replacement (that
is, DEMOSP2) shows better results than the version that does not use it (that
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Fig. 4. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of SPEA2 (WFG problems, 40 variables, 5 objectives)

is, DESP2). When we aggregate results for all 3-objective problems, we see that
SPEA2 and DEMOSP2 show equivalent results, while DESP2 shows significantly
higher rank sums than both.

For the 5-objective WFG problems (see Figure 4), the online replacement
component plays a more important role than in the 3-objective problems. For
most problems, the performance of DESP2 and DEMOSP2 is quite different: while
DEMOSP2 outperforms SPEA2 for most problems, DESP2 worsens the perfor-
mance of SPEA2 for nearly half of the problems considered. The main exception
is WFG2, where DESP2 has the best performance among all algorithms. When
all 5-objective problems are considered (Table 3), DEMOSP2 ranks first with
rank sums significantly lower than DESP2 and SPEA2, which respectively rank
second and third. Despite its erratic behavior, DESP2 also presents significantly
lower rank sums than SPEA2.

5.3 IBEA, DEIB, and DEMOIB

The boxplots of the relative hypervolume achieved by the algorithms that use the
environmental selection strategy proposed for IBEA are given in Figures 5 and 6.
The results for the 3-objective problems achieved by these indicator-based ver-
sions are far more homogeneous than the results shown before for NSGA-II and
SPEA2 environmental selection strategies. In almost all situations, DEIB and
DEMOIB perform nearly identically. Moreover, the DE-based variants always
outperform the GA-based version, except for problems WFG3–WFG5, where
the original IBEA was already very effective. These results indicate that, for
3-objective problems, the online replacement component is not an effective com-
ponent when combined with the indicator-based environmental selection strategy
proposed by IBEA.
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Fig. 5. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of IBEA (WFG problems, 40 variables, 3 objectives)
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Fig. 6. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of IBEA (WFG problems, 40 variables, 5 objectives)

The results for the 5-objective problems (see Figure 6) are somehow consis-
tent with the results on the 3-objective problems. However, on the 5-objective
problems, online replacement leads to performance changes. For some problems,
such as WFG2 and WFG7, DEIB finds better results than DEMOIB. The oppo-
site happens for problems WFG8 and WFG9. When we aggregate across all
problems (Table 3), we see that these two algorithms get nearly the same rank
sum, and that IBEA gets significantly worse rank sums.
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5.4 Overall Remarks

Overall, the DE operator leads algorithms to better results on problems WFG1,
WFG2, WFG6, and WFG9. As common characteristics, WFG1 and WFG2
present convex geometry, WFG1 and WFG9 present some form of bias, and
WFG6 and WFG9 present a complex non-separable reduction [9]. As for the
online replacement component, the only problem for which we can say that it is
beneficial is the WFG8 problem. However, since the DE operator typically wors-
ens the performance of the original algorithms for this problem, we see that the
online replacement is only weakening the effects of the DE operator. Although
these results might seem to contradict the results presented by the authors of
DEMO, we see that the environmental selection strategy from NSGA-II repre-
sents a special case here. DEMONS-II in fact improves over DENS-II and NSGA-II,
particularly for functions where NSGA-II faces difficulties [9]. However, this is
most likely explained by the poor performance of NSGA-II rather than by the
effectiveness of the online replacement strategy.

6 Comparison to SMS-EMOA

In this section we compare all algorithms with SMS-EMOA. In a recent com-
parison using the same experimental setup, SMS-EMOA was found to be very
effective for the benchmarks considered in this work [2].

For the 3-objective problems (Figure 7) we see that, in general, the DE-based
algorithms are never clearly worse than SMS-EMOA, except for the WFG6 prob-
lem. Particularly for WFG1 and WFG2, the differential evolution operator leads
to a significant performance improvement. However, the online replacement is not
effective for these two problems regardless of the environmental selection strat-
egy employed, and often worsens the performance of the algorithms. When we
aggregate across all 3-objective problems considered (Table 4), we see that DEIB

and DEMOIB achieve significantly lower rank sums than all other algorithms.
DEMOSP2 and SPEA2 rank second, along with SMS-EMOA. These results con-
firm that DE algorithmic components can indeed lead to significant performance
improvements, but that the interactions between them and the environmental
selection are also significant.

The comparison between all algorithms for 5-objective problems is given in
Figure 8. This time the environmental selection strategy becomes very important
for the effectiveness of the algorithms. As expected, dominance-based approaches
(NSGA-II and SPEA2) are not as effective for many-objective scenarios, and
hence even the DE versions of these algorithms are not able to perform as well
as the indicator-based algorithms. However, the performance improvements pro-
vided by the DE variation to IBEA is such that both DEIB and DEMOIB become
the top-performing algorithms, even though IBEA itself did not perform as com-
petitively as SMS-EMOA. These results indicate that, if coupled with proper
many-objective search mechanisms, DE algorithmic components can possibly
improve state-of-the-art algorithms, such as SMS-EMOA.
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Fig. 7. Relative hypervolume boxplots: 3-objective WFG problems with 40 variables
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Table 4. Sum of ranks depicting the overall performance of all algorithms. ΔR is the
critical rank sum difference for Friedman’s test with 95% confidence. Algorithms in
boldface present rank sums not significantly higher than the lowest ranked.

3 objectives (ΔR = 271) 5 objectives (ΔR = 265)

DEIB
W3 (2532) DEIB

W5 (2493)
DEMOIB

W3 (2535) DEMOIB
W5 (2506)

DEMOSP2
W3 (3738.5) SMS-EMOAW5 (2891.5)

SPEA2W3 (3764.5) IBEAW5 (3930)
SMS-EMOAW3 (3798) DEMOSP2

W3 (3932.5)
IBEAW3 (3924) DENS-II

W5 (4089)
DEMONS-II

W3 (3972.5) DESP2
W5 (4123.5)

DENS-II
W3 (4094.5) SPEA2W5 (4271.5)

DESP2
W3 (4325.5) DEMONS-II

W5 (4426.5)
NSGA-IIW3 (4440.5) NSGA-IIW5 (4461)

7 Conclusions

This paper has examined how the individual components of DE interact with the
components of various EMO algorithms. In particular, we studied the underlying
variation operator (GA or DE), the environmental selection strategy (NSGA-II,
SPEA2, or IBEA), and the use of an online replacement strategy. For the DTLZ
benchmark, results presented a ceiling effect, and hence we focused our analysis
on the WFG benchmark. For both three or five objectives, results showed that
the DE-operator improves the algorithms in most problems and that there is a
strong interaction between this component and environmental selection. How-
ever, for the online replacement component, results almost always indicated that
this component is not effective, except when combined with NSGA-II environ-
mental selection.

These results represent a significant contribution of our investigation. Before
our work, it was believed that the online replacement component was critical to
the effectiveness of multi-objective DE algorithms [14]. Furthermore, this result
reinforces the value of the component-wise design approach [2], which advocates
that components should be jointly investigated to account for interactions. In
fact, the component-wise design of effective DE-based algorithms is an important
next step for this research. Here, we have shown that, when coupled with the
environmental selection strategy from IBEA and used with numerical parame-
ters properly tuned, a very effective algorithm can be devised. Concretely, this
DEMOIB algorithm has consistently outperformed SMS-EMOA, an algorithm
that was recently shown to be very effective on the benchmarks considered here.
It is then natural to envision the possibility of designing even more effective algo-
rithms if a large set of components is considered, as in the automatic component-
wise design methodology [2,12].
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Abstract. Within the last 10 years, many model-based multi-objective
optimization algorithms have been proposed. In this paper, a taxonomy
of these algorithms is derived. It is shown which contributions were made
to which phase of the MBMO process. A special attention is given to the
proposal of a set of points for parallel evaluation within a batch. Pro-
posals for four different MBMO algorithms are presented and compared
to their sequential variants within a comprehensive benchmark. In par-
ticular for the classic ParEGO algorithm, significant improvements are
obtained. The implementations of all algorithm variants are organized
according to the taxonomy and are shared in the open-source R package
mlrMBO.

Keywords: Expected improvement · Hypervolume · Kriging · Perfor-
mance indicator · Surrogate model

1 Introduction

In recent years, the use of surrogate models for partly replacing the actual objec-
tive function allowed multi-objective optimization techniques to be applied to real-
world problems in an efficient way [16]. The resulting combinations of surrogate
models and optimization algorithms are denoted as model-based multi-objective
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optimization (MBMO) algorithms in the following. In the early algorithms, sur-
rogate models have been fitted, and have then been used for the optimization in
replacement of the actual objective functions. No sequential update has been per-
formed. If a validation is performed at all, only the finally selected solution has
been evaluated on the actual problem.

Since 2005, sequential approaches – using the surrogate to decide on new
points to evaluate and update the model in an iterative fashion – have been
proposed. Most of these approaches are based on ideas of the popular Efficient
Global Optimization (EGO) procedure [13]. Early work in the multi-objective
scenario has either scalarized the objectives [15] to allow EGO to be directly
used or has optimized EGO’s figure of merit for different models in parallel using
MOEA [11,19]. Later, also set-based improvement criteria, specifically designed
for multi-objective optimization, have been defined [1,9,14,18,23]. Until now, the
algorithms as a whole were considered as a contribution to the field of MBMO. In
order to better distinguish the actual contributions, a first taxonomy of existing
MBMO approaches is introduced in this paper.

Due to the enormous growth of parallel computing power and the advantages
of performing real experiments in batches, allowing more than one point to be
proposed per iteration (batch processing) is of great interest. Right now, only
one multi-objective approach exists [23] (see [3] for a comparison of methods and
a new approach in the single-objective case). As a consequence, possibilities to
integrate batch proposals into existing MBMO algorithms are proposed in the
paper. In particular for set-based improvement criteria in MBMO, this is done
for the first time, to the best of our knowledge.

The taxonomy is introduced in section 2. In section 3, it is shown how the
existing algorithms can be classified using the concepts of the taxonomy. The
ideas for allowing a batch proposal within specific algorithm classes are proposed
in section 4. All covered algorithms are integrated into the R toolbox mlrMBO
for model-based optimization (MBO), whose software design closely reflects the
presented taxonomy. The toolbox is briefly presented in section 5. The MBMO
algorithms are compared on a comprehensive benchmark, which is described and
evaluated in section 6. The paper is concluded by a summary of the results and
an outlook on possible further improvements.

2 Taxonomy

The taxonomy of the MBMO approaches is based on the standard procedure of
a sequential MBO algorithm, whose phases are shown on the left of Fig. 1. First,
an initial design is evaluated on the actual, expensive objective function in order
to train the surrogate model. In principle, all available design-of-experiment
(DOE) techniques can be used. Due to its connection to the established Kriging
models [13], however, Latin Hypercube Sampling (LHS) is applied in almost all
existent MBMO approaches, and hence explicitly mentioned as an option.

For model fitting, two approaches are established. In the straightforward vari-
ant, an individual surrogate model is built for each objective function. In order to
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Fig. 1. Phases and tasks within a generalized MBMO algorithm

allow established single-objective model-based optimization criteria [12], such as
the expected improvement (EI), the probability of improvement (PI) or the lower
confidence bound (LCB), to be directly used, the objectives can be scalarized
before the surrogate model is fitted. In this case, the multi-objective problem is
effectively reduced to a single-objective one. To still obtain an approximation of
the complete Pareto frontier, the parameterization or type of the scalarization
function can be varied over the iterations of the MBMO algorithm.

The candidate generation represents the step where most of the contribu-
tions have been made. In case of a single model, which predicts the value of
a scalarization of the objectives, established criteria for generating candidates
can be used [3,10,12]. If individual models for each objective are available, three
different strategies can be pursued. Due to the current focus on single-point pro-
posals and set-based multi-objective optimization, mainly criteria for an internal
single-objective optimization of an aggregating infill criterion on the model [21]
have been proposed within recent work. Also specific algorithms for performing
the internal optimization have been designed [20]. A single optimum solution is
found, which is then evaluated in order to update the training set for the model.

If a batch of solutions is desired, two alternative options can be used. In the
first one, the internal optimization is performed by an MOEA, which operates
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on single-objective infill criteria for each model. The final Pareto front approx-
imation then provides the candidates for the batch processing. In the second
variant, different single-objective subproblems (e.g. scalarizations) are optimized
in parallel based on an established infill criterion. By collecting the respective
optimum solutions, a batch of candidates is compiled. This approach has only
been performed within a single algorithm [23] until now.

In the last step, the candidate set is reduced to the desired size. It is thus
only required in case of a multi-point proposal in the candidate generation step.
As the outcome of the MOEA can be filtered to obtain a mutually nondominated
set, another, aggregating infill criterion has to be chosen for the selection if the
number of solutions exceeds the desired one. Compared to the direct optimization
of this criterion, the MOEA allows multiple points to be found, improves explo-
ration of the search space and prevents effects of oversearching. On the other
hand, it may result in suboptimal solutions with regard to the final selection
criterion. If more subproblems than the desired batch size have been internally
optimized, potentially two selection approaches can be used. The former uses a
similar, global variant of the internal criteria within in the subproblems, whereas
the latter decides based on a completely different, e.g., space-filling, explorative
criterion. Both approaches improve exploration while also retaining the optimal-
ity, at least with regard to the defined subproblems.

After each iteration, it is checked whether the optimization process can be
terminated. This decision is usually based on a budget of evaluations fixed before-
hand. Recently, however, a new method to estimate the uncertainty of the current
Pareto front approximation has been proposed [2]. In case the desired approxi-
mation quality is obtained before the total budget is spent, the remaining eval-
uations can be skipped to save expensive resources.

3 Considered MBMO Algorithms

In this subsection, the algorithms considered in the following benchmark study
are described as instantiations of the taxonomy. We only omitted algorithms
applying complex and tedious indicator-based improvement criteria (cf. para-
graph on Direct Indicator-Based MBMO), as recent studies have shown that
conceptually similar (with regard to the taxonomy), but computationally cheaper
variants, provide a comparable or even better performance [20]. By these means,
the generality of the taxonomy is demonstrated. A summary of all approaches
and their classification is provided in Table 1. All algorithms optimize a function
f : Rd → Rm, where d is the decision space dimension and m the number of
objective functions. For specific evaluation, f(x) = y holds.

Scalarization-Based MBMO. Two scalarization-based MBMO algorithms
using the augmented Tchebycheff norm

u(x) = −max [w(f(x) − i)] + ρwT (f(x) − i) (1)
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Table 1. Summary of the approaches from literature considered in the benchmark

Algorithm Initial
design

Model fitting Candidate
Generation

Candidate
selection

Stopping
decision

ParEGO [15] LHS Model of
scalarization

single-objective
optimization of
EI

One point, same
criterion

Total
budget

MOEA/D-
EGO [23]

LHS Models for each
objective

Multiple single-
objective opti-
mizations of
scalarizations

Multi point,
same criterion
(on clusters of
subproblems)

Total
budget

Multi-
EGO [11]

LHS Models for each
objective

Multi-objective
optimization of
individual EI

Multi point,
space-filling
selection

Total
budget

MOEA using
Surrogates [19]

Other
DOE
(Sobol)

Models for each
objective

Multi-objective
optimization of
model prediction

Multi point,
space-filling
selection

Total
budget

MSPOT [22] LHS Models for each
objective

Multi-objective
optimization of
model prediction

One point,
hypervolume
contribution

Total
budget

SMS-
EGO [18]

LHS Models for each
objective

Single-objective
optimization of
the hypervolume
contribution

One point, same
criterion

Total
budget

ε-EGO [20] LHS Models for each
objective

Single-objective
optimization
of the additive
ε-indicator

One point, same
criterion

Total
budget

with ideal point i and weight vector w (
∑m

j=1 wj = 1) do exist, which differ
in model fitting, candidate generation, and candidate selection. ParEGO [15]
randomly chooses w from a uniformly distributed set in each iteration. The
surrogate model is fitted to the respective scalarization, and the EI is optimized
on this model. Only the optimum solution is evaluated on the actual problem.
In contrast, MOEA/D-EGO [23] fits models for each objective. In the internal
optimization, the EI for all weight vectors is maximized in parallel, and finally
the solutions obtaining the highest EI within N predefined weight vector clusters
are evaluated. As a consequence, the distribution of chosen solutions with respect
to the corresponding w can suffer a bias towards balanced components [7].

Pareto-Based MBMO. The algorithms summarized under the term Pareto-
based MBMO are using a multi-objective optimization of infill criteria on each
objective in order to obtain a candidate set for evaluation. In Multi-EGO [11],
the EI is used, whereas MSPOT [22] or Voutchkov’s and Keane’s surrogate-based
MOEA [19] directly optimize the model predictions ŷ(x). The final selection from
the Pareto front approximation is either distance- (Multi-EGO, Surrogate-based
MOEA) or indicator-based (MSPOT).
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Direct Indicator-Based MBMO. In indicator-based MBMO algorithms, the
contribution of an additional point to the indicator value of the current Pareto
front approximation Y∗

approx is formulated as a single-objective criterion for the
internal optimization. In the literature, two approaches can be distinguished.
The first ones directly evaluate ŷ(x) or simple combinations with the associated
uncertainty ŝ(x), such as the LCB l(x) = ŷ(x) + λŝ(x). The algorithms are
denoted as direct indicator-based (DIB) approaches. Examples are the SMS-
EGO [18] for the hypervolume and the ε-EGO [20] for the additive ε-indicator.
Whereas the former is enhanced by a check for nondominance based on additive
ε-dominance (�ε), i.e., nondominance by an additional gap of ε, and a respective
penalty Ψ(x) = max{y(i)∈Y∗

approx|y(i)�εl(x)} −1+
∏m

j=1

(
1 + max(lj(x) − y

(i)
j , 0)

)
,

the latter only uses the respective indicator.
In addition, also more complex indicator-based infill criteria have been pro-

posed. Their criteria analytically compute the expected improvement of the
respective indicator by tediously integrating over the objective space [1,9].
Despite improvements regarding their complexity [8], these indicators are hard
to implement. They are thus excluded from this benchmark study.

4 Batch Proposal for Parallel Evaluation

The structure implied by the taxonomy allows the realization of single phases
to be easily replaced. This was used to propose N points for a batch evalua-
tion within different MBMO algorithms originally designed for a single-point
setup. To accomplish this, the candidate generation and selection steps of these
algorithms were modified.

4.1 ParEGO

ParEGO was enhanced to a multi-point proposal by increasing the number of
weight vectors randomly drawn in each iteration. If N points are desired, cN
(c > 1) weight vectors are selected. Then, the pairwise distance between all
weight vectors is calculated, and one vector of the pair resulting in the minimum
distance is eliminated. This procedure is repeated until the set is reduced to the
desired size. This greedy reduction of the larger set ensures that the selected
weights cover the weight space in an almost uniform way.

In the following, the scalarizations implied by each weight vector are com-
puted and individual models for each scalarization are fitted and optimized with
respect to a single-objective infill criterion. The respective optima of each model
build the batch to be evaluated. As the fitting and optimization of each model
are mutually independent, they can be computed in parallel.

4.2 Pareto-Based MBMO

For the Pareto-based MBMO algorithms, the candidate generation by means
of an internal multi-objective optimization already produces enough candidates
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for the batch evaluation. In the algorithms relying on a distance-based selec-
tion [11,19], a multi-point proposal is already realized. Hence, particularly the
indicator-based candidate selection of MSPOT was enhanced to a multi-point
proposal. To accomplish this, a greedy selection was used. Until the number of
desired candidates for the batch evaluation is reached, the point of the candi-
date set having the highest contribution to the indicator is selected, added to
the Pareto front approximation, and the contributions of the remaining points
is updated. Consequently, the advantage of the multi-objective candidate gen-
eration to produce a set instead of single points is not only used for improving
the exploration of the decision space, but also for obtaining a well-spread batch
of solutions.

4.3 Direct Indicator-Based MBMO

For integrating a multi-point proposal within SMS- and ε-EGO, the concept of
simulated evaluations was used. The optimization of the respective infill criterion
is performed in its standard way, but the optimum solution is not directly eval-
uated on the actual, expensive problem. Instead, the LCB l(x∗) of the optimum
solution x∗ is added to the current Pareto front approximation without refit-
ting the model. Based on the updated approximation, the criterion is optimized
again, and the procedure is repeated until N points for a batch evaluation have
been found. As the contribution to the indicator in the vicinity of the simulated
point vanishes, particularly due to the optimistic bias implied by the LCB, it is
likely that the following optimization will focus on different areas of the objective
space. Hence, a batch of solutions distributed over the Pareto front is expected.

5 The mlrMBO R Software Package

The mlrMBO package [4] is based on the mlr package for machine learning in
R [6]. It is designed as an encompassing toolbox for general MBO techniques,
including single- and multi-objective, as well as single- and multi-point methods.
Not only Kriging can be used as a surrogate model, but every regression method
integrated into mlr. In the single-objective case, the package allows the optimiza-
tion of mixed decision spaces, including integer, categorical and dependent para-
meters1. Extensive logging into a well structured archive enables the post-hoc
inspection of runs. The archive contains the Pareto front and set, as well as all
evaluations made in optimization process. By these means, visualizations of the
runs are possible (at least for bi-objective problems). This is useful for a deeper
understanding of algorithmic aspects in order to derive potential improvements.
As real-world runs on, e.g., complicated simulators, often introduce technical
problems, the package contains various error-handling mechanisms.

The setup of an MBMO algorithm by means of the toolbox is done by special
control objects which closely follow the structure of the taxonomy. The supple-
mentary material to this paper [5] includes a simple and documented example.
1 We plan to soon provide this feature also in the multi-objective case.
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6 Experiments

The improvements obtained by the proposed contributions are evaluated by
means of a comprehensive benchmark. To focus on specific results, our expecta-
tions are first formulated as research hypotheses. Then, the design of the exper-
imental study is described. In the main part of this section, the hypotheses are
checked using statistical testing and the respective observations are discussed.

Page limitations restrict the evaluation to the main hypotheses. The com-
plete source code of the experimental study, tables including all indicator values,
convergence plots, as well as empirical attainment surfaces on the bi-objective
problems can be found in the supplementary material [5]. In order to exploit
the full information provided by the benchmark, we strongly recommend to take
this material into account.

6.1 Research Hypotheses

Within this paper, the benchmark results are analyzed with regard to three
research hypotheses:

1. MBMO can significantly improve the approximation quality compared to
model-free approaches in case of a strictly restricted budget of evaluations.

2. Compared to a single-point proposal, a multi-point proposal can significantly
reduce clock time and preparation effort while not significantly deteriorating
the results with regard to the budget of evaluations.

3. The structure of mlrMBO implied by the taxonomy allows the realizations
of specific steps of the algorithm to be exchanged, benchmarked, and finally
improved in a simple and efficient way.

In addition to the new candidate selection methods for the multi-point pro-
posal, the last hypothesis is tested by exchanging the infill criteria for the can-
didate generation and selection in ParEGO and MSPOT.

6.2 Experimental Setup

Algorithms. ParEGO, SMS-EGO, ε-EGO, and MSPOT were implemented
using the mlrMBO toolbox. Hence, all different classes of MBMO algorithms
(Pareto-, scalarization-, and indicator-based) are covered. As MOEA/D-EGO
applies more complex candidate generation and selection phases, and hence
would result in additional implementation and space requirements, it is omitted
within these experiments. Multi-EGO and MOEA using surrogates are adressed
by considering their alternative infill criterion within MSPOT.

The initial design size of the algorithms was set to ninit = 4d. Kriging models
were fitted with a Matern5/2 kernel. A total budget of ntotal = 40d was allowed,
resulting in 36d points proposed over the iterations. The small ninit was chosen
intentionally in order to have a high number of sequential evaluations while still
operating under a severly restricted total number of evaluations.
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In ParEGO, ρ of equation 1 was set to ρ = 0.05. The number of uniform steps
used for generating the weight vectors was adjusted in a way that approximately
100, 000 weight vectors result in total. The ideal point i was estimated using the
minimum objective values of the currently seen observations.

In SMS-EGO, the gap of the additive ε-dominance was estimated using the
adaptive formula

ε =
ΔY∗

approx

|Y∗
approx| + c · (ntotal − n)

, ΔY∗
approx = max(Y∗

approx) − min(Y∗
approx),

where n is the current number of evaluations and c = 1 − 1/(2m) corresponds
to the idealized probability of a random solution being non-dominated. min and
max are vectorized operations, i. e, the minimum (maximum) for each dimension
is returned. |Y∗

approx| denotes the number of observation in |Y∗
approx|. As reference

point for the hypervolume computations, r = max(Y∗
approx) + 1 was used.

For the evaluation of the first hypothesis, all considered MBMO algorithms
are tested against NSGA-II and random search. NSGA-II was taken from the
R package MCO and was run with a population size P = ninit for 10 genera-
tions. This allows a direct comparison to the MBMO algorithms. As variation
operators, simulated binary crossover (SBX) and polynomial mutation (PM) are
applied with their standard parameters pc = 1, ηc = 15, pm = 1

d , and ηm = 20.
Random search acts as a baseline. It starts with the same initial design as the
MBMO algorithms and randomly proposes the remaining points.

The second hypothesis is analyzed by implementing the candidate generation
and selection concepts of section 4 into mlrMBO. The number of points in a
batch was set to N = 4. To achieve a balanced set of weight vectors in parallel
ParEGO, cN = 20 (c = 5) weight vectors were randomly drawn and reduced
using the distance-based filter. As a consequence of the batch evaluation, only
9d iterations of the sequential procedure were performed.

As examples for investigating the third hypothesis, also the LCB was con-
sidered as infill criterion for optimizing the model of the scalarization within
ParEGO. In addition, the multi-objective optimization for generating the can-
didates in MSPOT was also performed based on the EI and the LCB. As in the
direct indicator-based (DIB) MBMO, the factor λ of the LCB was computed
based on a given probability level p (p = 0.5 in this study) by λ = −Φ−1(0.5 m

√
p).

Due to a full factorial combination of infill criteria and the single- and
multi-point candidate selection, in total 4 variants of ParEGO and 6 variants
of MSPOT were considered. For SMS-EGO and ε-EGO, one single- and one
multi-point variant were assessed, respectively. Hence, 14 MBMO instantiations
were benchmarked. For all algorithms, including NSGA-II and random search,
20 runs were performed. All runs with the same index were based on the same
initial design, except for NSGA-II which used a random initial population for
technical reasons.

The internal single-objective optimization tasks were solved using a focus-
ing random search. It performs large random searches on the decision space,
which can be evaluated in parallel to reduce technical overhead when query-
ing the machine learning model, and iteratively shrinks the boundaries of the
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Table 2. Test functions designed by combining global optimization problems

Name d m Internal test functions

gomop-22 2 2 Branin, 3-Hump-Camel (x ∈ [−2, 2]2)
gomop-25 2 5 Branin, 3-Hump-Camel (x ∈ [−2, 2]2), Hartman,

Goldstein-Price, 6-Hump-Camel (x1 ∈ [−2, 2], x2 ∈ [−1, 1])
gomop-52 5 2 Hartman, Rastrigin (x ∈ [−0.5, 0.5]5])
gomop-55 5 5 Hartman, Rastrigin (x ∈ [−0.5, 0.5]5), Rosenbrock,

Zahkharov (x ∈ [−1, 1]5), Powell (x ∈ [−1, 1]5)

sample space around the best obtained point by a factor of 0.5, enforcing local
convergence. Additionally, restarts of the whole approach were performed, for
a further global optimization effect. In the experiments, a random set of 1, 000
points is evaluated within each of the three focusing steps and three restarts are
performed, resulting in total in 9, 000 evaluations for each internal optimization.

For the multi-objective optimization in MSPOT, again the NSGA-II was
applied. For the internal optimization, the population size 100 and 90 generations
were specified in order to also allow 9000 evaluations of the surrogate models.

Test Functions. All algorithms were evaluated on 9 test functions. Two set-
tings, (d = 2, d = 5) and (m = 2, m = 5), of both, decision and objective
space, were considered, respectively. As established test functions, zdt1, zdt2,
and zdt3 with d = 5 decision and m = 2 objective space dimensions, as well
as dtlz1 with d = 5 and both m = 2 and m = 5, were used. In addition,
the concept of combined multi-objective problems from single-objective prob-
lems [17,20] was utilized in order to design 4 additional test functions. These
test functions are based on established global optimization functions and are
summarized in Table 22. In order to unify the box constraints of the decision
spaces, the respective bounds of each single-objective test function were mapped
to [0, 1]d.

Performance Assessment. The final Pareto front approximations of the algo-
rithms were compared using three performance indicators: R2, hypervolume, and
additive ε [24]. The R2 and the hypervolume indicator were used in their unary
variant. Hence, the ε and R2 indicators have to be minimized, whereas the
hypervolume has to be maximized.

For each test function, the reference sets for the binary ε-indicator were
built from the Pareto-optimal solutions of the union of all available Pareto front
approximations. All approximations and reference sets are normalized to the
interval [1, 2]m with respect to the ideal and nadir points given in table 3 before
computing the indicators.

All indicators are recommended for performance assessment based on their
favorable theoretical properties [24]. As we mainly compare algorithm variants

2 For further information: http://www.sfu.ca/∼ssurjano/optimization.html

http://www.sfu.ca/~ssurjano/optimization.html
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Table 3. Nadir and ideal points for each test function

gomop-22 gomop-25 gomop-52 gomop-55

Ideal (0, 0) (0, -5, 1, 0, -1.1) (-3.5, 35) (-3.5, 8.5, 35, 0, 0)
Nadir (40, 2.5) (125, 0, 15, 6, 3.1) (0, 125) (0, 3 · 106, 150, 2000, 350)

dtlz2-52 dtlz2-55 zdt1-52 zdt2-52 zdt3-52

Ideal (0, 0) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0, -1)
Nadir (2, 2) (1.25, 1.25, 1.25, 1.25, 1.25) (1, 10) (1, 10) (1, 10)

within their respective MBMO class to check our hypotheses, only the metric
corresponding to the internal selection mechanism of the respective MBMO class
is shown in the result tables.

6.3 Observations

The results of the experiments are summarized in Tables 4, 5, and 6. Significant
improvements (p = 0.05) to the baseline algorithms with respect to indepen-
dent pairwise Wilcoxon tests are indicated by subscripts (r random search, n
NSGA-II). In addition, superscripts are added in order to provide information
regarding the comparison of the multi-point variants with their original counter-
part shown in the left column of each table. + means no significant deterioration,
whereas ++ corresponds to a significant improvement.

Hypothesis 1. Random search and NSGA-II were outperformed by almost
all MBMO algorithms on almost all test functions. The use of kriging models
can thus drastically reduce the number of evaluations required to solve multi-
objective optimization problems. Surprisingly, the original ParEGO (1-ei) was
not able to outperform these baselines on 4 test functions.

Hypothesis 2. The second hypothesis has to be considered separately for the
different algorithms. For ε-EGO (cf. Table 4, left), a significant deterioration of
the multi-point compared to the single-point variant was observed on only one
test function. Hence, the simulated evaluation strategy can be applied to reduce
clock time and preparation effort without a significant loss of approximation
Table 4. Results of the indicator-based EGO variants with regard to their indicator

dib-1-eps dib-4-eps

gomop-22 0.035rn 0.029+
rn

gomop-25 0.074rn 0.075+
rn

gomop-52 0.098rn 0.121+
rn

gomop-55 0.230 0.246+

dtlz2-52 0.003rn 0.004rn

dtlz2-55 0.135rn 0.137+
rn

zdt1-52 0.024rn 0.023+
rn

zdt2-52 0.043rn 0.038++
rn

zdt3-52 0.048rn 0.046+
rn

dib-1-sms dib-4-sms

1.152rn 1.136rn

1.252rn 1.235rn

0.982rn 0.959rn

1.169rn 1.221++
rn

1.011rn 1.007rn

1.476rn 1.492++
rn

1.171rn 1.169rn

1.133rn 1.132rn

1.105rn 1.103+
rn
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Table 5. Results of the ParEGO variants with regard to the R2 indicator

1-ei 4-ei

gomop-22 0.051rn 0.051+
rn

gomop-25 0.061 0.058+

gomop-52 0.176 0.177+

gomop-55 0.066 0.068+

dtlz2-52 0.123 0.123+

dtlz2-55 0.023rn 0.023+
rn

zdt1-52 0.039rn 0.040rn

zdt2-52 0.052rn 0.051+
rn

zdt3-52 0.070rn 0.070+
rn

1-lcb 4-lcb

0.051rn 0.049+
rn

0.043rn 0.043++
rn

0.103rn 0.108+
rn

0.042rn 0.042+
rn

0.110rn 0.110rn

0.024rn 0.024+
rn

0.032rn 0.032+
rn

0.045rn 0.045+
rn

0.059rn 0.059+
rn

quality. The same holds for the use of multiple weight vectors for generating
batch evaluations in ParEGO (cf. Table 5) which did not result in significant
deteriorations, except on ZDT1 (ei) and DTLZ2 with m = 2 (lcb).

For SMS-EGO (cf. Table 4, right) and MSPOT (cf. Table 6), however, this
result could not be confirmed. Only on 2 to 3 of the 9 test functions considered
in this study, the multi-point variants were not significantly worse. On two test
functions, however, a batch evaluation led to improved results for SMS-EGO.

Hypothesis 3. Also for the third hypothesis, the different MBMO algorithms
have to be considered separately. For MSPOT, the exchange of the infill criterion
does generally not result in significant performance differences. Only on two
of the GOMOP functions, the LCB deteriorates the results compared to mean
prediction and EI. Hence, it is possible to exchance specific steps of the algorithm
without detoriating the algorithm’s performance.

The exchange of the EI and the LCB in ParEGO obtained excellent
improvements. On almost all test functions, the results using the LCB are better,
sometimes by far margins. The same held for the multi-point variants. Here the
taxonomy allowed us to construct a new algorithm variant, that outperforms its
original counterpart.

Table 6. Results of the MSPOT variants with regard to the hypervolume indicator

1-mean 4-mean

gomop-22 1.148rn 1.142rn

gomop-25 1.246rn 1.225rn

gomop-52 0.907rn 0.874rn

gomop-55 1.145rn 1.127+
rn

dtlz2-52 1.003rn 0.997rn

dtlz2-55 1.414rn 1.416+
rn

zdt1-52 1.116rn 1.091r

zdt2-52 1.057rn 1.029r

zdt3-52 1.051rn 1.022r

1-ei 4-ei

1.146rn 1.141+
rn

1.245rn 1.216rn

0.908rn 0.862rn

1.143rn 1.124+
rn

1.002rn 0.996rn

1.409rn 1.409+
rn

1.116rn 1.094r

1.056rn 1.034r

1.054rn 1.034r

1-lcb 4-lcb

1.136rn 1.142+
rn

1.248rn 1.226rn

0.904rn 0.880rn

1.126rn 1.126+
rn

1.002rn 0.997rn

1.411rn 1.414+
rn

1.115rn 1.099r

1.055rn 1.029r

1.051rn 1.022r
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General Recommendations. The original one-point ParEGO using the EI
performs worse compared to all considered MBMO algorithms. By exchanging
the EI with the LCB, however, the approach becomes competetive. The new
variant can thus be recommended as a standard choice for the future.

In case of a one-point proposal, SMS-EGO (dib-1-sms) performs better or
comparable on almost all test cases. It can be proposed as a general recommen-
dation. If a multi-point proposal is desired, the respective variants of the SMS-
EGO (dib-4-sms) and ParEGO (parego-4-lcb) show a comparable performance.
As ParEGO only requires a single model, can be parallized without simulated
evaluations, and is much faster to compute, in particular on many-objective
problems, it can recommended for this case.

6.4 Discussion

The experiments showed two main results: (1) For ParEGO and ε-EGO, no sig-
nificant deterioration of the results can be observed due to the multi-point pro-
posal; (2) The change from the EI to the LCB significantly improved ParEGO.

Regarding the first result, the infill criteria of ParEGO and ε-EGO still have
minor conceptual issues which inhibit the exploitation of the additional infor-
mation obtained by more frequent updates. ParEGO draws the weight vectors
for the scalarization at random. Hence, the implied search directions can point
to regions already crowded with observations. By choosing more weight vectors
per iteration in a space-filling way, the coverage of the Pareto front is improved.
In comparison to MOEA/D-EGO, which evaluates all weight vectors in each
generation and chooses based on the maximum EI values of a predefined, fixed
clustering, the proposed procedure does not suffer from a systematic bias towards
certain regions [7,20]. In ε-EGO, the optimization of an indicator based on two
sets is reduced to one based on a set and a single solution. This may hinder the
finetuning of Y∗

approx with regard to the global indicator.
Main result (2) can be caused by the properties of the fitness landscape

implied by the EI. It has plateaus whose size increases with decreasing uncer-
tainty of the model. The maxima of the EI lie within small basins surrounded by
these plateaus. They are hard to find for both local optimization algorithms and
global sampling strategies, such as the focusing random search. In particular, if
a weight vector pointing to crowded region is selected, the EI can show values
far below 10−6, even after only 2-3 iterations. By switching to the LCB, a global
trend is available which can be exploited during the internal optimization.

7 Conclusions and Outlook

In this paper, a taxonomy for MBMO algorithms was presented for the first
time. Based on this taxonomy, an R toolbox was designed and some established
MBMO algorithms were implemented. In order to allow batch processing, the
candidate generation step of all considered algorithms was enhanced to a multi-
point proposal. In addition, the internal infill and optimization criteria were
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exchanged and different variants of the MBMO algorithms were compared within
a comprehensive benchmark.

For ParEGO and ε-EGO, the multi-point variants did not significantly dete-
riorate the results. They even improved the approximation quality in some cases.
Moreover, the change from the EI to the LCB could improve the results of the
internal optimization within ParEGO.

In future work, the scalability of the multi-point proposal with the batch size
N has to be further evaluated. Moreover, systematic problems, such as the ran-
dom choice of the weight vector in ParEGO, should be tackled. A simple strategy
would be to redraw a weight vector in case of too low EI values. In addition,
different shifts of the ideal (ParEGO) or reference point (SMS-EGO) can be used
for constructing different subproblems for multi-point proposals. The simulated
evaluation strategy used in the DIBs can be combined with fake observations
and a refit of the model in order to improve exploration or exploitation of certain
regions. The framework created by the taxonomy and the R toolbox make this
possible in a structured and convenient way.
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sunith.bandaru@his.se

2 Department of Electrical and Computer Engineering, Michigan State University,
428 S. Shaw Lane, 2120 EB, East Lansing, MI 48824, USA

kdeb@egr.msu.edu

Abstract. Multi-objective optimization yields multiple solutions each
of which is no better or worse than the others when the objectives are
conflicting. These solutions lie on the Pareto-optimal front which is a
lower-dimensional slice of the objective space. Together, the solutions
may possess special properties that make them optimal over other fea-
sible solutions. Innovization is the process of extracting such special
properties (or design principles) from a trade-off dataset in the form
of mathematical relationships between the variables and objective func-
tions. In this paper, we deal with a closely related concept called temporal
innovization. While innovization concerns the design principles obtained
from the trade-off front, temporal innovization refers to the evolution of
these design principles during the optimization process. Our study indi-
cates that not only do different design principles evolve at different rates,
but that they start evolving at different times. We illustrate temporal
innovization using several examples.

1 Introduction

Evolutionary algorithms (EAs) are ideal for multi-objective optimization prob-
lems since they evolve a population of randomly initialized solutions by itera-
tively applying operators that mimic the natural evolution process and converge
to a set of near Pareto-optimal solutions (or trade-off solutions) all of which are
high-performing with respect to the conflicting objectives. These Pareto-optimal
solutions are special in some sense because they lie on a lower-dimensional man-
ifold of the objective space. It is therefore natural to assume that they may pos-
sess exclusive properties which make them Pareto-optimal. While analytically
deriving such properties from the optimization problem may not always be pos-
sible, an alternate approach is to first obtain a representative trade-off dataset of
(near) Pareto-optimal solutions using an MOEA and then apply machine learn-
ing techniques to extract mathematical relationships that are valid on either a
part or whole of the dataset. Since the trade-off dataset usually contains columns
corresponding to the variable values and the corresponding function values, the
extracted relationships depict correlations between these entities.
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 79–93, 2015.
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In our past works we have shown that such mathematical properties do exist
and can be obtained from the trade-off dataset through a process called innoviza-
tion - innovation through optimization. The original innovization methodology
[7] involved manually plotting various combinations of the columns in the trade-
off datasets, visually identifying correlations and using mathematical functions
to perform regression on the correlated parts of the dataset. The method was
tedious and prone to errors. However, our recent works [1,8] have dealt with
automating the innovization process by using clustering methods to automat-
ically identify the correlations. This new automated innovization approach is
capable of generating multiple significant relationships and has been success-
fully applied to practical engineering design problems. The obtained relation-
ships are referred to as design principles because they are extremely useful for
the designer in understanding how different variables should vary for maintaining
Pareto-optimal operation/performance of the system or design.

1.1 Temporal Innovization and Human Evolution

Trade-off solutions are the end result of an MOEA and hence the design princi-
ples obtained through automated innovization pertain to the final generation of
the MOEA. However, all MOEAs start with a randomly initialized population of
solutions which are evolved using operators that, to some extent, mimic the nat-
ural process of evolution over several generations. Ignoring complex phenomena
such as dynamic environments, cooperative individuals, sexual reproduction and
interspecies interactions, the evolutionary optimization process can be viewed
similar to the natural process of human evolution.

Homo sapiens acquired various anthropological features during the process
of human evolution. There is sufficient documented evidence showing that these
features evolved gradually over millions of years [11], rather than appearing out
as a single event, driven by the natural mechanisms of reproduction, genetic
mutation and natural selection. Despite the relative simplicity of MOEAs, the
design principles that Pareto-optimal solutions possess can be thought of as
somewhat analogous to the anthropological features. Just as the anthropological
features distinguish present day humans and make them high-performing when
compared to their ancestors, the design principles make Pareto-optimal solutions
high-performing among all other feasible solutions.

Temporal innovization refers to the study of evolution of design principles
over generations of an MOEA. The detailed procedure was laid out in [5]. The
goal of this paper is to perform temporal innovization on various engineering
design problems in order to support and extend the results provided in [5].
Specifically, we investigate if there exists a gradual evolution of design principles
over generations of an MOEA, in the same way that anthropological features
of humans developed gradually over millions of years. Archaeological evidence
also shows that human evolution involved a hierarchy of keys developments. In
other words, different anthropological features appeared at different times in the
evolutionary time-line. The vertebrae emerged first, followed by the appearance
of the first limbs, and so on. Adequate development of certain features was
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essential for some other feature to appear. If design principles indeed resemble
the anthropological features, there is reason to believe that they too may exhibit
hierarchical evolution in addition to gradual evolution over the generations of
an MOEA. In this paper, we also investigate whether such hierarchy occurs in
the evolution of design principles.

The paper is organized as follows. In Section 2 we describe the methodol-
ogy for performing a temporal innovization study and generating the evolution
plots. We use this approach on three engineering design problems in Section 3
and interpret the evolution plots. In Section 4, we use a visual method for the
extraction of design principles on two topology optimization problems. Temporal
innovization is also performed visually.

2 Methodology

MOEAs being stochastic by nature, the route that evolving solutions take while
converging towards the Pareto-optimal front may differ between runs, even if
the trade-off front obtained at the end is approximately the same in all the
runs. In order to account for this statistical variance, the first task is to obtain
generation-wise population datasets from multiple runs of the same evolutionary
algorithm. In this paper we use NSGA-II [4] to solve the multi-objective problem
at hand. Multiple runs are executed with uniformly distributed seed values for
the random number generator.

One of the trade-off datasets is randomly chosen and the design principles
are extracted using the automated innovization algorithm developed in [8]. The
details of this algorithm are irrelevant to discussion in this paper. However, it
suffices to mention that the design principles obtained have the following mathe-
matical form, where the quantity c on the right-hand side is allowed different val-
ues in different clusters of solutions but remains approximately constant within
each cluster [1,8].

N∏
j=1

φj(x)ajbj = c, (1)

where φj ’s are N symbolic entities (variables x, objective functions f(x), etc.)
called basis functions which can have a Boolean exponent aj and a real valued
exponent bj . Each design principle is associated with a significance value which
indicates the percentage of trade-off solutions for which that design principle
remains invariant, i.e. takes a (approximately) constant value c.

For recording the evolutionary time-lineofdesignprinciples, thenon-dominated
solutions from each of the runs at each generation t are stored. Next, each design
principle (DPi) is checked for its presence in the combined data at each generation.
The significance of DPi at generation t, denoted by SDPi

t , is calculated as the pro-
portion of points satisfying the design principle to the total non-dominated points
in the final generation (NGEN). The stepwise procedure for calculating SDPi

t for
a given design principle DPi is presented below:
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Step 0: Set t ← 0.
Step 1: Collect solutions at generation t from all runs into the set Pt. There-

after, remove the dominated points from Pt.
Step 2: Evaluate DPi at all solutions in Pt to obtain c-values and collect them

in set Ct.
Step 3: Every element c ∈ Ct is checked for its association with any of the C

clusters of DPi using the criterion,

c ∈ cluster k ⇔ μ(k)
c − s σ(k)

c ≤ c ≤ μ(k)
c + s σ(k)

c ,

where μ
(k)
c and σ

(k)
c are respectively the mean and standard deviation for

the k-th cluster. The number of elements Et in Ct that belong to any of the
C clusters is recorded. A variation of s standard deviations is allowed in the
c-values. In this paper s = 4 is used and recommended.

Step 4: Calculate the significance of DPi in the current generation t as,

SDPi
t =

Et

|PNGEN | × 100%,

where |.| represents the set size.
Step 5: If t = NGEN Stop else t ← t + 1 and Goto Step 1.

Thereafter, a plot of the significance value of each design principle with gen-
eration is used to reveal the relative order in which design principles appear
during the optimization process. The plot also shows which of the design prin-
ciples evolve faster and which ones evolve at a slow rate.

3 Results I: Design Principles Through Automated
Innovization

The procedure described above is now illustrated on three engineering design
problems, namely, car side impact problem , metal cutting problem and MEMS
resonator design problem. While the first two problems are relatively simple
mathematical models of complex design problems, the latter is directly a real-
world problem which takes all practical design considerations into account. The
difference between the three becomes clear in the following sections.

3.1 Car Side Impact Problem

A car is subjected to a regulatory side impact test. Various impact loads, rib deflec-
tions and a quantity called viscous criterion (V*C) are measured for the crash test
dummy. The velocities of B-pillar midpoint and front door are measured on the
vehicle structure. The following decision variables are to be optimized.

0.5 ≤ x1 : Thickness of B-Pillar inner ≤ 1.5 mm
0.45 ≤ x2 : Thickness of B-Pillar reinforcement ≤ 1.35 mm
0.5 ≤ x3 : Thickness of floor side inner ≤ 1.5 mm
0.5 ≤ x4 : Thickness of cross members ≤ 1.5 mm
0.875 ≤ x5 : Thickness of door beam ≤ 2.625 mm
0.4 ≤ x6 : Thickness of door beltline reinforcement ≤ 1.2 mm
0.4 ≤ x7 : Thickness of roof rail ≤ 1.1 mm
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Table 1. Design principles for the car side impact problem

Notation Design principles Significance

DP1 x1.0000
6 = constant 77.44 %

DP2 x1.0000
7 = constant 80.28 %

DP3 f0.3652
1 f1.0000

2 x−0.7699
5 = constant 70.33 %

DP4 x1.0000
2 x−0.1012

4 x−0.9360
5 = constant 70.33 %

DP5 f1.0000
2 x0.1293

3 x−0.8856
5 = constant 70.12 %

DP6 x1.0000
2 x−0.8748

5 = constant 70.93 %
DP7 f1.0000

1 x−0.2952
3 x−0.9675

5 = constant 71.75 %
DP8 f−0.6684

2 x1.0000
2 x−0.9887

5 = constant 70.53 %
DP9 x0.1166

1 x1.0000
2 x−0.9331

5 = constant 72.15 %
DP10 f1.0000

2 x0.2113
1 x−0.7592

5 = constant 72.15 %
DP11 f0.1161

1 x1.0000
2 x−0.8927

5 = constant 71.14 %

The objectives are to minimize the weight of the vehicle and the average rib deflec-
tion on the dummy. The complete formulation is provided in [6].

Minimize f1(x) = Weight
Minimize f2(x) = (Dur + Dmr + Dlr)/3
Subject to Abdomen Load ≤ 1 kN,

{V Cupper, V Cmiddle, V Clower} ≤ 0.32 m/s,
{Dupper,Dmiddle,Dlower} (Rib deflections) ≤ 32 mm,
F (Pubic force) ≤ 4 kN,
VMBP (Velocity of B-pillar midpoint) ≤ 9.9 mm/ms,
VFD (Velocity of front door) ≤ 15.7 mm/ms.

(2)

The above problem is solved using NSGA-II and the obtained trade-off dataset
is provided as input to the automated innovization algorithm. The obtained design
principles and their significance values are shown inTable 1. Ten runs of the NSGA-
II algorithm are performed and the generation-wise datasets for NGEN = 100
generations are obtained. Using the procedure described in Section 2, the signifi-
cance values are calculated for all 11 design principles at all generations and are
plotted together as shown in Figure 1.

3.2 Metal Cutting Problem

In this problem [14], a steel bar is to be machined using a carbide tool of nose radius
rn = 0.8 mm on a lathe with Pmax = 10 kW rated motor to remove 219912 mm3

of material. A maximum cutting force of Fmax
c = 5000 N is allowed. The motor

has a transmission efficiency η. The total operation time (Tp) and the used tool
life (ξ) are to be minimized by optimizing the cutting speed (v), the feed rate (f)
and the depth of cut (a) while maintaining a surface roughness of Rmax = 50μm.
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Fig. 1. Evolution of the 11 design prin-
ciples shown in Table 1 for the car side
impact problem.
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Fig. 2. Evolution of the four design princi-
ples shown in Table 2 for the metal cutting
problem

The problem is formulated as,

Minimize f1(x) = Tp(x)
Minimize f2(x) = ξ(x)
Subject to P (x) ≤ ηPmax,

Fc(x) ≤ Fmax
c ,

R(x) ≤ Rmax,
250 ≤ v ≤ 400 m/min,
0.15 ≤ f ≤ 0.55 mm/rev,
0.5 ≤ a ≤ 6 mm,

(3)

where

Tp(x) = 0.15 + 219912
(

1+ 0.20
T (x)

MRR(x)

)
+ 0.05, ξ(x) = 219912

MRR(x)T (x) × 100,

T (x) = 5.48×109

v3.46f0.696a0.460 , Fc(x) = 6.56×103f0.917a1.10

v0.286 ,

P (x) = vFc(x)
60000 , MRR(x) = 1000vfa, R(x) = 125f2

rn
.

The trade-off dataset obtained by solving Equation (3) using NSGA-II is used
to generate the four design principles shown in Table 2 through automated
innovization.

Again, ten runs of the NSGA-II algorithm are performed to obtain generation-
wise datasets for NGEN = 500 generations. Figure 2 shows the plot of signifi-
cance values versus generation number for all four design principles.

Both Figures 1 and 2 clearly show that design principles evolve in a gradual
manner, as hypothesized in Section 1.1, slowly increasing in significance as the
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Table 2. Design principles for the metal cutting problem

Notation Design principles Significance

DP1 f1.0000 = constant 80.63 %
DP2 ξ−0.3558v1.0000 = constant 80.85 %
DP3 T 0.9950

p ξ−0.2712v1.0000 = constant 81.42 %
DP4 T 1.0000

p v0.2391 = constant 81.38 %

population converges close to the true Pareto-optimal front. However, the sec-
ondary hypothesis that there may exist a hierarchy in the evolution of design prin-
ciples cannot be verified in these examples. In fact, all design principles shown in
the two figures evolve in exactly the same way for each problem. The design prin-
ciples also appear very early during the optimization process. The reason for this
is that these problems are only simplified versions of practical problems that are
much more complex. In order to exhibit hierarchy during evolution, the design
problem should be closer to the real-world, so that the multi-objective optimizer
being used ‘struggles’ to build design principles during optimization thus bring-
ing their hierarchy into the picture. In the next section, we reproduce the results
obtained in [5] where the problem was shown to possess a hierarchy in the evolu-
tion of design principles.

3.3 MEMS Resonator Design Problem

TheMEMS(MicroElectroMechanical System)componentdesignproblem involves
the minimization of the power consumption f1 (same as applied voltage, V ) and
the minimization of the total area f2 of the device. Figure 3 is a schematic of the
MEMS model showing the 14 design variables. The complete problem formulation
can be found in [9,10]. The problem is known to be highly non-linear in terms of
the two objectives and involves 24 constraints (10 linear and 14 non-linear),making
it rather difficult for NSGA-II to optimize and therefore to build design principles.
Ten trade-off datasets are generated using NSGA-II. Their progress towards trade-
off front at some specific generations is shown in Figure 4.

The design principles obtained through automated innovization are discussed
in detail in [5]. Figure 5 shows the significance values for each of the 13 design prin-
ciples at various generations. The evolution history shown in the figure reveals
the time at which each principle started to evolve during the optimization pro-
cess. The evolution is shown around 10% significance value. Clearly, a gradual
evolution pattern of DPs can be seen along with the hierarchy (DP2, DP13, DP11,
DP12, DP1, DP5, DP4, DP3, DP7, DP10, DP8, DP9, DP6). This information of
some design principles evolving earlier than others may provide valuable knowl-
edge about building a design from scratch in an optimal manner.

Discrete Variables in Evolution. The MEMS resonator design involves a
discrete variable Nc representing the number of teeth on the rotor comb. Though
no design principles involving this variable were obtained through automated
innovization, a simple manual innovization process reveals two design principles
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Fig. 3. MEMS resonator model showing
the design variables

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

f
1
 (Voltage)

f 2 (
A

re
a)

 

 

12 13 14 15 16 17 18
8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

 

 

f 2 (
A

re
a)

f
1
 (Voltage)

gen=171
gen=200
gen=235
gen=280
gen=500

Fig. 4. Progress of solutions with genera-
tions towards trade-off front

that do not fit the form in Equation (1) that relate Nc to the objectives f1 and f2.
These are,

B1 ≡ Nc − 1.265 × 105

f3.829
1

and

B2 ≡ 2.012 f2 − Nc.
(4)

The significance values of B1 and B2 with generations are calculated as was done
for the other design principles. Their evolution curves are also shown in Figure 5.
B2 starts to evolve at around 130 generations and its evolution curve stays well
before those of others. B1 appears in the population after B2 around the 160 gen-
eration mark and it too keeps evolving before the other design principles.

Comingback tohumanevolution, the anthropological descriptionof thepresent
day human too involves many discrete variables, like the number of eyes, limbs, fin-
gers, backbones, etc.Taking the example of the human eye, it is nowwidely believed
[13] that eyes initially appeared in the form of photo-receptive proteins that sense
light and can only distinguish between bright and dark. Evidence for their exis-
tence can still be seen in certain green algae andunicellular organisms like euglenids
[12]. The earliest eyes formed over millions of years as groups of photo-receptor
cells came together and gradually depressed into what later became eye sockets.
The number of such ‘eyespots’ was fixed very early on in the evolution of different
species. In case of all ancestors of present day humans and related species, its value
has always remained two. Though the current form of the human eye evolved only
recently (relative to when life forms first appeared), the number of eyes was decided
very early on in the evolution ofman. Same is the casewith number of limbs, fingers,
etc.

Extending the analogy with human evolution to engineering design, it appears
thatwhenever there are discrete variables involved, the evolution of optimal designs
follows a path where design principles involving those discrete variables appear
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Fig. 5. Evolution of design principles for the MEMS design problem. The design prin-
ciples evolve gradually but also maintain a hierarchy.

before any of the other design principles. This is at least the case in the MEMS
resonator design problem as seen above. More problems need to be studied for evo-
lution as described in this section to gather empirical evidence in support of this
theory.

4 Results II: Design Features Through Superposition

In certain engineering design problems where the trade-off designs can be repre-
sented schematically to show sufficient detail, the visual identification of optimal
design features may prove to be more insightful than mathematical design princi-
ples obtained using automated innovization. In this section, we perform the tem-
poral innovization task visually, since the nature of the problems used does not
allow the generation of evolution plots.

Both problems used in this section concern structural topology optimization
where the interest is in finding the topology (i.e. the distribution or layout of mate-
rial inside) of a design domain subjected to loads and boundary conditions, so as
to extremize one or more objectives. Recent research in topology optimization has
been in the development of finite element based numerical methods as they can
deal with complex topologies involving different types of materials [15]. Among
numerical methods, especially popular are the so-called ISE (Isotropic Solid or
Empty) topologies, in which blocks of finite elements (called ground elements) can
either contain the given isotropic material (i.e. be solid) or contain no material at
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all (i.e. be empty). ISE topologies are represented using a 0-1 scheme. [16] argues
that obtaining solutions with this scheme would be prohibitively expensive. The
problem can be avoided by allowing ground elements to have intermediate densi-
ties and penalizing them using a power law [2].

4.1 Moment of Inertia Problem

The problem involves topology optimization of a square domain as shown in
Figure 6 in order to, (i) maximize moment of inertia about the x-axis (Ix) and,
(ii) minimize moment of inertia about the y-axis (Iy). The quarter problem is
solved using a grid of size 10 × 10 as shown in Figure 6 and a 0-1 representation,
as described above. In the NSGA-II framework the 100 variables are represented
using a binary string. For population members containing disconnected regions
(identified after mirroring the 10×10 grid to full the whole domain), the clustering
approach suggested in [3] is used to identify the largest cluster of cells with mate-
rial and connected to the nearest axis. 100 random initial population members
are evolved over 500 generations using the two-dimensional crossover operator [3]
with pc = 0.8 and bit-wise mutation with pm = 0.01. The obtained trade-off front
and a few designs are shown in Figure 8.

This problem is well-suited for extracting design features by superposition
of solutions and studying their evolution. The procedure is very similar to that
described in Section 2. The only difference is that after obtaining the set Pt of
non-dominated solutions at the generation t, corresponding cell values from all
solutions Pt are added to obtain a single matrix Mt of size 20 × 20. Thus, if a
particular cell contains material (i.e. has a value of 1) in all non-dominated solu-
tions of generation t, then its value in the resultant matrix becomes |Pt|. The non-
dominated solutions are therefore said to be superposed.
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Fig. 8. Trade-off front for the moment of inertia topology optimization problem

The status of design feature evolution at generation t can be observed visually
by the plotting the matrix Mt, such that cells with the largest value are shown in
black and those with the lowest value are shown in white. For the present problem,
the evolution of design features is shown in Figure 9. It can be seen clearly that
during the initial generations, solutions in which material is concentrated along
the vertical centerline are non-dominated. Up until t = 30 generations the mate-
rial only spreads outwards from the vertical. Thereafter, evolution requires that
the material should also be pushed outwards from the horizontal centerline (seen
at t = 40). The features at the corners of the domain, do not form until the later
generations. Looking at M500 it can be said that, for maximizing Ix and mini-
mizing Iy, anything resembling an I-section would be close to Pareto-optimality.
Though, in this case this property is intuitive, the study here revealed how exactly
the I-section is formed during evolution.

4.2 Cantilever Beam Problem

In this problem, the topology of a cantilever beam carrying an end load of one unit
is to be optimized within a rectangular domain as shown in Figure 7 for, (i) min-
imizing the compliance (or maximizing stiffness) and, (ii) minimizing the weight
of the structure. Since the calculation of these objectives involves finite element
simulations and the use 0-1 scheme may lead to indeterminate solutions in NSGA-
II, the power-law approach of allowing intermediate densities suggested in [2] is
employed. The intermediate densities are however not penalized as the present
problem has two objectives and retaining such solutions may lead to better diver-
sity. A grid of size 30×10 is imposed on the domain. The 300 variables are initial-
ized for a population size of 400 and evolved using SBX (pc = 0.9) and polynomial
mutation (pm = 0.05) for 2000 generations. Finite element analysis is performed
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Fig. 9. Evolution of design features for moment of inertia topology optimization prob-
lem. Mt is obtained by superposing all non-dominated solutions from generation t.
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Fig. 11. Evolution of design features for cantilever beam topology optimization prob-
lem. Mt is obtained by superposing all non-dominated solutions from generation t.
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using [17] with the penalizing functions removed. The obtained trade-off front is
shown in Figure 10 along with three different structures.

The evolution of design features can be obtained just as before. The only dif-
ference being that the cell values may contain any value in the range [0, 1] and
Mt is of size 30 × 10. Figure 11 shows that the first feature to appear at t = 100
is the strengthening of the structure near the lower support, indicated by darker
regions. Cross members start appearing at around t = 200 and the top right corner
begins to disappear (whiter regions) around t = 300 generations. As the gener-
ations progress, the above features become more and more prominent, while at
t = 500 holes start to form in the region between cross members. All features are
eventually clearly seen at t = 2000.

5 Conclusions

Temporal innovization refers to the evolution of the special properties that Pareto-
optimal solutions possess during the course of optimization using MOEAs. Based
on the analogy with human evolution, it was hypothesized that design principles
(like anthropological features of humans) evolve gradually over generations. It was
also hypothesized that certain design principles will evolve earlier than others, if
the presence of the former is essential for the development of the latter. This is
also observed in the time-line of human evolution. For example, the development
of limbs required a skeletal structure that could support the added weight. Thus,
the development of vertebrae was essential to the appearance of the first limbs.
While this kind of hierarchy is not observed for the simpler car side impact and
metal cutting problems, it is clearly seen for the MEMS resonator design problem,
which was difficult to be solved with NSGA-II.

Temporal innovization requires knowledge of the special properties described
above. In our first set of problems, these properties were obtained through auto-
mated innovization. The growth of the design principles is studied with the help
of evolution plots, which show the significance of different design principles as a
function of the generation number of the MOEA. Our second set of problems con-
cerned topology optimization, where solutions where represented in an unconven-
tional manner. Therefore, instead of using automated innovization, we relied on
the superposition of trade-off solutions (designs) at various generations, to observe
the progress of design features possessed by the near Pareto-optimal solutions.

It may be argued that temporal innovization has limited practical uses. How-
ever, it is important to note that a temporal innovization study can reveal how
optimizers build good designs from scratch. The most important aspects of the
design are the ones that appear first during evolution. Such knowledge can lead
to a deeper understanding of the problem at hand and enable the user to construct
high-performing solutions simply by following certain thumb-rules of design.
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Richard A. Gonçalves(B), Josiel N. Kuk,
Carolina P. Almeida, and Sandra M. Venske

Department of Computer Science, UNICENTRO, Guarapuava, Brazil
{richard,josiel,carol,ssvenske}@unicentro.br

Abstract. Hyper-Heuristics is a high-level methodology for selection or
automatic generation of heuristics for solving complex problems. Despite
the hyper-heuristics success, there is still only a few multi-objective
hyper-heuristics. Our approach, MOEA/D-HH, is a multi-objective selec-
tion hyper-heuristic that expands the MOEA/D framework. It uses an
innovative adaptive choice function proposed in this work to determine
the low level heuristic (Differential Evolution mutation strategy) that
should be applied to each individual during a MOEA/D execution. We
tested MOEA/D-HH in a well established set of 10 instances from the
CEC 2009 MOEA Competition. MOEA/D-HH is compared with some
important multi-objective optimization algorithms and the results
obtained are promising.

Keywords: Hyper-heuristic · Choice function · MOEA/D

1 Introduction

The use of heuristics and meta-heuristics have been quite effective in solving
complex optimization problems. Currently there are several heuristics and meta-
heuristics available for adoption by users, but the choice of the best heuristic to
be applied to solve each problem is difficult and can vary for each instance. In
order to alleviate this problem, Hyper-Heuristics emerged. A Hyper-heuristic is
a high-level methodology for automatic selection or generation of heuristics for
solving complex problems [2].

Although hyper-heuristics have been successfuly applied to solve various opti-
mization problem, its use to solve multi-objective optimization problems (MOPs)
is incipient. So, the main objective of this work is to developed a multi-objective
hyper-heuristic, called MOEA/D-HH (MOEA/D Hyper-Heuristic). The proposed
approach is a selection hyper-heuristic that uses an innovative adaptive choice
function to determine the Differential Evolution (DE) [21] mutation strategy
(low level heuristic) applied to each individual during a MOEA/D-DRA execu-
tion.

MOEA/D, and its variants as the MOEA/D-DRA, decomposes a MOP into
a number of single objective optimization subproblems. The objective of each
c© Springer International Publishing Switzerland 2015
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subproblem is a (linear or nonlinear) weighted aggregation of all the individual
objectives in the MOP. MOEA/D-HH was tested in a set of 10 unconstrained
MOPs from the CEC 2009 MOEA Competition.

The main contributions of this paper are: (i) the proposal of a new multi-
objective hyper-heuristic and (ii) an innovative adaptive choice function.

The remainder of this paper is organized as follows. An overview of Hyper-
Heuristics is presented in 2 while the fundamental concepts related to Differential
Evolution algorithm are shown in Section 3. Section 4 gives a brif overview of
multi-objective Optimization and the MOEA/D-DRA framework. MOEA/D-
HH and its new adaptive choice function are detailed in Section 5. Experiments
and results are presented and discussed in Section 6. Section 7 concludes the
paper and presents the directions for the future work.

2 Hyper-Heuristics

Hyper-Heuristics is an increasingly important topic of research in the heuristic
optimisation community, as it permits the design of flexible solvers by means
of the automatic selection and/or generation of heuristic components (low level
heuristics) [22]. One important distinction between heuristic and hyper-heuristics
is that the first searches the space of solutions while the latter search the space
of heuristics [2].

The hyper-heuristics are classified into generation hyper-heuristics or selec-
tion hyper-heuristics. Generation hyper-heuristics automatically produce new
heuristics from a set of heuristic components. On the other hand, selection hyper-
heuristics use automated methods for choosing heuristics [2]. The generated or
selected heuristics are called low level heuristics. In this work a choice function
based selection hyper-heuristic is investigated for multi-objective optimization.

Decisions taken by the hyper-heuristics (selection or generation) are based
on feedback from the search process. This learning process can be classified as
on-line or off-line. In on-line hyper-heuristics (used in this work) information is
obtained during the execution of the algorithm. While in off-line hyper-heuristics
the information is obtained before the search process starts (a priori) [17].

Our proposed algorithm is an on-line selection hyper-heuristic. A general on-
line selection hyper-heuristic is briefly described as follows [2]. An initial set of
solutions is generated and iteratively improved using low level heuristics until a
termination criterion is satisfied. During each iteration, the heuristic selection
decides which low level heuristic will be used next based on feedback obtained in
previous iterations. After the selected heuristic is applied to the current solution,
a decision is made whether to accept the new solution or not using an acceptance
method.

In the literature on Hyper-Heuristics there are several techniques for selection
of heuristics [22], among them the Choice Function [5] [16]. The Choice Function
is one of the most successful selection heuristics described in the hyper-heuristic
literature. The Choice Function chooses a heuristic by the combination of three
terms: performance of each heuristic, the heuristic performance when it is applied
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following the last heuristic applied (performance of heuristic pairs) and informa-
tion about the last time it was applied. The first two terms favor intensification
while the latter favors diversification.

The heuristic selection mechanism used in our work is a new adaptive choice
function (described in Subsection 5.1) and the low level heuristics used corre-
spond to Differential Evolution mutation and crossover strategies (see Section 3).
The acceptance method used corresponds to the MOEA/D population update
step (described in Section 5).

Multi-objective hyper-heuristics can be found in [1,3,9,10,16,22].

3 Differential Evolution

DE is a stochastic, population-based search strategy developed by Storn and
Price [21]. DE has three control parameters: N , F and CR. N is the population
size. The scaling factor parameter (F ) is used to scale the difference between
vectors, which is further added to a target vector x̂. This process is called muta-
tion in DE. The vector resulting from mutation, named trial vector, is combined
with a parent vector xp in the crossover operation, according to the Crossover
Rate parameter (CR). Finally, the offspring is compared with its parent vector
to decide (based on their fitness) who will “survive” to the next generation.

There are some variations to the basic DE, they differ specially in the way
the target vector is selected (x), the number of difference vectors used (y), and
the way that the crossover point is determined (z). The notation adopted to
characterize the variations is DE/x/y/z. In this paper we used DE/rand/1/bin,
DE/rand/2/bin, DE/current− to−rand/1/bin, DE/current− to−rand/2/bin,
and DE/nonlinear variations.

For DE/rand/1/bin and DE/rand/2/bin, a random individual (rand) is
selected for target vector x̂, there is one, y = 1, (or there are two, y = 2) pair(s)
of solutions which is(are) randomly chosen to calculate the differential muta-
tion and the binomial crossover (z = bin) is used (the probability of choosing a
component from the parent vector or the trial vector is given by a binomial dis-
tribution). For DE/current−to−rand/1/bin and DE/current−to−rand/2/bin,
the current individual is selected for the target vector x̂ and there is one, y = 1,
(or there are two, y = 2) pair(s) of solutions randomly chosen to calculate
the differential mutation and the binomial crossover (z = bin) [21]. The last
mutation strategy, called in this work DE/nonlinear, was proposed in [19] for
MOEA/D framework, and disregards the values of CR and F . It is a hybrid
operator based on polynomials, where each polynomial represents the offspring
which takes the form ρ(w) = w2ca +wcb +cc, where w is generated based on an
interpolation probability, Pinter [19]. Assuming that rand ∈ U [0, 1] (i.e., rand is
a value between 0 and 1 randomly generated by a uniform distribution) we have
w ∈ U [0, 2], if rand ≤ Pinter and w ∈ U [2, 3] otherwise. Individuals ca, cb e cc
are defined as ca = (xc − 2xb + xa)/2, cb = (4xb − 3xc − xa)/2, cc = xc, where
xc, xb and xa are individuals randomly chosen from the current population, in
accordance with the scope defined by MOEA/D-DRA algorithm.
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DE/rand/1/bin was chosen because this strategy usually presents slow con-
vergence speed and good exploration capability. Therefore, it seems more suit-
able for solving multimodal problems than strategies relying on the best solution
found so far [18]. DE/current − to − rand/1/bin enables the algorithm to solve
rotated problems more effectively [18]. Some works in DE, such as [18] and [20],
point that two-difference-vectors-based strategies may provide better pertur-
bations than one-difference-vector-based strategies. Thus, DE/rand/2/bin and
DE/current−to−rand/2/bin were also included. DE/nonlinear is a new hybrid
mutation operator that includes a non-linear part for the DE mutation operator.
This operator was tested with MOEA/D in [19] providing a robust performance
with better results for many test problems.

In MOEA/D-HH (see Section 5), the mutation strategies are used as low
level heuristics.

4 Multi-objective Optimization and MOEA/D-DRA

General multi-objective Optimization Problem is defined as Min (or Max) f(x) =
(f1(x), ..., fM (x)) subject to gi(x) ≤ 0, i = {1, ..., G}, and hj(x) = 0, j = {1, ...,
H} x ∈ Ω, and where the integer M ≥ 2 is the number of objectives. A solution
minimizes (or maximizes) the components of the objective vector f(x) where x
is a n-dimensional decision variable vector x = (x1, ..., xn) ∈ Ω.

In this work we consider the CEC 2009 multi-objective benchmark (10
instances) [24] to be minimized in the evolutionary process. To solve the multi-
objective benchmark we propose a new algorithm called MOEA/D-HH, which
is a multi-objective selection hyper-heuristic based on the MOEA/D-DRA, a
MOEA/D variant. MOEA/D is based on conventional aggregation approaches
[8], it decomposes a MOP into a number of single objective optimization sub-
problems. The objective of each subproblem is a linear (or nonlinear) weighted
aggregation of all individual objectives in the MOP. Neighborhood relations
among these subproblems depend on distances among their aggregation weight
vectors. Each subproblem is simultaneously optimized using mainly informa-
tion from its neighboring subproblems. Some versions of MOEA/D, such as [23]
and [14], treat equally all the subproblems and each of them receives about the
same amount of computational effort. These subproblems, however, may have
different computational difficulties, therefore, it is very reasonable to assign dif-
ferent amounts of computational effort to different problems. In MOEA/D-DRA
(MOEA/D with Dynamical Resource Allocation) [25] is defined and computed a
utility value for each subproblem. Computational efforts are distributed to these
subproblems based on their utilities.

5 Proposed Approach

MOEA/D-HH is a selection hyper-heuristic that uses an adaptive choice function
to determine the DE mutation strategy applied to each individual during a
MOEA/D-DRA [25] execution.
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MOEA/D-HH includes five strategies (DE/rand/1/bin , DE/rand/2/bin,
DE/current−to−rand/1/bin, DE/current−to−rand/2/bin and DE/nonlinear)
into the pool of low level heuristics. Algorithm 1 presents the pseudocode of the
proposed approach.

Algorithm 1. Pseudocode of MOEA/D-HH
1: Generate N weight vectors λi = (λi

1, λ
i
2, ....λ

i
M ), i = 1, ...., N

2: For i = 1, · · · , N , define the set of indices Bi = {i1, · · · , iC} where {λi1 , .., λiC}
are the C closest weight vectors to λi (by the Euclidean distance)

3: Generate an initial population P 0 = {x1, · · · ,xN}, xi = (xi
1, x

i
2, ....x

i
n)

4: Evaluate each individual in the initial population P 0 and associate xi with λi

5: Initialize z∗ = (z∗
1 , · · · , z∗

M ) by setting z∗
j = min1≤i≤Nfj(x

i)
6: g = 1
7: repeat
8: Let all the indices of the subproblems whose objectives are MOP individual

objectives fi compose the initial I. By using 10-tournament selection based
on πi, select other N/5M indices and add them to I.

9: for each individual xi in I do
10: s = argmaxi=1...LLH CF(i) where LLH is the number of low level heuristics

11: if rand < δ then //Determining the scope (rand in U[0,1])
12: scope = Bi

13: else
14: scope = {1, · · · , N}
15: end if
16: Generate a new solution y by strategy s (repair it if necessary)
17: Apply polynomial mutation to produce y′ (repair it if necessary)
18: Update z∗, z∗

j = min(z∗
j , fj(y

′))
19: for each subproblem k (k randomly selected from scope) do
20: if gte(y′ | λk, z∗) < gte(xk | λk, z∗) then
21: if a new replacement may occur then
22: Replace xk by y′ and increment nr

23: end if
24: end if
25: end for
26: reward = gte(xi | λk, z∗) − gte(y′ | λk, z∗)
27: Update CF(s) accordingly to Algorithm 2
28: end for
29: if g modulo 50 == 0 then
30: Update the utility πi of each subproblem i
31: end if
32: g = g + 1;
33: until g >MAX-EV

The first steps of MOEA/D-HH initialize various data structures (steps 1 to
6). The weight vectors λi, i = 1, ..., N , representing coefficients associated with
each objective, are generated using a uniform distribution. The neighborhood
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(Bi = {i1, · · · , iC}) of weight vector λi is comprised by the indices of the C
weight vectors closest to λi. The initial population is randomly generated and
evaluated. Each individual (xi) is associated with the ith weight vector. The
empirical ideal point (z∗) is initialized as the minimum value of each objective
found in the initial population and the generation (g) is set to 1.

After the initialization steps, the algorithm enters its main loop (steps 7 to
33). The first step of the main loop is to determine which individuals from the
population will be processed. A 10-tournament selection based on the utility
value of each subproblem (πi, calculated accordingly to Equation 1) is used to
determine these individuals.

πi =
{

1, if Δi > 0.001
(0.95 + 0.05 ∗ Δi/0.001) ∗ πi, otherwise (1)

Where Δi is the relative decrease of the objective function value of subprob-
lem i.

Step 10 selects the low level heuristic s used to generate a new individual.
The selection is performed based on the Choice Function value of each strategy
i (CF (i)), which is calculated and updated in step 27. The heuristic chosen
is the one with higher CF (i) value. In this work, the low level heuristics used
correspond to DE mutation and crossover strategies.

The low level heuristics are applied considering individuals randomly selected
from scope. In this work, scope can swap from the neighborhood to the entire
population (and vice-versa) along the evolutionary process of MOEA/D-HH. It is
composed by the indices of chromosomes from either the neighborhood Bi (with
probability δ) or from the entire population (with probability 1 − δ). Applying
the chosen low level heuristic, a modified chromosome y is generated in step 16.

The polynomial mutation in step 17 generates y′ = (y′
1, · · · , y′

n) from y in
the following way [6]:

y′
d =

{
yd + σd.(y

(Up)
d − y

(Lw)
d ), with probability pm

yd, with probability 1 − pm
(2)

with

σd =

{
(2 . rand)

1
τ+1 − 1, if rand < 0.5

1 − (2 − 2 . rand)
1

τ+1 , otherwise
(3)

where rand ∈ U[0,1]. The distribution index τ and the mutation rate pm are two
DE parameters. Remembering y

(Lw)
d and y

(Up)
d are the lower and upper bounds

of the dth decision variable, respectively.
In step 18, if the new chromosome y′ has an objective value better than the

value stored in the empirical ideal point, z∗ is updated with this value.
The next steps involve the population update process (steps 19 to 25) which

is based on the comparison of the fitness of individuals. In the MOEA/D frame-
work, the fitness of an individual is measured accordingly to a decomposition
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function. In this work the Tchebycheff function is used. Using this decomposition
method, each subproblems have the form:

Min gte(x | λ, z∗) = max
1≤j≤M

{λj | fj(x) − z∗
j |} (4)

subject to x ∈ Ω

where gte is the Tchebycheff function, f(x) = (f1(x), ..., fM (x)) is set of functions
to be minimized, and λ = (λ1, ..., λM ) is the weight vector considered.

Accordingly to what is selected for the scope (steps 12 or 14), the neighbor-
hood or the entire population is updated. The population update is as follows:
if a new replacement may occur, (i.e. while nr < NR and there are unselected
indices in scope), a random index (k) from scope is chosen. If y′ has a bet-
ter Tchebycheff value than xk (both using the kth weight vector - λk) then
y′ replaces xk and the number of updated chromosomes (nr) is incremented.
To avoid the proliferation of y′ to a great part of the population, a maximum
number of updates (NR) is used.

Then, the reward obtained by the application of the selected low level heu-
ristic is calculated as the difference between the Tchebycheff value of the parent
and child. This reward is used in step 27 to update the Choice Function val-
ues. Two kinds of Choice Functions are investigated in this work: the Modified
Choice Function proposed in [7] and a New Choice Function proposed in this
work (see Subsection 5.1).

If the current generation is a multiple of 50, then the utility value of each
subproblem is updated using Equation 1.

The evolutionary process stops when the maximum number of evaluations
(MAX-EV) is reached and MOEA/D-HH outputs the Pareto set and Pareto
front approximations.

5.1 Proposed Choice Function

One of the most important parts of a hyper-heuristic is the selection method,
which is responsible for choosing the best heuristic for each stage of the optimiza-
tion process. In this paper we use two adaptive versions of the Choice Function
[11] as the selection method: the Modified Choice Function [7] and a new version
proposed in this paper.

The Choice Function scores heuristics based on a combination of different
measures and the heuristic to apply at each stage is chosen based on these
scores. In this work, three different measures (functions) are used. The first
measure (f1) records the previous performance of each individual heuristic. The
second measure (f2) considers the pair-wise relationship between heuristics. The
last measure (f3) corresponds to the time elapsed since each heuristic was last
selected by the Choice Function. The classical Choice Function is presented in
Equation 5 [11].

CF (i) = α ∗ f1(i) + β ∗ f2(i) + γ ∗ f3(i) (5)
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One difficult that emerges when using the classical version of the Choice
Function is how to set the parameters α, β and γ appropriately. In order to
avoid this difficulty we used the Modified Choice Function proposed in [7]. This
version substitutes parameters α and β for the parameter φ and the parameter
γ is relabelled as δ. In this way, φ is associated with the intensification of the
selection of the best heuristics while the parameter δ is associated with the
diversification of the selection. Parameter φ is set to 0.99 each time an heuristic
successfully improves a solution and decreased by 0.01 otherwise. Parameter δ
is set to 1 - φ. The Modified Choice Function is shown in Equation 6 [7].

CF (i) = φ ∗ f1(i) + φ ∗ f2(i) + δ ∗ f3(i) (6)

But the Modified Choice Function still suffers from two problems: (i) the
measures used by f1 and f2 can be in different scales from the measures used in
f3 and (ii) the raw accumulation of previous rewards in f1 and f2 is detrimental
to the on-line adaptation of the selection: a heuristic that becomes the best
heuristic has to offset the accumulated rewards of the previous best heuristic
before it is systematically selected. So in this paper a new Choice Function
is proposed. In order to deal with (i) we propose a scale factor (SF) while to
deal with (ii) we propose the use of mean values for f1 and f2 instead of the
accumulated values.

The update procedure of the new Choice Function is described in Algorithm
2. mean is a boolean variable that determines if the mean value or the accumu-
lated value is used in f1 and f2. The Modified Choice Function happens SF is
set to 1.0 and mean is false.

6 Experiments and Results

In this section we present the experiments conducted to evaluate our proposed
approach, considering all the unconstrained (bound constrained) instances from
the CEC 2009 multi-objective benchmark (10 instances) [24]. The search space
dimension n is defined as 30 for all the instances. Table 1 shows the character-
istics of each instance.

The experiments’ set is composed by three parts: (i) empirical setting of the
choice function parameters, Subsection 6.1, (ii) investigation of the benefits of the
proposed Hyper-Heuristic when compared with single low level heuristic versions,
Subsection 6.2, and (iii) comparison with recent literature algorithms, Subsection
6.3. Inverted Generational Distance (IGD) and Hypervolume (HV) are used to
assess convergence, uniformity and spread performance [13]. All tables of this
section use the following color conventions: dark gray cells indicate the best
results while light gray cells mark statistical equivalent result accordingly to the
Wilcoxon [4] rank sum test with 95% confiability.

6.1 Choice Function Parameter Setting

This section presents the effects of the choice function parameters mean and
SF . Six versions of the algorithm are tested: CF1, CF0.5, CF5, CFMean1,
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Algorithm 2. Pseudocode of the New Choice Function
1: f1(s) = f1(s) + reward
2: timesUsed(s)++
3: f2(lastOperator, s) = f2(lastOperator, s) + lastReward + reward
4: timesUsedPair(lastOperator, s)++
5: for i = 1 . . . LLH do
6: f3(i) = f3(i) + timeSpentOn(s)
7: end for
8: f3(s) = 0
9: if reward > 0 then

10: φ = 0.99
11: δ = 0.01
12: else
13: φ = φ - 0.01
14: δ = 1.0 - φ
15: end if
16: lastReward = reward
17: lastOperator = s
18: for i = 1 . . . LLH do
19: if mean is true then
20: CF(i) = SF * (φ * f1(i)/timesUsed(i) + φ * f2(s, i)/timesUsedPair(s, i))

+ δ * f3(i)
21: else
22: CF(i) = SF * (φ * f1(i) + φ * f2(s, i)) + δ * f3(i)
23: end if
24: end for

CFMean0.5 and CFMean5. The mean parameter is false for the first three ver-
sions and true otherwise. The value at the end of the versions’ names represents
the different values for the SF parameter of the function choice (1, 0.5 and 5).
It is important to note that version CF1 corresponds to the use of the Modified
Choice Function while all other versions uses the proposed Choice Function.

Table 2 shows the mean values for the IGD metric. The version that obtained
best results set mean to true and SF to 0.5 (CFMean0.5). This version obtained
best results for UF1, UF2, UF3, UF6 and UF7. Table 3 shows the mean values for
the Hypervolume (HV) metric. Again the version that obtained best results was
CFMean0.5. This version obtained best results for UF1, UF2, UF6 and UF7. So,
for the remainder of this paper only the CFMean0.5 version will be considered
and it will be renamed as MOEA/D-HH. Table 4 presents the parameter values
used in MOEA/D-HH.

6.2 MOEA/D-HH × Single Low Level Heuristics

This section presents the comparison of the proposed algorithm (MOEA/D-HH)
with the differential evolution strategies (low level heuristics) applied individu-
ally. Tables 5 and 6 demonstrate that MOEA/D-HH is better than or equal to
individual low level heuristics for all CEC 2009 MOEA competition instances,
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Table 1. Characteristics of unconstrained functions considered

Function Objectives Search space range Properties of Pareto Front

UF1 2 [0, 1] × [-1, 1]n−1 Concave

UF2 2 [0, 1] × [-1, 1]n−1 Concave

UF3 2 [0, 1]n Concave

UF4 2 [0, 1] × [-2, 2]n−1 Convex

UF5 2 [0, 1] × [-1, 1]n−1 21 points front

UF6 2 [0, 1] × [-1, 1]n−1 One isolated point and 2 discon-
nected parts

UF7 2 [0, 1] × [-1, 1]n−1 Continuous straight line

UF8 3 [0, 1]2 × [-2, 2]n−2 Parabolic

UF9 3 [0, 1]2 × [-2, 2]n−2 Planar

UF10 3 [0, 1]2 × [-2, 2]n−2 Parabolic

with the exception of UF8 and UF9 in the IGD metric and UF6 in the HV met-
ric. Therefore, the results of the MOEA/D-HH surpass those obtained by any of
the individual strategies.

6.3 MOEA/D-HH: Comparison with Literature

In the case of comparison with literature, we use the IGD-metric and empirical
attainment function (EAF) plots [15]. An empirical attainment function plot
graphically describes the probabilistic distribution of the outcomes obtained by
a stochastic algorithm in the objective space [15]. We evaluate the IGD-metric

Table 2. Mean IGD values for CF1, CF0.5, CF5, CFMean1, CFMean0.5 and CFMean5

CF1 CF0.5 CF5 CFMean1 CFMean0.5 CFMean5
UF1 2.22e − 03 1.97e − 03 2.12e − 03 1.81e − 03 1.74e − 03 2.01e − 03
UF2 3.21e − 03 3.14e − 03 3.13e − 03 3.17e − 03 3.10e − 03 3.17e − 03
UF3 2.63e − 02 2.06e − 02 2.01e − 02 5.17e − 03 5.15e − 03 6.06e − 03
UF4 5.36e − 02 5.42e − 02 5.45e − 02 5.50e − 02 5.46e − 02 5.51e − 02
UF5 2.62e − 01 2.91e − 01 3.04e − 01 2.85e − 01 2.90e − 01 2.96e − 01
UF6 1.19e − 01 1.04e − 01 1.25e − 01 1.27e − 01 8.70e − 02 1.36e − 01
UF7 1.77e − 03 1.81e − 03 1.75e − 03 1.69e − 03 1.69e − 03 1.83e − 03
UF8 4.68e − 02 4.63e − 02 4.63e − 02 4.43e − 02 5.03e − 02 4.46e − 02
UF9 3.96e − 02 4.67e − 02 5.65e − 02 4.58e − 02 4.25e − 02 5.11e − 02
UF10 4.45e − 01 4.37e − 01 4.54e − 01 4.26e − 01 4.35e − 01 4.15e − 01

Table 3. Mean HV values for CF1, CF0.5, CF5, CFMean1, CFMean0.5 and CFMean5

CF1 CF0.5 CF5 CFMean1 CFMean0.5 CFMean5
UF1 1.98e − 03 1.73e − 03 1.92e − 03 1.52e − 03 1.56e − 03 2.01e − 03
UF2 3.10e − 03 2.83e − 03 2.96e − 03 2.97e − 03 3.04e − 03 3.06e − 03
UF3 9.53e − 03 8.02e − 03 7.79e − 03 4.32e − 03 4.28e − 03 3.71e − 03
UF4 5.42e − 02 5.44e − 02 5.41e − 02 5.50e − 02 5.38e − 02 5.47e − 02
UF5 2.61e − 01 2.76e − 01 3.09e − 01 2.75e − 01 2.90e − 01 2.91e − 01
UF6 7.53e − 02 7.35e − 02 7.31e − 02 7.79e − 02 6.84e − 02 7.73e − 02
UF7 1.68e − 03 1.63e − 03 1.53e − 03 1.61e − 03 1.58e − 03 1.59e − 03
UF8 4.46e − 02 4.46e − 02 4.44e − 02 4.38e − 02 4.55e − 02 4.38e − 02
UF9 3.01e − 02 3.01e − 02 2.99e − 02 2.97e − 02 2.96e − 02 3.06e − 02
UF10 4.32e − 01 4.31e − 01 4.61e − 01 4.24e − 01 4.37e − 01 4.19e − 01
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Table 4. Parameters used in different versions of the proposed approach

Values Description

DE Parameters

N
600 Population size (for instances with 2-objectives).
1000 Population size (for instances with 3-objectives).

CR 1.0 Crossover rate.
F 0.5 Scaling factor.
Pinter 0.75 Interpolation probability.
pm 1/30 Polynomial mutation probability.
τ 20 Distribution index of polynomial mutation.
MAX-EV 300,000 Maximum number of evaluations.

MOEA/D Parameters

C 20 Number of weight vectors in the neighborhood.
NR 2 Maximal number of solutions replaced by each offspring.
δ 0.9 Probability that parent solutions are selected from the neigh-

borhood.

Choice Function Parameters

Mean true Choice Function with f1 and f2 calculated using the average
values of the rewards (proposed in this paper).

SF 0.5 Scale parameter to balance f1 and f2 versus f3.

of the final approximation over 30 independent executions of our approach,
MOEA/D-HH, MOEA/D-DRA, MOEA/D-DRA-CMX+SPX and NSGA-II for

Table 5. Mean IGD values for MOEA/D-HH and single low level heuristics

MOEA/D-HH rand/1/bin rand/2/bin current-to-rand/1 current-to-rand/2 nonlinear
UF1 1.74e − 03 2.56e − 03 2.51e − 03 4.14e − 03 1.91e − 03 2.97e − 03
UF2 3.10e − 03 5.05e − 03 4.84e − 03 8.70e − 03 4.59e − 03 2.50e − 03
UF3 5.15e − 03 1.51e − 02 7.71e − 03 6.74e − 02 4.67e − 03 1.14e − 02
UF4 5.46e − 02 5.72e − 02 5.15e − 02 6.04e − 02 5.55e − 02 5.66e − 02
UF5 2.90e − 01 3.44e − 01 2.90e − 01 3.84e − 01 2.96e − 01 3.79e − 01
UF6 8.70e − 02 1.43e − 01 7.15e − 02 1.92e − 01 9.79e − 02 1.78e − 01
UF7 1.69e − 03 1.73e − 03 2.64e − 03 4.45e − 03 2.33e − 03 4.18e − 03
UF8 5.03e − 02 4.66e − 02 5.24e − 02 4.80e − 02 4.69e − 02 7.29e − 02
UF9 4.25e − 02 4.64e − 02 4.06e − 02 5.65e − 02 4.01e − 02 1.32e − 01
UF10 4.35e − 01 4.51e − 01 1.01e + 00 4.13e − 01 7.60e − 01 4.58e − 01

Table 6. Mean HV values for MOEA/D-HH and single low level heuristics

MOEA/D-HH rand/1/bin rand/2/bin current-to-rand/1 current-to-rand/2 nonlinear
UF1 1.56e − 03 2.54e − 03 2.35e − 03 1.44e − 03 1.65e − 03 2.36e − 03
UF2 3.04e − 03 4.34e − 03 4.53e − 03 8.42e − 03 4.48e − 03 2.44e − 03
UF3 4.28e − 03 4.56e − 03 5.53e − 03 6.95e − 02 3.06e − 03 1.00e − 02
UF4 5.38e − 02 5.65e − 02 5.07e − 02 5.98e − 02 5.46e − 02 5.59e − 02
UF5 2.90e − 01 2.98e − 01 2.84e − 01 3.68e − 01 2.93e − 01 3.62e − 01
UF6 6.84e − 02 7.20e − 02 6.58e − 02 1.96e − 01 6.42e − 02 1.75e − 01
UF7 1.58e − 03 1.48e − 03 2.23e − 03 3.14e − 03 2.11e − 03 4.02e − 03
UF8 4.55e − 02 4.47e − 02 5.11e − 02 4.62e − 02 4.56e − 02 6.44e − 02
UF9 2.96e − 02 3.18e − 02 3.31e − 02 3.44e − 02 2.88e − 02 1.54e − 01
UF10 4.37e − 01 4.41e − 01 1.04e + 00 4.07e − 01 7.52e − 01 4.56e − 01
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each CEC09 test instance. Table 7 presents median, standard deviation (std),
minimum (min) and maximum (max) of IGD-metric values. The IGD-metric val-
ues of the MOEA/D-DRA-CMX+SPX are those described in [12,26]. Table 7
shows that MOEA/D-HH is the best method in UF2, UF4, UF6 and UF9. More-
over, MOEA/D-HH is the second best method in UF3, UF7 and UF8.

Table 7. The IGD statistics based on 30 independent runs for our approach, MOEA/D-
HH, MOEA/D-DRA, MOEA/D-DRA-CMX+SPX and NSGA-II. Dark gray cells
emphasize the best results while light gray cells emphasize the second best results.

CEC09 Algorithm Median Std Min Max

UF1

MOEA/D-HH 0.001558 0.000532 0.001114 0.002817
MOEA/D-DRA 0.001503 0.000090 0.001417 0.001757
MOEAD-CMX-SPX 0.004171 0.000263 0.003985 0.005129
NSGA-II 0.095186 0.003249 0.088511 0.103222

UF2

MOEA/D-HH 0.003037 0.000767 0.001898 0.005170
MOEA/D-DRA 0.003375 0.001039 0.002326 0.006638
MOEAD-CMX-SPX 0.005472 0.000412 0.005149 0.006778
NSGA-II 0.035151 0.001479 0.032968 0.039164

UF3

MOEA/D-HH 0.004280 0.003064 0.001706 0.012040
MOEA/D-DRA 0.001488 0.004131 0.001086 0.014019
MOEAD-CMX-SPX 0.005313 0.013093 0.004155 0.068412
NSGA-II 0.089894 0.016815 0.062901 0.126556

UF4

MOEA/D-HH 0.053836 0.003800 0.049133 0.064506
MOEA/D-DRA 0.060765 0.004757 0.051492 0.070912
MOEAD-CMX-SPX 0.063524 0.004241 0.055457 0.075361
NSGA-II 0.080935 0.002809 0.074034 0.084683

UF5

MOEA/D-HH 0.289896 0.068554 0.164365 0.510875
MOEA/D-DRA 0.220083 0.089484 0.146933 0.511464
MOEAD-CMX-SPX 0.379241 0.135554 0.211058 0.707093
NSGA-II 0.214958 0.051622 0.154673 0.331853

UF6

MOEA/D-HH 0.068445 0.046913 0.036113 0.215999
MOEA/D-DRA 0.207831 0.287571 0.053371 0.823381
MOEAD-CMX-SPX 0.248898 0.185717 0.056972 0.792910
NSGA-II 0.080177 0.006460 0.067996 0.090331

UF7

MOEA/D-HH 0.001576 0.000415 0.001229 0.002907
MOEA/D-DRA 0.001569 0.001364 0.001336 0.008796
MOEAD-CMX-SPX 0.004745 0.003307 0.003971 0.014662
NSGA-II 0.048873 0.001959 0.044634 0.051968

UF8

MOEA/D-HH 0.045544 0.012282 0.037872 0.080418
MOEA/D-DRA 0.040352 0.003788 0.033777 0.050412
MOEAD-CMX-SPX 0.056872 0.003366 0.051800 0.065620
NSGA-II 0.112219 0.002742 0.109836 0.121190

UF9

MOEA/D-HH 0.029626 0.034824 0.027201 0.146364
MOEA/D-DRA 0.137856 0.039018 0.025008 0.139986
MOEAD-CMX-SPX 0.144673 0.054285 0.033314 0.151719
NSGA-II 0.106841 0.000681 0.105806 0.108729

UF10

MOEA/D-HH 0.436591 0.045099 0.348434 0.525347
MOEA/D-DRA 0.406094 0.066770 0.210500 0.553572
MOEAD-CMX-SPX 0.467715 0.038698 0.391496 0.533234
NSGA-II 0.257846 0.012541 0.234047 0.288036

In oder to graphically compare the algorithmic behaviors of MOEA/D-HH
and MOEA/D-DRA, empirical attainment functions were plotted. Figures 1
and 2 present EAFs for MOEA/D-HH and MOEA/D-DRA for instances UF2
and UF4. For UF2, MOEA/D-HH is better around the extreme value for the
first objective. MOEA/D-HH is better than MOEA/D-DRA for UF4 in both
extremes and in some areas of the middle of the approximation frontiers.
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Fig. 1. Attainment Function Comparison of MOEA/D-HH and MOEA/D-DRA for
UF2

Fig. 2. Attainment Function Comparison of MOEA/D-HH and MOEA/D-DRA for
UF4

7 Conclusions

In this paper, we proposed a new multi-objective hyper-heuristic based on choice
function to adaptively select appropriate low level heuristics (operators) in the
MOEA/D framework. Our pool of low level heuristics was constituted by five
commonly used DE operators.

We also proposed an innovative adaptive choice function that tackles two
important problems that may happen: (i) difference in the scale of the functions
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that compose the choice function and (ii) if a heuristic is chosen frequently, its
accumulated reward may dominate the rewards from other heuristics.

We conducted experimental studies on test instances from the CEC 2009
MOEA Competition. The results demonstrate that the use of the proposed
hyper-heuristic is beneficial, i.e. it improves the performance of the MOEA/D
framework using single low level heuristics.

The experiments conducted also showed that proposed adaptive choice func-
tion performs better than a modified choice function recently proposed in [7].
The proposed approach (MOEA/D-HH) was favourably compared with state-
of-the-art methods.

Future work includes the investigation of the contribution of each low level
heuristic and the effectiveness of the adopted performance measures. It also
includes the proposal of other selection heuristics and analysis of the performance
of MOEA/D-HH in many objective problems.
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Abstract. Multi-objective Particle Swarm Optimization (MOPSO) is a
promising meta-heuristic to solve Many-Objective Problems (MaOPs).
Previous works have proposed different leader and archiving methods to
tackle the challenges caused by the increase in the number of objectives,
however, selecting the most appropriate components for a given problem
is not a trivial task. Moreover, the algorithm can take advantage by using
a variety of methods in different phases of the search. To deal with those
issues, we adopt the use of hyper-heuristics, whose concept emerges for
dynamically selecting components for effectively solving a problem. In
this work, we use a simple hyper-heuristic to select leader and archiving
methods during the search. Unlike other studies, our hyper-heuristic is
guided by the R2 indicator due to its good measuring characteristics and
low computational cost. Experimental studies were conducted to validate
the new algorithm where its performance is compared to its components
individually and to the state-of-the-art MOEA/D-DRA algorithm. The
results show that the new algorithm is robust, presenting good results in
different situations.

Keywords: MOPSO ·Many-objective · Hyper-heuristics · Leader selec-
tion · Archiving · R2 indicator

1 Introduction

A promising meta-heuristic to deal with Many-Objective Problems (MaOPs) is
the Multi-Objective Particle Swarm Optimization (MOPSO), a multi-objective
version of the well-known Particle Swarm Optimization (PSO) [10]. PSO is a
stochastic meta-heuristic based on the movement of bird flocks looking for food,
created to optimize non-linear functions.

A MOPSO that has presented good results in the literature and is used as base
in many works [2], [5] is the Speed-constrained Multi-objective PSO (SMPSO) [15].
SMPSO is a MOPSO that restricts the velocity of the particles to prevent erratic
movements.

Despite the good results obtained by SMPSO using different leader [5] and
archiving [2] methods, the correct choice of these operators is hard because they
are problem-dependent. The difficulty in selecting operators, which is as well usual
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-15934-8 8



110 O.R. Castro Jr. and A. Pozo

to other meta-heuristics, leads to the development of a methodology called hyper-
heuristic.

A hyper-heuristic can be used as a high-level methodology to dynamically
select low-level components, producing automatically a suitable combination to
solve a given problem [4].

In this work we investigate two hypotheses: h1 selecting good combinations
between leader and archiving methods improve the results obtained by MOPSO;
h2 R2 [9] is an appropriate indicator to guide a hyper-heuristic.

To investigate these hypotheses, we design a new MOPSO algorithm called H-
MOPSO that uses a simple hyper-heuristic to dynamically select a combination
of leader and archiving methods guided by the R2 indicator.

Few works on the literature apply hyper-heuristics on multi-objective opti-
mizers, and this work, as far as we known, is the first one that uses a hyper-
heuristic to select leader and archiving methods in a MOPSO.

Empirical analyses are conducted to observe the behavior of H-MOPSO
when faced to many-objective scenarios. The experiments use the DTLZ many-
objective family of benchmarking problems [6]. A first study is conducted to
validate the new algorithm where its performance is compared to its low-level
heuristics employed separately. Additionally, a second study is performed to
compare it to the state-of-the-art MOEA/D-DRA [19] algorithm.

The remainder of this paper is organized as follows: Section 2 presents the
background concepts used in this work. Section 3 describes H-MOPSO, and
Section 4, the empirical study conducted to assess the performance of the new
H-MOPSO. Finally, the conclusions are presented in Section 5.

2 Background

This section presents some background concepts used in this paper. Section 2.1
surveys PSO and MOPSO, as well as the SMPSO algorithm. Some characteristics
of hyper-heuristics are summarized in Section 2.2.

2.1 MOPSO

Particle Swarm Optimization (PSO) [10] is a stochastic meta-heuristic created
to optimize nonlinear functions based on the movement of bird flocks looking for
food. In this method a swarm (population) of particles (solutions) moves across
the search space (evolve) guided by personal and social leaders.

Unlike in single objective optimization, a Multi-Objective Problem (MOP)
requires the simultaneous optimization of two or more objective functions. The
objective functions are usually in conflict, so these problems do not present only
one optimal solution, but a set of them. This set of solutions is called Pareto
optimal set.

In a MOP, a solution is said to dominate another if it is not worse in any
objective and is strictly better in at least one. Solutions in the Pareto set are non-
dominated by any other solution of the feasible solution space and the image of
these solutions in the objective space is called Pareto front [13].
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To expand a PSO algorithm into a Multi Objective PSO (MOPSO), usually
two main modifications are made: the creation of an external archive (or repos-
itory) to store the non-dominated solutions, and the use of a leader selection
method to select a global leader for the particles among a set of equally good
solutions according to some criterion.

When the external archive becomes full, an archiving strategy is needed to
prune it and keep it on a predefined size, discarding some non-dominated solu-
tions based on some criterion. This criterion has great impact in the quality of
the solutions generated in the search, especially in many-objectives due to the
large portion of the population that becomes non-dominated. There are many
approaches in the literature to manage the repository, and a comparison among
some of them is done in [2].

As in MOPs there is no single optimal solution, a leader selection method
is also needed, and this method have impact on the quality of the solutions as
well. A comparison between some of the leader selection methods available in
the literature is presented in [5].

Other aspect that has been observed in a MOPSO is that in some conditions
the velocity of the particles can become too high, generating erratic movements
towards the limits of the decision space. To avoid such situations the Speed-
constrained Multi-objective PSO (SMPSO) [15] algorithm presents a velocity
constriction mechanism based on a factor χ that varies based on the values of
the influence factor of the social (C1) and personal (C2) leaders. In SMPSO, the
Crowding Distance (CD) metric [7] is used in both, leader and archiving methods.
Due to its good results in the literature, SMPSO is an algorithm frequently used
as reference [2], [5].

2.2 Hyper Heuristics

The task of choosing appropriate parameters or algorithms to solve an optimiza-
tion problem is often hard. In this context, the hyper-heuristic approach emerges
as a high-level methodology which, when given a particular problem instance or
class of instances, and a number of low-level heuristics or components, automati-
cally produces an adequate combination of these components to effectively solve
the given problem [4].

An iteration of a hyper-heuristic can be subdivided into two parts: heuristic
selection and move acceptance. Some heuristic selection methods generate online
score(s) for each heuristic based on their performances. Then these values are
processed and/or combined in a systematic manner to select the heuristic to be
applied to the candidate solution at each step. A valid manner to implement it is
to use a roulette-wheel (score proportionate) strategy to associate a probability
with each heuristic that is computed by dividing each individual score by the
total score. Then, a heuristic is randomly selected based on these probabilities.
A high score generates a higher probability of being selected [4], [1].

The acceptance strategy is an important component of any local search heuris-
tic. This strategy can be either deterministic or non-deterministic. Deterministic
methods make the same decision for acceptance regardless of the decision point
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during the search using given current and new candidate solutions(s). A non-
deterministic approach might generate a different decision for the same input.
The decision process in most non-deterministic move acceptance methods requires
additional parameters, such as the current iteration number [4].

In this first study, we use a simple hyper-heuristic. Our selection mechanism
consists of a roulette-wheel where the probability of each low-level heuristic is
updated according to the difference in the R2 value obtained before and after
the application of the selected heuristic (score). We use the deterministic move
acceptance strategy Improving and Equal (IE) due to its simplicity and the
good results presented in [1]. In IE, a new solution is accepted if it improves or
maintains the previous score value.

3 Hyper-MOPSO

As seen in previous works [2], [5], leader and archiving methods have a significant
impact in the optimization process of a MOPSO, however the methods are more
or less suitable to different problems and there is no single method that excels
in all the problems.

In this work, we consider combinations of leader and archiving methods as
low-level heuristics and select them during the search based in the R2 quality
indicator in order to achieve a good performance in all the optimization problems
at hand.

The R2 indicator [9] was originally proposed to assess the relative quality of
two approximation sets. This indicator evaluates the desired aspects of a Pareto
front approximation and presents a low computational cost [3]. In this work we
use Tchebycheff as utility function in the R2 calculation.

The hyper-heuristic proposed here works on the following way: until the
repository is full, the search is conducted using a regular SMPSO to achieve
a good diversity and fill the repository quickly. Once the repository is full,
the leader selection and archiving methods are selected by a roulette wheel
that starts with equal probability of choosing any of the low-level heuristics
(leader/archiving) available.

This roulette is updated at each iteration based in the R2 indicator. In a
given iteration, if the selected heuristic improves or maintains the quality of
the set of solutions in the repository (measured by the R2 indicator), then the
probability of the selected heuristic is increased in the roulette, the probabilities
of the other heuristics are decreased and the solution is accepted.

However, if the quality of the solutions decreases, the heuristic used have its
probability decreased, while the probabilities of the others are increased and the
solution is rejected (a copy of the repository is restored).

This simple hyper-heuristic rewards or punishes the heuristics increasing or
decreasing their participation in the search. A small minimum probability (cal-
ibrated before the experiments) is considered for the heuristics so they are not
completely removed from the search, as it can present bad results in some stage,
but could perform well ahead in the search procedure.



Using Hyper-Heuristic to Select Leader and Archiving Methods 113

Algorithm 1. H-MOPSO
initialize(particles)
repository=initializeRepository(particles)
roulette=initializeRoulette();
t = 0
while t < tmax do

if repository is full then
selectLeaderArchiver(roulette)

end if
else

selectLeaderArchiver(CD-CD)
end if
for each particle in the repository do

selectGlobalLeader(particle, repository)
updatePosition(particle)
mutation(particle)
evaluation(particle)
updatePersonalLeader(particle)

end for
if repository is full then

repositoryPrevious=repository
repository=updateRepository(particles)
R2=calculateR2(repository)
R2Ant=calculateR2(repositoryPrevious)
roulette=updateRoulette(roulette, R2Ant, R2)
if R2Ant < R2 then

repository=repositoryPrevious
end if

end if
else

repository=updateRepository(particles)
end if
t + +

end while
return repository

Algorithm 1 shows a pseudocode of H-MOPSO, where firstly the particles are
randomly initialized. Then, the repository is initialized with the non-dominated
solutions from the population. At next, the roulette is initialized with equal
probabilities for all the low-level heuristics.

In the main loop of the algorithm, if the repository is (or was at some point)
full, the leader and archiving method is selected based on the probabilities of
the roulette, otherwise is used the original SMPSO until the repository becomes
full (CD-CD combination).

Then for each particle, the procedures are the same as the SMPSO algorithm,
where the particle selects a global leader from the repository, update its position
based in its own previous position and in the position of the personal and global
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leaders. After, if the particle is selected for mutation, it is mutated. Following
the particle is evaluated (objective vector calculated regarding new position) and
updates its personal best.

Returning to the main loop, if the repository is (or was) full, a copy of the
actual repository is done and the repository is updated with the new solutions.
Then the R2 of both, the actual and the previous repositories are calculated and
the probabilities on the roulette are updated based in the performance of the
selected heuristic. At next, if the solutions in the new repository have a worse
R2 value than the previous, the old repository replaces the new (IE acceptance).
Case the repository was not full it is updated normally using the CD archiver.
Finally the iteration counter is incremented. The main loop repeats tmax times,
and the repository (best non-dominated solutions found so far) is returned as
result of the search process.

In this procedure, the heuristics with better performance are chosen more
often, and the algorithm can adapt itself to prefer the heuristics that improve
its results according to the problem at hand.

4 Empirical Study

In this section, firstly the parameters used in all experiments are shown in
Section 4.1. Then, Section 4.2 presents a comparative study between H-MOPSO
and its nine low-level heuristics to assess the hyper-heuristic capacity of selecting
viable components along the search. A comparative study between H-MOPSO
and MOEA/D-DRA, a state-of-the-art algorithm from the literature, is shown
in Section 4.3.

4.1 Experimental Setup

The parameters used in this study for the SMPSO and derivatives follows the
same used in [15]. For MOEA/D-DRA we followed the same parameters used
in [19]. In the hyper-heuristic, the initial probabilities are the same for all the
low-level heuristics, the minimum probabilities of each heuristic was set to 0.5%
to prevent it to be removed from the search, and the increment (or decrement)
in the probabilities of the selected heuristic is set to one tenth of the initial
probabilities. The move acceptance criterion used is Improving and Equal (IE).

In both experimental studies the stop criterion was the number of iterations,
set to 100, or its equivalent in fitness evaluations (10100). The number of particles
and the size of the repository are also set to 100.

In the first experimental study, in order to assess if the hyper-heuristic is
selecting the low-level heuristics properly, we compare its performances using
the R2 indicator, the same used to guide the hyper-heuristic.

In the second experimental study, we used two indicators to assess the quality
of the fronts generated by each algorithm: the first of them is a modification of the
Inverted Generational Distance (IGD) known as IGDp [17], which indicates if the
solution set found by the algorithm is well distributed over the true discretized
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Pareto front. The second indicator is the Hypervolume [18] that measures the
size of the portion of the objective space dominated by a solution set.

In both studies, the entire DTLZ [6] family of well-known multi-objective
problems was used (DTLZ1 - DTLZ7). These problems can scale both in number
of objectives and decision variables, also the true Pareto optimal front is known.

The results measured with the quality indicators in 30 independent runs of
the algorithms are submitted to the Kruskal-Wallis test [11] at 5% significance
level. Moreover, to summarize the results, the averages of the 30 runs of each
algorithm are submitted to the Friedman test [8], also at 5% significance level.

These results are presented as tables showing the indicator values achieved
for the compared algorithms in the form of the ranks used by the statistical
test applied. The number in parentheses indicates the final classification of the
algorithms, where smaller rank values are better. The algorithm with the better
rank is highlighted in bold font.

When calculating the final ranks, in case of statistical tie (algorithms pre-
senting no statistical difference), the final rank of each of the tied algorithms is
equal to the average of the ranks that would be assigned to them. Two algo-
rithms are considered statistically equal if the difference between their ranks is
smaller than the critical difference.

4.2 H-MOPSO vs. Low-Level Heuristics

This section presents the results obtained by the algorithms H-MOPSO and its
nine low-level heuristics, consisting of combinations between the three archivers
(Crowding Distance (CD) [7], Ideal [2] and Multilevel Grid Archiving (MGA) [12])
and the three leader selection methods (Crowding Distance (CD) [7], Sigma [14],
NWSum [16]).

Table 1 show the Kruskal-Wallis ranks of the R2 results achieved by the algo-
rithms. In this table, the critical difference is 73.03. From the results presented,
for few objectives (two and three), H-MOPSO presents the general better perfor-
mance, being among the better ranks in all the instances, except in DTLZ4 for
two objectives. SMPSO presented good results as well, outperforming H-MOPSO
in DTLZ4 for two objectives, and being tied with it in six instances.

For five objectives, H-MOPSO also presented the better general results, out-
performing all the low-level heuristics in all problems, except for DTLZ4, where
it statistically tied with SMPSO and NWSum-CD.

For ten objectives, again H-MOPSO had overall good results, losing only in
DTLZ2 and DTLZ4. In DTLZ2, SMPSO and Sigma-CD had the better results,
however in DTLZ4 only SMPSO achieved the smaller ranking.

For fifteen objectives, H-MOPSO had the better rankings in all problems,
except for DTLZ4 where it lost, and in DTLZ2, where it tied with SMPSO and
Sigma-CD. The better performance in DTLZ4 was achieved by SMPSO.

For twenty objectives, H-MOPSO also had the better performance in most
problems, losing in DTLZ2 and DTLZ4, and being tied with CD-Ideal and
NWSum-Ideal in DTLZ7. SMPSO had the better results in DTLZ2 and DTLZ4.
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Table 1. Kruskal-Wallis ranks for the R2 indicator

Obj. Algorithms DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
2 H-MOPSO 17.70 (1.50) 30.23 (1.50) 20.70 (1.00) 44.70 (2.50) 17.43 (1.50) 34.23 (1.50) 16.93 (2.00)

SMPSO 44.10 (1.50) 30.77 (1.50) 107.70 (4.00) 16.30 (1.50) 43.57 (1.50) 54.37 (1.50) 44.40 (2.00)
CD-Ideal 216.90 (7.00) 267.97 (9.50) 202.00 (8.00) 256.07 (8.00) 263.00 (9.50) 192.00 (6.50) 263.00 (8.50)
CD-MGA 141.67 (6.00) 208.50 (6.50) 171.03 (6.00) 200.63 (8.00) 221.53 (8.00) 129.07 (6.50) 210.93 (7.50)

NWSum-CD 161.10 (6.50) 136.97 (6.00) 118.20 (4.00) 105.07 (3.50) 133.73 (5.50) 169.13 (6.50) 89.83 (2.50)
NWSum-Ideal 159.63 (6.50) 178.37 (6.00) 112.70 (4.00) 119.87 (4.00) 171.40 (6.00) 171.47 (6.50) 177.43 (6.50)
NWSum-MGA 174.67 (6.50) 142.00 (6.00) 98.73 (4.00) 115.40 (3.50) 140.83 (5.50) 173.17 (6.50) 121.67 (4.50)

Sigma-CD 185.30 (6.50) 136.47 (6.00) 226.10 (8.00) 212.37 (8.00) 140.03 (5.50) 191.07 (6.50) 201.00 (7.50)
Sigma-Ideal 193.07 (6.50) 187.23 (6.00) 214.90 (8.00) 217.63 (8.00) 187.83 (6.00) 196.67 (6.50) 173.43 (6.50)
Sigma-MGA 210.87 (6.50) 186.50 (6.00) 232.93 (8.00) 216.97 (8.00) 185.63 (6.00) 193.83 (6.50) 206.37 (7.50)

3 H-MOPSO 15.60 (1.50) 15.63 (2.00) 16.80 (1.00) 21.27 (2.00) 25.77 (1.50) 32.33 (1.50) 20.40 (1.00)
SMPSO 68.53 (3.00) 63.03 (3.00) 126.13 (4.50) 55.20 (2.50) 35.23 (1.50) 79.73 (2.50) 108.93 (4.50)
CD-Ideal 188.77 (7.50) 265.27 (8.00) 176.20 (5.50) 252.00 (8.00) 270.10 (9.50) 174.73 (6.50) 164.83 (5.50)
CD-MGA 159.97 (5.50) 218.60 (8.00) 144.60 (4.50) 224.40 (7.50) 215.47 (7.00) 113.10 (4.50) 169.17 (5.50)

NWSum-CD 115.07 (4.00) 115.93 (3.50) 117.83 (4.50) 82.00 (2.50) 148.10 (6.00) 201.43 (7.00) 246.90 (9.00)
NWSum-Ideal 136.13 (5.00) 198.10 (8.00) 111.07 (4.50) 178.63 (6.50) 178.10 (6.00) 212.40 (7.00) 221.60 (8.00)
NWSum-MGA 115.03 (4.00) 121.07 (3.50) 103.37 (4.50) 112.90 (3.50) 171.27 (6.00) 201.63 (7.00) 228.53 (8.00)

Sigma-CD 193.33 (7.50) 68.33 (3.00) 222.10 (8.50) 189.70 (7.50) 111.57 (5.50) 146.10 (6.00) 125.43 (4.50)
Sigma-Ideal 257.40 (8.50) 213.83 (8.00) 253.17 (9.00) 192.17 (7.50) 179.43 (6.00) 170.97 (6.50) 112.73 (4.50)
Sigma-MGA 255.17 (8.50) 225.20 (8.00) 233.73 (8.50) 196.73 (7.50) 169.97 (6.00) 172.57 (6.50) 106.47 (4.50)

5 H-MOPSO 16.73 (1.00) 18.67 (2.00) 23.13 (1.00) 18.83 (2.00) 38.93 (2.50) 28.43 (2.00) 20.83 (2.00)
SMPSO 160.27 (5.00) 103.17 (3.50) 130.00 (4.50) 53.97 (2.00) 109.73 (4.50) 99.10 (3.00) 220.77 (8.00)
CD-Ideal 104.00 (4.50) 256.40 (8.50) 116.60 (4.50) 193.90 (6.50) 284.23 (9.50) 107.27 (4.00) 143.13 (4.50)
CD-MGA 119.13 (4.50) 234.60 (8.00) 120.80 (4.50) 171.17 (6.50) 165.07 (6.00) 69.97 (2.50) 154.70 (6.00)

NWSum-CD 121.67 (4.50) 69.63 (3.00) 131.90 (4.50) 83.10 (2.00) 178.77 (6.00) 203.33 (7.50) 251.67 (8.50)
NWSum-Ideal 114.60 (4.50) 177.80 (7.00) 105.57 (4.50) 267.83 (10.00) 236.00 (8.00) 249.60 (8.50) 210.67 (7.50)
NWSum-MGA 137.47 (4.50) 130.27 (4.00) 135.47 (4.50) 189.10 (6.50) 134.03 (5.00) 183.57 (7.50) 238.73 (8.50)

Sigma-CD 231.87 (8.50) 61.20 (3.00) 244.93 (9.00) 173.87 (6.50) 84.67 (3.00) 161.17 (6.00) 116.07 (4.00)
Sigma-Ideal 253.53 (9.00) 213.50 (8.00) 243.00 (9.00) 179.57 (6.50) 163.07 (6.00) 175.73 (6.50) 75.07 (3.00)
Sigma-MGA 245.73 (9.00) 239.77 (8.00) 253.60 (9.00) 173.67 (6.50) 110.50 (4.50) 226.83 (7.50) 73.37 (3.00)

10 H-MOPSO 19.67 (1.00) 79.57 (3.00) 21.07 (1.00) 155.53 (5.50) 26.53 (2.00) 45.40 (1.50) 19.97 (2.00)
SMPSO 258.50 (8.50) 21.30 (2.50) 263.17 (8.50) 15.53 (1.50) 96.80 (4.00) 110.83 (4.50) 229.30 (8.00)
CD-Ideal 119.60 (4.00) 246.93 (8.50) 97.80 (4.00) 227.50 (8.00) 273.63 (9.00) 177.93 (6.00) 117.67 (4.00)
CD-MGA 116.80 (4.00) 238.33 (8.50) 109.47 (4.00) 165.57 (6.00) 150.37 (5.50) 119.43 (5.00) 153.60 (5.50)

NWSum-CD 96.73 (4.00) 93.27 (3.50) 136.77 (4.00) 77.50 (3.00) 164.37 (5.50) 172.97 (6.00) 201.87 (7.50)
NWSum-Ideal 106.03 (4.00) 165.00 (5.50) 111.10 (4.00) 280.47 (9.00) 216.00 (7.50) 215.13 (7.00) 173.63 (7.00)
NWSum-MGA 107.70 (4.00) 145.70 (5.00) 105.63 (4.00) 238.13 (8.50) 92.40 (4.00) 155.40 (6.00) 236.03 (8.00)

Sigma-CD 208.47 (8.50) 54.97 (2.50) 226.60 (8.50) 110.73 (4.50) 132.60 (5.00) 204.40 (7.00) 210.10 (7.50)
Sigma-Ideal 243.20 (8.50) 215.63 (7.50) 219.00 (8.50) 114.03 (4.50) 151.27 (5.50) 147.83 (6.00) 77.80 (2.50)
Sigma-MGA 228.30 (8.50) 244.30 (8.50) 214.40 (8.50) 120.00 (4.50) 201.03 (7.00) 155.67 (6.00) 85.03 (3.00)

15 H-MOPSO 22.60 (2.00) 79.43 (2.50) 19.07 (1.00) 166.33 (5.50) 29.83 (1.50) 25.00 (1.00) 18.73 (1.50)
SMPSO 259.80 (8.50) 24.23 (2.50) 281.30 (9.00) 15.50 (1.50) 109.77 (4.50) 116.73 (5.00) 220.77 (7.00)
CD-Ideal 128.13 (4.00) 260.90 (8.50) 103.50 (4.00) 207.43 (7.50) 266.53 (9.00) 159.40 (5.50) 62.63 (2.00)
CD-MGA 114.33 (4.00) 243.83 (8.50) 97.40 (4.00) 182.43 (7.00) 178.90 (6.50) 103.43 (5.00) 151.60 (6.50)

NWSum-CD 112.10 (4.00) 95.40 (3.50) 134.70 (4.50) 97.27 (4.00) 164.40 (5.50) 206.60 (7.00) 172.47 (7.00)
NWSum-Ideal 92.93 (3.50) 160.13 (5.50) 101.80 (4.00) 280.97 (9.50) 225.57 (8.00) 263.40 (9.50) 96.90 (3.00)
NWSum-MGA 93.77 (3.50) 161.33 (6.00) 111.33 (4.00) 248.73 (8.50) 97.00 (3.50) 151.63 (5.50) 185.27 (7.00)

Sigma-CD 208.27 (8.50) 48.73 (2.50) 207.33 (7.50) 76.30 (3.00) 104.90 (4.00) 160.50 (5.50) 204.27 (7.00)
Sigma-Ideal 235.87 (8.50) 196.93 (7.50) 223.00 (8.50) 121.23 (4.50) 196.23 (7.50) 171.37 (5.50) 176.13 (7.00)
Sigma-MGA 237.20 (8.50) 234.07 (8.00) 225.57 (8.50) 108.80 (4.00) 131.87 (5.00) 146.93 (5.50) 216.23 (7.00)

20 H-MOPSO 16.53 (1.00) 81.37 (2.50) 21.30 (1.00) 163.30 (5.50) 20.70 (1.00) 22.27 (1.50) 15.53 (2.00)
SMPSO 272.03 (8.50) 18.87 (2.00) 268.13 (8.50) 15.50 (1.50) 94.90 (4.00) 123.93 (5.50) 194.27 (7.00)
CD-Ideal 107.40 (4.00) 256.20 (8.50) 113.70 (4.00) 196.43 (7.50) 242.50 (8.50) 184.40 (6.00) 46.23 (2.00)
CD-MGA 106.33 (4.00) 238.07 (8.50) 94.40 (4.00) 189.03 (7.00) 183.13 (7.00) 91.23 (3.50) 175.67 (6.50)

NWSum-CD 123.33 (4.00) 97.03 (4.00) 121.77 (4.00) 118.73 (4.50) 141.83 (5.00) 183.30 (6.00) 153.20 (6.00)
NWSum-Ideal 91.90 (4.00) 160.13 (5.50) 101.03 (4.00) 278.87 (9.50) 231.60 (8.50) 261.70 (10.00) 75.27 (2.00)
NWSum-MGA 112.97 (4.00) 161.13 (5.50) 121.00 (4.00) 249.33 (8.50) 146.77 (5.00) 146.07 (5.50) 173.17 (6.50)

Sigma-CD 217.73 (8.50) 50.20 (2.50) 220.03 (8.50) 83.83 (3.00) 107.90 (4.00) 163.60 (5.50) 161.00 (6.00)
Sigma-Ideal 231.50 (8.50) 201.80 (7.50) 218.20 (8.50) 99.50 (4.00) 148.40 (5.00) 178.33 (6.00) 245.30 (8.00)
Sigma-MGA 225.27 (8.50) 240.20 (8.50) 225.43 (8.50) 110.47 (4.00) 187.27 (7.00) 150.17 (5.50) 265.37 (9.00)

Table 2. Friedman overall ranks for the R2 indicator

H-MOPSO SMPSO CD-Ideal CD-MGA NWSum-CD NWSum-Ideal NWSum-MGA Sigma-CD Sigma-Ideal Sigma-MGA
61.0 (1.0) 171.0 (4.5) 302.0 (7.5) 226.0 (5.0) 198.0 (4.5) 255.0 (6.0) 227.0 (5.0) 211.0 (4.5) 324.0 (8.5) 335.0 (8.5)

Regarding the performance of H-MOPSO per problem, in DTLZ1 it had
alone the better rankings in all numbers of objectives, except for two, where it
statistically tied with SMPSO. In DTLZ2, it was among the better performances
in all cases, except for ten and twenty objectives. In DTLZ3, H-MOPSO had the
better rankings alone in all cases.

DTLZ4 was the problem where H-MOPSO had the worst performance, being
among the better algorithms only for three and five objectives. In DTLZ5, it
shared the better rank with SMPSO for two and three objectives, and outper-
formed all the other algorithms for five objectives onwards.
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In DTLZ6, H-MOPSO also shared the better ranking with SMPSO for two
objectives, but outperformed all the other algorithms in the remaining cases. In
DTLZ7, H-MOPSO shared the better results with SMPSO for two objectives,
for twenty objectives, it statistically tied with CD-Ideal and NWSum-Ideal, out-
performing the other algorithms in the remaining instances.

In general H-MOPSO stood among the better algorithms in all the problems,
except for some instances of DTLZ2 and DTLZ4. DTLZ2 is an easy problem that
does not impose challenges to convergence or diversity, in this case the algorithms
converge easily to the front, and increase the R2 value by improving the diversity.
In this problem H-MOPSO was outperformed only by SMPSO and Sigma-CD
that are two algorithms characterized by generating fronts with high diversity.

DTLZ4 is a hard problem by presenting diversity challenge. In this problem
H-MOPSO had its worst performance, while SMPSO performed very well due
to its high diversity characteristic.

Despite of the good results of SMPSO in few objectives and problems that
demand higher diversity, it performs very badly in many-objective problems that
present convergence challenge like DTLZ1 and DTLZ3. The generality obtained
by H-MOPSO due to its hyper-heuristic is an advantage in such cases.

Due to the high amount of data presented in Table 1, it is hard to take
overall conclusions from the performance of the algorithms over all the instances,
hence we present Table 2 where is shown the Friedman ranks obtained for the
overall analysis of the algorithms. In this test, the average of the 30 independent
runs of each subproblem (problem/objective number) is considered. The test is
performed with the 42 subproblems for each algorithm. The critical difference
in this table is 90.78.

In the results summarized on this table, H-MOPSO achieves the lower Fried-
man rank and the lower final rank, which indicates that even not presenting the
better individual result in all cases, it is a robust algorithm capable of obtaining
good results in most of the cases.

Those results indicate that in general the proposed hyper-heuristic is able
to properly select low-level heuristics to lead the search to regions that enhance
its indicator values. The problems where H-MOPSO did not achieved the better
performances in all cases (DTLZ2 and DTLZ4), are problems where the diversity
characteristic is preferred over a balance of convergence and diversity, hence
SMPSO in general obtained good results.

4.3 H-MOPSO vs. MOEA/D-DRA

In this section, we compare our proposed algorithm with MOEA/D-DRA [19],
a state-of-the-art algorithm winner of the CEC 2009 MOEA contest. Since we
are comparing the performance of the algorithms, and not their compliance with
the R2 metric, the popular indicators IGDp and Hypervolume are used.

Tables 3 and 4 present the IGDp and Hypervolume results achieved for both
algorithms respectively. Those results are shown in the form of the average ranks
used by the Kruskal-Wallis test, and the critical difference in both tables is 8.83.
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Table 3. Kruskal-Wallis ranks for the IGDp indicator

Obj. Algorithms DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
2 H-MOPSO 16.90 (1.00) 15.50 (1.00) 15.50 (1.00) 17.70 (1.00) 15.50 (1.00) 16.50 (1.00) 15.50 (1.00)

MOEA/D-DRA 44.10 (2.00) 45.50 (2.00) 45.50 (2.00) 43.30 (2.00) 45.50 (2.00) 44.50 (2.00) 45.50 (2.00)
3 H-MOPSO 16.57 (1.00) 15.50 (1.00) 15.80 (1.00) 22.07 (1.00) 15.50 (1.00) 17.43 (1.00) 15.50 (1.00)

MOEA/D-DRA 44.43 (2.00) 45.50 (2.00) 45.20 (2.00) 38.93 (2.00) 45.50 (2.00) 43.57 (2.00) 45.50 (2.00)
5 H-MOPSO 19.93 (1.00) 15.83 (1.00) 15.63 (1.00) 19.90 (1.00) 45.50 (2.00) 43.63 (2.00) 16.20 (1.00)

MOEA/D-DRA 41.07 (2.00) 45.17 (2.00) 45.37 (2.00) 41.10 (2.00) 15.50 (1.00) 17.37 (1.00) 44.80 (2.00)
8 H-MOPSO 19.73 (1.00) 35.30 (2.00) 16.57 (1.00) 16.50 (1.00) 45.50 (2.00) 40.97 (2.00) 16.57 (1.00)

MOEA/D-DRA 41.27 (2.00) 25.70 (1.00) 44.43 (2.00) 44.50 (2.00) 15.50 (1.00) 20.03 (1.00) 44.43 (2.00)
9 H-MOPSO 17.37 (1.00) 36.37 (2.00) 15.50 (1.00) 16.23 (1.00) 45.50 (2.00) 40.67 (2.00) 44.57 (2.00)

MOEA/D-DRA 43.63 (2.00) 24.63 (1.00) 45.50 (2.00) 44.77 (2.00) 15.50 (1.00) 20.33 (1.00) 16.43 (1.00)

Table 4. Kruskal-Wallis ranks for the Hypervolume indicator

Obj. Algorithms DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
2 H-MOPSO 15.80 (1.00) 15.53 (1.00) 15.50 (1.00) 16.73 (1.00) 15.50 (1.00) 16.50 (1.00) 15.50 (1.00)

MOEA/D-DRA 45.20 (2.00) 45.47 (2.00) 45.50 (2.00) 44.27 (2.00) 45.50 (2.00) 44.50 (2.00) 45.50 (2.00)
3 H-MOPSO 15.92 (1.00) 16.03 (1.00) 15.87 (1.00) 17.10 (1.00) 15.50 (1.00) 17.33 (1.00) 15.50 (1.00)

MOEA/D-DRA 45.08 (2.00) 44.97 (2.00) 45.13 (2.00) 43.90 (2.00) 45.50 (2.00) 43.67 (2.00) 45.50 (2.00)
5 H-MOPSO 18.10 (1.00) 15.63 (1.00) 15.60 (1.00) 15.63 (1.00) 15.50 (1.00) 18.00 (1.00) 15.50 (1.00)

MOEA/D-DRA 42.90 (2.00) 45.37 (2.00) 45.40 (2.00) 45.37 (2.00) 45.50 (2.00) 43.00 (2.00) 45.50 (2.00)
8 H-MOPSO 16.67 (1.00) 43.90 (2.00) 15.53 (1.00) 34.67 (1.50) 15.50 (1.00) 27.20 (1.50) 15.50 (1.00)

MOEA/D-DRA 44.33 (2.00) 17.10 (1.00) 45.47 (2.00) 26.33 (1.50) 45.50 (2.00) 33.80 (1.50) 45.50 (2.00)
9 H-MOPSO 15.60 (1.00) 44.73 (2.00) 15.50 (1.00) 38.03 (2.00) 15.50 (1.00) 17.57 (1.00) 15.50 (1.00)

MOEA/D-DRA 45.40 (2.00) 16.27 (1.00) 45.50 (2.00) 22.97 (1.00) 45.50 (2.00) 43.43 (2.00) 45.50 (2.00)

From the results presented, H-MOPSO presents outstanding performance
for two and three objectives, where it outperforms MOEA/D-DRA in all cases
according to both metrics.

Considering the IGDp for five objectives onwards, H-MOPSO outperformed
MOEA/D-DRA in most of the cases, losing only on the problems DTLZ5 and
DTLZ6, for eight and nine objectives on DTLZ2 and for nine objectives on
DTLZ7.

According to the hypervolume, H-MOPSO had better results in all cases,
except for eight and nine objectives on problem DTLZ2 and for nine objectives
on problem DTLZ4. For eight objectives on problems DTLZ4 and DTLZ6 the
results of both algorithms statistically tied.

Summarizing these results, despite of the very good performance of H-MOPSO
for low number of objectives, its search ability is deteriorated by the increase
of the number of objectives. MOEA/D-DRA on the other hand uses decompo-
sition instead of Pareto dominance, hence has an advantage on many-objective
scenarios.

Here we can see that IGDp and Hypervolume present controversial results for
problems DTLZ5 and DTLZ6 for five objectives onwards. This can be explained
by the fact that indicators not aware of the shape of the true Pareto front like
Hypervolume and R2 may present misleading results in problems with special
fronts under some circumstances. Due to this fact, we assume that H-MOPSO
was outperformed by MOEA/D-DRA on these problems.

These results can confirm the robustness of H-MOPSO, being able to out-
perform a state-of-the-art algorithm in most of the cases tested.
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4.4 Analysis of the Probabilities

In this section, we analyze the behavior of the proposed hyper-heuristic through
the probabilities of choosing each of its low-level heuristic along the search. Here
we only show two representative cases due to lack of space.

Figures 1 and 2 present this behavior, where each line in the figures, rep-
resents the average probability of choosing one low-level heuristic in a given
iteration. The probabilities in each iteration are averaged over the 30 runs, to
show a pattern.

In these figures the number of iterations is different, because it is only shown
the iterations in which the probabilities were updated, being ignored the first
iterations where the SMPSO algorithm was used until the repository is full.

In a usual case, represented by Figure 1, after some iterations, a few low-level
heuristics presenting better performances have its probabilities increased, while
the others have its probabilities decreased, with a gap between the groups.

Another common case is represented by Figure 2, where the differences among
the probabilities are smaller, hence there is no gap and some low-level heuristics
are a little higher, while others are a little lower. In this case it is common
to some low-level heuristics that presented bad performances, begin to perform
better and overcome the previous best combinations.

To indicate the compliance of the selection of the low-level heuristics with
the probabilities, we observed the number of times (in the 30 executions) that
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the low-level heuristic with the higher average probability was chosen. Those
observations were done in three points, at about 1/3, 2/3 and at the end of the
search, in the problems presented in Figures 1 and 2.

In the problem DTLZ1 for eight objectives, at iteration 27, the combination
NWSum-CD was chosen 6 times (20%). At iteration 55, the combination CD-CD
was chosen 5 times (16.67%), and at the final iteration, the same combination
was chosen 6 times (20%).

In the problem DTLZ5 for eight objectives, at iteration 32, the combina-
tion CD-MGA was chosen 4 times (13.33%). At iteration 64, the combination
NWSum-MGA was chosen 2 times (6.67%), and at the final iteration, the same
combination was chosen 3 times (10%).

These observed cases indicate that the selection mechanism in general selects
the low-level heuristics in an equivalent rate to its probabilities in the roulette,
the main divergences occurred in problem DTLZ5, due to the erratic probabilities
achieved along its search.

When presenting the data from this section, we can comment about special
features of our hyper-heuristic. One of them is the number of iterations needed
for the roulette to present great difference between the probabilities. In the
beginning of the search, even a sub-optimal low-level heuristic can enhance the
R2 results, because is natural for the search to find better solutions at first,
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however it can take several iterations to the roulette increase the probabilities
of the good heuristics.

Other problem noted is related to the roulette mechanism. When using a high
number of low-level heuristics, if they present great differences in performance,
as in Figure 1, better heuristics are selected more frequently and the chances of
getting better results are higher. However when the differences in the probabil-
ities are smaller, as in Figure 2, sub-optimal heuristics are selected frequently,
hence sub-optimal results are expected with the hyper-heuristic.

Another problem observed is regarding the R2 indicator that in some prob-
lems with special Pareto shapes, can lead to misleading results. Examples of
these results can be noted in the previous section, where IGDp and hypervol-
ume presented controversial results. The focus of future works will be addressing
such problems.

5 Conclusion

This work presented H-MOPSO, a new MOPSO algorithm based on hyper-
heuristic to select good leader and archiving methods. H-MOPSO uses a hyper
heuristic guided by the R2 performance indicator, which is a fast indicator that
evaluates desired aspects of a Pareto front approximation. There are few works
on the literature that apply hyper-heuristics on multi-objectives optimizers, and
this work, as far as we known, is the first using a hyper-heuristic to select leader
and archiving methods in a MOPSO.

An experimental study was conducted to compare the performance of
H-MOPSO algorithm to the low-level heuristics used within it. This experi-
mental study used the well-known DTLZ family of benchmark problems with
2, 3, 5, 10, 15 and 20 objectives. To this end, the solutions obtained from the
different algorithms were compared using the R2 indicator. The results from this
first study indicate that the proposed hyper-heuristic is robust, presenting good
performance in most of the cases.

These good results lead to a second experimental study, where we compare H-
MOPSO with a state-of-the-art algorithm from the literature called MOEA/D-
DRA. This second study also used the well-known DTLZ family of benchmark
problems for 2, 3, 5, 8 and 9 objectives, and the outputs of the algorithms were
evaluated using the IGDp and the Hypervolume indicators. These results indi-
cate that H-MOPSO is a robust and competitive meta-heuristic, outperforming
MOEA/D-DRA in most of the cases.

The results obtained in these two experimental studies were used to vali-
date two hypotheses: h1 stated that selecting good combinations between leader
and archiving methods is able to improve the results of a MOPSO. The results
presented indicate that h1 is confirmed, due to the number of cases in which
H-MOPSO outperformed the low-level heuristics.

The other hypothesis investigated is h2 that states that R2 is an appropriate
indicator to guide a hyper-heuristic. From the results presented, this hypothesis
can be partially confirmed. In most of the cases, with regular Pareto shapes,
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R2 was able to efficiently measure the quality of the solutions, however in prob-
lems with special Pareto shapes, R2 might present misleading results, leading
the hyper-heuristic to select sub-optimal low-level heuristics.

Despite the good results obtained by H-MOPSO in the experimental studies
conducted, its hyper-heuristic still presents some problems to be treated, like
the large number of iterations needed for the hyper-heuristic to effectively work,
the high usage of sub-optimal low-level heuristics in some circumstances, and
the misleading results obtained by R2 in some special conditions.

To address those problems, future works will focus on more effective hyper-
heuristics, as well as using other and/or more quality indicators to better assess
the real situation of the search. Another possible future direction is applying
the hyper-heuristic to control or choose different parameters or operators of the
MOPSO algorithm.

References
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exam timetabling. In: Burke, E., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867,
pp. 394–412. Springer, Heidelberg (2007)

2. Britto, A., Pozo, A.: Using archiving methods to control convergence and diver-
sity for many-objective problems in particle swarm optimization. In: 2012 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8, June 2012

3. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator.
In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2012, pp. 465–472. ACM, New York (2012). http://doi.acm.
org/10.1145/2330163.2330230

4. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

5. Castro, Jr., O.R., Britto, A., Pozo, A.: A comparison of methods for leader selection
in many-objective problems. In: IEEE Congress on Evolutionary Computation,
pp. 1–8, June 2012

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation, CEC 2002, vol. 1, pp. 825–830, May 2002

7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

8. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

9. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to
the non-dominated set. Tech. Rep. IMM-REP-1998-7, Technical University of
Denmark, March 1998

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948,
November/December 1995

http://doi.acm.org/10.1145/2330163.2330230
http://doi.acm.org/10.1145/2330163.2330230


Using Hyper-Heuristic to Select Leader and Archiving Methods 123

11. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association 47(260), 583–621 (1952)

12. Laumanns, M., Zenklusen, R.: Stochastic convergence of random search methods to
fixed size pareto front approximations. European Journal of Operational Research
213(2), 414–421 (2011)

13. von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary
algorithms for many-objective problems. Computational Optimization and Appli-
cations 58(3), 707–756 (2014). http://dx.doi.org/10.1007/s10589-014-9644-1

14. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective
particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, SIS 2003, pp. 26–33, April 2003

15. Nebro, A., Durillo, J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.:
SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In:
Computational Intelligence in Multi-Criteria Decision-Making, pp. 66–73, March
2009

16. Padhye, N., Branke, J., Mostaghim, S.: Empirical comparison of MOPSO methods:
guide selection and diversity preservation. In: Proceedings of the Eleventh Congress
on Evolutionary Computation, CEC 2009, pp. 2516–2523. IEEE Press, Piscataway
(2009)

17. Schutze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged haus-
dorff distance as a performance measure in evolutionary multiobjective optimiza-
tion. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)

18. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes.
IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)

19. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on
CEC 2009 unconstrained MOP test instances. In: IEEE Congress on Evolutionary
Computation, CEC09, pp. 203–208, May 2009

http://dx.doi.org/10.1007/s10589-014-9644-1


Algorithms



Adaptive Reference Vector Generation
for Inverse Model Based Evolutionary

Multiobjective Optimization with Degenerate
and Disconnected Pareto Fronts

Ran Cheng1, Yaochu Jin1,3(B), and Kaname Narukawa2

1 Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK
{r.cheng,yaochu.jin}@surrey.ac.uk

2 Honda Research Institute Europe GmbH, 63073 Offenbach am Main, Germany
3 College of Information Sciences and Technology, Donghua University,

Shanghai 201620, China

Abstract. Inverse model based multiobjective evolutionary algorithm
aims to sample candidate solutions directly in the objective space, which
makes it easier to control the diversity of non-dominated solutions in mul-
tiobjective optimization. To facilitate the process of inverse modeling, the
objective space is partitioned into several subregions by predefining a set
of reference vectors. In the previous work, the reference vectors are uni-
formly distributed in the objective space. Uniformly distributed reference
vectors, however, may not be efficient for problems that have nonuniform
or disconnected Pareto fronts. To address this issue, an adaptive refer-
ence vector generation strategy is proposed in this work. The basic idea
of the proposed strategy is to adaptively adjust the reference vectors
according to the distribution of the candidate solutions in the objec-
tive space. The proposed strategy consists of two phases in the search
procedure. In the first phase, the adaptive strategy promotes the pop-
ulation diversity for better exploration, while in the second phase, the
strategy focused on convergence for better exploitation. To assess the
performance of the proposed strategy, empirical simulations are carried
out on two DTLZ benchmark problems, namely, DTLZ5 and DTLZ7,
which have a degenerate and a disconnected Pareto front, respectively.
Our results show that the proposed adaptive reference vector strategy is
promising in tacking multiobjective optimization problems whose Pareto
front is disconnected.

Keywords: Multiobjective optimization · Model based evolutionary
optimization · Inverse modeling · Reference vectors

1 Introduction

A multiobjective optimization problem (MOP) involves several conflicting objec-
tives to be optimized simultaneously. Without loss of generality, an MOP can
be formulated as follows:
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min f(x) = (f1(x), f2(x), ..., fm(x))
s.t. x ∈ X, f ∈ Y

(1)

where X ⊂ R
n is the decision space and x = (x1, x2, ..., xn) ∈ X is the decision

vector, Y ⊂ R
m is the objective space and f ∈ Y is the objective vector, which

is composed of m objective functions f1(x), f2(x),...,fm(x) that map x from X
to Y . Due to the conflicting nature of the objectives, it is impossible to optimize
all the objectives with one single solution. Consequently, there exists a set of
optimal solutions, termed as Pareto optimal solutions, that trade-off between
different objectives. The Pareto optimal solutions are often called the Pareto set
in the decision space and image formed by the Pareto optimal solutions in the
objective is termed Pareto front.

To obtain the Pareto optimal solutions, various multiobjective evolutionary
algorithms (MOEAs) have been proposed, e.g. the elitist non-dominated sorting
algorithm, known as NSGA-II [5], the decomposition based algorithm, called
MOEA/D [14], among many others [16]. Most traditional MOEAs often require
a high degree of diversity in storing the non-dominated solutions found so far
in the current population or in an external archive. By contrast, model-based
MOEAs [11,12,15] can alleviate the requirement on solution diversity by focus-
ing on the construction of a probabilistic model in the decision space during the
search. Such model based MOEAs, however, still rely on the use of a solution set,
such as an archive, to represent the obtained non-dominated solutions. Another
line of research that aims to alleviate the requirement on diversity is to build
a regression model to represent the solutions obtained in the final generation
by the optimizer [7,9], which can be used to generate new solutions after the
optimization process is complete, thereby enhancing the diversity of the final
solutions. Inspired by the ideas in this line of research, a multiobjective evolu-
tionary algorithm using Gaussian process based inverse modeling (IM-MOEA)
has been proposed [2].

In IM-MOEA, an inverse model that maps candidate solutions in the objec-
tive space onto the decision space is built during the optimization. To facilitate
the inverse modeling, the objective space is partitioned into several subregions
using predefined reference vectors. By associating each candidate solution with a
particular reference vector, a number of inverse models are built for each subre-
gion by using the candidate solutions relating to this subregion as training data.
In the previous work of IM-MOEA, the reference vectors are uniformly gener-
ated by means of the canonical simplex-lattice design method [3]. This method
for generating reference vectors works well for MOPs with a continuous and
uniform Pareto front. However, for some MOPs with a nonuniform or discon-
nected Pareto front, the predefined, uniformly distributed reference vectors may
result in low efficiency, as some reference vectors may not be associated with any
candidate solutions, thus causing a waste of computational resource. To tackle
this problem, here we present an adaptive reference vector generation strategy
for IM-MOEA. The proposed strategy is able to adapt the distribution of the
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reference vectors to the distribution of the candidate solutions in the objective
space.

In the following, we first briefly introduce the recently proposed IM-MOEA in
Section 2. Then the adaptive reference vector generation strategy is described in
Section 3. Section 4 presents experimental results for assessing the performance
of the proposed adaptive strategy. Finally, conclusion is drawn in Section 5.

2 IM-MOEA

Traditional EDAs aim to estimate the distribution of the candidate solutions
in the decision space, while the models in IM-MOEA are built to represent the
inverse mapping from the objective space to the decision space. With the inverse
models thus built, evenly distributed candidate solutions can be directly sampled
in the objective space and then mapped onto the decision space.

Considering that the estimation of the entire inverse mapping from the m-
dimensional objective space to the n-dimensional decision space can be techni-
cally difficult, the multivariate inverse model is decomposed into a number of
univariate regression models:

P (X|Y ) ≈
n∏

i=1

(P (xi|fj) + εj,i), (2)

where j = 1, 2, ...,m, i = 1, 2, ..., n, P (xi|fj) is an univariate model that rep-
resents the inverse mapping from objective fj to decision variable xi, and εj,i
is an error term. For convenience, it is assumed that εj,i ∼ N (0, (σn)2) can
be captured by additive Gaussian noise. Consequently, each univariate model
together with the error term is realized using Gaussian process [13], which has
the advantage of modeling both the global regularity and the local randomness
in the distribution of the non-dominated solutions during the search. It is worth
noting that although the decomposition strategy does not take into account the
variable linkages explicitly, in our algorithm, a random grouping method has been
adopted to implicitly learn the correlations between different decision variables
by relating a number of decision variables with each objective. For example, for
a three-objective MOP, if the group size is 2, three groups of models will be
generated, each containing two univariate models. The reader is referred to [2].

In order to facilitate the inverse modelling, some pre-defined uniformly dis-
tributed reference vectors are used to partition the objective space into a num-
ber of subregions. To generate these reference vectors, the uniformly distributed
points are firstly generated on a unit hyperplane and then mapped to a unit
hypersphere, as shown in Fig. 1. With the pre-defined reference vectors (or sub-
regions), the entire population can be partitioned into a number of subpopula-
tions by associating the candidate solutions with different reference vectors. To
associate each candidate solution with a particular reference vector, the angle (in
the objective space) between each candidate solution and each reference vector
is calculated, and a candidate solution is associated with a reference vector if
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Fig. 1. An example of how to generate a number of 15 uniformly distributed reference
vectors in a 3-objective space

and only if the angle between the candidate solution and the reference vector is
smallest among all reference vectors.

Partitioning a population using reference vectors in the objective space was
first suggested in [10], which has also been adopted in a few other recently
proposed algorithms such as NSGA-III [4,8]. However, the population partition
strategy in NSGA-III is to use reference points distributed on a unit hyperplane
in the objective space to guide the convergence of the population, and as a
consequence, each individual in the population is expected to converge to a
corresponding reference point. By contrast, our method is motivated to partition
the actual objective space by setting a number of reference vectors, and around
each reference vector, a subpopulation is maintained in the subregion defined
by this reference vector. In each subregion, promising candidate solutions are
selected using non-dominated sorting and crowd distance [5]. Inverse models are
then built using the selected candidate solutions as the training data. Therefore,
reproduction is operated in each subregion by sampling the inverse models built
for this region. At the end of each generation, the offspring generated in each
subregion is combined together to create the parent population for the next
generation.

As shown in Fig. 2, the main operations of IM-MOEA, i.e., non-dominated
sorting, selection, inverse modeling and reproduction, are all carried out within
each subpopulation once the entire population is partitioned. Therefore, the
reference vectors, which directly determine how the population is partitioned,
play a central role in IM-MOEA.

3 Adaptive Reference Vector Generation

The adoption of uniformly distributed reference vectors in the original IM-
MOEA is based on the implicit assumption that the Pareto front of the MOP
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Fig. 3. Examples where there exist invalid reference vectors: (a) only 5 out of 15
reference vectors are covered by the Pareto front of 2-objective DTLZ7; (b) only 3 out
of 15 reference vectors are covered by the Pareto front of 3-objective DTLZ5

is uniformly distributed in the whole objective space. This assumption may be
impractical for many real-world MOPs. In this work, without the loss of general-
ity, we use two benchmark functions in the DTLZ test suite [6], namely, DTLZ5
and DTLZ7, as examples to examine the effectiveness of the proposed strategy
for adaptively generating reference vectors.

DTLZ7 is a typical MOP with a disconnected Pareto front consisting of
2m−1 disconnected segments, where m is the objective number. For example,
as shown in Fig. 3(a), the Pareto front of a 2-objective DTLZ7 consists of two
Pareto optimal regions. Moreover, both segments of the Pareto front distribute
in the left part of the objective space, resulting in a large region in the objective
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space that has no Pareto optimal solutions. In this case, for 15 reference vectors
uniformly distributed in the objective space, only 5 out of 15 are associated with
the Pareto optimal solutions, leaving 10 reference vectors unused.

Another typical MOP that suffers from such problems is DTLZ5. This MOP
has a degenerate Pareto front, i.e., the Pareto front is always a curve regardless
of the dimensionality of the objective space. As shown in Fig. 3(b), the Pareto
front of the 3-objective DTLZ5 is a curve in the middle of the objective space.
In this case, again, most of the uniformly distributed reference vectors are not
in use (in this example only 3 out of 15 reference vectors), which will give rise
to considerable waste of computational resources.

In practice, the distribution of the true Pareto front is usually not known
beforehand. Therefore, in order to effectively use all reference vectors and the
associated computational resources, it is essential to detect the distribution of
the candidate solutions during the search and then adapt the distribution of the
reference vectors accordingly. As mentioned before, since one candidate solution
is associated with a reference vector if and only if their positions in terms of the
angle between them in the objective space are closest, the density of the solutions
in a subregion can be easily estimated by counting the number of candidate
solutions associated with each reference vector. In this way, we are able to rank
the reference vectors according to the numbers of candidate solutions associated
with them. If one reference vector is associated with a small number of candidate
solutions, it indicates that the density of candidate solutions in the subregion
specified by this reference vector is small. In the extreme case, as shown in Fig. 3,
no candidate solutions will be associated with a reference vector, which is termed
an invalid vector in this work.

Based on the ranking of the reference vectors, we can also remove some
undesirable reference vectors. Intuitively, the reference vectors associated with
few candidate solutions should be removed. However, our empirical observations
show that removing these reference vectors too early may cause a severe loss
of population diversity, as in the early stage of search, exploration of the whole
search landscape can be more important than exploitation, whereas in the late
stage of the search, exploitation is more desirable. In order to adapt the reference
vectors to the different preferences at different search stages, we divide the search
into two phases: exploration phase and exploitation phase. In the exploration
phase, since the reference vectors are expected to be widespread, the reference
vectors associated with too many candidate solutions are preferentially removed.
By contrast, in the exploitation phase, reference vectors associated few candidate
solutions are removed since a high density of reference vectors in the subregions
to be exploited can accelerate convergence.

To maintain a relatively stable distribution of the reference vectors, only one
reference vector, i.e., the one is ranked first or last, will be removed in each
generation. Meanwhile, a new reference vector is randomly generated to replace
the removed one. In this way, in each generation, the extreme reference vector will
be replaced with a new, randomly generated reference vector. The procedure of
the adaptive reference vector generation strategy is summarized in Algorithm 1.
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Algorithm 1. The pseudo code of the adaptive reference vector generation
strategy.
Require:current generation t, max generation max t, the current reference vectors
V (t), current population P (t)
Ensure:the adapted reference vectors V (t + 1)

1: randomly generate a new reference vector vn;
2: calculate the numbers of candidate solutions in P (t) that associated with each

reference vector in V (t);
3: if t < θ ∗ max t then
4: /*exploration phase*/
5: remove the reference vector in V (t) which is associated with the maximal number

of candidate solutions and replace it with vn;
6: else
7: /*exploitation phase*/
8: remove the reference vector in V (t) which is associated with the minimal number

of candidate solutions and replace it with vn;
9: end if

10: V (t + 1) = V (t);

It can be seen that a control parameter θ is introduced to determine at which
generation the exploration stage is switched to exploitation. In Section 4, some
preliminary empirical studies have been carried out to investigate the influence
of parameter θ on the search performance.

4 Simulation Results

To assess the performance of the proposed adaptive reference vector generation
strategy, IM-MOEA with the adaptive strategy, denoted as A-IM-MOEA here-
after, is compared with the original IM-MOEA on four three-objective DTLZ
benchmark MOPs, including DTLZ1, DTLZ2, DTLZ5 and DTLZ7. The first two
MOPs (DTLZ1, DTLZ2) have a uniformly distributed Pareto front, while the
other two MOPs (DTLZ5, DTLZ7) have a degenerate and a disconnected Pareto
front, respectively, refer to Fig. 3. The specific settings of these four MOPs follow
the recommendations in [6].

In IM-MOEA and the proposed adaptive A-IM-MOEA, there are three param-
eters to be specified: the population size, the number of reference vectors, denoted
as Kr hereafter, the group size (for random grouping). The population size is set
to 150 in all the experiments. To investigate the sensitivity of the proposed adap-
tive strategy to Kr, different settings (Kr = 10, Kr = 15 and Kr = 28) have been
used in the comparisons with IM-MOEA. In addition, it is worth noting that the
setting of the group size is dependent on the number of decision variables. Since
the numbers of decision variables of three-objective DTLZ1, DTLZ2, DTLZ5 and
DTLZ7 (7, 11, 11 and 21, respectively) are small, the group size is simply set to 1.
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The inverted generational distance (IGD) [1] is used as the performance indi-
cator in the performance comparisons:

IGD(P ∗, P ) =
∑

v∈P∗ d(v, P )
|P ∗| , (3)

where P ∗ is a set of uniformly distributed solutions along the true Pareto front,
and P is an approximation, d(v, P ) is the minimum Euclidean distance from the
point v to P . The IGD metric is able to measure both diversity and convergence
of P if |P ∗| is large enough, and a smaller IGD value indicates a better perfor-
mance. In this work, a number of 500 uniformly distributed points are selected
for each benchmark MOP to be P ∗.

Table 1. Statistical results of IGD values obtained by A-IM-MOEA and IM-MOEA
(mean values in the first line and standard deviations in the second line). If one result
is statistically significantly better than the other one, it is highlighted.

Kr Algorithm DTLZ1 DTLZ2 DTLZ5 DTLZ7

10
A-IM-MOEA

5.91E-02 6.21E-02 6.05E-03 6.98E-02
1.37E-02 3.83E-03 6.24E-04 1.01E-02

IM-MOEA
4.97E-02 5.67E-02 1.77E-02 2.07E-01
9.60E-03 1.54E-03 1.94E-03 2.30E-02

15
A-IM-MOEA

3.83E-02 5.44E-02 4.77E-03 6.00E-02
6.19E-03 1.84E-03 6.23E-04 7.07E-03

IM-MOEA
5.04E-02 5.06E-02 1.50E-02 1.18E-01
1.71E-02 7.54E-04 1.56E-03 8.75E-03

28
A-IM-MOEA

4.55E-02 5.18E-02 4.04E-03 5.46E-02
1.12E-02 2.40E-03 5.53E-04 3.79E-03

IM-MOEA
4.76E-02 4.88E-02 1.06E-02 8.96E-02
1.07E-02 5.63E-04 1.12E-03 5.03E-03

+ / ≈ / − 2 / 1 / 0 0 / 2 / 1 3 / 0 / 0 3 / 0 / 0

The statistical results presented in this section are obtained from 20 inde-
pendent runs. In each independent run, a maximum of 50000 fitness evaluations
is used as a termination criterion for DTLZ2, DTLZ5 and DTLZ7. For DTLZ1,
150000 fitness evaluations are used. To compare the results obtained by A-IM-
MOEA and IM-MOEA, the Wilcoxon rank sum test is adopted at a significance
level of 0.05. As a result of the Wilcoxon rank sum test, “+” means that the
IGD values obtained by A-IM-MOEA are statistically significantly smaller than
those obtained by IM-MOEA; “−” means that the IGD values obtained by A-IM-
MOEA are statistically significantly larger than those obtained by IM-MOEA;
and “≈” means that there is no statistically significant difference between the
IGD values obtained by A-IM-MOEA and IM-MOEA.

Before comparing the performance of A-IM-MOEA and IM-MOEA, some
investigations regarding the setting of θ will be conducted. theta determines the
generation at which the exploration search stage is to be switched to exploitation,
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Fig. 4. The statistical results of the IGD values obtained by A-IM-MOEA with 15
reference vectors and different settings of θ. In this figure, error bars are used to present
the mean and standard deviation.

refer to Algorithm 1. As shown in Fig. 4, different settings of θ may have different
impacts on different benchmark problems. For DTLZ5 and DTLZ7, which have a
degenerate and a disconnected PF, respectively, it seems that the performance of
A-IM-MOEA is relatively insensitive to the settings of θ, as long as it is not larger
than 0.7. This might be due to the fact that DTLZ5 and DTLZ7 are uni-modal,
exploration has no significant effect on the search performance. Exploitation,
which mainly contributes to convergence, can be important as the Pareto fronts
of these two MOPs are not uniformly distributed in the objective space. By
contrast, since the fitness landscape of DTLZ1 contains a large number of local
optima, sufficient exploration becomes more important. It can be seen in Fig. 4
(a) that when θ is between 0.1 and 0.3, the standard deviation of IGD is smaller
compared to that in other settings, which implies a more stable performance of
A-IM-MOEA. Among the four benchmark MOPs, DTLZ2 is uni-modal and has
a uniformly distribute Pareto front. Therefore, the performance of A-IM-MOEA
is not very sensitive to the settings of θ either.



136 R. Cheng et al.

0

0.2

0.4

0.6

0
0.2

0.4
0.6

0

0.2

0.4

0.6

0.8

1

 

f
1

f
2

 

f 3

True PF
Approximation

(a) A-IM-MOEA

0

0.2

0.4

0.6

0
0.2

0.4
0.6

0

0.2

0.4

0.6

0.8

1

 

f
1

f
2

 

f 3

True PF
Approximation

(b) IM-MOEA

Fig. 5. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ5 in the final population of the best singe run.
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Fig. 6. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ5 in the final population of the best singe run. To ease the observations,
the points are mapping into a 2-D (f1 and f2) plane from the 3-D objective space.
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Fig. 7. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ7 in the final population of the best single run.
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Based on the empirical investigations on the setting of θ, we use θ = 0.2 for all
experiments for comparing A-IM-MOEA and IM-MOEA. The statistical results
obtained by A-IM-MOEA and IM-MOEA are summarized in Table 1. It can
be seen that A-IM-MOEA significantly outperforms IM-MOEA on DTLZ5 and
DTLZ7, regardless of the number of reference vectors. As evident from Fig. 5,
the solutions obtained by A-IM-MOEA show significantly better convergence. It
is because the reference vectors in A-IM-MOEA have been successfully adapted,
thus increasing the sampling density around the true Pareto front rather than the
entire objective space. To verify this statement, the reference vectors are plotted
together with the true Pareto front. To better visualize the adapted distribution
of the reference vectors, the points are mapping into a 2-D (f1 and f2) plane,
as shown in Fig. 6. It can be seen that the reference vectors in A-IM-MOEA
are mostly distribute around the true Pareto front, whilst the reference vectors
in IM-MOEA, without any adaption, still uniformly distributed in the entire
objective space.
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Fig. 8. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ7 in the final population of the best singe run. The points are mapping
into a 2-D (f1 and f2) plane from the 3-D objective space for better visualization.

Similar observations can be made from the results on DTLZ7 as well. As
evident from Fig. 7, the solutions obtained by A-IM-MOEA show a promising
distribution, while most of the solutions obtained by IM-MOEA distribute on
the edges of the true Pareto front consisting of four disconnected piecewise seg-
ments. In addition to disconnection, the Pareto front of DTLZ7 shows significant
bias on the m-th objective, thus resulting the distribution of the Pareto front
centralized close to the third axis (f3) in a 3-D objective space. These properties
raise considerable difficulties for IM-MOEA which adopts a uniformly distributed
reference vectors. By contrast, the adaptive reference vector generation strategy
adopted in A-IM-MOEA has significantly better efficiency, as indicated in Fig. 8.

From the statistical results in Table 1, another interesting observation is
the comparable performance of A-IM-MOEA and IM-MOEA on the other two
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Fig. 9. The convergence profiles of the IGD values in the best single run with 15
reference vectors of A-IM-MOEA and IM-MOEA respectively.

MOPs, DTLZ1 and DTLZ2, which have a uniformly distributed Pareto front.
On DTLZ1, the performance of A-IM-MOEA is slightly better while on DLTZ2,
IM-MOEA shows slightly better performance. We surmise that A-IM-MOEA
is outperformed by IM-MOEA on DTLZ2 because the search process is more
or less disturbed by the adaptively changing reference vectors. By contrast, the
predefined uniformly distributed reference vectors adopted in IM-MOEA can
lead to a more stable search. For MOPs with a uniformly distributed Pareto
front, where a predefined set of reference vectors is more desirable, IM-MOEA
can outperform A-IM-MOEA. Nevertheless, for DTLZ1, which has a uniformly
distributed Pareto front as well, this observation does not hold. This might be
attributed to the fact that DTLZ1 is a multi-modal MOP, which may require a
higher degree of population diversity for a better exploration. In this case, A-
IM-MOEA can be more promising as the adaptively changing reference vectors
can generate higher population diversity than the predefined reference vectors.
As shown in Fig. 9, the adaptively changing reference vectors have enhanced the
convergence speed of A-IM-MOEA in the exploration stage on DTLZ1. However,
on DTLZ2, which is a uni-modal MOP, the convergence profiles of A-IM-MOEA
and IM-MOEA show little difference.

5 Conclusion

An adaptive reference vector generation strategy is proposed in this paper, which
has shown to be promising on two MOPs having a discrete or non-uniform Pareto
front. In addition, the MOEA using the proposed strategy performs comparably
with the one using uniformly distributed reference vectors on MOPs having a
uniform Pareto front distributed in the whole objective space. In addition, an
interesting observation is that the adaptive reference vectors are able to generate
better population diversity to enhance the performance of IM-MOEA on multi-
modal MOPs like DTLZ1.
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In the future, the performance of the proposed adaptive strategy for generat-
ing reference vectors will be further assessed on additional MOPs. For example,
it can be interesting to see how it performs on constrained MOPs, where the
Pareto front is irregular as well. The mechanism for switching between explo-
ration and exploitation also needs further examination.
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1 Algoritmi R&D Center, University of Minho, Braga, Portugal
roman.denysiuk@algoritmi.uminho.pt

2 Department of Production and Systems Engineering, University of Minho,
Braga, Portugal

{lac,iapinho}@dps.uminho.pt
3 Institute for Sustainability and Innovation in Structural Engineering,

University of Minho, Braga, Portugal
jmatos@civil.uminho.pt

Abstract. The need to perform the search in the objective space con-
stitutes one of the fundamental differences between multiobjective and
single-objective optimization. The performance of any multiobjective
evolutionary algorithm (MOEA) is strongly related to the efficacy of
its selection mechanism. The population convergence and diversity are
two different but equally important goals that must be ensured by the
selection mechanism. Despite the equal importance of the two goals, the
convergence is often used as the first sorting criterion, whereas the diver-
sity is considered as the second one. In some cases, this can lead to a
poor performance, as a severe loss of diversity occurs.

This paper suggests a selection mechanism to guide the search in the
objective space focusing on maintaining the population diversity. For
this purpose, the objective space is divided into a set of grids using polar
coordinates. A proper distribution of the population is ensured by main-
taining individuals in corresponding grids. Eventual similarities between
individuals belonging to neighboring grids are explored. The convergence
is ensured by minimizing the distances from individuals in the population
to a reference point. The experimental results show that the proposed
approach can solve a set of problems producing competitive performance
when compared with state-of-the-art algorithms. The ability of the pro-
posed selection to maintain diversity during the evolution appears to
be indispensable for dealing with some problems, allowing to produce
significantly better results than other considered approaches relying on
different selection strategies.

1 Introduction

Evolutionary algorithms have gained popularity as a powerful tool for solving
multiobjective optimization problems (MOPs) [1], [2]. They draw inspiration
from the process of natural evolution to iteratively evolve to a better set of
potential solutions. An important driving force behind evolution is natural selec-
tion. It is the one process that is responsible for the evolution of adaptations
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 141–155, 2015.
DOI: 10.1007/978-3-319-15934-8 10
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of species to their environment. Natural selection leads to evolutionary change
when individuals best suited for their environment are more likely to survive
and reproduce, transferring useful genetic characteristics from parents to their
offspring.

A common approach to simulate natural selection in MOEAs consists in assign-
ing fitness values to individuals and sampling the population according to these
values. The fitness values reflect the individuals quality in the problem environ-
ment and are the basis for selection. Nowadays, one can distinguish three major
trends to the fitness assignment, which are dominance-, scalarizing- and indicator-
based strategies. Dominance-based approaches [3], [4] calculate an individual’s
fitness on the basis of the Pareto dominance relation. Until recently, it has been
probably the most commonly used approach that is usually combined with some
diversity maintenance techniques. Scalarizing-based approaches [5], [6], [7] use tra-
ditional mathematical techniques based on the aggregation of multiple objectives
into a single parameterized objective to assign scalar fitness values to population
members. In turn, indicator-based approaches [8], [9], [10], which are a relatively
recent trend, employ performance indicators for fitness assignment.

Regardless of the working principles, the selection mechanism must ensure
the convergence to the Pareto set and the diversity of obtained solutions. The
convergence and diversity are equally important goals that are somewhat con-
flicting in nature. Despite their equal importance, during selection many existing
MOEAs explicitly or implicitly put more emphasis on the convergence. This is
often the case in dominance-based approaches, which use the Pareto dominance
relation first and the diversity as the second criterion [4], [11], [12]. Although
scalarizing- and indicator-based approaches assign a scalar fitness value that
reflects an aggregated quality with respect to the convergence and diversity, the
necessary diversity may not be ensured in some cases. As a result of priori-
tizing the convergence, a severe loss of diversity can occur resulting in a poor
performance on some problems.

In this work, we use the idea of grid division of the objective space using polar
coordinates [13] to develop a new framework for solving MOPs. The main feature
of the proposed approach is the selection mechanism, which does not rely on any
of the aforementioned fitness assignment strategies. Its strengths are related to
the particular ability of promoting the population diversity. This is achieved
by dividing the objective space into a set of grids using polar coordinates and
maintaining an individual in each grid, regardless of how good solutions with
respect to the convergence appear in the population. For each grid, MOEA/PC
seeks a solution minimizing the euclidean distance to a reference point.

The remainder of this paper is organized as follows. Section 2 describes the
proposed multiobjective evolutionary algorithm. Section 3 provides the study
of different parameter settings for the algorithm and discusses the results of
comparison study with state-of-the-art approaches. Section 4 concludes the work
and outlines some possible future work.
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2 Algorithm Design

This section presents a multiobjective evolutionary algorithm based on polar
coordinates (MOEA/PC). First, some general concepts are introduced. Then,
the framework of the proposed algorithm is described.

2.1 Preliminaries

This paper considers an optimization problem of the form:

minimize:
x∈Ω

f(x) = (f1(x), f2(x), . . . , fm(x))T, (1)

where m is the number of objectives, n is the number of variables, Ω = {x ∈
R

n : lbi ≤ xi ≤ ubi, i = 1, . . . , n} is the feasible decision space, lbi and ubi are
the lower and upper bounds of the i-th variable.

In our work, we divide the objective space into a set of grids, G = {g1, . . . ,
gngrids}. The idea of grid devisions for two and tree-dimensional cases is shown
in Figure 1. The number of grids, ngrids, corresponds to the number of solutions
maintained in the population, where one population member is assigned to a
single grid. Within the limits of the given grid, an assigned individual attempts to
minimize the distance to a reference point. A reference point, z = (z1, . . . , zm)T,
is given by the lowest values found during the search for each objective. Each
grid is defined by the vector g = (g1, . . . , gm−1), with components corresponding
to angles in the first quadrant (0 ≤ gi < π/2, i = 1, . . . , m − 1).

For the 2-dimensional case, to obtain 10 grids, we divide the right angle into
10 identical angles of size Δθ = π/2

10 = 0.1571. The set of 10 grids is given as:

g1 = (0) g2 = (0.1571) g3 = (0.3142) g4 = (0.4712) g5 = (0.6283)
g6 = (0.7854) g7 = (0.9425) g8 = (1.0996) g9 = (1.2566) g10 = (1.4137)
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Fig. 1. Two and three-dimensional grid divisions of the objective space using polar
coordinates
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A vector belongs to the first grid if its polar angle is 0 ≤ θ < 0.1571. A vector
belongs to the second grid if its polar angle is 0.1571 ≤ θ < 0.3142 and so on.

For the 3-dimensional case, to obtain 16 grids, the two right angles must be
divided into 4 identical angles of size Δθ = π/2

4 = 0.3927. The set of 16 grids is
given as:

g1 = (0, 0) g2 = (0.3927, 0) g3 = (0.7854, 0) g4 = (1.1781, 0)

g5 = (0, 0.3927) g6 = (0.3927, 0.3927) g7 = (0.7854, 0.3927) g8 = (1.1781, 0.3927)

g9 = (0, 0.7854) g10 = (0.3927, 0.7854) g11 = (0.7854, 0.7854) g12 = (1.1781, 0.7854)

g13 = (0, 1.1781) g14 = (0.3927, 1.1781) g15 = (0.7854, 1.1781) g16 = (1.1781, 1.1781)

A vector belongs to the first grid if its polar angles are 0 ≤ θ1 < 0.3927 ∧
0 ≤ θ2 < 0.3927. A vector belongs to the second grid if its polar angles are
0.3927 ≤ θ1 < 0.7854 ∧ 0 ≤ θ2 < 0.3927 and so on.

For an m-dimensional case, to generate ngrids, the m − 1 right angles must
be divided into ndiv = m−1

√
ngrids identical angles of size Δθ = π/2

ndiv
.

An individual in the population, a, is represented by the tuple of the form
{x,f , ρ,θ}, where x and f are the decision and the objective vectors, whereas
ρ,θ are the polar coordinates.

For a vector u = (u1, u2, . . . , um)T, its polar coordinates are expressed as:

u1 = ρ cos θ1 cos θ2 cos θ3 · · · cos θm−1

u2 = ρ cos θ1 cos θ2 cos θ3 · · · sin θm−1

u3 = ρ cos θ1 cos θ2 · · · sin θm−2

· · · · · · · · · · · · · · ·
um = ρ sin θ1

(2)

where ρ is the radius, θi is the polar angle (i = 1, . . . , m − 1). They can be
calculated as:

ρ =
√

u2
1 + u2

2 + · · · + u2
m

θ1 = arcsin(um/ρ)
θ2 = arcsin(um−1/ρ cos θ1)

θ3 = arcsin(um−2/ρ cos θ1 cos θ2)
· · · · · · · · · · · · · · ·

θm−1 = arcsin(u2/ρ cos θ1 · · · cos θm−2).

(3)

If the reference point is z = (z1, . . . , zm)T, then u = (u1, u2, . . . , um)T is set to
u = (f1 −z1, f2 −z2, . . . , fm −zm)T. This way, ρ and θi, . . . , θm−1 are calculated
for all population members.

An individual a with polar coordinates ρ, θ1, . . . , θm−1 is said to belong to a
grid g = (g1, . . . , gm−1), denoted as a ∈ g, if

gi ≤ θi ≤ gi + Δθ ∀i ∈ {1, . . . , m − 1}. (4)

If (4) is not fulfilled, then it is said that a does not belong to g, denoted as
a /∈ g.
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2.2 Proposed Framework

MOEA/PC works as follows:
Input:

· CR - crossover probability;
· F - scaling factor;
· pm - mutation probability;
· ηm - mutation distribution index;
· δ - probability for mating pool;
· T - neighborhood size;
· μ - population size;
· maxEval - maximum number of function evaluations.

Output:

· {x1, . . . ,xngrids} - approximation to the Pareto set;
· {f(x1), . . . ,f(xngrids)} - approximation to the Pareto front.

Step 1 Initialization
Step 1.1 Compute a set of grids G = {g1, . . . , gngrids}.
Step 1.2 For each grid, select T closest grids.
Step 1.3 For each grid, randomly generate an individual.
Step 1.4 Initialize a reference point, z.
Step 1.5 For each individual, compute polar coordinates.

Step 2 Mating selection
Step 2.1 Uniformly at random select a grid (say the i-th grid is selected).
Step 2.2 With probability δ, select two different individuals r1 and r2 from

the neighborhood of the i-th grid, whereas with probability (1 − δ)
these individuals are selected from the whole set of grids.

Step 3 Variation
Step 3.1 Generate a candidate, c, using a differential evolution (DE) opera-

tor.
Step 3.2 Apply polynomial mutation on the candidate.
Step 3.3 Repair the candidate.

Step 4 Update
Step 4.1 For each j ∈ {1, . . . , m}, if fj(xc) < zj , then set zj = fj(xc).
Step 4.2 Calculate polar coordinates for c.
Step 4.3 Calculate polar coordinates for individual in each grid, if z was

updated in Step 4.1.
Step 5 Environmental selection

Step 5.1 Find a grid, say gk, such that c ∈ gk.
Step 5.2 Swap ak and c, if one of the following conditions is true:

1. ak /∈ gk ∧ ∃j ∈ {1, . . . , m} : fj(xc) < fj(xk);
2. ak ∈ gk ∧ ρc < ρk.

Step 5.3 If ak and c were swapped, go to Step 5.1.
Step 6 If the maximum number of function evaluations is reached, then stop.

Otherwise, go to Step 2.
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In Step 1, after the grids are generated, the set of closest grids is selected
for each grid. Since a grid is given as an (m−1)-dimensional vector, this is done
by computing the Euclidean distance between grids and sorting according to the
computed values.

In Step 3, the DE operator works as follows:

xc
j =

{
xi

j + F × (xr1
j − xr2

j ) with probability CR
xi

j with probability 1 − CR
∀j ∈ {1, . . . , n}.

(5)
The polynomial mutation is performed as follows:

xc
j =

{
xc

j + σj × (ubj − lbj) with probability pm

xc
j with probability 1 − pm

∀j ∈ {1, . . . , n}, (6)

where

σj =
{

(2uj)1/(1+ηm) − 1 if uj ≤ 0.5
1 − (2 − 2uj)1/(1+ηm) otherwise

∀j ∈ {1, . . . , n}, (7)

and uj ∈ [0, 1] is a uniform random number.
To ensure the feasibility, the candidate is repaired as:

xc
j = min{max{xc

j , lbj}, ubj} ∀j ∈ {1, . . . , n}. (8)

In Step 5, the survival process for the candidate and population members
is designed to push out the worst individual from the population and ensure the
distribution of the population according to the grid, which can be perturbed if
a reference point have been updated in Step 4. The candidate enter into the
population replacing the individual in a certain grid, whereas the latter becomes
the candidate. The process continues until the candidate cannot enter into the
population.

3 Performance Assessment

This section presents and discusses the results of experimental study carried out
to investigated the performance of MOEA/PC. The experiments are divided into
two parts. The first one estimates the effects of some parameter settings for the
proposed algorithm. The second one compares the performance of MOEA/PC
with state-of-the-art algorithms.

3.1 Experimental Setup

MOEA/PC is implemented in C++. Its performance is compared with those
produced by MOEA/D [14], GDE3 [15] and IBEA [8], which are used within the
jMetal [16] framework. The performance of the algorithms is studied on a set
of challenging problems proposed in [14] and [17], which in the following will be
referred as the LZ09 and LGZ test suites, respectively.
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Table 1. Parameter settings for the algorithms

MOEA/PC MOEA/D GDE3 IBEA

CR = 1.0 CR = 1.0 CR = 1.0 ηc = 20
F = 0.5 F = 0.5 F = 0.5 pc = 0.9
ηm = 20 ηm = 20 ηm = 20 ηm = 20
pm = 1/n pm = 1/n pm = 1/n pm = 1/n

δ = 0.9
T = 20

The quality of approximation sets [18] returned by the algorithms is evaluated
using the inverted generational distance (IGD) indicator [19]. To calculate the
IGD indicator, 1,000 uniformly distributed points along the Pareto front are
generated for each problem.

For each algorithm, 30 independent runs are performed on each problem with
a population size of μ = 300, running for 1.5×105 and 3×105 function evaluations
on LZ09 and LGZ problems, respectively. The other parameter settings used in
comparative study are shown in Table 1.

All the parameters are chosen to guarantee a fair comparison between the
algorithm. The values of δ and T for MOEA/D are used according to the original
paper, whereas the effects of different values of δ and T are investigated in the
first part of experimental study and chosen based on the obtained results.

3.2 Parametrization

In MOEA/PC, δ and T are two major control parameters. To examine the sen-
sitivity of the proposed algorithm to these parameters, we carry out experiments
for δ ∈ {0.7, 0.8, 0.9, 1.0} and T ∈ {10, 20, 30, 40}. Figure 2 shows the results of
the IGD indicator on the LZ09 test suite. From this figure, we can see that the
performance does not vary significantly on F1, F6, F7, whereas on the majority
of problems very small values of δ and large values of T lead to a poorer perfor-
mance. This can be due to that MOEA/PC with too small δ and too large T is
poor at exploitation. Table 2 shows the mean ranks of the median IGD values
achieved by the algorithm with different settings of δ and T . From the table, we
can see that the algorithm has the best rank for δ = 0.8 and T = 20.

Figure 3 illustrates the median values of IGD on the LGZ test suite. From the
figure, we can see that MOEA/PC is less sensitive on problems F1, F4, F6 and
F7, whereas the performance significantly deteriorates on the other problems for
δ = 0.7. Similarly to the LZ09 problems, MOEA/PC with too small δ performs
poorly in terms of exploitation on the LGZ problems. Nevertheless, too large
T is not so critical on these problems. Table 3 presents the mean ranks of the
median values of IGD achieved by the algorithm with different settings on the
LGZ test suite. From the table, we can see that the algorithm ranks the best on
this set of problems having δ = 1.0 and T = 30.

Thus, the results indicate that problems with different characteristics may
require a careful setting of control parameters. Table 4 summarizes the results
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Fig. 2. Results for different parameter settings on the LZ09 test suite

Table 2. Mean ranks for different parameter settings on the LZ09 test suite

�
��δ
T

10 20 30 40

0.7 5.67 4.78 7.56 9.33

0.8 6.44 4.33 7.44 8.11

0.9 8.22 7.11 7.44 9.78

1.0 14.67 12.78 11.11 11.22
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Fig. 3. Results for different parameter settings on the LGZ test suite

Table 3. Mean ranks for different parameter settings on the LGZ test suite

�
��δ
T

10 20 30 40

0.7 10.29 7.86 10.14 12.43

0.8 10.43 5.86 7.57 12.00

0.9 9.71 4.14 4.86 10.57

1.0 13.43 5.43 3.00 8.29
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Table 4. Mean ranks for different parameter settings on the LZ09 and LGZ test suites

�
��δ
T

10 20 30 40

0.7 7.69 6.13 8.69 10.69

0.8 8.19 5.00 7.50 9.81

0.9 8.88 5.81 6.31 10.13

1.0 14.13 9.56 7.56 9.94

for median values of IGD on all the considered problems. From this table, we
can conclude that considering the two sets of problems MOEA/PC ranks the
best having δ = 0.8 and T = 20. Despite somewhat similar meanings of δ and T
in MOEA/PC and MOEA/D, the obtained value of δ for MOEA/PC is smaller
than the one used in MOEA/D. This suggests that MOEA/PC must slightly
more focus on exploration when its selection forces to keep diversity among the
population. Though it should be kept in mind that the final obtained rank is
influenced by the number of problems in each test suite. Based on the conclusions
drawn from these experiments we use δ = 0.8 and T = 20 in comparative study
discussed in the following.

3.3 Performance Comparison

To examine the competitiveness of the proposed approach,we compareMOEA/PC
with state-of-the-art MOEAs. Since the main feature under study is the selec-
tion mechanism, we use algorithms with selections relying on: dominance-based,
indicator-based and scalarizing-based fitness assignment strategies. They repre-
sent three major trends in MOEAs and, therefore, serve as important references
for evaluating our algorithm.

Table 5 shows the results in terms of IGD obtained by different algorithms
on the LZ09 test suite. As it can be seen from the table, MOEA/D gives the best
results on 6 problems, whereas MOEA/PC works better on 3 problems. Also it
should be noted that MOEA/PC provides always better results than GDE3 and

Table 5. Median and interquartile range of the IGD indicator on the LZ09 test suite

MOEA/PC MOEA/D GDE3 IBEA

F1 1.64e-03 (8.9e-06) 1.31e-03 (7.7e-06) 2.19e-03 (1.0e-04) 6.77e-03 (7.4e-04)

F2 3.85e-03 (4.4e-04) 2.75e-03 (2.8e-04) 4.23e-02 (5.2e-03) 1.12e-01 (1.5e-02)

F3 4.41e-03 (1.6e-03) 2.69e-03 (4.2e-03) 3.66e-02 (2.7e-03) 5.48e-02 (2.9e-02)

F4 8.66e-03 (2.9e-03) 6.46e-03 (9.9e-03) 3.62e-02 (3.4e-03) 7.14e-02 (4.3e-02)

F5 1.06e-02 (3.2e-03) 1.22e-02 (5.4e-03) 3.53e-02 (4.4e-03) 3.96e-02 (1.5e-02)

F6 3.52e-02 (5.8e-04) 4.69e-02 (8.9e-03) 1.14e-01 (2.3e-02) 5.33e-01 (4.6e-02)

F7 1.64e-03 (3.2e-05) 1.34e-03 (2.1e-05) 3.94e-01 (0.0e+00) 1.98e-01 (9.1e-02)

F8 5.05e-03 (9.5e-03) 1.71e-03 (1.8e-03) 3.94e-01 (0.0e+00) 2.07e-01 (4.5e-02)

F9 3.02e-03 (9.8e-04) 3.85e-03 (2.1e-03) 4.50e-02 (7.8e-03) 1.20e-01 (6.7e-02)
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Fig. 4. Plots of approximation sets with the best IGD values for the LZ09 test suite
obtained by MOEA/PC, MOEA/D, GDE3 and IBEA, left to right, respectively
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Fig. 4. (continued)

IBEA on all the problems. Although MOEA/PC does not work the best on the
majority of LZ09 problems, it is able to find adequate approximations for all
these problems. It can be seen from Figure 4, which plots approximation sets
with the best values of IGD obtained by the algorithms on the LZ09 test suite. As
the figure illustrates, MOEA/PC and MOEA/D provide good approximations
on all the problems, whereas GDE3 and IBEA fail on the majority of these
problems.

The strengths of the proposed selection can be understood from the results
for the LGZ problems, which are presented in Table 6. From the table, it can
be seen that MOEA/PC completely outperforms the other algorithms on these
problems. This can be further confirmed visiting Figure 5, which plots the best
approximations with respect to IGD. Given these results, it is quite evident
that MOEA/PC performs much better on these problems. Actually, MOEA/D,
GDE3 and IBEA cannot successfully approximate the Pareto front for none of
LGZ test instance. In contrast, MOEA/PC works well on all these problems.
These results highlight that the proposed selection can play a crucial role in the
eventual performance of the algorithm on some problems.

Table 6. Median and interquartile range of the IGD indicator on the LGZ test suite

MOEAPC MOEAD GDE3 IBEA

F1 1.71e-02 (2.8e-03) 3.52e-01 (1.4e-02) 3.60e-01 (1.1e-02) 3.58e-01 (5.7e-03)

F2 3.06e-03 (1.3e-02) 2.08e-01 (6.3e-02) 3.55e-01 (0.0e+00) 3.55e-01 (5.6e-17)

F3 8.64e-03 (2.6e-02) 4.33e-01 (2.2e-02) 5.02e-01 (7.1e-02) 4.55e-01 (6.6e-02)

F4 1.42e-02 (2.9e-02) 2.25e-01 (7.8e-03) 2.18e-01 (3.7e-02) 2.22e-01 (7.4e-03)

F5 1.59e-02 (3.0e-03) 3.18e-01 (7.6e-03) 3.03e-01 (2.6e-02) 2.45e-01 (2.6e-02)

F6 5.91e-02 (6.1e-03) 3.19e-01 (8.5e-08) 3.19e-01 (2.6e-02) 3.19e-01 (7.1e-06)

F7 1.29e-01 (7.1e-03) 4.01e-01 (2.0e-02) 4.01e-01 (3.2e-06) 4.04e-01 (1.0e-03)
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Fig. 5. Plots of approximation sets with the best IGD values for the LGZ test suite
obtained by MOEA/PC, MOEA/D, GDE3 and IBEA, left to right, respectively
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4 Conclusions

MOEAs with selections relying on dominance-, scalarizing- and indicator-based
fitness assignment strategies have become widespread. Evaluating individuals
quality such approaches somewhat prioritize the convergence, with the diversity
being put on the second place. Since the convergence and diversity are equally
important goals, as a consequence, a poor performance can be produced on some
problems.

This paper suggested a multiobjective optimization algorithm based on polar
coordinates, called MOEA/PC. The main feature of MOEA/PC is the selection
mechanism that forces to maintain the population diversity. MOEA/PC divides
the objective space into a set of grids using polar coordinates. For each grid,
MOEA/PC seeks a solution minimizing the distance to a reference point. Keep-
ing a solution assigned to each grid allows to maintain a well-distributed set of
solutions during the whole simulation. A neighborhood relation among the grids
is defined based on the distances between them. The similarities in neighboring
solutions are explored by defining a probability for the selection of parents either
from the neighborhood or the whole population.

The experimental results showed that MOEA/PC is not very sensitive to
the setting of δ and T . However, a careful choice of the parameters can improve
the performance on different problems. Based on the conducted experiments,
default parameter values are suggested. It was shown that MOEA/PC can solve
a set of challenging problems, producing highly competitive performance. At
the same time, we found that the MOEA/PC ability to keep the population
diversity appears to be crucial for solving some MOPs, on which state-of-the-art
approaches fail to locate the whole Pareto optimal region.

As future work, we intend to combine the proposed framework with other
evolutionary techniques and investigate its performance on other difficult MOPs,
including many-objective problems. Further, the development of an effective par-
ent selection procedure under the proposed framework can significantly improve
its search ability.

Acknowledgments. This work has been supported by FCT - Fundação para a Ciência
e Tecnologia in the scope of the project: PEst-OE/EEI/UI0319/2014.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. John Wiley & Sons (2001)

2. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2 edn. Genetic and Evolutionary Computa-
tion. Springer (2007)

3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm. Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)



MOEA/PC: Multiobjective Evolutionary Algorithm 155

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

5. Hughes, E.J.: Multiple single objective Pareto sampling. In: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2003, pp. 2678–2684 (2003)

6. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of scalarizing fitness functions into
evolutionary multiobjective optimization algorithms. In: Runarsson, T.P., Beyer,
H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN
2006. LNCS, vol. 4193, pp. 493–502. Springer, Heidelberg (2006)

7. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731
(2007)

8. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

9. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181(3), 1653–1669 (2007)
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Abstract. In this paper, we propose a new selection mechanism for
Multi-Objective Evolutionary Algorithms (MOEAs), which is based on
the generational distance indicator and uses a technique that relies on
Euclidean distances to maintain diversity in the population (in objective
function space). Our proposed selecion mechanism is incorporated into
a MOEA which adopts the operators of NSGA-II (crossover and muta-
tion) to generate new individuals. The new MOEA is called “Generational
Distance - Multi-Objective Evolutionary Algorithm (GD-MOEA).” Our
GD-MOEA is validated using standard test problems taken from the spe-
cialized literature, having three to six objective functions. GD-MOEA is
compared with respect to MOEA/D using Penalty Boundary Intersection
(PBI), which is based on decomposition, and to SMS-EMOA-HYPE (a
version of SMS-EMOA that uses a fitness assignment scheme based on
the use of an approximation of the hypervolume indicator). Our prelimi-
nary results indicate that if we consider both quality in the solutions and
the running time required to generate them, our GD-MOEA is a good
alternative to solve multi-objective optimization problems having both
low dimensionality and high dimensionality in objective function space.

1 Introduction

Many real-world applications involve the solution of problems that have multi-
ple (conflicting) objective functions which have to be simultaneously optimized.
These are the so-called “Multi-objective Optimization Problems (MOPs)”. Since
their objective functions are in conflict with each other, the notion of optimal-
ity refers to finding the best possible trade-offs among the objective functions.
Consequently, there is no single optimal solution but a set of solutions, which is
called Pareto optimal set, whose image is known as the Pareto front. Since the
use of mathematical programming techniques to solve MOPs has several limita-
tions, the use of evolutionary algorithms has become very popular in this area
in recent years, giving rise to the so-called Multi-Objective Evolutionary Algo-
rithms (MOEAs) [6]. MOEAs have two main goals: (i) To find solutions that
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are, as close as possible, to the true Pareto front, and, (ii) to produce solutions
that are spread along the Pareto front as uniformly as possible.

There are different indicators to assess the quality of the approximation of
the Pareto optimal set generated by a MOEA, e.g., error ratio, generational dis-
tance, inverted generational distance, spacing, hypervolume, R2-indicator, Δp-
indicator, ε-indicator, two set coverage, etc. [6]. However, very few performance
indicators are “Pareto Compliant”.1 In recent years, MOEAs based on indica-
tors have become popular because the use of Pareto-based selection has several
limitations. Perhaps, the most remarkable is its poor scalability regarding the
number of objective functions of a MOP.2

MOEAs based on the hypervolume indicator (IH) have been relatively pop-
ular (see for example [2,15–17,28]) mainly because IH is the only unary indica-
tor which is known to be “Pareto compliant” [29]. However, IH has an important
disadvantage: its high computational cost (the problem of computing IH is NP-
hard [3]). Therefore, this type of MOEAs is impractical when we want to solve
MOPs having four or more objective functions. On the other hand, after the study
on the properties of the R2-indicator (IR2) presented by Brockhoff et al. [4], a
number of proposals of MOEAs based on IR2 have been introduced [13,21,22,26].
Although IR2-based MOEAs can solve MOPs with many objective functions at an
affordable computational cost, this type of algorithms also has an important dis-
advantage: They need to generate a set of well-distributed convex weights and this
task becomes more difficult as we increase the number of objective functions. The
same applies to the well-known MOEA/D [27] which decomposes the MOP into N
scalar optimization subproblems and solves them simultaneously using an evolu-
tionary algorithm. Recently, the Δp-indicator (IΔp

) was introduced [20] and some
MOEAs based on it have already been proposed [10,12,19]. The Δp-indicator is
composed of slight modifications of two well-known indicators: generational dis-
tance (IGD) [23] and inverted generational distance (IIGD) [5]. It is well-known
that for computing IGD and IIGD, it is necesary to know the true Pareto front.
Therefore, the most important disadvantage of MOEAs based on IΔp

is perhaps
that they need a reference set which must contain well-distributed solutions. Not
being able to produce a good reference set could produce a diversity loss in the
population which might cause that the algorithm cannot generate the complete
Pareto front, or that it generates poorly distributed solutions. In extreme cases,
the lack of an appropriate reference set could prevent convergence.

In this paper, we propose a new MOEA based on IGD and we use the technique
proposed in [18], which is based on Euclidean distances, to maintain diversity in
objective function space. The idea is to use the non-dominated set produced at
1 Let Ω be the set of all feasible solutions and A and B two approximations of the

Pareto optimal set, such that, A � B denotes that every point b ∈ B is weakly dom-
inated by at least one point a ∈ A. An indicator I : Ω → R is Pareto compliant
if for all A, B ∈ Ω : A � B ⇒ I(A) ≥ I(B), assuming that greater indicator values
correspond to higher quality.

2 The quick increase in the number of non-dominated solutions as we increase the
number of objective functions, rapidly dilutes the effect of the selection mechanism
of a MOEA [11].
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each generation as a reference set to calculate IGD, even if it is not well-distributed,
since at the beginning, the aim is to achieve convergence to the true Pareto front.
Then, when we have produced many non-dominated solutions, the aim will be
to improve their distribution. In this way, we can address the disadvantages of
MOEAs based on IH , IR2 and IΔp

: Our new selection mechanism has linear com-
plexity with respect to the number of objective functions because computing the
IGD and maintaining diversity by means of computing Euclidean distances have
linear complexity with respect to the number of objective functions. Further, it is
not necessary to generate a set of well-distributed convex weights, and also, it is
not necessary to generate a well-distributed reference set.

The remainder of this paper is organized as follows. Section 2 describes the
generational distance indicator. The technique to maintain diversity in the pop-
ulation is described in Section 3. Our proposal is presented in Section 4. The
experimental validation and the results obtained are shown in Section 5. Finally,
we provide our conclusions and some possible paths for future work in Section 6.

2 Generational Distance Indicator

The generational distance indicator (IGD) reports how far, on average, A is from
PF [7,24,25], where PF is the true Pareto front and A is an approximation of
the true Pareto front. IGD is Pareto non-compliant and it is defined as:

IGD =
1

|A|

⎛
⎝

|A|∑
i=1

dp
i

⎞
⎠

1
p

(1)

where |A| is the number of vectors in A, p = 2 and di is the Euclidean phenotypic
distance between each member, i, of A and the closest member in PF to that
member, i. If IGD = 0, A ⊆ PF . Figure 1 shows how this indicator is calculated.
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Fig. 1. The black points are the reference set. The approximation of the Pareto optimal
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3 A Distribution Technique Based on Euclidean Distances

In [18], Menchaca and Coello proposed a technique based on Euclidean distances
to improve the diversity in objective function space. This technique works as
follows: Let’s suppose that we have already a set of non-dominated solutions
which we call “S”. If we want to improve its diversity using another set of non-
dominated solutions which is called “B”, then, the solutions in B compete with
the solutions in S, considering that the size of S is fixed, as follows: For each
solution x ∈ B, we obtain its nearest neighbor from S, xnear, and we choose
a random individual from S, xrandom such that xnear �= xrandom, and then,
these three solutions compete to survive. First, x competes with xrandom, if
the Euclidean distance from x to its nearest neighbor in S is greater than the
Euclidean distance from xrandom to its nearest neighbor in S, x replaces xrandom.
If x loses the competition, x competes with its nearest neighbor to survive. If
the Euclidean distance from x to its nearest neighbor in S (without considering

2 3 41

(a)

1

2 = near

3

4

6

1

1

f1

2

3

f2

7

5 = rand

2 3 41

(b)

1

2 = rand

3

4

1

f1

2

3

f2

7

5

2

6 = near

3

3 41

61

2

(c)

1

4

5 = rand

f1

2

3

f2

7

2 = near

3

3 41

61

2

(d)

1

4

5

f1

2

3

f2

7

2

2
3 3

3

Fig. 2. All points in black are in S and all points in gray are in B. In (a), we consider
solution x1, its nearest neighbor in S is s2 and we choose s5 as a random solution. First,
x1 competes with s5 and s5 loses because the distance from x1 to s2 is greater than the
distance from s5 to s6; therefore,x1 replaces s5. In (b),we consider solutionx2, its nearest
neighbor in S is s6 and we choose s2 as a random solution. First, x2 and s2 compete and
x2 wins because the distance from x2 to s6 is greater than the distance from s2 to s5;
therefore, x2 replaces s2. Finally, in (c), we consider solution x3, its nearest neighbor in
S is s2 and we choose s5 as a random solution. First, x3 competes with s5 and s5 wins
because the distance from x3 to s2 is less than the distance from s5 to s3; therefore, x3

competes with s2 and x3 wins because the distance from x3 to x6 is greater than the
distance from s2 to s6. Thus, x3 replaces s2. In (d), we can see the new S.
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xnear) is greater than the Euclidean distance from xnear to its nearest neighbor
in S, then x replaces xnear.

The authors mentioned that xnear is used with the idea of improving the
diversity locally. If we move xnear to x, do we increase the Euclidean distance
from xnear to its nearest neighbor in S? And, xrand is used to avoid that solutions
in unexplored regions are eliminated, e.g., if x and xnear are in an unexplored
region, it is not good to delete one of the two solutions. Figure 2 illustrates how
this technique works.

4 Our Proposal

In this work, we propose a new selection mechanism for MOEAs. The idea is
to use IGD as a convergence strategy and to use the above distribution tech-
nique to maintain diversity in the population when many (even all) solutions
are non-dominated. Our selection mechanism works as follows: If we want to
select s individuals of a population P, such that s < ‖P‖, we have to obtain the
non-dominated individuals in P and put them in S. The remaining individuals
(dominated individuals) are placed in B. If s > ‖S‖, we select the remaining
r individuals (where r = s − ‖S‖) from B as follows: We calculate the Euclid-
ean distance, di, from each dominated individual in B to its nearest neighbor
in S, and also, it is necessary to save its neighboring non-dominated individual.
After that, we have to sort B regarding di and we must create another set called
“S ′ = ∅”. Finally, for each xi ∈ B, we have to check if its nearest neighbor in S
is equal to the nearest neighbor in S of some individual in S ′. If the answer is no
and ‖S ′‖ < r, then, we must put xi in S ′. If all individuals in B are considered
and ‖S ′‖ < r, we must repeat the last process but now we will allow that only
one individual in S ′ has the same neighbor that the individual that we want to
select. We have to iterate until we obtain r individuals. Figure 3 shows how this
procedure works.

If s < ‖S‖, we choose s individuals from S randomly. These individuals
remain in S and we put the remaining non-dominated individuals in a new set
called “B”. After that, we use the above distribution technique but before each
solution xi ∈ B can compete for its survival, we must check if it is similar (in
objective function space) to any selected individual in S. We consider that one
individual x is similar to another individual y, if it is similar in any objec-
tive function: x.fi − y.fi < ε, where ε is a small value. In this way, we avoid
that weakly non-dominated individuals are selected. If we do not apply this
constraint, we can obtain many weakly Pareto optimal solutions, which could
prevent convergence. Figure 4 shows how this diversity technique works. The
complete selection process is shown in Algorithm 1.

4.1 Generational Distance - Multi-Objective Evolutionary
Algorithm (GD-MOEA)

In order to validate our selection mechanism, we designed a multi-objective evolu-
tionary algorithm which uses the operators of NSGA-II (crossover and mutation)
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Fig. 3. Let’s assume that we want to select eight individuals from the popula-
tion. In (a), the non-dominated individuals are identified (black points) and then
S = {s1, s2, s3, s4, s5}. After that, we calculate di for each dominated individual (gray
points), we store its nearest neighbor in S and we sort them with respect to di, such
that xi.di ≤ xi+1.di+1. In (b), we proceed to select the remaining 3 individuals. First,
we select individual x1 (S ′ = {x1}). After that, individual x2 is considered but it is not
selected because its nearest neighbor in S is the same that the nearest neighbor of x1.
Then, we consider individual x3 and we select it (S ′ = {x1,x3}). Finally, individual
x4 is considered and it is not selected because its nearest neighbor is the same that
the nearest neighbor of individual x3. Then, we consider individual x5 and we select
it (S ′ = {x1,x3,x5}). Therefore, the selected individuals are S ∪ S ′ (black points).
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Fig. 4. Let’s assume that we want to select eight individuals from the population. In
(a), we select randomly eight non-dominated individuals and we put them in S (black
points), and the remaining non-dominated individuals are placed in B (gray points).
After that, we apply the distribution technique described in Section 3. (b) shows the
final S and we can see that although x6 and x7 could replace individual s8, they were
not selected because they are similar to s8.

to create new individuals. This is because our main aim is to validate the effect of
our proposed selection mechanism comparing it with respect to other two selec-
tion mechanisms: The first is based on decomposition and the second one is based
on the approximation of the hypervolume indicator. For this sake, we used the
following MOEAs: MOEA/D [27] (using PBI to decompose the MOP) and SMS-
EMOA-HYPE (a version of SMS-EMOA [2] that uses a fitness assignment based
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Input : P (population), s (number of individuals to choose s < ‖P‖).
Output: S (selected individuals).
Put in S the non-dominated individuals of P;
if s > ‖S‖ then

Put in B the dominated individuals of P;
Calculate the Euclidean distance di from each individual xi ∈ B to its nearest neighbor
in S and we also save its closest non-dominated neighbor;
Sort B with respect to d (ascending order);
S′ ← ∅, r ← s − ‖S‖, contIndAux ← 0, i ← 1;
while ‖S′‖ < r do

contInd ← 0;
foreach s ∈ S′ do

if s.neighbor = B.xi.neighbor then
contInd ← contInd + 1;

end
end
if contInd ≤ contIndAux then

Put B.xi in S′;
end
repeat

i ← i + 1;
until B.xi /∈ S′;
if i = ‖B‖ then

i ← 0, contIndAux ← contIndAux + 1;
end

end

S ← S ∪ S′;
else

if s < ‖S‖ then
Choose randomly ‖S‖ − s individuals of S and put them in a new set called B;
foreach xi ∈ B do

if xi is not similar to any individual in S then
Obtain the nearest neighbor, xnear, of xi in S;
Choose a random individual, xrand, from S such that xnear 
= xrand;
dxi ← Euclidean distance from xi to xnear;
dxr ← Euclidean distance from xrand to its nearest neighbor in S;
if dxi > dxr then

Replace xrand with xi;
else

dxi ← Euclidean distance from xi to its nearest neighbor in S
without considering xnear;
dxn ← Euclidean distance from xnear to its nearest neighbor in S;
if dxi > dxn then

Replace xnear with xi;
end

end
end

end
end

end
return S;

Algorithm 1: IGD-Selection

on the approximation of the hypervolume indicator, proposed in [1]). Since these
MOEAs use the same operators as our proposed approach to create new individ-
uals, the comparison is fair.

Our proposed MOEA is called“GenerationalDistance -Multi-Objective
Evolutionary Algorithm (GD-MOEA)” and it works as follows. First, it cre-
ates an initial population of size P . After that, it creates P new individuals and
it combines the population of parents and offspring to obtain a population of size
2P . Then, we use the proposed selection mechanism to choose the P individuals
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that will take part of the following generation. Finally, this process is repeated for
a (pre-defined) number of generations.

5 Experimental Results

As mentioned before, we compare our proposed GD-MOEA with respect to
MOEA/D and SMS-EMOA-HYPE. In the case of MOEA/D, we generated the
convex weights using the technique proposed in [8] and after that, we applied
clustering (k-means) to obtain a specific number of weights. In the case of
SMS-EMOA-HYPE, we used the source code of HyPE available in the pub-
lic domain [1] adopting 104 as our number of samples to assign fitness in the
original SMS-EMOA.3

For our experiments, we used seven problems taken from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [9]. We used k = 5 for DTLZ1, DTLZ3
and DTLZ6 and k = 10 for the remaining test problems. Also, we used seven
problems taken from the WFG toolkit [14], with k factor = 2 and l factor =
10. For each test problem, we performed 30 independent runs. For all three
algorithms, we adopted the parameters suggested by the authors of NSGA-II:
pc = 0.9 (crossover probability), pm = 1/n (mutation probability), where n is the
number of decision variables. We also used ηc = 15 and ηm = 20, respectively.
We performed a maximum of 50,000 fitness function evaluations (in this case, we
used a population size of 100 individuals and we iterated for 500 generations).

5.1 Performance Indicators

We adopted only the hypervolume indicator (IH) to validate our results because
it rewards both convergence towards the Pareto front as well as the maximum
spread of the solutions obtained. To calculate the hypervolume indicator, we nor-
malized the approximations of the Pareto optimal set, generated by the MOEAs,
and yref = [y1, · · · , yk] such that yi = 1.1 is used as our reference point. The
normalization was performed considering all approximations generated by the
different MOEAs (i.e., we put, in one set, all the non-dominated solutions found
and from this set we calculate the maximum and minimum for each objective
function).

5.2 Discussion of Results

Table 1 shows the results with respect to IH as well as the results of the sta-
tistical analysis that we made to validate our experiments, for which we used
Wilcoxon’s rank sum. In Table 1, we can see that our proposed GD-MOEA out-
performed MOEA/D in forty-three problems and in all cases we can reject the

3 The source code of the three algorithms (MOEA/D, SMS-EMOA-HYPE and GD-
MOEA) is avaialble the first author upon request. For MOEA/D, we used the source
code available in the MOEA/D webpage.
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null hypothesis (medians are equal). Only in thirteen problems our proposed app-
roach was outperformed by MOEA/D. With respect to SMS-EMOA-HYPE, we
can see that our GD-MOEA was outperformed in forty-nine problems. Only in
six problems our GD-MOEA outperformed SMS-EMOA-HYPE and in one case
they had a similar behavior (we cannot reject the null hypothesis). However, it
is important to analyze the running time required by the three algorithms. In
Table 2, we can see that MOEA/D is better than our GD-MOEA because, in the
worst case, MOEA/D required 1.8199 seconds to find the approximation of the
Pareto optimal set while our GD-MOEA required 2.6672 seconds, i.e., MOEA/D
is 1.46 times faster than our GD-MOEA. In the case of SMS-EMOA-HYPE, we
can see that it required 445.7333 seconds in the worst case, i.e., our GD-MOEA
is 167.11 times faster than SMS-EMOA-HYPE. Therefore, we can say that our
GD-MOEA is a good choice to solve MOPs having both low dimensionality and
high dimensionality in objective function space, if we consider both quality in
the approximation of the Pareto set and running time.

Finally, we will present a brief study on the effect of the population size
on the performance of our approach. We know that if we increase the number
of objective functions, we should increase the population size as well. However,
algorithms such as SMS-EMOA cannot be used with large population sizes,
because its running time rapidly increases (in the worst case, it needs to calculate
P times the contribution to the hypervolume, where P is the population size,
in order to decide which individual will be removed). In the case of MOEA/D
and our GD-MOEA, it is indeed possible to increase the population size. In
order to study the behavior of these two MOEAs, we adopted a population
size of 300 individuals. Table 3 shows the results and we can see in (a) that
in seven problems both algorithms have a similar behavior because we cannot
reject the null hypothesis. In twelve cases, MOEA/D outperformed our proposed
GD-MOEA and in thirty-seven cases our proposed GD-MOEA outperformed
MOEA/D. With respect to the running time, we can see in (b) that in the
worst case, MOEA/D required 4.7445 seconds and our proposed GD-MOEA
required 11.4934 seconds, i.e., MOEA/D is 2.42 times faster than our proposed
GD-MOEA. Therefore, we can say that our proposed GD-MOEA has a better
performance than MOEA/D in most cases, while requiring a higher (but not
significantly long) running time.

An interesting thing is that our proposed GD-MOEA had serious difficulties
to solve DTLZ1, DTLZ6 and WFG1 with more than three objective functions
when we used a population size of 100 individuals. However, when we increased
the population size, our proposed GD-MOEA was able to obtain better results,
and kept a good behavior, in general, for all the problems considered in our
study.

6 Conclusions and Future Work

We have proposed a new selection mechanism based on the generational distance
indicator (IGD) and a technique based on Euclidean distances to improve the
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Table 1. Results obtained in the DTLZ and WFG test problems. We compare our pro-
posed GD-MOEA with respect to MOEA/D and SMS-EMOA-HYPE, using the hyper-
volume indicator (IH). We show average values over 30 independent runs. The values
in parentheses correspond to the standard deviations. The third column of each table
shows the results of the statistical analysis applied to our experiments using Wilcoxon’s
rank sum. P is the probability of observing the given result (the null hypothesis is true).
Small values of P cast doubt on the validity of the null hypothesis. H = 0 indicates
that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.

f moead
IH

gd-moea
IH

P (H)

DTLZ1(3) 1.0710(0.003) 1.0842(0.005) 0.00(1)
DTLZ2(3) 0.7102(0.000) 0.7150(0.006) 0.00(1)
DTLZ3(3) 1.3130(0.001) 1.3276(0.003) 0.00(1)
DTLZ4(3) 0.8191(0.000) 0.8344(0.008) 0.00(1)
DTLZ5(3) 0.2467(0.001) 0.2620(0.003) 0.00(1)
DTLZ6(3) 1.0002(0.011) 1.1060(0.012) 0.00(1)
DTLZ7(3) 0.4472(0.026) 0.5055(0.061) 0.00(1)
DTLZ1(4) 1.1858(0.005) 1.2077(0.199) 0.00(1)
DTLZ2(4) 0.8603(0.001) 0.9030(0.013) 0.00(1)
DTLZ3(4) 1.4556(0.001) 1.4605(0.006) 0.00(1)
DTLZ4(4) 0.8589(0.001) 0.9017(0.015) 0.00(1)
DTLZ5(4) 0.8553(0.022) 0.9122(0.031) 0.00(1)
DTLZ6(4) 1.0244(0.013) 0.7536(0.087) 0.00(1)
DTLZ7(4) 0.3389(0.008) 0.5288(0.036) 0.00(1)
DTLZ1(5) 1.2463(0.011) 0.4102(0.490) 0.00(1)
DTLZ2(5) 0.9483(0.003) 1.0500(0.027) 0.00(1)
DTLZ3(5) 1.5818(0.008) 1.5933(0.014) 0.00(1)
DTLZ4(5) 0.9299(0.003) 1.0280(0.017) 0.00(1)
DTLZ5(5) 1.0353(0.027) 1.1208(0.104) 0.00(1)
DTLZ6(5) 1.2919(0.021) 0.7747(0.104) 0.00(1)
DTLZ7(5) 0.0967(0.067) 0.4426(0.045) 0.00(1)
DTLZ1(6) 1.3056(0.013) 0.0149(0.048) 0.00(1)
DTLZ2(6) 0.9712(0.011) 1.1841(0.029) 0.00(1)
DTLZ3(6) 1.7610(0.004) 1.7133(0.052) 0.00(1)
DTLZ4(6) 0.9559(0.005) 1.1805(0.044) 0.00(1)
DTLZ5(6) 0.7277(0.014) 0.8356(0.037) 0.00(1)
DTLZ6(6) 1.3298(0.037) 0.5249(0.069) 0.00(1)
DTLZ7(6) 0.0194(0.004) 0.5360(0.066) 0.00(1)
WFG1(3) 0.9183(0.017) 0.8572(0.046) 0.00(1)
WFG2(3) 0.1539(0.202) 0.5245(0.128) 0.00(1)
WFG3(3) 0.4989(0.026) 0.5982(0.008) 0.00(1)
WFG4(3) 0.5943(0.013) 0.6473(0.008) 0.00(1)
WFG5(3) 0.4710(0.010) 0.5286(0.004) 0.00(1)
WFG6(3) 0.4548(0.007) 0.5245(0.008) 0.00(1)
WFG7(3) 0.4933(0.056) 0.6528(0.012) 0.00(1)
WFG1(4) 1.1040(0.058) 0.6312(0.110) 0.00(1)
WFG2(4) 0.0030(0.016) 0.1481(0.179) 0.00(1)
WFG3(4) 0.2872(0.034) 0.4502(0.025) 0.00(1)
WFG4(4) 0.6492(0.026) 0.7987(0.015) 0.00(1)
WFG5(4) 0.3672(0.015) 0.5232(0.006) 0.00(1)
WFG6(4) 0.2887(0.016) 0.3580(0.044) 0.00(1)
WFG7(4) 0.2887(0.036) 0.6944(0.017) 0.00(1)
WFG1(5) 1.2195(0.063) 0.4916(0.037) 0.00(1)
WFG2(5) 0.0105(0.033) 0.1194(0.122) 0.00(1)
WFG3(5) 0.1508(0.038) 0.2609(0.062) 0.00(1)
WFG4(5) 0.6399(0.024) 0.8698(0.029) 0.00(1)
WFG5(5) 0.2401(0.014) 0.4614(0.018) 0.00(1)
WFG6(5) 0.2408(0.016) 0.2149(0.054) 0.00(1)
WFG7(5) 0.2149(0.014) 0.6888(0.019) 0.00(1)
WFG1(6) 1.1466(0.022) 0.5648(0.041) 0.00(1)
WFG2(6) 0.0094(0.034) 0.1403(0.153) 0.00(1)
WFG3(6) 0.0993(0.044) 0.0962(0.044) 0.58(0)
WFG4(6) 0.5947(0.029) 0.9251(0.035) 0.00(1)
WFG5(6) 0.1613(0.017) 0.3368(0.044) 0.00(1)
WFG6(6) 0.2273(0.021) 0.1651(0.049) 0.00(1)
WFG7(6) 0.1842(0.014) 0.6745(0.031) 0.00(1)

sms-emoa-hype
IH

gd-moea
IH

P (H)

1.1011(0.006) 1.0842(0.005) 0.00(1)
0.7435(0.002) 0.7150(0.006) 0.00(1)
1.3299(0.000) 1.3276(0.003) 0.00(1)
0.8639(0.002) 0.8344(0.008) 0.00(1)
0.2654(0.000) 0.2620(0.003) 0.00(1)
1.1048(0.014) 1.1060(0.012) 0.92(0)
0.5389(0.034) 0.5055(0.061) 0.00(1)
1.2586(0.057) 1.2077(0.199) 0.43(0)
1.0086(0.003) 0.9030(0.013) 0.00(1)
1.4636(0.000) 1.4605(0.006) 0.00(1)
1.0143(0.004) 0.9017(0.015) 0.00(1)
0.9842(0.002) 0.9122(0.031) 0.00(1)
1.0561(0.018) 0.7536(0.087) 0.00(1)
0.5270(0.037) 0.5288(0.036) 0.95(1)
1.2371(0.348) 0.4102(0.490) 0.00(1)
1.2614(0.005) 1.0500(0.027) 0.00(1)
1.6089(0.000) 1.5933(0.014) 0.00(1)
1.2537(0.005) 1.0280(0.017) 0.00(1)
1.3005(0.003) 1.1208(0.104) 0.00(1)
1.4414(0.009) 0.7747(0.104) 0.00(1)
0.4964(0.049) 0.4426(0.045) 0.00(1)
1.5000(0.235) 0.0149(0.048) 0.00(1)
1.5413(0.005) 1.1841(0.029) 0.00(1)
1.7711(0.000) 1.7133(0.052) 0.00(1)
1.5446(0.005) 1.1805(0.044) 0.00(1)
1.0777(0.010) 0.8356(0.037) 0.00(1)
1.6348(0.010) 0.5249(0.069) 0.00(1)
0.4480(0.125) 0.5360(0.066) 0.00(1)
1.0174(0.068) 0.8572(0.046) 0.00(1)
0.6506(0.055) 0.5245(0.128) 0.00(1)
0.6061(0.007) 0.5982(0.008) 0.00(1)
0.7023(0.005) 0.6473(0.008) 0.00(1)
0.5370(0.003) 0.5286(0.004) 0.00(1)
0.5475(0.004) 0.5245(0.008) 0.00(1)
0.5617(0.029) 0.6528(0.012) 0.00(1)
1.1404(0.026) 0.6312(0.110) 0.00(1)
0.4888(0.227) 0.1481(0.179) 0.00(1)
0.5343(0.016) 0.4502(0.025) 0.00(1)
0.9308(0.008) 0.7987(0.015) 0.00(1)
0.5586(0.005) 0.5232(0.006) 0.00(1)
0.5654(0.010) 0.3580(0.044) 0.00(1)
0.4220(0.032) 0.6944(0.017) 0.00(1)
1.2517(0.027) 0.4916(0.037) 0.00(1)
0.4422(0.241) 0.1194(0.122) 0.00(1)
0.4852(0.027) 0.2609(0.062) 0.00(1)
1.1159(0.019) 0.8698(0.029) 0.00(1)
0.5798(0.010) 0.4614(0.018) 0.00(1)
0.5222(0.022) 0.2149(0.054) 0.00(1)
0.3138(0.022) 0.6888(0.019) 0.00(1)
1.3539(0.029) 0.5648(0.041) 0.00(1)
0.4834(0.239) 0.1403(0.153) 0.00(1)
0.4375(0.034) 0.0962(0.044) 0.00(1)
1.2866(0.025) 0.9251(0.035) 0.00(1)
0.5823(0.015) 0.3368(0.044) 0.00(1)
0.5142(0.033) 0.1651(0.049) 0.00(1)
0.2735(0.018) 0.6745(0.031) 0.00(1)
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Table 2. Time required (in seconds) by MOEA/D, SMS-EMOA-HYPE and our pro-
posed GD-MOEA for the test problems adopted. All algorithms were compiled using
the GNU C compiler and they were executed on a computer with a 2.66GHz processor
and 4GB in RAM.

f
moead
time

gd-moea
time

DTLZ1(3) 0.4993(0.016) 0.7695(0.010)
DTLZ2(3) 0.5783(0.010) 1.1593(0.014)
DTLZ3(3) 0.5195(0.012) 0.6366(0.026)
DTLZ4(3) 0.6037(0.008) 1.2361(0.082)
DTLZ5(3) 0.5922(0.007) 1.0845(0.015)
DTLZ6(3) 0.5007(0.018) 0.8883(0.035)
DTLZ7(3) 0.5397(0.008) 0.9039(0.038)
DTLZ1(4) 0.5230(0.008) 0.8578(0.033)
DTLZ2(4) 0.6147(0.012) 1.1623(0.014)
DTLZ3(4) 0.5533(0.020) 0.8227(0.047)
DTLZ4(4) 0.6440(0.011) 1.2127(0.021)
DTLZ5(4) 0.6128(0.009) 1.1188(0.023)
DTLZ6(4) 0.5351(0.010) 1.2979(0.019)
DTLZ7(4) 0.5860(0.008) 0.9282(0.016)
DTLZ1(5) 0.5532(0.005) 0.9387(0.033)
DTLZ2(5) 0.6453(0.010) 1.1378(0.030)
DTLZ3(5) 0.5785(0.012) 1.0330(0.072)
DTLZ4(5) 0.6949(0.004) 1.2085(0.022)
DTLZ5(5) 0.6455(0.004) 1.1452(0.030)
DTLZ6(5) 0.5784(0.008) 1.6253(0.033)
DTLZ7(5) 0.6289(0.004) 0.9783(0.068)
DTLZ1(6) 0.5816(0.011) 1.4877(0.288)
DTLZ2(6) 0.6750(0.003) 1.1846(0.122)
DTLZ3(6) 0.6162(0.017) 1.5827(0.185)
DTLZ4(6) 0.7485(0.003) 1.2092(0.024)
DTLZ5(6) 0.6683(0.011) 1.1497(0.024)
DTLZ6(6) 0.6308(0.006) 1.6625(0.024)
DTLZ7(6) 0.6589(0.012) 1.0392(0.026)
WFG1(3) 1.1427(0.019) 1.5656(0.027)
WFG2(3) 0.9272(0.024) 1.3674(0.018)
WFG3(3) 0.9738(0.018) 1.4281(0.017)
WFG4(3) 0.9919(0.007) 2.2732(0.061)
WFG5(3) 0.9594(0.007) 2.1035(0.031)
WFG6(3) 0.9478(0.010) 1.5356(0.007)
WFG7(3) 1.1988(0.026) 2.3854(0.020)
WFG1(4) 1.1697(0.017) 1.4167(0.017)
WFG2(4) 0.9473(0.021) 1.4471(0.016)
WFG3(4) 1.0207(0.011) 1.3199(0.034)
WFG4(4) 1.0258(0.009) 2.4373(0.017)
WFG5(4) 0.9848(0.009) 1.8332(0.080)
WFG6(4) 0.9774(0.007) 1.2582(0.010)
WFG7(4) 1.2529(0.014) 2.4961(0.021)
WFG1(5) 1.2474(0.015) 1.5476(0.027)
WFG2(5) 1.0083(0.020) 1.5561(0.015)
WFG3(5) 1.0908(0.010) 1.4337(0.018)
WFG4(5) 1.1067(0.005) 2.5754(0.015)
WFG5(5) 1.0683(0.006) 1.4752(0.033)
WFG6(5) 1.0342(0.024) 1.3588(0.013)
WFG7(5) 1.4166(0.021) 2.6519(0.051)
WFG1(6) 1.3214(0.012) 1.6343(0.022)
WFG2(6) 1.0430(0.021) 1.6106(0.019)
WFG3(6) 1.1115(0.011) 1.5232(0.037)
WFG4(6) 1.1695(0.009) 2.6444(0.049)
WFG5(6) 1.1185(0.009) 1.4109(0.027)
WFG6(6) 1.0602(0.024) 1.4250(0.013)
WFG7(6) 1.8199(0.145) 2.6672(0.072)

sms-emoa-hype
time

gd-moea
time

47.0000(2.620) 0.7695(0.010)
106.1333(4.105) 1.1593(0.014)
135.9667(21.629) 0.6366(0.026)
107.1667(3.822) 1.2361(0.082)
64.3333(5.430) 1.0845(0.015)
59.0667(9.747) 0.8883(0.035)
98.4333(9.106) 0.9039(0.038)
59.6667(3.280) 0.8578(0.033)
156.0333(6.555) 1.1623(0.014)
165.9333(18.995) 0.8227(0.047)
157.2667(9.602) 1.2127(0.021)
143.1667(4.796) 1.1188(0.023)
129.1000(7.648) 1.2979(0.019)
185.6667(16.067) 0.9282(0.016)
79.1333(5.632) 0.9387(0.033)
188.3333(8.231) 1.1378(0.030)
177.1000(24.347) 1.0330(0.072)
190.5000(6.845) 1.2085(0.022)
229.3333(14.328) 1.1452(0.030)
225.3667(11.056) 1.6253(0.033)
296.9333(23.678) 0.9783(0.068)
98.9333(6.904) 1.4877(0.288)
233.3667(11.182) 1.1846(0.122)
185.3000(22.371) 1.5827(0.185)
234.6333(10.581) 1.2092(0.024)
336.9000(18.293) 1.1497(0.024)
340.4333(16.669) 1.6625(0.024)
377.9000(42.232) 1.0392(0.026)
147.0000(3.670) 1.5656(0.027)
98.4333(6.786) 1.3674(0.018)
148.7333(3.941) 1.4281(0.017)
107.5000(4.233) 2.2732(0.061)
153.0667(8.246) 2.1035(0.031)
168.9333(8.330) 1.5356(0.007)
151.5667(6.530) 2.3854(0.020)
233.7333(8.434) 1.4167(0.017)
170.6333(11.232) 1.4471(0.016)
247.1000(7.939) 1.3199(0.034)
157.8333(6.455) 2.4373(0.017)
206.7667(19.689) 1.8332(0.080)
216.9667(17.647) 1.2582(0.010)
252.1333(8.429) 2.4961(0.021)
335.0667(7.607) 1.5476(0.027)
269.5667(20.717) 1.5561(0.015)
378.1667(6.362) 1.4337(0.018)
220.6667(13.553) 2.5754(0.015)
276.2000(31.841) 1.4752(0.033)
274.2667(47.308) 1.3588(0.013)
358.9667(10.005) 2.6519(0.051)
383.8000(42.576) 1.6343(0.022)
377.4333(29.319) 1.6106(0.019)
445.7333(46.018) 1.5232(0.037)
316.2000(12.098) 2.6444(0.049)
246.7000(6.435) 1.4109(0.027)
259.2333(5.024) 1.4250(0.013)
408.2667(40.609) 2.6672(0.072)
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Table 3. In (a), we show the results obtained in the DTLZ and WFG test problems
using a population size of 300 individuals. We compare our GD-MOEA with respect
to MOEA/D, using the hypervolume indicator (IH). We show average values over 30
independent runs. The values in parentheses correspond to the standard deviations.
The third column of each table shows the results of the statistical analysis applied to
our experiments using Wilcoxon’s rank sum. P is the probability of observing the given
result (the null hypothesis is true). Small values of P cast doubt on the validity of the
null hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot
be rejected at the 5% level. H = 1 indicates that the null hypothesis can be rejected
at the 5% level. In (b), we show the time required by MOEA/D and our proposed
GD-MOEA for the test problems adopted in seconds. All algorithms were compiled
using the GNU C compiler and they were executed on a computer with a 2.66GHz
processor having 4GB in RAM.

f
moead
IH

gd-moea
IH

P (H)

DTLZ1 (3) 1.0395 (0.001) 1.0265 (0.008) 0.00 (1)
DTLZ2 (3) 0.8847 (0.000) 0.8834 (0.004) 0.34 (0)
DTLZ3 (3) 1.3307 (0.000) 1.3308 (0.001) 0.00 (1)
DTLZ4 (3) 0.7786 (0.000) 0.7717 (0.007) 0.00 (1)
DTLZ5 (3) 0.2612 (0.000) 0.2666 (0.002) 0.00 (1)
DTLZ6 (3) 1.0933 (0.005) 1.0813 (0.022) 0.00 (1)
DTLZ7 (3) 0.6397 (0.001) 0.5852 (0.080) 0.00 (1)
DTLZ1 (4) 1.3880 (0.003) 1.4575 (0.002) 0.00 (1)
DTLZ2 (4) 0.9845 (0.000) 0.9906 (0.046) 0.00 (1)
DTLZ3 (4) 1.4639 (0.000) 1.4641 (0.000) 0.00 (1)
DTLZ4 (4) 1.0157 (0.001) 1.0201 (0.013) 0.17 (0)
DTLZ5 (4) 1.0040 (0.002) 1.0405 (0.009) 0.00 (1)
DTLZ6 (4) 1.3351 (0.003) 1.2511 (0.025) 0.00 (1)
DTLZ7 (4) 0.4997 (0.002) 0.6487 (0.053) 0.00 (1)
DTLZ1 (5) 1.5813 (0.003) 1.6104 (0.000) 0.00 (1)
DTLZ2 (5) 1.1373 (0.002) 1.1504 (0.022) 0.00 (1)
DTLZ3 (5) 1.6102 (0.000) 1.6104 (0.000) 0.00 (1)
DTLZ4 (5) 1.1464 (0.002) 1.1500 (0.041) 0.25 (0)
DTLZ5 (5) 1.2309 (0.002) 1.2474 (0.015) 0.00 (1)
DTLZ6 (5) 1.4478 (0.005) 1.2493 (0.036) 0.00 (1)
DTLZ7 (5) 0.3545 (0.009) 0.6688 (0.026) 0.00 (1)
DTLZ1 (6) 1.7573 (0.001) 1.7716 (0.000) 0.00 (1)
DTLZ2 (6) 1.1549 (0.004) 1.2616 (0.040) 0.00 (1)
DTLZ3 (6) 1.7697 (0.000) 1.7694 (0.004) 0.00 (1)
DTLZ4 (6) 1.1329 (0.003) 1.3010 (0.054) 0.00 (1)
DTLZ5 (6) 1.2176 (0.007) 1.3123 (0.019) 0.00 (1)
DTLZ6 (6) 1.6242 (0.005) 1.3955 (0.049) 0.00 (1)
DTLZ7 (6) 0.0458 (0.009) 0.5867 (0.029) 0.00 (1)
WFG1 (3) 0.7547 (0.002) 0.6978 (0.016) 0.00 (1)
WFG2 (3) 0.7263 (0.079) 0.9019 (0.034) 0.00 (1)
WFG3 (3) 0.6044 (0.012) 0.6241 (0.004) 0.00 (1)
WFG4 (3) 0.7233 (0.006) 0.7528 (0.004) 0.00 (1)
WFG5 (3) 0.5484 (0.004) 0.5673 (0.003) 0.00 (1)
WFG6 (3) 0.5130 (0.004) 0.5444 (0.005) 0.00 (1)
WFG7 (3) 0.7685 (0.011) 0.7498 (0.009) 0.00 (1)
WFG1 (4) 0.2787 (0.018) 0.4129 (0.033) 0.00 (1)
WFG2 (4) 0.9008 (0.162) 0.9788 (0.078) 0.13 (0)
WFG3 (4) 0.4771 (0.017) 0.5514 (0.013) 0.00 (1)
WFG4 (4) 0.8773 (0.015) 0.9835 (0.010) 0.00 (1)
WFG5 (4) 0.5234 (0.008) 0.5960 (0.006) 0.00 (1)
WFG6 (4) 0.3364 (0.012) 0.4274 (0.032) 0.00 (1)
WFG7 (4) 0.7698 (0.036) 0.8675 (0.015) 0.00 (1)
WFG1 (5) 0.0533 (0.032) 0.4287 (0.020) 0.00 (1)
WFG2 (5) 0.9970 (0.134) 1.0072 (0.162) 0.55 (0)
WFG3 (5) 0.4882 (0.027) 0.5041 (0.043) 0.29 (0)
WFG4 (5) 0.9023 (0.035) 1.0894 (0.017) 0.00 (1)
WFG5 (5) 0.5085 (0.008) 0.6029 (0.020) 0.00 (1)
WFG6 (5) 0.2608 (0.012) 0.2939 (0.042) 0.00 (1)
WFG7 (5) 0.3798 (0.059) 0.8928 (0.020) 0.00 (1)
WFG1 (6) 0.0000 (0.000) 0.4658 (0.020) 0.00 (1)
WFG2 (6) 1.2803 (0.199) 1.1827 (0.224) 0.06 (0)
WFG3 (6) 0.5612 (0.059) 0.3782 (0.086) 0.00 (1)
WFG4 (6) 0.8909 (0.022) 1.1262 (0.038) 0.00 (1)
WFG5 (6) 0.5136 (0.011) 0.6429 (0.031) 0.00 (1)
WFG6 (6) 0.2565 (0.019) 0.2046 (0.034) 0.00 (1)
WFG7 (6) 0.2596 (0.009) 0.7964 (0.032) 0.00 (1)

moead
time

gd-moea
time

1.5296 (0.023) 4.4234 (0.095)
1.7870 (0.011) 5.5353 (0.143)
1.5982 (0.042) 3.2699 (0.176)

bf 1.7937 (0.015) 5.4645 (0.099)
1.7661 (0.039) 5.4361 (0.058)
1.4588 (0.028) 4.3155 (0.044)
1.5896 (0.021) 4.8026 (0.146)
1.6032 (0.024) 4.9574 (0.090)
1.8629 (0.008) 5.0777 (0.096)
1.7703 (0.041) 4.1087 (0.200)
1.9052 (0.018) 5.1225 (0.033)
1.8249 (0.038) 4.0589 (0.047)
1.5590 (0.029) 5.9208 (0.049)
1.7103 (0.024) 4.9728 (0.039)
1.6717 (0.019) 5.4628 (0.091)
1.9844 (0.016) 5.0243 (0.110)
1.8143 (0.042) 5.1946 (0.265)
2.0551 (0.015) 5.0612 (0.033)
2.0464 (0.115) 4.0763 (0.043)
1.6522 (0.043) 7.0208 (0.111)
1.8392 (0.014) 5.1262 (0.057)
1.7966 (0.040) 6.0618 (0.096)
2.0712 (0.019) 5.1637 (0.063)
1.9080 (0.023) 6.5666 (0.679)
2.2384 (0.016) 5.4694 (0.084)
2.0917 (0.108) 4.4795 (0.047)
1.7541 (0.032) 7.9697 (0.137)
1.9459 (0.024) 5.6369 (0.101)
3.3185 (0.042) 5.4840 (0.082)
2.8354 (0.129) 6.2730 (0.055)
2.8724 (0.052) 5.5970 (0.044)
2.9580 (0.041) 10.9987 (0.068)
2.8350 (0.028) 8.8325 (0.235)
2.8116 (0.022) 5.8362 (0.035)
3.4059 (0.025) 10.2300 (0.120)
3.4881 (0.038) 5.5105 (0.027)
2.8905 (0.109) 6.5906 (0.056)
3.1342 (0.059) 5.5723 (0.038)
3.0843 (0.018) 11.4934 (0.153)
3.0682 (0.033) 6.2124 (0.032)
2.9030 (0.013) 5.6417 (0.035)
3.8373 (0.054) 9.0491 (0.171)
3.7985 (0.056) 6.2184 (0.037)
3.0944 (0.083) 7.0006 (0.068)
3.2425 (0.060) 6.1288 (0.060)
3.3310 (0.017) 11.4864 (0.050)
3.1917 (0.021) 5.7056 (0.046)
3.0811 (0.011) 6.1855 (0.032)
4.4487 (0.087) 8.7778 (0.227)
4.0216 (0.077) 6.6320 (0.020)
3.1562 (0.066) 7.1867 (0.063)
3.3847 (0.074) 6.4182 (0.042)
3.4896 (0.063) 11.1641 (0.074)
3.3490 (0.015) 5.9626 (0.065)
3.1610 (0.019) 6.4419 (0.036)
4.7445 (0.088) 8.1669 (0.314)

(a) (b)
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diversity of the population. Our idea is to use IGD as a convergence strategy and,
when having many non-dominated individuals, to switch to the use of a technique
to maintain diversity. However, it is important to be careful in both cases. When
using IGD only as a convergence strategy, if we choose the individuals with low
values of di without considering if we have already selected individuals close
to a particular non-dominated individual, then, we can have difficulties, e.g.,
in MOPs with disconnected Pareto fronts such as DTLZ7 (in this case, we will
only obtain some portions of the Pareto front). If we only use the distribution
technique based on Euclidean distances without considering if the individual
which will compete is similar to another individual in one objective function,
then, we can obtain many weakly Pareto points and this could prevent us from
converging to the true Pareto front.

Our preliminary results indicate that our proposed GD-MOEA is a good
option to solve MOPs having both low and high dimensionality in objective
function space, if we consider both quality in the solutions and running time
required to obtain them. Our proposed approach is able to obtain better results
than MOEA/D, in most cases, and MOEA/D is only 1.46 times faster than our
GD-MOEA when we use a population size of 100 individuals and, it is only 2.4224
times faster when we use a population size of 300 individuals. Although, SMS-
EMOA-HYPE is better, in most cases, than GD-MOEA in terms of the quality
of the solutions generated, it requires up to 167.11 times more computational
time than our proposed approach.

As part of our future work, we want to improve our proposed selection mech-
anism so that it can deal (in a better way) with problems in which many weakly
Pareto optimal solutions are generated such as DTLZ1 and DTLZ3. Also, we
want to use other indicators to conduct an in-depth study, e.g., we could use
the two set coverage indicator to measure convergence and the spacing indicator
to assess the quality of the distribution of solutions generated by our proposed
approach. This is because SMS-EMOA-HYPE maximizes the hypervolume indi-
cator, and therefore, it has advantages over other two MOEAs when we use the
hypervolume indicator to assess our results (evidently, it is expected that SMS-
EMOA-HYPE will have better hypervolume values than other MOEAs, since
this is precisely the value that it aims to maximize).
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19. Rodŕıguez Villalobos, C.A., Coello Coello, C.A.: A new multi-objective evolution-
ary algorithm based on a performance assessment indicator. In: 2012 Genetic
and Evolutionary Computation Conference (GECCO 2012), Philadelphia, USA,
pp. 505–512. ACM Press, July 2012. ISBN: 978-1-4503-1177-9

20. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.: Coello. Using the Averaged Haus-
dorff Distance as a Performance Measure in Evolutionary Multiobjective Optimiza-
tion. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)

21. Trautmann, H., Wagner, T., Brockhoff, D.: R2-EMOA: focused multiobjective
search using R2-indicator-based selection. In: Nicosia, G., Pardalos, P. (eds.) LION
7. LNCS, vol. 7997, pp. 70–74. Springer, Heidelberg (2013)

22. Phan, D.H., Suzuki, J.: R2-IBEA: R2 Indicator based evolutionary algorithm for
multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computa-
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Abstract. This article reports an experimental analysis on stochastic
local search for approximating the Pareto set of bi-objective unconstrained
binary quadratic programming problems. First, we investigate two scalar-
izing strategies that iteratively identify a high-quality solution for a
sequence of sub-problems. Each sub-problem is based on a static or adap-
tive definition of weighted-sum aggregation coefficients, and is addressed
bymeans of a state-of-the-art single-objective tabu search procedure.Next,
we design a Pareto local search that iteratively improves a set of solutions
based on a neighborhood structure and on the Pareto dominance relation.
At last, we hybridize both classes of algorithms by combining a scalariz-
ing and a Pareto local search in a sequential way. A comprehensive experi-
mental analysis reveals the high performance of the proposed approaches,
which substantially improve upon previous best-known solutions. More-
over, the obtained results show the superiority of the hybrid algorithm over
non-hybrid ones in terms of solution quality, while requiring a competitive
computational cost. In addition, a number of structural properties of the
problem instances allow us to explain the main difficulties that the differ-
ent classes of local search algorithms have to face.

1 Introduction

The unconstrained binary quadratic programming (UBQP) problem is one of the
most challenging problem from single-objective combinatorial optimization [11].
Given a collection of n items such that each pair of items is associated with
a profit value that can be positive, negative or zero, the UBQP problem seeks
a subset of items that maximizes the sum of their paired values. The value of
a pair is summed up only if the two corresponding items are selected. From a
computational point-of-view, a feasible solution to a UBQP instance can be rep-
resented as a binary string of size n. Each position from the binary string maps to
a particular variable that indicates whether the corresponding item is included
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 171–186, 2015.
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in the subset of selected items or not. Beyond its theoretical significance [8],
the utility of UBQP has been demonstrated on a wide variety of application
fields [11]. Furthermore, a number of NP-hard combinatorial optimization prob-
lems can be recast as UBQP problems, such as graph coloring, max-cut, set
packing, set partitioning, or maximum clique, among others [11]. The single-
objective UBQP problem has received a growing interest in recent years [9,11],
and a multi-objective extension of UBQP has been proposed recently [12].

In this paper, we focus on bi-objective UBQP, where two profit values are
associated with each pair of items. By optimizing both sums of profit values
simultaneously, we can improve the descriptive power of the conventional single-
objective UBQP problem, and provide a more general formulation. However,
as for many problems from multi-objective combinatorial optimization, the bi-
objective UBQP problem raises several difficulties for heuristics design. In par-
ticular, the number of optimal solutions can be very large [12], and determining
whether a candidate solution is optimal is NP-complete, even in the single-
objective case [8]. For these reasons, we design and experiment with multi-
objective stochastic local search algorithms, and measure their efficiency and
their effectiveness on instances with different dimensions and correlation degrees
between the objective function values. Furthermore, we analyze the problem
structure to learn more about those difficulties, and to improve the design of
algorithms. The contributions of the paper are two-fold.

(i) We characterize the features of small-size, enumerable bi-objective UBQP
instances. More particularly, we analyze the number of global and local opti-
mal solutions, based on scalarizing functions and on the Pareto dominance
relation; and we examine the connectedness between optimal solutions.

(ii) We design and analyze local search algorithms for bi-objective UBQP, includ-
ing two scalarizing approaches, a Pareto-based approach, and a hybrid app-
roach combining these two complementary search strategies. The designed
algorithms substantially improve over the previous attempts in solving large-
size bi-objective UBQP instances [12]. More importantly, our experimental
analysis allows us to better understand how the performance of these classes
of algorithms relates to the structural properties of the search space, explain-
ing the high efficiency and effectiveness of the proposed approaches.

The remainder of the paper is organized as follows. In Section 2, we present
the bi-objective UBQP problem. In Section 3, we study the characteristics of
small-size instances. In Section 4, we introduce four stochastic local search algo-
rithms for bi-objective UBQP. In Section 5, we analyze the performance of these
algorithms on a set of large-size bi-objective UBQP instances. In Section 6, we
finally conclude the paper and discuss further research directions.

2 Bi-objective UBQP

This section presents the problem formulation, some definitions related to multi-
objective combinatorial optimization, and the problem instances that are inves-
tigated in the paper.
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2.1 Problem Formulation

The bi-objective UBQP (bUBQP) problem can be formalized as follows [12].

max f1(x) =
n∑

i=1

n∑
j=1

qij
1 xixj

max f2(x) =
n∑

i=1

n∑
j=1

qij
2 xixj

subject to x ∈ {0, 1}n

(1)

where (f1, f2) is the pair of objective functions to be maximized, n is the number
of items, Q1 = (qij

1 ) and Q2 = (qij
2 ) are both an n×n matrix of constant values,

either positive, negative or zero. As in the single-objective case, the solution
space X = {0, 1}n is defined on binary strings of size n; its size is then 2n.

2.2 Definitions

We denote by Z ⊆ IR2 the feasible region in the objective space, i.e. the image of
feasible solutions when using the maximizing function vector f = (f1, f2) such
that Z = f(X). The Pareto dominance relation is defined as follows. A solution
x ∈ X is dominated by a solution x′ ∈ X, denoted as x ≺ x′, if fk(x) ≤ fk(x′)
for all k ∈ {1, 2}, with at least one strict inequality. If neither x �≺ x′ nor x′ �≺ x
holds, then both solutions are mutually non-dominated. A solution x ∈ X is
Pareto optimal if there does not exist any other solution x′ ∈ X such that x ≺ x′.
The set of all Pareto optimal solutions is the Pareto set, and its mapping in the
objective space is the Pareto front. One of the most challenging issues in multi-
objective optimization is to identify a minimal complete Pareto set, i.e. one
Pareto optimal solution mapping to each point from the Pareto front. Since the
bUBQP problem is both NP-hard and intractable [12], approximate algorithms
like stochastic local search are well suited to identify a Pareto set approximation.

2.3 Problem Instances

Following [12], the definition of each bUBQP objective function is based on a
matrix Qk, k ∈ {1, 2}. As in the single-objective UBQP instances available in
the OR-lib [3], non-zero matrix integer values are randomly generated following
a uniform distribution in [−100,+100]. The density d ∈ [0, 1] gives the expected
proportion of non-zero entries in the matrix. Following a Bernoulli distribution
of parameter d, a given entry at position (i, j) is set to zero on both matrices,
i.e. qij

1 = qij
2 = 0. Moreover, we define a correlation coefficient ρ between the

data contained in the two matrices. The positive (respectively negative) data
correlation decreases (respectively increases) the degree of conflict between the
objective function values. The generation of correlated data follows a multivari-
ate uniform distribution of dimension 2 [12]. As reported in Fig. 1(a), the coef-
ficient ρ allows to tune the correlation between objective function values with a
high accuracy. The considered bUBQP problem instances as well as an instance
generator are available at the following URL: http://mocobench.sf.net/.

http://mocobench.sf.net/
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3 Characteristics of Small-Size bUBQP Instances

Thereafter, we study the impact of the density d and of the objective correlation ρ
on the number of Pareto optimal solutions, Pareto local optimal solutions, sup-
ported solutions, and on the connectedness property of bUBQP instances. More
particularly, we consider a density d ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and an objective
correlation ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0,+0.2,+0.4,+0.7,+0.9}. The prob-
lem size is set to n = 18 in order to enumerate the solution space exhaustively.
For each parameter setting, 30 independently generated random instances are
considered. Experimental results are given in Fig. 1(b–f). In the following, we
provide a detailed analysis of these statistics.

3.1 Pareto Optimal Solutions

Fig. 1(b) shows the proportion of Pareto optimal solutions in the solution space.
Interestingly, the density d does not affect the size of the Pareto set. However, the
objective correlation ρ modifies the number of Pareto optimal solutions to several
orders of magnitude. Indeed, almost 0.05% of the solution space correspond
to non-dominated solutions for conflicting objectives (ρ = −0.9), whereas this
number drops to less than 0.003% for correlated objective (ρ = +0.9). As a
consequence, the larger the objective correlation ρ, the lower the cardinality of
the Pareto set. This means that an algorithm is expected to take more time to
identify the whole Pareto set when the objectives are in conflict.

3.2 Supported Solutions

In multi-objective optimization, scalarizing approaches consist in transforming
the original problem into a single-objective one by means of an aggregation of
the objective function values. A typical example is the weighted-sum scalarizing
function [6] that can be defined as follows.

gλ(x) = λ1 · f1(x) + λ2 · f2(x) (2)

where x ∈ X is a candidate solution, and λ = (λ1, λ2), such that λ1, λ2 ≥ 0, is
a weighting coefficient vector. Supported solutions are non-dominated solutions
which are optimal with respect to a weighted-sum aggregation of the objective
functions. Their corresponding objective vectors are located on the boundary of
the convex hull of the Pareto front [6]. On the contrary, non-supported solutions
are not optimal for any setting of the weighting coefficient vector λ. In order
to explain the ability of scalarizing multi-objective optimization approaches to
identify a large portion of Pareto optimal solutions, we should put the problem-
related properties in relation with the proportion of supported solutions. Fig. 1(c)
shows the proportion of supported solutions in the Pareto set. Once again, the
matrix density d has a very small influence. However, when the objective corre-
lation increases, and despite the absolute number of supported solution actually
gets lower, the proportion of supported solutions on the Pareto set increases.
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Fig. 1. (a) Spearman correlation coefficient between the objective function values,
(b) ratio of the number of Pareto optimal solutions to the solution space size, (c) ratio
of the number of supported solutions to the Pareto set size, (d) ratio of the size of the
largest connected component of the Pareto graph for Hamming distance 1 to the Pareto
set size, (e) minimal Hamming distance to connect the Pareto graph, and (f) ratio of
Pareto local optimal solutions to the solution space size, with respect to the objective
correlation ρ, for d = 0.2 (◦), d = 0.4 (�), d = 0.6 (�), d = 0.8 (�) and d = 1.0 (�). For
each parameter setting, average values and confidence intervals (with a significance
level of 10−2) are reported over 30 independently generated random instances. The
problem size is n = 18. Notice the log-scale on the y-axis for (b) and (f).

For highly correlated objectives (ρ = +0.9), nearly all Pareto optimal solutions
are supported (this is even the case for some of the instances). On the contrary,
for conflicting objectives (ρ = −0.9), only 15% of Pareto optimal solutions are
supported. By putting this property in relation with algorithm design, we can
assume that scalarizing approaches should be more suited to approximate the
Pareto set of bUBQP instances with correlated objectives.

3.3 Connectedness

In the following, we describe some properties related to the connectedness of the
Pareto set [7]. We follow the definition of k-Pareto graph from [16]. The k-Pareto
graph is a graph PGk = (V,E), where each vertex in V corresponds to a Pareto
optimal solution, and there is an edge eij ∈ E between two nodes i and j only if
the shortest distance between solutions xi and xj ∈ X, with respect to a given
neighborhood, is below a bound k. For bUBQP, we adopt the Hamming distance
on binary strings. This corresponds to the number of moves performed with the
bit-flip neighborhood operator. Fig. 1(d) shows the ratio between the size of the
largest connected component in the 1-Pareto graph (PGk=1) and the size of the
Pareto set. The objective correlation ρ has a clear impact on this feature. Indeed,
the proportion of Pareto optimal solutions in the largest connected component



176 A. Liefooghe et al.

decreases from ρ = −0.9 to ρ = 0.4, and then slightly increases from ρ = 0.4 to
ρ = 0.9. Overall, we can expect to reach 50% to 95% of the whole Pareto set by
iteratively exploring the neighborhood of an approximation set initialized with
at least one non-dominated solution. However, when there are several connected
components in the 1-Pareto graph, it may happen that the distance between
those components is small. Fig. 1(e) reports the smallest distance k such that
the k-Pareto graph becomes connected, i.e. for all pairs of vertices xi, xj ∈ V in
PGk, there is a path between xi and xj . When this minimal distance k is around
9, which is the average distance between random solutions for n = 18, we can
conclude that the distance between Pareto optimal solutions is large. Actually,
for bUBQP instances, this minimal distance is clearly smaller (between 2 and
3 in average). This means that finding a subset of non-dominated solutions can
actually help to identify additional ones, which then may constitute a valuable
asset for initializing local search algorithms.

3.4 Pareto Local Optimal Solutions

In Fig. 1(f), we report the proportion of Pareto Local Optimal (PLO) solu-
tions [14] in the solutions space. A solution x ∈ X is a PLO with respect to
a neighborhood structure N if there does not exist any neighboring solution
x′ ∈ N (x) such that x ≺ x′. As above, the neighborhood structure is taken as
the 1-bit-flip, which is directly related to a Hamming distance 1. Once again,
the distribution d does not seem to affect the number of PLO. However, similar
to the trend observed on the Pareto set cardinality, the objective correlation ρ
modifies the number of PLO to several orders of magnitude, from 20% of the
solution space for ρ = −0.9 to less than 0.02% for ρ = +0.9. Therefore, by
assuming that the difficulty for Pareto-based local search gets higher when the
number of PLO is large, the difficulty of bUBQP instances might increase with
the degree of conflict between the objectives.

4 Local Search for bUBQP

In this section, we give the working principles of four stochastic local search algo-
rithms for identifying a Pareto set approximation to bUBQP instances. We start
by introducing the algorithmic components shared by the different approaches.
Then, we present the search strategies of two scalarizing local search algorithms,
one Pareto-based local search algorithm, as well as a hybrid approach where a
scalarizing and a Pareto local search phases are sequentially applied.

4.1 Main Ingredients

Neighborhood Relation. Similarly to the previous analysis, the neighbor-
hood structure of the proposed local search algorithms is based on the 1-bit-flip
operator: Two feasible solutions are neighbors if they differ exactly on one vari-
able. In other words, a given neighbor can be reached by changing the value
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of a binary variable to its complement from the current solution. The size of
the 1-bit-flip neighborhood structure is equal to the problem size n. As in the
single-objective UBQP, each bUBQP objective function can be evaluated incre-
mentally. We follow the fast incremental evaluation procedure proposed in [9] to
calculate the move gain of a given neighbor. For each objective, the whole set of
neighbors is evaluated in linear time. As a consequence, the objective values of
all neighboring solutions are evaluated in O(n) in the two-objective case.

Tabu Search. The tabu search algorithm proposed in [10] is reported to be one
of the best-performing approaches for single-objective UBQP. In order to extend
it to the multi-objective case, we consider a simple weighted-sum aggregation,
as presented in Section 3.2, so that the initial objective vector values are (tem-
porarily) transformed into a single scalar fitness value. Once the objective values
of a given neighboring solution have been (incrementally) evaluated, we compute
its scalar fitness value with respect to the weighted-sum problem (Eq. 2) for a
given definition of the weighing coefficient vector. As a short-term memory, we
maintain the tabu list as follows: Revisiting solutions is avoided within a certain
number of iterations, called the tabu tenure. The tabu tenure of a given variable
xi is denoted by tenure(i). Hence, variable xi will not be flipped again for a
number of tenure(i) iterations. Following [9], we set the tabu tenure of a given
variable xi after it has been flipped as tenure(i) = tt + rand(10), where tt is a
user-given parameter and rand(10) gives a random integer value in [1, 10]. From
the set of neighbors produced by all non-tabu moves, we select the one with the
best (highest) fitness value. However, all the neighbors are always evaluated, and
a tabu move can still be selected if it produces a better solution than the current
global best; this is called an aspiration criterion in tabu search [10]. The stop-
ping condition is satisfied when no improvement has been performed within a
given number of moves α, called the improvement cutoff. For more details on the
tabu search algorithm for single-objective UBQP, the reader is referred to [10].

4.2 Scalarizing Local Search with Uniform Weights (SLSunif)

The first approach consists in solving different settings of the weighted-sum
problem (Eq. 2) by means of multiple weighting coefficient vectors defined in a
way that the whole region of the Pareto front is covered in the objective space.
For solving each scalarizing sub-problem, any algorithm for the resulting single-
objective problem version can potentially be applied. In our case, we use the tabu
search algorithm detailed above as a (single-objective) solver. Let us consider a
set of μ uniformly defined weighting coefficient vectors (λ0, . . . , λi, . . . , λμ−1),
such that λi

1 = i/(μ − 1) and λi
2 = 1 − λi

1. Each weighting coefficient vector λi

corresponds to a scalarizing sub-problem WSi. We start by identifying a high-
quality solution with respect to the first objective function, corresponding to the
scalarizing sub-problem WS0, associated with the weighting coefficient vector
λ0 = (0, 1). The final solution is then used as a seeding solution for solving the
next sub-problem WS1. We iterate this principle, each time the initial solution for



178 A. Liefooghe et al.

sub-problem WSi being the one that is returned by the tabu search algorithm
for the previous sub-problem WSi−1. At last, in order to avoid a bias in the
search process towards one objective, we re-run the same strategy by considering
the reversed sequence of weighting coefficient vectors (λμ−1, λμ−2, . . . , λ0). The
algorithm outputs the union of non-dominated solutions generated during these
two phases. The resulting scalarizing local search with uniform weights (SLSunif)
adapts the “double two-phase local search” from [15] to bUBQP by using the
single-objective tabu search procedure for solving scalarizing sub-problems.

4.3 Dichotomic Scalarizing Local Search (SLSdicho)

Similarly, the second approach is based on solving a sequence of scalarizing
sub-problems, by means of a weighted-sum aggregation function, with the single-
objective tabu search algorithm. However, unlike SLSunif that defines them a pri-
ori, the weighting coefficient vectors are now iteratively determined based on the
solutions identified at previous steps. The resulting SLSdicho approach follows
the principles of dichotomic search from exact bi-objective optimization [1], and
adapt them to a local search engine strategy, similarly to [5]. Notice that, by using
any exact algorithm instead of the tabu search procedure, such a dichotomic
search would output the (exact) set of supported solutions [6]. Unfortunately,
this would require to solve an NP-hard problem for each scalarizing sub-problem.
Indeed, each sub-problem corresponds to a single-objective UBQP instance.

We start by identifying a high-quality solution for each separate objective.
Let x1 (resp. x2) be the approximate solution found by tabu search for objective
f1 (resp. f2). Both solutions are then added to a sequence UF =

{
x1, x2, . . .

}
,

arranged in the decreasing order of f1-values. Next, at each step of the algorithm,
we define a weighting coefficient vector λ =

(
f2(x2) − f2(x1), f1(x1) − f1(x2)

)
,

corresponding to the sub-problem to be solved in the current iteration. It gives a
search direction that is perpendicular to the segment defined by f(x1) and f(x2)
in the objective space. Let x be the solution identified by tabu search for this
definition of λ. If f1(x1) > f1(x) > f1(x2) and f2(x2) > f2(x) > f2(x1), then x
is added to the sequence UF . Otherwise, we remove x1 from UF and add it to
an external set UT . Following [5], for each scalarizing sub-problem, we use the
solutions found in previous iterations to seed the search process of the current
iteration. Based on preliminary experiments, both x1 and x2 are here used as
an initial solution for two independent runs of the tabu search procedure based
on λ. The SLSdicho algorithm iterates this principle until UF contains less than
two elements, and returns the non-dominated solutions from UF ∪ UT .

4.4 Pareto Local Search (PLS)

Let us now consider a Pareto approach based on a set of solutions and local
search principles. In contrast to scalarizing approaches, the selection process is
here directly based on the Pareto dominance relation. A typical example is the
Pareto Local Search (PLS) algorithm [14]. An archive of mutually non-dominated
solutions found so far is maintained in two different sets: VF for non-dominated
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solutions whose neighborhood has not yet been explored, and VT for solutions
whose neighborhood has already been explored. These two sets are used in order
to avoid a useless re-evaluation of a solution’s neighborhood. The algorithm
starts with a set of mutually non-dominated solutions to initialize VF , typically
a single random solution. At each iteration, one unvisited solution is chosen at
random from VF . All its neighboring solutions are (incrementally) evaluated and
checked for insertion in the archive. The current solution is then discarded from
VF and added to VT , and dominated solutions are removed from VF ∪ VT . The
algorithm stops once VF is empty, i.e. all solutions from the archive are visited.
PLS always terminates and returns a maximal Pareto local optimum set [14].

4.5 Two-Phase Local Search (TP-LS)

The final algorithm consists in a hybrid two-phase approach, where SLSdicho and
PLS are applied in a sequential way. It combines two fundamentally different and
complementary search strategies: a scalarizing and a Pareto-based approach. In
the first phase, SLSdicho is applied to identify a set of approximate supported
solutions, as described in Section 4.3. This set of mutually non-dominated solu-
tions is then used to initialize the archive VF of the PLS algorithm, and is further
improved by exploring the neighborhood of its own content until no improve-
ment is possible. Hence, contrary to the conventional PLS, the search process
does not start with a single random solution, but with a set of good-quality
solutions identified by a scalarizing approach. The performance of the designed
two-phase local search algorithm (TP-LS) should be impacted by the connect-
edness property for the problem under consideration; the more connected the
Pareto optimal solutions, the easier to identify new non-dominated solutions
from identified ones. Notice that TP-LS shares similar principles with existing
approaches proposed for other problem classes [4,13,15].

5 Experimental Analysis

5.1 Experimental Design

We conduct an experimental study on the influence of the problem size (n) and
of the objective correlation (ρ) over the performance of the proposed local search
algorithms for approximating the Pareto set of bUBQP problem instances. In addi-
tion, we consider the best-known approximation sets (best-known) identified by
multiple variants of evolutionary and memetic algorithms proposed in [12].

We investigate the following instance parameter setting: a problem dimen-
sion n ∈ {1000, 2000, 3000, 4000, 5000} and a correlation between the objective
function values ρ ∈ {−0.5,−0.2, 0.0,+0.2,+0.5}. The density of the matrices is
set to d = 0.8. One instance, generated at random, is considered per parameter
combination. This leads to a total of 25 problem instances. A set of 30 runs per
instance is performed for each algorithm. All the algorithms start with a ran-
dom solution. The tabu tenure tt is set to n/150 and the improvement cutoff α



180 A. Liefooghe et al.

is set to n. At last, for each phase of SLSunif, μ = 101 weighting coefficient vec-
tors (λ0, . . . , λi, . . . , λ100) are uniformly defined as λi

1 = i/100 and λi
2 = 1 − λi

1.
Since all the algorithms have a natural stopping condition, we measure their

performance in terms of approximation set quality and computational cost. For
each instance, we examine the quality of the Pareto set approximations identified
by the competing algorithms in terms of hypervolume and epsilon indicators [17].
First, we compute the hypervolume relative deviation (hypervolume) as (hv(R)−
hv(A))/hv(R), where A ⊆ Z is an approximation set and R is a reference set.
The reference set is the best-found approximation over all tested configurations
for the instance under consideration. Let z−

k (resp. z+k ) be the worst (resp. best)
value obtained over all approximation sets for objective fk, the reference point
z̄ = (z̄1, z̄2) for the hypervolume calculation is set to z̄k = z−

k − (z+k − z−
k ) · 10−2,

k ∈ {1, 2}. Additionally, the epsilon indicator (epsilon) gives the minimum
multiplicative factor by which an approximation set has to be shifted in the
objective space in order to weakly dominate the reference set. In both cases, a
lower indicator-value is better.

5.2 Experimental Results

A summary of our computational results is presented in Table 1, following the
presentation from [2]. The first line corresponds to the bUBQP instance with
ρ = −0.5 and n = 1000, and reports the quality of the Pareto set approximation
obtained by the different algorithms with respect to hypervolume. The average
hypervolume relative deviation obtained by SLSunif, SLSdicho, PLS, TP-LS and
best-known over the 30 executions is respectively 0.009, 0.006, 0.002, 0.000 and
0.031. The ranking obtained by means of a pairwise Wilcoxon signed-rank non-
parametric statistical test gives the following order for this particular setting:
(1) TP-LS, (2) PLS, (3) SLSdicho, (4) SLSunif, and (5) best-known. Complemen-
tarily, Fig. 2 shows the average indicator-values for a subset of instances (the
error bars indicate the confidence interval within a significance level of 10−2).
The results from best-known are omitted for a better readability.

Clearly, all the local search algorithms investigated in the paper largely
improve over the previous best-known approximation sets from [12]. Indeed,
for the 25 bUBQP instances under investigation, best-known obtains the lowest
rank for 23 of them in terms of hypervolume and epsilon. A simple approach
like SLSunif is able to obtain better best-known results in all the instances but
one. Among the algorithms proposed in the paper, SLSunif is repeatedly domi-
nated by the others with respect to both indicators. The only notable exceptions
are for instances with correlated objectives where SLSunif performs better than
PLS in terms of hypervolume (while it is slightly worse in terms of epsilon), and
for large-size instances with conflicting objectives where PLS encounters more dif-
ficulties compared with other approaches. In both cases, the reason seems to be
that the approximation sets identified by PLS badly covers the lexicographically
optimal regions of the Pareto front. This is also the reason why SLSdicho out-
performs PLS on more than half of the instances with respect to hypervolume,
whereas the same only happens four times with respect to epsilon.
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Table 1. Comparison of the competing local search algorithms and of the previ-
ous best-known approximation [12] with respect to the hypervolume relative deviation
(hypervolume) and to the unary multiplicative epsilon indicator (epsilon). The first
value stands for the number of algorithms that statistically outperform the one under
consideration with respect to a pairwise Wilcoxon signed-rank non-parametric statis-
tical test with a p-value of 10−2 by using a Bonferroni correction (lower is better).
The number in brackets stands for the average indicator-value, rounded to 10−3 (lower
is better). Bold ranking values correspond to the best-performing algorithm for the
instance and the indicator under consideration.

ρ n SLSunif SLSdicho PLS TP-LS best-known [12]
hypervolume

−0.5 1000 3 (0.009) 2 (0.006) 1 (0.002) 0 (0.000) 4 (0.031)

−0.2 1000 3 (0.008) 2 (0.006) 1 (0.003) 0 (0.000) 4 (0.023)

0.0 1000 3 (0.007) 2 (0.006) 1 (0.004) 0 (0.000) 4 (0.016)

0.2 1000 1 (0.005) 1 (0.005) 3 (0.006) 0 (0.001) 4 (0.008)

0.5 1000 2 (0.002) 3 (0.003) 4 (0.008) 0 (0.002) 0 (0.002)

−0.5 2000 3 (0.007) 2 (0.004) 1 (0.002) 0 (0.000) 4 (0.053)

−0.2 2000 3 (0.007) 2 (0.004) 1 (0.003) 0 (0.001) 4 (0.047)

0.0 2000 3 (0.007) 1 (0.005) 1 (0.005) 0 (0.001) 4 (0.041)

0.2 2000 2 (0.005) 1 (0.004) 3 (0.006) 0 (0.001) 4 (0.023)

0.5 2000 1 (0.003) 1 (0.003) 4 (0.010) 0 (0.002) 3 (0.006)

−0.5 3000 3 (0.007) 2 (0.003) 1 (0.002) 0 (0.000) 4 (0.083)

−0.2 3000 3 (0.007) 1 (0.003) 1 (0.003) 0 (0.001) 4 (0.068)

0.0 3000 3 (0.007) 1 (0.004) 2 (0.006) 0 (0.001) 4 (0.062)

0.2 3000 2 (0.006) 1 (0.004) 3 (0.007) 0 (0.001) 4 (0.037)

0.5 3000 2 (0.003) 1 (0.002) 3 (0.010) 0 (0.001) 3 (0.010)

−0.5 4000 3 (0.007) 1 (0.003) 2 (0.006) 0 (0.000) 4 (0.092)

−0.2 4000 3 (0.007) 1 (0.003) 2 (0.004) 0 (0.001) 4 (0.077)

0.0 4000 3 (0.007) 1 (0.003) 2 (0.005) 0 (0.001) 4 (0.093)

0.2 4000 2 (0.004) 1 (0.002) 3 (0.006) 0 (0.001) 4 (0.047)

0.5 4000 2 (0.003) 1 (0.002) 3 (0.008) 0 (0.001) 4 (0.014)

−0.5 5000 2 (0.007) 1 (0.002) 3 (0.020) 0 (0.000) 4 (0.141)

−0.2 5000 2 (0.007) 1 (0.003) 3 (0.008) 0 (0.001) 4 (0.130)

0.0 5000 3 (0.006) 1 (0.003) 2 (0.006) 0 (0.001) 4 (0.130)

0.2 5000 2 (0.005) 1 (0.003) 3 (0.007) 0 (0.001) 4 (0.094)

0.5 5000 2 (0.003) 1 (0.002) 3 (0.010) 0 (0.001) 4 (0.021)

epsilon

−0.5 1000 3 (1.013) 2 (1.009) 1 (1.003) 0 (1.001) 4 (1.015)

−0.2 1000 2 (1.011) 2 (1.009) 1 (1.004) 0 (1.001) 4 (1.014)

0.0 1000 2 (1.010) 2 (1.010) 1 (1.005) 0 (1.001) 2 (1.010)

+0.2 1000 2 (1.009) 3 (1.009) 1 (1.005) 0 (1.001) 2 (1.008)

+0.5 1000 3 (1.011) 3 (1.012) 2 (1.008) 0 (1.002) 1 (1.005)

−0.5 2000 3 (1.009) 2 (1.007) 1 (1.003) 0 (1.001) 4 (1.026)

−0.2 2000 2 (1.008) 2 (1.008) 1 (1.003) 0 (1.001) 4 (1.027)

0.0 2000 3 (1.009) 2 (1.007) 1 (1.005) 0 (1.001) 4 (1.025)

+0.2 2000 3 (1.009) 2 (1.008) 1 (1.004) 0 (1.001) 4 (1.019)

+0.5 2000 2 (1.011) 1 (1.009) 1 (1.008) 0 (1.002) 4 (1.014)

−0.5 3000 3 (1.009) 2 (1.005) 1 (1.003) 0 (1.000) 4 (1.051)

−0.2 3000 3 (1.009) 2 (1.006) 1 (1.003) 0 (1.001) 4 (1.039)

0.0 3000 3 (1.008) 1 (1.006) 1 (1.005) 0 (1.001) 4 (1.034)

+0.2 3000 3 (1.007) 2 (1.006) 1 (1.004) 0 (1.001) 4 (1.025)

+0.5 3000 2 (1.005) 1 (1.004) 1 (1.004) 0 (1.001) 4 (1.011)

−0.5 4000 3 (1.008) 1 (1.004) 2 (1.007) 0 (1.000) 4 (1.055)

−0.2 4000 3 (1.008) 2 (1.005) 1 (1.003) 0 (1.001) 4 (1.042)

0.0 4000 3 (1.008) 2 (1.005) 1 (1.004) 0 (1.001) 4 (1.059)

+0.2 4000 3 (1.006) 2 (1.004) 1 (1.003) 0 (1.001) 4 (1.033)

+0.5 4000 3 (1.005) 1 (1.003) 1 (1.003) 0 (1.001) 4 (1.020)

−0.5 5000 2 (1.008) 1 (1.004) 3 (1.021) 0 (1.000) 4 (1.074)

−0.2 5000 2 (1.008) 1 (1.004) 2 (1.007) 0 (1.001) 4 (1.090)

0.0 5000 3 (1.008) 1 (1.005) 1 (1.004) 0 (1.001) 4 (1.064)

+0.2 5000 3 (1.007) 1 (1.004) 1 (1.004) 0 (1.001) 4 (1.050)

+0.5 5000 2 (1.004) 1 (1.003) 2 (1.004) 0 (1.001) 4 (1.025)
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Fig. 2. Comparison of SLSunif (◦), SLSdicho (�), PLS (�) and TP-LS (�) with respect to
hypervolume (top) and epsilon (bottom) for ρ = −0.5 (left), ρ = 0.0 (center), and
ρ = +0.5 (right). A lower value is better.

Interestingly, the quality of the approximation sets identified by scalariz-
ing approches (SLSunif, SLSdicho) slightly increases with the objective correla-
tion ρ, as the proportion of supported solutions; see Fig. 1(c). By comparing
SLSunif with SLSdicho, the later is always at least as good as the former for all
the instances we investigated but one (ρ = +0.5, n = 1000). The reason is that
the SLSunif algorithm is limited on the approximation set size that it is able to
identify (a fixed number of 101 weighting coefficient vectors times two phases,
i.e. 202 solutions at most); see Fig. 3. On the contrary, SLSdicho adaptively
determines a number of weighting coefficient vectors based on the solutions it
iteratively identifies. As a consequence, it takes advantage of manipulating an
unbounded approximation set, that allows SLSdicho to obtain better indicator-
values overall. Still, as shown in Fig. 3, the number of solutions identified by both
scalarizing approaches, which only seek for supported solutions, are lower than
Pareto-based approaches by several orders of magnitude. However, the number
of solutions found by all approaches reduces with the objective correlation ρ, as
the number of Pareto optimal solutions reported in Section 3.1.

Overall, in terms of approximation quality, there is a clear advantage to
TP-LS. Actually, hybridizing SLSdicho and PLS allows to obtain statistically better
approximation sets, in terms of hypervolume and epsilon, than all the other
competing algorithms, for all the instances. In particular, there is a substantial
improvement of the indicator-values, showing that TP-LS is consistently able to
identify a high-quality approximation set, which is very close to the reference set,
especially for instances with conflicting objectives. Indeed, more than 99.67% of
the best-found hypervolume is covered by the approximation set identified by
TP-LS in the worst case. The epsilon indicator-value is always less than 1.003.
The weakness of PLS in identifying good-quality lexicographical solutions seems
to be overcome by initializing the archive with high-quality scalarizing solutions.
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to the size of the approximation set found for ρ = −0.5 (left), ρ = 0.0 (center), and
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Fig. 4. Comparison of SLSunif (◦), SLSdicho (�), PLS (�) and TP-LS (�) with respect to
to the CPU time (top), the number of comparisons (middle), and the number of visited
solutions (bottom), for ρ = −0.5 (left), ρ = 0.0 (center), and ρ = +0.5 (right). Notice
the log-scale on the y-axis.

This means that finding some non-dominated solutions can actually help to
identify additional ones, as conjectured in Section 3.3.

More surprisingly, the hybrid TP-LS approach also allows to improve the
performance of PLS in terms of computational time. As reported in Fig. 4, the
running time of TP-LS is below the one of PLS for most of the instances. By
analyzing this more carefully, TP-LS actually allows to generate much more can-
didate solutions, and as many potentially non-dominated solutions as PLS, by
performing much less pairwise comparisons, particularly for large-size instances.
As well, the overhead of TP-LS compared to only performing the first phase as in
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SLSdicho is almost insignificant. At last, Fig. 4 also reveals that the loss of SLSunif
in terms of quality is in fact counter-balanced by a very short computing time,
which is lower than all other algorithms by several orders of magnitude. Actually,
one single run of SLSunif allows to improve the aggregated best-known results
from [12] by running faster than each single run of the algorithms from [12].

6 Conclusions

In this paper, we designed and analyzed stochastic local search algorithms for
identifying a Pareto set approximation in bi-objective unconstrained binary
quadratic programming. First, we designed a local search approach that iter-
atively identifies an approximate solution for multiple scalarizing sub-problems,
such that the whole region of the Pareto front is covered in the objective space.
The resulting SLSunif algorithm is based on a weighted-sum aggregation function,
on a set of uniformly defined weighting coefficient vectors, and on a state-of-the-
art tabu search procedure for the single-objective version of the problem under
consideration. The scalarizing sub-problems are solved in sequence, such that
the solution found at a given iteration is used to initialize the search process
of the subsequent iteration. SLSunif allows to obtain a substantial improvement
over the best-know solutions from previous studies with much less computations.
Furthermore, the computational ressources required for instances with thousands
of variables is less than a few minutes. However, the given number of weight-
ing coefficient vectors severely limits the cardinality of the approximation set
identified by SLSunif. This user-defined parameter cannot be easily set a priori
without performing an expensive experimental campaign. For this reason, we
considered an improved scalarizing approach, based on the dichotomic search
principles, that defines the weighting coefficient vector to be used in the current
iteration based on solutions identified in previous iterations. As a consequence,
there is no user-defined limit on the number of solutions manipulated by this
search strategy. The designed SLSdicho algorithm allows to improve the results of
SLSunif in terms of quality, while inducing an extra cost in terms of computing
time. Still, for these two scalarizing approaches, that both seek supported opti-
mal solutions only, the cardinality of the obtained approximation set is less than
those of Pareto-based approaches. In addition, we highlighted that the perfor-
mance of scalarizing local search decreases with the degree of conflict between
the objectives, following the proportional number of supported solutions. Next,
a Pareto local search algorithm, that iteratively explores the neighborhood of
an archive of mutually non-dominated solutions, obtains similar results in terms
of quality indicator-values, while requiring even more computational resources.
Indeed, the PLS strategy obtains larger approximation sets while exploring much
less candidate solutions. The bottleneck of its effectiveness is the number of com-
parisons required to maintain the archive, while the bottleneck of its efficiency
is a poor quality in finding strong solutions at the extremes of the Pareto front.
At last, we designed a two-phase algorithm that applies SLSdicho and PLS in a
sequential way, the output of the former being the input of the latter. The TP-LS
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approach significantly surpasses the other algorithms over all the configurations
we experimented. The computational overhead is negligible compared with the
stand-alone SLSdicho approach, TP-LS being able to generate as many solutions
as PLS while performing much less comparisons. This hybrid algorithm profits
from the closeness that exists between optimal solutions. Starting with a subset
of approximate (supported) non-dominated solutions, TP-LS is able to identify
additional ones, then improving the overall approximation set quality.

Extending the stochastic local search approaches investigated in the paper
to unconstrained binary quadratic programming with more than two objectives
would improve even more the expressive ability of the problem formulation. This
would provide a more general unifying modeling and solution framework for
multi-objective optimization that could potentially enable an efficient reformu-
lation and resolution of a wide class of large-scale and NP-hard multi-objective
combinatorial optimization problems.
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Abstract. The Indicator-Based Evolutionary Algorithm (IBEA) is one
of the first indicator-based multiobjective optimization algorithms and
due to its wide availability in several algorithm packages is often used
as a reference algorithm when benchmarking multiobjective optimizers.
The original publication on IBEA proposes to use two specific variants:
one based on the ε-indicator and one based on the hypervolume. Several
experimental studies concluded that, surprisingly, the IBEA variant with
the ε-indicator performs better than the one with the hypervolume—even
if the (unary) hypervolume indicator itself is the quality measure used in
the performance assessment. Recently, a small bug has been found in the
hypervolume variant of IBEA with large implications on its performance.
Here, we not only explain the bug in detail and correct it, but also present
the (improved) results of the corrected version. Moreover, and probably
even more important for the scientific community, we point out that this
bug has been transferred to other than the original software package,
discuss how this obscured the bug, and argue in favor of some simple,
even obvious guidelines how the optimization community should deal
with algorithm source codes, documentation, and the (natural) existence
of bugs in the future.

1 Introduction

The Indicator-Based Evolutionary Algorithm (IBEA, [12]) is one of the first pro-
posed indicator-based multiobjective optimization algorithms. Due to its simplic-
ity, good performance, and wide availability in several algorithm packages such
as PISA [3], Paradiseo [7], jMetal [5] or the MOEA Framework [6], IBEA is an
often-used reference algorithm when benchmarking multiobjective optimizers.

The main idea behind IBEA is to employ in the calculation of a solution’s
fitness a binary quality indicator, which assigns two solution sets a scalar value
indicating their relative quality. The original publication proposes to use two spe-
cific IBEA variants: one based on the additive ε-indicator, denoted IBEAε+ in
the following, and one based on the hypervolume (denoted IBEAHD; more details
about the algorithm are provided in the following section). Several experimental
studies concluded that, surprisingly, the IBEA variant with the ε-indicator per-
forms better than the one with the hypervolume [1,2,10]—even if the (unary)
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 187–201, 2015.
DOI: 10.1007/978-3-319-15934-8 13
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hypervolume indicator itself is the quality measure used in the performance
assessment [12]. This led to the fact that most studies using IBEA use the ver-
sion employing the ε-indicator.

Recently, a small bug has been reported in the hypervolume variant of IBEA
in the Paradiseo [7] implementation which turned out to stem from its original
PISA implementation [3] and which has some large implications on its perfor-
mance. In the following, we not only explain the bug in detail and correct it,
but also present the (improved) results of the corrected version on the same test
problems as in the original publication [12]. As expected, the corrected version
outperforms the buggy one with the exceptions of the discrete knapsack and
network processor design problems and for a low number of objective functions
where the two versions do not differ statistically significantly. On the ZDT6
problem, we furthermore show that the former version was not invariant under
permutations of the objective functions while the corrected one is.

Moreover, we have seen that the same bug has been also present in other
algorithm packages such as jMetal [5] and the MOEA framework [6]. Hence, we
argue during the final part of the paper in favor of independent implementations,
thorough testing, and a precise and honest documentation of algorithm packages
within our community.

2 IBEA

The general Indicator-Based Evolutionary Algorithm (IBEA) as proposed by Zit-
zler and Künzli [12] is one of the very first multiobjective optimizers to integrate
user preferences in a clear and mathematically sound way. The main contribu-
tion of IBEA was to open up a new research area on the design of multiobjective
optimization algorithms which employ a so-called quality indicator in their (envi-
ronmental) selection procedure.

Before we describe the original IBEA algorithm in more detail, let us men-
tion that we consider, w.l.o.g., minimization problems here where the Pareto
dominance relation ≺ is defined between solutions x1 and x2 as x1 ≺ x2 if and
only if fi(x1) ≤ fi(x2) for all objective functions fi : X → Z (1 ≤ i ≤ k) and
fi(x1) < fi(x2) for at least one objective function. In this case, we also say x1

dominates x2. An m-ary quality indicator is furthermore a function I : Ωm →
that maps m solution sets X1, . . . , Xm from the set of all possible solutions
(X1, . . . , Xm ∈ Ω = 2X) to a real number. Nowadays, mostly unary quality indi-
cators such as the standard hypervolume indicator are used in both performance
assessment and the definition of solution quality within the environmental selec-
tion. Instead, IBEA itself is based on binary quality indicators that map two
solution sets to a real number.

To be more precise, the fitness of a solution x1 in IBEA’s population P is
assigned by

F (x1) =
∑

x2∈P\{x1}
−e−I({x2},{x1})/(c·κ)
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where κ > 0 is a parameter of the algorithm and c = maxx1,x2∈P |I(x1, x2)| is
the maximum indicator value between any two population members. This fitness
assignment scheme of IBEA has the theoretical property that if a solution x1

dominates solution x2 then also F (x1) > F (x2) as long as the chosen binary
indicator I itself is “dominance preserving”1 [12]. Note that in the following, we
abuse the mathematical notation and write I(x, y) instead of I({x}, {y}) if x
and y are single solutions. Examples of dominance preserving binary indicators
are the binary hypervolume and the binary ε-indicator which, for that reason,
have been proposed to be used in the original IBEA publication.

The binary (additive) ε-indicator assigns to two solution sets A and B the
minimal objective value ε by which all solutions in A have to be improved (along
each objective) in order to (weakly) dominate all solutions in B:

Iε+(A,B) = min
ε

{∀x2 ∈ B∃x1 ∈ A : fi(x1) − ε ≤ fi(x2) for i ∈ {1, . . . , k}} .

The binary ε-indicator is negative if all solutions in B are dominated by at least
one solution in A.

The binary hypervolume indicator used in [12], assigns to two solution sets
A and B the “volume of the space that is dominated by B but not by A with
respect to a predefined reference point” in objective space [12]:

IHD(A,B) =
{

IH(B) − IH(A) if ∀x2 ∈ B∃x1 ∈ A : x1 ≺ x2

IH(A + B) − IH(A) else (1)

where IH(.) denotes the standard (unary) hypervolume proposed in [13] and the
index “HD” stands for “hypervolume difference”. Also IHD(A,B) is negative if
all solutions in B are dominated by at least one solution in A. Note also that nei-
ther of the two binary indicators is symmetric, i.e., typically I(A,B) �= I(B,A)
holds. The corresponding IBEA variants using the above defined hypervolume
and ε-indicator are denoted IBEAHD and IBEAε+ respectively here.

Algorithm 1 shows the pseudo code of the entire IBEA procedure (copied and
adapted from [12]). It starts with generating α solutions uniformly at random
from the search space (Step 1). Then, IBEA follows the standard way of select-
ing solutions for mating (via a binary tournament with replacement, Step 5),
generating new solutions from those selected solutions (via problem dependent
crossover and mutation operators, Step 6), and environmental selection where
the above described fitness assignment scheme is used (Step 2) to iteratively
reduce the population back to the population size α by deleting the solutions
with worst fitness successively (Step 3). Important to note is that the described
adaptive version of IBEA scales both the objective values before computing the
indicator values (Steps 2.1 and 2.2) and the indicator values themselves before
to apply the above fitness assignment scheme (Steps 2.3, 2.4, and 3.3). More-
over, the calculation of the fitness is partially updated as soon as one solution
1 A binary quality indicator I is called dominance preserving if for all solutions

x1, x2, x3 ∈ X both x1 ≺ x2 =⇒ I({x1}, {x2}) < I({x2}, {x1}) and x1 ≺ x2 =⇒
I({x3}, {x1}) ≥ I({x3}, {x2}) hold.
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Algorithm 1. (Adaptive) IBEA as proposed in [12]
Input:α (population size)

N (maximum number of iterations)

κ (fitness scaling factor)

Output: A (Pareto set approximation)

Step 1: Initialization: Generate initial population P of size α at random; set iteration
counter m = 0

Step 2: Fitness Assignment: First scale objective and indicator values; then use scaled

values to assign fitness for each population member x
1 ∈ P :

1. Determine lower (bi = minx∈P fi(x)) and upper bound (bi = maxx∈P fi(x))
of each objective function

2. Scale each objective to interval [0, 1]: f
′
i(x) = (fi(x) − bi)/(bi − bi)

3. Calculate indicator values I(x
1
, x

2
) using the scaled objective values f

′
i and

determine the maximum absolute indicator value c = maxx1,x2∈P |I(x
1
, x

2
)|

4. For all x
1 ∈ P set F (x

1
) =
∑

x2∈P \{x1}
−e

−I(x2,x1)/(c·κ)

Step 3: Environmental Selection: Iterate the following three steps until the size of
population P does not exceed α :

1. Choose an individual x
∗ ∈ P with the smallest fitness value, i.e.,

F (x
∗
) ≤ F (x) for all x ∈ P

2. Remove x
∗

from the population

3. Update fitness values of all remaining individuals x ∈ P as

F (x) = F (x) + e
−I(x∗,x)/(c·κ)

Step 4: Termination: If m ≥ N or another stopping criterion is fulfilled, stop and
return the non-dominated solutions in P as A

Step 5: Mating Selection: Perform binary tournament selection with replacement
on P in order to fill the temporary mating pool P

′

Step 6: Variation: Apply recombination and mutation operators to the mating pool P
′

and add the resulting offspring to P . Increment iteration counter (m = m + 1)
and go to Step 2

is deleted during the environmental selection (Step 3.3). Finally, the algorithm
terminates when the total number of iterations N are reached or another user-
defined stopping criterion is reached (not implemented in the PISA version).

3 The Bug

The reported bug appeared in the hypervolume calculation of IBEAHD, more
precisely in the recursive “hypervolume by slicing objectives” technique used in
the original PISA implementation, see line 33 of the original C code in Fig. 2. It
is caused by a typo which misplaces the correct variable “a” by “b”—resulting
in wrongly adding the volume of an objective space part to the indicator value
I(a, b) that is not dominated by either solution. Figure 1 shows an example where
the bug not only miscalculates the binary hypervolume indicator values but also
results in a different order of the two solutions with respect to their fitness. Note
that the bug results only in erroneous decisions where the point on the left is
wrongly preferred while the opposite never happens. Hence, it can be expected
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Fig. 1. Illustration of the impact of the bug on the comparison of two solutions with
objective vectors a and b. The gray box corresponds to the true hypervolume domi-
nated solely by objective vector a while the striped box shows the actual contribution
computed by the original, buggy code. The buggy code considers a better than b while
the corrected code considers b better. In both cases, the hypervolume solely dominated
by b is computed correctly.

that the correction of this bug has an impact on the search performance of IBEA.
It might even explain and counterbalance the impression of previous benchmark-
ing studies that the hypervolume-based IBEA does surprisingly not perform as
well as the ε-indicator-based version when the (unary) hypervolume indicator
is used as performance measure. In the following, we will thus investigate the
effect of the bug fix on the performance of IBEAHD extensively.

4 Concrete Implications for the Performance of IBEA

To investigate the concrete implications of the bug (and its correction) on the
performance of IBEA, we rerun the experiments of the original IBEA paper
by Zitzler and Künzli [12]. Before we have a closer look on the results, let us
note that here, we can show the results for the 2-objective ZDT6 and EXPO2
problems, the 3-objective DTLZ2, DTLZ6, and EXPO3 problems, and on the 4-
objective EXPO4 problem mentioned in the original publication—many of which
had to be omitted in the original IBEA paper. As much as possible, we tried to
use the same problem and algorithm parameters as in the original study.

4.1 Experimental Setup

All experiments were performed in PISA [3] with all modules downloaded from
http://www.tik.ee.ethz.ch/sop/pisa in their August 2014 version. As problems,
we chose the continuous ZDT6, DTLZ2, and DTLZ6 problems with 10, 12, and
22 variables and 2, 3, and 3 objective functions respectively as suggested in the
original publications [4,11]. In addition, we chose the discrete 2-objective 0-1-
knapsack problem with 100 items [13] as well as the 2-, 3-, and 4-objective EXPO
problem (network processor design) with standard PISA settings [9].

Together with IBEAε+ and the buggy and corrected IBEAHD, we ran the
PISA implementations of NSGA-II and SPEA2 as in [12]. All algorithms used a

http://www.tik.ee.ethz.ch/sop/pisa
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1 double calcHypInd(ind *p_ind_a, ind *p_ind_b, int d)

2 /* calculates the hypervolume of that portion of the objective space that

3 is dominated by individual a but not by individual b */

4 {

5 double a, b, r, max;

6 double volume = 0;

7

8 r = rho * (bounds[d - 1].max - bounds[d - 1].min);

9 max = bounds[d - 1].min + r;

10

11 a = p_ind_a->f[d - 1];

12 if (p_ind_b == NULL)

13 b = max;

14 else

15 b = p_ind_b->f[d - 1];

16

17 if (d == 1)

18 {

19 if (a < b)

20 volume = (b - a) / r;

21 else

22 volume = 0;

23 }

24 else

25 {

26 if (a < b)

27 {

28 volume = calcHypInd(p_ind_a, NULL, d - 1) * (b - a) / r;

29 volume += calcHypInd(p_ind_a, p_ind_b, d - 1) * (max - b) / r;

30 }

31 else

32 {

33 volume = calcHypInd(p_ind_a, p_ind_b, d - 1)

* (max - a) / r; \\ corrected version

\\ original version: "* (max - b) / r;"

24 }

25 }

26

27 return (volume);

28 }

Fig. 2. The source code snippet of the PISA implementation of IBEA and the bug in
line 33. For readability, the function name is shortened here.

population size of α = 100, a binary tournament mating selection, and were run
independently 30 times for 200 iterations each.

Regarding the variation operators, the continuous problems used SBX
crossover and polynomial mutation with the PISA parameters set as
individual mutation probability=1; individual recombination probability=1;
variable mutation probability=0.01; variable recombination probability=1;
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variable swap probability=0; eta mutation=20; eta recombination=20 and use
symmetric recombination=1. For the discrete knapsack problem, we used one-bit
mutation and one-point-crossover with the PISA parameters mutation probability
=1 and recombination probability=0.8. For EXPO, we used the standard PISA
settings. For IBEA, we furthermore used κ = 0.05 as suggested in [12] and a ref-
erence point of (2, . . . , 2) for the internal normalized calculations of IHD.

To compare the algorithms, the hypervolume and the additive ε-indicator
were recorded every 50 iterations and computed relative to a reference set,
obtained by joining all non-dominated solutions at this specific iteration over
all algorithm runs. Before computing the indicators, the objective vectors had
been normalized such that all non-dominated points at the investigated iteration
over all algorithms defined the box [1, 2]k. The reference point for the hypervol-
ume indicator was chosen as (2.1, . . . , 2.1) as in [12].

4.2 Comparison Between Buggy and Corrected IBEAHD

Figures 3 and 4 show the box plots of both the hypervolume and ε-indicator
for the four algorithms NSGA-II, SPEA2, IBEAε+, and IBEAHD after 200
iterations—on the left for the buggy version of IBEAHD and on the right for the
corrected version of IBEAHD

2. Figure 5 shows the direct comparison between
the buggy IBEAHD and the corrected version on each problem after 50, 100,
150, and 200 iterations. All boxplots are drawn with Matlab and the ends of the
notches correspond to “q2−1.57(q3−q1)/

√
n and q2+1.57(q3−q1)/

√
n, where q2

is the median, q1 and q3 the 25th and 75th percentiles [. . .], and n is the number
of runs”, thus indicating statistically significant medians “at the 5% significance
level if their intervals do not overlap” (compare the Matlab documentation for
further details).

Overall, three main observations can be made: As to the continuous prob-
lems, the bug fix has a positive effect on IBEAHD on the 3-objective problems
DTLZ2 and DTLZ6 with respect to both indicators. The corrected IBEAHD now
results in similar or better indicator values than IBEAε+. For the 2-objective
ZDT6 problem, however, the effect is small and sometimes slightly detrimental
(though not statistically significant as the boxplots’ notches do overlap). We give
a possible explanation for this behavior on ZDT6 in the following section.

As to the discrete problems, no positive effect of the bug fix can be reported.
The results before and after the bug fix are similar and only very few statisti-
cally significant differences can be observed when looking at the notches in Fig. 5.
The corrected IBEAHD version is not better than IBEAε+ with respect to the
hypervolume indicator except for the 4-objective EXPO problem and a larger
number of iterations. Exactly in these cases of the 4-objective EXPO problem,
2 The reason for two sets of figures with four algorithms each instead of showing all

five algorithms in a single plot is to see the effect of the bug fix directly. Because all
results are relative to other algorithms, joining all algorithms alters the box plots
(slightly) and thus makes comparisons with the original paper [12] more difficult.
For a direct comparison of the buggy and corrected IBEAHD, we provide Fig. 5.
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Fig. 3. Boxplots comparing the performance of NSGA-II, SPEA2, IBEAε+, and
IBEAHD for different continuous problems (rows). The left two columns show the
results for the original IBEAHD implementation, the two right columns the same results
for the corrected IBEAHD version. Columns 1 and 3 show results for the additive ε-
indicator; columns 2 and 4 results for the hypervolume indicator. All indicators are
computed after 200 generations with respect to the reference set stemming from all
algorithms of that plot.

on the other hand, the additive ε-indicator is significantly worse for the cor-
rected IBEAHD version. It seems as if the discreteness of the problems and the
comparatively small number of non-dominated solutions in the resulting popu-
lations do not allow the (correct) hypervolume fitness to be effective. It can be
also noted that especially for the knapsack problem, the variance between runs
is quite large, which means that the impact of the bug fix can only be rather
small anyway as the results differ much more among the runs than among the
algorithms.

Last, we see that the positive effect of the bug fix, at least for the selected
problems, becomes larger with an increasing number of objective functions and
more pronounced on the continuous problems with more function evaluations.
Another fundamental improvement caused by the bug fix will be discussed in
the next subsection.
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Fig. 4. Boxplots comparing the performance of NSGA-II, SPEA2, IBEAε+, and
IBEAHD for some discrete problems (rows). The left two columns show the results for
the original IBEAHD implementation, the two right columns the same results for the
corrected IBEAHD version. Columns 1 and 3 show results for the additive ε-indicator;
columns 2 and 4 results for the hypervolume indicator. All indicators are computed
after 200 generations with respect to the reference set stemming from all algorithms of
that plot.

4.3 Invariance With Respect to Objective Permutations

One additional observation, we can make when comparing the buggy and the cor-
rected version of IBEAHD, is that the corrected version is, as expected, invariant
over a permutation of the objective functions, i.e., the performance is the same
when we for example exchange the first and the second objective function. This
invariance is a desired property of an optimization algorithm as it generalizes
the statements we can make about the performance of the algorithm without
actually testing it. The invariance properties of the hypervolume indicator give
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Fig. 5. Comparison via boxplots between the buggy and the corrected IBEAHD version
for various problems and number of iterations. For each problem and from left to right,
iterations 50, 50, 100, 100, 150, 150, 200, and 200; the left gray box corresponds to the
buggy IBEAHD while the right white box corresponds to the corrected version. The
top plot shows the additive ε-indicator values over 30 runs, the bottom plot the results
for the hypervolume indicator.

us theoretically this invariance of IBEAHD, but it turns out that the bug in the
original PISA implementation resulted in an algorithm that is not invariant. To
investigate this, we ran both the buggy and the corrected version of IBEAHD

with a population size of 100 for 200 iterations on the ZDT6 problem—this time
with an increased number of 100 variables to better see the effect. To be precise,
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Fig. 6. Empirical attainment function plots after 200·D function evaluations comparing
the buggy and corrected IBEAHD on the ZDT6 problem with 100 variables (top) and
on its inverted version (middle, after swapping the objectives again for comparison
reasons). On the bottom plot, the results of the buggy IBEAHD on both problems.
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we ran each algorithm independently 30 times on the ZDT6 problem and again,
with the same initial random seeds, on the ZDT6 problem where the two objec-
tive functions are exchanged (we denote this problem as the “inverted” ZDT6
problem in the figures).

To compare the performance on both problems, we plot the empirical attain-
ment functions [8] where for the “inverted” ZDT6 problem, both objectives are
again swapped for comparability. For the corrected IBEAHD, due to the same
initial random seeds, the 30 runs are exactly the same, while for the buggy
IBEAHD, we see some differences. Figure 6 shows the comparison of the buggy
and the corrected IBEAHD on the original ZDT6 problem (top) and on the
“inverted” ZDT6 problem (middle), as well as the results of the buggy IBEAHD

on ZDT6 against the buggy IBEAHD results on the “inverted” ZDT6 (bottom)—
once again, the results for the corrected version are identical. Not only do the
empirical attainment functions differ on the two functions for the buggy IBEAHD

(Fig. 6, bottom), especially when looking at the median, but the buggy IBEAHD

also significantly outperforms the corrected version on the original ZDT6 prob-
lem (gray areas in Fig. 6, top). On the other hand, the results are comparable
or even in favor of the corrected version to the left of the Pareto front for the
“inverted” ZDT6 (Fig. 6, middle). This let us come to the conclusion that the
buggy version of IBEAHD exploits the fact that the original ZDT6 problem can
be solved by finding solutions with good first objective and then moving along
the axis, which is supported by the fact that the bug favors solutions on the left
as mentioned in Sec. 3 (compare Fig. 6, bottom).

5 General Implications on How to Write, Document, and
Distribute Algorithm Implementations

Let us end the paper with a look at the broader picture and the way we should
deal with algorithm implementations in general. The process of finding, solving,
and tracking the bug was actually not optimal from the author’s personal point-
of-view and occurred as follows. We were made aware about this bug by receiving
an e-mail from Yann Semet and his colleagues at Thales who had problems
debugging their algorithm which was based on the Paradiseo [7] implementation
of IBEA. It quickly turned out that the reason for their suspicious results was the
bug reported above. Moreover, it turned out that the bug was also present in the
original PISA [3] implementation and that both implementations were actually
the same (except for some renaming of functions and variables in Paradiseo).
Unfortunately, the Paradiseo code did not mention the original implementation
such that it was not directly possible to track the observed bug to its origin.

In the wake of this observation, we checked more carefully other software
packages that provide the IBEA algorithm. Though implemented in Java while
the PISA implementation of IBEA is in C, also for jMetal [5] the same code
snippet of the PISA implementation was used without any reference to the orig-
inal PISA code. Solely the implementation of IBEA in the MOEA framework [6]
mentioned clearly where the code was coming from. It was furthermore easy to
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report the bug via the corresponding online bug-tracking system—a functionality
that the other three frameworks (including PISA itself) either do not offer at the
moment or that, in the case of Paradiseo, are not linked from the webpage, such
that the bug had to be therefore reported by plain e-mail. Let us mention that,
for all above software packages, the developers quickly replied to our bug report
and the latest versions of the MOEA Framework (v2.3), jMetal (4.5.1), PISA
(from October 13, 2014 on), and the Github repository of Paradiseo already
contain the bug fix.

The discovery of the bug within the IBEA implementation in the software
packages mentioned and the discovery that several implementations are just
copies of the original code without references to it will hopefully have a lasting
impact on how source code of optimization algorithms is written and distributed
in our community. At least, we should always try to remind ourselves on the
following two main aspects:

– Algorithm implementations, even if they are provided in big and well-known
algorithm packages, should be always questioned and tested thoroughly. Sim-
ple unit tests and even more important independent implementations would
have exposed the bug.

– Re-using code can also be beneficial in terms of a broader distribution of
an algorithm due to reduced implementation times. But if code is copied,
the original code basis should always be mentioned in the code for easier
tracking of bugs over different software packages—independent of any (obvi-
ous) copyright issues one needs to adhere. To allow for easier tracking in the
opposite direction and to distribute bug fixes to other packages, it is further-
more recommended that the original code is regularly checked for bug fixes
and the secondary code updated accordingly.

Last, we would like to suggest reporting version numbers of the algorithms used
in our papers, such as done frequently for example when the single-objective
CMA-ES is used. This will, in case of a bug, make it much simpler to find out
whether the reported results are trustworthy or not.

6 Conclusions

The correction of a bug in the hypervolume calculation of the multiobjective
optimizer IBEA, uncovered since its first implementation in 2004, showed an
important impact in the algorithm’s search performance. The buggy implemen-
tation is not invariant against permutations of the objective functions and shows
worse results especially for continuous problems and when the number of objec-
tive functions is high. On the tested discrete problems, the buggy and the cor-
rected IBEA behave similar with the only observed significant worsening for
the network processor design problem EXPO when the ε-indicator is used as
performance measure. The bug might, furthermore, explain why the IBEA vari-
ant employing the ε-indicator was so far more often used in empirical studies
than the one using the hypervolume indicator—and thus resulting in the wrong
perception of algorithm performances.
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Probably even more important than the correction of the bug was the obser-
vation that several algorithm frameworks such as Paradiseo and jMetal copied
the original PISA code of the (buggy) IBEA without mentioning where the
code was coming from. Let us be clear that—as long as no copyright is violated
of course—having comparable algorithm implementations with the same perfor-
mance, in general, is a big plus for comparing and applying algorithms in practice
(for example by having platform independent implementations). But without a
truly independent implementation of IBEA, it took almost 10 years to find such
an important bug as the one discussed. Our community should therefore try to
have (at least) two independent implementations of the main algorithms available
(and a thorough check that they do the same). Copying code without referencing
to the original source is furthermore detrimental as it is almost impossible to
track bug fixes over different software packages. We should therefore also aim at
more visible links between our software packages and more scientific and techni-
cal exchanges among their developers. Furthermore, we should aim at more (and
the right) unit tests as the simple test described in Sec. 4.3 could have detected
the bug earlier. However, also testing cannot detect all bugs: the unit tests in
the MOEA Framework for example fully cover the package containing the bug.
Since we have to live with the fact that our software will naturally contain bugs,
it is therefore even more important that we provide easy ways to report them via
bugtrackers and to always mention version numbers of the algorithms we use in
our papers. Addressing the mentioned challenges in the future when it comes to
algorithm implementations and distributions will hopefully allow the (multiob-
jective) optimization community to appear even stronger and more trustworthy
to the outside.
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8. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local
search algorithms in biobjective optimization. In: Experimental Methods for the
Analysis of Optimization Algorithms, pp. 209–222 (2010)

9. Thiele, L., Chakraborty, S., Gries, M., Künzli, S.: Design space exploration of net-
work processor architectures. In: Network Processor Design 2002: Design Principles
and Practices. Morgan Kaufmann (2002)

10. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based
methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer,
Heidelberg (2007)

11. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

12. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Hei-
delberg (2004)

13. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

http://www.moeaframework.org/


A Knee-Based EMO Algorithm with an Efficient
Method to Update Mobile Reference Points

Yu Setoguchi1(B), Kaname Narukawa2, and Hisao Ishibuchi1

1 Department of Computer Science and Intelligent Systems,
Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan

yu.setoguchi@ci.cs.osakafu-u.ac.jp, hisaoi@cs.osakafu-u.ac.jp
2 Honda Research Institute Europe GmbH, 63073 Offenbach am Main, Germany

kaname.narukawa@honda-ri.de

Abstract. A number of evolutionary multi-objective optimization
(EMO) algorithms have been proposed to search for non-dominated solu-
tions around reference points that are usually assumed to be given by
a decision maker (DM) based on his/her preference. However, setting
the reference point needs a priori knowledge that the DM sometimes
does not have. In order to obtain favorable solutions without a priori
knowledge, “knee points” can be used. Some algorithms have already
been proposed to obtain solutions around the knee points. TKR-NSGA-
II is one of them. In this algorithm, the DM is supposed to specify the
number of knee points as a parameter whereas such information is usu-
ally unknown. In this paper, we propose an EMO algorithm that does
not require the DM to specify the number of knee points in advance.
We demonstrate that the proposed method can efficiently find solutions
around knee points.

Keywords: Knee point · Preference · Reference point · Decision maker

1 Introduction

Most of evolutionary multi-objective optimization (EMO) algorithms have been
designed to approximate the entire Pareto front. However, if a decision maker
(DM) faces a large number of solutions that approximate the entire Pareto front,
it would be a difficult task for the DM to choose only a single solution among
them. Some EMO algorithms [6,8] have been proposed to obtain solutions around
preference regions that the DM specifies according to his/her preference. Those
algorithms do not try to find a large number of solutions. As a result, the DM can
decrease a burden to choose a final single solution. However, setting preference
regions needs a priori knowledge that the DM sometimes does not have.

As a substitute for the preference information, “knee points” have attracted
much attention [1–5,9]. If the Pareto front has a clear knee point, most DMs may
prefer solutions around the knee point. This is because a small improvement of
any objective from the knee point leads to a large deterioration of at least one

c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 202–217, 2015.
DOI: 10.1007/978-3-319-15934-8 14
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of the other objectives. Until now, some methods to identify knee points have
been proposed [4,5,7,9]. For example, Das [4] proposed the normal boundary
intersection method. As shown in Fig. 1, the distance is calculated between
the Pareto optimal solutions and the line connecting the extreme points. In
minimization problems, the knee point has the largest distance in a convex part.

Fig. 1. Normal boundary intersection method

Trade-off information is also used to identify knee points [9]. The trade-off
information can be calculated as follows:

T (xi, xj) =

∑n
k=1 max

[
0,

fk(xj)−fk(xi)

fmax
k −fmin

k

]

∑n
k=1 max

[
0,

fk(xi)−fk(xj)

fmax
k −fmin

k

] , (1)

where n is the number of objectives, fk(xi) indicates the k-th objective value
of the solution xi, fmax

k and fmin
k correspond to the maximum and minimum

values of the k-th objective in the population, respectively. Rachmawati and
Srinivasan [9] used (2) to calculate a metric in terms of the trade-off for solutions:

μ(xi, S) = min
xj∈S,xi≺\xj ,xj≺\xi

T (xi, xj). (2)

We note that xi and xj are non-dominated with each other and S indicates
the set of solutions xj in the population. μ(xi, S) denotes the least amount of
improvement per unit deterioration by substituting any solution xj from S with
xi. The knee point achieves the largest value of the trade-off metric.

In Figs. 2(a) and 3(a), the red curve shows the Pareto front with four convex
regions. It should be noted that we assume a minimization problem. The dashed
line in Fig. 2(a) connects the extreme points. We also show the distance from
the dashed line to the Pareto front and the trade-off metric calculated by (2) in
Figs. 2(b) and 3(b), respectively. The largest value of each metric appears in the
regions corresponding to the convex parts.

Recently, Bechikh et al. have proposed algorithms [1,2] that are designed to
obtain solutions around knee points. In their algorithms, the DM specifies the
number of knee points that he/she is searching for, whereas most DMs do not
have information about the number of knee points especially in the case of real
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world problems. As a result, the DM should examine several specifications of the
number of knee points. In order to avoid such a situation, we propose an EMO
algorithm that does not require the DM to specify the number of knee points. To
demonstrate the performance of our proposed method, we apply it to two- and
three-objective benchmark problems and a two-objective real world problem.

The rest of this paper is organized as follows. First, we explain a related
study in Section 2. Then, we describe our proposed method in Section 3. Section
4 shows experimental results on benchmark problems and a real world problem,
and finally we provide conclusions in Section 5. It should be noted that we
consider minimization problems throughout this paper.

2 TKR-NSGA-II

Bechikh et al. have proposed TKR-NSGA-II [2], which is designed to obtain
solutions around knee points. This algorithm uses the Reference point NSGA-II
(R-NSGA-II) procedure [6] as the basic structure of the algorithm. R-NSGA-
II is designed to obtain solutions around reference points. In R-NSGA-II, the
DM specifies reference points in advance, while in TKR-NSGA-II, an algorithm
updates reference points every generation. This algorithm is called Trade-off-
based Mobile Reference Points Updating Strategy (T-MRPUS), which specifies
knee-like points as reference points. This algorithm is shown in Algorithm 1.

T-MRPUS uses two parameters, namely Nk and ξ. Nk denotes the number
of knee points that are searched for by the DM. ξ denotes the minimum distance
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between reference points. In this algorithm, extreme solutions and Nk knee-like
points are specified as reference points by use of the parameter ξ and the trade-
off metric, which is explained in Section 1. We explain the algorithm according
to each step in Algorithm 1. First, extreme solutions on the first non-dominated
front (FF) are specified as reference points. Then, the trade-off metric is cal-
culated for each solution on the FF and the solutions are sorted in descending
order of the trade-off metric. After that, we examine each solution in the sorted
order. A solution is chosen as a reference point if it satisfies the following con-
dition: its shortest distance to other reference points is larger than ξ in the
normalized objective space. When Nk solutions are selected, the algorithm stops
choosing solutions. When the final number of chosen solutions is smaller than
Nk, T-MRPUS permits to choose a solution even if its shortest distance to other
reference points is not larger than ξ in the normalized objective space.

Algorithm 1 . T-MRPUS
Input:

FF: the first non-dominated front, Nk: the number of knees,
n: the number of objectives, ξ: the minimum distance between reference points

Output:
MRP: the set of mobile reference points

1: ES ← extreme solutions(FF, n);
2: MRP ← ES;
3: for i = 1 to size(FF) do
4: FF(i).trade-off ← evaluate trade-off metric(FF(i), FF);
5: end for
6: sorted FF ← sort(FF, descend);
7: j ← 1, k ← 1;
8: while (k <= Nk) and (j <= size(FF)) do
9: if (not (is ξ duplicate(sorted FF(j), MRP))) then

10: append sorted FF(i) to MRP;
11: k ← k + 1;
12: end if
13: j ← j + 1;
14: end while
15: if (size(MRP) < Nk + n) then
16: for i = (size(MRP)+1) to Nk + n do
17: append sorted FF(i) to MRP;
18: end for
19: end if

The DM occasionally consumes a lot of time for specifying the parameter Nk

because its appropriate value should be found by trial and error. We demonstrate
the difficulty of the parameter setting. As an example, we use the DEB2DK prob-
lem [3]. This problem is a two-objective minimization problem and the number
of knee points can be arbitrarily specified using a parameter K. In this example,
we specify the number of knee points as four (A, B, C, and D in Fig. 4). Since
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we assume a situation where the number of knee points is unknown, first we
specify Nk = 2 and ξ = 0.1. The obtained solutions are shown in Fig. 4(a). From
Fig. 4(a), we can see that the solutions are distributed around the two extreme
points and the two knee points B and C. From these solutions, the DM would
wonder there are other knee points. Therefore we change the value of Nk from 2
to 10. The obtained solutions are shown in Fig. 4(b). In Fig. 4(b), the solutions
are distributed not only around the two extreme points and the four knee points,
but also around other regions such as concave parts of the Pareto front. From
these solutions, the DM would assume that Nk = 10 is larger than the actual
number of knee points. Therefore, the next step would be decreasing Nk. Like
this, the DM should adjust the parameter Nk until he/she is satisfied with an
obtained result. Moreover if the number of objectives is more than three, it is
difficult to visualize solutions in the objective space. As a result, it is hard for
the DM to find a proper value of Nk.
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Fig. 4. Obtained solutions by TKR-NSGA-II on DEB2DK problem

3 Proposed Method

In this section, we explain our proposed method. There are two main differences
between our proposed method and TKR-NSGA-II [2]. One is the basic structure
of the algorithm, which corresponds to R-NSGA-II in TKR-NSGA-II. The other
is a reference point selection strategy, which corresponds to T-MRPUS in TKR-
NSGA-II. We explain the basic structure of the algorithm and the reference point
selection strategy in our proposed method.

3.1 Basic Structure

TKR-NSGA-II uses R-NSGA-II as the basic structure of the algorithm, while
our proposed method uses the Preference-based NSGA-II (P-NSGA-II) that has
recently been proposed by Narukawa et al. [8]. P-NSGA-II uses a hyperplane
and Gaussian functions to reflect the DM’s preference. In this paper, we modify
the selection of next-generation individuals in P-NSGA-II so as to realize a dis-
tribution that follows Gaussian functions. The modified P-NSGA-II is explained
below.
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Preference Configuration. In configuring a preference, the DM specifies the
center and spread values of Gaussian functions that are lying on the hyper-
plane. Firstly, we set the hyperplane passing through (1, 0, ..., 0), (0, 1, ..., 0), ...,
(0, 0, ..., 1) for an n-objective minimization problem. In Fig. 5, the hyperplane for
a two-objective minimization problem is depicted. Next, k n-dimensional Gaus-
sian functions pi(v) are used to represent the preference of the DM with respect
to a vector v = (v1, v2, ..., vn) on the hyperplane (i.e., v1 + v2 + ... + vn = 1) as
follows:

p(v) =
k

max
i=1

pi(v), (3)

pi(v) = exp{−
n∑

l=1

(vl − wi
l)

2

(sil)2
}, i = 1, 2, ..., k, (4)

where k is the number of the preference regions, n is the number of objectives,
wi

l ≥ 0 is the center (or the mean) and sil > 0 is the spread (or the standard
deviation) of the l-th element of the n-dimensional Gaussian function pi(v). The
larger p(v) is, the more v is preferred. The center vector wi = (wi

1, w
i
2, ..., w

i
n)

is specified under the following condition:

wi
1 + wi

2 + ... + wi
n = 1, wi

l ≥ 0 (5)

For example, Fig. 5 depicts the preference of the DM for a two-objective
optimization problem where a two-dimensional Gaussian function is specified by
w = (w1, w2) = (0.5, 0.5) and s = (s1, s2) = (1.0, 1.0). As we can see in the
figure, vA is more preferred than vB since p(vA) > p(vB) holds in Fig. 5.

Preference Calculation for Solutions. In order to calculate how much the
DM prefers a solution with an objective vector f = (f1, f2, ..., fn), f is first shifted
to f ′ = (f ′

1, f
′
2, ..., f

′
n), where

f ′
l = fl − fmin

l , l = 1, 2, ..., n, (6)

and fmin
l is the minimum value found so far for the l-th objective. Next, f ′ is

normalized to f ′′ = (f ′′
1 , f ′′

2 , ..., f ′′
n ) as follows:

f ′′
l =

f ′
l

f ′ext
l

, l = 1, 2, ..., n, (7)

Fig. 5. Preference on a hyperplane (line) in two-objective optimization
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where f ′ext
l is the l-th objective value of an extreme vector f ′ext

l for the l-th
objective. The extreme vector f ′ext

l is identified by finding a vector that minimizes
the following achievement scalarizing function ASF with a weight vector dl =
(dl1, d

l
2, ..., d

l
n) indicating the l-th objective direction (e.g., d1 = (d11, d

1
2, ..., d

1
n) =

(1, 0, ..., 0)):

ASF (f ′,dl) =
n

max
i=1

f ′
i/dli, (8)

where dli = 0 is replaced with dli = 10−6 for avoiding a division by zero. Then,
the hyperplane passing through n extreme vectors is generated and f ′′ is mapped
to v = (v1, v2, ..., vn) on the hyperplane as follows:

vi =
f ′′
i

f ′′
1 + f ′′

2 + ... + f ′′
n

, i = 1, 2, ..., n. (9)

It should be noted that v1+v2+ ...+vn = 1 holds because v is on the hyperplane.
These coordinate transformations are depicted in Fig. 6. Now the preference of the
DM on the solution having the objective vector f is calculated as p(v) in (3)-(4).

Fig. 6. Coordinate transformations of solutions

Selection Method. In the selection, first we choose extreme solutions that are
needed for constructing a widespread hyperplane. Then, we pick up solutions
according to their ranks in the same manner as in NSGA-II. Let us assume Si

is the set of solutions having rank i. Next, we consider the selection among SL.
The value of L is the minimum integer that makes |S1 ∪ S2 ∪ ... ∪ SL| ≥ μ hold,
where μ is the parent population size. In the selection among SL, we use an
allowable radius and a shortest distance.

The allowable radius is defined for a solution having an objective vector
f = (f1, f2, ..., fn) as follows:

r(v) = 1 − p(v), (10)

where v is obtained from f by (6)-(7), (9), and p(v) is calculated by (3)-(4).
The shortest distance d(v) is defined as the Euclidean distance of a solution to
its nearest solution on the hyperplane. The allowable radius and the shortest
distance are illustrated in Fig. 7, where a dashed line represents the preference
function p(v) in (3).
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Fig. 7. Allowable radius and shortest distance for solutions vA and vB

In the selection among SL, first we randomly choose a solution from SL and
calculate its allowable radius and shortest distance. If r(v) > d(v) holds, the
solution is removed. Otherwise, another solution is randomly selected prohibiting
the same solution(s) to be chosen, and then applied to the same operation. If
any solutions are not removed, the solution with the minimum value of d(v) is
removed. We iterate this procedure until |S1∪S2∪...∪SL| = μ holds. By removing
solutions whose shortest distances are smaller than the allowable radius, it is
expected that the remaining solutions follow the distribution of p(v) in (3).

We explained the procedure of P-NSGA-II. Next, we apply R-NSGA-II and
P-NSGA-II to DTLZ2 problem with two objectives and compare the obtained
solutions. In R-NSGA-II, a reference point is specified as (0.7, 0.7). In P-NSGA-
II, w and s are specified as (0.5, 0.5) and (0.5, 0.5), respectively. In both cases,
the preference region is specified as the center of the Pareto front.In the case
of R-NSGA-II, solutions are uniformly distributed around a reference point like
Fig. 8(a). In the case of P-NSGA-II, the distribution of obtained solutions is
similar to a Gaussian function as shown in Fig. 8(b), where they are densely
distributed around the center of a preference. This distribution is useful when
we search for solutions around knee points. This is because most DMs may prefer
solutions that are dense around the knee point.

3.2 Reference Point Selection Strategy

For the selection of reference points, TKR-NSGA-II uses a selection strategy
called T-MRPUS, which picks up solutions having a large trade-off metric as
explained in Section 2, whereas our proposed method uses a selection strategy
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Fig. 8. Obtained solutions by R-NSGA-II and P-NSGA-II
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which eliminates solutions having a small distance from the hyperplane connect-
ing extreme solutions. We call this selection strategy Distance-based Elimination
MRPUS (DE-MRPUS). The algorithm of DE-MRPUS is shown in Algorithm 2.

We explain the algorithm according to each step in Algorithm 2. First,
extreme solutions are identified and the distance from the hyperplane connecting
the extreme solutions is calculated for each solution on the first non-dominated
front (FF). After calculating the distance, the extreme solutions are removed
from the FF. This is because, the extreme solutions are necessary just for calcu-
lating the distance in this algorithm. Next, the remaining solutions are sorted in
ascending order of the distance. We examine each solution in the sorted order.
A solution is removed if it satisfies the following condition: its shortest distance
to other remaining FF solutions is not larger than ξ in the normalized objective
space. ξ is a parameter which denotes the minimum distance between reference
points. In Fig. 9, we show a flow of removing the solutions. Consequently, we
may obtain knee-like points in each convex part as shown in Fig. 9.

After examining all solutions, we discriminate the remaining solutions based
on distances that are calculated in the first step of this algorithm. For nor-
malization, the distances of the remaining solutions are divided by the largest
distance of the remaining solutions. If they have a larger normalized distance
than a threshold T , they are specified as reference points. In this algorithm, the
DM can control a distribution of solutions by specifying the threshold T . For
example, when we use a large value as the threshold T , the DM only obtains
solutions around knee points having a large distance from the hyperplane con-
necting extreme solutions. This result would be nice for the DM who wants to
obtain solutions around knee points that have the largest distances from the
hyperplane connecting extreme solutions.

In this algorithm, we can use other metrics such as the trade-off metric to
identify knee-like points. In computational experiments, we examine the use of
the trade-off metric in Fig. 3 as well as the distance metric in Fig. 2. When we
use the trade-off metric, we call it Trade-off-based Elimination MRPUS (TE-
MRPUS). Compositions of each algorithm are shown in Table 1.

Fig. 9. Flow of removing the solutions
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Algorithm 2 . DE-MRPUS
Input:

FF: the first non-dominated front, T : the threshold to discriminate reference points,
n: the number of objectives, ξ: the minimum distance between reference points

Output:
MRP: the set of mobile reference points

1: ES ← extreme solutions(FF, n);
2: for i = 1 to size(FF) do
3: FF(i).distance ← normal boundary intersection method(FF(i), ES);
4: end for
5: remove ES from FF;
6: sorted FF ← sort(FF, ascend);
7: j ← 1;
8: while (j <= size(FF)) do
9: if (is ξ duplicate(sorted FF(j), sorted FF)) then

10: remove sorted FF(j) from sorted FF;
11: else
12: j ← j + 1;
13: end if
14: end while
15: for i = 1 to size(sorted FF) do
16: sorted FF(i).normalized distance ← normalize(i, sorted FF);
17: if (T < sorted FF(i).normalized distance) then
18: append sorted FF(i) to MRP;
19: end if
20: end for

Table 1. Compositions of each algorithm

Algorithm Basic structure Reference point selection Metric

TKR-NSGA-II [2] R-NSGA-II [6] T-MRPUS [2] Trade-off [9]

Proposed method
P-NSGA-II DE-MRPUS Distance [4]

P-NSGA-II TE-MRPUS Trade-off [9]

4 Computational Experiment

In this section, we apply our proposed method to two- and three-objective bench-
mark problems and a two-objective real world problem. In order to examine the
performance, we also apply TKR-NSGA-II [2] to those problems and compare
the results. In all experiments, the population size is specified as 100. We use
the SBX with a distribution index of 15 and the polynomial mutation with a
distribution index of 20. The crossover probability is set to 0.5 and the mutation
probability is set to 1/m ,where m is the number of decision variables. In this
study, we use parameter values in Table 2 unless otherwise specified.
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Table 2. Specification of parameters

Algorithm Parameter values

TKR-NSGA-II [2] ξ = 0.1, ε = 0.001, Nk = actual number of knee points
Proposed method ξ = 0.1, s = (0.5, ..., 0.5), T = 0
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Fig. 10. Obtained solutions on DEB2DK

4.1 Benchmark Problem

Branke et al. [3] have proposed three knee-based test problems, namely DO2DK,
DEB2DK and DEB3DK problems to evaluate the performance of knee-based
EMO algorithms. The DO2DK and the DEB2DK are two-objective problems
and the DEB3DK is a three-objective problem. In all problems, the number of
knee points can be arbitrarily specified using a parameter K: the number of knee
points is specified as Kn−1, where n is the number of objectives. Rachmawati
and Srinivasan [9] modified those problems and proposed DO2DK-1, DEB2DK-1
and DEB3DK-1 problems that require an ability to converge towards the Pareto
front. In this paper, we only show the results on DEB2DK, DEB2DK-1, and
DEB3DK problems due to the paper length limitation.

First, we consider the DEB2DK where the number of knee points is specified
as four. The stopping criterion is specified as 200 generations. We show solu-
tions obtained by Distance Elimination and Trade-off Elimination in Figs. 10(a)
and 10(b), respectively. From Figs. 10(a) and 10(b), we can see that both
approaches obtain solutions around knee points. Moreover we show solutions
obtained by TKR-NSGA-II in Fig. 10(c). We can see that the distribution of
solutions is similar to those obtained by Distance Elimination and Trade-off
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Fig. 11. Change of distribution by T and Nk (T = 0.8 in (a) and (b), Nk = 2 in (c))

Elimination. However it should be noted that TKR-NSGA-II needs a trial-and-
error adjustment for the parameter Nk.

Next, we change a value of the threshold T from 0 to 0.8 in our proposed
method. When the threshold T is set to a large value, we only obtain solutions
around knee points that have a large distance metric or trade-off metric as shown
in Figs. 11(a) and 11(b). We also show solutions obtained by TKR-NSGA-II,
where Nk is specified as 2 in Fig. 11(c). From Fig. 11(c), we can see that TKR-
NSGA-II also obtains solutions around knee points that have a large trade-off
metric. However for obtaining such a result, the DM should specify the number
of knee points having a large trade-off metric, whereas the DM usually does not
have such information. Moreover, we show solutions around the knee point B in
Fig. 12. We can see that the distribution of obtained solutions is similar to a
Gaussian function in our proposed method.

We also check an effect of the spread vector that specifies the Gaussian
function. We specify the spread vector as s = (0.3, ..., 0.3), s = (0.5, ..., 0.5) and
s = (0.7, ..., 0.7) and show the obtained solutions in Figs. 13(a), 13(b) and 13(c),
respectively. In all experiments, Distance Elimination is used. We can see that
when s is large, solutions are widely distributed around knee points, while when
s is small, solutions are narrowly distributed around knee points.

Then, we solve the DEB2DK-1 where the number of knee points is specified as
four. We specify the stopping criterion as 1000 generations. We show the obtained
solutions in Fig. 14. From Fig. 14, we can see that solutions are converging
towards the four knee points in our proposed method and TKR-NSGA-II.

Finally, we solve the DEB3DK where the number of knee points is specified
as 1. The stopping criterion is specified as 300 generations. The obtained results
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Fig. 12. Solutions around the knee point B
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Fig. 13. Effect of s parameter (Distance Elimination is used in all cases)

are shown in Fig. 15. From Fig. 15, we can confirm that Distance Elimination
and TKR-NSGA-II obtain solutions around the knee point existing in the center
of the Pareto front. Trade-off Elimination obtains solutions not only around the
knee point, but also around many other regions. It is not a good characteristic
if the DM only wants to know information around knee points.
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Fig. 15. Obtained solutions on DEB3DK

4.2 Real World Problem

As a real world problem, we use a welded beam design problem [6]. This problem
has two objectives and one knee point. One of the objectives is minimizing the
cost of fabrication and the other is minimizing the end of deflection of the welded
beam. The stopping criterion is specified as 500 generations. We specify the
threshold T as 0.5 in our proposed method for a strong convergence towards
the knee point. Since there is no easy way to calculate the Pareto front of this
problem, we compare the result obtained by NSGA-II in which the stopping
criterion is specified as 10000 generations. Among the solutions obtained by
NSGA-II, we identify the solution having the largest distance and the solution
having the largest trade-off metric, respectively. (The same solution is identified
in both cases.) We call the solution a hypothetical knee point.

0 10 20 30 40
0

0.005

0.01

0.015

Cost

D
ef

le
ct

io
n

 

 

NSGA−II
Distance Elimination
Hypothetical Knee Point

(a) Distance Elimination

0 10 20 30 40
0

0.005

0.01

0.015

Cost

D
ef

le
ct

io
n

 

 

NSGA−II
Trade−off Elimination
Hypothetical Knee Point

(b) Trade-off Elimination

0 10 20 30 40
0

0.005

0.01

0.015

Cost

D
ef

le
ct

io
n

 

 

NSGA−II
TKR−NSGA−II
Hypothetical Knee Point

(c) TKR-NSGA-II [2]

Fig. 16. Obtained solutions on welded design problem (T = 0.5 in (a) and (b))
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We show the results in Fig. 16. From Fig. 16, we can see that solutions are
distributed on the right side of the hypothetical knee point in all cases. This is
because the left-hand extreme solution does not converge well towards the true
extreme point. As a result, the place of a knee-like point is far from the place of
the hypothetical knee point. It seems that the success of finding the knee point
depends on finding true extreme points.

5 Conclusion

In this paper, we proposed an EMO algorithm that obtains solutions around knee
points. An advantage of the algorithm is that the DM does not have to specify
the number of knee points. Moreover, thanks to P-NSGA-II, the distribution of
obtained solutions is similar to a Gaussian function. In experimental results, we
confirmed that our proposed method could obtain solutions around knee points
on two- or three-objective benchmark problems. Throughout the experiment, we
used both Distance-based Elimination and Trade-off-based Elimination. While
they showed similar performances in almost all problems, Distance-based Elim-
ination showed a better performance in the DEB3DK problem. In our proposed
method, the DM can control a distribution of solutions by specifying the thresh-
old T . In the case of a high threshold T , we only obtain solutions around knee
points with a large distance or trade-off metric. Besides, we confirmed that a
spread of solutions is controllable by the spread vector. In the case of a two-
objective real world problem, solutions are distributed on the right side of the
hypothetical knee point, because the extreme solution does not converge well.

As a future work, it would be interesting to try self-adjusting of the parameter
ξ in order to decrease the burden of parameter setting. In this paper we used
only two- or three-objective problems. Therefore, it would be also interesting to
apply our proposed method to many-objective problems.
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Abstract. The traditional approach in the solution of stochastic multi-
objective programming problem involves transforming the original prob-
lem into a deterministic multiobjective programming problem. However,
due to the complexity in practical application problems, the closed form
of stochastic multiobjective programming problem is usually hard to
obtain, and yet, there is surprisingly little literature that addresses this
problem. The principal purpose of this paper is to propose a new hybrid
algorithm to solve stochastic multiobjective programming problem effi-
ciently, which is integrated with Latin Hypercube Sampling, Monte Carlo
simulation, Support Vector Regression and Artificial Bee Colony algo-
rithm. Several numerical examples are presented to illustrate the validity
and performance of the hybrid algorithm. The results suggest that the
proposed algorithm is very suitable for solving stochastic multiobjective
programming problem.

Keywords: Stochastic programming · Multiobjective programming ·
Pareto efficient solution · Hybrid algorithm

1 Introduction

Many real-life problems require considering and optimizing multiple and con-
flicting objectives from the multiobjective optimization point of view, leading
us into the area of multiobjective programming (MOP) probelm. The MOP
problem in static environment with deterministic parameters has received much
research interest [1][2][3]. However, since indeterminacy is inherent in most real
cases, where observed phenomena are disturbed by indeterministic perturba-
tions, the application of deterministic MOP methods to real-world problems
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often faces the difficulty that for a particular problem considered, the param-
eters involved take unknown or uncommensuarable values at the moment of
making the decision. With the great improvement of probability theory, the
probability distribution is widely adopted to depict such kind of indeterminis-
tic phenomenon in real-life MOP problem, which leads to the research field of
stochastic MOP problem. The stochastic MOP modeling is widely used in many
real-world decision making problems of management science, engineering, and
technology, including distributed energy resources planning [4], network design
[5], traveling salesman problem [6], capacitated arc routing problem [7], etc.

The review of these works shows that the stochastic MOP models can lead
to very large scale problems, and the solution of such problems always involves
introducing several equivalent deterministic models to remove the random ambi-
guity in original stochastic MOP problem, such as expected value model, mini-
mum variance model, etc. In this paper, we use the valuation criteria of objective
functions C in stochastic MOP problem to remove the random ambiguity and
obtain the closed form of equivalent deterministic model, where C denotes the
criteria of the specific valuation in practical application. Furthermore, we pro-
pose the definition of Pareto efficient solution in stochastic MOP problem based
on criteria C.

However, due to the complex nature of real life problem, in most cases, the
closed form of equivalent deterministic models in stochastic MOP problem is
difficult to obtain. Under these circumstances, the methods based on approx-
imation should be applied, such as Sample Average Approximation (SAA-N,
where N is the sample size) method [8]. Though the sequence of SAA-N optimal
values (N=1,2 ...) can converge almost surely to the true optimal value, it is pro-
hibitively expensive when the problem to be solved is provided with complicated
formulations and feasible set, such as NP-hard with many local extremums. In
order to improve the computation efficiency, some hybrid algorithms using Monte
Carlo simulation, artificial neural network (ANN) and genetic algorithm (GA)
have been adopted for solving stochastic programming problems [9] [10]. How-
ever, since the traditional hybrid algorithms need to generate large-scale size of
decision points through purely random sampling to obtain the desired precision
in model approximation, and need long time to obtain the optimal solution in
model optimization with GA, the computation cost of these hybrid algorithms
is very time-expensive. A new powerful and efficient hybrid algorithm should be
designed and applied to the stochastic MOP problem to reduce the computation
cost and improve the computation accuracy. For this purpose, a new hybrid algo-
rithm composed of Latin Hypercube Sampling (LHS), Monte Carlo simulation,
Support Vector Regression (SVR) and Artificial Bee Colony (ABC) algorithm
is built to obtain the Pareto efficient solutions in stochastic MOP problem in
this paper.

In the hybrid algorithm presented, it is broken into four phases, that is,
sample phase, simulation phase, approximation phase and optimization phase.
The problem in sample phase is addressed using Latin hypercube sampling intro-
duced by McKay et al [11], which is a very popular sampling method for use with
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computationally demanding models. It has been theoretically and experimentally
proved that LHS is more precise and robust than traditional random sampling
methods [12] [13]. The problem in simulation phase is addressed using Monte
Carlo simulation method to calculate the specified valuation meanings of func-
tions on the sample generated in sample phase. The problem in approximation
phase is addressed using a new and very promising regression technique devel-
oped by Vapnik, Steven Golowich, and Alex Smola [14] in 1996, called support
vector regression (SVR). The excellent performances of SVR in approximation
have been obtained in [15]. The problem in optimization phase is addressed using
ABC algorithm proposed by Karaboga in 2005 [16], which is a meta-heuristic
bionic algorithm based on the intelligent foraging behavior of honey bees. It has
been validated that its effectiveness and efficiency on algorithm performance are
competitive to other optimization algorithms [17][18][19]. Since every phase in
the hybrid algorithm is implanted with advanced methods, where using the LHS
and Monte Carlo simulation for model data collection, SVR for model approx-
imation, and ABC algorithm for model optimization, it is expected that it can
reduce the computation cost and improve the computation accuracy greatly.
The comparison result with traditional hybrid algorithm in a numerical example
shows that this new algorithm is more precise and efficient.

The paper is organized in the following manner. In Section 2, the mathemat-
ical formulation of stochastic MOP problem is introduced, and three equivalent
deterministic models are presented, that is, expected value model, minimum vari-
ance model, and α-optimistic value model. In Section 3, a new powerful hybrid
algorithm is built for solving the stochastic MOP problem more efficiently, and a
numerical example with many stochastic local minimums is provided to illustrate
the solution of stochastic MOP problem using the hybrid algorithm in Section 4.
Finally, a brief summary is given and some open points are stated for future
research work in Section 5.

2 Mathematical Formulation

In this section, the mathematical description of a general stochastic MOP prob-
lem is presented first, and then three equivalent deterministic models are pro-
posed to remove the random ambiguity in original stochastic MOP problem.

2.1 Description of Stochastic Multiobjective Programming Problem

Let us consider the stochastic MOP problem as follows:

min
x∈D

f(x, ξ) = (f1(x, ξ1), f2(x, ξ2), · · · , fp(x, ξn)) (2.1)

where x ∈ D is a vector of decision variables of the problem; ξ1, ξ2, · · · , ξp are
random vectors whose components are random variables, ξi = (ξi1, ξi2, · · · , ξin),
defined on the probability space (Ω ,F ,Pr); and the set of feasible solutions
D ⊂ Rn is crisp, nonempty and compact.
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Since the objective function in model (2.1) becomes dependent not only on
the solution, but also on a random influence, i.e., it becomes a random variable.
There are no methods can compare the random variables directly, it needs to
remove the random ambiguity in it before comparison. Most frequently, the prac-
tical aim is then to propose several equivalent deterministic models to optimize
the specific valuation of the objective functions in model (2.1).

2.2 Equivalent Deterministic Models

Here, the general equivalent deterministic model of original stochastic MOP
problem is described as follows:

min
x∈D

C[f(x, ξ)] = (C[f1(x, ξ1)], C[f2(x, ξ2)], · · · , C[fp(x, ξn)]) (2.2)

where C denotes the criteria of the specific valuation of the objective functions
in model (2.1).

Different real-life problems call for different criteria of valuation to satisfy
its need in practical application, when C denotes the expected value of the
objective functions, the model (2.2) is called expected value model of stochastic
MOP problem, and can be presented as follows:

min
x∈D

E[f(x, ξ)] = (E[f1(x, ξ1)], E[f2(x, ξ2)], · · · , E[fp(x, ξn)]) (2.3)

When C denotes the variance of the objective functions, the model (2.2) is called
minimum variance model of stochastic MOP problem, and can be presented
as follows:

min
x∈D

V [f(x, ξ)] = (V [f1(x, ξ1)], V [f2(x, ξ2)], · · · , V [fp(x, ξn)]) (2.4)

When C denotes the α−optimistic value of the objective functions, the model
(2.2) is called α−optimistic value model of stochastic MOP problem, and can
be presented as follows:

min
x∈D

f(x, ξ)sup(α) = (f1(x, ξ1)sup(α), f2(x, ξ2)sup(α), · · · , fp(x, ξn)sup(α))

(2.5)
Though the random ambiguity is removed, the objectives are usually in con-

flict in stochastic MOP problem, there is no optimal solution that simultaneously
minimizes all the objective functions. In this case, we have to introduce the con-
cept of Pareto efficient solution in stochastic MOP problem, which means that
it is impossible to improve any one of objectives without sacrificing on one or
more of the other objectives.

Definition 2.1 A Pareto efficient solution x∗ in model (2.2) is said to be C
Pareto efficient to the stochastic MOP problem (2.1), where the feasible solution
x∗ is said to be a Pareto efficient solution of model (2.2) if there is no feasible
solution x such that

C[fj(x, ξj)] ≤ C[fj(x∗, ξj)], j = 1, 2, . . . , p

and C[fj(x, ξj)] < C[fj(x∗, ξj)] for at least one index j.
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3 Hybrid Intelligent Algorithm for Stochastic MOP
Problem

To solve stochastic MOP problem with complicated closed form and feasible
set, the most direct approach is to nest the iterative loops by performing com-
plete Monte Carlo estimation (inner loop) for each optimization data request
(outer loop). However, this can be prohibitively expensive, for this reason, the
optimization techniques must be combined with hybrid algorithm. In this section,
the Latin Hypercube Sampling (LHS), Monte Carlo simulation, Support Vector
Regression (SVR) and Artificial Bee Colony (ABC) algorithm are integrated to
design a powerful hybrid algorithm for solving stochastic MOP problem.

3.1 Design of Hybrid Intelligent Algorithm

(1) Generation of Sample Using LHS
The goal of sampling in stochastic MOP problem is to generate a matrix of

experiments Xn = (xij)n×k from the feasible set where n is the number of exper-
iments and k is the number of variables. As an extension of stratified-random
procedure, Latin hypercube sampling has a long history and has shown its
robustness capabilities in sample generation. The LHS involves sampling ns val-
ues from the prescribed distribution of each of k decision variables X1,X2, . . . , Xk

in stochastic MOP problem. Unlike simple random sampling, LHS ensures a full
coverage of the range of each variable by maximally stratifying each marginal
distribution.As the information of design variables in stochastic MOP problem is
always hard-available beforehand, it is usually assumed that all design variables
follow uniform distribution.

(2) Computation Using Monte Carlo Simulation
Due to the complexity in stochastic MOP problem, it is hard to obtain the

closed form of its deterministic objective functions, the Monte Carlo simulation
is adopted to calculate the valuation of objective functions on the sample gener-
ated by LHS. In this paper, the Monte Carlo simulation is adopted to calculate
the expected value, variation and α−optimistic value of the objective functions
respectively.

(3) Approximation Using ABC-SVR
After obtain the sample in feasible set and the corresponding valuation of

objective functions, it needs to build a surrogate model to map the relation-
ships between them, which can be considered as a regression process. Support
Vector Regression (SVR) is a new regression method different from traditional/
statistical ones, it minimizes the generalized error bound instead of the observed
training error, so as to achieve the generalized performance. In this paper, we
start our study on the basis of the SVM toolbox—LIBSVM directly [20], rather
than discuss about the principle and algorithm of SVR. LIBSVM is a library
for SVM; its goal is to let users can easily use SVM as a tool. Since the control
parameters of SVR are very sensitive to its performance, a successful param-
eter selection is very important, especially the parameter γ in kernel function
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and the parameter c of cost. The artificial bee colony (ABC) algorithm is used
to find the optimal control parameters aiming at the best regression accuracy,
called ABC-SVR, whose regression performance will be tested in Section 4. The
main steps of the ABC-SVR application in the stochastic MOP problem can be
summarized as follows:

Step 1: Generate train data and test data based on the sample and its corre-
sponding valuation of objective functions;

Step 2: Normalize the train data and test data to improve the regression ability
of SVR;

Step 3: Denote the parameter γ in kernel function and the parameter c of cost as
a food position (c, γ), and the regression accuracy as the nectar amount;

Step 4: Adopt ABC algorithm to find the optimal control parameters of SVR
(optimal food position) on the normalized data;

Step 5: Use the optimal control parameters to build a SVR model and train it
according to the train data;

Step 6: Employ the test data to validate the accuracy of trained SVR model. If
the regression accuracy does not meet, return to Step 3 to change the
ABC options until the desired accuracy is met.

(4) Optimization Using ABC Algorithm
Created by Karaboga [16], the artificial bee colony algorithm is a new

population-based meta-heuristic method motivated by the intelligent foraging
behaviors of honeybee swarm. There are three essential components in the basic
ABC algorithm, respectively are, food source positions, nectar-amount, and three
kinds of foraging bees (employed bees, onlookers, and scouts). Each food source
position represents a feasible solution to the optimization problem being consid-
ered and the nectar-amount of a food source corresponds to the quality (fitness)
of the solution being represented by the food source. Each kind of foraging bee
performs one particular operation for generating new candidate food source posi-
tions. Employed bees are those bees which are searching the food around the food
source in their memory currently; they are responsible for sharing the informa-
tion about food sources with onlooker bees. Onlooker bees are those bees which
are waiting in the hive for the information from the employed bees; they tend
to choose good food source with more nectar-amount shared by the employed
bees, and then further tap the foods around the selected food source. Scout
bees are those bees which are carrying out random searches for discovering new
food sources if the employed bees and onlookers cannot find a better neighbor-
ing food source. Thus, the ABC algorithm visualizes the employed and onlooker
bees as performing the job of local search (exploitation), whereas the onlookers
and scouts bees as performing the job of global search (exploration). Specifically,
unlike real bee colonies, the ABC algorithm assumes that there is a one-to-one
correspondence between the employed bees and the food sources, that is, the
number of food sources (solution) is the same as the number of employed bees.
The role conversion in the algorithm is activated when the bees cannot find a
better food source, the employed bee of an abandoned food source becomes a
scout bee, which will becomes an employed bee again after it finds a new food
source.
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Fig. 1. Main idea of hybrid algorithm for stochastic MOP problem

Straightforwardly, the main idea of the proposed hybrid algorithm for stochas-
tic MOP problem can be illustrated in Fig. 1. Firstly, the valuations of objective
functions are obtained through the corresponding surrogate models built using
ABC-SVR. Secondly, these valuations are integrated into one objective value
using solution approaches which have been proved validated in deterministic
MOP, such as linear weighted method, ideal point method, etc. Thirdly, the
ABC algorithm finds the optimal solution in feasible set according to the inte-
grated objective value, which is its optimization goal. According to Definition
2.1, the optimal solution ABC algorithm obtained is the Pareto efficient solution
in stochastic MOP problem.

Fig. 2. Framework of hybrid algorithm for stochastic MOP problem

Specifically, the framework of the proposed hybrid algorithm is illustrated in
Fig. 2, the main procedure can be summarized as follows:
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Step 1: Generate sample data from feasible set as input data using LHS;
Step 2: Calculate corresponding objective values as the output data using Monte

Carlo simulation;
Step 3: Build surrogate models for every objective function based on the approx-

imation of input and output data using ABC-SVR;
Step 4: Send the employed bees to the food sources (solution), set it as the

input data and determine the nectar amounts fi (output data) using the
SVR models built in Step 3 and the solution approaches such as linear
weighted method, ideal point method, etc.;

Step 5: Calculate the fitness values of each solution fiti and its corresponding
probability values as follows:

fiti =

{
1/(1 + fi) if fi ≥ 0
1 + abs(fi) if fi < 0

pi = fiti/
SN∑
i=1

fiti

where i = 1, 2, SN ; SN is the number of food sources;
Step 6: Send the onlooker bees to their food sources according to the probability

values;
Step 7: Send the scouts to the search area if a food source could not be improved

through ”limit” trials, and replace it with a new randomly produced
solution if the new solution is better;

Step 8: Memorize the best food source (solution) achieved so far;
Step 9: If a stopping criterion is met, then output the best food source, otherwise,

go back to Step 4.

It can be seen that the hybrid algorithm not only applies classic sample
method to generate sample data in feasible set, but also adopts advanced regres-
sion procedure to build surrogate model, and powerful optimization algorithm
for solution improvement.

3.2 Performance Test
To test the performance of the proposed hybrid algorithm, two numerical exam-
ples are presented. The first one is a stochastic single objective problem with
available closed form of expected value, which is presented as follows.

⎧
⎪⎨
⎪⎩

min f(x, ξ) = ξ1x
2
1 + ξ2x

2
2 + ξ3x

2
3

s.t.
−1 ≤ x1, x2, x3 ≤ 1

(3.1)

where ξ1, ξ2, ξ3 are random variables, and subject to uniform distributionU (0, 2),
normal distribution N (1, 3), and exponential distribution EXP(1), respectively.
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Due to the linearity characteristic of expected value in probability theory, we can
deduce that

E[f(x, ξ)] = E[ξ1]x2
1 + E[ξ2]x2

2 + E[ξ3]x2
3

and the optimal solution is (0, 0, 0), the corresponding optimal objective value is 0.
Numerically, let us solve (3.1) by using the hybrid algorithm proposed in this

paper. The sample size in LHS is set as 500, and the number of expected value
calculation cycle in Monte Carlo is set as 5000. Parameters set for the ABC
algorithm are given in Table 1, and the maximum number of cycles in ABC is
taken as 200. The optimal solution obtained is (−0.0109, 0.0117,−0.0048), and
the optimal approximated objective value is 2.1357E-4.

Table 1. Control parameters adopted in the ABC algorithm

Control parameters in ABC algorithm

Colony size 40
Limit 100

Number of onlookers Half of the colony size
Number of employed bees Half of the colony size

Number of scouts 1

The convergence of hybrid algorithm in the solution (3.1) are shown in Fig. 3,
from which it is easy to know that the value by simulation is almost equal to
the true optimal value by performing over 450 sample data.

Fig. 3. Convergence to the true optimal value
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The second one is a numerical example from [21], which has been solved by
the traditional hybrid algorithm

⎧
⎪⎨
⎪⎩

min E[
√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2]
s.t.

x2
1 + x2

2 + x2
3 ≤ 10

(3.2)

where ξ1, ξ2, ξ3 are random variables, subject to uniform distribution U(1, 2),
normal distribution N (3, 1), and exponential distribution EXP(4), respectively.
In the traditional hybrid algorithm, it needs to produce 2000 sample data to train
the ANN, and 300 generations in the evolution of GA. While in the new algorithm
we proposed, it just needs to produce 500 sample data, and go through 60 cycles.
Programs are run independently for each algorithm in MATLAB R2010b (version
of 7.11.0.584) on Intel(R) Core(TM) i3-2310M CPU @2.10GHz under Window
XP environment. The obtained results are shown in Table 2. It is clear that
the proposed algorithm is more precise and efficient than the traditional hybrid
algorithm.

Table 2. Performance comparison

Traditional algorithm Proposed algorithm

Optimal solution (1.1035,2.1693,2.0191) (1.1469,2.3775,1.7375)

Minimum objective 3.56 3.34

Time cost 659 seconds 165 seconds

4 Application on A Theoretical Case

Here, a numerical example is provided to illustrate the proposed new hybrid algo-
rithm. Assume that x1, x2 are two decision variables, and ξ1, ξ2 are random vari-
ables, subject to uniform distribution U (1, 5) and normal distribution N (1, 4),
respectively. The problem under consideration is the following bi-objective pro-
gramming problem involving random variables in the objective functions.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x1,x2

f1(x, ξ1, ξ2) = ξ1 sin2(ξ2x1)+ξ1 cos2(ξ2x2)

min
x1,x2

f2(x, ξ1, ξ2) =
(ξ1x1 + ξ2)2 + (ξ2x2 + ξ1)2

10
subject to :

− 2 ≤ x1, x2 ≤ 2

(4.1)

To obtain Pareto efficient solution in problem (4.1), the linear weighted
method and ideal point method are adopted. Using the linear weighted method,
the equivalent deterministic model can be presented as follows:

⎧
⎪⎪⎨
⎪⎪⎩

min
x1,x2

C[f(x, ξ1, ξ2)] = λ1C[f1(x, ξ1, ξ2)] + λ2C[f2(x, ξ1, ξ2)]

subject to :
− 2 ≤ x1, x2 ≤ 2

(4.2)
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where λ1, λ2 > 0, and λ1 + λ2 = 1.
Using the ideal point method, the equivalent deterministic model can be

presented as follows:
⎧⎪⎪⎨
⎪⎪⎩

min
x1,x2

C[f(x, ξ1, ξ2)] =
√

(C[f1(x, ξ1, ξ2)]−f0
1 )2+(C[f2(x, ξ1, ξ2)]−f0

2 )2

subject to :

− 2 ≤ x1, x2 ≤ 2

(4.3)

where f0
1 and f0

2 denote the optimal values of C[f1(x, ξ1, ξ2)] and C[f2(x, ξ1, ξ2)]
without considering another objective, respectively.

Since C denotes the general meaning of valuation of random objective func-
tions, three kinds of specific meaning and corresponding deterministic models
are considered here, that is, the expected value model, the minimum variance
model and the α−optiministic value model.

The expected value model is solved first using the hybrid algorithm proposed
in Section 3. Firstly, using LHS to generate sample in the feasible set. As the
information of (x1, x2) is unknown beforehand, it is assumed that decision vari-
ables (x1, x2) follow uniform distribution U (−2, 2). The sample size is set as
500. Then Monte Carlo simulation is adopted to calculate the expected value of
E[f1(x, ξ1, ξ2)] and E[f2(x, ξ1, ξ2)] on the 500 sample points generated by LHS.
The number of expected value calculation cycle is set as 5000. The first ten
sample points and its corresponding objective values are shown in Table 3.

Table 3. The first ten sample points and corresponding objective values

Sample Point Sample Data E[f1(x, ξ1, ξ2)] E[f2(x, ξ1, ξ2)]

SP1 (0.0012,-1.2514) 1.5118 1.5695
SP2 (-0.2989,-1.2339) 2.4112 1.4701
SP3 (-0.8486,-0.9854) 3.0114 1.6675
SP4 (-1.7186,1.8216) 3.0121 6.3310
SP5 (-1.5538,0.8206) 3.0125 3.9422
SP6 (-0.9030,1.7695) 3.0114 4.4770
SP7 (-0.9130,0.5722) 3.0456 2.3637
SP8 (1.9990,-1.9940) 3.0096 7.6842
SP9 (-1.5418,-0.4542) 3.1798 2.9080
SP10 (-0.2729,0.3027) 2.8948 1.6806

After obtain the sample in feasible set and the corresponding expected values
of objective functions, we use ABC-SVR method to build the surrogate model.
We take the 1-450 sample data as the train data, and the 451-500 sample data
as the test data to validate the surrogate model. The accuracy of output predic-
tion is used to represent the regression performance, and compare the regression
performance of ABC-SVR with normal SVR using grid search method and BP
artificial neural network. In the ABC-SVR, parameters set for the ABC algo-
rithm are given in Table 1. The mean square error (MSE) and coefficient of
determination R2 are adopted to be regression performance index of these three
methods, and the comparison results are shown in Table 4 and 5.
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As shown in Table 4 and 5, the regression performance of ABC-SVR is best,
and has achieved an ideal precision.

After obtaining the two surrogate models of E[f1(x, ξ1, ξ2)] and E[f2(x, ξ1, ξ2)],
the ABC algorithm is adopted to find the optimal solution of expected value model
using linear weighted method and ideal point method. In the ABC algorithm, con-
trol parameters set for the ABC algorithm are the same as shown in Table 1.

Using linear weighted method, three scenarios are considered here, they are
λ1 = 0.7, λ2 = 0.3, λ1 = 0.5, λ2 = 0.5, λ1 = 0.3, λ2 = 0.7, respectively. The
results obtained are shown in Table 4.4.

Table 4. Regression performance comparison of three methods (ABC-SVR / SVR /
ANN) about E[f1(x, ξ1, ξ2)]

Method Parameters Regression Performance

MSE R2

ABC-SVR bestc=1.5340, bestg=3.5834 0.00012 0.99875
SVR bestc=0.4682, bestg=0.3356 0.00356 0.98499
ANN hidden layer number=10 0.01647 0.96522

Table 5. Regression performance comparison of three methods (ABC-SVR / SVR /
ANN) about E[f2(x, ξ1, ξ2)]

Method Parameters Regression Performance

MSE R2

ABC-SVR bestc=0.7462,bestg=0.164 0.00065 0.9982
SVR bestc=2.6284,bestg=0.1864 0.0017 0.9819
ANN hidden layer number=10 0.0028 0.9712

Table 6. Results obtained in expected value model using linear weighted method

Scenarios Results

λ1 = 0.7, λ2 = 0.3
E[f1(x, ξ1, ξ2)] 1.3993
E[f2(x, ξ1, ξ2)] 2.3562

Optimal solution (-0.0157,-2)

λ1 = 0.5, λ2 = 0.5
E[f1(x, ξ1, ξ2)] 1.5006
E[f2(x, ξ1, ξ2)] 1.9588

Optimal solution (-0.0200,-1.7071)

λ1 = 0.3, λ2 = 0.7
E[f1(x, ξ1, ξ2)] 1.9742
E[f2(x, ξ1, ξ2)] 1.3857

Optimal solution (-0.0236,-1.5080)

As shown in the Table 6, the results obtained are different in three scenarios,
this is due to that different weights denote different importance of the objec-
tives, higher weight implies higher importance. Therefore, the optimal solutions
obtained are different.

Using ABC algorithm and ideal point method, we can obtain the minimum
values of E[f1(x, ξ1, ξ2)] and E[f2(x, ξ1, ξ2)] on the feasible set without consider-
ing other objectives. They are 1.1196, 1.2716, respectively. Then, we can solve the
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Table 7. Results obtained in expected value model using ideal point method

Results

E[f1(x, ξ1, ξ2)] 1.6053
E[f2(x, ξ1, ξ2)] 1.7532

Optimal solution (-0.0236,-1.5080)

Table 8. Results obtained in minimum variance model using linear weighted method

Scenarios Results

λ1 = 0.7, λ2 = 0.3
V [f1(x, ξ1, ξ2)] 1.1581
V [f2(x, ξ1, ξ2)] 2.3017

Optimal solution (0.1854,0.3297)

λ1 = 0.5, λ2 = 0.5
V [f1(x, ξ1, ξ2)] 1.1843
V [f2(x, ξ1, ξ2)] 1.1596

Optimal solution (-0.1419,0.2198)

λ1 = 0.3, λ2 = 0.7
V [f1(x, ξ1, ξ2)] 1.2104
V [f2(x, ξ1, ξ2)] 0.7798

Optimal solution (-0.1242,-0.1821)

Table 9. Results obtained in minimum variance model using ideal point method

Results

V [f1(x, ξ1, ξ2)] 1.1643
V [f2(x, ξ1, ξ2)] 0.8005

Optimal solution (-0.1668,-0.2527)

Table 10. Results obtained in α−optiministic value model using linear weighted
method

Scenarios Results

λ1 = 0.7, λ2 = 0.3
f1(x, ξ1, ξ2)sup(α) 0.2470
f2(x, ξ1, ξ2)sup(α) 0.4366
Optimal solution (0.0012,-1.2514)

λ1 = 0.5, λ2 = 0.5
f1(x, ξ1, ξ2)sup(α) 0.7220
f2(x, ξ1, ξ2)sup(α) 0.2138
Optimal solution (-0.2534,-1.6625)

λ1 = 0.3, λ2 = 0.7
f1(x, ξ1, ξ2)sup(α) 1.2862
f2(x, ξ1, ξ2)sup(α) 0.1168
Optimal solution (-0.6105,-1.4748)

Table 11. Results obtained in α−optiministic value model using ideal point method

Results

f1(x, ξ1, ξ2)sup(α) 0.3876
f2(x, ξ1, ξ2)sup(α) 0.3672
Optimal solution (-0.0988,-1.2830)
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expected value model using ideal point method with the same way in the solu-
tion of expected value model using linear weighted method. The results obtained
are shown in Table 7.

Following the same procedure in the solution of expected value model illus-
trated above, the results obtained in the minimum variance model and the
α−optiministic value model are shown as follows, where α is set as 0.8.

As shown in the Table 6-11, the Pareto efficient solutions obtained in three
deterministic models are different from each other, this is due to that the mean-
ings applied to remove the random ambiguity are different. Therefore, in the
practical application of stochastic MOP, it needs to specify the meanings of ran-
dom objective functions first, then remove the random ambiguity in objectives
using the meanings specified to obtain the equivalent deterministic MOP prob-
lem, and finally generate the Pareto efficient solutions under the meanings speci-
fied. Additionally, in the same deterministic MOP model, the solutions obtained
using linear weighted method and ideal point method are Pareto efficient, this
indicates that the solution approach and the new hybrid algorithm proposed in
this paper are valid.

5 Conclusions

The general purpose of this study is to propose a powerful hybrid algorithm to
address the difficulty that the closed form of converted deterministic model in
practical stochastic MOP problem is usually hard to obtain, which is integrated
with Latin Hypercube Sampling (LHS), Monte Carlo simulation, Support Vec-
tor Regression (SVR) and Artificial Bee Colony (ABC) algorithm. A numerical
example was provided to illustrate the validity of the solution approach and
the performance of the hybrid algorithm. Our study shows that, different crite-
ria of the equivalent deterministic MOP model can result in different solutions
obtained, and the hybrid algorithm built in this paper is efficient to solve stochas-
tic MOP problem. In our view, to be studied in future, a new solution method
is needed for treating stochastic MOP problem on the Pareto front directly.
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Abstract. The performance of an Evolutionary Algorithm (EA) can be
greatly influenced by its parameters. The optimal parameter settings are
also not necessarily the same across different problems. Finding the opti-
mal set of parameters is therefore a difficult and often time-consuming
task. This paper presents results of parameter tuning experiments on the
NSGA-II and NSGA-III algorithms using the ZDT test problems. The
aim is to gain new insights on the characteristics of the optimal param-
eter settings and to study if the parameters impose the same effect on
both NSGA-II and NSGA-III. The experiments also aim at testing if the
rule of thumb that the mutation probability should be set to one divided
by the number of decision variables is a good heuristic on the ZDT prob-
lems. A comparison of the performance of NSGA-II and NSGA-III on
the ZDT problems is also made.

Keywords: Parameter tuning · NSGA-II · NSGA-III · ZDT · Bilevel
optimization · Multi-objective problems

1 Introduction

Real-world optimization problems are often formulated with multiple objectives
and are therefore preferably solved using multi-objective evolutionary algorithms
(MOEAs). Metaheuristics such as EAs involve a set of user-defined parameters
that control various aspects of the algorithm. It is well-known [1,10] that these
settings can greatly affect the search process and the overall performance of the
algorithm. However, setting them for a particular problem is not always intuitive.
A strategy that is often used is to choose parameter values that have been shown
to be effective on similar problems. Some metaheuristics, such as evolutionary
strategies (ES), come with their own heuristics or recommendations for choosing
the parameters. Neither method guarantees maximal performance from the algo-
rithm. This paper addresses this issue by using the idea of optimal parameters,
similar in principle to the one proposed in [9]. The parameter-setting problem
can itself be viewed as an optimization problem in which the objective is to
maximize the performance of the algorithm used on a particular problem. For
single-objective problems, this performance indicator could be directly related
to the best function value attained by the algorithm. Since this work considers
c© Springer International Publishing Switzerland 2015
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multi-objective problems, a commonly used performance indicator is the hyper-
volume [12]. Thus, our formulation contains a multi-objective problem nested
within a single-objective problem and resembles the following,

Maximize
p

HV (p)

where, HV (p) is the hypervolume of the non-dominated set
obtained by solving the following problem with parameters p
Minimize

x
{f1(x), f2(x), . . . , fM (x)}

Subject to gj(x) ≥ 0 ∀ j ∈ {1, 2, . . . , J}
hk(x) = 0 ∀ k ∈ {1, 2, . . . ,K}
xl ≤ x ≤ xu

(1)

The algorithmic parameters of the lower-level optimization problem become the
variables for the upper-level optimization problem.

Many real-world optimization problems are also designed to be scalable with
respect to the variables. For example, consider a production line involving sev-
eral machines in which their processing times have to be optimized for maxi-
mizing the overall throughput and minimizing the work in process of the line.
Adding additional operations (machines) to such a line is equivalent to scaling
the original optimization problem since the objectives remain the same. In such a
situation, it is beneficial to study how the optimal parameter values for the algo-
rithm change with respect to the problem size. Another important aspect is the
computational cost. Objective functions in the real world are rarely analytical.
In other words, evaluation of the objective functions may involve computation-
ally expensive simulations. Studying the impact of the available computational
budget on the optimal parameter values can lead to considerable savings in time
and cost.

In order to illustrate the above ideas, two MOEAs, namely NSGA-II [4] and
NSGA-III [3], are chosen with the ZDT test suite [13] to experimentally study
the effects of problem size and available budget. NSGA-II and the ZDT test
problems is a combination that is commonly used to assess the performance
of a new metaheuristic. Finding the optimal parameters and the corresponding
hypervolume for this combination will also allow a new metaheuristic to be
compared against the NSGA-II best-case performance on the ZDT problems.
Other test problems are not included in this study because that would reduce
the number of experiments performed on each problem. This trade-off will allow
for a more in-depth analysis of the ZDT problems.

It is worthwhile to mention here that the goal of this paper is not to find
parameter settings that work across a range of problems, but to study how the
optimal parameters vary for a given problem with the number of variables and
budget size. In order to achieve this, several experiments will be performed on
each problem to get multiple sets of optimized parameters. A secondary aim of
this paper is to see how NSGA-III compares to NSGA-II in terms of performance
and whether they use similar optimal parameter settings. Though NSGA-III was
originally designed to handle many (> 3) objective problems, this paper will
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address how it performs against NSGA-II on the ZDT problems. Testing against
problems with three or more objectives would be interesting but is out of scope
of this paper and left for future work.

The rest of the paper is organized as follows. Section 2 introduces the param-
eter setting problem and related work. In Section 3 a description of the exper-
imental design is provided. The experimental results appear in Section 4. The
conclusions are summarized in Section 5.

2 Background

The problem of finding the optimal set of parameters for a particular problem
can itself be formulated as an optimization problem and solved by an EA. This
bilevel optimization approach is called a meta-EA [5]. Though computationally
intensive, the approach is highly parallelizeable since replications of the optimiza-
tions, at both the upper and lower-level, are independent. A software framework
was developed as part of this work that could efficiently distribute and run
optimizations in parallel. This software together with a cluster of homogeneous
commodity computers enabled the scope of the experiments to be extended well
beyond what would have been feasible on a single computer.

One issue that has to be considered when testing different parameters is that
they are usually not independent. This means that changing the parameters one
by one may lead to to sub-optimal settings. Changing them simultaneously on
the other hand will require a large number of experiments to be performed. It is
therefore impractical to perform parameter tuning manually, even though there
exist different techniques to overcome this problem to some extent. A detailed
description and taxonomy of the available techniques can be found in [5].

2.1 Classification and Terminology

It is possible to distinguish three layers in parameter tuning: The application
layer, the algorithm (lower) layer and the design (upper) layer [5]. The problem
to be solved is located on the application layer and the metaheuristic to solve
that problem is on the algorithm layer. On the design layer is the parameter tuner
that tests different parameters for the metaheuristic on the algorithm layer. To
avoid confusion, the quality of solutions for the problem on the application layer
is called fitness while the quality of the parameters is called utility [5]. The
classification that was proposed in [6] distinguishes between parameter tuning
where the parameters are static and parameter control where they can change
during the optimization.

Tuners can be divided into two main categories: iterative and non-iterative [5].
Non-iterative tuners generate all parameters at the start, usually in a system-
atic fashion. This allows the utility landscape to be modeled from the utility
of the evaluated parameters. Iterative tuners, on the other hand, generate the
parameters iteratively as the tuner progresses. This makes them more suitable
for finding the (near-)optimal parameter vectors, because they can perform a
search of the utility landscape.



236 M. Andersson et al.

2.2 Related Work

Using a bilevel optimization approach to do parameter tuning has been done
before in the literature. In [1] a Genetic Algorithm (GA) was tuned on single
objective sphere problem. The authors found that the GA using the optimized
parameters to be significantly better than a GA with ”standard” parameters.

Another example is [7] which used a GA to tune the parameters for a GA
on a set of numerical test functions. The result were then validated on a image
registration task, showing a small but statistical significant advantage to the
tuned GA against a ”standard” GA.

A more recent example is [9] in which the authors used NSGA-II to tune
the parameters of Partical Swarm Optimization (PSO) and Differential Evolu-
tion (DE). The algorithms were tuned against both the precision and speed of
convergence. It was found that in addition to finding good parameters, the app-
roach could also extract relationships between parameters and the impact of a
parameter on the quality criteria.

3 Experimental Design

The meta-EA approach only provides a single optimal parameter set p∗ for each
experiment, meaning that it does not provide much insight into the utility land-
scape. This paper will address this issue by running several different experiments
on the same test problem. Two things will be varied for all test problems: the
function evaluation budget and the number of decision variables (N).

3.1 Experimental Setup

The experiments involve four aspects that this paper studies, these are listed
in Table 1. Each experimental setting is combination of these different aspects.
Thus, in total there are 350 (2 MOEAs × 5 test problems × 7 budget sizes ×
5 problem sizes) different experimental settings each of which is independently
replicated 20 times. The outcome of each replication is the set of parameters
with the best hypervolume. Therefore, each experimental setting produced 20
different sets of parameters.

Each experimental setting was a bilevel optimization with a function evalua-
tion budget of 1000, using the parameters shown in the third column of Table 2.
The budget was based on manually analyzing a small number of bilevel opti-
mizations and identifying the fact that most of them stopped improving after
about 500 evaluations. The MOEA being optimized, at the algorithm layer, was
also independently replicated 20 times for each set of parameters being evalu-
ated. The average hypervolume from these optimizations was then used as the
utility of that set of parameters.

3.2 Experimental Settings

The following paragraphs explain each row of Table 1.
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Table 1. Experimental settings and corresponding choices

Experimental setting Experimental choices

MOEA NSGA-II, NSGA-III

Test problem ZDT1, ZDT2, ZDT3, ZDT4, ZDT6

Function evaluations 100, 500, 2000, 3500, 5000, 6500, 8000

Number of decision variables 2, 10, 20, 30, 40

MOEAs and Test Problems. The two tuned MOEAs, NSGA-II and NSGA-
III, on the algorithm layer are both real-value coded. That is why the binary
coded test problem ZDT5 was excluded from the experiments. All other ZDT
test problems are used in this study. The reference point for the hypervolume
calculations for ZDT{1, 2, 3, 6} is (11, 11) and (11, 1000) for ZDT4. The reason
for the higher reference point on ZDT4 is that some of the optimizations failed
to reach any solution within the (11, 11) reference point.

Both NSGA-II and NSGA-III use the SBX crossover operator and a polyno-
mial mutation.

Function Evaluations. It has been argued that keeping the parameters static
during an optimization is not optimal [6]. This would also indicate that it is
advantageous to use different parameters for different function evaluation bud-
gets, even though the parameters are static during the run. In order to test this,
each experiment will be performed with different budget sizes.

Number of Decision Variables. A number of different rules of thumb have
been proposed in the literature. For example, in a binary coded GA, the mutation
rate should be proportional to the length of the chromosome [8], pm = 1/l. For
a real-value coded GA the length is substituted with the number of decision
variables. Previous work has found this rule to be accurate on a single objective
sphere problem [1]. This rule will be tested by varying the number of decision
variables for each problem.

3.3 Meta-EA Parameters

At the design layer is a real-value coded meta-EA using the SBX crossover and
a polynomial mutation. This introduces the problem of choosing a good set of
parameters at the design layer as well. To avoid using yet another meta-EA to
solve this problem, a full factorial experimental design was performed instead.
The values for each parameter is shown in Table 2. To limit the runtime of these
experiments only one test problem, ZDT1, was selected as the test problem on
the application layer. To further limit the scope only the NSGA-II algorithm
was used at the algorithm layer. The function evaluation budget for NSGA-II
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on the algorithm layer was 1000 and the number of replications were 10. On
the design layer the function evaluation budget for the meta-EA was 250 with
10 replications. The parameters with the highest average hypervolume was then
chosen as the set of parameters to use at the design layer for the rest of the
experiments. The chosen parameters are shown in the third column in Table 2.

Table 2. Full factorial experimental design for meta-EA parameter settings

Meta-EA Parameter Possible Values Selected

Population Size 4, 8, 16 8

Mutation Probability 0.2, 0.4, 0.6, 0.8 0.4

Mutation Distribution Index 1, 2, 5, 10, 20, 40 1

Crossover Probability 0.2, 0.4, 0.6, 0.8 0.6

Crossover Distribution Index 1, 2, 5, 10, 20, 40 40

3.4 Parameters

NSGA-II and NSGA-III have very similar parameters, the only difference is that
NSGA-III does not directly specify the population size. It is instead based on
the number of reference points. The reference points are systematically created
by placing them on a normalized hyperplane as described in [2]. To obtain the
number of reference points created by this method the following equation is used:
H =

(
M−1+divisions

divisions

)

1. Population size for NSGA-II (pop): An integer in the range [2, 300]. Upper
bound determined by small scale experiments that showed all optimizations
used a population size less than 300.

2. Divisions for NSGA-III (divisions): The number of divisions along each
objective. The population size is set to exactly the number of reference points
created by the divisions. An integer in the range [1, 299]. Upper bound set
to 299 to get the same population size limits as for NSGA-II.

3. Mutation probability (pm): The probability of random changes to the deci-
sion variables. A real-value in the range [0, 1].

4. Mutation Distribution Index (ηm): Index governing the proximity of the
mutated child to its parent. A real-value in the range [0, 300]. Upper bound
determined by small scale experiments that showed all optimizations used a
ηm less than 300.

5. Crossover probability (pc): The probability of creating offspring from par-
ents. A real-value in the range [0, 1].

6. Crossover Distribution Index (ηc): Index governing the proximity of the
mutated children to the parents. A real-value in the range [0, 300]. Upper
bound determined by small scale experiments that showed all optimizations
used a ηc less than 300.
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The parameters of the optimization on the algorithm layer in Equation (1)
become variables for the optimization on the design layer. Thus the variable
vector p in Equation (1) is p = {pop, pm, ηm, pc, ηc} for NSGA-II and p =
{divisions, pm, ηm, pc, ηc} for NSGA-III.

3.5 Performance Measure

The hypervolume measure is used to assess the performance of the EA at the
algorithm layer. The hypervolume is the volume in objective space formed by a
reference point and the Pareto front. The hypervolume is calculated using the
technique described in [11], which also discusses the hypervolume measure in
more detail. The advantage of the hypervolume measure is that provides single
measure for both the convergence and spread of the solutions. The drawback is
that it can be computationally expensive and that it can be sensitive to inclusion,
or exclusion, of extremal points. Each EA keeps a Pareto archive of unlimited
size that is used to calculated the hypervolume at the end of the optimization.
So even though no limit was set for the archive size it is of course limited in
practice by the available memory and running complexity of the hypervolume
calculation. Neither proved to be a problem for the experiments in this study.

4 Experimental Results

This section will present the results from the experiments. Due to the large
number of experiments conducted, totally 350, only a subset of all results can
fit in this paper. The results for the most common problem size, 30, are shown
in Table 3 and Table 4 for NSGA-II and NSGA-III respectively. The values are
the median together with the standard deviation.

The experiments were run on a heterogeneous cluster of commodity hard-
ware. In total there were 91 computers and the experiments took approximately
170 hours to complete.

4.1 Population Size

Most of the experiments found that a small population size was most optimal.
Many found the smallest possible size, two, to be the best. Having a small
population size increases the selection pressure since only a small amount of
solutions survive each generation. Thus, allowing the optimization to advance
more quickly. However, this comes at the cost of diversity among the solutions,
but based on the results, the ZDT problems do not seem to require much diversity
among the solutions. One reason the population size can be kept small is the fact
that the hypervolume is calculated from the, unlimited, Pareto archive. Using
the last generation to calculate the hypervolume would in most cases result in
a smaller hypervolume, since fewer solutions would be used in the calculation.
An exception to the small population size is experiments with N = 2. This is
especially true when the budget size is 100. One reason for this might be that
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Table 3. Optimal parameter values for NSGA-II with N = 30

Budget HV pop pm ηm pc ηc

Z
D

T
1

100 105.46 ± 2.62 2.0 ± 33.56 0.17 ± 0.03 0.04 ± 33.24 0.64 ± 0.24 178.27 ± 101.50
500 118.42 ± 0.06 2.0 ± 0.0 0.07 ± 0.00 0.07 ± 0.21 0.43 ± 0.11 138.81 ± 88.95
2000 120.62 ± 0.00 2.0 ± 0.0 0.04 ± 0.00 0.15 ± 0.41 0.49 ± 0.06 1.57 ± 25.64
3500 120.66 ± 0.00 2.0 ± 0.0 0.03 ± 0.00 0.07 ± 0.55 0.74 ± 0.08 0.33 ± 0.19
5000 120.66 ± 0.0 2.0 ± 0.0 0.02 ± 0.00 0.12 ± 0.45 0.94 ± 0.04 0.09 ± 0.08
6500 120.66 ± 2.84 2.0 ± 0.0 0.02 ± 0.00 0.01 ± 0.46 0.99 ± 0.01 0.05 ± 0.07
8000 120.66 ± 2.84 2.0 ± 0.0 0.01 ± 0.00 0.06 ± 0.35 0.99 ± 0.00 0.03 ± 0.05

Z
D

T
2

100 92.19 ± 2.78 2.0 ± 2.83 0.16 ± 0.03 0.05 ± 65.34 0.83 ± 0.25 131.68 ± 91.13
500 114.19 ± 4.27 2.0 ± 4.79 0.07 ± 0.01 0.08 ± 64.09 0.54 ± 0.18 149.06 ± 90.18
2000 120.25 ± 0.00 2.0 ± 0.0 0.05 ± 0.00 0.30 ± 0.42 0.44 ± 0.07 254.41 ± 78.27
3500 120.32 ± 0.00 2.0 ± 0.0 0.03 ± 0.00 0.07 ± 0.45 0.66 ± 0.07 0.31 ± 0.18
5000 120.33 ± 0.00 2.0 ± 0.0 0.02 ± 0.00 0.05 ± 0.71 0.93 ± 0.06 0.05 ± 0.07
6500 120.33 ± 2.84 2.0 ± 0.0 0.02 ± 0.00 0.20 ± 0.84 0.99 ± 0.02 0.01 ± 0.03
8000 120.33 ± 1.42 2.0 ± 0.0 0.02 ± 0.00 0.07 ± 0.67 0.99 ± 0.00 0.01 ± 0.02

Z
D

T
3

100 110.31 ± 1.58 2.0 ± 1.74 0.17 ± 0.13 0.06 ± 20.89 0.77 ± 0.22 107.82 ± 85.04
500 125.72 ± 0.20 2.0 ± 0.0 0.07 ± 0.01 0.05 ± 0.34 0.59 ± 0.13 93.57 ± 63.37
2000 128.69 ± 0.00 2.0 ± 0.0 0.05 ± 0.01 1.48 ± 0.86 0.62 ± 0.09 207.58 ± 127.42
3500 128.76 ± 0.00 2.0 ± 0.0 0.03 ± 0.00 0.31 ± 0.88 0.85 ± 0.07 0.16 ± 0.11
5000 128.77 ± 0.00 2.0 ± 0.6 0.02 ± 0.00 0.63 ± 2.90 0.98 ± 0.02 0.03 ± 0.62
6500 128.77 ± 0.00 3.5 ± 1.92 0.02 ± 0.00 0.05 ± 1.17 0.99 ± 0.00 1.92 ± 2.40
8000 128.77 ± 0.0 6.0 ± 2.70 0.02 ± 0.01 0.25 ± 39.46 0.99 ± 0.02 3.27 ± 7.72

Z
D

T
4

100 7874.47 ± 40.69 2.0 ± 0.86 0.10 ± 0.03 5.23 ± 97.64 0.98 ± 0.05 28.36 ± 100.76
500 9534.32 ± 218.76 2.0 ± 4.15 0.05 ± 0.03 3.46 ± 130.49 0.94 ± 0.11 33.89 ± 81.29
2000 10233.5 ± 230.31 33.5 ± 18.85 0.03 ± 0.01 67.14 ± 119.39 0.99 ± 0.07 41.67 ± 13.91
3500 10644.55 ± 177.93 29.5 ± 33.41 0.02 ± 0.01 26.21 ± 132.47 0.99 ± 0.14 41.89 ± 33.14
5000 10898.0 ± 147.19 4.0 ± 45.68 0.02 ± 0.01 7.73 ± 125.00 0.99 ± 0.16 39.21 ± 58.90
6500 10945.1 ± 99.07 3.0 ± 44.47 0.02 ± 0.01 9.14 ± 95.20 0.94 ± 0.20 26.79 ± 16.83
8000 10960.95 ± 99.50 4.5 ± 62.07 0.02 ± 0.01 10.35 ± 115.74 0.99 ± 0.14 33.41 ± 15.60

Z
D

T
6

100 43.81 ± 0.34 2.0 ± 0.0 0.18 ± 0.03 0.03 ± 0.13 0.73 ± 0.16 142.08 ± 103.52
500 70.17 ± 0.41 2.0 ± 0.0 0.07 ± 0.01 0.01 ± 0.22 0.53 ± 0.18 79.68 ± 91.39
2000 106.75 ± 0.19 2.0 ± 0.0 0.05 ± 0.00 0.02 ± 0.15 0.40 ± 0.07 128.93 ± 77.69
3500 114.81 ± 0.04 2.0 ± 0.0 0.05 ± 0.00 0.11 ± 0.27 0.32 ± 0.05 223.53 ± 86.08
5000 116.17 ± 0.01 2.0 ± 0.0 0.05 ± 0.00 0.10 ± 0.41 0.28 ± 0.05 209.40 ± 89.19
6500 116.37 ± 0.00 2.0 ± 0.0 0.05 ± 0.00 0.08 ± 0.43 0.30 ± 0.05 16.30 ± 42.55
8000 116.40 ± 0.00 2.0 ± 0.0 0.04 ± 0.00 0.24 ± 0.87 0.38 ± 0.05 3.42 ± 35.33

Table 4. Optimal parameter values for NSGA-III with N = 30

Budget HV divisions pm ηm pc ηc

Z
D

T
1

100 105.02 ± 3.98 1.0 ± 88.43 0.20 ± 0.14 0.08 ± 48.35 0.83 ± 0.27 151.25 ± 100.56
500 118.30 ± 0.06 1.0 ± 0.0 0.07 ± 0.01 0.06 ± 0.22 0.88 ± 0.11 95.01 ± 98.37
2000 120.62 ± 0.00 1.0 ± 0.0 0.04 ± 0.00 0.15 ± 0.45 0.97 ± 0.05 1.60 ± 68.94
3500 120.66 ± 0.00 1.0 ± 0.0 0.02 ± 0.00 0.20 ± 0.87 0.99 ± 0.00 0.23 ± 0.21
5000 120.66 ± 2.84 1.0 ± 0.49 0.02 ± 0.00 0.18 ± 0.76 0.99 ± 0.02 0.32 ± 0.34
6500 120.66 ± 0.0 2.0 ± 0.43 0.02 ± 0.00 0.08 ± 0.34 0.99 ± 0.01 0.27 ± 0.20
8000 120.66 ± 2.84 2.0 ± 0.0 0.02 ± 0.00 0.46 ± 0.84 0.99 ± 0.00 0.22 ± 0.16

Z
D

T
2

100 91.46 ± 3.43 1.0 ± 64.72 0.17 ± 0.03 0.01 ± 60.35 0.92 ± 0.24 148.35 ± 96.71
500 114.01 ± 0.14 1.0 ± 0.0 0.06 ± 0.00 0.00 ± 0.09 0.92 ± 0.06 142.13 ± 78.08
2000 120.24 ± 0.00 1.0 ± 0.0 0.05 ± 0.00 0.11 ± 0.50 0.94 ± 0.09 230.93 ± 78.70
3500 120.32 ± 0.00 1.0 ± 0.0 0.03 ± 0.00 0.07 ± 0.54 0.99 ± 0.02 0.32 ± 0.17
5000 120.33 ± 0.00 1.0 ± 0.21 0.02 ± 0.00 0.11 ± 1.15 0.99 ± 0.00 0.11 ± 0.19
6500 120.33 ± 2.84 2.0 ± 0.45 0.02 ± 0.00 0.45 ± 2.65 0.99 ± 0.01 0.16 ± 0.23
8000 120.33 ± 2.84 2.0 ± 0.35 0.02 ± 0.00 0.43 ± 1.02 0.99 ± 0.00 0.13 ± 0.14

Z
D

T
3

100 109.38 ± 5.39 1.0 ± 106.74 0.19 ± 0.25 0.13 ± 109.57 0.83 ± 0.34 157.28 ± 86.58
500 125.57 ± 0.11 1.0 ± 0.0 0.08 ± 0.01 0.24 ± 0.28 0.95 ± 0.15 82.53 ± 56.98
2000 128.68 ± 0.00 1.0 ± 0.0 0.05 ± 0.01 0.60 ± 0.75 0.97 ± 0.06 11.93 ± 91.16
3500 128.76 ± 0.00 1.0 ± 0.55 0.02 ± 0.01 0.51 ± 1.86 0.99 ± 0.05 0.23 ± 12.31
5000 128.77 ± 0.00 2.0 ± 0.80 0.02 ± 0.01 1.22 ± 14.54 0.99 ± 0.03 0.85 ± 2.68
6500 128.77 ± 0.00 2.0 ± 1.04 0.03 ± 0.01 17.44 ± 40.01 0.99 ± 0.00 0.01 ± 2.43
8000 128.77 ± 0.00 4.0 ± 2.03 0.02 ± 0.01 0.39 ± 86.62 0.99 ± 0.01 5.81 ± 27.95

Z
D

T
4

100 7808.50 ± 103.39 1.0 ± 0.92 0.10 ± 0.11 6.64 ± 111.21 0.98 ± 0.14 42.87 ± 108.69
500 9117.17 ± 253.37 8.5 ± 4.40 0.10 ± 0.05 264.02 ± 129.77 0.99 ± 0.01 97.43 ± 107.31
2000 10420.05 ± 217.01 13.5 ± 15.15 0.03 ± 0.01 32.66 ± 129.23 0.99 ± 0.07 42.41 ± 30.90
3500 10662.05 ± 173.42 22.5 ± 24.28 0.02 ± 0.01 124.65 ± 140.48 0.99 ± 0.03 33.41 ± 35.91
5000 10893.45 ± 144.74 2.0 ± 33.95 0.02 ± 0.01 7.56 ± 139.79 0.99 ± 0.06 43.74 ± 17.90
6500 10942.75 ± 117.76 1.0 ± 42.92 0.02 ± 0.01 8.81 ± 130.25 0.99 ± 0.11 44.83 ± 16.98
8000 10959.35 ± 98.00 1.0 ± 48.80 0.02 ± 0.01 9.50 ± 113.74 0.99 ± 0.09 39.72 ± 17.57

Z
D

T
6

100 43.41 ± 3.90 1.0 ± 97.06 0.19 ± 0.09 0.15 ± 66.85 0.92 ± 0.31 110.77 ± 81.40
500 69.93 ± 0.45 1.0 ± 0.0 0.08 ± 0.01 0.03 ± 0.18 0.89 ± 0.16 82.35 ± 79.93
2000 106.27 ± 0.21 1.0 ± 0.0 0.05 ± 0.00 0.07 ± 0.13 0.69 ± 0.16 144.05 ± 73.31
3500 114.63 ± 0.08 1.0 ± 0.0 0.05 ± 0.00 0.14 ± 0.33 0.58 ± 0.12 167.48 ± 88.15
5000 116.13 ± 0.01 1.0 ± 0.0 0.05 ± 0.00 0.08 ± 0.28 0.58 ± 0.07 161.48 ± 77.15
6500 116.36 ± 0.00 1.0 ± 0.0 0.05 ± 0.00 0.16 ± 0.92 0.61 ± 0.08 23.18 ± 94.26
8000 116.40 ± 0.00 1.0 ± 0.0 0.05 ± 0.00 0.25 ± 0.68 0.78 ± 0.11 6.02 ± 2.21
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a random search, which both NSGA-II and NSGA-III degenerates to when the
population size is greater or equal to the budget, has about the same performance
when the problem is easy to solve and the function evaluation budget is very
limited.

The median values for the population size parameter using NSGA-II are
shown in Table 5. The same observations can be made for the NSGA-III and are
not shown for that reason.

4.2 Mutation Probability: 1/N Rule of Thumb

Each experiment was run with five different values for the number of decision
variables. This was done to test the accuracy of the rule of thumb that the
mutation rate should be set to one divided by the number decision variables.
Since each experiment was also run with different function evaluation budgets,
it is also possible to see if that had any affect on the mutation probability.
The usefulness of this evaluation is limited by the small number of problems
used in this paper and no generalization can be made how this rule works on
other problems. The mutation probabilities are also only from the best set of
parameters found. Therefore, this evaluation does not test the accuracy of this
rule of thumb for sub-optimal sets of parameters.

The experiment results can be divided into two groups based on the relation-
ship between the mutation probability and the number of variables. ZDT{1, 2,
3} is in one group and ZDT{4, 6} is in the other. The first group start with a
relatively high mutation probability for two variables, which then decreases and
is kept almost constant for 10, 20, 30 and 40 variables. The second group has a
more gradual decrease in the mutation probability. The median values from two
problems are shown here, ZDT1 in Figure 1 and ZDT4 in Figure 2.

On ZDT1 the rule slightly overestimates the mutation probability for budget
sizes greater than 500 when N is 10 and 20 because the optimized mutation
probability does not change much between N 10 and 40. It also underestimates
for all N when the budget size is less than 2000. On ZDT4 the rule overestimates
when N is 2 and the budget size is greater than 500. It also underestimates for
all N when the budget size is 100. For all other cases the rule matches well with
the data.

Based on these results the rule of thumb is able to estimate good values for the
mutation probability, especially for larger budgets, on the ZDT test problems.

4.3 Mutation Probability vs. Budget Sizes

A trend that can be observed throughout all experiments is that mutation prob-
ability decreases as the function evaluation budget increases. The trend is most
prominent on ZDT{1, 2, 3} and less so on ZDT{4, 6}. Figure 5 and 6 shows the
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Table 5. Experimental results for population sizes in NSGA-II

N 100 500 2000 3500 5000 6500 8000

Z
D

T
1

2 79.5 ± 121.99 11.0 ± 3.02 12.0 ± 5.83 15.0 ± 6.70 15.5 ± 6.27 20.0 ± 4.48 22.0 ± 6.66
10 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.8
20 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
30 2.0 ± 33.56 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
40 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

Z
D

T
2

2 2.0 ± 100.89 6.0 ± 1.65 17.5 ± 2.24 18.5 ± 6.49 22.0 ± 4.43 26.5 ± 4.02 28.0 ± 4.57
10 2.0 ± 3.26 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.43
20 2.0 ± 59.58 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
30 2.0 ± 2.83 2.0 ± 4.79 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
40 2.0 ± 1.74 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

Z
D

T
3

2 4.0 ± 119.75 4.5 ± 2.53 14.0 ± 5.20 32.0 ± 8.46 37.5 ± 7.40 48.5 ± 24.04 56.0 ± 34.45
10 2.0 ± 3.31 2.0 ± 0.0 4.0 ± 1.90 9.0 ± 2.71 11.0 ± 1.10 11.5 ± 0.78 11.0 ± 3.28
20 2.0 ± 2.71 2.0 ± 0.0 2.0 ± 0.73 2.0 ± 1.69 4.5 ± 2.53 9.0 ± 3.28 10.0 ± 2.25
30 2.0 ± 1.74 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.6 3.5 ± 1.92 6.0 ± 2.70
40 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.43 2.0 ± 0.0 2.0 ± 0.87

Z
D

T
4

2 3.0 ± 110.51 2.0 ± 15.87 8.0 ± 4.01 8.0 ± 2.47 12.0 ± 3.46 12.0 ± 2.78 17.0 ± 5.01
10 2.5 ± 1.81 2.0 ± 8.92 3.0 ± 30.32 3.0 ± 28.57 5.0 ± 56.69 6.0 ± 35.50 11.0 ± 85.31
20 2.5 ± 1.57 12.0 ± 6.07 4.0 ± 23.04 4.0 ± 34.12 4.0 ± 50.59 6.5 ± 60.39 6.0 ± 50.64
30 2.0 ± 0.86 2.0 ± 4.15 33.5 ± 18.85 29.5 ± 33.41 4.0 ± 45.68 3.0 ± 44.47 4.5 ± 62.07
40 2.5 ± 0.97 2.0 ± 2.62 15.0 ± 16.91 2.5 ± 28.88 77.0 ± 40.10 4.0 ± 38.47 6.0 ± 59.35

Z
D

T
6

2 2.0 ± 79.04 2.0 ± 0.53 11.0 ± 2.94 20.0 ± 5.35 23.5 ± 4.63 26.0 ± 3.62 29.0 ± 5.31
10 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.6 2.0 ± 1.39
20 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
30 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
40 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

Fig. 1. Applicability of 1/N rule of thumb for pm on ZDT1

Fig. 2. Applicability of 1/N rule of thumb for pm on ZDT4
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Fig. 3. Trends with budget size and ηc on ZDT1, ZDT2 and ZDT6
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Fig. 4. Trends with budget size and pc on ZDT1, ZDT2 and ZDT6

median values for NSGA-II on ZDT1 and ZDT6. The results for NSGA-III are
similar, but they are not shown here because of space limitations.

4.4 Budget Size, pc and ηc

A trend how pc changes with respect to the budget size can be observed on all
problems except ZDT4, although it is most clear on ZDT{1, 2, 3}. For small
budgets pc is relatively high. As the budget size increases pc first falls and then
rises, approaching a value of one. The point at which it starts to rise is related
to the number of decision variables. Another trend is that there is a point at
which an increase of the budget size causes a sharp fall of ηc. One explanation
for why pc is high and ηc is low for large budget sizes is based on the fact that
most experiments use a population size of two. The two individuals are pushed
apart by the crowding distance and with a large enough budget they will end up
at each of the two extreme values. The rest of the non-dominated front is then
filled by crossing these two solutions, and since they are at opposite extremes a
low ηc is preferred. These trends are shown for NSGA-II on ZDT1, ZDT2 and
ZDT6 in Figure 3 and Figure 4, the values are the median.
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Fig. 5. Mutation probabilities with varying budget sizes for NSGA-II on ZDT1
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Fig. 6. Mutation probabilities with varying budget sizes for NSGA-II on ZDT6
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Table 6. Hypervolume results for NSGA-II and NSGA-III

ZDT1 ZDT2 ZDT3
N NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

1
0
0

2 119.68 119.43 118.58 116.73 126.41 125.58
10 115.35 111.60 107.64 105.04 119.34 117.46
20 109.27 106.38 95.78 96.77 112.78 108.35
30 104.92 103.35 91.39 90.65 110.06 104.97
40 103.06 101.24 87.85 86.87 108.01 102.54

5
0
0

2 120.65 120.66 120.32 120.32 128.76 128.76
10 120.53 120.51 120.11 120.08 128.50 128.46
20 119.77 119.69 117.87 117.77 127.41 127.27
30 118.43 118.29 113.22 114.00 125.71 125.55
40 116.88 116.64 110.72 109.39 123.96 122.75

2
0
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.32 128.77 128.77
20 120.65 120.65 120.31 120.31 128.74 128.74
30 120.62 120.62 120.25 120.24 128.69 128.68
40 120.55 120.55 120.14 120.12 128.61 128.60

3
5
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.32 120.32 128.76 128.76
40 120.65 120.65 120.31 120.31 128.75 128.75

5
0
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.33 120.33 128.77 128.77
40 120.66 120.66 120.32 120.32 128.77 128.77

6
5
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.33 120.33 128.77 128.77
40 120.66 120.66 120.33 120.33 128.77 128.77

8
0
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.33 120.33 128.77 128.77
40 120.66 120.66 120.33 120.33 128.77 128.77

ZDT4 ZDT6
N NSGA-II NSGA-III NSGA-II NSGA-III

1
0
0

2 10993.44 10990.83 109.83 106.26
10 10461.61 10411.53 63.63 61.04
20 9251.83 9192.64 49.29 47.53
30 7889.13 7781.64 43.82 41.48
40 6391.02 6289.29 40.93 40.29

5
0
0

2 10999.46 10999.46 116.41 116.41
10 10849.93 10828.18 103.26 102.69
20 10221.37 10247.87 82.07 81.78
30 9447.10 9273.20 70.23 70.03
40 8524.69 8408.60 63.34 63.06

2
0
0
0

2 10999.7 10999.69 116.42 116.42
10 10970.92 10973.84 116.35 116.34
20 10778.65 10793.25 113.59 113.37
30 10416.11 10425.08 106.76 106.31
40 9968.78 9899.27 99.29 98.87

3
5
0
0

2 10999.7 10999.7 116.43 116.43
10 10991.61 10984.64 116.41 116.41
20 10896.30 10911.16 116.24 116.21
30 10656.69 10666.82 114.80 114.65
40 10402.90 10438.98 111.48 111.19

5
0
0
0

2 10999.7 10999.7 116.43 116.43
10 10993.38 10993.26 116.42 116.41
20 10931.79 10946.89 116.40 116.39
30 10779.01 10780.29 116.17 116.13
40 10498.14 10557.02 115.19 115.03

6
5
0
0

2 10999.7 10999.7 116.43 116.43
10 10997.87 10994.22 116.42 116.42
20 10945.27 10956.11 116.41 116.41
30 10896.20 10849.03 116.37 116.36
40 10787.64 10712.04 116.11 116.06

8
0
0
0

2 10999.7 10999.7 116.43 116.43
10 10995.99 10998.15 116.42 116.42
20 10977.54 10966.47 116.41 116.41
30 10887.89 10889.35 116.40 116.40
40 10752.03 10840.82 116.34 116.32
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4.5 Hypervolume Comparisons Between NSGA-II and NSGA-III

The mean hypervolume values for both NSGA-II and NSGA-III are shown in
Table 6. It is not possible, due to the number of experiments performed, to
include all parameter settings used to obtain the hypervolume results. A subset
of all the parameter settings and their corresponding hypervolumes are presented
in Table 3 and Table 4. A Welch-t test with a significance of 5% is performed to
determine if the two samples, NSGA-II and NSGA-III, are statistical different.
If the null hypothesis can be rejected, the greater hypervolume is shown in bold.

The difference in hypervolume between NSGA-II and NSGA-III is for the
most part small. However, for some of the experiments, NSGA-II is slightly
better. NSGA-III is statistically better on some experiments but the difference
is too small to be concluded as significant.

To summarize, NSGA-II is found to be marginally better than NSGA-III on
the ZDT problems. Both NSGA-II and NSGA-III can find solutions very close
to the Pareto front for ZDT{1, 2, 3, 6}. The most difficult problem is ZDT4,
for which with N > 10 none of algorithms could reach the maximum theoretical
hypervolume within 8000 evaluations.

5 Conclusions and Further Work

This paper utilized a bilevel optimization framework to find optimal parameter
values for two different MOEAs, namely NSGA-II and NSGA-III, for maximal
performance on the ZDT test suite. Both the number of decision variables and
the function evaluation budgets were simultaneously varied to determine how
they affect the optimal parameter settings for the respective algorithm. This
made it possible to test the rule of thumb that the mutation probability should
be set to 1/N . The results show that, on the ZDT test problems, this rule is a
good heuristic.

The experiments also made it possible to see what affect the different function
evaluation budgets has on the optimized parameters. An important observation
was that the optimal mutation probability is not only dependent on the number
of decision variables but also on the available budget size. Specifically, it was
observed that the optimal mutation probability decreases with increasing budget.

It was also clear from the results that the ZDT test problems do not require
much diversity in the population because most experiments found the optimal
population size to be less than 10, often close to the minimum of just two indi-
viduals. This also indicates that a parameter controlling the elitism should have
been included in the experiments.

Another aim of this paper was to compare the performance between NSGA-
II and NSGA-III on the ZDT test problems. From the results, it is possible to
discern a slight advantage with NSGA-II over NSGA-III on the ZDT problems.
As far as the optimal parameter values are concerned, it was observed that the
differences are small.

Extending these experiments to scale the number of objectives instead of the
number of decision variables would be interesting, and is intended as future work.
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Since these results, as well as other earlier work, indicate that it is sub-optimal
to keep parameter settings static during the run, it would be be worthwhile
to modify an EA, on the algorithm layer, to be able to use multiple sets of
parameters during an optimization. This would allow a meta-EA to tune multiple
sets of parameters at different intervals of the optimization, instead of being
limited to a single set throughout the optimization run.
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Abstract. Decomposition based algorithms have become increasingly
popular for solving multi-objective problems. However, the effect of scalar-
ising functions in decomposition based algorithms is under-explored. This
study analyses the search behaviour of a family of frequently used scalaris-
ing functions— the Lp weighted approaches, and identifies that the p value
corresponds to a trade-off between the Lp approach’s search ability and its
robustness on Pareto front geometries. That is, as the p value increases,
the search ability of the Lp approach decreases whereas its robustness on
Pareto front geometry increases. Based on this observation, we propose
to use Pareto adaptive scalarising functions in decomposition based algo-
rithms, where the p value is adaptively fine-tuned based on an estimation
of thePareto front shape.MOEA/DusingPareto adaptive scalarising func-
tions (MOEA/D-par) is tested on a set of problems (with up to seven
objectives) encompassing three basic Pareto front geometries, i.e., convex,
concave and linear, and is shown to outperformMOEA/DusingChebyshev
function on all the test problems.

Keywords: Multi-objective optimization · Evolutionary computation ·
Decomposition · Scalarising function · Pareto adaptive

1 Introduction

Multi-objective optimisation problems (MOPs) arise in many disciplines such as
engineering, finance, logistics and control systems [1], where multiple objectives
must be simultaneously optimised. Often objectives in a MOP are in compe-
tition with each other, and thus, the optimal solution set of MOPs is not a
single solution but comprises of a set of trade-off solutions. Multi-objective evo-
lutionary algorithms (MOEAs) are well suited for solving MOPs since (i) their
population-based nature leads naturally to the generation of an approximate
trade-off surface in a single run; and (ii) they tend to be robust to underlying
objective function characteristics.

During the last two decades, a variety of MOEA approaches has been
proposed. These approaches can be categorised into three main classes: Pareto-
dominance or modified dominance based algorithms, e.g., MOGA [2], NSGA-II [3],
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 248–262, 2015.
DOI: 10.1007/978-3-319-15934-8 17
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PICEA-g [4]; Performance indicator based algorithms, e.g., IBEA[5], HypE [6];
and decomposition based algorithms, e.g., CMOGA [7], MSOPS [8], MOEA/D [9].
Amongst these approaches, decomposition based algorithms become increasingly
popular recently. Decomposition based algorithms decompose a MOP into a set
of single objective problems by means of weighted scalarising functions, or a set
of simple MOPs [10,11] and optimise them in a collaborative manner. Compared
with the other two types of algorithms, decomposition based algorithms have a
number of advantages such as high search ability for combinatorial optimisation,
computational efficiency on fitness evaluation and high compatibility with local
search [9,12–14]. The seminal decomposition based MOEA, i.e., MOEA/D [9],
that popularised this method, has been used in many real-world applications [15].
Despite these advantages, the performance of decomposition based algorithms is
arguably dependent on the specification of weights[16] and scalarising functions
[17]. The choice of suitable weights and scalarising functions is typically problem-
dependent and therefore is difficult if no information about the problem charac-
teristics is known before the search proceeds.

Regarding the choice of weights, we have known that when the Pareto front
geometry of a MOP is known a priori, an optimal distribution of weights for
certain scalarising function can be identified [16,18]. Otherwise, a suitable set
of weights can be configured adaptively. A number of effective methods have
been proposed for this purpose, for example, co-evolving weights with solutions
[19,20], using Pareto adaptive weights [21], adjusting weights adaptively based
on an estimation of Pareto front geometry [22–24]. Regarding the choice of scalar-
ising functions, although we have known: for example, the weighted Chevbshev
is able to find solutions on both convex and non-convex regions whereas the
weighted sum cannot [25]; the weighted sum can obtain better results than the
weighted Chevbshev on multi-objective knapsack problems [9], this is still far
from being well understood. It is in general unclear what the relation is between
different scalarising functions; and how an appropriate scalarising function can
be identified for a new problem. Towards a better understanding of the effect of
scalarising functions in decomposition based algorithms as well as unlocking the
aforementioned issues, in this study we analyse a family of frequently used scalar-
ising functions, i.e., the Lp weighted approaches in terms of their search ability
and their robustness on the Pareto front geometry. Moreover, based on the anal-
ysis, we propose to use Pareto adaptive Lp scalarising functions in decomposition
based algorithms so as to enhance the algorithm’s performance.

The remainder of this paper is organised as follows: in Section 2 some back-
ground knowledge about decomposition based approaches, is provided. Section
3 elaborates the effect of Lp scalarising functions and how to choose a suitable
Lp scalarising function. Experiments and discussions are provided in Section 4.
Finally, Section 5 concludes the paper and identities future studies.
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2 Decomposition Approaches

Without loss of generality, a minimisation MOP is defined as,

min
x

F (x) = (f1 (x) , f2 (x) , · · · , fm (x))

subject to x ∈ Ω
(1)

where m is the number of objective functions (generally, m > 2); x is a vector in
the decision (variable) space Ω. Rm is the objective space. F : Ω → R

m consists
of m real-valued objective functions that are to be minimised.

Decomposition based approaches decompose a MOP into a set of single objec-
tive problems defined by means of scalarising functions with different weights.
The optimal solution of each single objective problem corresponds to one Pareto
optimal solution of a MOP [26]. The weight vector defines a search direction
for the scalarising function. Diversified solutions can be obtained by employing
different search directions.

A variety of scalarising functions can be used in decomposition based algo-
rithms [26]. The weighted sum and the weighted Chebyshev from the family of
weighted Lp scalarising functions are two of the most popular ones. Mathemat-
ically, the weighted Lp scalarising function can be written as,

gwd (x|w, p) =

(
m∑

i=1

λi (fi (x) − z∗
i )p

) 1
p

, p > 0 λi = (1/wi)
p (2)

where z∗ = (z1, z2, · · · , zm) is the ideal point; w = (w1, w2, · · · , wm)T is
a weighting vector and

∑m
i=1 wi = 0, wi ≥ 0; The w determines the search

direction of the scalarising function. Note that whether the obtained Pareto
optimal solution is along the search direction or not is also influenced by the
Pareto front geometry [16,27]. The weighted sum and weighted Chebyshev are
derived by setting p = 1 and p → ∞, respectively.

In addition, decomposition based algorithms combine different objective func-
tion values into one scalar value. These objectives might have various units of
measurement, and/or scaled disparately. It is therefore important to rescale dif-
ferent objectives to dimension-free units before aggregation. Typically, the nor-
malisation procedure transforms an objective value fi by

f i =
fi − z∗

i

znad
i − z∗

i

(3)

If the z∗
i and znad

i (the nadir point) are not available, the smallest and largest
fi of all non-dominated solutions found so far could be used instead.

3 The Choice of a Suitable Lp Scalarising Function

3.1 Analysis: Property of Different Lp Scalarising Functions

This section analyses the property of different Lp scalarising functions, that is,
the trade-off between their search ability and their robustness on Pareto front
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(a) (b)

Fig. 1. Contour lines of the weighted sum (a) and weighted Chebyshev (b) scalarising
functions

geometries [28]. Inspired by [29], we first look at two special cases, i.e., the
weighted sum and the weighted Chebyshev. Fig. 1 shows contour lines of the
two scalarising functions in a bi-objective case with ideal point at the origin and
weight vector w = (0.5, 0.5). The objective space is divided into two sub-spaces
by the contour line. Solutions in one sub-space are better than solutions on the
contour line while solutions in the other sub-space are worse. Solutions that lie
on the same contour line have the same scalar objective value. In Fig. 1, solution
A is the optimal solution of gwd (x| (0.5, 0.5) , 1) and gwd (x| (0.5, 0.5) ,∞).

The contour line of the weighted sum approach is a line, and the contour line
of the weighted Chebyshev approach is a polygonal line (with vertical angle).
According to the shape of the contour line we can observe that for the weighted
sum approach the size of a better region equals to half of the whole objective
space regardless of the number of objectives. This indicates that the probabil-
ity of replacement of an existing solution by a newly generated solution always
decreases from 1

2 to 0 as the search progresses. The maximal probability of
replacement (i.e., 1

2 ) is not influenced by the number of objectives. In this sense,
the search ability of the weighted sum approach is not affected by an increase
in the number of objectives. With respect to the weighted Chebyshev function,
a better region roughly equals to

(
1
2

m)
of the m-dimensional objective space.

This indicates that the maximal probability of replacement is
(
1
2

m)
. Compared

with the weighted sum approach, the maximal probability of replacement signifi-
cantly decreases as the number of objective increases. In other words, the search
ability of Chebyshev scalarising function deteriorates as the number of objec-
tives increases [28,30]. However, it is suspected that the search ability of the
Chebysheve scalarising function is comparable to the Pareto-dominance relation
as claimed in [28]. Our preliminary experiments show that compared with the
Pareto dominance, solutions selected by the Chebyshev function are more likely
to be closer to the ideal point [31]. Moreover, it has been widely demonstrated
that decomposition based algorithms (even using random weighted Chebyshev
functions) outperform Pareto-dominance based algorithms on many-objective
problems [14,19].
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Fig. 2. Contour lines of the Lp scalarising function with different p values

Contour lines of the Lp scalarising functions with different p values are shown
in Fig. 2. We can observe from the figure that the volume enclosed by the contour
line and the ideal point decreases as p increases (a calculation of the volume can
be referred to [28]). This indicates that as p increases, the probability of finding
a better solution (measured by the Lp approach) decreases, that is, the search
ability of the Lp scalarising function decreases. This observation is also experi-
mentally demonstrated by applying MOEA/D with L3, L7 and L∞ scalarising
functions to solve the 4 objective WFG4 [32] problem whose Pareto optimal front
is a hyper-sphere. Each of the algorithm instantiations is run for 31 independent
runs. The mean hypervolume (HV ) values and the generation distance (GD)
values over generations are plotted in Fig. 3. We can clearly observe from Fig.
3 that MOEA/D with p = 3 performs the best, followed by p = 7, and then
p → ∞, i.e., the weighted Chebyshev function.

As previously mentioned, the weighted sum function may not be able to find
all the Pareto optimal solutions in the case of non-convex PF s [26, p.79], whereas
the Chebyshev scalarising function can find solutions in both convex and non-
convex regions, see Fig. 4. Upon closer examination, we can imagine that all the
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Fig. 3. (Colour online) The performance of MOEA/D using the p = 3, p = 7 weighted
Lp scalsrising functions and the weighted Chebyshev function on the 4-objective WFG4
problem: the mean HV and GD values of over generations
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(a) weighted sum (b) weighted Chebyshev

Fig. 4. Behaviours of the weighted sum (a) and Chebyshev (b) scalarising function on
non-convex Pareto front

Lp scalarising functions except for the Chebyshev, face difficulties in searching for
solutions in a non-convex region. To be more specific, a weighted Lp scalarising
function can find solutions along certain search direction in a non-convex region
only if the curvature of its contour line is larger than the curvature of the PF
shape. Otherwise the selected scalarising function suffers from the non-convex
geometry issue. Since the curvature of the Chebyshev function is ∞, it is able to
find Pareto optimal solutions for any type of geometries. For example, assuming
that the PF is a circle (quadratic) in the first quadrant, see Fig. 5. In order to
find the Pareto optimal solution x along the search direction (0.5, 0.5), the Lp

with p > 2 should be used, e.g, p = 3.
Overall the search ability of a Lp scalarising function and its robustness

on Pareto front geometries are a trade-off— the higher the search ability, the
lower the robustness. If the Pareto front geometry is known a priori, we will be
able to determine a suitable Lp scalarising function by taking into account the
curvature of the Pareto front. For example, for a search direction wj , we can set
the p value being larger than the curvature of the segmented Pareto front along

(a) p = 1 Failed (b) p = 2 Threshold (c) p = 3 Successful

Fig. 5. Searching the same solution using different Lp functions
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wj . However, if the Pareto front geometry is unknown, we could set the p value
based on the estimated Pareto front geometry.

3.2 Methodology: Estimation of the Pareto Front Geometry on
Line

We have analysed the property of different Lp scalarising functions, and have
identified that the choice of a suitable p value is determined by the Pareto front
geometry. By a suitable Lp scalarising function, we mean that its search ability is
maximised, and simultaneously, it guarantees that any Pareto optimal solution
can be obtained for a certain weight. This section describes in elaborate detail
how a suitable Lp scalarising function is determined. The key issue here is to
effectively estimate the Pareto front geometry.

A number of methods are available in the literature for estimating the Pareto
front geometry. Here, we borrow the idea from [21,33], that is, approximating
the Pareto front using a family of reference curves:

{(y1)α + (y2)α, · · · , (ym)α = 1; yj ∈ (0, 1], α ∈ (0,∞)} (4)

The family of curves as shown in Fig. 6 possesses the following properties: i) if
α > 1, the curve is a concave; ii) if α < 1, the curve is convex; and iii) if α = 1,
the curve is linear.
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Fig. 6. Illustration of reference curves for α = 1
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Next we describe how the PF is associated with one of the curves. The
pseudo-code is presented in Algorithm 1. First we initialise a set of candidate p
values, and store them in a set P (line 1); Then we normalise solutions within the
range [0, 1] (line 2). Next for a search direction wj , we identify its T neighbouring
solutions, denoted as Q (line 4). These neighbouring solutions are the current
solutions of the neighbouring problems. The parameter T is the same as the
selection neighbourhood size in MOEA/D [9]. We compute the Eq. (5) for each
candidate p value. The smaller the h(p,Q), the better the solutions Q match
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the reference curve. The p is determined as the value that produces the second
smallest h(p,Q) (lines 5 and 6). The reason for not choosing the p associated
with the minimal h(p,Q) is that the curvature of Lp function is required to be
larger than the curvature of this segmented PF shape, i.e. p > α, see Fig. 5.
In addition, we include a pre-defined large number, e.g., 1000, in the set P . If
h(Q, 1000) is found to be the minimal, p is set to ∞, i.e., the Chebyshev function
is used instead (lines 7-9).

h (p,Q) =
∑

∀xk∈Q

⎛
⎝ ∑

i=1,...,m

(
fi

(
xk

))p − 1

⎞
⎠

2

, p ∈ P (5)

Algorithm 1. Selecting a suitable Lp scalarising function
Input: non-dominated solutions available Q, neighbourhood size, T
Output: p value.

1 Initialise the candidate Lp functions, e.g., P = { 1
2
, 2
3
, 1, 2, 3, ..., 10, 1000};

2 Normalise solutions within the range [0, 1];

3 foreach search direction, wj do
4 Find the T neighbouring solutions, Q, of the search direction wj ;
5 Compute the h(p, Q) for each candidate p;
6 Find the second smallest h(p, Q) and identify the corresponding p value;
7 if p equals to a pre-defined large value in the P then
8 using the Chebyshev function instead, i.e., p ← ∞;
9 end

10 end

4 Experiments and Discussions

This section examines the effect of Pareto adaptive scalarising functions. We incor-
porate it into the state-of-the-art decomposition based algorithm, i.e., MOEA/D
[9], and compare the derived algorithm, denoted as MOEA/D-par (see Algorithm
2), with MOEA/D using the Chebyshev scalarising functions.

4.1 Experimental Descriptions

TestProblems. Test problems used in this study are constructed by applying dif-
ferent shape functions provided in the WFG toolkit to the standard WFG4 bench-
mark problem, please refer to [19] for more details. The WFG41 has a concave
Pareto optimal front. WFG42 has a convex Pareto optimal front. The Pareto opti-
mal front of WFG43 is a hyperplane. The number decision variables of these prob-
lems is set to n = 100 wherein the WFG position parameter (k) and the distance
parameter (l) are m−1

2 and 100−k, respectively. The Pareto optimal front of these
problems has the same trade-off magnitudes, and it is within [0, 2]. These problems
are invoked in 2-, 4- and 7-objective instances. Note that unless otherwise stated
we use WFGn-Y to denote the problem WFGn with Y objectives.



256 R. Wang et al.

Algorithm 2. MOEA/D using Pareto adaptive scalarising functions
Input: initial population, S ← {x1,x2, · · · ,xN}, initial weights,

W ← {w1,w2, · · · ,wN}, selection neighbourhood size, T , replacement
neighbourhood size, nr

Output: S

1 Initialise the Lp
k as the weighted sum style, i.e., pk ← 1, i ∈ {1, 2, · · · , N};

2 Evaluate the objective function values of the initial S;

3 Update the ideal and nadir vectors, z∗ and znad;

4 Randomly assign each weight, wi with a candidate solution, xi;

5 Calculate the Euclidean distance between weights, wi and wj , i, j ∈ 1, 2, · · · , N ;

6 Find the T neighbouring weights B(wi) of wi based on the distance of weights

and identify the related neighbouring solutions Q of xi;
7 Set iteration ← 0, set matingS ← ∅;
8 while the stopping criterion is not satisfied do
9 for i ← 1 to N do

10 if rand < δ then
11 matingS ← Q;
12 else
13 matingS ← S;
14 end
15 Randomly select three solutions xr1,xr2 and xr3 from the mating pool,

matingS;
16 Generate a new solution xnew by performing differential evolution (DE)

and polynomial mutation (PM) operators;
17 Evaluate the objective value of xnew, and update the ideal and nadir

vectors;

18 for each xk ∈ Q do

19 Compare gwd(xnew|wk, pk) with gwd(xk|wk, pk);
20 end

21 Replace no more than nr solutions in Q with xnew if gwd(xnew|wk, pk)
is smaller;

22 end
23 Update the pk value for each search direction using Algorithm 1;

24 end

General Parameters. The following parameters are set constant across all
algorithm runs:

• Algorithm runs and stopping criterion: each algorithm is performed for 31
runs, each run for 25,000 function evaluations.

• Population size: N = 200 for bi-objective problems, 400 for 4-objective prob-
lems, and 700 for 7-objective problems.

• DE and PM operators : the DE control parameters are set as F = 0.5 and
CR = 0.9. The mutation probability pm = 1/n and its distribution index is
set to be ηm = 20.
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• The initial candidate p values: p ∈ P = { 1
2 , 2

3 , 1, 2, 3, 4, 5, 10, 1000}.
• MOEA/D parameters: the selection neighbourhood size is set to 10% of N ,

the replacement size (nr) is 10% of T .

4.2 Experimental Results

Median Attainment Surfaces. Plots of median attainment surfaces across
the 31 runs of each algorithm are shown in Fig. 7. These allow visual inspection
of performance in terms of the dual aims of proximity to and diversity across
the global trade-off surface. The PF of each problem serves as a reference. From
inspection of Fig. 7, the two algorithms appear to have comparable diversity
performance while the MOEA/D-par has a clear better convergence performance
than MOEA/D for all the three problems.

Comparison Results in Terms of the HV and C Metrics. Comparison
results of MOEA/D-par with MOEA/D in terms of the HV and C metrics are
presented in Table 1. A favourable HV value (larger, for a minimisation problem)
implies good proximity with diversity. In our experimental studies, the reference
point is set to 1.1×znad, i.e., (2.2, 2.2, · · · , 2.2). The C metric is a binary metric
which provides information on convergence. For example, given two sets, A and
B, C(A,B) refers to the fraction of solutions in B that are dominated at least
by one solution in A. C(A,B) > C(B,A) indicates a better convergence of the
A set. Moreover, the non-Parametric Wilcoxon-ranksum two-sided comparison
procedure at the 95% confidence level is employed to compare the significance
of difference between two algorithms.

From Table 1, we can clearly observe that MOEA/D-par performs better
than MOEA/D for all problems in terms both the HV and C metrics. As the
only difference between MOEA/D-par and MOEA/D lies in the use of Pareto
adaptive scalarising functions, such results are able to confirm that provided
a good estimation of the Pareto front geometry, the use of Pareto adaptive
scalarising function is helpful, which can improve the performance of MOEA/D
significantly for both bi- and many-objective problems (up to 7 objectives).

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1

f2

MOEA/D
MOEA/D−par
PF

1.251.31.351.4
1.45

1.5

1.55

1.6

(a) WFG41-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1

f2

MOEA/D
MOEA/D−par
PF

0.550.60.650.7

0.5

0.55

0.6

0.65

(b) WFG42-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1

f2

MOEA/D
MOEA/D−par
PF

0.850.90.95 1 1.05

1

1.05

1.1

1.15

(c) WFG43-2

Fig. 7. (Color online) Attainment surfaces for the 2-objective WFG4X problems
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Table 1. Comparison results of the HV and C metric values for the WFG4X problems.
The symbol ‘<’, ‘=’ or ‘>’ means MOEA/D is statistically worse, comparable or better
than MOEA/D-par. A refers to MOEA/D, B refers to MOEA/D-par.

HV (A) HV (B) C(A,B) C(B,A)

WFG41-2 0.2982(0.0052) < 0.3138(0.0031) 0.0052(0.0104) < 0.9640(0.0426)

WFG42-2 0.7710(0.0047) < 0.7887(0.0038) 0.0984(0.0668) < 0.7846(0.0464)

WFG43-2 0.5286(0.0071) < 0.5460(0.0021) 0.0438(0.0876) < 0.7548(0.0404)

WFG41-4 0.4668(0.0097) < 0.5861(0.0028) 0.0020(0.0041) < 0.3495(0.0427)

WFG42-4 0.8828(0.0072) < 0.9100(0.0079) 0(0) < 0.1355(0.0642)

WFG43-4 0.7318(0.0218) < 0.8147(0.0194) 0.0044(0.0051) < 0.1118(0.0638)

WFG41-7 0.5319(0.0212) < 0.7204(0.0340) 0(0) < 0.0633(0.0368)

WFG42-7 0.9500(0.0069) < 0.9556(0.0011) 0.0263(0.0137) < 0.0551(0.0178)

WFG43-7 0.8112(0.0165) < 0.8884(0.0084) 0(0) < 0.0797(0.0239)

4.3 Experimental Discussions

This section investigates two issues, as part of a wider discussion for the use of
Pareto adaptive scalarising functions. First, we examine the obtained p values
in MOEA/D-par; Second, the range of the candidate p values.

Observation of the Obtained p Values. Empirical comparison results have
demonstrated the benefits of using Pareto adaptive scalarising functions in
MOEA/D. Here, we show the obtained p values for the search direction w =
(0.5, 0.5) over generations, as an evidence of the superior performance of MOEA/
D-par over MOEA/D. Due to the limited space, Fig. 8(a) only illustrates the
obtained p values for WFG41-4. The Pareto optimal front of WFG41-4 is a
hyper-sphere. This indicates that the threshold p value is 2, and thus, the
obtained p value should be 3 provided on the considered candidate p values,
i.e., p ∈ P = { 1

2 , 2
3 , 1, 2, 3, 4, 5, 10, 1000}. As is expected, it is observed from Fig.

8(a) that the p values gradually converge to 3. As previously analysed, the Lp=3

scalarising function is able to find all Pareto optimal solutions for a sphere type
Pareto front, i.e., WFG41, and simultaneously, Lp=3 has a better search ability
than the Chebyshev scalarising function.

Analysis of the Range of the Initial Candidate p Values. In principle
p can be any value within the interval (0,∞]. However, regarding the compu-
tational efficiency, we expect to shrink the range of p as much as possible. Of
course, such a shrink should not lead to a severe deterioration of the algorithm
performance. In this section, we conduct a simple experimental analysis on the
effect of different p values so as to set an upper bound of the candidate p value.
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Fig. 8. (a)The obtained p values for WFG41-4 over generations; (b) The change of
search ability of different Lp scalarising function in 2-, 4- and 10-objective problems

Let us consider a set of 1000×m points that are uniformly sampled from the
hypercube (0, 2]m, where m is the dimension of objective space. Also, consider
the contour lines of the Lp scalarising functions along the direction of w =
{1/m, · · · , 1/m}. Such contour lines intersect the point x = (1, · · · , 1). Then we
count the number of points that satisfy the condition

∑m
i=1(xi)p < m, indicating

that x is better than solutions on the contour line of the gwd(x|w, p) = m. The
experiments are repeated for 100 times. The mean proportion of better points
over p values varying from 1 to 10 are plotted in Fig. 8(b) for m = 2, 4 and 10-
dimension spaces, respectively. From the figure, we find that the search ability of
the Lp scalarising function decreases dramatically from p = 1 to p = 5 whereas
slightly when p > 5. Moreover, the larger the problem dimension, the faster
the decrease of the Lp search ability. The search ability of Lp=10 appears no
significant advantage over the weighted Chebyshev function, in particular, in
the 10-dimension space. Therefore, we tentatively recommend that despite the
Chebyshev function, p = 10 might be considered as an upper bound for the
candidate p values.

5 Conclusion

Decomposition based algorithms comprise a popular class of multi-objective evo-
lutionary algorithms, and have been demonstrated to perform well when a suit-
able set of weighted scalarising functions are provided. The effect of weights,
including methods for determining suitable weights, have been intensively stud-
ied. However, the effect of scalarising functions is far from being well understood.
In this paper we study the properties of the family of Lp scalarising functions,
and identify that the p value corresponds to a trade-off between the scalarising
function’s search ability and its robustness on Pareto front geometry. Moreover,
we propose to use different Pareto adaptive scalarising functions along different
search directions. A naive method is employed to perform an on line Pareto
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front geometry estimation, and thus, identifying a suitable Lp function. Experi-
mental results show that MOEA/D using Pareto adaptive scalarising functions
outperforms the standard MOEA/D for problems having different Pareto front
geometries.

It should be pointed out that there are a number of ways in which the central
contributions of this study are limited. First, we are aware of some other meth-
ods handling the choice of scalarising functions, for example, an adaptive use (a
simultaneous use) of the Chebyshev and weighted sum approaches by Ichibuchi
et al. [29,30]. In future, a comprehensive analysis regarding the advantages and
disadvantages of these methods will be conducted. Second, though the employed
Pareto front geometry estimation strategy appears to work well on the consid-
ered test problems, it is rather limited, more effective methods are required. As a
start, it is non-trivial to investigate how a suitable set of neigobouring solutions
should be chosen as this plays an important role for discontinuous Pareto front
geometry estimation. Third, adaptation of scalarising functions accounts effec-
tively varying the subproblems. As discussed in [34], the adaptation can lead
to reduced convergence rates, and thus, the effect of adaptation of scalarising
functions should be investigated further. Lastly, findings of this study are based
on three basic continuous MOPs. It is also important to assess the performance
of MOEA/D-par on problems having other complex geometries, other problem
types, e.g. multi-objective combinatorial problems, and also, crucially, real-world
problems.
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Abstract. Bi-level optimization represents a class of optimization prob-
lems with two decision levels: the upper level (leader) and the lower
level (follower). Bi-level problems have been extensively studied for sin-
gle objective problems, but there is few research in case of multiobjective
problems in both levels. This case is herein studied using a multiobjec-
tive particle swarm optimization (MOPSO) based algorithm. To solve
the bi-level multiobjective problem the algorithm searches for upper level
Pareto optimal solutions. In every upper level search, the algorithm solves
a lower level multiobjective problem in order to find a representative set
of lower level Pareto optimal solutions for a fixed upper level vector of
decision variables. The search in both levels is performed using the oper-
ators of a MOPSO algorithm. The proposed algorithm is able to solve
bi-level multiobjective problems achieving solutions in the true Pareto
optimal front or close to it.

1 Introduction

In many practical situations there are hierarchical decisions such that whenever
a decision maker does not completely control all the variables of the problem.
Suppose the case that a leader, the chief executive officer (CEO) of a com-
pany, intends to maximize global profits, and a follower, the division manager,
is responsible for optimizing his/her resources. Each one controls different sets
of variables and has his/her own goals, which are often different and may be
conflicting. Two embedded optimization problems have to be considered to rep-
resent such situation as an optimization problem, each one relating to each deci-
sion maker, where the lower level problem acts as a constraint to the upper level
one. This is a bi-level optimization problem. Here the CEO’s level of decision is
the upper level and the division manager’s level of decision is the lower level.
Hierarchical optimization structures appears naturally in management of decen-
tralized organizations and in many aspects of policy making (e.g. transportation
network design or energy pricing) [4]. In addition, the upper level and/or the
lower level of a bilevel decision problem may involve multiple objectives. In our
work, the bi-level problem with multiple objectives in both levels is considered
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 263–276, 2015.
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(BLMOP). To solve the BLMOP, a multiobjective particle swarm optimization
(MOPSO) algorithm is proposed. MOPSO is a population based meta-heuristic
which has obtained good results in a wide range of problems [7].
The existence of multiple Pareto optimal solutions at the lower level for a given
upper level solution makes the resolution of the BLMOP a very difficult task.
Recently some researchers have studied the BLMOP and proposed algorithms
to tackle it.

Eichfelder [8], [9] presented new theoretical results and proposed an algo-
rithm to solve the BLMOP with bi-objective problems in both levels and a single
upper level variable. Nishizaki and Sakawa [14], Shi and Xia [16] and Abo-Sinna
and Baky [3] proposed interactive algorithms to solve the BLMOP. Evolution-
ary algorithms have also been used to deal with BLMOP. Deb and Sinha [6]
proposed an evolutionary algorithm (BLEMO) based on the NSGA-II multiob-
jective algorithm. The BLEMO algorithm has been used to solve the BLMOP,
including problems with interdependent constraints in both levels. In [17], Sinha
and Deb have considered additional rules to enhance the algorithm’s ability to
find the true Pareto front. Particle swarm optimization has also been used to
solve bi-level problems with multiple objectives in one level or both levels. Hal-
ter and Mostaghim [11] proposed a particle swarm based algorithm to solve a
real-world bi-level problem with a single objective in the upper level and three
objectives in the lower level with linear constraints. Alves [1] proposed a bi-level
MOPSO algorithm to solve bi-level linear problems with multiple objectives in
the upper level and a single objective in the lower level. This algorithm was
further improved in [2]. The algorithms in [1],[2] and [11] exploit the linearity of
the objective functions and/or the constraints to solve the lower level problem.
Zhang et al. [18] presented an algorithm based on multiobjective PSO to solve
the BLMOP. In order to avoid premature convergence in the PSO, a crossover
operator was later introduced in [19].

Most of these algorithms are devoted to specific cases such as requiring lin-
earity, limiting the number of objectives or upper level variables. The algorithms
developed in [6], [17], [18] and [19] are able to solve generic multiobjective bi-level
problems.

The algorithm proposed in this paper (OMOPSO-BL) uses a MOPSO algo-
rithm to solve the bi-level problem with multiple objectives in both levels. After
each upper level search, OMOPSO-BL performs a lower level search in order
to find a representative set of lower level Pareto optimal solutions for a fixed
upper level vector of decision variables. This step is crucial and shall be thor-
oughly monitored in order to get feasible solutions to the upper level problem.
The algorithm uses an upper level - lower level interactive process based on the
one considered in BLEMO. To perform the MOPSO operations, the OMOPSO
[15] algorithm has been selected due to the good performance it has demon-
strated in comparison to other MOPSO approaches [7]. The proposed algorithm
OMOPSO-BL is compared with the BLEMO algorithm in order to assess its
competitiveness in some benchmark problems.
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The remainder of this paper is organized as follows. In Section 2 the BLMOP
formulation and some definitions are stated. The main principles of the BLEMO
and OMOPSO-BL algorithms are presented in Section 3. In Section 4 some
experimental results are shown. Section 5 is devoted to conclusions and future
directions of research.

2 The Bi-level Multiobjective Optimization Problem

Bi-level optimization problems are characterized by the existence of one (lower
level) problem embedded in other (upper level) optimization problem. A multi-
objective bi-level problem contains, at least, one multiobjective problem in one
of its levels. Here we consider both upper and lower level problems as multi-
objective optimization problems. A general bi-level multiobjective optimization
problem (BLMOP) can be defined as

min F (x) = (F1(x), F2(x), · · · , FM (x))
s.t. G(x) ≥ 0,

min f(xl) = (f1(xl), f2(xl), · · · , fm(xl)),
s.t. g(x) ≥ 0

(1)

where F (x) is the upper level objective vector to optimize, x = (xu, xl) with
xu ∈ IRn1 and xl ∈ IRn2 the upper and lower level decision vectors, respectively,
and G(x) and g(x) are the upper and lower level constraints, respectively.

Definition 1. 1. Let us consider S the constraint region of problem (1), S =
{(xu, xl) ∈ IRn1+n2 |G(xu, xl) ≥ 0, g(xu, xl) ≥ 0};

2. The follower’s rational reaction set for a given xu is defined as P (xu) =
{xl ∈ IRn2 |xl ∈ Eff(xu)}, with Eff(xu) the set of efficient/Pareto optimal
solutions of the lower level problem for a given xu;

3. The feasible set for the leader, which is the feasible set to problem (1), is
called induced region. It is given by: IR = {(xu, xl)|(xu, xl) ∈ S, xl ∈ P (xu)}.

It is worth mentioning that the lower level optimization problem is solved only
relatively to the xl variables, keeping the xuvariables fixed.

Definition 2. If (x∗
u, x∗

l ) is a feasible solution to problem (1) and there is no (xu, xl)
∈ IR such that Fj(xu, xl) ≤ Fj(x∗

u, x∗
l ) for all j=1,. . . ,M and Fj(xu, xl) <

Fj(x∗
u, x∗

l ) for at least one j=1,. . . ,M , then (x∗
u, x∗

l ) is a Pareto optimal solution
to problem (1).

The set of all Pareto optimal solutions to a multiobjective optimization prob-
lem is called the Pareto optimal front. Our goal is to approximate the entire
Pareto optimal front of the problem. We refer to the solutions found by the
algorithm as non-dominated solutions.
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3 Bi-level Multiobjective Algorithms

3.1 BLEMO Algorithm

The bi-level algorithm BLEMO [17] uses the evolutionary algorithm NSGA-II
[5] operators to solve both the upper and the lower level multiobjective problems
composing the bi-level problem (1). The algorithm uses a special structure to
represent the population, which is composed by Nu individuals split into ns sub-
populations. All the members of one sub-population have the same xu vector.
Therefore, there are only ns different upper level vectors of decision variables
in the population. The non-dominated sorting mechanism and the crowding dis-
tance operator introduced in [5] are used to rank each member of the population.
Thus, each individual is assigned a non-dominated rank (NDu) and a crowding
distance (CDu) relating to upper level objectives and constraints. Considering
each individual as a member of one sub-population, the non-dominated rank
(NDl) and the crowding distance (CDl), relating to lower level objectives and
constraints, are also computed. At each upper level iteration of the algorithm,
BLEMO starts by using the selection, crossover and mutation genetic operators
to create the new population. After that, the non-dominated solutions of the
lower level problem for each sub-population are computed. BLEMO uses the
NSGA-II algorithm to perform this task. At the end of each iteration, BLEMO
stores the non-dominated solutions to problem (1) in an external archive. To pre-
vent dominated individuals of the lower level (i.e. infeasible solutions to problem
(1)) from entering the archive, only the individuals that have been in the pop-
ulation for at least r generations can be inserted. This archive is ranked using
non-dominating sorting and crowding distance.

3.2 A Bi-level Multiobjective Particle Swarm Optimization
(OMOPSO-BL) Algorithm

We propose an algorithm based on PSO which employs a scheme similar to the
one used in BLEMO for the interaction between the upper and lower level opti-
mization phases, division of the population into sub-populations with the same
xu vector, and update the external archive with the upper level non-dominated
solutions. The OMOPSO-BL algorithm also uses a lower level archive to save
the non-dominated solutions found during the lower level iterations. This archive
guides the lower level search. The algorithm uses MOPSO operations to solve
the bi-level multiobjective optimization problem. In a MOPSO approach it is
usual to refer to individuals as particles. Each particle i is assigned a velocity
vector (vi) that indicates the direction of the particle movement resulting from
the combination of the directions to the best position so far achieved by the par-
ticle (pbesti) and to the best position attained by the whole population (gbest).
In multiobjective optimization, pbesti and gbest are not unique. Each particle i
moves itself in iteration t according to the expressions

vt+1
i = wvt

i + c1rand()(pbesti − xt
i) + c2rand()(gbest − xt

i) (2)
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xt+1
i = xt

i + vt+1
i , i = 1, 2, · · · , n (3)

where w is the inertia weight, c1 and c2 are the cognitive and social parameters,
rand( ) is a random uniform value in the interval [0, 1] and n is the number of
particles in the population. The main options and parameters of the OMOPSO
[15] algorithm are considered herein, because this algorithm has become one of
the most representatives of the state-of-the-art MOPSO approaches [7]. In the
case of OMOPSO [15], the parameters are randomly chosen, in each iteration,
within a predefined interval: w ∈ [0.1, 0.5] and c1, c2 ∈ [1.5, 2]. As other features
of OMOPSO algorithm we refer to the use of a mutation operator, called tur-
bulence, and a crowding distance [5] measure, assigned to each particle of the
external archive. This measure is used to select the leader for each particle i of
the population (gbesti) and a particle of the external archive to be replaced when
the archive is full. The mutation operator is applied, with a certain probability,
after the operations (2) and (3). The population is split in three parts. One third
is applied a uniform mutation, another third is applied a non-uniform mutation
and the last third of the population is not changed.

Algorithm 1. OMOPSOlowerlevel(P s, Bs, tl) - pseudo code

1: for each particle x
tl
i ∈ P s, i = 1, · · · , Nl do

2: Select the leader gbesti, from the archive Bs, by binary tournament
3: Update particle velocity v

tl+1
i , using (2)

4: Update particle position x
tl+1
i , using (3)

5: Mutate xtl+1
i , using turbulence operator

6: Assess the particle x
tl+1
i , evaluating f(x

tl+1
i )

7: Update pbesti
8: end for

The OMOPSO-BL algorithm starts by initializing the population Pt ran-
domly. Then, T iterations of the upper level problem are performed. At each
iteration, the OMOPSO-BL algorithm searches for upper level Pareto optimal
solutions. Inside the main (upper level) iteration, the OMOPSO-BL algorithm
has embedded a lower level routine in order to obtain non-dominated solutions
of the lower level problem. The feasible solutions of the upper level problem are
among these solutions. In the lower level routine, Tl iterations of the OMOPSO
algorithm are performed. At the end of each lower level routine, the archive At

with upper level non-dominated solutions is updated. The steps of the OMOPSO-
BL algorithm are detailed in Algorithm 2, which calls the subroutine OMOP-
SOlowerlevel described in Algorithm 1.

At each new upper level iteration, the algorithm starts by creating the sub-
populations (lines 10-22). To create each sub-population, an upper level vec-
tor xu is considered after selecting a particle from the population by binary
tournament, using (NDu) and (CDu) values lexicographically, and updating it
using the OMOPSO operators. Then, Nl individuals are randomly chosen from
the current population Pt and the lower level vectors xl are updated using the
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Algorithm 2. OMOPSO-BL pseudo code
1: Initialize upper level iteration counter, t = 1
2: Randomly initialize each individual of population Pt: xt

sj = (xt
us

, xt
lj
), j =

1, · · · , Nl, s = 1, · · · , ns

3: Assess each individual of the population
4: Rank each sub-population members, evaluating NDl and CDl values
5: Rank the population individuals, evaluating NDu and CDu values
6: Pre At = ∅, At = ∅
7: Insert the individuals of Pt with NDu = 1 and NDl = 1 into Pre At

8: while t ≤ T do
9: // Create the new population Qt as the union of the ns sub-populations
10: Qs

t = ∅
11: for s = 1, · · · , ns = Nu/Nl do
12: Select an individual xt

s from Pt by binary tournament, using NDu and CDu

13: Update component xt
us

of individual xt
s, using (2), (3) and turbulence

14: Randomly select Nl individuals from the population Pt

15: for j = 1, · · · , Nl do
16: Create xt

lj
, using (2), (3) and turbulence

17: Concatenate xt
j = (xt

us
, xt

lj
)

18: Qs
t = Qs

t ∪ {xt
j

}
19: end for
20: Assess Qs

t sub-population, evaluating F , G, f , g
21: Assign NDl and CDl values to each xt

j , j = 1, · · · , Nl

22: end for
23: Set the population Qt = ∪ns

s=1Q
s
t

24: for s = 1, · · · , ns do
25: Set tl = 1
26: if t > 1 then
27: Select Bs

t = As
t , the sub-archive of At nearest Qs

t

28: else
29: Select Bs

t = Pre As
t , the sub-archive of Pre At nearest Qs

t

30: end if
31: Initialize pbesti as the individual particle xtl

i , i = 1, · · · , Nl

32: while tl ≤ Tl do
33: OMOPSOlowerlevel(Qs

t , B
s
t , tl)

34: Rank (Qs
t ) individuals, evaluating NDl and CDl values

35: Update lower level archive Bs
t of non-dominated solutions

36: Set tl = tl + 1
37: end while
38: Update external archive At of non-dominated solutions
39: end for
40: Set the population Qt = ∪ns

s=1Q
s
t

41: Set Rt = Pt ∪ Qt

42: Assign NDu and CDu values to each individual xt
j , j = 1, · · · , 2Nu of Rt

43: Create St population, with half of Rt individuals, using NDu, CDu and NDl

44: for each sub-population Si
t originated from Pt do

45: Set tl = 1
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46: if t > 1 then
47: Select Bi

t = Ai
t, the sub-archive of At nearest Si

t

48: else
49: Select Bi

t = Pre Ai
t, the sub-archive of Pre At nearest Si

t

50: end if
51: Initialize pbestj as the individual particle x

tl
j , i = 1, · · · , Nl

52: while tl ≤ Tl do
53: OMOPSOlowerlevel(Si

t , B
i
t, tl)

54: Rank (Si
t) individuals, evaluating NDl and CDl values

55: Update lower level archive Bi
t of non-dominated solutions

56: Set tl = tl + 1
57: end while
58: Update external archive At of non-dominated solutions
59: end for
60: Assign NDu and CDu values to each individual xt

j , j = 1, · · · , Nu of St

61: Set Pt+1 = St

62: Set t = t + 1
63: end while
64: Return archive At of non-dominated solutions

OMOPSO operators. For both upper and lower levels, gbest is selected from the
non-dominated archive At by binary tournament, selecting the least crowded
individuals using (CDu) and (CDl) values, respectively. Then, the xl solutions
are concatenated with the xu to form one sub-population. It should be empha-
sized that all Nl solutions have the same xu vector. Next, the individuals of the
sub-population are evaluated and the ranking (NDl) and the crowding distance
(CDl) values are assigned to each individual. These operations are repeated
until ns sub-populations have been obtained. Finally all the sub-populations
are joined into one population (Qt) and the ranking (NDu) and the crowding
distance (CDu) values are assigned to each individual in Qt.

In order to guide the lower level search for each sub-population (lines 24-39),
the algorithm starts by identifying the elements of the archive At whose xu vectors
are closer in terms of Euclidean distance to the xu vector of that sub-population.
The selected individuals form a sub-archive, which we call a lower level archive.
Considering one sub-population, the OMOPSO algorithm is applied to solve the
lower level problem. Initially, for each individual, velocity is null and pbest is
assigned the individual position. The gbest vector is always chosen by binary tour-
nament from the corresponding lower level archive. After updating the individ-
uals’ position, the sub-population is evaluated and the pbest, the rank and the
crowding values of each individual are updated. The NDl = 1 ranked individ-
uals are then tested to enter into the lower level archive. At the end, the lower
level archive is sorted by descending order of its members’ crowding values. These
operations are performed for Tl iterations. This search repeats for all the sub-
populations. It may occur that some individuals of the lower level archive are not
true Pareto optimal for the problem. Such individuals are not feasible for the upper
level problem, although they can dominate some true Pareto optimal individuals
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of the upper level problem. It should be guaranteed that such solutions do not
enter into the archive At. To address this problem a parameter r is considered in
order to filter particles entering the archive At. Only the individuals which have
remained in the lower level archive for at least r iterations are tested to enter the
archive At. In addition, only the solutions that are non-dominated in the upper
level with respect to any member of At enter the archive At. Elements in At that
become dominated by the new members are then removed from At. A higher num-
ber of lower level iterations must be performed to approximate the Pareto optimal
front of the problem with sufficient accuracy. The ns updated sub-populations are
joined to create the updated population Qt.

In order to create the new population (lines 41-43), the Pt and the Qt popula-
tions are joined and the Rt population is obtained, consisting of 2Nu individuals.
The composition of each sub-population from Pt or Qt is also maintained because
it is copied into the new population as an entire block. Aiming at obtaining
the fittest individuals, the Rt population is ranked by NDu values. Starting at
NDu = 1 ranked individuals, the ones ranked NDl = 1 are sorted in descending
order of their crowding distance values CDu. Those individuals and the sub-
populations they come from are sequentially inserted into the next population
St. It is worth mentioning that if a new element is tried to enter St and its
sub-population is already in St, it is not copied again in order to prevent the
duplication of individuals. After considering every NDu = 1 ranked elements,
the individuals ranked NDu = 2 are considered and so on, until Nu members
have been copied into the population St.

The sub-populations copied to St that came from the population Pt are now
updated through the OMOPSO algorithm in the same manner as described
above (lines 44-59).

The new population Pt+1 is created joining the ns sub-populations of St.
After performing T iterations, the algorithm returns the archive At containing
the upper level non-dominated solutions as the solutions to the bi-level multiob-
jective problem.

It should be noted that, at the first iteration of the algorithm, the archive At

is an empty set and, since elite solutions are needed to perform the search, the
non-dominated solutions of the population are considered. Thus, a pre-archive
containing the non-dominated solutions existing in the initial population is con-
sidered and is used in place of At in every step of the iteration t = 1.

Because of the structure of the bi-level problem, a certain sequence of upper
and lower level operations has to be performed. Thus, performing a sequence
of several iterations of the upper level search without running the lower level
optimization phase would not be worthwhile, because the solutions obtained
may be infeasible to the bi-level problem (if they are dominated in the lower
level problem). In our algorithm only particles obtained after a lower level run
are accepted to enter the archive At. This differs from the algorithm presented in
[18],[19], in which a particle enters into the archive directly after an upper level
run, without performing the lower level optimization. The authors in [18],[19] do
not detail how they deal with the drawbacks of this operation. We have tested
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this process and we obtained particles entering into the archive At which were
dominated for the lower level problem. As soon as such particles enter the archive
it becomes impossible to insert true Pareto optimal particles dominated by them.
These difficulties arise because the particles that are dominated in the lower level
may not violate the upper level constraints, although they are not feasible to
the problem. Some tests we have performed using that algorithm confirmed this
difficulty. The OMOPSO-BL algorithm proposed herein overcomes this problem.

4 Experimental Results

4.1 Test Problems

For the sake of illustration, in this study we use four instances of two multiob-
jective bi-level problems from [6], considering three different dimensions for the
second problem.

Problem 1
min F (x) = (xl1 − xu, xl2)
s. t. G(xu, xl) = 1 + xl1 + xl2 ≥ 0,

min f(xl) = (xl1 , xl2),
s. t. g(xu, xl) = x2

u − x2
l1

− x2
l2

≥ 0
−1 ≤ xl1 , xl2 ≤ 1, 0 ≤ xu ≤ 1

(4)

This problem has one upper level variable (xu) and two lower level variables
(xl1 , xl2). Because of the upper level constraint, some of the lower level Pareto
optimal solutions are not feasible to the upper level problem. This increases the
difficulty of the problem. The Pareto optimal solutions to the problem was firstly
reported in [8]. It is given by:

P ∗ = {(xu, xl1 , xl2) ∈ IR3|xl1 = 1 − xl2 , xl2 = −1
2

±
√

8x2
u − 4, xu ∈ [

1√
2
, 1]}

Problem 2

min F (x) = ((xl1 − 1)2 +
∑K

i=1 x2
li+1

+ x2
u, (xl1 − 1)2 +

∑K
i=1 x2

li+1
+ (xu − 1)2)

s. t. min f(xl) = (x2
l1 +

∑K
i=1 x2

li+1
, (xl1 − xu)

2 +
∑K

i=1 x2
li+1

),

−1 ≤ xl1 , · · · , xlK+1 , xu ≤ 2

(5)

This problem has one variable in the upper level and K variables in the lower
level. From the entire Pareto optimal set of the lower level problem for a given
xu, only one solution is Pareto optimal solution to the upper level problem. This
turns the problem difficult to solve. The set of Pareto optimal solutions of this
problem is:

P ∗ = {xli = 0, i = 2, · · · , (K + 1), xl1 = xu, xu ∈ [0.5, 1]}.

For this problem, we consider three instances: K = 1, K = 5 and K = 13.
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4.2 Performance Measures

The multiobjective algorithms are assessed in terms of convergence to the Pareto
front and with respect to the diversity of the obtained solutions. In order to
assess the proposed OMOPSO-BL and compare it with BLEMO, two unary per-
formance measures commonly used in the literature are considered: the Hyper-
volume indicator (HV), measuring the volume of the space between the non-
dominated front obtained and a reference point (usually the nadir point is con-
sidered) [10],[20], and the Inverted Generational Distance (IGD), which is the
sum of the distances from each point of the true Pareto front to the nearest
point of the non-dominated set found by the algorithm. Both indicators mea-
sure the convergence and spread of the obtained set of solutions. The lower
the IGD value, the better the approximation is. Larger values of HV indicate
better approximation sets. A statistical analysis is performed to assess the sig-
nificance of results. Since the results do not follow a normal distribution, the
non-parametric Mann-Whitney test is used to compare the algorithms.

4.3 Parametrization of the Algorithms

The algorithms were implemented in Matlab and the tests were performed on
an Intel core 2 Duo 2.4 GHz processor. To assess the IGD measure a true Pareto
front sample with 500 solutions was considered for each problem. In order to
achieve better results, a good balance should be considered between upper and
lower level number of iterations and population size. Thus, after some exper-
iments, with different parametrization, the parameter setting selected to run
OMOPSO-BL was: Nu = 300, Nl = 60, Tl = 80 and T = 100 for problem 2
and Nu = 240, Nl = 60, Tl = 80 and T = 100 for problem 1. The parameters
of OMOPSO operations were set as in the original algorithm. For the BLEMO
algorithm we used the same parametrization as in OMOPSO-BL. Each algorithm
was run 10 times for each problem.

4.4 Results

The solutions obtained by the algorithm OMOPSO-BL for problem 1 are depicted
in figure 1. OMOPSO-BL achieved solutions close to the true Pareto optimal
front of the problem and the solutions are spread along the entire Pareto opti-
mal front.

Figure 3 represents the solutions obtained by the OMOPSO-BL algorithm
for problem 2 (K = 1). The results show that the OMOPSO-BL algorithm also
obtained a good representation of the true Pareto optimal front of this problem.
Figures 2 and 4 contain the results obtained by the BLEMO algorithm to prob-
lems 1 and 2 (K = 1), respectively. Both algorithms were able to approximate
the true Pareto optimal fronts of each problem. In table 1, the hypervolume and
IGD values obtained by OMOPSO-BL and BLEMO for all problem instances are
presented. The algorithms have similar performance. Observing the IGD values,
it may be concluded that both algorithms obtain solutions well spread along the
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Fig. 1. Problem 1. OMOPSO-BL algorithm

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

F1

F
2

Problem 1

 

 
True Pareto front
BLEMO

Fig. 2. Problem 1. BLEMO algorithm

entire Pareto optimal front of the instances tested. OMOPSO-BL has achieved
slightly better hypervolume values in three over the four instances and BLEMO
obtained better IGD values in all instances. In both performance measures the
values of OMOPSO-BL and BLEMO are very close.
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Fig. 3. Problem 2 (K=1). OMOPSO-BL algorithm
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Fig. 4. Problem 2 (K=1) BLEMO algorithm

The Mann-Whitney test confirms the significance of the results at α = 0.05
level in all instances except in the problem 2 (K = 1 and K = 5), for the
hypervolume measure.
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Table 1. HV and IGD median values obtained by OMOPSO-BL and BLEMO
algorithms

Problem OMOPSO-BL BLEMO
Hypervolume IGD Hypervolume IGD

Problem 1 0.3068 0.01562 0.3024 0.01138
Problem 2 (K=1) 0.2074 0.01020 0.2067 0.00631
Problem 2 (K=5) 0.2064 0.01289 0.2052 0.00921
Problem 2 (K=13) 0.2018 0.03124 0.2059 0.01053

5 Conclusions and Future Research

In this paper a multiobjective particle swarm optimization algorithm (OMOPSO-
BL) has been proposed to solve the bi-level optimization problem with multiple
objective functions in both levels (BLMOP). The main difficulty of these problems
is that dominated solutions in the lower level may dominate true Pareto optimal
solutions to the bi-level problem and may be accepted to enter the upper level
non-dominated archive, although they are not feasible to the problem. In order
to avoid this situation, accurate solutions to the lower level problem should be
computed. The OMOPSO-BL algorithm has shown its ability to overcome this
difficulty in solving the test problems. The algorithm is competitive in comparison
with BLEMO, an evolutionary algorithm developed to solve the generic BLMOP.
The hypervolume and IGD values obtained by both algorithms are similar.

Further research should be conducted namely to assess the robustness of
the OMOPSO-BL algorithm in a larger and more demanding set of problem
instances as well as reduce the computational effort. For this purpose, hybridiza-
tion with other techniques and adaptive parameters will be attempted.
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Abstract. This paper presents a new preference based interactive evo-
lutionary algorithm (I-SIBEA) for solving multiobjective optimization
problems using weighted hypervolume. Here the decision maker itera-
tively provides her/his preference information in the form of identifying
preferred and/or non-preferred solutions from a set of nondominated
solutions. This preference information provided by the decision maker
is used to assign weights of the weighted hypervolume calculation to
solutions in subsequent generations. In any generation, the weighted
hypervolume is calculated and solutions are selected to the next gen-
eration based on their contribution to the weighted hypervolume. The
algorithm is compared with a recently developed interactive evolution-
ary algorithm, W-Hype on some benchmark multiobjective optimization
problems. The results show significant promise in the use of the I-SIBEA
algorithm. In addition, the performance of the algorithm is demonstrated
using a human decision maker to show its flexibility towards changes in
the preference information. The I-SIBEA algorithm is found to flexibly
exploit the preference information from the decision maker and generate
solutions in the regions preferable to her/him.

1 Introduction

Industrial optimization problems often involve multiple conflicting objectives,
which usually have multiple Pareto optimal solutions with different trade-offs.
Different methods have been proposed in the literature (see e.g. [13]) and evo-
lutionary multiobjective optimization (EMO) algorithms [5,6] have often been
applied to solve multiobjective optimization problems and find an approximation
of the Pareto front consisting of all the Pareto optimal solutions. However, find-
ing an approximation of the Pareto front is not easy, especially when objective
and constraint functions are computationally expensive.

When EMO algorithms are used to find an approximation of the Pareto front,
a human decision maker (DM) who is an expert in the domain of the problem
is supposed to choose one among several nondominated solutions for implemen-
tation or further evaluation. Such an approach is often termed as a posteriori
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 277–291, 2015.
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approach in multiobjective optimization [13]. Since finding a good approximation
of the Pareto front is often difficult, especially when more than two computation-
ally expensive objectives are involved, it is practical to approximate a region of
the Pareto front that is of interest to the DM. At least two different approaches
involving preference information have been considered in the literature:

1. a priori approaches where the DM initially expresses her/his preference infor-
mation, which is subsequently used to find a set of solutions reflecting her/his
preferences [7,9], and

2. interactive methods where the DM iteratively provides her/his preference
information and drives the algorithm towards her/his preferred region(s) of
the Pareto front [8,12,15].

We can easily incorporate DM’s preference information in indicator based
evolutionary algorithms. These algorithms have been proposed in the literature
[3,4] to handle a large number of objectives and in this article we focus our
attention on these algorithms. In them, a hypervolume of the dominated region
of the objective space is used as the indicator of the quality of the approximation
of the Pareto front due to the Pareto compliance of the indicator [16]. However,
as the number of objectives increases, the calculation of the hypervolume gets
extremely time consuming. Recently, a Monte-Carlo simulation based approach
to calculate hypervolume has been proposed to speed up the calculation [2].

In this paper, we propose a new interactive preference based EMO algo-
rithm called interactive simple indicator-based evolutionary algorithm (I-SIBEA)
where different weights are associated with different regions of the Pareto front
such that the importance given by the DM for different regions of the Pareto
front can be altered. In the proposed algorithm, we extend the simple indicator-
based evolutionary algorithm (SIBEA) [16] to take into account the preference
information of the DM iteratively and direct the search towards the preferred
regions of the DM. Specifically, the DM is iteratively shown a set of nondomi-
nated solutions and asked to provide her/his preferences by classifying this set
into preferred and/or non-preferred solutions. The weights of the preferred solu-
tions in the weighted hypervolume calculation are subsequently altered such that
their selection pressure is increased. Using preference information for both the
preferred and non-preferred solutions simultaneously is a novel approach in pref-
erence based EMO algorithms and provides more flexibility to the DM in guiding
the search.

The rest of the paper is organized as follows. In Section 2, we introduce the
main concepts and discuss how the preference information is incorporated into
the method. Then I-SIBEA algorithm is presented in Section 3 with detailed
description. In Section 4, we present preliminary numerical experiments used to
test the method. Finally, the conclusions are drawn in Section 5.
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2 Main Concepts and Principles of Utilizing Preference
Information from the Decision Maker in I-SIBEA

2.1 Concepts and Notations

We consider multiobjective optimization problems of the form [13]:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S

(1)

with k(≥ 2) objective functions fi(x) : S → �. The vector of objective function
values is denoted by f(x) = (f1(x), . . . , fk(x))T . For the simplicity of presenta-
tion, we assume that all the objective functions are to be minimized. If some
objective function fi is to be maximized, it is equivalent to minimize −fi. The
(nonempty) feasible region (set) S is a subset of the decision variable region
�n and consists of decision variable vectors x = (x1, . . . , xn)T that satisfy all
the constraints. The image of the feasible region S in the objective region �k

is called the feasible objective region (set) denoted by Z. The elements of Z
are called feasible objective vectors denoted by f(x) or z = (z1, . . . , zk)T , where
zi = fi(x), i = 1, . . . , k, are the objective function values. An ideal objective vec-
tor z∗ ∈ �k is determined by minimizing each objective function individually,
that is z∗

i = minimize
x∈S

fi(x). We say that a vector z1 ∈ �k is said to weakly dom-

inate a vector z2 ∈ �k and denoted by z1 � z2 if and only if for all 1 ≤ i ≤ k:
fi(x1) ≤ fi(x2).

In this paper, we consider an interactive preference based EMO algorithm,
wherein a DM iteratively provides her/his preference information as a set of pre-
ferred and/or non-preferred solutions. To emphasize solutions in the preferred
region, the weighted hypervolume, IwH(A) is used, where A is the set of nondom-
inated solutions in the objective space. The weighted hypervolume is defined as
the integral over the product of the weight distribution function w(z) and the
attainment function α(z) [16], that is,

IwH(A) =
∫ ∫

Z

w(z)αA(z)dz

where

αA(z) =

{
1 if A � z

0 else

and A � z represent that at least one element of A weakly dominates z ∈ Z.

2.2 Incorporating Preference Information into the Algorithm

There are different ways to obtain preference information from the DM. In the
preference based EMO algorithms literature where the hypervolume based selec-
tion criterion is used [3,4,16], as far as we know, only the preferred solutions are
considered as the preference information from the DM. In the proposed I-SIBEA
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algorithm, we provide the flexibility to the DM to give her/his preferences by
selecting preferred and/or non-preferred solutions among a set of nondominated
solutions shown to her/him. For example, if the DM selects only preferred solu-
tions, the rest of the solutions can be regarded as either non-preferred solutions
or solutions with no preference information. However, in this study we consider
them as non-preferred solutions. On the other hand, if the DM selects both
preferred and non-preferred solutions, the rest of the solutions are regarded as
solutions with no preference information.

It is often assumed that the DM has prior information about the preferred
solutions before starting the solution process [3,16]. In the I-SIBEA algorithm, it
is not assumed that the DM has some prior information about preferred and/or
non-preferred solutions and that the DM is consistent during interaction. The
DM iteratively gives her/his preference information, which is used by the I-
SIBEA algorithm to focus its search towards solutions that lie in the preferred
region. In what follows, we discuss how DM’s preferences are incorporated in the
I-SIBEA algorithm.

As mentioned in the introduction, the proposed algorithm extends SIBEA
to consider the preference information of the DM. After a fixed number of gen-
erations of SIBEA, in the first interaction with the DM, a set A ⊂ Z of non-
dominated solutions (in the objective space) is shown to the DM. The number
of solutions shown is a parameter that the DM can set. Next, we suppose that
the DM selects preferred and non-preferred solutions from the set A. There-
fore, the obtained preference information creates a partition of A into three
non-overlapping subsets:

AA = {z ∈ A | z is preferred by the DM}
RA = {z ∈ A | z is non-preferred by the DM}

IA = {z ∈ A | no preference information is available from the DM for z}
and A = AA ∪ RA ∪ IA.

After the partitioning of A into the three subsets, Z is partitioned into three
regions based on the preferences from the DM. The regions are called domi-
nated (Do), preferred (Pr) and no preference information (In) and an example
illustrating them is shown in Fig. 1 for a biobjective optimization problem. The
shaded region in the Fig. 1 represents the infeasible region.

In what follows, three regions, Do,Pr and In are defined based on preference
information from the DM. The weight distribution function is then derived using
hypervolume of these three regions which is incorporated into the algorithm to
calculate the weighted hypervolume.

The region Do is the part of Z which is weakly dominated by at least one
element of RA:

Do = {z ∈ Z | there exists z ∈ RA, z � z} .

The hypervolume μ(Do) and the weighted hypervolume w(Do) for region Do
are calculated as
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Fig. 1. AA = {a, b, h, i} , RA = {c, e, f} , IA = {d, g}. Regions: dominated, no prefer-
ence information and preferred

μ(Do) =
∫ ∫

z

αRA(z)dz

w(Do) = I
(w)
H (RA).

The region Pr is the part of Z which weakly dominates at least one element
of AA:

Pr = {z ∈ Z | there exists z ∈ AA, z � z} .

The hypervolume μ(Pr) and the weighted hypervolume w(Pr) for region Pr
are calculated as

μ(Pr) =
∫ ∫

z

αAA(z)dz

w(Pr) = I
(w)
H (AA).

The region In is the remaining part of Z (Fig. 1):

In = Z \ {Do ∪ Pr}

with the hypervolume μ(In) = 1 − μ(Do) − μ(Pr).
The reason to partition Z into these three regions is to emphasize the solutions

that lie in the preferred region (Pr). There can exist several ways to implement
this principle. In the literature [3,12,16], several weight distribution functions (e.g.
stressing objectives with exponential weights, guiding single solutions with dirac-
type weights etc.) are used to incorporate the DM’s preference information in the
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solution process. We present here a uniform weight distribution as one of the pos-
sibilities. As the DM wants to avoid the non-preferred solutions, w(z) remains zero
for the region Do. Therefore, we define the weight distribution function as:

w(z) =

⎧
⎪⎨
⎪⎩

0 for all z ∈ Do

1 for all z ∈ In

1 + µ(Do)
µ(Pr) for all z ∈ Pr

(so that
∫ ∫

Z
w(z)dz = 1).

This weight distribution function is then used to calculate the weighted
hypervolume in the subsequent generations and the solutions are selected based
on their contribution to the weighted hypervolume. In this way, the preference
information from the DM is incorporated into the algorithm. In what follows,
the I-SIBEA algorithm is presented with detailed description.

3 Interactive Simple Indicator-Based Evolutionary
Algorithm (I-SIBEA)

The main motivation of the proposed algorithm is to direct its search process
towards solutions that lie in the preferred region defined by the DM’s preferences.
To do this, solutions having a large contribution to the weighted hypervolume are
selected and solutions having the smallest contribution to the weighted hyper-
volume are removed from the population after every generation. This criterion
of selecting solutions is common among hypervolume based search algorithms
[16,17]. In the proposed I-SIBEA, in addition to hypervolume based selection
criterion, different preference information from the DM is incorporated into the
algorithm. In this algorithm, the DM gives her/his preference information by
selecting preferred and/or non-preferred solutions. This preference information
guides the algorithm to focus its search direction for solutions that lie in the
preferred region. The algorithm is presented in the I-SIBEA algorithm and we
discuss now the step by step procedure of the algorithm.

Initially, a population P of individuals of size NP is created randomly in step
1. Next in step 2, crossover and mutation operators are used to create an offspring
population Q of the same size (NP ). The parent and the offspring populations
are combined P := P + Q and then environmental selection is used to select
individuals as mentioned in step 3 of the I-SIBEA algorithm. Nondominated
sorting [14] is used to rank the individuals of the combined population and
different fronts Fi, i = 1, 2, . . . are identified. These fronts are added to an empty
set P1 as long as the size of the population of P1 becomes equal to or exceeds
NP . If the size of P1 is NP , the population for next generation is set as P := P1.
Otherwise, the set of individuals in the worst rank front in P1 is identified
and denoted by P ′. To remove solutions from the worst rank front so that the
population size of P1 does not exceed NP , the usual hypervolume based selection
is used. For each solution z ∈ P ′, the loss in the hypervolume d(z) = I(P ′) −
I(P ′ \ z) is determined, where I is the hypervolume indicator and represented
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Algorithm: An interactive simple indicator-based evolutionary algorithm
(I-SIBEA)

Input to algorithm: NP = population size; NG = maximum number of generations
Input from DM: DA = maximum number of solutions to be shown to the DM

(default is maximum 5); AA = preferred and RA = non-preferred solutions after
each interaction; H = maximum number of interactions

Output: f∗ = Pareto optimal solution obtained by projecting the most preferred
solution to the Pareto front, where f∗ ⊆ A and A is the set of nondominated solutions
in the last population

Step 1 (Initialization): Generate an initial set P of decision vectors of size NP ; set
the generation counter m := 1; set the interaction step intr := 0; NA := number of
points in A; set number of generation before first interaction NI := round(NG/H);
set N := NI; set the hypervolume indicator I := μ(·).

Step 2 (Mating): Create an offspring population Q using crossover and mutation oper-
ators. Set P := P + Q (multi-set union).

Step 3 (Environmental Selection): Rank the population P using nondominated sort-
ing and identify different fronts Fi, i = 1, 2, . . . and do the following four steps (a−d).

a. Set a new population P1 = φ. Set a count i = 1 and perform P1 = P1 + Fi and
as long as |P1| ≥ NP and set i = i + 1. Here, |P1| denotes the cardinality of
P1.

b. If |P1| = NP , set P := P1 and go to step 4 otherwise determine the set of
individuals P ′ ⊆ P1 with the worst rank.

c. if m ≤ N and N = NI
For each solution z ∈ P ′ determine the loss d(z) in the hypervolume I if it is
removed from P ′, i.e., d(z) := I(P ′) − I(P ′ \ z).
else
Identify P ′

Pr i.e. the solutions x ∈ P ′ belonging to region Pr and perform P1 =
P1 \ P ′ + P ′

Pr

1. If |P1| ≥ NP , for each solution in z ∈ P ′ belonging to Pr determine the
loss d(z) in the hypervolume I if it is removed from P ′, i.e., d(z) := I(P ′)−
I(P ′ \ z).

2. Else determine the loss in weighted hypervolume d(z) := I(P ′) − I(P ′ \ z)
for each solution z ∈ P ′ belonging to the regions Do and In.

d. Remove the |P1| − NP solutions from P ′ with the smallest loss d(z) (ties are
broken randomly) and include the remaining solutions of P ′ into P1. Set P :=
P1.

Step 4: If m ≥ NG or m ≥ N then go to step 5. Otherwise set m := m + 1 and go to
step 2.

Step 5 (Identify A): Set A as the set of nondominated solutions in P . If NA > DA,
remove additional solutions by using e.g. clustering.

Step 6 (Interaction with DM): Show DA solutions of A to the DM and set intr :=
intr + 1. If the DM wants to stop or m ≥ NG, go to step 7 otherwise go to step 8.

Step 7 (Termination): Ask the DM to select the most preferred solution (f∗) from
DA. Obtain the final solution by projecting f∗ to the Pareto front and terminate
the algorithm.

Step 8: Ask the DM to classify DA into AA and/or RA and derive the sets Do, In
and Pr to get the updated weighted hypervolume w(·). Set I := w(·); NI = NG−NI

H−intr
;

N := m + NI and m := m + 1. Go to Step 2.
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as the hypervolume or the weighted hypervolume for a given set. The solution
with the smallest loss is removed until the size of the population does no longer
exceed NP and the population is set as P := P1 for the next generation. After a
fixed number of generations, NI in step 4, the DM interacts with the algorithm.
In step 5, a fixed number of nondominated solutions DA ⊆ A (input from the
DM) is identified and then shown to her/him in step 6, where A is the set of
nondominated solutions. There exist different ways to select the fixed number
of solutions from A and we use k-means clustering [11] in this study. Here, a
solution is selected randomly from each cluster and shown to the DM. In step
7, if the DM wants to quit, s(he) selects the most preferred solution f∗ from
DA. The final solution is obtained by projecting f∗ to the actual Pareto front
by optimizing an achievement scalarizing function (ASF) [13], that is by solving
the problem

minimize max
i=1,...,k

[wi(fi(x) − f∗
i )] + ρ

k∑
i=1

wi(fi(x) − f∗
i )

subject to x ∈ S.

(2)

where ρ > 0 is the augmentation coefficient which takes a small positive value
e.g. 10−6. The weight vector wi = 1

zmax
i −zmin

i
is assigned to each objective func-

tion. The maximum and minimum values of each objective function in the set A
are represented by zmax

i and zmin
i , respectively. One of the advantages for using

an ASF is that the optimal solution of an ASF is always Pareto optimal [13].
Therefore, optimizing an ASF ensures that final solution is locally Pareto opti-
mal. Since we assume that less is preferred to more for the DM, the projected
solution is at least as preferred to the DM as the solution s(he) selected. We can
utilize an equivalent differentiable formulation of ASF when all the objective
functions are differentiable by adding extra real valued variable, δ and k new
constraints [13]

minimize δ + ρ
k∑

i=1

wi(fi(x) − f∗
i )

subject to wi(fi(x) − f∗
i ) ≤ δ for all i = 1, . . . , k

x ∈ S δ ∈ �.

(3)

In addition to termination by the DM, the solution process is ended if the max-
imum number of generations (NG) is reached. In that case, solutions DA ⊆ A
are shown to the DM and (s)he is asked to select the the most preferred solution
(f∗). This solution is then projected to the Pareto front and the final solution
is obtained by solving problem (2) or (3) with a single objective optimization
method appropriate to the characteristics of the problem in question. A local
search method can be used since the evolutionary algorithm is supposed to take
care of the global search. If the termination criterion is not met, the DM is then
asked in step 8 to select preferred (AA) and non-preferred solutions (RA) from
DA to get the three non-overlapping subsets AA,RA and IA. The three regions
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Do,Pr and In are then derived using this preference information to get the
weight distribution function. This completes one interaction with the DM. The
weight distribution function is then used to calculate the weighted hypervolume
as the selection criterion in the subsequent generations.

In the next generation (after the first interaction), the offspring are created
again in step 2 and other steps are then followed. If the population size exceeds
NP in P1, solutions z ∈ P ′ belonging to region Pr are identified and denoted
by P ′

Pr. The set P1 is then updated as P1 := P1 \ P ′ + P ′
Pr. If the size of the

population of P1 exceeds NP , the usual hypervolume based selection is used to
remove the solutions from P ′ belonging to region Pr. Otherwise, the solutions
z ∈ P ′ belonging to regions Do and In are added to P1. If the population
size exceeds NP , the weighted hypervolume based selection is used to remove
solutions z ∈ P ′ belonging to regions Do and In. This principle of selecting
individuals emphasizes solutions in the preferred region. The regions Do,Pr
and In are updated after every interaction after the DM has classified DA into
AA and RA. In this way, the DM gives her/his preference and the weights of
the solutions in the weighted hypervolume calculation are altered in such a way
that solutions in Pr are emphasized and solutions in Do are avoided.

In the proposed algorithm, the DM has the freedom to choose the number of
times (s)he wishes to interact with the algorithm. From this input, the maximum
number of generations (NG) is uniformly divided by H to get the number of
generations before each interaction. For example, the first interaction will take
place after NI = NG/H generations and the second interaction will take place
after N = NI + (NG − NI)/(H − 1) generations. Even though, the maximum
number of interactions H is given by the DM in the beginning, the DM is free to
change it during any interaction. However, this is not presented in the algorithm
but if the DM gives her/his updated number of interactions, the remaining gen-
erations can be uniformly divided accordingly. In the next section, the algorithm
is tested using some benchmark problems.

4 Numerical Experiments

The I-SIBEA algorithm was tested on standard benchmark problems [5] with
2-3 objectives and 7-11 decision variables. Firstly, we compare I-SIBEA against
a recently proposed interactive weighted hypervolume based algorithm called
W-Hype [4]. One of the main differences between W-Hype and I-SIBEA is that
W-Hype considers information for only preferred solutions while I-SIBEA con-
siders information for both preferred and non-preferred solutions. To enable easy
comparison, we use the same set of test problems i.e. DTLZ2, ZDT4 and DTLZ1
and the same criterion of [12] to get the number of generations before each inter-
action as used in W-Hype. The parameter values used in I-SIBEA are provided
in Table 1. In all three problems, polynomial mutation (distribution index is 20
and probability of mutation is 1/number of decision variables) and simulated
binary crossover (distribution index is 20 and probability of crossover is 0.9)
were used. While testing the algorithm for these test problems, we replaced the
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DM by a weighted Chebyshev function max
i=1,...,k

[wi(fi(x)−z∗
i )] at each interaction

step with z∗
i as the ideal objective vector. The weight vector (w1, . . . , wk)T is

assigned to each objective function and used to describe the DM’s preferences.
After each interaction step, the solution that minimized the weighted Chebyshev
function was considered as the preferred solution (AA) and the rest of the solu-
tions were considered as non-preferred solutions (RA) i.e. it was assumed that
there were no solutions with no preference information (IA). This setting was
used to be able to compare I-SIBEA with W-Hype (where this setting had been
used).

Table 1. Parameters used in this study

DTLZ2 ZDT4 DTLZ1

Number of decision variables/objectives 11/2 10/2 7/3
Ideal vector (0,0) (0,0) (0,0,0)

Population size 50 100 200
Number of interactions 2,4,6,8 4,6 4,6

Weight vector (0.2,0.8) (0.5,0.5) (0.7,0.2,0.1)
Number of independent runs 30 50 10

Total number of function evaluations 20,000 40,000 120,000

To measure the performance of the proposed algorithm, mean, standard devi-
ation, absolute deviation and optimal Chebyshev function value were calculated
after a maximum number of function evaluations. In the three tables reporting
the results of I-SIBEA and W-Hype, the values of performance criteria are writ-
ten in bold face if the difference was greater than 0.001. The algorithm was also
tested by varying the maximum number of interactions. The comparison of the
present algorithm with W-Hype for DTLZ2 is shown in Table 2.

Table 2. Results for DTLZ2: algorithm, number of interactions (H), mean, standard
deviation (Std.), absolute deviation (Abs.), optimal Chebyshev function value (C∗)
and number of function evaluations (nfun)

Algorithm H Mean Std. Abs. C∗ nfun

I-SIBEA

2 0.21500 0.052800 0.03230 0.19400 20,000
4 0.19430 0.000571 0.00030 0.19400 20,000
6 0.19410 0.000121 0.00006 0.19400 20,000
8 0.19410 0.000042 0.00003 0.19400 20,000

W-Hype

2 0.19418 0.000114 0.00016 0.19403 25,000
4 0.19413 0.000064 0.00010 0.19403 25,000
6 0.19411 0.000053 0.00009 0.19403 25,000
8 0.19410 0.000049 0.00007 0.19403 25,000

The results show that W-Hype performed better than I-SIBEA for H = 2.
Otherwise, equivalent results were obtained for H = 4, 6, 8 and I-SIBEA needed
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fewer function evaluations when compared with W-Hype. The total number
of function evaluations used for this problem by W-Hype and I-SIBEA were
25, 000 and 20, 000, respectively. In addition, better results were obtained by both
algorithms with increase in H. We also observed that, after a certain number
of generations, the mean of the weighted Chebyshev function did not change
for H = 4, 6 and 8 which indicates the convergence of the algorithm. Moreover,
there was no considerable difference in the results for H = 6 and H = 8 in
I-SIBEA and, therefore, we restricted ourselves to H = 4 and 6 when solving
the following two problems.

In case of the ZDT4 problem, the weight vector w = (0.5, 0.5)T was used in
the weighted Chebyshev function to identify the preferred solution (AA). The
comparison of I-SIBEA with W-Hype is shown in Table 3. I-SIBEA performed
better than W-Hype both in terms of results obtained and the number of function
evaluations used. I-SIBEA used 40,000 function evaluations and converged in
50% fewer function evaluations as comparison with W-Hype.

Table 3. Results for ZDT4: algorithm, number of interactions (H), mean, standard
deviation (Std.), absolute deviation (Abs.) , optimal Chebyshev function value (C∗)
and number of function evaluations (nfun)

Algorithm H Mean Std. Abs. C∗ nfun

I-SIBEA
4 0.19180 0.001600 0.00100 0.19100 40,000
6 0.19110 0.000262 0.00016 0.19100 40,000

W-Hype
4 0.35591 0.203362 0.16493 0.19098 80,000
6 0.36171 0.230273 0.17073 0.19098 80,000

Next, we tested I-SIBEA on a 3-objective DTLZ1 problem. The weight vector
w = (0.7, 0.2, 0.1)T was used in weighted Chebyshev function to identify the
preferred solution (AA). Table 4 shows the results of this study. For this problem
as well, equivalent results were obtained in 62.5% fewer function evaluations. I-
SIBEA used 120,000 function evaluations in contrast to W-Hype which used
320,000 function evaluations. In all three problems, better or equivalent results
were obtained but I-SIBEA always consumed fewer function evaluations. The
reason for fewer function evaluations using I-SIBEA can be attributed to the
use of preference information of both preferred and non-preferred solutions when
compared to W-Hype, where only preferred solutions were considered as the
preference information from the DM. This extra information on non-preferred
solutions can help the algorithm to avoid solutions in the corresponding regions
in subsequent generations and converge faster to solutions in the preferred region.
In addition, the DM has more options of how to express one’s preferences.

To show the flexibility of the proposed algorithm, a fourth case study was
performed on the ZDT4 problem (as it is easy to visualize a biobjective opti-
mization problem), where a DM was involved. In the beginning of the solution
process, the DM was asked to provide the maximum number of interactions i.e.
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Table 4. Results for DTLZ1: algorithm, Number of interactions (H), mean, standard
deviation (std.), absolute deviation (abs.), optimal Chebyshev function value (C∗) and
number of function evaluations (nfun)

Algorithm H Mean Std. Abs. C∗ nfun

I-SIBEA
4 0.03090 0.000397 0.00035 0.03050 120,000
6 0.03080 0.000167 0.00014 0.03050 120,000

W-Hype
4 0.03048 0.000069 0.00005 0.03043 320,000
6 0.03045 0.000026 0.00002 0.03043 320,000

how many times he wanted to interact with the algorithm. In addition, the flexi-
bility is given to the DM to change the number of nondominated solutions (DA,
default is maximum 5) he wanted to see during interaction. In this study, the
maximum number of generations (NG) was uniformly divided into 6 times for
the interaction with the DM as mentioned in the I-SIBEA algorithm. The other
parameters used for this problem are shown in Table 5.

Table 5. Parameters used in the fourth case

ZDT4

Number of decision variables/objectives 10/2
Population size 50

Number of interactions 6 (Input from the DM)
Maximum number of generation 400

The results of this study are shown in Fig. 2. The first scatter plot shows the
nondominated solutions (A) before the first interaction. For the first interaction,
the DM wanted to see 5 nondominated solutions and k-means clustering was used
to get them. The DM then selected the preferred (AA) and non-preferred solu-
tions (RA) which are shown in the second scatter plot. The solutions obtained
before the second interaction are also plotted in the same plot to show the search
direction of I-SIBEA. The solution process was then continued until the second
interaction. In Fig. 2, the preferred and non-preferred solutions are shown for
five interactions. In this study, the DM changed his preferences in the subsequent
interactions or in other words, the DM was not consistent with his preferences
as shown in Fig. 2. The I-SIBEA algorithm was found to exploit the preference
information provided by the DM and generate solutions in the regions preferable
to the DM. This shows that the algorithm is flexible to changes in the preferences
and can find solutions in the preferred region. After completion of the maximum
number of generations, the DM interacted again (6th time) and selected the most
preferred solution. This solution was then projected to the Pareto front by solv-
ing problem (3). We used here fmincon from MATLAB optimization toolbox to
solve problem (3). In this study, f1 = 0.096327 and f2 = 0.7074 were the most
preferred objective function values after the final interaction and f1 = 0.094345
and f2 = 0.69284 were the final objective function values.
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Fig. 2. Decision making process using I-SIBEA algorithm for the ZDT4 problem
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The proposed algorithm directed its search towards the DM’s preferences and
also changed its search direction with changes in the preferences. Therefore, the
algorithm emphasized solutions in the preferred region and was flexible to the
DM’s preferences. In addition, the optimality of the chosen preferred solution
was guaranteed (at least locally).

5 Conclusions

In this paper, an interactive simple indicator-based evolutionary algorithm called
I-SIBEA is proposed. In this algorithm, the DM’s preferences are taken into
account in terms of preferred and/or non-preferred solutions. The information for
non-preferred solutions helps the algorithm to avoid such solutions in subsequent
generations. In this algorithm, the DM can decide how many times s(he) wants
to interact with the algorithm and how many solutions s(he) wants to compare
while interacting. Therefore, the DM does not need to compare more solutions
than (s)he is able to consider at a time. In addition, the algorithm is flexible
towards changes in the preferences from the DM. Hence, the algorithm does not
assume that the DM has some prior information about preferred and/or non-
preferred solutions. Furthermore, unlike typical evolutionary algorithms that
cannot guarantee optimality, at least local Pareto optimality of the final solution
is guaranteed as it is projected to the Pareto front by optimizing an achievement
scalarizing function.

We have compared the performance of I-SIBEA with the W-Hype algorithm.
I-SIBEA performed equivalent or better in terms of results obtained but needed
fewer function evaluations to get the final solution. In addition, the potential
of the algorithm was demonstrated using a human DM to show its flexibility
towards changes in the preferences. As indicator based algorithms can handle
large numbers of objectives, therefore, next we plan to test the algorithm for
more than three objectives and apply the DM’s preferences in different ways.
Additionally, we plan to develop a GUI which can be utilized with to solve real
world multiobjective optimization problems.
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Abstract. In this paper, we propose an extension of the firefly algo-
rithm (FA) to multi-objective optimization. FA is a swarm intelligence
optimization algorithm inspired by the flashing behavior of fireflies at
night that is capable of computing global solutions to continuous opti-
mization problems. Our proposal relies on a fitness assignment scheme
that gives lower fitness values to the positions of fireflies that corre-
spond to non-dominated points with smaller aggregation of objective
function distances to the minimum values. Furthermore, FA random-
ness is based on the spread metric to reduce the gaps between consecu-
tive non-dominated solutions. The obtained results from the preliminary
computational experiments show that our proposal gives a dense and well
distributed approximated Pareto front with a large number of points.

Keywords: Multi-objective · Firefly algorithm · Fitness assignment ·
Spread metric

1 Introduction

This paper aims to extend a global optimization framework, known as firefly
algorithm (FA), to tackle nonlinear multi-objective (MO) optimization prob-
lems. This is one of the most challenging problems since the goal is to optimize
more than one objective. FA is a population-based algorithm and therefore suit-
able to solve MO problems. It is capable of finding multiple Pareto-optimal
solutions in a single run. Here, we consider solving nonlinear bound constrained
MO optimization problems with no > 1 objectives and n ≥ 1 decision variables:

min (f1(x), f2(x), . . . , fno(x))
subject to li ≤ xi ≤ ui, i = 1, . . . , n

(1)
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where the conflicting objective functions fj : Rn → R, j = 1, 2, . . . , no, are con-
tinuous and possibly nonlinear functions and l ∈ R

n and u ∈ R
n are the vectors

of lower and upper bounds for the decision variables, respectively. We note that
the feasible region Ω = [l, u] is a nonempty compact set and differentiability
and convexity of the objectives are not assumed, although the search space of
problem (1) is convex.

MO optimization is an important research area mainly for two reasons.
First, a large number of real-world applications are formulated as MO prob-
lems; second, many issues, such as the statistical interpretation associated with
performance comparison, still need to be addressed. For MO no single solution
optimizes simultaneously all objectives. In practice, several conflicting objectives
arise and the goal is to identify the best compromise solution among a set of
Pareto-optimal solutions. The set of optimal solutions in the decision space is in
general denoted as the Pareto-optimal set and its image in the objective space is
denoted as Pareto-optimal front. The main task of MO algorithms is to support
a decision maker to formulate his/her preferences and to identify the best of the
Pareto-optimal solutions.

In a MO minimization problem, a solution x̄ ∈ R
n is said to dominate x̂ ∈ R

n

if and only if fj(x̄) ≤ fj(x̂) for all j ∈ {1, 2, . . . , no} where fj(x̄) < fj(x̂) for
at least one j. Further, a solution x̄ ∈ R

n is said to be Pareto-optimal if and
only if there is no solution x̂ ∈ R

n that dominates x̄. Thus, the goal with a MO
algorithm is to find a good and balanced approximation to the set of Pareto-
optimal solutions.

The most popular methods to tackle a MO problem are based on the aggrega-
tion of the objectives, on the ε–constraint, and on producing an approximation
to the Pareto-optimal front directly. The aggregation method transforms the
MO formulation into a uni-objective formulation problem by assigning to each
objective function fj a non-negative weight wj such that

∑no
j=1 wi = 1, and min-

imizing an aggregate function that is the weighted sum of the objectives. The
approximate Pareto-optimal front is obtained by running as many times as the
desired number of points using different weight values [22]. In the ε–constraint
method one objective is selected to be minimized and all the other objective
functions are converted into inequality constraints by setting an upper value to
each one [13]. Methods to compute an approximation to the Pareto front in a
single run are in general stochastic population-based search techniques. Fitness
assignment is a crucial issue in MO algorithms and depends on the entire set of
points in the population. Two categories of common strategies to assign fitness
are aggregation-based and Pareto/dominance-based. The latter may use more
than one dominance order (for example, dominance rank, dominance count or
dominance depth) [35]. Fitness assignment strategies may also depend on MO
performance metrics, for instance, the hyper-volume, the purity metric or the
spread metric [13,16,33,34].

Evolutionary algorithms are widely used when solving MO optimization
problems. They are designated as MO evolutionary algorithms (MOEAs) and
largely dominate the research area of approximate metaheuristics for MO [16].
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From the most classical procedure VEGA to other more recent MOEA vari-
ants, like MOGA, MOMGA, NPGA, NSGA, PESA, PAES, SPEA, NSGA-II,
SPEA2, RPSGAe and MEGA [8,12,17,33,36], all of them have been used in a
variety of real-world applications. In [23], a hybrid multi-objective evolutionary
algorithm combining a genetic algorithm and a particle swarm optimization is
presented; in [4,11], different robust MO optimization procedures are presented;
and in [14], robustness assessment during multi-objective optimization using a
MOEA is discussed. Besides MOEAs other metaheuristics have been used in MO
optimization [1,6,7,22]. Deterministic-type approaches are also available [5,10].

The contribution of this paper is the extension of the FA paradigm to the MO
optimization. FA is a recently developed bio-inspired metaheuristic algorithm that
is capable of computing global solutions to optimization problems [15,27,28]. It
is a swarm intelligence optimization algorithm inspired by the flashing behavior
of fireflies at night, and it competes with the most well-known swarm intelligence
algorithms, like ant colony optimization, particle swarm optimization, artificial
bee colony, artificial fish swarm, bat algorithm and cuckoo-search.

FA has already been adapted to the MO optimization area [2,20,29]. Recently
proposedFAextensions toMOare relatedwith applications in operations research,
like fleet planning problems, circuit design problems, production scheduling sys-
tem, economic emission dispatchproblem [31], energy optimization in grid environ-
ments [3], hybrid flowshop scheduling problem [21], job shop scheduling problems
[18], geometric design of clamped-free beams [19] and optimal hydrocyclone design
[25]. Most of these studies transform the MO formulation into a uni-objective one,
although others produce approximations to the Pareto front in a single run using
an aggregation-based strategy to assign fitness to points.

Our proposal for the MO optimization area uses a non-dominance/dominance
ranking combined with an objective-order process based on scaled distances
to the minimum values for the fitness assignment procedure. It also incorpo-
rates a spread metric-based randomness term into the FA paradigm to gen-
erate candidate points from the current ones. This randomness term aims to
diversify the search as well as to reduce the gaps between consecutive non-
dominated solutions in the approximated Pareto front. The herein proposed
non-dominance/dominance ranking aims to favor non-dominated points of the
populations giving them ranks that are always lower than those assigned to any
of the other dominated points. This way, non-dominated points correspond to
the positions of the brightest fireflies. Our algorithm computes candidate points
to all current ones, except to the best point of the population, representing the
position of the brightest firefly of all. Assuming that all non-dominated and dom-
inated positions in the search space are ordered, the algorithm simulates move-
ments to all fireflies, except the brightest, in direction to the more brighter ones.
Then each computed candidate/trial position is accepted just after the move-
ment except when a current non-dominated position generates a dominated trial
position. Furthermore, at the end of each iteration, the set of non-dominated
solutions found thus far is updated with the accepted non-dominated points,
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being the dominated solutions removed from the set. Our proposal is designated
by Multi-Objective-order Firefly Algorithm (MOoFA).

The remaining part of the paper is organized as follows. In Section 2 the
FA paradigm is described and in Section 3 the proposed MOoFA is presented
and discussed. Section 4 reports on the preliminary computational experiments
carried out using a benchmark set of MO problems and we conclude the paper
with Section 5.

2 The FA Paradigm

Throughout the paper, ‖ · ‖ represents the Euclidean norm of a vector and the
vector x = (x1, x2, . . . , xn)T represents the position of a firefly in the search
space. The position of the firefly j will be represented by xj ∈ R

n. We assume
that the size of the population of fireflies is 1 < m < ∞. In the context of
an uni-objective optimization problem, firefly j is brighter than firefly i if the
objective function value at xj is lower than the objective value at xi.

FA is a bio-inspired metaheuristic algorithm inspired by the flashing behavior
of fireflies at night. According to [9,26–28,30,32], the three main rules used to
construct the standard algorithm are the following: (i) all fireflies are unisex,
meaning that any firefly can be attracted to any other brighter one; (ii) the
brightness of a firefly is determined from the encoded objective function; (iii)
attractiveness is directly proportional to brightness but decreases with distance.
In the FA paradigm, the movement of a firefly i is attracted to another more
attractive/brighter firefly j and the new candidate position, also designated by
trial position, for firefly i is given by:

ti = xi + β(xj − xi) + α
(
z + L(0, 1)σi

)
, (2)

where xi represents its current position, α ∈ [0, 1] and

β = β0 exp
(−γ‖xi − xj‖2) (3)

is the attractiveness of a firefly which varies with the light intensity seen by
adjacent fireflies and the distance between themselves. The parameter β0 is the
attraction parameter when the distance is zero. L(0, 1) is a random number
from the standard Lévy distribution centered at zero with an unitary standard
deviation. The vector z = z(k) is a reference point from the set of best solutions
found so far and the vector σi =

(|xi
1 − z1|, . . . , |xi

n − zn|)T gives the variation
around z. The notation z(k) means that it varies with the iteration counter, k,
of the algorithm. The second term on the right hand side of (2) is due to the
attraction while the third term gives randomness, with α being a scale parameter
that controls the randomness and aims to maintain the diversity of solutions. The
parameter γ characterizes the variation of the attractiveness, and is crucial to
speed the convergence of the algorithm. As in [9], we allow α to decrease linearly
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with k, from αmax to αmin, and we use a dynamic update of γ that increases the
attractiveness with k from a lower value γmin to an upper value γmax. Contrary
to the evolutionary strategies and genetic algorithm, in FA all firefies simulate
movement in order to find a better position. Although in the oldest versions
of FA, the brightest firefly was not moved, some recent versions move it, either
randomly or in a direction in which the brightness increases [26,30]. Furthermore,
the new positions of each firefly are only accepted if they improve over the old
ones. This is particularly promising since the best position is never lost.

3 Strategies in MOoFA

Since the proposed MOoFA is of a stochastic nature, the goal is to search for the
best approximation to the Pareto-optimal front. MOoFA performs the search in
the objective space, i.e., the algorithm selects the positions to be varied (corre-
sponding to fireflies that simulate movement) based on the fitness assigned to the
fireflies in the population. This fitness assignment is a crucial issue in FA since
a firefly movement depends on brighter fireflies and the brightness is inversely
proportional to the fitness value. In this extended FA for MO, the lower the fit-
ness value the brighter is the firefly (and the lower is the order of the position).
The simplest way to implement FA in a MO paradigm is to order the positions
of fireflies from lowest to highest fitness value. In this paper, we propose two
fitness assignment schemes that are based on an ordering strategy of the objec-
tive values. To order the positions of the fireflies, the following ranking steps are
required.

1. Assign ‘non-dominance rank’, rn−d, that aims to favor non-dominated points
giving them the rank value rn−d = 1, and giving to the remaining (the
dominated ones) points rn−d = 2;

2. Assign ‘f–values order’, of , that aims to give lower order to points with
lower function values. Two schemes are proposed. One depends on assigning
ranks to the objective function values; the other relies on the difference
from the function values themselves to the minimum value. The ‘f–values
order’ aggregates quantities using weights that satisfy 0 ≤ wj ≤ 1 and∑no

j=1 wj = 1. Thus,
(a) Using ranks (integer values ranging from 1 to m), rj , assigned to the

objective values fj(xi), j = 1, . . . , no, the ‘f–values order’ of a point xi

is calculated by

of (xi) =
1
m

(w1r1 + w2r2 + . . . + wnorno) . (4)

(b) Using the objective function values, a factor that is a scaled distance to
the minimum value of objective fj is computed,

sj =
fj(xi) − fj,min

fj,max − fj,min
(5)
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where 0 ≤ sj ≤ 1, fj,max and fj,min are the maximum and minimum
values of fj attained by the population, respectively. Then, the ‘f–values
order’ is computed by

of (xi) = w1s1 + w2s2 + . . . + wnosno. (6)

3. Finally, for either case (2a) or (2b), the fitness value, Fit(xi), assigned to
each point xi is defined by

Fit(xi) = rn−d + of (xi). (7)

This way non-dominated points have fitness values in the range [1, 2] and dom-
inated points have fitness in the range [2, 3].

Table 1 shows the fitness assignment scheme (4), for a small example with two
objectives, ten points in the population, and w1 = w2 = 0.5. The last column in
the table shows the ordering of the points based on the Fit values. (We note that
any occurring tie is broken arbitrarily.) Table 2 depicts the fitness assignment
scheme based on (5) and (6). We note that this ordering is not the same as that
of previous table. In Table 1 two sets of ties occur in Fit: one originates x5 and
x6, the other x8 and x9. With the factor sj , the likelihood that ties will occur is
much lower than with the scheme (4).

Table 1. Fitness assignment based on ranking the objectives (4), for ten points

i f1(x
i) f2(x

i) r1 r2 of (xi) rn−d Fit(xi) ordering

1 6.75 3 6 7 0.65 2 2.65 x5

2 4 1 1 3 0.20 1 1.20 x1

3 7 0.5 7 1 0.40 1 1.40 x3

4 10 2.5 10 5 0.75 2 2.75 x9

5 5 4 3 10 0.65 2 2.65 x6

6 4.5 2 2 4 0.30 2 2.30 x4

7 6 0.75 4 2 0.30 1 1.30 x2

8 6.5 3.5 5 9 0.70 2 2.70 x7

9 9 2.7 9 6 0.75 2 2.75 x8

10 8 3.25 8 8 0.80 2 2.80 x10

Non-dominated points are in bold style

We now briefly describe some technical issues of MOoFA in Algorithm 1.
MOoFA starts by randomly generating m points – positions of the population
of fireflies – in the search space Ω. The objective functions are evaluated at all
points and the non-dominated points are identified. The set, denoted by ND, of
all produced non-dominated points (the corresponding no–tuple (f1, f2, . . . , fno))
is initialized. The fitness assignment strategy described in (7) is applied and the
points are ordered according to their fitness value Fit, from lowest to largest,
i.e., x1 is the point with lowest Fit value, x2 is the point with the second lowest
value of Fit, and so forth, xm is the point with largest Fit value. Now, new
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Table 2. Fitness assignment based on scaled distance of objectives to minimum (5)
and (6), for ten points

i f1(x
i) f2(x

i) s1 s2 of (xi) rn−d Fit(xi) ordering

1 6.75 3 0.4583 0.7143 0.5863 2 2.5863 x6

2 4 1 0 0.1429 0.0714 1 1.0714 x1

3 7 0.5 0.5 0 0.2500 1 1.2500 x3

4 10 2.5 1 0.5714 0.7857 2 2.7857 x10

5 5 4 0.1667 1 0.5833 2 2.5833 x5

6 4.5 2 0.0833 0.4286 0.2560 2 2.2560 x4

7 6 0.75 0.3333 0.0714 0.2024 1 1.2024 x2

8 6.5 3.5 0.4167 0.8571 0.6369 2 2.6369 x7

9 9 2.7 0.8333 0.6286 0.7310 2 2.7310 x9

10 8 3.25 0.6667 0.7857 0.7262 2 2.7262 x8

Non-dominated points are in bold style

candidate positions are computed for the current position x2 and all the others
that follow, i.e., x2 may be moved towards x1 (meaning that firefly 2 is attracted
to firefly 1), x3 may be moved towards x1 (in first place) and then x2, and so
on. We use the term ‘candidate’ because, in the proposed FA extension to MO,
the new point may not be a promising position, when compared with the cur-
rent one, and will not be accepted. This is a crucial issue and arises when a
non-dominated current point generates a dominated candidate. In all the other
cases, the candidate position is accepted. Furthermore, whenever a position is
declared non-dominated, via flag=‘true’ in the algorithm, any subsequent can-
didate position will be accepted only if it is non-dominated.

When extending FA to MO, the choice of the point z to center the random-
ization contribution to the firefly movement (see equation (2)) is based on a MO
performance measure, a spread metric. Thus, z is one of the arguments of two
consecutive non-dominated points with a maximum distance (based on infinity
norm) in objective function values, i.e.,

z = arg max
j∈{1,...,no}

{
max

i∈{1,...,|ND|−1}
{
f i+1
j − f i

j

}}
(8)

where |ND| is the cardinal of ND. Our choice falls on the first of the two points.
We recall that the fj values are sorted (from lowest to largest). This choice for
the point z aims to force the movement of the firefly i towards the set of non-
dominated points, as well as to the region where the distance between consecutive
points is largest. This way the algorithm will generate an approximated Pareto
front with evenly spread points. Only after all points (except x1) have potentially
moved towards other points, is the set ND updated with the new accepted non-
dominated points, being removed the dominated solutions. Finally, at the end
of each iteration, all accepted points are ordered based on their fitness values.
The output of the algorithm is the set ND that contains an approximation to
the Pareto front.
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Data: kmax, m
Set k = 1;
Randomly generate xi ∈ Ω, i = 1, . . . , m and evaluate fj(xi), i = 1, . . . , m,
j = 1, . . . , m;
Define the set ND with the non-dominated points;
Assign flag=‘true’ to all non-dominated points of the population;
Assign fitness to all m points, using (7), and order them;
while k ≤ kmax do

forall the xi such that i = 2, . . . , m do
forall the xj such that j = 1, . . . , i − 1 do

Compute randomization term and attractiveness β;
Move firefly i towards j using (2) and evaluate
fj(ti), j = 1, . . . , no;
if xi has flag=‘true’ then

if ti is a non-dominated point then
Set xi = ti and assign flag=‘true’ to xi;

end
else

Set xi = ti;
if xi is a non-dominated point then

Assign flag=‘true’ to xi;
end

end
end

end
Set k = k + 1;
Update the set ND with the accepted non-dominated points (remove
the dominated ones);
Assign flag=‘true’ to all non-dominated points of the population;
Assign fitness to all m points, using (7), and order them;

end
Output: set ND

Algorithm 1. MOoFA

The algorithm MOoFA stops when a target number of iterations, kmax, is
exceeded, although other criteria may be used. We may require that the number
of function evaluations reaches a target value, or the largest gap between two
consecutive points of the approximated Pareto front falls below a tolerance.

4 Numerical Comparisons

MOoFA is coded in MATLAB programming language (Matlab Version 8.1.0.604
(R2013a)) and the numerical experiments were carried out on a PC Intel Core
2 Duo Processor E7500 with 2.9GHz and 4Gb of memory. To analyze the per-
formance of two variants of MOoFA, a set of nine benchmark problems with
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different properties in terms of Pareto-optimal front is used (see [12,29,34]). The
known acronyms are: FON with non-convex Pareto front, n = 3 and no = 2;
KUR with discontinuous Pareto front, n = 3 and no = 2; POL with discontin-
uous Pareto front, n = 2 and no = 2; SCH with convex Pareto front, n = 1
and no = 2; ZDT1 with convex Pareto front, n = 30 and no = 2; ZDT2 with
non-convex Pareto front, n = 30 and no = 2; ZDT3 with discontinuous Pareto
front, n = 30 and no = 2; ZDT4 with convex Pareto front, n = 10 and no = 2;
ZDT6 with non-convex Pareto front and n = 10 and no = 2. We use the fol-
lowing acronyms to identify the two variants of MOoFA: (i) ‘MOoFA-rank’, for
Algorithm 1 based on the objective ranking (4), with fitness (7); (ii) ‘MOoFA’,
for Algorithm 1 based on the scaled objective distance to the minimum (5) and
(6), with fitness (7). Each tested variant was run 10 times with each problem. In
Algorithm 1, we set m = 50, as suggested in [29], and kmax = 100 when solving
FON, KUR, POL, SCH, ZDT1, ZDT2, ZDT3 and ZDT6, and m = 100 and
kmax = 500 when solving ZDT4. Some preliminary experiments were carried out
to analyze the performance of the algorithms using previously proposed param-
eter values [9,15]. The results showed that higher quality solutions are obtained
with β0 = 1, αmin = 0.01, αmax = 0.5, γmin = 0.1 and γmax = 10 as presented
in [9].

4.1 MO Performance Measures

Three aspects could be considered when comparing the performance of multi-
objective optimization algorithms: (i) the closeness to the true Pareto front;
(If the true Pareto front for a given problem is known then the closeness can be
measured using, for instance, the distance between the true Pareto front and the
produced approximation to the Pareto front.) (ii) the spread along the Pareto
front; (iii) the number of solutions in the non-dominated set. Here, we aim to
compare closeness to the true Pareto front and select two performance metrics
known as generational distance, GDp, and inverted generational distance, IGD,
which are defined by

GDp =
1

|ND|

⎛
⎝

|ND|∑
j=1

dpj

⎞
⎠

1/p

and IGD =
1
N

⎛
⎝

N∑
j=1

Dj

⎞
⎠ (9)

respectively, where p ≥ 1, dj is the Euclidean distance from the j-th point
of the approximated front ND to its nearest point of the true Pareto front
[12,13,22,29], Dj is the minimum Euclidean distance between the point j in
the true Pareto front and the points in ND and N is the number of uniformly
distributed points along the true Pareto front. Smaller values of GDp and IGD
indicate better approximations to the Pareto-optimal front.

4.2 Experimental Results

First, using a visual presentation of our results, we show the approximated
Pareto front produced by ‘MOoFA-rank’ and ‘MOoFA’. We plot the ND set that
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corresponds to the run that gave the lowest GD2 (corresponding to p = 2) value.
Figure 1 contains the six plots that are produced by Algorithm 1 and objectives
ranking (4), when solving SCH, ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6.
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Fig. 1. Approximated Pareto front produced by Algorithm 1 and objective ranking (4)

Figure 2 contains the plots for the six previously referred problems using
Algorithm 1 and objective distances to the minimum values (5) and (6). We
may conclude that the produced approximated Pareto fronts are dense and have
a sufficient large number of uniformly distributed points. The differences between
the two variants are not significant, although we observe a slight improvement
on closeness and density of MOoFA front, for the problems ZDT4 and ZDT6.

The large number of non-dominated solutions produced by Algorithm 1
requires a moderate computational effort specially when m = 100 and the algo-
rithm runs for 500 iterations. We then decided to test another variant that
computes candidate solutions only to fireflies that correspond to dominated
positions. This means that only the dominated fireflies are attracted to non-
dominated and dominated brighter fireflies. Hence, if mnd ≤ m represents the
number of non-dominated positions in the current population, the outer ‘for’
loop in Algorithm 1 starts with xmnd+1 and finishes with xm. This variant is
denoted by ‘MOoFA-dom’. We observed that this variant produced a very small
number of non-dominated solutions. However, increasing the size of the popu-
lation and the maximum number of iterations allow the variant to find a larger
number of points while improving GDp and IGD. Thus, we have used m = 100
and kmax = 500 for all tested problems. Figure 3 displays the plots that cor-
respond to the previously referred six problems. Nevertheless, these results are
not as good as those produced by the variants ‘MOoFA-rank’ and ‘MOoFA’ of
Algorithm 1.

Now, we report on Tables 3 and 4 the numerical results produced by ‘MOoFA-
rank’ and ‘MOoFA’. For these comparisons we use both the generational distance
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Fig. 2. Approximated Pareto front produced by Algorithm 1 and objective distance to
the minimum (5) and (6)

GD2 (based on p = 2), GD1 (based on p = 1) and the inverted generational
distance IGD (see (9)).

Table 3 contains the corresponding averaged GD2 values over the runs. In
parentheses, we show the average number of non-dominated solutions |ND|. The
other results for comparison are from MOFA and three popular MOEAs known
as SPEA, NSGA-II and DEMO, that are available from [29]. The author in [29]
reports the use of m = 50, kmax = 500, and in FA several values for α0 (ranging
from 0.1 to 0.5) and β0 (ranging from 0.7 to 1) were tested, with α = α0(0.9)k.
Our results (based on N = 500) show that the variant ‘MOoFA’ gives slightly
better values of GD2 on problems ZDT1, ZDT2, ZDT3 and ZDT6 and variant
‘MOoFA-rank’ is better on SCH and ZDT4. Furthermore, when compared with
MOFA [29], SPEA, NSGA-II and DEMO, our proposed variants of MOoFA give
lower averaged GD2 values when solving problems ZDT1, ZDT2 and ZDT3, but
larger values when solving SCH and compared with MOFA and DEMO.

Table 4 contains average values of GD1 and IGD computed from our results.
We now compare with the GD1 results reported in [12] for SPEA, PAES and
NSGA-II, where m = 100, kmax = 250 are used. The results obtained with the
problems FON, KUR and POL are also shown for comparison.

We remark that the reference Pareto fronts of problems FON, KUR and POL
were obtained from the literature and they are not uniformly distributed. We
also note that the IGD values produced by our variants of the Algorithm 1, when
solving POL, are large since the set ND has just a few points with f1 > 15 and
f2 < 0.1. When comparing GD1, NSGA-II has slightly lower values on problems
FON, KUR and ZDT4, PAES has a lower value on SCH, while the variant
‘MOoFA’ produces lower values than any of the other four in comparison, when
solving problems POL, ZDT1, ZDT2, ZDT3 and ZDT6.
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Fig. 3. Approximated Pareto front produced by ‘MOoFA-dom’, and objective distance
to the minimum (5) and (6)

Table 3. Comparison based on GD2 with |ND| in parentheses

‘MOoFA-rank’ ‘MOoFA’ MOFA† SPEA† NSGA-II† DEMO†

Prob. GD2 GD2 GD2 GD2 GD2 GD2

SCH 2.37e-04 (3314) 2.57e-04 (2977) 4.55e-06 5.17e-03 5.73e-03 1.79e-04
ZDT1 3.35e-05 (2644) 2.09e-05 (3325) 1.90e-04 1.78e-03 3.33e-02 1.08e-03
ZDT2 1.96e-05 (3360) 1.35e-05 (3517) 1.52e-04 1.34e-03 7.24e-02 7.55e-04
ZDT3 2.12e-05 (3110) 1.98e-05 (2639) 1.97e-04 4.75e-02 1.14e-01 1.18e-03
ZDT4 3.63e-01 (1201) 6.59e-01 (1033) – – – –
ZDT6 4.68e-03 (2033) 1.59e-04 (4402) – – – –
† results available in [29] with m = 50 and kmax = 500; – not available

Table 4. Comparison based on GD1 and IGD

‘MOoFA-rank’ ‘MOoFA’ SPEA‡ PAES‡ NSGA-II‡

Prob. GD1 IGD GD1 IGD GD1 GD1 GD1

FON 9.50e-03 3.57e-03 8.57e-03 3.47e-03 1.26e-01 1.51e-01 1.93e-03
KUR 3.37e-02 4.15e-02 3.51e-02 3.78e-02 4.56e-02 5.73e-02 2.90e-02
POL 1.13e-02 1.57e+04 1.12e-02 1.57e+04 3.78e-02 3.09e-02 1.56e-02
SCH 5.05e-03 1.10e-03 5.40e-03 1.24e-03 3.40e-03 1.31e-03 3.39e-03
ZDT1 1.11e-03 5.29e-04 8.42e-04 3.57e-04 1.80e-03 8.21e-02 3.35e-02
ZDT2 9.63e-04 4.09e-04 7.11e-04 6.12e-02 1.34e-03 1.26e-01 7.24e-02
ZDT3 8.95e-04 3.13e-04 8.22e-04 1.06e-01 4.75e-02 2.39e-02 1.15e-01
ZDT4 3.91e+00 2.27e+00 1.02e+01 8.23e+00 7.34e+00 8.55e-01 5.13e-01
ZDT6 1.13e-02 5.16e-03 9.03e-04 5.81e-04 2.21e-01 8.55e-02 2.97e-01
‡ results available in [12] with m = 100 and kmax = 250
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Our final conclusions are that MOoFA (based on Algorithm 1) is able to pro-
duce competitive results and provides dense and well distributed approximated
Pareto front with a large number of points.

5 Conclusions

We have presented a new methodology to solve nonlinear bound constrained MO
optimization problems based on the FA paradigm, on non-dominance/dominance
ranking and aggregation of objective function distances to the minimum values,
for fitness assignment, and on the spread metric to reduce the gaps between
consecutive non-dominated solutions. MO benchmark problems of the literature
were selected to test our proposal. From the obtained results we have found out
that the algorithm is effective and worthy of further research. The obtained val-
ues for the generational distance to the true Pareto front were rather competitive
although distance alone is not sufficient for performance assessment. Thus, this
study will be complemented with other performance guided metrics.

Future work will focus on incorporating a clustering technique into MOoFA
to reduce the number of archived non-dominated solutions while maintaining the
good density-based characteristics, so that computational time can be reduced.
Furthermore, experimental tests will be extended to MO problems with three
and more objectives and larger number of variables. The effect of increasing the
number of objectives on the convergence of the algorithm will be investigated.
Results available in the literature from other MOEAs will be used for comparison
purposes.
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objective robust optimization. In: Kosiński, W. (ed.) Advances in Evolutionary
Algorithms, pp. 261–278. I-Tech Education and Publishing (2008)

15. Fister, I., Fister Jr, I., Yang, X.-S., Brest, J.: A comprehensive review of firefly
algorithms. Swarm and Evolutionary Computation 13, 34–46 (2013)

16. Fontes, D.B.M.M., Gaspar-Cunha, A.: On multi-objective evolutionary algorithms.
In: Zopounidis, C., Pardalos, P.M. (eds.) Handbook of Multicriteria Analysis, Appl.
Optimizat., vol. 103, pp. 287–310. Springer (2010)

17. Gaspar-Cunha, A, Covas, J.A.: RPSGAe - reduced Pareto set genetic algorithm:
application to polymer extrusion. In: Gandibleux, X., Sevaux, M., Sörensen, K.,
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Abstract. In this paper the job shop scheduling problem with two crite-
ria of minimizing makespan and the sum of tardiness of jobs is considered.
This multi-objective problem is strongly NP-hard, as single criterion ver-
sion is strongly NP-hard as well. A permutation-based representation
for the job shop problem is used and a new hybrid parallel multi-agent
method, called GACO (Genetic Algorithm Ant Colony Optimization),
is proposed. The computation is done in parallel and additional threads
concurrently compute certain parts of both algorithms. The researched
speed-up is considerable, albeit limited by the need to combine solutions.
Approximation of the Pareto front obtained by GACO is superior to the
approximations obtained by GA and ACO separately.

Keywords: Multi-criteria optimization · Job shop problem · MCDA ·
Hybrid algorithm · Nature-based

1 Introduction

Maintaining competitive position in fast changing market requires companies to
use new methods of optimization and drives scientists to develop more efficient
algorithms. Due to that competitiveness, developing effective, advanced methods
is extremely important. The so-called job shop scheduling problem (JSP) rep-
resents a class of widely studied cases based on ideas derived from production
engineering. Most of the currently researched problems consider single criterion
objective value function and are easily adaptable to real world applications,
but modern scheduling problems need more advanced models. This applies not
only to scheduling problems in manufacturing processes, but also for network
scheduling [16] or vehicle routing problems [7].

Multi-objective JSP (MOJSP) is the result of natural evolution of models
and optimization methods that put more emphasis on practical applications of
JSP. This is because decision making in scheduling usually have to take several
economic indexes simultaneously, which naturally take the form of several opti-
mization criteria. Thus, real world applications require adjusting existing mod-
els of discrete optimization and objective functions to multi-criteria approach to
c© Springer International Publishing Switzerland 2015
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solve modern optimization problems. However, frequently studied cases apply
optimization algorithms with only one criterion and few researchers use multi-
criteria approach to JSP. One of the biggest concerns of multi-criteria optimiza-
tion is computational complexity, which generally grows with the number of
defined criteria, making solving NP-hard problems even more difficult. Recently
researchers try to bypass this issue by harnessing the possibilities of parallel
programming, CUDA architecture and distributed computing being the prime
examples. These are used to significantly speed up the computation process.

1.1 Multi-objective Job Shop Scheduling Problem

Most common multi-objective algorithms are variances of evolutionary and pop-
ulation based methods. This is caused by the fact that multi-agent algorithms
perform multiple searches of the solution space at the same time. One of their
qualities is an ability to find an approximation of the Pareto front in short time,
which made them useful and efficient in multi-criteria optimization. Below we
present a brief review of some of such methods proposed in the literature.

In paper [8], a Two-Stage Genetic Algorithm (2S-GA) was proposed by
Kachitvichyanukul et al. Its goal was to minimize weighted sum of the criteria,
including makespan, total weighted earliness and tardiness. Proposed algorithm
was compared with single criterion methods and one multi-objective algorithm.
Authors compared their new dispatching rule based representation with others
known from literature. Algorithms using Model-based Hybrid Representation
(MHR) obtained higher values of Hyper-Volume Indicator (IH) and were more
robust to the representation size. An evolutionary algorithm (EA) was proposed
by Lei and Wu [11]. External population was adjusted using crowding measure
and assigned different fitness values for individuals. Proposed algorithm per-
formed well in optimizing bi-criteria objective function, consisting of makespan
and total tardiness.

A hybrid algorithm called Jumping Genes Genetic Algorithm (JGGA) [15],
proposed by Ripon, was capable of searching for near-optimal Pareto solutions,
while maintaining convergence. Performed tests have shown better results com-
pared to the other existing evolutionary approaches.

Another multi-agent method, called Particle Swarm Optimization (PSO),
was proposed by Lei [10]. This method used global best position selection com-
bined with maintaining crowding measure-based archive. Tests have shown, that
the algorithm produced high quality Pareto fronts. Sha and Lin proposed Multi-
Objective PSO (MOPSO) [17] with the optimization criteria of the makespan,
total tardiness and total idle times. Decoding was performed using the Giffler
and Thompson heuristic, which provides active solutions from schedules. Small-
sized benchmarks were used in evaluation and MOPSO yielded good quality
results. Representative of another multi-agent method was proposed by Udom-
sakdigool and Khachitvichyanukul [20]. An Ant Colony Optimization (ACO)
solved MOJSP with competitive results. Authors applied Local Search (LS)
method in order to intensify the search.
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Apart from multi-agent algorithms, some methods based on local search (LS)
methods were proposed for solving MOJSP. Suresh and Mohanasndaram devel-
oped Pareto-archived simulated annealing (PASA) [19] for solving bi-criteria
MOJSP. It made use of Pareto dominance and a criteria aggregating to accept
the candidate solution from among the solution set generated by the segment
random insertion (SRI neighborhood structure. PASA outperformed other tested
algorithms in benchmarks. Fattahi et al. tackled bi-criteria MOJSP with simu-
lated annealing (SA) approach [4]. Multi-objective problem with makespan and
total weighted tardiness was converted to scalar optimization function. Unfor-
tunately, no comparative tests were performed.

1.2 Parallel Job Shop Scheduling Problem

Recently parallelization of algorithms became common in the field of computer-
aided optimization. This is caused by the fact that modern computer systems
increase their computational power by developing methods of parallel processing
(e.g. multiple processor cores), instead of increasing the clock rate of processors
(and other subsystems). As a result, sequential algorithms, which use only a sin-
gle core, fail to employ almost all of the available computational power offered
by state-of-the-art computers. Along with the further development of multi-
core devices the advantage of parallel algorithms over sequential algorithms will
increase even further. Below we briefly present some recent developments and
approaches to parallel JSP.

Bożejko et al. proposed a parallel SA algorithm [1] and significantly reduced
the computation time through the parallelization of computing the fitness proce-
dure. Super linear speedup was obtained when using representative-based neigh-
borhood. Gu et al. [5] proposed a parallel genetic algorithm (GA). The solution
space was divided into so-called islands. Each of the parallel algorithms per-
formed operations on one of those islands. Algorithm instances exchanged infor-
mation with each other to provide the best individuals. Tests have shown that
the proposed algorithm has high convergence speed and provides near-optimal
solutions efficiently. Another population based algorithm was proposed by Yusof
et al. in [21]. It was micro GA, which worked on small populations. When pop-
ulations reached similar chromosomes, the re-initialization started. The best
individual was kept and all others were replaced by randomly-generated pop-
ulation. Parallel approach provided better solutions in less time than sequential
GA and micro GA. Parallel tabu search algorithm was proposed by Bożejko
et al. [2]. Authors solved flexible JSP. The problem has been divided into two
subproblems: assigning operations to the machines and determining the order of
operations on each machine. The second phase was performed on parallel GPU
machines, and the results were collected using the MPI protocol. Computations
time for instances of big size was significantly improved.
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1.3 Applications

Pfund et al. considered complex job shop problem in semiconductor wafer
fabrication process. In paper [14], a Modified Shifting Bottleneck Heuristic was
proposed. Semiconductor wafer usually need to be processed many times on dif-
ferent machines, sometimes repeatedly on each machine in different stages of the
processing. Since each machine can cost from tens to hundreds of thousands of
dollars, it is necessary to reduce capital spending by scheduling of jobs.

In further practical use for multi-criteria scheduling, one should concentrate
on decision support systems (DSS), which will aid decision-maker (DM) and
allow to improve results accordingly. When considering more than two criteria,
it is crucial to decide on a method of visualization. Miettinen prepared a sur-
vey of visualization techniques in paper [12]. Depending on problem and DMs
preferences, there is a number of methods to implement in DSS.

2 Problem Description

We consider a manufacturing system with the set M = {1, . . . , m} of m machines
with unit capacity. Moreover, J = {1, 2, ..., n} is the set of n jobs to be processed.
Job j-th, consists of the sequence of nj operations indexed consecutively (lj−1 +
1, ..., lj−1 +nj), where lj =

∑j
i=1 ni is the total number of operations of the first

j jobs, j = 1, 2, ..., n, (l0 = 0), o =
∑n

i=1 oi is the total number of all operations
and oi is the number of operations required to complete job i. Operation x is
to be processed on machine μx ∈ M during an uninterrupted processing time
px > 0, x ∈ O. Our aim is to find the schedule under the following constraints:
(1) each machine can process at most one product at a time, (2) each product
can be process by at most one machine at a time, (3) operations cannot be
preempted.

The set of operations O can be decomposed into subsets Ok = {x ∈ O|μx = k},
each of them containing the operations to be processed on machine k ∈ M . Let
permutation πk define the processing order of operations from the set Ok on
machine k, and let Πk be the set of all permutations on Ok. The processing order
of all operations on machines is determined by m-tuple π = (π1, π2, ..., πm), where
π ∈ Π1 × Π2 × . . . × Πm.

A given schedule π can be described by a pair of vectors S = (S1, . . . , So)
and C = (C1, . . . , Co), where Sj and Cj denote starting and completion time of
operation j. The schedule has to satisfy the following constraints:

Ctj
≤ Sj tj �= 0, j ∈ O, (1)

Csj
≤ Sj sj �= 0, j ∈ O, (2)

Cj = Sj + pj j ∈ O, (3)

A schedule that satisfies inequalities (1–3) is feasible. Constraint (1) follows from
technological processing order of operations inside job, whereas (2) follows from
the unit capacity of machines.
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Our aim is to find feasible processing order π∗ ∈ Π, such that:

Csum(π∗) = min
π∈Π

Csum(π), (4)

Cmax(π∗) = min
π∈Π

Cmax(π), (5)

where Csum(π) =
∑n

i∈OL Ci is the sum of jobs completion times and OL = {i :
i = li−1 + ni, i ∈ O} is the set of the last operations of jobs, while Cmax(π) is
the time required to complete all jobs on the machines in the processing order.

3 Multi-Criteria Solutions Evaluation

Evaluation of multi-criteria solutions is not as straight-forward as in the case of
single-criterion problems. Comparing two solutions requires different approaches.
Aggregation of (weighted) objectives is one of the most commonly used tech-
niques, unfortunately this method requires either fine tuning of the weights or
running the algorithm using the multi-start method. Thus, we considered tech-
niques from multi-criteria decision analysis (MCDA) to evaluate solutions in
those multi-agent algorithms.

Technique for Order of Preference by Similarity to Ideal Solution.
Hwang and Yoon proposed TOPSIS, a MCDA method in [6]. The concept is to
choose the solution with the shortest geometric distance from the best (ideal)
solution and the longest distance from the worst (negative-ideal) solution. The
extreme criteria values of given solutions are used to determine this ideal and
negative-deal solution. The method also uses weights for each criterion and nor-
malizes all solutions before calculating the geometric distances. The higher the
value of the relative closeness the better the solution. This method allows to
choose one solution from the Pareto front, without involving decision-maker in
the process.

Pareto Efficiency. The solution to a multi-objective problem is the set of
non-dominated solutions called the Pareto front, where dominance is defined
as follows. In a minimization problem a solution y = (y1, y2, . . . , yf ) dominates
z = (z1, z2, . . . , zf ) (denoted y ≺ z) if and only if:

∀
i∈F

yi ≤ zi, (6)

∃
i∈F

yi < zi, (7)

where F = {1, . . . , f} is the set of f criteria (objective functions).
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4 Representation and Decoding

The representation of solutions is an important aspect in algorithm development,
as it determines the solution space and some properties of solutions. When solv-
ing JSP, it is also important to decide on a method of decoding such representa-
tion. For the purpose of this work we decided to use a job-based representation
and decoding scheme based on Giffler and Thompson heuristic. In result, solu-
tions decoded by our algorithm are active. Moreover, simplified representation
results in decreased computational time of the algorithm.

5 Proposed Method

For the purpose of this article a hybrid parallel algorithm was implemented.
Said algorithm used two multi-agent methods – Genetic Algorithm (GA) and
Ant Colony Optimization (ACO) – which allow fast approximation of Pareto
front and, due to their characteristics, search different areas of solutions space.
Parameters of all algorithms were automatically adjusted (self-set parameters).
Moreover, a second stop rule was implemented. When execution reaches certain
(predetermined by tests) run time, the algorithm stops at current iteration and
returns gathered solutions.

5.1 Ant Colony Optimization

The Ant Colony Optimization (ACO) is a probabilistic meta-heuristic technique
used to create approximate algorithms for optimization problems. The technique
itself is used in order to find good (short) paths in a given graph. It is most
commonly used in the Traveling Salesman Problem (TSP). Currently it has
found usage in a wide range of discrete optimization problems and is applicable
to any problem that can be reduced to short path search in a graph, including
the MOJSP.

ACO is a population-based algorithm simulating the foraging behavior of ant
colonies, where ants create candidate solutions in each iteration. Solutions are
created in steps, each step extends an existing partial solution, by choosing next
node in a graph. The probability of selecting a given node is dependent on the
visibility of the node and the pheromone trail on the edge that leads to that node,
the higher the pheromone value, the more attractive the edge is. All constructed
solutions are then evaluated and the pheromone trails are updated depending
on the quality of solutions found. Thus, the search can intensify on promising
parts of the solution space. The pheromone evaporates over time, meaning the
colony can forget unused or bad trails and thus diversify the search process.

A number of variants of ACO have been proposed. In this paper we employ
Max-Min Ant System (or MMAS) by Stützle and Hoos [18], which introduces
a few new elements. The pheromone trail on a given edge is restricted between
values of τmin and τmax. Contrary to the basic ACO variant, MMAS uses an elitist
approach, where only one or two ants have the right to update the pheromone
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matrix per iteration. Both iteration- and global-best ants are used as candidates
for this role. The MMAS is easily adapted to MOJSP, since our solution rep-
resentation is a permutation (the same as in TSP). The main problem is the
definition of the visibility of the edge (job) j. We decided on a heuristic app-
roach where the visibility is equal to the sum of processing times of all operations
of the job j. The remaining implementation of our MMAS closely follows the
original paper by Stützle and Hoos.

5.2 Genetic Algorithm

Genetic Algorithm (GA) is a multi-agent method based on the evolution pro-
cess found in the nature to find better solutions. Evolutionary algorithms use
techniques inspired by natural occurring factors, such as inheritance, mutation,
selection and crossover to generate solutions to optimization problems. Usually,
the evolution starts from random initial population, which consists of individ-
uals. In each iteration, called generation, those individuals are modified (by
means of mutation and/or crossover) and their fitness is evaluated in order to
select best solutions for next generation. Over the years, different approaches to
the GA were proposed and tested for a variety of optimization problems. Our
GA uses external Pareto archive in order to maintain non-dominated solutions
through successive iterations. The individuals in population are represented by
the following: jobs permutation, values of criteria functions and relative close-
ness indicator calculated by the TOPSIS method. Initial population includes
solutions obtained from certain constructive algorithms, prepared to optimize
one of the criteria. Such initialization allows faster designation of the approxi-
mation of Pareto front. Mutation is performed by interchanging two random jobs
in schedule, while crossover uses a partially matched crossover (PMX) scheme.
Fitness values are evaluated using the TOPSIS technique and are then used in
tournament selection. After the selection, half of parent and child population is
combined into new parent population. Moreover, when relative closeness values
converge to zero, an anti-stagnation function is employed.

5.3 Parallel Algorithm – GACO

Both component algorithms, GA and ACO, are population-based meta-heuristics.
GA uses its current solution population (let us denote it PGA) in order to perform
the selection process: select(PGA). Similarly, ACO employs its constructed solu-
tions (PACO) to perform the pheromone update: update(PGA). Our idea is to allow
both algoritms to use each population of the other algorithm in addition to their
own. Let PGACO = PGA ∪ PACO. Then we define new selection and pheromone
update operations: select(PGACO) and update(PGACO). This allows to combine
solutions gained through the capabilities and unique features of both algorithms.
The resulting hybrid algorithm is named GACO.

In order to properly perform the selection and update process, the GACO
algorithm needs both populations. Therefore, a synchronization mechanism is
implemented (using condition variables) to ensure that those processes will not
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 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8

Number of threads

Time [100x seconds]
Speedup
Efficiency

Fig. 1. Processing time, speed-up and speed-up efficiency for the GACO algorithm

start until both PGA and PACO are prepared for the current iteration. The result-
ing sequential algorithm has the processing time a little over a sum of the sequen-
tial GA and ACO processing times. In case of the ta01 instance this time equals
314 seconds (10 000 iterations, 200 ants and 200 GA specimens). However, we
employ two parallelization mechanisms. First, the GA and ACO are computed
in parallel, only stopping to wait for the other algorithm before combining their
current populations. This uses two parallel threads and reduces the processing
time to 183.6 seconds for ta01. Next, a number of subthreads is created for each
algorithm. Those threads are created only once and are used to perform time-
consuming operations (crossover, mutation, ants solution construction) in each
iteration. For 8 concurrent threads this results in and processing time of 79 sec-
onds for ta01 and a total speed-up of roughly 4. This value stays fairly constant
for other Taillard instances, meaning (from Amdahl’s law) that the parallel frac-
tion of the GACO algorithm is roughly equal to 85%, including the processor
overhead. The speed-up and speed-up efficiency for the GACO algorithm are
shown in Fig. 1. The values were measured for even number of threads and the
computing times in the figure were divided by 100.

6 Computer Experiment

All algorithms were implemented in C++ and compiled with g++ 4.6.3. The
programs were tested on i7-3610QM 2.30 GHz machine (8 concurrent threads)
with 6 GB of RAM under the Linux operating system. Benchmarks were taken
from literature and contain 8 groups. Each group consists of 10 instances of the
same size.
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6.1 Multi-Criteria Quality Indicators

Our approach is based on a dominance relation, so the result for each instance
of GACO is a set of non-dominated solutions – an approximation of the Pareto
front. Solutions from all the algorithms were flagged and aggregated into a single
set, which was then purged of dominated solutions. A number of solutions in this
global Pareto-efficient set was computed for each algorithm and used to compare
solution sets [13].

Zitzler et al. [9] provided a necessary tool for a better evaluation and compari-
son of multi-objective algorithms. Hyper-volume indicator (or HVI) IH measures
quality of the Pareto front approximations. It measures the area covered by the
approximated Pareto fronts bound by reference point, described as 120% of the
worst values of each criterion.

6.2 Results

There are 80 instances divided into 8 instance sizes, thus computation results
were combined into groups of fixed instance size.

Table 1. Hyper-Volume indicators and number of Pareto solutions

Group |P | |PACO| |PGA| |PGACO| IH(ACO) IH(GA) IH(GACO)

15 × 15 124 10 36 78 0,077 0,064 0,100

20 × 15 135 22 39 74 0,088 0,069 0,118

20 × 20 120 20 35 65 0,078 0,067 0,090

30 × 15 133 11 38 84 0,093 0,068 0,100

30 × 20 145 9 50 86 0,083 0,068 0,094

50 × 15 195 12 71 112 0,104 0,059 0,120

50 × 20 167 18 49 100 0,094 0,066 0,105

100 × 20 208 25 65 119 0,114 0,061 0,130

Sum 1227 127 383 718

Average 0,091 0,065 0,107

For each test instance and for each run of the algorithms, we collected the
following values:

– |P | – number of non-dominated solutions in aggregated approximations of
Pareto fronts from all algorithms,

– |Px| – number of non-dominated solutions found using algorithm x,
– IH(x) – HVI value of Pareto front found by algorithm x,

where x ∈ {ACO,GA, GACO}.
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Tab. 1 shows summed up numbers of Pareto solutions for each instance size.
As can be seen, the number of Pareto solutions found by GACO algorithm
exceeds the number of Pareto solutions found by ACO ang GA algorithms, both
of them in total only found around 41% of all of the non-dominated solutions.
Moreover, IH values of ACO and GA were from 15 to 39% lower than GACO.

Furthermore, a series of statistical hypothesis testing, using Octave software,
was conducted in order to assess the mean value of the HVI of GACO algorithm
compared to ACO and GA. For all test we used Student’s t-test with the sig-
nificance level of 0.05, i.e. the test yeilds the p-value and we compare it with
0.05 in order to reject or accept the null hypothesis. First, we tested the GACO
algorithm compared to ACO. For this we defined a new IH parameter as follows:

QACO =
IHi

(GACO)
IHi

(ACO)
, (8)

where i is the tested instance (i.e. from TA01 to TA80). Thus, we obtained
sample of 80 values of QACO. We have concluded that mean value of QACO is
equal to 1.25 (GACO has 25% better HVI value compared to ACO) with test
yielding the p-value of 0.075. We also determined that the mean QACO is greater
than 1.15 using one-sided t-test (yielded p-value of 0.4, null hypothesis μ = 1.15
is rejected and alternative hypothesis μ > 1.15 is accepted).

Similar test was done for the GACO vs. GA case. The resulting value QGA

indicates that GACO is 70% (test yielded p-value of 0.272) or even 74% (p-value
of 0.052) better than pure GA in terms of IH . Using one-sided testing we also
observed that mean IH of GACO vs. GA is greater than 1.57 (p-value of 0.045,
null hypothesis rejected, alternative μ > 1.57 accepted).

As a last test we have decided to put GACO against the combined forces of
GA and ACO algorithms:

QMAX =
IHi

(GACO)
max(IHi

(ACO), IHi
(GA))

. (9)

We observe that the mean for such defined QMAX is equal to 1.2 (p-value 0.75) or
even 1.24 (p-value 0.077). For the one sided test with μ > 1.14 as the alternative
hypothesis, we obtained the p-value of 0.032, thus rejecting the null hypothesis
in favor of the alternative hypothesis.

All this allows us to conclude that IH indicator values for GACO are much
greater than that for GA and considerably greater than that for ACO and both
algorithms combined. This result is also statistically significant.

In order to assist the visual evaluation of the approximations of Pareto fronts
obtained by proposed algorithms, we normalized all solutions from all instances.
First, for each instance we found minimal and maximal values of all criteria.
Second, we computed a normalized value of the solutions using the following
formula:

norm(xi,j) =
xi,j − min xi

max xi − min xi
, (10)
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where:

– xi,j – value of the i-th objective function in the j-th solution,
– min xi – minimal value of the i-th objective function in the current instance,
– max xi – maximal value the of i-th objective function in the current instance.

The sets of normalized non-dominated solutions, henceforth called clouds,
which were obtained using all tested algorithms are shown in Fig. 2. The cloud
obtained from the proposed GACO algorithm is similar in shape to the cloud
obtained from the results provided by the ACO algorithm, however the GACO
cloud has better (smaller) values for both criteria than ACO, showing its superi-
ority over it. Moreover, the GACO cloud also comes closer to the GA cloud and
while it does not reaches it, the spread of Pareto-efficient solutions is improved
compared both to GA and (to lesser extent) to ACO.

Furthermore, we have compared proposed algorithm with NSGA-II proposed
by Deb et al. in [3]. The results of the comparison are shown in Tab. 2. The total
and individual values of |P | are lower, than those of |PNSGA-II| and |P|GACO|,
because a number of locally Pareto-optimal solutions from one algorithm was
dominated by the other algorithm and vice versa. Removing the dominated and
repeated solutions yielded lower value of the total number of Pareto-optimal
solutions. In the evaluation the NSGA-II algorithm had overall better values
of HVI (especially in case of small instances), but proposed GACO algorithm
achieved its assumed purpose of finding an approximation of Pareto front, which
is more evenly spread and contains, overall, three times greater number of non-
dominated solutions.
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Table 2. Comparison with NSGA-II

Group |P | |PNSGA-II| |PGACO| IH(NSGA-II) IH(GACO)

15 × 15 81 38 105 0,25 0,19

20 × 15 93 45 116 0,18 0,10

20 × 20 72 40 95 0,28 0,21

30 × 15 92 44 105 0,10 0,08

30 × 20 78 45 99 0,16 0,18

50 × 15 110 51 131 0,15 0,17

50 × 20 80 40 123 0,14 0,13

100 × 20 68 38 139 0,09 0,11

Sum 674 341 913

Average 0,17 0,15

7 Conclusions and Further Research

Main idea behind the proposed algorithm was derived from our previous work,
where we observed certain properties of Pareto front approximations produced
by ACO and GA algorithms. Proposed hybrid algorithm met our expectations
and provided Pareto fronts which included the minimization of both objectives.
In our previous work we concluded that ACO with its pheromone matrix tends
to minimize Csum while GA steers itself for lower Cmax values. Combining those
methods and exchanging information between ants and GA individuals allowed
a wider exploration of the solution space. Further research involving different
measures of the quality of solutions and interchanging of the non-dominated
solutions will be performed.
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Abstract. The Kriging surrogate model, which is frequently employed to apply 
evolutionary computation to real-world problems, with coordinate transforma-
tion of design space is proposed to improve the approximation accuracy of ob-
jective functions with correlated design variables. Eigenvalue decomposition is 
used to extract significant trends in the objective function from its gradients and 
identify suitable coordinates. Comparing with the ordinary Kriging model, the 
proposed method shows higher accuracy in the approximation of two-
dimensional test functions and reduces the computational cost to achieve the 
global optimization. In the application to an airfoil design problem with spline 
curves as correlated design variables, the proposed method achieves better per-
formances not only in the approximation accuracy but also the ability to explore 
the optimal solution. 

Keywords: Kriging model · Efficient global optimization · Eigenvalue decom-
position · Airfoil design · Spline curve 

1 Introduction 

Optimization in real-world problems is usually time consuming and computationally 
expensive in the evaluation of objective functions [1,2]. Surrogate models are often 
useful to solve this difficulty. Surrogate models are constructed to promptly estimate 
the values of the objective functions at any point from sample points where real val-
ues of the objective functions are obtained by expensive computations. Therefore, it is 
important that accurate models can be constructed even with only a small number of 
sample points. 

The most common surrogate model is the polynomial regression (PR) [3]. In con-
struction of the PR model, users give the polynomial order arbitrarily and then com-
pute the coefficients of each term in the polynomial so as to fit the sample points by 
the least-squares method. The accuracy of the PR model significantly depends on the 
polynomial order, which corresponds to the number of local maxima and/or minima 
in an objective function. However, it is not always possible to achieve sufficient accu-
racy by adjusting the order because the real shape of the objective function is usually 
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not known. Generally, quadratic functions are employed to approximate the function 
locally in the real-world problems [4]. In this case, adequate optimization cannot be 
performed if the objective function has some local optima and too many sample 
points are required to obtain the global optimum. Furthermore, a Pareto dominance-
based evolutionary multi-objective optimization algorithm explores large design 
space where diverse Pareto-optimal solutions exist. The surrogate models are also 
required to approximate large design space as accurately as possible. From this point 
of view, the local PR model with quadratic functions is not suitable for multi-
objective problems. 

To approximate complex functions, radial basis function (RBF) networks [5] and 
the Kriging model [6] are often used. Both of them can adapt well to complex func-
tions because they approximate a function as a weighted superposition of basis func-
tions such as Gaussian function. Thus, the model complexity can be controlled by 
changing the weight coefficients and variance of each basis function. Gaussian basis 
functions in the Kriging model have independently different variance values along 
each design variable direction to fit the complexity and scale while those of RBF have 
the same values (Fig. 1). This anisotropy enhances the accuracy of the Kriging model. 
In addition, the Kriging model gives not only estimated function values but also ap-
proximation errors, which help users determine the locations of the additional sample 
points to improve the accuracy of the surrogate model. 

  
 (a) RBF (b) Kriging model 

Fig. 1. Gaussian basis functions 

It is desirable that one of these models approximates the function accurately. How-
ever, sometimes more complex models are needed. Hybrid methods that combine two 
surrogate models may be effective if the function consists of complex of macro and 
micro trends [7,8]. The universal Kriging model (PR+Kriging) [3] and the extended 
RBF (PR+RBF) [9] are typical hybrid methods. On the other hand, Xiong et al. pro-
posed the non-stationary covariance based Kriging model whose variance values of 
each basis function vary depending on the location of the basis functions in the design 
space [10]. This model showed good performance if the complexity of the objective 
function changes according to the location. 
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Some design variables can be correlated with each other in the real-world prob-
lems, e.g. control points of spline curves and free-form deformation [11]. Optimiza-
tion with such design variables can express various configurations while the problem 
tends to become difficult to solve. However, the only PR model takes account of the 
correlation as the cross-terms among different variables though the PR model does 
not approximate the complex function accurately for the reason described above.  

In this study, we propose modified Kriging models suitable for the problems with 
correlated design variables by focusing on the anisotropy of Gaussian basis functions. 
It means finding out the suitable coordinates in the design variable space, which 
represent significant trends in the objective function from its gradients (Fig. 2(a)) and 
then defining the variance of basis functions along each coordinate in the transformed 
system (Fig. 2(b)). The proposed method and the ordinary Kriging (OK) model are 
applied to test functions and airfoil design problems to investigate the feature of the 
proposed method. 

  
 (a) Objective function (b) Basis function 

Fig. 2. Extraction of suitable coordinates 

2 Construction of Surrogate Model 

The flowchart explaining the construction of the Kriging model with coordinate trans-
formation (KCT) is summarized in Fig. 3. Initial sample points are generated by Latin 
hypercube sampling (LHS) method [12]. Construction of KCT consists of three parts: 
construction of the Kriging model in the original coordinate system, coordinate trans-
formation, and reconstruction of the Kriging model in the transformed coordinate 
system. The latter two parts are skipped if OK is employed for comparison. Optimal 
solution is explored by the efficient global optimization (EGO) framework [6], which 
explores the solution where “Expected improvement (EI)” described below becomes 
maximum by an optimizer such as evolutionary algorithm (the non-dominated sorting 
genetic algorithm II (NSGA-II) [13] is employed in our EGO system toward the fu-
ture application to multi-objective optimization in real-world problems) and adds it as 
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an additional sample point. EGO is performed by iterating the procedure illustrated in 
Fig. 3 until a termination condition is satisfied. Generally, execution time and cost 
consumed for surrogate-based optimization are dominated by the function evaluation 
at sample points while those for surrogate model construction and optimal solution 
exploration on the model are ignorable. Hence, it can be said that better surrogate 
models should approximate functions more accurately with less sample points. Fol-
lowings are the details of KCT. 

 

Fig. 3. Flowchart of KCT construction 

2.1 Kriging Model 

The Kriging model expresses the unknown function f (x) as 

    )()()( xxx εμ +=f , (1) 

where x is an m-dimensional vector (m design variables), μ (x) is a global model, and 
ε (x) represents a local deviation from the global model, which is defined as the Gaus-
sian process following N(0, σ2). The correlation between ε (xi) and ε (xj) is strongly 
related to the distance between the two corresponding points, xi and xj. In the Kriging 
model, a specially weighted distance is used instead of the Euclidean distance because 
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the latter weighs all design variables equally. The distance function between the 
points at xi and xj is expressed as 

     ( )
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where θk )0( ∞<≤ kθ is the weight coefficient and the k-th element of an m-

dimensional weight vector θ. These weights give the Kriging model anisotropy and 
enhance its accuracy. The correlation between the points xi and xj is defined as 

   ( ) ( )),(exp)(),( jiji dCorr xxxx −=εε . (3) 

The Kriging predictor is 

    )ˆ()(ˆ)(ˆ 1T μfRrxx −+= −μf , (4) 

where )(ˆ xμ  is the estimated value of μ (x), R denotes the nn×  matrix whose (i, j) 

entry is ( ))(),( jiCorr xx εε , r is an n-dimensional vector whose i-th element is 

( ))(),( iCorr xx εε , and f and μ̂  denote as follows (n sample points): 

       ( )T1 )()( nff xxf = , (5) 

       ( )T1 )(ˆ)(ˆˆ nxxμ μμ = . (6) 

Thus, the unknown parameters in the Kriging model are 2σ̂  (estimated σ2), 
)(ˆ xμ , and θ, which are obtained by maximizing the following log-likelihood func-

tion: 
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2σ̂  is analytically determined through partial differentiation as 

    
n
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ˆ

1T
2 μfRμf −−=

−

σ . (8) 

The definition of )(ˆ xμ  has some variations. The OK model, which is the most wide-

ly used Kriging model, assumes the global model to be a constant value as 
μμ ˆ)(ˆ =x . In this case, μ̂ is also analytically determined as 

   
1R1
fR1

x 1

1

−

−

==
T

T

ˆ)(ˆ μμ , (9) 

where 1 denotes an n-dimensional unit vector. Plugging in Eq. (8) for Eq. (7), the log-
likelihood function becomes 
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The first term can be ignored in the maximization because it has a constant value. 
Therefore, the log-likelihood maximization becomes an m-dimensional unconstrained 
non-linear optimization problem. In this study, a simple genetic algorithm is adopted 
to solve this problem. 

2.2 Expected Improvement 

The accuracy of the function value predicted by the Kriging model depends largely on 
the distance from sample points. The closer point x is to the sample points, the more 
accurate the prediction, )(ˆ xf , becomes. This is expressed in the following equation: 

   







 −+−= −

−
−

1R1
rR1

rRr1x 1

1
1

T

2T
T22 )1(

ˆ)( σs , (11) 

where s2(x) is the mean square error at point x, which indicates the uncertainty of the 
estimated value. Thus, estimated values in the Kriging model do not have deterministic 
values but follows the Gaussian distribution denoted by ))(),(ˆ( 2 xx sfN , from which 

the probability that the solution at point x may achieve a new global optimum can be 
calculated. The EI value, which corresponds to the expected value of the objective 
function improvement from the current optimal solution among the sample points, is 
also derived by using this probability. In f (x) minimization problem, the improvement 
value I(x) and the EI value, ( ))(xIE  of f (x) are expressed, respectively, as 

  ( )0,max)( ffI ref −=x , (12) 

  ( ) dffffIE
reff

ref ∞−
−= )()()( ϕx , (13) 

where fref is the reference value of f and corresponds to the minimum value of f among 
the sample points in this study. ϕ is the probability density function denoted by 

))(),(ˆ( 2 xx sfN  and represents uncertainty about f. 

Special modification for EI has been proposed to enhance the constrained optimi-
zation [14]. Modified EI value is expressed by multiplying the probability satisfying 
the constraint to the conventional EI value. If the constraint function which should be 
approximated by the Kriging model is expressed as cg >)(x , the modified EI (EcI) 

value is calculated as follows: 

   ( ) ( ) dggIEIE
cc 
∞

= )()()( ϕxx . (14) 
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2.3 Coordinate Transformation of Design Space 

In order to identify the suitable coordinates and improve the approximation accuracy, 
gradients of objective function to each design variable are employed as is the case in 
the active subspace method [15]. First, the mm ×  covariance matrix C, whose (k, l) 
entry is 

   
lk

kl x

f

x

f
C

∂
∂

∂
∂=

ˆˆ
, (15) 

is defined. The objective function estimated by the Kriging model, f̂  is used in this 

study while gradients of real objective function are used in [15]. Estimated gradients 
are calculated by differentiating Eq. (4) analytically as follows: 
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where i-th element of kx∂∂r is 
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Using estimated gradients, neither finite difference of real objective function nor ad-
joint computation is needed and function evaluation costs are drastically reduced. 
Note that we can deal with the objective function as a black box function. This study 
calculates C at 10,000 points in the design space, which are randomly sampled by the 
Monte Carlo method, and averages them as C . Second, eigenvalue decomposition is 
performed to C as 

   TWWC Λ= , (18) 

where ( )mwwW 1=  are the eigenvectors which represent the suitable coordi-

nates and ( )mλλ 1diag=Λ  is the eigenvalue matrix. Third, the design variable 

vector in the new coordinate system y is calculated from the original vector x as 

 xWy Τ= . (19) 

3 Application to Test Functions 

3.1 Test Problem Definition 

KCT and OK are applied to a two-dimensional minimization test function defined as 

   ( ) ( )22
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2
121 1001),( yyyxxf −+−= , (20) 
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Equation (20) shows the well-known two-dimensional Rosenbrock function [16] if 
the rotation angle in Eq. (21) is set as φ = 0 [deg]. Two test functions with different 
rotation angles (φ = 0 and 30[deg]) are considerd to investigate KCT capability to find 
out the suitable coordinates. The ranges of design variables in Eq. (22) are smaller 
than those in the original Rosenbrock function because the function in the original 
ranges has extremely high values in some regions, which may disturb the fair evalua-
tion of model’s accuracy. Figure 4 shows the shape of these functions with two an-
gles. 10 initial sample points are generated by LHS and 20 additional sample points 
are employed one after another at the location where the EI value calculated by Eq. 
(13) becomes a maximum. 

  
 (a) Original (φ = 0 [deg]) (b) Rotated (φ = 30 [deg]) 

Fig. 4. Shapes of the various Rosenbrock test functions 

To compare the accuracy of two models, the following root mean square error 
(RMSE) between the surrogate model and the real function is calculated at 

4141×=N  validation points.  

   ( )
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)(ˆ)(
1 

=

−=
N

i

ii ff
N

RMSE xx  (23) 

100 independent trials starting with different initial sample points are performed and 
their average and standard deviation of RMSE are evaluated for comparison. The 
numbers of population and generation in NSGA-II are 500 and 100, respectively. 
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airfoil design optimization is considered with KCT and OK to investigate the effects 
of coordinate transformation in real-world problem. 

4.1 Design Problem Definition 

The objective function and the constraints in the airfoil design problem are defined as 
follows: 

 Maximize    L/D, (24) 

 subject to    1535.0−≥mC , (25) 

 11.0max ≥ct , (26) 

at the angle of attack α = 4 [deg] and the Reynolds number 5105Re ×= . L/D and Cm 
denote the lift-drag ratio and the pitching moment coefficient, respectively. tmax is the 
maximum thickness of the airfoil and c is the chord length. L/D and Cm at the sample 
points are evaluated by a subsonic flow solver “XFOIL” [17] which calculates in-
compressible viscous flow in this study. Hence, KCT and OK are used to estimate 
these two values while tmax/c is calculated directly by representing the airfoil. General-
ly, computational time of XFOIL is less than one second for one flow condition. This 
study employs XFOIL  to achieve many independent trials of airfoil design optimi-
zation and evaluate statistics of the results properly. The constraint values in Eqs. (25) 
and (26) correspond to those of DAE31 airfoil whose L/D is 138.6. 

9 design variables correspond to the locations of 9 control points for two non-
uniform rational basis spline (NURBS) curves defining the airfoil’s thickness distri-
bution and camber line in Fig. 8. 5 dots filled with red and 4 dots filled with blue are 
the control points for thickness and camber, respectively. Red and blue bars show the 
ranges of each design variable. Only x3 has a relatively small range to help the maxi-
mum thickness meet the constraint in Eq. (26). Each range is shown as follows: 

 04.002.0 1 ≤≤ x , 09.005.0 2 ≤≤ x , 13.012.0 3 ≤≤ x , 

 13.009.0 4 ≤≤ x , 04.000.0 5 ≤≤ x , 06.002.0 6 ≤≤ x , (27) 

 06.002.0 7 ≤≤ x , 06.002.0 8 ≤≤ x , 04.000.0 9 ≤≤ x . 

50 initial sample points are generated by LHS and 150 additional sample points are 
employed one after another at the location where the EcI value calculated by Eq. (14) 
becomes a maximum. KCT and OK are compared by optimal solutions obtained by 
EGO with each model and RMSE in Eq. (23) where validation points are generated 
by LHS and N = 10,000. 70 independent trials are performed and their average and 
standard deviation of L/D and RMSE are evaluated. The numbers of population and 
generation in NSGA-II are 500 and 100, respectively, as in the case of Section 3. 

Flow computation with XFOIL sometimes does not converge depending on the air-
foil shape. An alternative initial sample point and validation point are randomly  
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selected from the entire design space if the flow computation does not converge. The 
same treatment is applied if an initial sample point and a validation point do not meet 
at least one of the constraints. 

 

Fig. 8. Design variables and their ranges 

4.2 Results and Discussion for Airfoil Design Problem 

Figure 9 shows the histories of average and standard deviation of RMSE for L/D and 
Cm. KCT reduces the averaged RMSEs of L/D compared to OK at any number of 
sample points in EGO process while both models show the same trend in the standard 
deviations. Therefore, it is shown that KCT can approximate the function in the real-
world problem using spline curves as design variables more accurately than OK.  
Regarding RMSEs in Cm, OK has lower average and standard deviation than KCT 
although both models converge on the same trend with the increase of sample points. 
From aerodynamic theory, Cm is regarded as a function that depends on the camber 
line and is not affected by the thickness, i.e. the effective number of design variables 
for Cm is almost 4. OK does not consider the correlation between camber and thick-
ness, which enables OK to easily ignore the variables related with the thickness by 
decreasing the weight coefficients in Eq. (2). KCT can also ignore these variables 
though coordinate transformation may disturb it. Thus, KCT is expected to obtain 
better results by performing coordinate transformation for camber design variables 
and thickness design variables separately. 

Histories of average and standard deviation of maximum L/D among feasible sam-
ple points are shown in Fig. 10. KCT obtains better solutions than OK on average and 
yields lower standard deviations of L/D than OK when the number of sample points is 
over 67. Therefore, it is suggested that KCT has an advantage over OK not only in 
approximation accuracy but also in the ability to explore the optimal solution if design 
variables are correlated with each other. 
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comparative accuracy to the conventional method even if the correlation between 
design variables is not strong. 

Control points of the non-uniform rational basis spline curves defining airfoil’s 
thickness distribution and camber line were employed as the correlated design va-
riables in the airfoil design optimization. The proposed method approximated the 
objective function (lift-drag ratio) more accurately and found out better solutions than 
the conventional method although the constraint function (pitching moment coeffi-
cient) was difficult to approximate by the proposed method. Therefore, it was re-
vealed that the proposed method is useful in the real-world optimization problem with 
correlated design variables. 

In this study, optimization problems with two and nine design variables were 
adopted. These are relatively less than usual number of design variables in real-word 
optimization problems which use spline curves and free form deformation for shape 
definition. Besides, these real-world problems tend to have more than two objective 
functions. Thus, the proposed method should be validated in the multi-objective opti-
mization problems with more design variables in the future. 
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Abstract. The Multiobjective Energy Reduction Vehicle Routing Prob-
lem is a variant of the classic Vehicle Routing Problem where simultane-
ous optimization of more than one objective functions is required. In this
paper, the problem is formulated with three different competitive objec-
tive functions. The first objective function corresponds to the optimiza-
tion of the time needed for the vehicle to travel between two customers or
between the customer and the depot, the second objective function is the
minimization of the distance and the fuel consumption when a delivery
route is planned and the third objective function is the minimization of
the distance and the fuel consumption when a pickup route is planned.
The problem is solved with a modified version of the NSGA II, with a
use of more than one population, a multi start method for the creation
of the initial population and a Variable Neighborhood Search algorithm
for the improvement of the solution of each individual separately. In
order to give the quality of the methodology, experiments are conducted
using appropriately modified for the Vehicle Routing Problem instances
based on the classic Euclidean Traveling Salesman Problem benchmark
instances taken from the TSP library.

Keywords: Multiobjective energy reduction vehicle routing problem ·
NSGA II · VNS · GRASP

1 Introduction

In real world applications, optimization problems with more than one objec-
tives are very common. In these problems, usually, there is no single solution
and the optimization of two or more competitive objective functions leads to
the calculation of a set of non-dominated solutions, called Pareto Front [3]. The
Vehicle Routing Problem (VRP) is a Supply Chain Management Problem
of designing delivery or collection routes from a depot (or more than one depots)
to a number of customers (or cities), taking into account a number of side con-
straints. The VRP is a variant of the Traveling Salesman Problem which is one of
the most famous and extensively studied problem in the field of Combinatorial
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 336–350, 2015.
DOI: 10.1007/978-3-319-15934-8 23
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Optimization [7,15] and belongs to the class of NP-hard optimization prob-
lems [11]. For an overview of the VRP please see [14,20].

The objective function of the Capacitated Vehicle Routing Problem (CVRP)
is the optimization of the distance that the vehicles will travel in order to fulfill
the customers demands. However, in real world applications the optimization
only of the distance may not be enough to give to the decision maker a safe con-
clusion about the quality of the routes and if these routes can lead to a decrease
of the cost of the routing plan. Thus, in recent years a growth in the publications
of Multiobjective Vehicle Routing problems has been noted [13]. The Multiob-
jective Vehicle Routing Problem (moVRP) is the variant of the classic
Vehicle Routing problem where simultaneous optimization of distance, time, or
other relevant objectives are required. Also, in recent years the optimization of
energy or fuel consumption in the Vehicle Routing Problems has been studied
[10,21].

NSGA II is an improved version of NSGA (Non-dominated Sorting
Genetic Algorithm) and was originally proposed by Deb et al. [4,5]. A number
of variants of the NSGA II algorithm have been used for solving multiobjective
Vehicle Routing Problems, e.g. for solving VRP with route balancing [12], for
solving multiobgective VRP problems with Time Windows [9] and for solving a
Green Vehicle Routing Problem [10]. Multiobjective Genetic Algorithms for the
solution of Multiobjective Vehicle Routing Problems have been used in [1,18].

In this paper, a new variant of the NSGA II algorithm is presented for the
solution of a Multiobjective Energy Reduction Vehicle Routing Prob-
lem (MERVRP). In this problem, a symmetric case is considered where the
distance and the time needed between two customers or a customer and the
depot are known and symmetric. Three different objective functions are used.
In the one objective function, the time needed between the two customers or a
customer and a depot is optimized and in the other two objective functions, the
distance is calculated taking into account the fuel consumption in two different
cases, in the one where deliveries are realized and in the other where pickups are
realized. We solved a number of problems with two or three objective functions.
When the second and the third objective functions are used, we considered that
all customers can be used as deliver customers or pickup customers and the
vehicle will not make the pickups and the delivers simultaneously.

The proposed Parallel Multi-Start NSGA II (PMS-NSGA II) algo-
rithm for the solution of the above mentioned problem can be used directly
in combinatorial optimization problems and its main characteristics are the
following:

1. A Multi-Start method, based on Greedy Randomized Adaptive Search Pro-
cedure (GRASP) [6], is used for the creation of the initial population.

2. The algorithm uses more than one populations that are evolved in parallel
and a number of Pareto Fronts are used (equal to the number of populations).

3. An external archive is used with the Pareto Front of the whole population
based on the crowding distance and the rank of each of the populations
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(in the Global Pareto Front, the members of the other Pareto Fronts with
rank equal to 1 are used).

4. The combination of the proposed method with a very powerful metaheuristic
algorithm, the Variable Neighborhood Search (VNS) [8], is performed.

The structure of the paper is as follows. In Section 2, the optimization mod-
els of the MERVRP are described. In Section 3, an analytical description of
the proposed algorithm is presented. In Section 4, the other two variants of
NSGA II which are used to compare the proposed algorithm are described while
in Section 5, the evaluation measures used in the comparisons are presented.
In Section 6, the computational results are presented and, finally, concluding
remarks and the future research are given in the last Section.

2 Multiobjective Energy Reduction Vehicle Routing
Problem

In this paper, a Multiobjective Energy Reduction Vehicle Routing Prob-
lem (MERVRP) is formulated. We use two or three different objective func-
tions where the first one is the minimization of the time needed for a vehicle to
travel between two customers or a customer and the depot, the second one is the
minimization of the distance travel and the fuel consumption when the decision
maker plans delivery routes where all the customers have only demands and the
third objective function is the minimization of the distance travel and the fuel
consumption when the decision maker plans pickup routes where all the cus-
tomers have only pickups. We assume that the customers for the second and the
third objective functions are different between them and, thus, they have dif-
ferent coordinates. If we have a two objective functions problem where the first
objective function is used and the other objective function is one of the second
or the third objective functions, then, the number of customers that corresponds
to the first objective function is equal to the number of customers of the second
(or third) objective function. However, when we solve a three objective functions
problem, where both pickup and delivery customers are included, then, the num-
ber of customers that are used in the first objective function (the minimization
of the time) is equal to the summation of the number of customers that are used
in the second and the third objective functions. The main difference between
the second and the third objective functions concerns the load of the vehicles.
When a delivery problem is solved, then, the vehicle begins with a full load and
returns to the depot when the next customer could not be served. On the other
hand, when a pickup problem is solved, then, the vehicle begins with empty load,
collects from each one of the customers and returns to the depot when the next
customer could not be served.

The first objective function is used for the minimization of the time needed
to travel between two customers or a customer and the depot. Thus, if ti1ij is the
time needed to visit customer j immediately after customer i using vehicle i1
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and si1j is the service time of customer j using vehicle i1, then the first objective
function is:

minOF1 =
n∑

i=1

n∑
j=1

m∑
i1=1

(ti1ij + si1j )xi1
ij (1)

where n is the number of customers and m is the number of homogeneous vehicles
and the depot is denoted by i = j = 1.

The second objective function is used for the minimization of the distance
and of the fuel consumption that a vehicle consumes when it travels between
two customers or a customer and the depot in the case that the vehicle performs
only deliveries in its route. The vehicle should begin with full load and after a
visitation of a customer the load is reduced based on the demand of the customer.
If we consider that the most loaded is the vehicle the more fuel it consumes, we
take the following objective function:

minOF2 =
n∑

j=1

m∑
i1=1

d1jx
i1
1j(1 +

yi11j
Q

) +
n∑

i=2

n∑
j=1

m∑
i1=1

dijx
i1
ij(1 +

yi1i−1,i − Di

Q
) (2)

with the maximum capacity of the vehicle denoted by Q, the i customer has
demand equal to Di, xi1

ij denotes that the vehicle i1 visits customer j immediately

after customer i with load yi1ij and yi11j =
n∑

i=1

Di for all vehicles as the vehicle

begins with load equal to the summation of the demands of all customers assigned
in its route and dij is the distance from node i to node j.

Finally, the third objective function is used for the minimization of the dis-
tance and of the fuel consumption that a vehicle consumes when it travels
between two customers or a customer and the depot in the case that the vehicle
performs only pickups in its route. The vehicle should begin with empty load
and after a visitation of a customer the load is increased based on the demand
of the customer. If we consider, as previously, that the most loaded is the vehicle
the more fuel it consumes we take the following objective function:

minOF3 =
n∑

j=1

m∑
i1=1

d1jx
i1
1j +

n∑
i=2

n∑
j=1

m∑
i1=1

dijx
i1
ij(1 +

yi1i−1,i + Di

Q
) (3)

with yi11j = 0 for all vehicles as the vehicle begins with empty load.
The constraints of the problem are the following:

n∑
j=1

m∑
i1=1

xi1
ij = 1, i = 1, · · · , n, (4)

n∑
i=1

m∑
i1=1

xi1
ij = 1, j = 1, · · · , n, (5)
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n∑
j=1

xi1
ij −

n∑
j=1

xi1
ji = 0, i = 1, · · · , n, i1 = 1, · · · ,m (6)

n∑
j=0,j �=i

yi1ji −
n∑

j=0,j �=i

yi1ij = Di, i = 1, · · · , n, i1 = 1, · · · ,m (7)

Qxi1
ij ≥ yi1ij , i, j = 1, · · · , n, i1 = 1, · · · ,m (8)

xi1
ij ∈ 0, 1 i, j = 1, ..., n, i1 = 1, · · · ,m (9)

Constraints (4) and (5) represent that each customer must be visited only by
one vehicle; constraints (6) ensure that each vehicle that arrives at a node must
leave from that node also. Constraints (7) indicate that the reduced (if it concerns
deliveries) or increased (if it concerns pickups) load (cargo) of the vehicle after
it visits a node is equal to the demand of that node. Constraints (8) is used to
limit the maximal load carried by the vehicle and to force yi1ij to be equal to zero
when xi1

ij = 0 while constraints (9) ensure that only one vehicle will visit each
customer.

3 Parallel Multi-Start NSGA II Algorithm

3.1 Representation of the Solutions

The first problem that we have to solve is to find a suitable mapping between
the Vehicle Routing Problem solutions and individuals in NSGA II. As, for the
NSGA II, Equations 10 and 11 (Section 3.3) are needed to be used, we can not use
directly a path representation of the route but we should have a transformation
of the solutions from continuous to discrete space and vice versa. Thus, a solution
is represented by a d-dimensional vector in problem space and its performance is
evaluated on the predefined fitness functions (Section 2). Initially, each individual
is recorded via the path representation of the tour, that is, via the specific
sequence of the nodes. As the calculation of Equations 10 and 11 is performed,
the above mentioned representation should be transformed appropriately. Each
element of the solution is transformed into a floating point in the interval (0,1],
the equations 10 and 11 for all individuals are calculated and, then, a conversion
back into the integer domain is performed using relative position indexing [16].
Thus, initially, each element of the solution is divided by the vector’s largest
element and after the calculation of the equations 10 and 11, the elements of the
vectors are transformed back into the integer domain by assigning the smallest
floating value to the smallest integer, the next floating value to the next integer
and, so on, until the largest floating value is assigned to the largest integer.
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3.2 Initialization of the Population

Usually in a NSGA II algorithm, the initial population is calculated at random
but as we would like to give more exploration and exploitation abilities in the
initial population of the proposed algorithm, the Parallel Multi-Start NSGA II
(PMS-NSGA II) algorithm, we use the following strategy. Initially, a selection of
X different populations and of W individuals for each population is performed.
Let K the number of objective functions, then w = W/K.

Afterwards, we have to create the initial solution for each one of the popula-
tions. For the first 40% of the populations, the first solution of the first set of w
is a solution that is produced by solving a single objective problem with a VNS
algorithm (see Section 3.4) using the first objective function, the first solution
of the second set of w is a solution that is produced by solving a single objective
problem with a VNS algorithm (see Section 3.4) using the second objective func-
tion etc. For these first solutions, the value of the other objective functions are
calculated without affecting the procedure in this phase of the algorithm. As we
would like to start with a good solution, we increase the number of the two main
parameters of the VNS (vnsmax, localmax). For the next 20% of the populations,
the first solution of each set of w is a solution that is produced by solving a sin-
gle objective problem by using the Nearest Neighborhood method [15] for each
corresponding objective function. For the last 40% of the populations, the first
solution of each set of w is a solution that is produced by solving a single objec-
tive problem by using a variant of GRASP method [6] for each corresponding
objective function. In this GRASP algorithm, instead of using the Restricted
Candidate List (RCL), the following procedure is used: Always node 1 is used as
a starting node. Then, a random number (Rand) equal to 0 or 1 is generated. If
Rand = 0, then, the nearest node to a node i is visited. If Rand = 1, the second
nearest node to a node i is visited. For the calculation of the rest members of the
populations the following procedure is used: For each population and for each
set of w, the Swap method [15] is applied at the first solution and is used for
the calculation of the second to w/3 individuals, while the 2-opt method [17] is
applied at the first solution and is used in order to produce the w/3+1 to 2w/3
individuals. Finally, the last individuals are produced randomly.

3.3 Parallel Multi-Start NSGA II

In each iteration, for each solution of the different populations the rank and the
crowding distance are calculated [5] and, initially, the solutions of each popu-
lation are sorted using the rank and, afterwards, using the crowding distance.
Then, we have to select two parents. For each parent solution, we randomly select
two solutions and the parent solution is the one with the best rank. If the rank
is the same, the parent solution is the one with the best crowding distance. In
the next step, a crossover procedure between two parents is performed in order
to produce two offspring. The equations for the two offspring are:

offspringl(t) = (1 − g) ∗ parentm(t) + g ∗ parentn(t) (10)
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offspringf (t) = g ∗ parentm(t) + (1 − g) ∗ parentn(t) (11)

where g is a random number in (0,1), m,n are the indices denoting the two
parents (m,n = 1, · · · ,W ) and l, f are the indices denoting the two offspring
(l, f = 1, · · · ,W ) . We repeat the two previous steps until offspringi has W
solutions (offspring). After the production of the offspring, in order to improve
the solutions, a Variable Neighborhood Search (VNS) algorithm (see Section 3.4)
is applied in each solution for a specific number of iterations. In the next step,
the parents (parenti) and offspring (offspringi) vectors are combined in a new
one (offspring′

i) and, then, the members of the offspring′
i are sorted using the

rank and the crowding distance as in the previous step. From these solutions,
a number of individuals for each population equal to the initial population is
survived in the next iteration. At the end of each iteration, the solutions with
rank equal to 1 from all populations are combined into one single population
and a new Global Pareto Front, using the rank and the crowding distance, is
calculated. We use these multipopulation version of NSGA II procedure in order
to give more exploration and exploitation abilities to the algorithm. Thus, if we
have only one population and a number of solutions were dominated from other
solutions, these solutions will have a small rank number and will be removed
from the set of solutions, however, with the use of the multi-population version
these solutions have the possibility to have a small rank number in their pop-
ulation and to help the algorithm to search for a better solution in unexplored
areas of the solution space.

3.4 Variable Neighborhood Search

A Variable Neighborhood Search (VNS) algorithm [8] is applied in each indi-
vidual in the algorithm. In this research, the following procedure is applied
for a certain number of iterations (vnsmax) for each individual. Initially, the
2-opt local search algorithm [15] is applied for a certain number of iterations
(localmax). For the proposed algorithm, the vnsmax and the localmax were set
equal to 10 in order not to increase the computational time of the algorithm. If
2-opt improves the solution (the new solution dominates the old solution), then,
2-opt algorithm is applied for localmax number of iterations. On the other hand,
if 2-opt is trapped in a local optimum (the new solution is dominated by the old
solution or the two solutions are non-dominated between them) when localmax

number of iterations has been reached, the 3-opt algorithm [15] is applied with
the same procedure used when 2-opt was applied and when the 3-opt is trapped
in a local optimum, a Swap algorithm [15] is applied. When the swap algo-
rithm is trapped in a local optimum, a 2-2 exchange algorithm [15] is applied as
previously. When 2-2 exchange algorithm is trapped in a local optimum, a 1-1
relocate [15] algorithm is applied and, finally, the last algorithm that is used is
a 2-2 relocate algorithm [15].
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4 Algorithms Used in the Comparisons

In order to see the efficiency of the proposed algorithm two other versions of the
NSGA II procedure have been developed for comparing the proposed algorithm
with them. Each one of them uses a number of characteristics of the proposed
algorithm in order to give a competitive algorithm with the proposed algorithm
and to see if any of the new characteristics help the algorithm to improve the
solutions. In the results, the proposed algorithm is denoted as Method 3.

A single population NSGA II - Method 1
The difference of this variant with the proposed method is that in this variant

one population of initial solutions is created. The first member of the initial
population of W individuals is calculated by a solution that is created with
the nearest neighborhood algorithm and is improved using the proposed variant
of VNS (see Section 3.4). The Swap method [15] is used for the calculation of
the second to W/3 individuals, while the 2-opt method [17] is used in order
to produce the W/3 + 1 to 2W/3 individuals. All the other members of the
population are created at random. The algorithm continues as the proposed
algorithm.

A different multipopulation NSGA II - Method 2
The difference of this variant with the previous methods is at the creation of

the initial populations. In this algorithm, a number X of different populations
and of W individuals for each population is created. The first member of the first
population is calculated by using a solution produced by a random initial solution
and is improved using the VNS method (see Section 3.4). The first member of
the second population is calculated by using the Nearest Neighborhood method
[15] and the first member of the others X − 2 populations is calculated by using
the GRASP method as it is described previously. For the other members of each
population, the swap method, the 2-opt and the random method are applied with
the same way they are used for the initial population of the proposed algorithm.

5 Evaluation Measures

The evaluation of a multiobjective optimization problem is a very interesting
and complicated procedure as there are many different measures that have been
proposed for different problems. In the selected problem, we have one more
difficulty. This is the fact that as the problem is NP-hard we do not know
the optimum Pareto Front and, thus, it is very difficult to prove if the set of
the non-dominated solutions found by the proposed algorithm belongs to the
optimum Pareto Front or if we have just calculated a very good and efficient
Pareto Front. In general, the main goals of a set of non-dominated solutions are
the minimization of the distance in relation with the optimum Pareto Front (if it
is known), the finding of a uniform distribution of the solutions in the Pareto
Front (spread and distribution), the expanding of the diagram in greater extend
in all axes and the finding of as much as possible solutions of the Pareto Front
[19,22].



344 I.-D. Psychas et al.

In this paper, as the optimum Pareto Front is not known, four different
measures are used:

– In order to evaluate how well the proposed algorithm has distributed indi-
viduals over the non-dominated region, the observations made by Zitzler et
al. [22] are used. In [22], the authors mentioned that there are three criteria
that an efficient multiobjective algorithm should have. First, the distance of
the resulting non-dominated set to the Pareto-optimal front should be mini-
mized. Second, a good (in most cases uniform) distribution of the solutions
found is desirable. The assessment of this criterion is based on a certain dis-
tance metric. Finally, the extent of the obtained non-dominated front should
be maximized. In the proposed algorithm, we use the maximum extent in
each dimension to estimate the range to which the front spreads out. This
is described by the following equation [22]:

Mk =

√√√√ K∑
i=1

max{‖ p′ − q′ ‖} (12)

where K is the number of objectives and p′, q′ are the values of the objective
functions of two solutions that belong to the Pareto front.

– The solutions l of the Pareto front.
– The spread or distribution of solutions [19]. For the calculation of the spread

the following equations are used:

Spacing =

√√√√ 1
|L − 1|

|L|∑
i=1

(disti − dist)2 (13)

disti = min

K∑
k=1

|zk(li) − zk(lj)|, lj ∈ L and lj �= li (14)

where K is the number of objective functions, L is the number of solutions
of the front, zk is the value of the k objective function, disti is the minimum
distance of solution i of its nearest solution and dist the average value of all
distances.

– Coverage [22]: for a pair (A,B) of approximation sets the fraction of solutions
in B that are weakly dominated by one or more solutions in A. The coverage
measure is calculated by the following equation:

C(A,B) =
|{b ∈ B;∃a ∈ A : a ≤ b}|

|B| . (15)

6 Computational Results

The whole algorithmic approach was implemented in Visual C++. As it is men-
tioned previously in the multiobjective (K-objective) VRP, K different objective
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functions are defined. The first objective function corresponds to the time and
the second and third objective functions correspond to the euclidean distance
between the nodes when a delivery and a pickup problem with optimizing the
energy is solved. As there are no data sets available for the solution of this kind
of multiobjective VRPs, we created a number of data sets as follows. Initially,
we took five instances with 100 cities from the TSPLIB (kroA100, kroB100,
kroC100, kroD100, and kroE100). However, these instances, as they are used for
the solution of the Traveling Salesman Problem, include only data for the coor-
dinates of the nodes. All the other data needed for the Multiobjective Energy
Reduction VRP (capacity, time limits and demands) were taken from the third
instance (par3) of the classic Christofides benchmark instances [2] that is used
for the solution of the Capacitated Vehicle Routing Problem (CVRP). Thus, we
created a new data set combining the Kro#100 instances (where # corresponds
to A or B or C or D or E) with the par3 instance where the coordinates of 100
nodes are taken from the corresponding kro#100 data set and the corresponding
demand of each of the 100 nodes was taken from the par3 instance. Also, the max-
imum tour length, the service time and the capacity of each vehicle were taken
from the par3 instance. We created 2- and 3-objective function problems by com-
bining these five instances. For example, in order to create a 3-objective function
problem, we used kroA100par3, kroB100par3 and kroC100par3 as the data used
for the first, second, and third objective functions, respectively. More precisely,
the first objective function is used as described in Section 2 and the neces-
sary data are taken from kroA100par3, the second objective function is used as
described in Section 2 and the necessary data are taken from kroB100par3 and
the third objective function is used as described in Section 2 and the necessary
data are taken from kroC100par3.

A number of different alternative values for the parameters of the algorithm
were tested and the ones selected are those that gave the best computational
results concerning both the quality of the solution and the computational time
needed to achieve this solution and, also, taking into account the fact that
we would like to test the algorithms with the same function evaluations. Thus,
the selected parameters for all methods are given in the following:

Method 1

– Number of individuals: 1000.
– Number of generations: 500.
– Number of initial populations: 1.

Method 2 and Method 3

– Number of individuals for each initial population: 100.
– Number of generations: 500.
– Number of initial populations: 10.

After the selection of the final parameters, the three versions of the Non-
dominated Sorting Genetic Algorithm II (NSGA II) (Methods 1, 2 and 3) were
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Fig. 1. Pareto fronts of the three methods for different combinations

tested for four combinations for two objective functions (i.e., kroA100par3-
kroB100par3, kroA100par3-kroC100par3, kroB100par3-kroD100par3, kroD100-
par3-kroE100par3). In the following tables the comparisons performed based on
the five evaluation measures presented previously and the Pareto front are given.
In all Tables, kroA100par3 is denoted with A, kroB100par3 is denoted with B,
and so on. If we have a combination of two problems, the problem is denoted
by the combination of the two letters, for example kroA100par3-kroB100par3 is
denoted with A-B in all Tables. More precisely, we use the number of solutions
(L) in the non-dominated set, the maximum extend in each dimension (Mk), the
minimization of the spread of solutions (Spacing), the CPU time (CPUtime)
(in seconds) and the Coverage for evaluation measures. In Table 1, the results
of the first four measures for the three methods and for the four combinations
are presented while in Table 2, the results of the Coverage measure are, also,
presented. In Figure 1, four Pareto fronts are presented. In general, it is pre-
ferred to find as many as possible non-dominated solutions, the expansion of the
Pareto front to be as large as possible which shows that better solutions have
been found in every dimension and the spacing of solutions to be as smaller as
possible which means that the non-dominated solutions are close between them.
In Table 1, the spacing seems to have large values, however, this is due to the
fact that the values of the objective functions found in a Multiobjective Vehicle
Routing Problem are in the interval (0.2×105, 2×105).

In Table 1, the results of the three Methods using two objective functions
are presented. Regarding the combination kroA100par3-kroB100par3, Method 3
performs better than the other two variants of the algorithm (Methods 1 and 2)
for all the measures except the Mk measure. The Method 2 performs better
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Table 1. Results of the first four measures for the three methods and for the four
combinations

A-B A-C

Method L Mk Spacing CPU time L Mk Spacing CPU time

1 22 531.74 6126.40 5509.66 19 536.45 6717.00 5237.46
2 26 533.64 6010.00 6982.48 26 545.36 6595.60 6530.45
3 32 528.87 4624.50 4986.46 34 527.61 4914.40 6314.26

B-D D-E

Method L Mk Spacing CPU time L Mk Spacing CPU time

1 19 519.20 6471.80 5755.46 21 541.33 7020.60 5877.69
2 31 522.61 7058.70 6740.49 28 533.27 6972.70 5611.38
3 34 506.21 4534.10 6246.43 34 547.65 4912.00 5310.70

than the Method 1 for all the measures. For the combinations kroA100par3-
kroC100par3 and kroB100par3-kroD100par3, Method 3 performs better than
the other two Methods for the number of Pareto solutions L and the Spacing.
Method 2 performs better for the Mk measure and Method 1 performs bet-
ter for the CPUtime. Regarding the combination kroD100par3-kroE100par3,
Method 3 performs better than the other two Methods for all the measures. The
Method 2 performs better than the Method 1 for three measures (L, Spacing
and CPUtime).

Table 2. Results of the Coverage measure

Coverage

A-B 1 2 3 A-C 1 2 3

1 0 0.53 0.37 1 0 0.53 0.58
2 0.04 0 0.28 2 0 0 0.23
3 0.13 0.3 0 3 0.05 0.26 0

B-D 1 2 3 D-E 1 2 3

1 0 0.19 0.26 1 0 0.17 0.29
2 0.26 0 0.32 2 0.52 0 0.32
3 0.47 0.32 0 3 0.47 0.35 0

In Table 2, the results of the Coverage measure for the three Methods for the
four tested combinations are presented. For the first two combinations, Method
1 performs better than the others. Method 3 is ranked second and, then, is
the Method 1. Regarding the combination kroB100par3-kroD100par3, Method
3 performs better than the other two. Finally, for the last combination Method
2 performs better than the other two and Method 3 is ranked second. In gen-
eral, considering the number of the non-dominated solutions (L measure) and
the Spacing measure, the proposed Method (Method 3) performs better for all
the tested combinations and has the same performance with the Method 1 con-
cerning the CPUtime measure. Method 2 performs better for the Mk measure
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and Method 1 performs better for the Coverage measure, respectively. Also it is
important to mention that in contrast with the other two methods the proposed
Method performs better for at least one combination for every measure and per-
forms better at all combinations for the measures L and Mk. In Table 3, the
results of all methods in three objective functions are given. As it can be seen,
the proposed method (Method 3) performs better than the other two methods
in all measures except of the measure of the CPU time. In Table 4, the results of
the proposed Method for all the combination for two and three objective func-
tions are presented. The third objective function is the Pickup Energy Vehicle
Routing Problem’s function.

Table 3. Results of all methods in three objective functions

A-B-C Coverage

Method L Mk Spacing CPU time A-B-C 1 2 3

1 87 661.37 5120.40 10298.04 1 0 0.17 0.17
2 86 667.08 8123.70 8846.88 2 0.32 0 0.25
3 100 674.64 4556.50 9093.03 3 0.44 0.27 0

Table 4. Results for all the combinations of the proposed Algorithm

L Mk Spacing Time L Mk Spacing Time

A-B 32 528.87 4624.50 4986.46 A-B-C 100 674.64 4556.50 9093.03

A-C 34 527.61 4914.40 6314.26 A-B-D 73 633.50 5592.30 8077.07

A-D 30 514.26 4846.40 6865.33 A-B-E 87 656.52 7054.50 8432.32

A-E 39 522.82 6726.00 6310.04 A-C-D 83 665.51 5796.70 7851.14

B-C 31 519.42 6014.40 5808.93 A-C-E 81 659.16 4925.40 8318.95

B-D 34 506.21 4534.10 6246.43 A-D-E 103 655.14 4488.50 8026.24

B-E 30 533.76 5423.70 6034.07 B-C-D 86 645.19 4921.50 8341.01

C-D 40 531.34 3497.10 5567.38 B-C-E 93 657.49 4508.30 9229.34

C-E 31 524.52 5847.90 5745.89 B-D-E 84 658.30 5327.50 8364.68

D-E 34 547.66 4912.60 5310.70 C-D-E 91 653.86 4325.60 8126.32

7 Conclusions and Future Research

In this paper, an efficient hybridized version of NSGA II algorithm, the Parallel
Multi-Start NSGA II (PMS-NSGA II), for the solution of the Multiobjective
Energy Reduction Vehicle Routing Problem is presented. The algorithm was
hybridized with a Variable Neighborhood Search algorithm. In order to test the
efficiency of the proposed algorithm, two other hybridized versions of NSGA II
algorithm were developed and a number of different evaluation measures were
used. The differences in the results in every evaluation measure indicate the fact
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that all three methods were efficient for the solution of the problem studied in
this paper. However, the proposed NSGA II algorithm (PMS-NSGA II -Method
3) performed slightly better than the other two methods. Our future research will
be, mainly, focused on the application of this algorithm in other multiobjective
combinatorial optimization problems, especially, problems arising in supply chain
management, like Multiobjective Location Routing problem.
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Abstract. The interest in attribute-based access control policies is inc-
reasingly growing due to their ability to accommodate the complex secu-
rity requirements of modern computer systems. With this novel paradigm,
access control policies consist of attribute expressions which implicitly
describe the properties of subjects and protection objects and which must
be satisfied for a request to be allowed. Since specifying a policy in this
framework may be very complex, approaches for policy mining, i.e., for
inferring a specification automatically from examples in the form of logs
of authorized and denied requests, have been recently proposed.

In this work, we propose a multi-objective evolutionary approach for
solving the policy mining task. We designed and implemented a problem
representation suitable for evolutionary computation, along with several
search-optimizing features which have proven to be highly useful in this
context: a strategy for learning a policy by learning single rules, each
one focused on a subset of requests; a custom initialization of the pop-
ulation; a scheme for diversity promotion and for early termination. We
show that our approach deals successfully with case studies of realistic
complexity.

1 Introduction

Data are today one of the most strategic asset of any company and organization
and, as such, their protection from any kind of improper modifications or unau-
thorized disclosures is a fundamental service to be provided by any Data Man-
agement System. In a data management system, accesses are regulated through
access control policies [1] that are then encoded into a set of authorizations and
checked by the reference monitor, a trusted software module in charge of enforc-
ing access control. Since the 1970s, several access control models for policy spec-
ification have been proposed, including Discretionary Access Control (DAC),
Mandatory Access Control (MAC), and Role-based Access Control (RBAC).
The common characteristic of these models is that they are identity-based, that
is, access control is based on the identity of subjects and protection objects.
These models are not scalable and flexible and thus they do not fit very well
in the current scenario, characterized by open and distributed systems. Due to
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these limitations the new Attribute-based Access Control (ABAC) paradigm has
recently emerged [2]. The main advantage of ABAC is that the access control
process is not identity-based, rather it exploits attributes of the requestor and
resource (e.g., the age of the requestor). Attribute expressions are then used to
implicitly denote the sets of users and resources to which a policy applies (e.g., a
nurse can add an item in a HR for a patient in the ward in which he/she works).
Clearly, the main advantage of ABAC is in terms of flexibility in the specification
of protection requirements. In contrast, the drawback is that policy specification
becomes more complex and can result in an expensive and time consuming task.

A promising approach to diminish the burden of policy specification is rep-
resented by policy mining, whose goal is to partially or totally automate the
construction of an ABAC policy from available access control information (e.g.,
access control logs, RBAC policies). Therefore, in this paper, we propose a multi-
objective evolutionary approach for learning ABAC policies from sets of autho-
rized and denied access requests. The approach is multi-objective because it aims
at learning a policy which, at the same time, is consistent with the input requests,
exhibits low complexity and does not use those attributes which uniquely rep-
resent user and resource identities, hence exploiting the true potential of the
ABAC paradigm.

The evolutionary approach here proposed includes several contributions:(i) a
domain-specific phenotypic representation, along with a set of custom genetic
operators, which allow individuals to represent valid policy rules in the ABAC
paradigm; (ii) an incremental strategy for learning a policy by learning single
rules, each one fitting a subset of requests—a form of separate-and-conquer;
(iii) a custom initialization of the population; (iv) a diversity promotion scheme;
and (v) an early termination criterion.

We experimentally evaluated our proposal on a set of realistic case studies
and found that it is always able to obtain a policy which meets the objectives.
We also assessed our solution in case of incomplete input—i.e., when the input
requests do not fully represent the access control information—and found that
it is robust to missing information rates up to 50%.

We would like to remark that the approach presented in this paper can also
be a valuable contribution in other security domains, besides policy mining, such
as the strategic one of emergency management. Indeed, one of the most widely
used approaches to deal with the information needs arising during emergency sit-
uations is the Break-the-Glass (BtG) paradigm [3], which allows users to override
access control decisions on demand by logging their accesses. The main issue with
BtG models is that they could bring the system to an unsafe state due to abuse
of BtG policies. An alternative and more secure way to deal with emergency
management, which has been recently proposed in [4], is to use a policy-based
approach, according to which a set of emergency policies are specified, overriding
regular ones during emergency situations. By properly extending the approach
presented in this paper, in terms of objectives to be met, emergency policies can
be learned from the BtG logs.
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2 Related Work

The problem of deriving new ABAC policies from access request logs has been
first and only investigated in [5] (extended by [6]). The authors propose an
algorithm which incorporates some heuristics aimed at merging and simplifying
single rules. In this paper, we use the same ABAC language and the same case
studies of the cited papers: our method exhibits the same high effectiveness of
the method in [5,6], which is not evolutionary. We think that our proposal could
be easier to extend—by incorporating new objectives to be met—in order to fit
more specific needs of similar scenarios, such as emergency policy learning from
BtG logs.

Other non-evolutionary approaches have been proposed for mining policies
from logs for less expressive access controlmodels (e.g.,RBAC [7,8]). In some cases,
additional information, besides the request logs, is needed as training data [9].

Usage of evolutionary techniques for inferring RBAC rules explaining the
observed actions in environments with tree-structured role hierarchies was pro-
posed in [10]. The aim of the proposal was using the inferred rules for identifying
mismatches between user roles and actual processes, as a tool for insider threat
detection. No actual assessment was provided. An exercise in security policy
inference through evolutionary techniques was proposed in [11]. This work con-
sidered rules based on boolean expressions constructed in a simple language and
applied Genetic Programming for discovering a single expression capturing all
the rules provided as examples. The case studies were composed of very few
examples and were mainly a proof-of-concept demonstrating the feasibility of
policy inference by means of Genetic Programming. We consider instead a full-
fledged security policy language capable of expressing attribute-based rules, and
demonstrate that our approach can indeed be applied successfully on realistic
testbeds.

An evolutionary framework for learning security policies which need to be
updated dynamically is proposed in [12]. This work introduces a stochastic risk-
based security policy model based on a few numerical or boolean variables and
uses this model for generating examples of access control decisions. These exam-
ples are then used for driving a Genetic Programming search aimed at inferring
a formula leading to the same decisions as those in the examples. The cited work
uses the SPEA2 multi objective evolutionary algorithm [13] for minimizing the
error rate and the size of each formula. Evolutionary multi-objective optimiza-
tion techniques have been applied in other security-related problems as a tool
for systematically coping with problem-specific constraints, e.g., performance
and usability in network reconfiguration strategies [14] and run-time efficiency
in deep packet inspection [15].

3 Scenario

3.1 ABAC Policy Language

We consider the ABAC policy language defined in [5], which is stated to be,
according to the authors, significantly more complex than policy languages
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handled in previous work on security policy mining. We briefly describe the
language below in order to provide the appropriate context for our work.

Let U be a set of users and AU a set of user attributes. The value of attribute
a ∈ AU for user u ∈ U is represented by a function dU (u, a). This function can
assume a special value ⊥ to indicate that the value of attribute a for user u is
undefined.

The set of user attributes AU can be partitioned in two sets: AU,1, contain-
ing single-valued attributes, and AU,∞ containing multi-valued attributes, i.e.,
attributes whose values are sets of single values. Set AU,1 includes a special
attribute uid which has a unique value (different from ⊥) for each user.

We denote with VU (a) the set of possible single values assumed by user
attribute a, i.e., the range of dU for a ∈ AU,1 and the union of the range elements
for a ∈ AU,∞.

Similarly, let R be a set of resources and AR a set of resource attributes. The
value of attribute a ∈ AR for resource r ∈ R is represented by a function dR(r, a),
which can assume a special value ⊥ to indicate that the value of attribute a
for resource r is undefined. The set AR can be partitioned in two sets AR,1

and AR,∞ containing single-valued and multi-valued attributes, respectively. Set
AR,1 includes a special attribute rid which has a unique value (different from ⊥)
for each resource. We denote with VR(a) the set of possible single values assumed
by resource attribute a.

Subsets of users and resources can be described by means of attribute expres-
sions, as follows. We denote by Set(S) the powerset of set S. A user attribute
expression is a function eU : AU → E, where E = Set(VU (a))∪� when a ∈ AU,1

(see below for the meaning of �) and E = Set(Set(VU (a))) ∪ � when a ∈ AU,∞.
We say that a user u satisfies a user attribute expression eU if and only if,
∀a ∈ AU,1, eU (a) = � ∨ eU (a) 	 dU (u, a) and ∀a ∈ AU,∞, eU (a) = � ∨ ∃s ∈
eU (a), dU (u, a) ⊇ s. In other words, � is used to indicate that attribute a is
irrelevant for determining whether a user satisfies user attribute expression eU

(i.e., eU (a) = �).
Resource attribute expressions are defined similarly, except that the satisfac-

tion criterion for multi-valued attributes requires equality rather than ⊇ (i.e.,
∃s ∈ e(a), dR(r, a) = s). The reason is because user attributes which are multi-
valued represent capabilities.

A constraint represents a relationship between users and resources which may
or may not be satisfied, as follows. A constraint c is a function c : AU × AR →
{¬�,�}. A pair composed of a user u and a resource r satisfies a constraint c
if and only if ∀aU ∈ AU,∞, aR ∈ AR,∞, c(aU , aR) = � ∨ dU (u, aU ) ⊇ dR(r, aR)
and ∀aU ∈ AU,∞, aR ∈ AR,1, c(aU , aR) = � ∨ dU (u, aU ) 	 dR(r, aR) and ∀aU ∈
AU,1, aR ∈ AR,1, c(aU , aR) = � ∨ dU (u, aU ) = dR(r, aR).

A rule ρ is a tuple 〈eU , eR, O, c〉, where eU is an attribute expression, eR is a
resource expression, c is a constraint and O ⊆ O is a set of operations. A policy
P is a set of rules. Finally, an access request is a tuple 〈u, r, o〉 which means that
user u wants to perform the operation o ∈ O on the resource r.
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An access request 〈u, r, o〉 is either accepted or denied by a rule ρ = 〈eU , eR, O,
c〉. The former occurs if and only if u satisfies eU , r satisfies eR, u, r satisfies c
and o ∈ O. An access request is accepted by a policy P if and only if the access
request is accepted by at least one rule in P , otherwise the access request is
denied by P . We denote with 〈u, r, o〉 |= ρ and 〈u, r, o〉 |= P the acceptance of a
request 〈u, r, o〉 by a rule ρ or a policy P , respectively.

We describe attribute expressions and rules by means of the concrete syn-
tax proposed in [5] and outlined in the following example. Let us consider an
university domain in which AU,1 = {uid,position, isDean}, AU,∞ = {courses},
AR,1 = {rid, type, course}, AR,∞ = ∅ and O = {writeGrade, readGrade,deploy}.
A policy P may be composed of the following 4 rules:

ρ1 = 〈position = student, type = gradebook, {readGrade}, courses � course〉
ρ2 = 〈position = faculty, type = gradebook, {writeGrade, readGrade}, courses � course〉
ρ3 = 〈position ∈ faculty ∧ isDean = true, type = {gradebook}, {readGrade}, ∅〉
ρ4 = 〈courses ⊇ {{CS04}, {WD01}}, type = {testWebServer}, {deploy}, ∅〉

Rule ρ1 says that students can read the grades they got for their courses
(i.e., those they attend); ρ2 says that faculty members can read and write grades
for their courses (i.e., those they teach); ρ3 says that the dean can read all grades;
ρ4 says that users whose courses include one among CS04 and WD01 can deploy
on the test web server. Note that ρ1 and ρ2 pose a constraint on the relationship
between the user and the resource, whereas ρ3 and ρ4 do not (i.e., for ρ3 and ρ4,
c(aU , aR) = �,∀aU ∈ AU , aR ∈ AR).

3.2 Problem Statement

Let us consider two sets AU and AR of user and resource attributes along with
their possible values VU and VR, and the set O of operations which may be
applied to resources. The problem which we aim to solve consists in generating
a policy P which accepts all access requests in a specified set SA and denies all
access requests in another specified set SD. In other words, the problem consists
in inferring a policy consistent with specified examples of the desired behavior.
A problem instance is a tuple 〈SA, SD, AU , AR, VU , VR, dU , dR,O〉.

A trivial solution for every problem instance always exists in the form of
an Access Control List (ACL) policy. Such a policy may be constructed by
generating, for each request 〈u, r, o〉 ∈ SA, a rule ρ = 〈eU , eR, O, c〉 which accepts
only a request from user u to perform the operation o to resource r, using only
special attributes uid and rid. In other words, eU (a) = dU (u, a) if a = uid,
eU (a) = � otherwise; eR(a) = dR(r, a) if a = rid, eR(a) = � otherwise; O = {o};
and c(aU , aR) = �.

In order to generate policies which not only are consistent but indeed gener-
alize beyond the provided examples by taking user and resource attributes into
account, we add two further requirements:(i) policy rules should use uid and
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rid special attributes as little as possible and (ii) the complexity of the policy
should be minimized. We assess the complexity of a policy P with the weighted
structural complexity (WSC) [8]. WSC is a weighted sums of the complexity of
rule components (eU , eR, O and c)—see [5] for the details. In this paper we used,
without loss of generality, equal weights.

4 Our Evolutionary Approach

4.1 Overview

We propose an evolutionary approach for solving the policy generation problem.
Each individual represents a rule and we define custom genetic operators which
operate on rules and are guaranteed to generate valid rules. In other words,
we define a domain-specific phenotypic representation of candidate solutions
rather than adopting more general representations which would hardly fit this
application domain (e.g., trees as in Genetic Programming or numeric vectors
as in Genetic Algorithm).

We construct the required policy incrementally, by means of successive itera-
tions—a form of separate-and-conquer [16]. At each iteration we execute an
evolutionary search which generates one rule ρ� and then we drop from the set
SA of requests to be accepted those which are accepted by ρ�. Each iteration
thus operates on a problem instance which differs from the problem instance at
the previous iteration—SA at the (i + 1)-th iteration being a subset of SA at
the i-th iteration. The procedure terminates when SA is empty. An intermedi-
ate policy is then constructed as the set of rules generated at each iteration.
Finally, the required policy is obtained from a further optimization applied to
the intermediate policy.

The evolutionary search includes further key contributions:

– We initialize the population based on the problem instance (in particular
using the requests in SA), rather than generating random individuals.

– We promote population diversity by imposing that no identical individuals
can be contained in the population.

– We use an early termination criterion based on counting how many times
the search would attempt to generate an individual which already exists.

4.2 Evolutionary Search

An evolutionary search takes a problem instance 〈SA, SD, AU , AR, VU , VR, dU ,
dR,O〉 as input and produces a single rule ρ�. Each individual ρ is associated
with a counter cρ, initially set to 1, and with a fitness f(ρ), defined below. First,
an initial population of |SA| individuals (i.e., rules) is built. These individuals are
generated from SA rather than randomly, as follows. For each request 〈u, r, o〉 ∈
SA a rule ρ = 〈eU , eR, O, c〉 is built such that:
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eU (aU ) =

{
dU (u, aU ) if aU �= uid ∧ dU (u, aU ) �= ⊥ ∧ ∀aR ∈ AR, c(aU , aR) = �
� otherwise

eR(aR) =

{
dR(r, aR) if aR �= rid ∧ dR(r, aR) �= ⊥ ∧ ∀aU ∈ AU , c(aU , aR) = �
� otherwise

O = {o}

c(aU , aR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

¬� if dU (u, aU ) �= ⊥ ∧ dR(r, aR) �= ⊥ ∧ dU (u, aU ) ⊇ dR(r, aR)

¬� else if dU (u, aU ) �= ⊥ ∧ dR(r, aR) �= ⊥ ∧ dU (u, aU ) 	 dR(r, aR)

¬� else if dU (u, aU ) �= ⊥ ∧ dR(r, aR) �= ⊥ ∧ dU (u, aU ) = dR(r, aR)

� otherwise

In practice, in order to build a rule ρ = 〈eU , eR, O, c〉 from the request 〈u, r, o〉
we first find the user and resource attributes which can be used to define the
constraint c; then, we set user and attribute expression eU and eR according to
the values of the respective u and r attributes; in doing so, we consider only
attributes which have not been used for defining c and we do not use either uid
or rid.

With reference to the university domain example in Section 3.1, let us con-
sider the following request in SA:

u = 〈uid = stud111013,position = student, courses = {CS01,CS03}〉
r = 〈rid = gradebook7211, type = gradebook, course = CS03〉
o = readGrade

The rule generated from this request will be:

ρ = 〈position = student, type = gradebook, {readGrade}, courses 	 course〉
Note that c(courses, course) = ¬� because dU (u, courses) = {CS01,CS03} 	
CS03 = dR(r, course).

Having generated the initial population, we execute the following iterative
procedure:

1. Choose randomly whether to apply a mutation operator or a crossover oper-
ator; the choice between the two options is made with probability pmutation

and 1 − pmutation, respectively.
2. Choose randomly the specific operator within the chosen category with uni-

form probability—we defined 10 mutation operators and 5 crossover opera-
tors.

3. If a mutation operator has been chosen, then select one rule in the current
population, otherwise (a crossover operation has been chosen) select two
rules; each rule selection is made by picking ntournament rules at random and
then selecting the best one.

4. Generate a new rule ρ′ with the chosen genetic operator applied to the
chosen rule(s); if the current population does not already contain a rule
ρ = ρ′, then add ρ′ to the current population and evaluate its fitness f(ρ);
otherwise, increment counter cρ by one and discard ρ′.
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5. If the current population size is greater than npop, then iteratively remove
the worst rule until the population size is equal to npop.

The iterative procedure terminates when one of the following holds:(a) a prede-
fined number neval of fitness evaluations has been performed, or (b) the counter
cρ� of the best rule ρ� is larger than a predefined number nstop. At the end,
the best rule ρ� in the current population is the result of the search. Note that
the fitness of generated rules are evaluated only when they are different from all
existing—and hence already evaluated—rules (step 4).

We defined 10 mutation operators and 5 crossover operators. Their full
description is not included in this paper for space constraints but is available
separately1. For example, we defined a constraint donation crossover opera-
tor as follows: let ρ1 = 〈eU,1, eR,1, O1, c1〉 and ρ2 = 〈eU,2, eR,2, O2, c2〉 be the
parent rules. The rule ρ = 〈eU , eR, O, c〉 generated by the operator is initially
set to ρ = ρ1; next, a pair aU , aR ∈ AU × AR is randomly chosen such that
c1(aU , aR) = � ∧ c2(aU , aR) = ¬�; finally, c(aU , aR) := c2(aU , aR).

The fitness f(ρ) of a rule ρ is defined as a tuple composed of 4 numbers:
f(ρ) = 〈FAR(ρ),FRR(ρ), ID(ρ),WSC(ρ)〉, where FAR and FRR are the False
Acceptance Rate on the requests in SD and the False Rejection Rate on the
requests in SA, respectively; ID(ρ) is a measure of the usage of the special
attributes uid and rid; WSC(ρ) is the WSC index defined in Section 3.2. In
detail:

FAR(ρ) =
|{〈u, r, o〉 ∈ SD, 〈u, r, o〉 |= ρ}|

|SD|
FRR(ρ) =

|{〈u, r, o〉 ∈ SA, 〈u, r, o〉 � |=ρ}|
|SA|

ID(ρ) =

⎧
⎪⎨
⎪⎩

2 if eU (uid) �= � ∧ eR(rid) �= �
1 if eU (uid) �= � � eR(rid) �= �
0 otherwise

For all the elements of the fitness tuple, the lower the better.
Rules are ranked basing on lexicographical order of their fitnesses f(ρ): the

rule with lower FAR is considered the best; in case two or more have the same
lowest FAR, the rule with lowest FRR is considered the best; in case two or more
have the same lowest FRR, the rule with lowest ID is considered the best; in case
two or more have the same lowest ID, the rule with lowest WSC is considered
the best. This method of ranking solutions in a multi-objective problem where
objectives are sorted by decreasing importance is also known as multi-layered
fitness [17]. In our case, in the fitness f(ρ) = 〈FAR(ρ),FRR(ρ), ID(ρ),WSC(ρ)〉,
the first two components represent the ability of the rule to be consistent with the
problem instance, whereas the other two reflect the further problem objectives
concerning use of special attributes and complexity (see Section 3.2).

1 http://machinelearning.inginf.units.it/data-and-tools/appendices/
2014-EMO-EvolutionaryABACInference-Appendix.pdf

http://machinelearning.inginf.units.it/data-and-tools/appendices/2014-EMO-EvolutionaryABACInference-Appendix.pdf
http://machinelearning.inginf.units.it/data-and-tools/appendices/2014-EMO-EvolutionaryABACInference-Appendix.pdf


Evolutionary Inference of Attribute-Based Access Control Policies 359

4.3 Incremental Strategy

We construct the required policy incrementally, by means of successive evolu-
tionary searches, as follows. Initially, let P = ∅ and S′

A = SA, then:

1. execute an evolutionary search (Section 4.2) on problem instance 〈S′
A, SD,

AU , AR, VU , VR, dU , dR,O〉 and obtain ρ�;
2. if FAR(ρ�) = 0 and FRR(ρ�) < 1 then P := P ∪ {ρ�}, otherwise terminate;
3. assign S′

A = SA \ {〈u, r, o〉 ∈ SA, 〈u, r, o〉 |= P};
4. if S′

A = ∅, terminate.

In other words, at each iteration we obtain a new rule ρ� (step 1). As long as
this new rule accepts at least one request in S′

A (step 2, FRR(ρ�) < 1) while not
accepting any request in SD (FAR(ρ�) = 0), the new rule is added to the policy
being constructed and the iteration continues. The next iteration will operate
on a smaller S′

A, which does not contains any request accepted by the current
policy, including ρ� (step 3). In case all requests to be accepted are already
accepted by the current policy, the iteration terminates (step 4).

Since each ρ ∈ P has FAR(ρ) = 0—see step 2 above—and since a request
is accepted if at least one rule in P accepts it, it follows that FAR(P ) = 0
and ∀ρ ∈ P,FRR(P ) ≤ FRR(ρ), where FRR and FAR are defined for policy P
similarly to for requests.

The (intermediate) policy P obtained by the above procedure is optimized
further by executing the following procedure for a predefined number of neval

iterations:

1. choose a rule ρ in P at random;
2. generate a new rule ρ′ by applying a randomly selected mutation operator

on ρ;
3. build a policy P ′ by replacing ρ with ρ′ in P ;
4. if P ′ is better than P , than P := P ′.

The comparison criterion between two policies P1, P2 is based on the same lex-
icographical order used for rules: the policy with lowest FAR is considered the
best; otherwise, the policy with lowest FRR is best; otherwise, the policy with
lowest ID is best (where ID(P ) =

∑
ρ∈P ID(ρ)); otherwise, the policy with lowest

WSC is best.
We chose to use a lexicographical order (both for rules and policies) because

it reflects the order of in which the problem objectives are defined (consistency
first, then use of special attributes, then complexity). Moreover, concerning con-
istency, we chose to favor—i.e., minimizing first—FAR instead of FRR because
of the way we compose a policy starting from rules: in particular, we aim at
obtaining rules with FAR = 0 (see the condition in step 2 above).

5 Experimental Evaluation

We evaluated our proposal experimentally on the same case studies considered
in [5]. Each case study consists of a set of users U , a set of resources R and a set of
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rules P0. Users and resources are associated with various attributes. Rules were
carefully constructed to express non-trivial policies and exercise all the features
of the policy language, including use of set membership and superset relations
in attribute expressions and constraints. The experimental data consist of 7 case
studies: 4 of them were hand-crafted and 3 of them were synthetically generated
from the hand-crafted ones. The synthetic case studies include a much larger
number of users and resources. Table 1 summarizes the case studies. The set of
operations O is obtained from P0 as O =

⋃
〈eU ,eR,O,c〉∈P0

O. The set of requests
includes all possible requests, i.e., S = U × R × O; this set is then partitioned
in SA and SD, basing on whether each request in S was accepted or denied by
P0, respectively.

Table 1. Salient information about the hand-crafted (above) and synthetic (below,
with a † suffix) case studies

Case study |P0| |U | |R| |O| |AU | |AR| |SA| |SD| WSC(P0)

Healthcare 9 21 16 3 6 7 51 957 33
Online video 6 12 13 1 3 3 78 78 20
Project management 11 19 40 7 8 6 189 5131 49
University 10 22 34 9 6 5 168 6564 37

Healthcare† 9 1600 5760 3 6 7 10 097 27 637 903 33

Project management† 11 800 1600 7 8 6 7680 8 952 320 49

University† 10 1320 2520 9 6 5 148 624 29 788 976 37

We executed our approach on each case study for several values of the neval

parameter. We repeated each experiment 3 times for each neval value, with
different random seeds. We set the other parameters as follows: npop = 100,
ntournament = 3, nstop = 100 and pmutation = 0.5—we verified experimentally
that reasonable variations in these values do not cause significant variations in
the results.

Since the synthetic case studies are associated with several millions of requests
to be denied, in these cases we generated the corresponding policies based on a
random sample S∗

D of those requests such that |S∗
D| = 5|SA|. The results in terms

of FRR and FAR have always been computed on the full set, though.
Table 2 presents the results, averaged across the executions with different

random seeds, in terms of FRR(P ), FAR(P ) and WSC(P0)
WSC(P ) ; the table also shows

the actual number n̂eval of fitness evaluations—recall that the number of itera-
tions of the incremental strategy is not known in advance—and the execution
time.

The first crucial finding is that our approach indeed succeeds in generating
consistent policies, i.e., policies with FRR(P ) = 0, FAR(P ) = 0. Moreover, we
verified that our method never produced policies which use special attributes
uid and rid, as desired.

Another important result is that our approach definitely tends to generate
a policy which is less complex than the baseline: in most cases WSC(P ) is not
larger than the WSC(P0) (we remark that P0 is unknown to our approach).
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Table 2. Results

Case study neval FRR(P ) FAR(P ) WSC(P0)
WSC(P )

n̂eval t [s]

Healthcare

500 0 0 1.07 5536 1.2
2500 0 0 1.18 19 776 4
5000 0 0 1.18 22 691 5.3

Online video

500 0 0 1 2768 0.6
2500 0 0 1 5215 0.8
5000 0 0 1 7715 1.1

Project
management

500 0 0 0.96 6646 3.5
2500 0 0 1.06 24 368 14.7
5000 0 0 1.06 27 791 22.2

University

500 0 0 0.95 5904 3.1
2500 0 0 0.98 22 846 14.1
5000 0 0 1 26 487 21.8

Healthcare†
500 0 0 1.18 23 704 228.4

2500 0 0 1.2 33 864 398.9
5000 0 0 1.2 36 364 511.9

Project
management†

500 0 0 0.92 35 037 241.7
2500 0 0 1.06 45 591 626.9
5000 0 0 1.06 49 549 790

University†
500 0 0 0.89 35 822 1688.8

2500 0 0 1 52 513 3525.4
5000 0 0 1 56 718 4784.9

This effect is more apparent for Healthcare and Project management and the
corresponding synthetic versions, but can be observed also for University and its
synthetic counterpart, for sufficiently large values of neval. In other words, our
approach aims at obtaining the least complex policy which is consistent with the
desired behavior in terms of SA, SD; as it turns out, the generated policy tends
to be less redundant than the baseline policy.

The average execution time for generating a policy is in the order of seconds
for the hand-crafted case studies and in the order of minutes or a few tens of
minutes for the synthetic ones. It seems reasonable to claim that the computa-
tional load is fully practical for this application domain. The experiments have
been executed with a single-threaded Java prototype implementation on a quad-
core Intel CPU 2.50 GHz with 8 GB RAM. As expected, the execution time is
roughly linear with n̂eval|SA||SD|; with respect to neval, it can be seen that time
is slightly sublinear due to the intervention of the early termination criterion
given by nstop.

5.1 Results with Incomplete Input

We wanted to gain insights in our method effectiveness when the input informa-
tion is incomplete. In particular, we considered the case where the input requests
sets SA and SD do not contain all the requests.
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To this end, we repeated the experimental procedure detailed in the previous
section, by removing, before applying our method, a random portion γ of requests
in SA and SD. The performance in terms of FRR and FAR has obviously been
computed on full SA and SD. We repeated each experiment 3 times—i.e., with
3 different SA, SD and random seeds—for each value of γ.

The corresponding results are in Figure 1 (we executed these experiments
only on the hand-crafted case studies). It can be seen that the removal of part
of requests has little or no impact on FAR, even for large values of γ. Indeed,
FAR is always 0 when γ ≤ 0.25 and remains low (≤ 1%) even when half of
the requests in SD are not available for inferring the policy. The impact of the
removal of part of requests is slightly higher on FRR, but always lower than 4%.
We believe the reason is because our approach tends to produce a policy which
contains only the rules which are needed to accept all the requests contained in
the input SA. This interpretation is supported by the values of WSC(P0)

WSC(P ) , which
become larger with large values of γ: in other words, our approach produces the
least complex policy which is consistent with the input.
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Fig. 1. Results with incomplete input

5.2 Assessment of the Contributions

We wanted to assess the specific impact of our key contributions described in
Section 4.1: population initialization from requests in SA, incremental strategy,
diversity promotion and early termination. Rather than assessing all combina-
tions, we executed pairwise comparisons between the full approach and the app-
roach with one of these contributions disabled—note that disabling the diversity
promotion implies disabling also the early termination. We considered only the
hand-crafted case studies.

Concerning the population initialization from the examples in SA, we experi-
mented with random creation of individuals in the initial population. It was clear
from the early experiments that generating a consistent policy from a random
initial population is very difficult. For this reason, we investigated the impact of
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increasing the population size npop = 100 by an order of magnitude (1000, 2000)
and disabled early termination. Table 3 shows the results obtained with random
population initialization (for ease of comparison we provide the corresponding
results of the full method previously shown in Table 2). It is clear that the pop-
ulation initialization from SA is an essential ingredient for generating consistent
policies and greatly improves the method effectiveness. Table 3 shows that, if
one favors the exploration ability of the evolutionary search by increasing npop

and neval, the method can indeed obtain better solutions also with random ini-
tialization. These improved results are still far from those with the initialization
from SA, though, despite the increased execution time.

Table 3. Results with and without the population initialization from SA

Healthcare Online video Proj. man. University
Pop. init. neval npop FRR(P ) t[s] FRR(P ) t[s] FRR(P ) t[s] FRR(P ) t[s]

From SA 5000 100 0 5.3 0 1.1 0 22.2 0 21.8

Random

5000 100 37.3 5.5 3.4 7.1 56.6 11.4 73.4 9.1
25 000 100 32.7 28.2 1.7 37.2 53.1 61.8 69.4 49.1
25 000 1000 5.2 203.7 0 300.8 38.4 224.7 9.5 276.5
25 000 2000 2.6 432.1 0 642.0 34.9 394.1 36.1 387.9

Concerning the incremental strategy, we executed a single evolutionary search
followed by the final optimization step executed with neval = 5000—results with
larger values for neval are essentially the same. The results in terms of FRR are
significantly worse than with the incremental strategy enabled: 82.4%, 53.9%,
83.1% and 74.6% for the Healthcare, Online video, Project management and
University case studies respectively, as opposed to FRR = 0. In other words, a
single evolutionary search is not able to generate a rule capable of accepting all
the requests in SA and denying all the requests in SD.

Concerning diversity promotion, we experimented without this contribution
and neval = 5000. We found that our approach still generates consistent policies
(i.e., with FAR = FRR = 0), but with larger complexity: WSC(P0)

WSC(P ) is lower than
with the diversity promotion for the Healthcare and Project management case
studies: 1.15 vs. 1.18 and 1.01 vs. 1.06, respectively.

Concerning the early termination criterion, we experimented by stopping
the evolutionary search after having performed neval = 5000 fitness evaluations
irrespective of the number of times the search attempts to generate identical
individuals. The quality of the results is unaffected, the only impact being on
execution times which are, on the average, 128% longer than with early termi-
nation enabled.

Finally, we investigated on the effectiveness of the further optimization of
the policy P which we perform at the end of the incremental strategy (see
Section 4.3). To this end, we experimented without this step. We found that
this procedure impacts on the complexity of the generated policies: WSC(P0)

WSC(P )

is equal to 1.18, 0.91, 1.04 and 0.98 for the Healthcare, Online video, Project
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management and University case studies respectively, as opposed to 1.18, 1, 1.06
and 1, with the optimization. By looking at the raw data, we found that the
optimization makes our approach cope with those cases where a rule ρ1, which
has been generated at a given iteration of the incremental strategy, could be
made less complex because of a rule ρ2 generated later, which accepts some
requests accepted also by ρ1.

6 Concluding Remarks and Future Work

We have proposed an evolutionary approach for performing mining of ABAC
policies. The approach is based on the design and implementation of a domain-
specific phenotypic representation, along with the corresponding genetic oper-
ators, which allow attacking ABAC policy mining by means of evolutionary
computation. We used a multi-objective optimization framework based on a lex-
icographic criterion, in which we incorporate requirements on correctness (FAR,
FRR) and on expressiveness (WSC, usage of uid and rid). We incorporated in
the search several optimizations that have proven to be essential for this task, in
particular, we defined a strategy for building a policy incrementally, by learning
single rules each one on a different subset of the requests. We showed that our
approach deals successfully with case studies of realistic complexity, being highly
robust even in scenarios where the access requests available for learning do not
fully represent the access control information. We believe that our proposal may
indeed form the basis for a practical implementation of ABAC policy mining and
we intend to extend the scope of our investigation to emergency management.
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Abstract. In Guided Evolutionary Multi-objective Optimization the
goal is to find a diverse, but locally focused non-dominated front in a
decision maker’s area of interest, as close as possible to the true Pareto-
front. The optimization can focus its efforts towards the preferred area
and achieve a better result [7,9,13,17]. The modeled and simulated sys-
tems are often stochastic and a common method to handle the objec-
tive noise is Resampling. The given preference information allows to
define better resampling strategies which further improve the optimiza-
tion result. In this paper, resampling strategies are proposed that base
the sampling allocation on multiple factors, and thereby combine multi-
ple resampling strategies proposed by the authors in [15]. These factors
are, for example, the Pareto-rank of a solution and its distance to the
decision maker’s area of interest. The proposed hybrid Dynamic Resam-
pling Strategy DR2 is evaluated on the Reference point-guided NSGA-II
optimization algorithm (R-NSGA-II) [9].

Keywords: Evolutionary multi-objective optimization · Guided search ·
Reference point · Dynamic resampling · Budget allocation

1 Introduction

In Guided Evolutionary Multi-objective Optimization the decision maker is look-
ing for a diverse, but locally focused non-dominated front in a preferred area
of the objective space, as close as possible to the true Pareto-front. As solu-
tions found outside of the area of interest are considered less important or even
irrelevant, the optimization can focus its efforts towards the preferred area and
find the solutions that the decision maker was looking for in a faster way, i.e.
with less simulation runs. This is particularly important if the available time
for optimization is limited, as for many real-world applications. Focusing the
search effort sets time resources free which, if not needed elsewhere, can be used
to achieve a better result. Multi-objective evolutionary algorithms that can per-
form guided search with preference information are, for example, the R-NSGA-II
algorithm [9], Visual Steering [17], and interactive EMO based on progressively
approximated value functions [7].
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In Simulation-based Optimization the modeled and simulated systems are
often stochastic. To obtain an as exact as possible simulation of the system
behavior the stochastic characteristics are often built into the simulation models.
When running the stochastic simulation this expresses itself in deviating result
values. That means that if the simulation is run multiple times for a selected
parameter setting the result value is slightly different for each simulation run. In
the literature this phenomenon of stochastic evaluation functions is sometimes
called Noise, respectively Noisy Optimization [1,3].

If an evolutionary optimization algorithm is run without countermeasure on
an optimization problem with a noisy evaluation function the performance will
degrade in comparison with the case if the true mean objective values would be
known. The algorithm will have wrong knowledge about the solutions’ quality.
Two cases of misjudgment will occur. The algorithm will see bad solutions as
good and select them into the next generation. Good solutions might be assessed
as inferior and might be discarded. The performance can therefore be improved
by increasing the knowledge of the algorithm about the solution quality.

Resampling is a way to reduce the uncertainty of the knowledge the algorithm
has about the solutions. Resampling algorithms evaluate solutions several times
to obtain an approximation of the expected objective values. This allows EMO
algorithms to make better selection decisions, but it comes with a cost. As the
modeled systems are usually complex they require long simulation times, which
limits the number of available solution evaluations. The additional solution eval-
uations needed to increase objective value knowledge are therefore not available
for exploration of the objective space. This exploration vs. exploitation trade-off
can be optimized, since the required knowledge about objective values varies
between solutions. For example, in a dense, converged population it is impor-
tant to know the objective values well, whereas an algorithm which is about
to explore the objective space is not harmed much by noisy objective values.
Therefore, a resampling strategy which samples the solution carefully according
to their resampling need, can help an EMO algorithm to achieve better results
than a static resampling allocation. Such a strategy is called Dynamic Resam-
pling. This has been done previously for single-objective optimization problems
by [11] and [4]. In this paper we study dynamic resampling algorithms that can
handle multi-objective evaluation functions, based on a previous study [15].

The paper is structured as follows. In Section 2 background information to
Dynamic Resampling and an introduction to the R-NSGA-II algorithm is given.
In Section 3 different resampling techniques for EMO and for guided EMO are
explained. A new resampling algorithm is proposed combining several resam-
pling techniques in Section 4. In Section 5 numerical experiments on benchmark
functions are performed. The test environment is explained and the experiment
results are analyzed. In Section 6 conclusions are drawn and possible future work
is pointed out.
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2 Background

In this section, background information is given regarding Resampling as a
noise handling method in Evolutionary Multi-objective Optimization and the
preference-based multi-objective optimization algorithm R-NSGA-II [9], which
are the basis for the proposed algorithms in this paper.

2.1 Noise Compensation via Sequential Dynamic Resampling

To be able to assess the quality of a solution according to a stochastic eval-
uation function statistical measures like sample mean and sample standard
deviation can be used. By executing the simulation model multiple times a
more accurate value of the solution quality can be obtained. This process is
called Resampling. We denote the sample mean value of objective function
Fi for solution s as follows: μn(Fi(s)) = 1

n

∑n
j=1 F j

i (s), where F j
i (s) is the

j-th sample of s, and the sample variance of objective function i: σ2
n(Fi(s)) =

1
n−1

∑n
j=1 (F j

i (s) − μn(Fi(s)))2.
The general goal of resampling a stochastic objective function is to reduce the

standard deviation of the mean of an objective value σ(μ(Fi(s))) which increases
the knowledge about the objective value. With only a limited number of samples
available the standard deviation of the mean can be estimated by the sample
standard deviation of the mean which usually is called standard error of the
mean. It is calculated as follows:

sen(μn(Fi(s))) =
σn(Fi(s))√

n

By increasing the number of samples n of Fi(s) the standard deviation of the
mean and its estimate sen(μn(Fi(s))) is reduced.

Dynamic resampling allocates a different sampling budget to each solution
based on the evaluation characteristics of the solution. A basic dynamic resam-
pling procedure would be to reduce the standard error until it gets below a
certain threshold sen(μn(F (s))) < sethr. The required sampling budget for the

reduction can be calculated as n >
(

σn(F (s))
sethr

)2

. However, since the sample
mean changes as new samples are added this one-shot sampling allocation might
not be optimal. The number of fitness samples drawn might be too small for
reaching the error threshold, in case the sample mean has shown to be larger
than the initial estimate. On the other hand, a one-shot strategy might add too
many samples if the initial estimate of the sample mean was too big. Therefore
dynamic resampling is often done sequentially. Through this sequential approach
the number of required samples can be determined more accurately. For Sequen-
tial Dynamic Resampling often the shorter term Sequential Sampling is used.
Dynamic resampling techniques can therefore be classified in one-shot sampling
strategies and sequential sampling strategies.
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2.2 Reference Point-Guided NSGA-II

The resampling techniques described in this paper will be tested how well they
can support the Reference point-Guided NSGA-II algorithm (R-NSGA-II) [9]
as an example for a guided Evolutionary Multi-objective Optimization (EMO)
Algorithm. It is particularly suitable for evaluation in this paper since it uses
fitness functions which are used as resampling criteria in resampling algorithms.
Therefore, the resampling algorithms can support R-NSGA-II particularly well.

R-NSGA-II is based on the Non-dominated Sorting Genetic Algorithm II
[6] which is a widely-used and representative multi-objective evolutionary algo-
rithm. NSGA-II sorts the solutions in population and offspring into different
non-dominated fronts. Selected are all solutions in all fronts that fit into the next
population. From the front that only fits partially those solutions are selected
into the next population that have big distances to their neighbors and thereby
guarantee that the result population will be diverse. As diversity measure the
crowding distance is used. After selection is completed offspring solutions are
generated by tournament selection, crossover, and mutation. The offspring are
evaluated and the selection step is performed again. The R-NSGA-II algorithm
replaces the crowding distance operator by the distance to reference points.
Solutions that are closer to a reference point get a higher selection priority. The
reference points are defined by the user in areas that are interesting and where
solutions shall be found. As a diversity preservation mechanism R-NSGA-II uses
clustering. The reference points can be created, adapted or deleted interactively
during the optimization run. Since R-NSGA-II uses non-domination sorting it
has a tendency to prioritize population diversity before convergence to the refer-
ence points. Therefore, extensions have been proposed which limit the influence
of the Pareto-dominance and allow the algorithm to focus faster towards the
reference points [14].

3 Resampling Algorithms

In this chapter several resampling algorithms are described which are used in
this study to support the R-NSGA-II algorithm at stochastic simulation opti-
mization problems. We denote: Sampling budget for solution s: bs, minimum
and maximum number of samples for an individual solution: bmin and bmax,
acceleration parameter for the increase of the sampling budget: a > 0. Increas-
ing a decreases the acceleration of the sampling budget, decreasing a increases
the acceleration. The calculated normalized sampling need xs is discretised in
the following way which guarantees that bmax is assigned already for xs < 1:
bs = min {bmax, �xs(bmax − bmin + 1)� + bmin}

3.1 Generally Applicable Resampling Techniques

This section contains resampling strategies that can be used in all multi-objective
optimization problems regardless of preference information is given by a decision
maker or not. They can support the goal of finding the whole Pareto-front as
well as the goal of exploring a limited, preferred area in the objective space.
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Static Resampling samples each solution the same amount of times. The
sampling budget is constant, bs = bmin = bmax. If the objective noise is high
enough this technique can lead to an improvement of the optimization result for
bs > 1. However, since many samples are wasted on less important solutions,
this technique is inferior to more advanced resampling techniques. The reason
for its popularity is the low implementation effort it requires.

Time-Based Dynamic Resampling allocates a small sampling budget in the
beginning of the optimization and a high sampling budget towards the end of
the optimization [15]. The strategy of this resampling technique is to support the
algorithm when the solutions in the population are close to the Pareto-front and
to save sampling budget in the beginning of the optimization when the solutions
are still far away from the Pareto-front.

Time-based Resampling is a dynamic resampling technique that is not con-
sidering variance and a one-shot allocation. We denote: B = maximum overall
number of simulation runs, Bt = current overall number of simulation runs. The
normalized time-based resampling need xT

s is calculated as in Equation 1.

xT
s =

(
Bt

B

)a

(1)

Rank-Based Dynamic Resampling assigns more samples to solutions in the
first few fronts and less samples to solutions in the last fronts, to save evaluations
[15]. In a well-converged population most solutions will have Pareto-rank 1 and
get the maximum number of samples. This technique is not effective in many-
objective optimization, since there most solutions are non-dominated. Rank-
based Resampling performs sequential sampling and is a comparative resampling
technique. We denote: S = solution set of current population and offspring, Rs =
Pareto-rank of solution s in S, Rmax = maxs∈SRs. The normalized rank-based
resampling need xR

s is calculated as in Equation 2.

xR
s = 1 −

(
Rs − 1

Rmax − 1

)a

(2)

We propose a modification of Rank-based Resampling that allocates addi-
tional samples only to the first n fronts. This allows to concentrate the additional
samples on the first fronts where they can be more beneficial. The allocation
function of MaxN-Rank-based Resampling is xRn

s = 1 −
(

min{n,Rs}−1

min{n,Rmax}−1

)a

.
We propose a Hybrid Dynamic Resampling algorithm: Rank-based Resam-

pling can be combined with Time-based Resampling to avoid allocating samples
in the beginning of the optimization where the optimization algorithm has only
little gain of knowing the accurate objective values. Similar to a logical con-
junction xR

s and xT
s can be combined to form the Rank-Time-based Resampling

allocation xRT
s for solution s as in Equation 3.

xRT
s = min{xT

s , xR
s } (3)
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3.2 Preference-Based Resampling Techniques

In this section two resampling algorithms are described that use the preference
information given by a decision maker in form of a reference point r in the
objective space for the R-NSGA-II algorithm [9].

Progress-Based Dynamic Resampling allocates samples to solutions
depending on the progress of the population towards a reference point r. If
the population is more converged better knowledge of the objective values is
required. The progress is defined as the average distance from the population
members to r. Since the progress in Evolutionary Multi-objective optimization
can be fluctuating the average progress P from the last n populations is used.
Progress-based Resampling is a sequential sampling algorithm. We denote: Pmax

= the maximum progress threshold. If P > Pmax then bmin is allocated. If a
progress measurement is negative the absolute value of the progress will be used,
multiplied by a penalty factor. This method also works for the case of a feasible
reference point, where a population moving away from r is a wanted behavior.
At convergence the absolute progress value becomes smaller and smaller, leading
to higher sampling allocations. The normalized progress-based resampling need
xP

s is calculated as in Equation 4.

xP
s = 1 −

(
min{P , Pmax}

Pmax

)a

(4)

The disadvantage of Progress-based resampling is that all solutions in the
population are assigned the same budget. This means that solutions, population
or offspring, which are dominated by many solutions or distant to r and thereby
less relevant, will be assigned an unnecessary high number of samples. They
might be discarded in the next selection step of the evolutionary algorithm which
reduces the benefit of the assigned samples even more. Progress-based resampling
without using the distance information to the reference point is often of little
use. As soon as the optimization gets stuck in a local optimum far from r, too
many samples are wasted, in a situation where less samples and more uncertainty
would actually help to escape the local optimum. Progress-based Resampling has
been evaluated in [16].

Distance-Based Dynamic Resampling (DDR). The Hybrid Dynamic
Resampling strategy Distance-based Dynamic Resampling DDR was proposed
in [15]. A summary is given in the following. This paper focuses on the more
important case of infeasible reference points, and only the description for this
case is given. Infeasible reference points are outside the feasible objective space
and cannot be attained by the optimization. Distance-based Resampling requires
the use of the factors of progress and time. In the case of an infeasible reference
point r the solution at the minimum possible distance to r should be assigned
bmax, otherwise the decision maker would not be guaranteed full control over the
sampling allocation. The time factor is required because in case the optimization
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gets stuck at an early point in time in a local optimum with a low progress, then
no samples should be wasted during this stage. DDR is a sequential sampling
algorithm.

Fig. 1. Sampling allocation of the Distance-based Dynamic Resampling (DDR) algo-
rithm [15]. Acceleration parameter a = 2.

If ds is the distance of solution s to r then the sampling budget is assigned
according to xDDR

s = (1−ds)a. Distance-based Dynamic Resampling guarantees
bmax samples for a certain percentage of the solutions in the current population,
depending on the average progress P in the population. If 10% > P ≥ 5% then
only the best (hypothetical) solution that is closest to r is allocated bmax. If
5% > P ≥ 2.5% then the 10% best solutions are allocated bmax. 2.5% > P ≥ 1%
corresponds to 20% of the solutions and P < 1% to 40%. For this purpose the
maximum distance δ to r of 40% of the population is calculated and the allocation
function is increased by the factor 1/(1 − δ) (cf. Equation 5). If P > 10% then
the closest (hypothetical) solutions are allocated less than bmax to be prepared
in case r is feasible and bmax should only be allocated to solutions dominating
r. As mentioned above, the time criterion is used to slow down the allocation.
In several steps during the optimization runtime the slowing effect is reduced.
This is shown in Figure 1.

xDDR
s = min

{
1,

(
1 − ds

1 − δ

)a}
(5)



Hybrid Dynamic Resampling 373

4 Distance-Rank Dynamic Resampling (DR2)

As an attempt to use several different resampling criteria in a resampling algo-
rithm and to create a hybrid resampling strategy for guided EMO, we pro-
pose to combine the Rank-based Dynamic Resampling and the Distance-based
Dynamic Resampling (DDR) strategies described previously in Section 3. We call
it Distance-Rank Dynamic Resampling (DR2). It uses four different factors to
determine the resampling allocation for individual solutions: Pareto-rank, time,
reference point distance, and progress. Whereas the elapsed optimization time
can be combined with any other resampling criterion with little effort, as seen at
Rank-Time-based Dynamic Resampling mentioned above, the Pareto-rank and
the reference point distance are two truly different resampling criteria. Therefore
we emphasize the term Hybrid for the DR2 algorithm in this paper.

Equation 6 describes the sampling allocation of DR2. Similarly to Rank-
Time-based Resampling, the minimum of both the normalized sampling need
of Distance-based Resampling and Rank-based Resampling is used to create a
combined sampling allocation. However, the Distance-based sampling need is not
calculated individually for each solution. Instead, DR2 identifies the solution sm

closest to r and the normalized sampling need for xDDR
m is used in the formula

as fixed value for all solutions in the current generation. This way of combining
rank and distance information has shown the best optimization results.

xDR2
s = min

{
xDDR

m , xR
s

}
(6)

5 Numerical Experiments

In this section the described resampling techniques in combination with R-
NSGA-II are evaluated on two benchmark functions.Stepwise, more and more
advanced techniques using multiple resampling criteria are compared in different
configurations, showing superior results. To facilitate comparison, the experi-
ments are grouped in experiments where no preference information is used for
resampling and experiments where the resampling algorithm uses information
about the distance to a reference point r defined for R-NSGA-II. For reasons
of simplicity only experiments with one reference point are run, even though
R-NSGA-II is capable of guiding multiple sub-populations to different reference
points in the objective space. Also, the reference point is chosen to be infeasible
in order to keep R-NSGA-II and the preference-based resampling algorithms as
simple as possible. The combinations of R-NSGA-II with different resampling
strategies are tested on two bi-objective benchmark functions ZDT1 and ZDT4
[18]. The ZDT1 function is used for evaluation due to its popularity in the lit-
erature. ZDT4 is more difficult to solve and features many local Pareto-fronts.
This allows a more detailed analysis of the algorithm behavior. The ZDT bench-
mark functions are deterministic in their original version. In order to create noisy
problems, a zero-mean normal distribution is added on both objective functions.
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5.1 Problem Settings

The used benchmark functions are deterministic in their original version. There-
fore zero-mean normal noise has been added to create noisy optimization prob-
lems. The ZDT1 objective functions are for ex. defined as f1(x) = x1 +N (0, σ1)
and f2(x) = g(x)

(
1 − √

x1/g(x)
)
+N (0, σ2), where g(x) = 1+9

∑30
i=2 xi/29. For

the ZDT1 and ZDT4 functions the two objectives have different scales. There-
fore the question arises if the added noise should be normalized according to
the objective scales. We consider the case of noise strength relative to the objec-
tive scale as realistic which can occur in real-world problems, and therefore this
type of noise is evaluated in this paper. For the ZDT1 function the relative added
noise (5%) is (N (0, 0.05),N (0, 0.5)) (considering the relevant objective ranges of
[0, 1]× [0, 10]), and for ZDT4 it is (N (0, 0.05),N (0, 5)) (relevant objective ranges
[0, 1] × [0, 100]). In the following these problems are called ZDT1-(0.05,0.5) and
ZDT4-(0.05, 5).

5.2 Algorithm Parameters

The limited simulation budget is chosen as 2000 solution replications for ZDT1
and 5000 replications for ZDT4. This corresponds to a 1 day optimization run-
time on a cluster with 50 computers and a 15 minutes function evaluation time,
which could be a realistic real-world optimization scenario. R-NSGA-II is run
with a crossover rate pc = 0.8, SBX crossover operator with ηc = 2, Mutation
probability pm = 0.07 and Polynomial Mutation operator with ηm = 5. The
Epsilon clustering parameter is chosen as ε = 0.001. This corresponds to a 1 day
optimization runtime on a cluster with 50 computers and a 15 minutes func-
tion evaluation time, which could be a realistic real-world optimization scenario.
R-NSGA-II is run with a crossover rate pc = 0.8, SBX crossover operator with
ηc = 2, Mutation probability pm = 0.07 and Polynomial Mutation operator with
ηm = 5. The Epsilon clustering parameter is chosen as ε = 0.001. For ZDT1 and
ZDT4 the reference point r = (0.05, 0.5) is used which is close to the Ideal point
(0, 0).

Since there is no perfect parameter configuration for Dynamic Resampling
algorithms that works well on all optimization problems, we chose one config-
uration and did not do any parameter optimization. We chose the parameter
values that seemed most intuitive to us and used them for all experiments. For
all resampling algorithms the minimum budget to be allocated is bmin = 1 and
the maximum budget is bmax = 5. Static Resampling is run in two configu-
rations with bs = 1 and 2. Time-based Resampling uses uses a linear alloca-
tion, a = 1. Rank-based Resampling and Rank-Time-based Resampling are run
as Max5 Rank-based Resampling and use linear allocation (a = 1) for both
the rank-based and time-based criteria. Progress-based Dynamic Resampling
is not evaluated due to the described disadvantages. Distance-Progress-Time-
based Dynamic Resampling DDR uses delayed (a = 2) distance-based alloca-
tion. Distance-Rank-based Dynamic Resampling DR2 uses the same parameters
as the constituting resampling techniques.
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5.3 Evaluation, Replication, and Interpolation

In order to obtain a reliable performance measurement the accurate objective
values for each evaluated solution are used. For the benchmark problems, either
the added noise landscape can be removed and the solution is evaluated deter-
ministically, or the solution can be sampled a high number of times to obtain
accurate objective values, which was done in this study. 2500 samples on a bench-
mark problem solution reduce the uncertainty of the objective values by a factor
of 50.

All experiments performed in this study are replicated 10 times and mean
performance metric values are calculated. To be able to see the performance
development over time a performance metric is evaluated after every genera-
tion of the optimization algorithm. This is shown in Figure 2. However, due
to the resampling, each generation uses a different number of solution evalua-
tions. Since it is assumed that solution evaluations are equally long and that the
runtime of the optimization algorithm and resampling algorithms is negligible
compared to the evaluation time, the number of solution evaluations corresponds
to the optimization runtime. Therefore, an interpolation is required which calcu-
lates the performance metric values at equidistant evaluation number intervals
where the mean performance measure values for all experiment replications can
be calculated. Not only differ the number of solution evaluations per generation
(measurement points) between experiment replications, but also between differ-
ent experiments with different resampling algorithms of the same optimization
problem, which shall be compared.

Fig. 2. Focused Hypervolume chart showing the R-NSGA-II progress development over
time on ZDT1-(0.05,0.5) for resampling methods that do not rely on preference infor-
mation. Reference point (0.05, 0.5).

5.4 Focused Hypervolume

To measure and compare the results of the different resampling algorithms
together with R-NSGA-II the Focused Hypervolume performance metric for ε-
dominance based EMOs (F-HV) is used [16]. The F-HV allows to measure the
convergence and diversity of a population limited to a preferred area in the
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objective space. The limits are defined based on the intended diversity and the
population size of the optimization algorithm. This allows to measure to which
degree the optimization algorithm can achieve the intended diversity. For the
R-NSGA-II algorithm the intended diversity is controlled by the user parame-
ter epsilon. F-HV is based on the Hypervolume metric (HV) [19]. In F-HV the
population is filtered before it is judged by the HV. The filter is a cylindrical
subspace of the objective space retaining only solutions close to the reference
point r dominating the HV-reference point. The cylinder axis is defined by r
and a second point determining the direction, approximately orthogonal to the
potentially not completely known true Pareto-front. For R-NSGA-II and a bi-
objective problem, solutions within the distance d = εN

2 from the cylinder axis,
with N being the population size, are passed on to the standard HV, the rest
is discarded. In this way, within the cylinder there is enough space for N non-
dominated solutions, each with the distance ε to its neighbors. The cylinder
filter must be applied before the non-domination sorting is performed. Other-
wise, dominated solutions are filtered out during non-domination sorting which
would be non-dominated after the application of the cylinder filter. The F-HV
is similar to the R-Metric (R-HV) [8], which is a metric to assess the quality
of converged, focused populations on the Pareto-front. It filters the solutions
with a box around a representative solution of the population and then projects
the remaining solutions on an axis defined by r and HV reference point. Due
to the limited optimization time in our experiments, the population will never
fully converge towards the Pareto-front, or r. Therefore, the R-HV representa-
tive point filter and the shifting operation cannot be applied. Instead, the F-HV
is used which filters the solutions close to r, regardless of the population position
in the objective space. This can lead to zero metric values in the beginning of
the optimization.

For ZDT1 with the reference point r = (0.05, 0.5) the HV reference point
is chosen as (0.1, 1.1) and a base point for normalization as (0, 0.68). For the
ZDT4 function with r = (0.05, 0.5) the HV reference point is chosen as (0.1, 30)
and a base point for normalization as (0, 0).

In all cases, the population size 50 together with R-NSGA-II epsilon 0.001
leads to a cylinder diameter of 0.05. The cylinder axis is defined by r and the
direction point. For ZDT1 and this direction point is defined as (0.06, 1.1) and
for ZDT4 as (0.06, 30).

5.5 Resampling Without Preference Information

In this section the resampling algorithms from Section 3.1 are evaluated and com-
pared: Static Resampling, Time-based Dynamic Resampling, Rank-based and
Rank-Time-based Dynamic Resampling.

In Figure 2 the results of the different resampling techniques together with
R-NSGA-II are evaluated on the ZDT1-(0.05,0.5) problem with reference point
(0.05, 0.5) and 2000 function evaluations. The results show that Static Resam-
pling with 1 sample is both better than Time-based and Rank-based Dynamic
Resampling. Static2-Resampling is worse than Static1-Resampling, which shows
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Fig. 3. Focused Hypervolume chart showing the R-NSGA-II progress development over
time on ZDT4-(0.05,5) for resampling methods that do not rely on preference informa-
tion. Reference point (0.05, 0.5).

that Dynamic Resampling is required to achieve a performance gain over the
Static1 strategy. This is achieved by the hybrid strategy Rank-Time-based
Resampling which outperforms all others.

In Figure 3 the results of the different resampling techniques together with
R-NSGA-II are evaluated on the ZDT4-(0.05,5) problem with reference point
(0.05, 0.5) and 5000 function evaluations. The results confirm the results shown
in Figure 2, however, the differences between the different resampling algorithms
become more clear, since the ZDT4-(0.05,5) problem is more difficult (many local
Pareto-fronts) and needs more time to converge to the reference point.

5.6 Resampling with Reference Points

In this section the resampling algorithms from Section 3.2 are evaluated and
compared: Distance-Progress-Time-based Dynamic Resampling DDR, and
Distance-Rank(-Progress-Time)-based Dynamic Resampling DR2. The results
for Rank-Time-based Resampling are included for comparison purposes.

Fig. 4. Focused Hypervolume chart showing the R-NSGA-II progress development over
time on ZDT1-(0.05,0.5) for resampling methods that use preference information. Ref-
erence point (0.05, 0.5). For comparison with the non-preference methods, the curve
for Rank-Time-based resampling from Figure 2 is included.
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In Figure 4 the results of the different resampling techniques together with
R-NSGA-II are evaluated on the ZDT1-(0.05,0.5) problem with reference point
(0.05, 0.5) and 2000 function evaluations. The results show that DDR is slightly
better than Rank-Time-based Resampling. However, DR2 performs slightly
worse than Rank-Time-based Resampling. As a reason we can see that the
ZDT1-(0.05,0.5) problem is not sufficiently complex (short convergence time)
and does not allow DR2 to develop its full potential.

In Figure 5 the results of the different resampling techniques together with
R-NSGA-II are evaluated on the ZDT4-(0.05,5) problem with reference point
(0.05, 0.5) and 5000 function evaluations. Since the the ZDT4-(0.05,5) problem
is more difficult it allows for a more clear evaluation. Here, it can be seen very
clearly that DR2 outperforms Rank-Time-based Resampling, and thereby all
other resampling algorithms evaluated in Figure 3. DDR however, shows not to
be very powerful on this problem. Yet, combined with the Pareto-rank criterion
as DR2, it is superior to all others.

Fig. 5. Focused Hypervolume chart showing the R-NSGA-II progress development over
time on ZDT4-(0.05,5) for resampling methods that use preference information. Ref-
erence point (0.05, 0.5). For comparison purposes, the curve for Rank-Time-based
resampling from Figure 3 is included.

6 Conclusions and Future Work

We have proposed and evaluated Hybrid Dynamic Resampling strategies that
use multiple resampling criteria on the guided EMO algorithm R-NSGA-II.
Examples are Rank-Time-based Dynamic Resampling which uses the Pareto-
rank and elapsed optimization runtime for sampling allocation, or Distance-
Progress-Time-based Dynamic Resampling (DDR) [15]. They are compared with
resampling techniques that base their sampling allocation on a single crite-
rion, like Time-based Dynamic Resampling or Rank-based Dynamic Resampling.
The results on benchmark functions and a reference point close to the Ideal
point show that Hybrid Dynamic Resampling techniques are superior to single-
criterion techniques and Static Resampling, given that the optimization problem
is sufficiently complex. Furthermore, we proposed and evaluated a resampling
algorithm that uses both the Pareto-rank and Reference point distance as a basis
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for sampling allocation. Both these criteria are used by the R-NSGA-II algorithm
as fitness functions. Thus, we expected that the Distance-Rank Dynamic Resam-
pling algorithm (DR2) is able to support the R-NSGA-II algorithm better than
previous resampling algorithms that only consider one of the criteria, which we
could prove in numerical benchmark experiments.

Future Work will cover the following studies:

– A future task will be to study the combination of a resampling algorithm
that uses the objective variance and Distance-based Dynamic Resampling.
Such a resampling strategy based on variance is Multi-objective Standard
Error Dynamic Resampling [15].

– The resampling algorithms in this paper that are based on the Pareto-
rank base their sampling allocation on a comparison of solutions. They
have thereby an advantage over resampling algorithms that treat each solu-
tion individually. Slightly modified, the comparison approach could support
the evolutionary optimization algorithm in comparing solutions for selection
decisions, also called Selection Sampling. A study investigating the effect of
Selection Sampling on guided EMO of stochastic systems will be performed.

– A parametric study will be performed that identifies guidelines for parameter
configuration for different problems characteristics.

– A worthwhile future task will be to extend and evaluate the resampling and
optimization algorithms for scenarios with feasible reference points.

– Extensions for existing EMO algorithms for guided search need to be pro-
posed that allow for faster convergence to the preferred objective space area.
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Abstract. In the single objective Unit Commitment Problem (UCP)
the problem is usually separated in two sub-problems : the commitment
problem which aims to fix the on/off scheduling of each unit and the dis-
patching problem which goal is to schedule the production of each turned
on unit. The dispatching problem is a continuous convex problem that
can easily be solved exactly. For the first sub-problem genetic algorithms
(GA) are often applied and usually handle binary vectors representing
the solutions of the commitment problem.Then the solutions are decoded
in solving the dispatching problem with an exact method to obtain the
precise production of each unit. In this paper a multi-objective version
of the UCP taking the emission of gas into account is presented. In
this multi objective UCP the dispatching problem remains easy to solve
whereas considering it separatly remains interesting. A multi-objective
GA handling binary vectors is applied. However for a binary representa-
tion there is a set of solutions of the dispatching problem that are pareto
equivalent. Three decoding strategies are proposed and compared. The
main contribution of this paper is the third decoding strategy which
attaches an approximation of the Pareto front from the associated dis-
patching problem to each genotypic solution. It is shown that this decod-
ing strategy leads to better results in comparison to the other ones.

Keywords: UCP · Metaheuristics · Heuristic · Multi-objective opti-
mization

1 Introduction

The UCP is used to find the scheduling of commissioning and production of
generating units that minimizes the production cost. However, environmental
protection has become a major issue. In response to the growth of the negative
impacts on the environment and due to the growing importance of environmen-
tal interest in society, governments have developed and implemented laws or
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technical standards in order to reduce the negative impacts of human activ-
ity on the environment. For this reason new modeling of the UCP taking into
account some limitation constraints on gas emissions [2] has been proposed. A
bi-objective model has also been proposed, but is usually solved by reducing the
two objectives to one, using the weighted sum approach [13,17]. In [15], a multi-
objective version of the UCP is solved with a genetic algorithm, but it does not
directly exploit the concept of Pareto dominance. The authors applied a clas-
sical genetic algorithm, with the exception that the selection process is based
on a specific version of the tournament selection. Two individuals are randomly
selected from the population and a stochastic competition of the objective that
are chosen randomly, is performed to determine the winner that will survive into
the next generation.

The UCP can be separated into two sub-problems. The commitment problem
which is to give the on/off scheduling of each unit and then the dispatching
problem which is to give the exact production for each turned on unit. In the
single objective case, the dispatching problem is a quadratic continuous problem
which is easy to solve exactly. For this reason evolutionary algorithms generally
handle binary vectors giving the on/off scheduling of each unit to solve the
single-objective UCP [3,7,8,10,16]. Then to obtain a complete description of
the solution (the phenotypic solution), the production of each turned on unit is
determined optimally using a λ-iteration method [14]. This binary representation
takes advantage of a real one because the search space is considerably reduced.
For the multi-objective the dispatching problem remains interesting to exploit
separately because it has still good properties. All the solutions of the dispatching
problem are supported and can be found by the scalarizing method. This method
is to transform the problem with two objectives f1 and f2 into a single objective
problem optimizing the function λf1 + (1 − λ)f2, where λ ∈ [0, 1]. The quality
of the results found in the single objective case and the fact that the multi-
objective version of the dispatching problem has good properties lead us to a
specific interest in considering a similar two level method of resolution for the
multi-objective UCP.

In this paper a multi-objective GA based on NSGA-II [4] is proposed. This
GA handle binary vectors representing the solutions of the commitment prob-
lem. Then the phenotypic solutions corresponding to the production of each unit
has to be find by a decoding method. Since the dispatching problem is also a
multi-objective problem there are many candidates of phenotypic solutions for
one genotypic solution. Therefore three different decoding methods are proposed
and compared. The first one is to construct the phenotypic solution by solving
the dispatching problem by optimizing the function f1+f2. The second is to add
a real λ into the genotypic representation of a solution. The phenotypic solu-
tion is decoded by solving the dispatching problem minimizing λf1 + (1 − λ)f2.
The third is to associate a set of Pareto equivalent solutions of the correspond-
ing multi-objective dispatching problem to each genotypic solution. For the last
decoding system, the process of fitness and diversity assignment of NSGA-II has
to be adapted.The fact that many phenotypic solutions are attached to a single
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genotypic solution must be taken into account. The main contribution of this
paper is to show that the multi decoding embedded approach has an advantage
over the two other less complex decoding systems that are proposed.

The paper is organized as follows. In the next section the multi-objective UCP
is described in details. Then the three solving methods corresponding to the three
binary genetic algorithms using the different decoding strategies are presented.
Finally the experimental process and the obtained results are presented and
discussed before the conclusion section.

2 Multi-objective Unit Commitment Problem - MO-UCP

In this section, the MO-UCP is presented in details. This problem is the same as
the classical UCP but an objective is added to take into account the gas emission
of SO2 and CO2.

2.1 Unit Commitment Problem

Unit Commitment Problem (UCP) [8] is to schedule generating units online or
offline over a scheduling horizon. The goal is to minimize the power produc-
tion cost while satisfying a set of operational constraints. The production cost
includes the fuel and start-up costs. Constraints are capacity of production of
each units, minimum up/down time and spinning reserve. UCP is usualy mod-
eled as as a mixed integer non-linear problem. It consists of binary variables ui,t

that takes value 1 if a unit i is turned on at time t and 0 otherwise, continuous
variables pi,t that denotes their prodduction amounts. It is a very complex prob-
lem to solve because of its enormous dimension, a non-linear objective function,
and time-dependent constraints. Indeed, the UCP is a NP-complete problem [6].

2.2 Multi-objective UCP

The first objective is the same as in single-objective UCP. It minimizes the cost
of production. This production cost is divided into two components, the fuel cost
and the start up cost. For a system of N units and a time horizon of T periods,
the objective function can be described as follows:

f1(u, p) =
∑T

t=1

∑N
i=1 FCi(pi,t) × ui,t + CSi(T

off
i,t−1) × (1 − ui,t−1)ui,t,

where:

– FCi is the fuel cost function of the unit i, which is modeled by a quadratic
function:

FC(pi,t) = a1,i + a2,i × pi,t + a3,i × p2i,t,

where a1,i, a2,i and a3,i are real cost coefficients for the unit i.
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– CSi is the start-up cost for unit i, which depends on time T off
i,t−1 the unit i

has been turned off at time t − 1:

CSi(T
off
i,t−1) =

{
CScold if T off

i,min + Tcs,i ≤ T off
i,t−1

CShot else
,

where T off
i,min + Tcs,i is the time it takes the unit i to become cold.

The second objective function measures the SO2 and CO2 emissions:

f2(p, u) =
T∑

t=1

∑
i,ui,t=1

b0,i + b1,ipi,t + b2,ip
2
i,t

The coefficients b0,i, b1,i, b2,i used in this paper are the ones proposed in [13].
The minimization of the objectives of the UCP is subject to the following

system and unit constraints:

1. Power balance constraints:
∑N

i=1 pi,tui,t = Dt ∀t ,

where Dt is a real number giving the load demand at time t.
2. Spinning reserve constraints:

∑N
i=1 pi,maxui,t ≥ Dt + Rt ∀t ,

where Rt is a real giving the minimal reserve at time t.
3. Unit output constraints:

pi,min ≤ pi,t ≤ pi,max ∀t,

where pi,min and pi,max are the lower and upper bounds on the energy pro-
duction of unit i respectively.

4. Minimum up time limit:

T on
i,t−1 ≥ T on

i,min × (1 − ui,t)ui,t−1 ∀t,

where T on
i,t−1 is the time from which the unit i is turned on at time t− 1 and

T on
i,min is the minimal time during which unit i has to stay turned on.

5. Minimum down time limit:

T off
i,t−1 ≥ T off

i,min × (1 − ui,t−1)ui,t ∀t,

where T off
i,t−1 is the time from which the unit i is turned off at time t− 1 and

T off
i,min is the minimal time during which unit i has to stay off.

The feasible outcome vectors of the objective space are compared using the
Pareto dominance �. In this minimization context, a solution x ∈ Ω is said to
dominate a solution y ∈ Ω, denoted by x � y, if they satisfy relation (1).

∀i ∈ {1, 2}, fi(x) ≤ fi(y)
∧

∃i ∈ {1, 2}, fi(x) < fi(y) (1)
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3 Solving Methods

Many evolutionary algorithms involving a decoding system have been proposed
to solve the single objective version of the UCP [3,7,8,10,16]. A binary vector
u of size T ×N is used to represent the solutions. In this representation each ui,t

gives the state of a unit i (on or off) at a given time period t of the scheduling.
Then the exact production of each unit is decoded by solving the dispatching
sub-problem (D(u)) using the lambda-iteration method [14]:

min
p

T∑
t=1

∑
i

s.t ui=1

f1((pi,t)i)

such that:
∑

i
s.t ui=1

pi,t = Dt (2)

pi,min ≤pi,t ≤ pi,max ∀i s.t ui = 1 (3)

The advantage of the binary vector representation over a real vector represen-
tation where the productions are directly given is obvious: the search space is
considerably reduced. In the multi-objective case, the dispatching problem is
also a multi objective one as f1 and f2 have to be minimized. But this sub-
problem has still very good properties that make it easy to solve. It is a convex
and continuous bi-objective problem. As the objective functions are convex and
the decision variables are defined in a convex set all the solutions are supported
[5] . Then the Pareto front solution is convex and totally defined by the set:

{f1,λ, f2,λ|λ ∈ [0, 1]},

where f1,λ = f1(p∗λ) and f1,λ = f1(p∗
λ), with p∗

λ solution of the dispatching
problem D(u, λ) defined as follows:

p∗
λ = arg(min

p

T∑
t=1

∑
i

s.t ui=1

λf1((pi,t)i)) + (1 − λ)f2((pi,t)i))

such that (2) and (3) are met.
It seems interesting to consider a two level based method in the multi-

objective version which will be similar to those proposed for the single-objective
UCP. The method proposed is a GA, NSGA-II, handling binary vectors repre-
senting the solutions of commitment problem. Then the production of the units
are obtained by using a decoding method. However, since the dispatching prob-
lem is a multi-objective one, there are many pareto equivalent solution to fix
the production values. It becomes difficult to choose a method to associate phe-
notypic solutions with genotypic ones. Then three approaches of decoding are
proposed and compared. In the first approach the solution associated with a
binary representation is the one obtained by solving the dispatching problem for
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λ fixed to 0.5. This approach is a naive one because it might miss some possibly
good solutions. The second approach consists of adding λ to the representation
of an individual. Then a binary vector associated with an on/off scheduling can
be present many times in the population with different value of λ and all the
solutions are reachable. In the last approach, an approximation of the Pareto
front of the dispatching sub-problem is associated with each individual. There-
fore an adapted version of NSGA-II is proposed to manage the association of
many phenotypic solutions to a single genotypic solution.

In the next subsection, the common components of the three methods, which
are essentially evolutionary operators, are presented. Then each method are
explained in details.

3.1 Common Components

Each multi-objective GA proposed hereafter are based on NSGA-II [4]. In each
case the following operators are used:

Crossovers: Two crossovers are used. The first one is the classical one-point
crossover. The second one is an intelligent two-points crossover. The principle
is to randomly choose a window size and if the window size is smaller than the
remaining portion of the solution, a new individual is created with the window
portion of the worst parent and the remaining portion from the best parent.
The reverse is done if the window size is larger than the number of genes in
the remaining solution. In Figure 1 the size of the selected window SW is larger
than the remaining solution, then the offspring obtained C is composed with the
window portion of the best parent P2 and the remaining portions of P1.

Fig. 1. Intelligent 2-points crossover between P1 and P2

Mutations: Two mutations are used. The first one is the standard 1-bit-flip-
mutation. This operator randomly flips a bit of the vector with a low probability.
The second one randomly chooses a window whose size is randomly chosen and
flips all the bits of this window.

Repair Operator: The aim of this operator is to correct a solution if it does not
meet the constraints of demand or of minimum on/off time. Firstly, it corrects
the violations of time constraint hour by hour in modifying the states of uni-
ties if necessary. Then corrections are done on the constraints of power balance.
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This is done hour-by-hour. If the maximal capacity of production of the turned
on units is lower than the power balance then a unit is turned on. The unit to
turn on is chosen randomly among the units that can be turned on depending on
the past hour (i.e. if this unit was turned on the previous hour or if it was turned
off for a time long enough). The reverse process is done if minimal capacity of
the turned on units exceeds the load demand. Naturally this correction process
does not guarantee obtaining a feasible solution but this operator speeds up the
algorithm and hence increases the possibility of finding such solutions.

Objective Function: The objective values are computed by using the exact
production pi,t at each time period t and for each unit i which is a phenotypic
solution. The way to obtain phenotypic solutions from genotypic ones is different
for each approach. The objective functions correspond to f1, the cost production
and f2, the quantity of SO2 and CO2 emission. Nevertheless some penalties
have to be added on the violation of time and load constraints. Therefore the
objectives are:⎧⎪⎪⎨
⎪⎪⎩

obj1 = f1 + cp

T∑
t=1

(
N∑

i=1

pi,t −Dt) + cp(T t−1
i,off (ui,t − xi,t−1) + T t−1

i,on(ui,t−1 − ui,t))

obj2 = f2 + cp

T∑
t=1

(
N∑

i=1

pi,t −Dt) + cp(T t−1
i,off (ui,t − ui,t−1) + T t−1

i,on(ui,t−1 − ui,t)),

(4)
where cp is a constant positive number.

3.2 Naive Approach

In this approach a genotypic solution is decoded in solving a dispatching prob-
lem that is reduced to a single objective one by scalarization. Then it is possible
that some pareto optimal phenotypic solutions cannot be reached because they
are not solution of the chosen scalarized sub-problem. The decoding process is
explained in detail hereafter.

Decoding Process: The phenotypic solution (pi,t)i,t associated to a geno-
typic is computed by solving the dispatching problem D(u, 0.5) thank to the
λ-iteration method.

3.3 Scalarized Decoding

In this approach an integer (λu ∈ �0, 100�) is added to the genotypic repre-
sentation of a solution. This value is chosen randomly during the initialization
process and then can be modified by the evolutionary operators. It is used to
define the coefficients of scalarization during the decoding process. Hence, the
main difficulty of the previous approach becomes possible to overcome, which is
the inaccessibility of some pareto optimal solutions. Actually as the pareto front
solution of the dispatching problem will always be convex all the pareto optimal
solutions are reatchable by the scalarization method.
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Representation: A value λu is added at the end of the representation vector
with a binary encoding. λu is an integer between 0 and 100. The representation
is shown Fig. 2.

Fig. 2. Representation genotypic of a solution: the scalar λ is included in the repre-
sentation

Decoding Process: The phenotypic solution (pi,t)i,t associated to a geno-
typic is computed in solving the dispatching problem D(u, λu

100 ) thank to the
λ-iteration method.

Adaptation on the Crossover: The one point crossover is transformed in a
two-points crossover with the first crossover point in a locus of the definition of
u and the second point in a locus of definition of λu. It is done in order that the
crossover can have a significant impact on λu.

Adaptation on the Mutation: The 1-bit-flip-mutation is applied only on the
bits corresponding to u. λu is mutated by being replaced by a value chosen
randomly between 0 and 100 with a normal distribution centered on its original
value.

3.4 Multi Decoding Embedded Approach

In this approach a genotypic solution is associated with a set of phenotypic
solutions. This set of solutions is from the optimal pareto front solution of
the dispatching problem associated with the genotypic solution. Fig. 3 helps

Fig. 3. Repressentation of the genotypic solutions in the objective space
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to understand how genotypic solutions are represented in the objective space.
The continuous line is the optimal pareto front of the entire MO-UCP. This front
can be non-convex. Each one of the convex pareto fronts composed of the round,
square or diamond points is derived from a single genotypic solution. They are
composed of the phenotypic solutions found in solving the dispatching prob-
lem defined by the corresponding genotypic solution. The phenotypic solutions
attached to a genotypic solution are pareto equivalent and form a convex front.

Decoding Process: In this case a pareto set Pu will be associated with a
genotypic solution u. This set is:

Pu = {p
k

nλ
u , k = 0...nλ}, (5)

where nλ is a fixed integer and p
k

nλ
u the optimal solution of D(u, k

nλ
).

Fig. 4. representation genotypic of a solution u

Fig. 5. representation phenotypic of a solution u for nλ = 3

As many phenotypic solutions are attached to a single genotypic solution,
the fitness assignment and diversity assignment methods of NSGA-II have to be
adapted. This will be explained in detail in the following. The decoding process is
represented in Fig. 4 and Fig. 5.
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Adaptation of the Fitness Assignment Process: The fitness value assigned
to a solution u is the best fitness value among the fitness values of the phenotypic
solutions pu ∈ Pu:

fit(u) = opt
pu∈Pu

(fit(pu)) (6)

In NSGA-II the fitness is the rank of the solution, then opt is the minimization
operator. This process ensures that the genotypic solution from which a pareto
optimal solution can be generated is not be discarded.

Adaptation of the Diversity Assignment Process: Let Fi be the set of
the phenotypic solutions of rank i. In NSGA-II, the diversity measure used is
the crowding distance between a solution x and the set of the other solutions
having the same fitness, i.e. the same rank: dc(Ffit(x) − {x}, x). The adapted
diversity assignment is the maximal diversity measurement among the ones of
the individuals pu ∈ Pu ∩ Ffit(u) computed without considering the elements
of Pu:

dc(Ffit(u), u) = max
pu∈Pu∩Ffit(u)

dc(Ffit(u) − {Pu}, pu) (7)

4 Experiments and Discussion

The aim of this section is to compare the three proposed methods.

4.1 Experimental Protocol

Instances: Experiments will be realised on instances of 10, 40 and 100-unit data
that are generated by duplicating the unit characteristics of the ten-unit system
and the demand given in Tables 1 and 2. The load demands are adjusted in
proportion to the size system. In all cases it is supposed that the reserve is 10%
of the demand.

Table 2. Demand data with 24h time horizon

hour 1 2 3 4 5 6 7 8 9 10 11 12

demand (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

hour 13 14 15 16 17 18 19 20 21 22 23 24

demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Performance Assessment: The different methods of performance assessment
that can be chosen to compare multi-objectives algorithms are explained in
details in [9]. In our case the ε-indicator and the hypervolume difference indicator
are selected as they are complementary. Let Zall be the set of objective vectors
from all the Pareto set approximations we obtained during all our experiments.
Then, a reference set R contains the non-dominated points of Zall.
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Table 1. Generating unit data for the ten-unit base system

unit unit1 unit2 unit3 unit4 unit5 unit6 unit7 unit8 unit9 unit10

Pmax(MW) 455 455 130 130 162 80 85 55 55 55

Pmin(MW) 150 150 20 20 25 20 25 10 10 10

a1 1000 970 700 680 450 370 480 660 665 670

a2 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79

a3 (×10−5) 48 31 200 211 398 712 79 413 222 173

b1 712 570 700 860 350 370 480 660 665 670

b2 12.9 10.26 10.60 15.50 7.70 9.26 3.74 5.92 7.27 7.79

b3(×10−4) 4 3 22 11 10 22 30 40 13 23

Tup
min 8 8 5 5 6 3 3 1 1 1

T down
min 8 8 5 5 6 3 3 1 1 1

CShot 4500 50000 550 560 900 170 260 30 30 30

CScold 9000 10000 1100 1120 1800 340 520 60 60 60

TCS 5 5 4 4 4 2 2 0 0 0

initial status (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1

ε-indicator I1ε+. The unary version of this indicator is computed using the binary
version given by (8) and the reference set R, with I1ε+(A) = Iε+(A,R).

Iε+(A,B) = inf
ε∈R

{∀z1 ∈ B,∃z2 ∈ A,∀i ∈ 1 . . . n, z1i ≤ ε + z2i } (8)

Hypervolume difference indicator I−
H . The hypervolume indicator IH is com-

puted by the measure of the hypervolume between a set of solutions and the
point z = (z1, . . . , zn) where zk is the upper bound of the kth objective regard-
ing all the solutions of Zall. The hypervolume difference indicator I−

H is then
computed with I−

H(A) = IH(R) − IH(A).

Experimental Design: All the implementations are realized under the Par-
adisEO 2.0 [11] software framework. A sensitivity analysis is carried out for
each algorithm to determine the effect of the crossover rate and of the mutation
rate. It is done thanks to the R statistical package Irace [12]. The population
size is fixed to 100 individuals. A convergence criteria of 100 generations with-
out improvement of the hypervolume is used as stopping criteria. For the multi
decoding embedded approach the parameter nλ is fixed to 10. For each case 20
runs are launched for each decoding system using the same seeds. Most of the
performance assessment procedures are next achieved using PISA [1] platform
and its performance assessment module. The existence of a significant difference
between the result obtained by the different decoding systems is verified with
the Friedman statistical test. Then a post-hoc test is carried out to compare the
decoders by pairs. A p-value lower than 0.005 is used as a criterion for rejecting
the null hypothesis.
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Decoder Naive Scalarized Multi

Naive - = <

Scalarized = - <

Multi > > -

Fig. 6. Results optained from statistical comparisons with the ε-indicator and the
hypervolume indicator

Indicator I1ε+ I−H
Decoder best mean best mean

Naive 0.736 0.738 0.451 0.455

Scalarized 0.719 0.738 0.433 0.454

Multi 0.709 0.712 0.422 0.425

Fig. 7. Best value obtained for each indicator and decoder over the 20 runs

4.2 Experimental Results

Results for the 10-units Case: In Table 6 the results of the statistical tests of
comparisons are summarized. The results do not differ from one indicator to the
other one. In this table and on all the following the column ”Naive” indicates
results of the first approach, the column ”Scalarized” those of the second one
and the column ”multi” those of the multi decoding embedded approach. From
this table we can see that for the 10-unit based case the difference between the
naive approach and the scalarized approach is statistically significant. However
the multi decoding embedded approach gives results significantly better than
those obtained by the other approaches. Table 7 gives the best and average
values obtained for each indicator and decoder over the 20 runs. The decoding
embedded approach improves the ε-indicator value of 1.36% in comparison to
the other method. It also improves the hypervolume indicator of 2.54%.

Results for the 40-units Case: In Table 8 the results of the statistical tests
of comparisons are summarized. It can be observed that the multi decoding
embedded approach gives significantly better results than the one obtained with
the two other approaches. The scalarized decoding approach is better than the
naive one.

In Tab. 9 the best and average values obtained for each indicator and decoder
over the 20 runs are shown. It can be seen that that for the ε-indicator the
scalarizing approach improves the results of more than 7% in comparison with
the first naive approach. Then the multi decoding embedded approach improves
the result of the scalarizing approach by more than 99%. For the hypervolume
indicator there is an improvement of 31% when adding the λ value in the repre-
sentation. Then the multi decoding embedded approach improves the result of
the scalarizing approach by more than 99.5%.
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Decoder Naive Scalarized Multi

Naive - < <

Scalirized > - <

Multi > > -

Fig. 8. Results obtained from statistical comparisons with the ε-indicator and the
hypervolume indicator

Indicator I1ε+ I−H
Decoder best mean best mean

Naive 0.195 0.333 0.346 0.508

Scalarized 0.181 0.233 0.208 0.377

Multi 0.00129 0.0840 0.000880 0.100

Fig. 9. Best value obtained for each indicator and decoder over the 20 runs

Results for the 100-units Case:

Decoder Naive Scalarized Multi

Naive - < <

Scalarized > - <

Multi > > -

Fig. 10. Results obtained from statistical comparisons with the ε-indicator and the
hypervolume indicator

In Table 10 the results of the statistical tests of comparisons are summarized.
Again, the multi decoding embedded approach gives results significantly better
than the ones obtained with the two other approaches. The scalarized decoding
approach is better than the naive one.

Indicator I1ε+ I−H
Decoder best mean best mean

Naive 0.306 0.573 0.549 0.864

Scalarized 0.016 0.404 0.0169 0.636

Multi 0.00389 0.150 0.000177 0.264

Fig. 11. Best value obtained for each indicator and decoder over the 20 runs

In Table 11 the best and average values obtained for each indicator and
decoder over the 20 runs are shown. In comparison with the naive approach, the
scalarazing approach improves the results by 94.7% for the ε-indicator and by
97% for the hypervolume. Then the multi decoding embedded approach improves
the result of the scalarizing approach by 75.69% for the ε-indicator and by 99%
for the hypervolume-indicator .
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This results and the statistical tests lead to conclude that the choice of the
decoder system has a significant impact on the result. Results obtained with
the last decoder are drastically better than the ones obtained with the other
decoders.

5 Conclusion

In this article a binary genetic algorithm has been proposed to solve a multi
-objectives UCP. The main difficulty is that for one genotypic solution many
phenotypic solutions could be attached. These phenotypic solutions are those
of the pareto front solution of the dispatching problem. Three original decod-
ing systems associating phenotypic solutions with the genotypic ones have been
presented and compared.

The multi decoding embedded system is the main contribution of this paper.
The efficiency of this method has been shown on three data set of different size.
In each case the results obtained are significantly better than those obtained by
the two other strategies. The bigger the data, the better the improvement. This
decoding system is then the one selected. In a future work, the objective will
be to compare the proposed binary GA using this decoder to the GA proposed
in [15] and to a more classical multi-objective GA using a real vector to encode
the solutions. First of all, it will be interesting to make an analyse study of
the impact of the choice of the nλ parameter. An important advantage of this
method is that it could be reused to any multi-objective problem that can be
written as follow:

opt
x,y

(f1(x, y), f2(x, y), ..., fn(x, y)) (9)

such that:

x ∈ X (10)
y ∈ Y (x) (11)

And such that for a fixed x the sub-problem P(x) finding the optimal pareto
front of solutions with y ∈ Y (x) is easy to solve. In this case the genetic algorithm
will handle the x variables and the phenotypic solutions are found in solving
P(x). The methodology chosen to solve P(x) does not matter. This is another
advantage of this decoding system. Then, to test the multi decoding embedded
approach on some other problem is one of our perspectives. We also believe
that the multi decoding embedded approach can be generalized to any multi-
objectives genetic algorithm. Then we plan to develop a generalized version of
this approach that is suitable to any genetic algorithm.
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12. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. rep, IRIDIA (2011)

13. de Moura Gomes Viana, A.M.M.: Metaheuristics for the Unit Commitment Prob-
lem The Constraint Oriented Neighbourhoods Search Strategy. Ph.D. thesis, Fac-
ulty of Engineering, University of Porto (2004)

14. Saramourtsis, A., Damousis, J., Bakirtzis, A., Dokopoulos, P.: Genetic algorithm
solution to the economic dispatch problem–application to the electrical power grid
of crete island. In: Proc. Workshop Machine Learning Applications to Power Sys-
tems (ACAI), pp. 308–317 (2001)

15. Srinivasan, D., Tettamanzi, A.G.: An evolutionary algorithm for evaluation of emis-
sion compliance options in view of the clean air act amendments. IEEE Transac-
tions on Power Systems 12(1), 336–341 (1997)

16. Swarup, K., Yamashiro, S.: Unit commitment solution methodology using genetic
algorithm. IEEE Transactions on Power Systems 17(1), 87–91 (2002)

17. Zhang, X.H., Zhao, J.Q., Chen, X.Y.: Multi-objective unit commitment fuzzy mod-
eling and optimization for energy-saving and emission reduction. In: Proceedings
of the CSEE 22, 71–76 (2010)



Comparing Decomposition-Based and
Automatically Component-Wise Designed
Multi-Objective Evolutionary Algorithms

Leonardo C.T. Bezerra(B), Manuel López-Ibáñez, and Thomas Stützle
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Abstract. A main focus of current research on evolutionary multi-
objective optimization (EMO) is the study of the effectiveness of EMO
algorithms for problems with many objectives. Among the several tech-
niques that have led to the development of more effective algorithms,
decomposition and component-wise design have presented particularly
good results. But how do they compare? In this work, we conduct a sys-
tematic analysis that compares algorithms produced using the MOEA/D
decomposition-based framework and the AutoMOEA component-wise
design framework. In particular, we identify a version of MOEA/D that
outperforms the best known MOEA/D algorithm for several scenarios
and confirms the effectiveness of decomposition on problems with three
objectives. However, when we consider problems with five objectives, we
show that MOEA/D is unable to outperform SMS-EMOA, being often
outperformed by it. Conversely, automatically designed AutoMOEAs dis-
play competitive performance on three-objective problems, and the best
and most robust performance among all algorithms considered for prob-
lems with five objectives.

Keywords: Multi-objective optimization · Evolutionary algorithms ·
Decomposition · Component-wise design · Automatic configuration

1 Introduction

Over the past years, research on evolutionary multi-objective optimization
(EMO) has focused on the development of effective algorithms for many-objective
optimization, as evidenced by the number of recent publications on this topic [20].
Many are the reasons that stirred this interest. First, Pareto dominance becomes
a weak relation as the number of objectives increases. As a result, the number of
feasible solutions that are incomparable becomes too large to give algorithms that
rely on Pareto dominance enough convergence pressure [1,13]. Second, the num-
ber of applications of many-objective optimization has demanded more effective
algorithms for this scenario. In particular, many real-world engineering problems
can be modeled as many-objective optimization problems, where constraints are
c© Springer International Publishing Switzerland 2015
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considered objectives [10]. Finally, the number of solutions needed to accurately
approximate Pareto fronts grows exponentially with the number of objectives [13].

Among the many different search techniques proposed for improving the
effectiveness of many-objective algorithms, indicator- and decomposition-based
approaches have shown very good results [16,23,28]. In particular, decomposi-
tion is an old search paradigm originally applied by EMO already two decades
ago [11], which has recently regained prominence with the proposal of the
MOEA/D framework [26]. In this search paradigm, the original multi-objective
problem is decomposed into simpler, single-objective subproblems by means of
scalarizations. Originally, this approach was not pursued by the EMO community
in general, particularly because decomposition-based algorithms may waste func-
tion evaluations searching in directions that do not present Pareto-optimal solu-
tions. However, the best-known MOEA/D algorithm [27], which won the IEEE
CEC 2009 competition on multi-objective optimization [28], uses a dynamic
resource allocation strategy to overcome this drawback. Unfortunately, no per-
formance assessment concerning this version of MOEA/D has been reported so
far using large and representative benchmark sets on which other EMO algo-
rithms have typically been tested.

More recently, another promising paradigm for devising effective EMO
algorithms was proposed, namely the component-wise design [5]. This paradigm
proposes reusing algorithmic components from well-known EMO algorithms in
novel ways, thus leading to new designs. Concretely, given a flexible template,
algorithms can be created by plugging in a set of desired components. In the orig-
inal proposal, authors have automatically designed several algorithms using the
component-wise design framework for continuous and combinatorial optimiza-
tion [5]. We call the algorithms resulting from this automatic configuration pro-
cess AutoMOEAs in what follows. The AutoMOEAs devised for many-objective
optimization problems have shown competitive performance when compared to
several Pareto- and indicator-based algorithms on a large set of three- and five-
objective benchmark test problems, being able to match (and often surpass) the
performance of the original algorithms from which the AutoMOEAs components
were gathered.

In its current stage, the component-wise AutoMOEA framework only con-
tains components from Pareto-based and indicator-based algorithms. However,
given the interesting results the AutoMOEAs were already able to achieve, in
this work we conduct a systematic performance assessment to understand how
they compare to the effective decomposition-based approach. In particular, we
consider several MOEA/D algorithms, including the version that won the IEEE
CEC competition, and the AutoMOEAs designed in the original component-
wise design paper [5]. To make this analysis more representative, we also include
two effective indicator-based algorithms, SMS-EMOA [3] and IBEA [29], as well
as the two best known Pareto-based algorithms, NSGA-II [8] and SPEA2 [30].
Furthermore, we consider a wide benchmark test set comprising the DLTZ [9]
and WFG [12] benchmarks with three and five objectives, as well as several
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different problem sizes. In all scenarios considered, algorithms are properly tuned
to perform at their best.

The investigation we conduct in this paper produces many interesting
insights. First, we show that the MOEA/D algorithm that won the IEEE CEC
competition is unable to outperform some of the other algorithms considered.
Particularly for the five-objective WFG set, this version is clearly outperformed
by SMS-EMOA. Second, we show that a straightforward alternative version of
MOEA/D is able to consistently outperform the version used in the IEEE CEC
competition, and also outperforms all other algorithms for the WFG set with
three-objective problems. Nevertheless, SMS-EMOA still presents better results
than this improved MOEA/D version on the five-objective WFG set. Finally, we
show that the AutoMOEAs match the best-performing algorithms on all WFG
scenarios, and outperform them on the 5-objective DTLZ set.

The remainder of this paper is organized as follows. We review the EMO
search paradigms we consider in Section 2. Next, we describe the decomposition-
based and the component-wise design paradigms in Sections 3 and 4, respectively.
In particular, we detail the designs of the algorithms that are used in the exper-
imental evaluation. The experimental setup is given in Section 5 followed by the
presentation and discussion of the results in Section 6. We conclude and discuss
future work in Section 7.

2 Search Paradigms in Multi-Objective Optimization

In this section, we briefly review the search paradigms found in the EMO litera-
ture that we use in this performance assessment. While this review is not exhaus-
tive, the algorithms we highlight in each of the paradigms are the most represen-
tative and most effective in the literature for their corresponding paradigm [5]. In
particular, this represents a major improvement over other recent experimental
analysis conducted on the effectiveness of EMO algorithms for many-objective
optimization [16], which have used representative but not the most effective
algorithms for each paradigm.

Pareto-Based Approaches. Early EMO algorithms tried to find approxima-
tion fronts as diverse and close to the optimal front as possible mostly thanks
to the convergence pressure provided by Pareto dominance. Among these, we
highlight NSGA-II [8] and SPEA2 [30]. Although these algorithms use differ-
ent mechanisms, both are based on pushing the population towards convergence
by favoring nondominated solutions, while simultaneously trying to maintain a
population as diverse as possible. In EMO, diversity is a measure of the different
trade-offs among the objectives considered, rather than an attempt to prevent
stagnation as in the single-objective optimization literature. For most of the test
problems considered then, these Pareto-based approaches were able to perform
quite effectively [9,31]. However, the majority of these test cases considered two
or three objectives only.
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Indicator-Based Approaches. As the performance assessment of EMO algo-
rithms reached a mature stage, researchers observed that quality indicators could
be used within algorithms to direct their search in a Pareto-compliant way.
More importantly, the convergence pressure provided by these quality indicators
does not weaken as the number of objective increases. Within this paradigm, we
highlight IBEA [29] and SMS-EMOA [3]. IBEA uses a binary quality indi-
cator to compare solutions. In particular, the most effective version of IBEA
uses the binary ε-indicator [5,29]. By contrast, SMS-EMOA uses the exclusive
hypervolume contribution to direct its search. Although theoretical complexity
analysis shows that this indicator can become exponentially costly as the num-
ber of objectives increases [2], empirical analysis has shown that recent efficient
algorithms [2,24,25] give a runtime reasonable for practical purposes [19].

Decomposition-Based Approaches. Decomposition is one of the earliest
search paradigms in EMO [11]. It is based on the principle that tackling single-
objective subproblems is an easier task than facing the original multi-objective
problem. However, in continuous optimization, decomposition was initially con-
sidered inefficient in comparison with other EMO algorithms, mostly due to the
number of function evaluations that it may waste while searching along directions
that do not present Pareto-optimal solutions. More recently, the MOEA/D [26]
framework stirred the research on this paradigm, primarily when a variant of
MOEA/D won the IEEE CEC 2009 competition on multi-objective optimiza-
tion [27,28]. This variant improves over the original MOEA/D by using dynamic
resource allocation, i.e., favoring search directions where the algorithm is pro-
gressing better. However, no performance assessment concerning this version of
MOEA/D has been reported so far using a large and representative benchmark
set where other EMO algorithms are typically tested.

Component-Wise Design. Proposed as a comprehensive design paradigm, the
component-wise design aims at gathering the potential of the different existing
EMO search paradigms. In its current version, the AutoMOEA framework [5]
provides a flexible template and a collection of algorithmic components com-
prising both Pareto-based and indicator-based paradigms. Given an application,
designers can then tailor algorithms to their target application. To demonstrate
the potential of the component-wise design, the authors used an automatic con-
figuration tool to automatically design various AutoMOEAs for the most-used
continuous benchmarks [5], as well as for several combinatorial problems [6]. In
particular, the AutoMOEAs designed for five-objective problems presented out-
standing performance, matching the best-performing algorithms for the WFG
benchmark, and outperforming all of them for the DTLZ benchmark [5].

In the following sections, we detail the specific variants of MOEA/D and
AutoMOEA that are the focus of our performance assessment.

3 MOEA/D

Although it may be understood as an algorithmic framework, MOEA/D was
originally proposed as a stand-alone algorithm [26]. Later, improved versions



400 L.C.T. Bezerra et al.

were also proposed as stand-alone algorithms [15,27]. For this reason, from now
on we always refer to the different MOEA/D algorithms rather than to instan-
tiations of a more general framework.

The common underlying structure shared by all MOEA/D algorithms con-
sidered in this work is the structure of the original MOEA/D algorithm, to which
we will refer simply as MOEA/D. MOEA/D simultaneously explores the dif-
ferent search directions defined by the weight vectors of scalarization methods
such as weighted linear sums or Tchebychev utility functions. Another particular
feature presented by MOEA/D is the selection mechanism, namely, variation is
applied to randomly selected parents from local neighborhoods, built for each
search direction. Although the algorithm maintains a single global population,
these local neighborhoods are meant to help the algorithm progress along the
search directions employed.

A couple of years later, a new version of MOEA/D was proposed [27].
MOEA/DDRA-DE, as we will call it, uses dynamic resource allocation (DRA)
and the differential evolution (DE) variation operator. The DRA strategy works
as follows. Initially, each of the N weight vectors is given the same utility value.
At each iteration, MOEA/DDRA-DE selects a subset N

ν to explore via tournament
selection based on the utility values of the weights. Once the weights have been
selected, DE variation is applied to each search direction. In this version, how-
ever, a parameter δ regulates whether the target vector will be randomly chosen
from the local neighborhood or from the whole population. Finally, a subset of
the selection set (local neighborhood or population) is used to update the search
reference point for the current weight. The size of this subset is regulated by an
additional parameter φ. Every 50 iterations, the utility values of the weights are
recomputed.

The differences between MOEA/D and MOEA/DDRA-DE are substantial,
particularly given the number of parameters used to define the DRA strategy.
In addition, since MOEA/DDRA-DE uses a different variation operator from all
the other EMO algorithms we consider here, it is not really possible to assess
whether improvements over the original MOEA/D (and other algorithms) could
be explained solely by DRA, by DE, or by the combination of both compo-
nents. For this reason, we consider an alternative version of MOEA/DDRA-DE

that we call MOEA/DDRA-SBX. The only difference between MOEA/DDRA-DE

and MOEA/DDRA-SBX is how a trial vector (or offspring) is generated, that is,
MOEA/DDRA-SBX uses the SBX crossover operator, instead of DE variation, to
produce a single solution at a time.

Below we summarize all the MOEA/D algorithms we consider in this work.
All versions use Tchebychev utility functions to search the objective space.

MOEA/D: original MOEA/D algorithm [26], with SBX crossover and no
dynamic resource allocation.

MOEA/DDRA-DE: MOEA/D algorithm used in the 2009 IEEE CEC competi-
tion [27]. This algorithm uses DE variation and dynamic resource allocation.
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MOEA/DDRA-SBX: alternative version of the MOEA/D algorithm used in
the 2009 IEEE CEC competition [27]. This algorithm uses the SBX crossover
operator and dynamic resource allocation.

4 AutoMOEA

The AutoMOEA component-wise design framework explores the concept that
existing algorithmic components can lead to more effective designs than existing
stand-alone algorithms if components are combined in more effective ways. This
idea has been used in other multi-objective metaheuristics and led to the develop-
ment of effective algorithms that significantly outperformed existing approaches
from which algorithmic components were gathered [4,18]. Concerning EMO, the
AutoMOEA framework is based on a template where components can be selected
from existing Pareto- and indicator-based approaches.

The core structure of AutoMOEA algorithms are no different from traditional
evolutionary algorithms. Starting from an initial population, select a mating pool
of solutions from the population, apply variation operators to this pool, and
replace solutions from the old population with these new offspring. AutoMOEA
algorithms may also use an external bounded-size archive to store nondomi-
nated solutions, which is updated at the end of each iteration. The flexibility
of the template relies heavily on the general preference relations used by the
main components, namely mating, environmental, and external archive selec-
tion. For assembling a preference relation, AutoMOEA uses a tuple compris-
ing a dominance-based set-partitioning, an indicator-based refinement, and a
diversity metric. Concretely, solutions are partitioned in dominance-equivalent
classes using a set-partitioning method, such as the ones originally proposed
by Pareto-based approaches like NSGA-II or SPEA2. Since these partitions may
contain incomparable solutions, indicator-based refinement relations are used, as
in indicator-based approaches such as IBEA or SMS-EMOA. Finally, if solutions
are still incomparable, diversity metrics are employed to ensure the population
represents different trade-offs between the objectives.

Two other design concepts behind AutoMOEA provide additional flexibil-
ity to this framework. First, each of the main components may use a different
preference relation, as proposed by more recent indicator-based algorithms like
SMS-EMOA. Second, an AutoMOEA algorithm may use an internal bounded-
size archive instead of a fixed-size population to increase the convergence pressure
of the algorithms when required, as in algorithms such as PAES [14].

Below we summarize all the AutoMOEA algorithms we consider in this work.
These algorithms are instantiations of the general AutoMOEA framework and
have been automatically designed in [5] for the DTLZ and WFG benchmark sets
with three and five objectives. The main components used by these algorithms
are given in Table 1, where BuildMatingPool is the mating selection procedure,
Replacement is the environmental selection procedure, and ReplacementExt is the
external archive truncation method.
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Table 1. Algorithm components of the AutoMOEAs used in this work. From top to
bottom, AutoMOEAD3, AutoMOEAD5, AutoMOEAW3, and AutoMOEAW5.

BuildMatingPool Replacement ReplacementExt

Selection SetPart Quality Diversity SetPart Quality Diversity Removal Quality Diversity

random — — — depth-rank Iε — — I1
H sharing

tourn. count I1
H crowding depth Iε crowding sequential I1

H crowding

random — — — strength Ih
H kNN — I1

H kNN

tourn. — I1
H crowding — I1

H sharing sequential Iε kNN

AutoMOEAD3 is an instantiation of AutoMOEA for 3-objective DTLZ prob-
lems. This algorithm uses a fixed-size population, random mating selection,
and steady-state environmental selection based on dominance depth-rank
and the binary ε-indicator (Iε). In addition, AutoMOEAD3 uses an external
archive based on exclusive hypervolume contribution (I1H) and fitness sharing
diversity.

AutoMOEAD5 is an instantiation of AutoMOEA for 5-objective DTLZ prob-
lems. This algorithm uses a fixed-size population, mating selection based
on deterministic tournament, and a mating preference relation that com-
prises dominance count set-partitioning, the exclusive hypervolume contri-
bution as refinement, and crowding diversity. The environmental selection
used by AutoMOEAD5 is based on a preference relation that comprises dom-
inance depth set-partitioning, the binary ε-indicator, crowding diversity,
and sequential solution removal. In addition, AutoMOEAD3 uses an exter-
nal archive based on the exclusive hypervolume contribution and crowding
diversity.

AutoMOEAW3 is an instantiation of AutoMOEA for 3-objective WFG prob-
lems. This algorithm uses a fixed-size population, random mating selection,
and steady-state environmental selection based on dominance strength, the
shared hypervolume contribution (Ih

H), and nearest neighbor diversity. In
addition, AutoMOEAW3 uses an external archive based on the exclusive hyper-
volume contribution and nearest neighbor diversity.

AutoMOEAW5 is an instantiation of AutoMOEA for 5-objective WFG problems.
This algorithm uses a bounded internal archive, mating selection based on
deterministic tournament, and a mating preference relation that comprises
the exclusive hypervolume contribution and crowding diversity. The environ-
mental selection used by AutoMOEAW5 is based on a preference relation that
comprises the exclusive hypervolume contribution, fitness sharing diversity,
and sequential solution removal. In addition, AutoMOEAD3 uses an external
archive based on the binary ε-indicator and nearest neighbor diversity.

In the next section, we present the experimental setup we use in this work
for the performance comparison of the different EMO paradigms.
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5 Experimental Setup

The experimental setup we use in this work is the same used in the original
component-wise design [5]. Since we use the same experimental setup, we use
the same tuned settings for all algorithms except for the MOEA/D variants,
which were not considered in the original paper and we tune them here. The
benchmark sets we use are the DTLZ [9] and WFG [12] functions (DTLZ1–7
and WFG1–9), with three and five objectives. Concerning the number of vari-
ables n, we consider problems with n ∈ {20, 21, . . . , 60} \ ntesting for tuning, and
ntesting = {30, 40, 50} for testing. For both testing and tuning, algorithms are
given 10 000 function evaluations per run, and all experiments are run on a sin-
gle core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of cache size
under Cluster Rocks Linux version 6.0/CentOS 6.3. For each problem instance,
the approximation fronts produced by the algorithms are normalized to the range
[1, 2] to prevent issues due to dissimilar domains. Finally, we compute the hyper-
volume for each front using ri = 2.1, i = 1, 2, . . . ,M as reference point, where
M is the number of objectives considered.

We tune the MOEA/D algorithms using irace [17] and the hypervolume as the
quality measure, following the same procedure used for tuning all the other algo-
rithms. In particular, for each tuning scenario, irace stops after 20 000 runs. For
the original MOEA/D, the population size is given by the number of divisions in
the objective space Ndivisions and the number of objectives. Since the population
size can grow exponentially with the number of objectives, we use different ranges
for each scenario: for the 3-objective problems, we use Ndivisions ∈ {1, 2, . . . , 30},
whereas for 5-objective problems we use Ndivisions ∈ {1, 2, . . . , 10}. For both
MOEA/DDRA algorithms, the population size can be freely selected, and hence we
use μ ∈ {100, 200, . . . , 500}. The remaining parameters tuned for the MOEA/D
algorithms are given in Table 2. In particular, parameter ρ controls the size of the
local neighborhoods (ρ · μ), parameter tsize is the size of the tournament used by
the DRA strategy, and parameter ηm is the distribution index used by the poly-
nomial mutation operator. For more details about any of the remaining parame-
ters, we refer to Section 3 and to the original MOEA/D papers [26,27]. Finally,
for the algorithms that use the SBX crossover, the tuning range of parameters pc

(crossover probability) and ηc (the distribution index) is the same used by all other
algorithms. By contrast, when DE variation is used, there are two other param-
eters: the crossover probability CR ∈ [0, 1] and the scale factor F ∈ [0.1, 2]. For
brevity, the tuned settings selected for the MOEA/D algorithms are provided as
supplementary material [7].

To compare algorithms, we run each algorithm 25 times and evaluate them
based on the relative hypervolume of the approximation fronts they produce
w.r.t. the actual Pareto optimal fronts. More precisely, we use the same Pareto
fronts used by [5]. Given an approximation front A and the Pareto front for
a problem instance P , the relative hypervolume of A equals IH(A)/IH(P ). A
relative hypervolume of 1.0 means the algorithm was able to perfectly approxi-
mate the Pareto front for the problem considered. Algorithms are then compared
based on boxplots of these relative hypervolumes. To draw overall conclusions,
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Table 2. Parameter space for tuning all MOEA/D algorithms

MOEADDRA

Parameter ρ δ φ tsize ν ηm

Domain [0.1, 1] [0, 1] [0.01, 1] {1, 2, . . . , 20} {2, 3, . . . , 10} {1, . . . , 50}

MOEA/D DRA−DE Default

MOEA/D DRA−DE W3

0.2 0.4 0.6 0.8 1.0

●

●●●

WFG1.3.40
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●

●

●

WFG8.3.40

Fig. 1. Boxplots of the relative hypervolume achieved by MOEA/DDRA-DE using
default or tuned parameter settings on selected 3-objective 40-variable WFG problems

we aggregate results through rank sums and test for significant differences using
Friedman’s test with 99% confidence level. Since we generate a large set of results,
we only discuss the most representative ones here. The full set of results is pro-
vided as supplementary material [7].

6 Results and Discussion

Before proceeding to the actual comparison between the different search
paradigms, we start this section with boxplots on selected 3-objective WFG
problems (Fig. 1) to demonstrate the effect of the tuning on the performance of
MOEA/DDRA-DE, which can also be observed for other MOEA/D algorithms.
In particular, the label “W3” indicates that the MOEA/DDRA-DE algorithm
has been tuned for 3-objective WFG problems. This notation is also used in all
remaining boxplots to make it explicit that all algorithms have been properly
tuned for the scenarios in which they are compared. Concerning the parame-
ter settings used by MOEA/DDRA-DE, the most interesting remark is the very
low δ values for both 3-objective benchmarks (δ ≤ 0.1), which indicate that
local neighborhoods are rarely used by this algorithm in these scenarios. By
contrast, for all DTLZ scenarios MOEA/DDRA-SBX uses extremely high δ val-
ues (δ ≥ 0.93), and MOEA/D uses extremely large niche sizes (ρ ≥ 0.97).
Altogether, these settings indicate that the effectiveness of the local neighbor-
hood component is tightly related to the benchmark, number of objectives, and
variation operator considered. We then proceed to an analysis per benchmark.

6.1 Analysis on the DTLZ Benchmark Set

The performance comparison of all algorithms on the DTLZ benchmark set is
given in Fig. 2. Results for 3-objective problems are shown on the top row, while
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Fig. 2. Boxplots of the relative hypervolume achieved by all algorithms on selected
DTLZ problems with 40 variables. Top: 3 objectives. Bottom: 5 objectives.

the bottom row depicts the performance assessment on the 5-objective problems.
These results confirm insights previously identified in the literature [5]. First, the
overall difficulty of this benchmark is low, as reflected by the very high relative
hypervolumes achieved by most algorithms. In fact, we do not show the plots
for DTLZ1–3 because they are identical to the plots shown for the 3-objective
DTLZ5 problem, i.e., all algorithms are able to well approximate the Pareto
optimal fronts used as reference. Second, the Pareto-based approaches are the
ones that present worst-quality results among all algorithms. Although one can
notice this already for 3-objective problems, it becomes far more evident when
5-objective problems are considered.

Regarding the performance of the remaining algorithms on the 3-objective
problems, the only problem that actually poses difficulties for some algorithms
is DTLZ6, where MOEA/DDRA-DE and SMS-EMOA presents results better
than all other algorithms considered. The pattern observed in the boxplots
is confirmed by the rank sum analysis given in Table 3. For the 3-objective
DTLZ set, no difference can be observed between the four top-performing algo-
rithms. Interestingly, MOEA/DDRA-DE ranks sixth, alongside IBEA. Concern-
ing the 5-objective problems, AutoMOEAD5, SMS-EMOA, and IBEA appear to
always accurately approximate the Pareto fronts (Fig. 2, bottom), while the
MOEA/D versions sometimes face difficulties, such as for problems DTLZ5 and
DTLZ6. However, when we consider the rankings over the whole 5-objective
DTLZ set (Table 3), AutoMOEAD5 ranks first with much lower ranks than all
other algorithms. No significant difference is observed between MOEA/DDRA-DE,
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Table 3. Rank sum analysis depicting overall performance on all scenarios. The best
ranked algorithms are shown on top. Algorithms in boldface present rank sums not
significantly worse than the best ranked algorithm. Algorithms within the same block
are not significantly different, in terms of ranking, to the first algorithm of the same
block.

3-obj DTLZ 5-obj DTLZ 3-obj WFG 5-obj WFG

SMS-EMOAD3 AutoMOEAD5 MOEA/DDRA-SBXW3 AutoMOEAW5

MOEA/DD3 MOEA/DDRA-DED5 MOEA/DDRA-DEW3 SMS-EMOAW5

AutoMOEAD3 MOEA/DD5 AutoMOEAW3 MOEA/DDRA-SBXW5

MOEA/DDRA-SBXD3 SMS-EMOAD5 SPEA2W3 MOEA/DDRA-DEW5

IBEAD3 MOEA/DDRA-SBXD5 SMS-EMOAW3 MOEA/DW5

MOEA/DDRA-DED3 IBEAD5 IBEAW3 IBEAW5

SPEA2D3 NSGA-IID5 NSGA-IIW3 SPEA2W5

NSGA-IID3 SPEA2D5 MOEA/DW3 NSGA-IIW5

MOEA/D, and SMS-EMOA, nor between MOEA/DDRA-SBX, and IBEA. As
expected, the Pareto-based algorithms rank last.

6.2 Analysis on the WFG Benchmark Set

Results for the WFG benchmark set are much more heterogeneous, confirming
that this benchmark set is far more difficult for EMO algorithms than the DTLZ
one. The performance comparison for 3-objective problems is given in Fig. 3. In
fact, it is difficult to even find patterns on the performance of the algorithms.
Given any pair of algorithms, one cannot visually identify the best approach
when all problems are considered, which confirms that most algorithms perform
very similarly in all problems. For this reason, we proceed to the rank sum
analysis, also given in Table 3. Surprisingly, the algorithm that achieves lowest
rank sums is MOEA/DDRA-SBX, outperforming MOEA/DDRA-DE again for a 3-
objective benchmark set. Ranking second, MOEA/DDRA-DE, AutoMOEAW3, and
SPEA2 show equivalent rank sums. This indicates that some components from
SPEA2 are indeed particularly effective for this benchmark, since AutoMOEAW3

heavily relies on SPEA2 components. The indicator-based approaches come right
after, and MOEA/D ranks last this time. This reinforces the contribution of our
experimental analysis, since previous results led to the conclusion that MOEA/D
was particularly effective for 3-objective benchmarks in general [16].

The performance assessment for the 5-objective WFG benchmark is given
in Fig. 4. Again it is difficult to make an overall analysis since the results vary
per problem instance, nonetheless both AutoMOEAW5 and SMS-EMOA perform
consistently well. Concerning the MOEA/D algorithms, all present very similar
performances. The rank sum analysis (Table 3) confirms these observations:
AutoMOEAW5 and SMS-EMOA present nearly identical rank sums, outperforming
all MOEA/D algorithms, which present equivalent rank sums.
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Fig. 3. Boxplots of the relative hypervolume achieved by all algorithms on WFG prob-
lems with 40 variables and 3 objectives
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Fig. 4. Boxplots of the relative hypervolume achieved by all algorithms on WFG prob-
lems with 40 variables and 5 objectives



408 L.C.T. Bezerra et al.

7 Conclusions

The decomposition-based EMO paradigm has drawn a strong interest from
the EMO community due to the possibility of devising more effective algo-
rithms, particularly for many-objective optimization problems. In this paper,
we have shown that, considering the most used benchmark sets from the
EMO literature, MOEA/D is competitive or superior to other state-of-the-
art EMO algorithms only on scenarios with three objectives. We have also
shown that, neither the dynamic resource allocation (DRA) nor the differ-
ential evolution (DE) operator adopted by the IEEE CEC 2009 competition
MOEA/D algorithm (MOEA/DDRA-DE) actually led to improvements over
the original MOEA/D version for most of the scenarios considered in this
paper. The only scenario that proved an exception to these two conclusions
is the WFG benchmark with 3-objective problems. In this particular scenario,
MOEA/DDRA-DE performed very competitively, but since it was outperformed
by MOEA/DDRA-SBX (the same algorithm using the SBX crossover operator
instead of DE variation), we see that the component that actually leads to this
significant performance improvement over the original MOEA/D is the DRA.
Moreover, for most of the scenarios considered, the DE operator did not improve
the performance of the original MOEA/D. Since related work has shown that
DE variation can often improve the performance of other algorithms [22], we
hypothesize that the interaction between the decomposition approach and DE
is responsible for this.

Concerning the effectiveness of the recently proposed AutoMOEAs, we see
that these algorithms are generally able to match the performance of indicator-
and decomposition-based algorithms for scenarios with three objectives, and to
outperform most of them when five objectives are considered. The high perfor-
mance of the AutoMOEAs designed for 3-objective problems is in fact impres-
sive, since extensive research has been conducted on this type of application
scenario, leading to very effective human-designed algorithms. Achieving the
same performance with automatically designed algorithms is remarkable. Even
more exciting, the AutoMOEAs designed for 5-objective scenarios show a very
robust and competitive performance. For the DTLZ benchmark, the difference
in the rank sums between the AutoMOEAD5 and the best performing indicator-
and decomposition-based algorithms is such that it indicates that AutoMOEAD5

consistently produces better approximation fronts than the others. For the WFG
benchmark, AutoMOEAW5 matches the performance of SMS-EMOA, outperform-
ing all MOEA/D versions. These results indicate the potential of the component-
wise design approach, since we have attained this performance level by combining
only two among the different effective EMO search paradigms.

Although the results for the current stage of the component-wise design app-
roach are already quite convincing, further research efforts in this direction could
potentially improve even further the performance of newly designed AutoMOEAs.
Besides including algorithmic components proposed for algorithms from other
paradigms,more effective automatic configuration tools (or longer tuning budgets)
could lead to even more effective designs. However, it is also imperative to develop
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this research field towards practical application requirements. For instance, since
many real-world problems are computationally demanding, the number of func-
tion evaluations desired might not allow offline tuning. One possible way to work
around this problem is to devise several automatic designs for different benchmarks
and learn problem features that could help understand better the effectiveness of
individual algorithmic components.

Acknowledgments. The research presented in this paper has received funding from
the COMEX project within the Interuniversity Attraction Poles Programme of the Bel-
gian Science Policy Office. L.C.T. Bezerra, M. López-Ibáñez and T. Stützle acknowledge
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Abstract. Adaptive Operator Selection (AOS) is a method used to
dynamically determine which operator should be applied in an opti-
mization algorithm based on its performance history. Recently, Upper
Confidence Bound (UCB) algorithms have been successfully applied for
this task. UCB algorithms have special features to tackle the Exploration
versus Exploitation (EvE) dilemma presented on the AOS problem. How-
ever, it is important to note that the use of UCB algorithms for AOS is
still incipient on Multiobjective Evolutionary Algorithms (MOEAs) and
many contributions can be made. The aim of this paper is to extend
the study of UCB based AOS methods. Two methods are proposed:
MOEA/D-UCB-Tuned and MOEA/D-UCB-V, both use the variance
of the operators’ rewards in order to obtain a better EvE tradeoff. In
these proposals the UCB-Tuned and UCB-V algorithms from the mul-
tiarmed bandit (MAB) literature are combined with MOEA/D (MOEA
based on decomposition), one of the most successful MOEAs. Experi-
mental results demonstrate that MOEA/D-UCB-Tuned can be favorably
compared with state-of-the-art adaptive operator selection MOEA/D
variants based on probability (ENS-MOEA/D and ADEMO/D) and
multi-armed bandits (MOEA/D-FRRMAB) methods.

Keywords: Adaptive Operator Selection (AOS) · MOEA/D · Upper
Confidence Bound (UCB) Algorithms · UCB1 · UCB-Tuned · UCB-V

1 Introduction

Most real problems are multiobjective consisting of several conflicting objectives
to optimize. Nowadays, Multiobjective Evolutionary Algorithms (MOEAs) are
usually used to solve them. But obtaining the best performance of these algo-
rithms in a specific domain needs setting a number of parameters and selects
genetic operators that make hard their application for ordinary users.

Adaptive Operator Selection (AOS) is a paradigm to adaptively determine
which operator should be applied in an optimization algorithm. An AOS is com-
posed of two tasks: credit assignment and operator selection. The former decides
c© Springer International Publishing Switzerland 2015
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how much reward is attributed to an operator based on its performance and the
latter selects which operator should be applied based on the accumulated reward.

A recent work ([11]) explored various aspects of using an UCB algorithm as
an AOS method and proposed an algorithm called MOEA/D-FRRMAB that
introduced an UCB based AOS method into the MOEA/D framework (MOEA
based on Decomposition). UCB based algorithms are among the best algorithms
for dealing with multi-armed bandit (MAB) problems. A fundamental issue of
MAB and AOS is related to the exploration versus exploitation (EvE) dilemma:
if it is apparently more advantageous to apply the best operator (exploitation),
on the other hand it is important to keep applying other operators (exploration),
since the performance of an operator may change at different search stages.

MOEA/D-FRRMAB obtained very good results focusing on the credit
assignment task of the Adaptive Operator Selection [11]. It may be possible
to improve the results obtained in [11] with more robust operator selection
techniques which is the focus of this paper. Therefore, we propose and study
two new AOS methods based on UCB algorithms to be used in combination
with the MOEA/D framework and the FRRMAB credit assignment method-
ology. Namely, we propose UCB-Tuned and UCB-V AOS methods and their
respectively multiobjective evolutionary algorithms, MOEA/D-UCB-Tuned and
MOEA/D-UCB-V. Both AOS methods use the variance of the operators’ rewards
in order to obtain a tighter confidence interval of the estimated goodness of each
operator, possibly reducing the application of suboptimal operators.

Although some recent works combining multiobjective evolutionary algo-
rithms and adaptive operator selection have emerged in the specialized liter-
ature, such as ENS-MOEA/D [17], ADEMO/D [14] and MOEA/D-FRRMAB
[11], the area still has various questions that need more investigation, such as
the impact of different UCB based operator selection algorithms, which is the
main focus of the present work. As a testbed, in this work, we consider the CEC
2009 multiobjective benchmark (10 instances) [15]. This set of instances per-
mits a direct comparation between the proposed algorithm and state-of-the-art
MOEAs, such as ENS-MOEA/D, ADEMO/D and MOEA/D-FRRMAB.

The remainder of this paper is organized as follows. Section 2 gives an
overview of Multiobjective Optimization and the MOEA/D framework. The
main concepts of Adaptive Operator Selection are described in Section 3. Our
proposed approaches (MOEA/D-UCB-Tuned and MOEA/D-UCB-V) are pre-
sented in Section 4. Experimental results are given and analyzed in Section 5.
Section 6 presents some conclusions.

2 Multiobjective Optimization and MOEA/D

A Multiobjective Optimization Problem (MOP) is defined as Min (or Max)
f(x) = (f1(x), ..., fM (x)) subject to gi(x) ≤ 0, i = {1, ..., G}, and hj(x) = 0, j
= {1, ..., H} x ∈ Ω. A solution minimizes (or maximizes) the components of the
objective vector f(x) where x is a n-dimensional decision variable vector x =
(x1, ..., xn) ∈ Ω.
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Usually, as long as the multiple objectives are conflicting, there is not a single
solution that is optimal with respect to all objectives, so the solution of a MOP
is a set of optimal solutions. In the absence of a priori preference information,
the Pareto optimality concept is used to define the optimal solution set, which is
called Pareto set. A solution is Pareto optimal if it is not dominated by any other
feasible solution. A solution x dominates a solution y if ∀i ∈ {1, 2, 3, . . . ,M} :
fi(x) ≤ fi(y) ∧ ∃j ∈ {1, 2, 3, . . . ,M} : fj(x) < fj(y).

MOEA/D is based on conventional aggregation approaches [4] as it decom-
poses a MOP into a number of single objective optimization subproblems. The
objective of each subproblem is a linear (or nonlinear) weighted aggregation of all
individual objectives in the MOP. Neighborhood relations among these subprob-
lems depend on distances among their aggregation weight vectors. MOEA/D,
generally, uses a set of N evenly spread weight vectors, where N is the num-
ber of subproblems. Each subproblem is simultaneously optimized using mainly
information from its neighboring subproblems. There are various versions of
MOEA/D and this paper extends the variant that won the CEC 2009 MOEA
contest: MOEA/D-DRA (MOEA/D with Dynamical Resource Allocation) [16].
MOEA/D and its variants can use any decomposition approach for defining their
subproblems. This work uses the Tchebycheff approach (Equation 1), where each
subproblem can be formulated as:

Min gte(x | λ, z∗) = max
1≤j≤M

{λj | fj(x) − z∗
j |} (1)

subject to x ∈ Ω

where gte is the Tchebycheff function, f(x) = (f1(x), ..., fM (x)) is the multiobjec-
tive function to be minimized, z∗ is the empirical ideal point and λ = (λ1, ..., λM )
is the weight vector associated with subproblem i. One problem with using the
empirical ideal point is the possible concentration of solutions in a specific region
of the Pareto front [12]. In order to allocate the computational resources to the
most appropriate subproblems, MOEA/D-DRA utilizes a tournament selection
based on the utility value of each subproblem (πi). The utility of each subprob-
lem is calculated accordingly to Equation 2.

πi =
{

1, if Δi > 0.001
(0.95 + 0.05 ∗ Δi/0.001) ∗ πi, otherwise (2)

where Δi is the relative decrease of the objective function value of subproblem i.
The subproblems with greater Δi values have better chances of being selected.

3 Adaptive Operator Selection

Choosing suitable operators for generating new solutions in a Multiobjective
Evolutionary Algorithms (MOEAs) may lead to high computational costs due
to time-consuming trial-and-error processes and may be inefficient in cases where
ideal operators usage vary during the evolutionary process [14]. The Adaptive
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Operator Selection (AOS) paradigm was created in order to tackle this problem.
AOS tries to determine the best operator to be selected at each stage of the search
process, which usually is based on the performance of the operators [11]. The
major procedures involved in AOS are: credit assignment and operator selection
[11]. Credit assignment defines how to reward an operator based on its recent
performance while operator selection decides which operator should be applied
next based on the reward information collected during the search process [11].

3.1 Credit Assignment

The credit assignment procedure can be further divided in two parts: qual-
ity measurement and reward assignment. Quality measurement determines how
good the application of a particular operator was while the reward assignment
determines how to use the quality measured in order to update the information
of the appropriateness of the operator [11]. The most commonly used metric for
measuring the quality of an operator is based on the fitness improvement relative
to a baseline solution [11]. The baseline solution can be the best solution of the
population or a parent of the generated solution, for example.

In [6] and [8] four different reward techniques are investigated: Average
Absolute Reward, Extreme Absolute Reward, Average Normalized Reward and
Extreme Normalized Reward. The average techniques reward the operators
accordingly to mean quality of the operator while the extreme techniques reward
the operators accordingly to their best performance, i.e., it favours the rare occu-
rance of large improvements. The difference between the abolute and normalized
techniques lies on the fact that the former uses the raw measurement of the qual-
ity of an operator while the latter normalizes the quality value before using each
in the reward calculation. These four reward techniques in conjunction with a
quality measurement using a parent as the baseline solution were investigated
in the MOEA/D context in [14], resulting in an algorithm called ADEMO/D.

In order to obtain more robust credit assignments, recent researches have
focused on rank-based credit assignment procedures, such as AUC (Area Under
the Curve), SR (Sum-of-Ranks) and FRR (Fitness-Rate-Rank) [5] [11]. The
last two are investigated in [11] as credit assignments to AOS methods used in
MOEA/D variants (MOEA/D-SRMAB and MOEA/D-FRRMAB, respectively).
The proposed algorithms (MOEA/D-UCB-Tuned and MOEA/D-UCB-V) also
uses the FRR credit assignment (described in Subsection 4.1).

3.2 Operator Selection

Operator selection procedures choose operators for generating new solutions
based on the information collected by the credit assignment methods. The
operator selection is usually based on probability or multiarmed bandit (MAB)
methods. Probability methods use a roulette wheel-like process for selecting
an operator while MAB methods use algorithms created to tackle the Explo-
ration versus Exploitation (EvE) dilemma [11]. Two examples of probability
based operator selection methods are Probability Matching (PM) and Adaptive
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Pursuit (AP). The Probability Matching method calculates pop(g+1) (the prob-
ability of operator op being selected at generation g + 1) as follow [8], [13], [7]:

pop(g + 1) = pmin + (1 − K ∗ pmin) ∗ qop(g + 1)∑K
s=1 qs(g + 1)

(3)

where K is the number of operators, pmin is the minimal probability of any
operator and qop is the quality associated with operator op.

Clearly,
∑K

s=1 ps(g+1) = 1. From Eq. 3 we note that when only one strategy
obtains a reward during a long period of time (with all other strategies receiving
no rewards), its selection probability converges to pmax = pmin +(1−K ∗pmin).

The Adaptive Pursuit method was introduced for AOS in the context of
Genetic Algorithms [13]. AP calculates pop(g + 1) as follow:

pop∗(g + 1) = pop∗(g) + β ∗ [pmax − pop∗(g)] (4)

and ∀op �= op∗ : pop(g + 1) = pop(g) + β ∗ [pmin − pop(g)], with op∗ = argmaxop

(qop(g+1)) and pmax = pmin+1−S∗pmin, where op∗ is the best operator during
the current generation. This constraint makes sure that if

∑K
s=1 ps(g) = 1, then∑S

s=1 ps(g + 1) = 1 [13]. The AP method has a learning rate β ∈ (0, 1], which
controls how greedy the “winner-takes-all” strategy will behave. ADEMO/D [14]
investigated the PM and AP methods as operator selection procedures in the
MOEA/D context while ENS-MOEA/D [17] uses a procedure similar to PM
with binary credit assignment in order to adaptively select its operators.

The most prominent MAB method is the UCB1, which provides asymptotic
optimality guarantees [1][2]. In an UCB1-based operator selection procedure, the
op operator has an empirical quality estimate qop and a confidence interval that
depends on the number of times (nop) that it has been applied before. At each
time point t, the operator maximizing Equation 5 is selected.

qop + C ∗
√

2 ∗ ln
∑K

s=1 ns

nop
(5)

where C is a scaling factor used to regulate the tradeoff between exploitation
(the first term, which favors the operators with best empirical rewards) and
exploration (the square root term - confidence interval - which favors the infre-
quently tried operators) and K is the number of operators in the operator pool.
MOEA/D-FRRMAB [11] combines UCB1 and MOEA/D to solve MOPs.

The proposed algorithms (MOEA/D-UCB-Tuned and MOEA/D-UCB-V)
also uses UCB-based procedures, but the investigated procedure utilizes con-
fidence interval that considers the variance of the operator qualities while the
UCB1 confidence interval is just based on the number of times that each oper-
ator is applied. The proposed operator selection mechanisms are described in
Subsection 4.2.
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4 Proposed Approaches

This section describes our proposed approaches: MOEA/D-UCB-Tuned and
MOEA/D-UCB-V. Both algorithms are based on the MOEA/D framework, use
the FRR credit assignment scheme proposed in [11] and an UCB based operator
selection procedure.

4.1 Credit Assignment

In order to better compare our proposed methods with MOEA/D-FRRMAB, in
this work we use the same credit assignment used in [11]. The first step of credit
assignment is to calculate the quality associated with the application of an oper-
ator. The main form of quality measurement is the absolute fitness improvement,
but this method suffers from the drawback that fitness improvements tend to
vary from problem to problem and, particularly, during different stages of the
evolutionary search. So, to alleviate these drawbacks, our proposed approaches
use the fitness improvement rate method (FIR) [11], defined in Equation 6 con-
sidering the Tchebycheff function1.

FIRop,t =
pfop,t − cfop,t

pfop,t
=

gte(xi|λi, z∗) − gte(y|λi, z∗)
gte(xi|λi, z∗)

(6)

where FIRop,t is the quality associated with operator op in time t, pfop,t is the
fitness associated with the parent in time t, cfop,t is the fitness associated with
the generated child in time t, gte is the Tchebycheff function, xi is the parent
and y is the generated child. Because in the MOEA/D framework more than one
solution can be replaced during the population update (see Algorithm 3), more
than one quality measurement can result from the same operator application
(one for each replacement) [11].

The performance of an operator may vary accordingly to the current evolu-
tionary stage of the algorithm and, in order to only consider recent FIR infor-
mation during credit assignment, a sliding window is used [11].

As in [11], the Rewardop associated with operator op is calculated as the sum
of all FIR values for operator op in the sliding window. Afterwards, a decaying
factor D is used to transform the initial reward accordingly to its relative rank
with respect to the reward of the other operators (see steps 12 to 15 of Algo-
rithm 1), resulting in the DecayedRewardop . Finally, the decayed rewards are
normalized, resulting in the FRRop (Fitness-Rate-Rank) rewards that are used
by the operator selection procedure. Algorithm 1 presents credit assignment pro-
cedure used in this work.

4.2 Operator Selection

The purpose of the operator selection procedure is to select operators to gen-
erate new individuals. This selection is based on the credit values calculated as
described in Algorithm 1.
1 Other aggregation functions can be used by substituting gte by the desired function.
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Algorithm 1. Pseudocode of the Credit Assignment Procedure
1: for i = 0 to K do
2: Rewardi = 0.0
3: ni = 0
4: end for
5: for i = 0 to Size of the Sliding Window do
6: op = SlidingWindow.getOperatorPos(i)
7: reward = SlidingWindow.getRewardPos(i)
8: Rewardop = Rewardop + reward
9: nop++

10: end for
11: Rank the rewards in descending order
12: for op = 0 to K do

13: DecayedRewardop = DRankop
* Rewardop

14: ni = 0
15: end for
16: TotalDecayedReward =

∑K
op=1 DecayedRewardop

17: for op = 0 to K do
18: FRRop = DecayedRewardop/TotalDecayedReward

19: end for

The main purpose of this paper is to compare the performance of different
UCB-based algorithms as operator selection procedures. Three different UCB
algorithms are investigated in this paper: UCB1, UCB-Tuned and UCB-V [2][1].

UCB1, or simple UCB, is the more classical MAB algorithm and is used
in [11] as the operator selection of MOEA/D-FRRMAB. UCB1 and UCB-V
provide asymptotic optimality guarantees while both UCB-Tuned and UCB-V
use the rewards’ variance (σ2

op) in order to obtain a tigher confidence interval,
i.e., to obtain a better exploration versus exploitation tradeoff. Accordingly to
empirical experiments in the MAB literature [2], UCB-Tuned is supposed to
have the better performance among the investigated algorithms.The investigated
operator selection mechanism is described in Algorithm 2.

4.3 MOEA/D-UCB-Tuned and MOEA/D-UCB-V

The proposed approches (MOEA/D-UCB-Tuned and MOEA/D-UCB-V) are
presented in Algorithm 3. The first steps of MOEA/D-UCB-Tuned and MOEA/-
D-UCB-V initialize various data structures (steps 1 to 7), analogous to most
MOEA/D variants. The weight vectors λi, i = 1, ..., N , representing coefficients
associated with each objective, are generated using a uniform distribution. The
neighborhood (Bi = {i1, · · · , iC}) of weight vector λi stores the indexes of the
C weight vectors closest to λi. The initial population is randomly generated and
evaluated. Each individual (xi) is associated with the ith weight vector. The slid-
ing window is initialized as an empty window. The empirical ideal point (z∗) is
initialized as the minimum value of each objective found in the initial population
and the generation (g) is set to 1.

After initialization steps, the algorithm enters its main loop (steps 8 to 43).
The first step of the main loop is to determine which individuals from the popu-
lation will be processed. A 10-tournament selection based on the utility value of
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Algorithm 2. Pseudocode of Multiarmed Bandit Based Operator Selection
1: if There are operators that have not been selected then
2: Randomly choose an unselected operator
3: else
4: if MAB Method == UCB then
5: //MOEA/D-FRRMAB

6: SelectedOperator = argmaxop=1..K

(
FRRop + C ∗

√
2∗ln

∑K
i=1 ni

nop

)

7: end if
8: if MAB Method == UCB-Tuned then
9: for ( doi = 0 to K)

10: Vop = σ2
op +

√
2∗ln

∑K
i=1 ni

nop

11: end for

12: SelectedOperator = argmaxop=1..K

(
FRRop + C ∗

√
ln
∑K

i=1 ni
nop

∗ min( 1
4 , Vop)

)

13: end if
14: if MAB Method == UCB-V then

15: SelectedOperator = argmaxop=1..K

(
FRRop + C ∗

√
2∗ln

∑K
i=1 ni∗σ2

op
nop

+ 3 ∗
∑K

i=1 ni
nop

)

16: end if
17: end if

each subproblem (πi, calculated accordingly to Equation 2) is used to determine
the individuals (see Section 2).

The operator op used to generate a new individual is selected in step 11. The
selection procedure is described in Algorithm 2 and uses a UCB based method
(UCB-Tuned or UCB-V, depending on the algorithm chosen). This step differ-
entiates between MOEA/D-UCB-Tuned and MOEA/D-UCB-V. It also distin-
guishes between the proposed approaches and MOEA/D-FRRMAB, which uses
UCB1 in this step. The pool of operators used in this work contains four DE
operators with distinct search characteristics:

– “DE/rand/1”: yi = xi + F ∗ (xr1 − xr2);
– “DE/rand/2”: yi = xi + F ∗ (xr1 − xr2) + F ∗ (xr3 − xr4);
– “DE/current-to-rand/1”: yi = xi + K ∗ (xi − xr1) + F ∗ (xr2 − xr3); and
– “DE/current-to-rand/2”: yi = xi + K ∗ (xi − xr1) + F ∗ (xr2 − xr3) + F ∗

(xr4 − xr5).

Next, the scope used during the generation of individuals and the population
update is randomly chosen. DE mutation and crossover operators are applied
considering individuals randomly selected from scope. In this work, scope can
swap from the neighborhood to the entire population (and vice-versa) along
the evolutionary process of MOEA/D-UCB-Tuned and MOEA/D-UCB-V. It is
composed by the indexes of chromosomes from either the neighborhood Bi (with
probability δ) or from the entire population (with probability 1 − δ).

A modified chromosome y is generated in step 18 using the chosen operator
and modified by the polynomial mutation in step 21, generating y′ = (y′

1, · · · , y′
n)

from y. If the generated solution is unfeseable, it is repaired. In step 25, if the
new chromosome y′ has an objective value better than the value stored in the
empirical ideal point, z∗ is updated with this value.
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Algorithm 3. Pseudocode of MOEA/D-UCB-Tuned and MOEA/D-UCB-V
1: Generate N weight vectors λi = (λi

1, λi
2, ....λi

M ), i = 1, ...., N
2: Compute the Euclidean distances between any two weight vectors and select C closest weight

vectors to each weight vector λi. For each i = 1, · · · , N , set B(i) = i1, · · · , iC where

λi1 , · · · , λiC are the C closest weight vectors to λi

3: Generate an initial population P 0 = {x1, · · · ,xN }, xi = (xi
1, xi

2, ....xi
n)

4: Evaluate each individual in the initial population
5: Initialize the Sliding Window
6: Initialize z∗ = (z∗

1 , · · · , z∗
M )T by setting z∗

j = min1≤i≤N fj(x
i)

7: g = 1
8: repeat
9: Let all the indices of the subproblems whose objectives are MOP individual objectives fi

form the initial I. By using 10-tournament selection based on πi , select other N/5M indices
and add them to I.

10: for each individual xi in I do
11: Select an operator op accordingly to the Multiarmed Bandit Policy (Algorithm 2)
12: Generate rand in [0,1] //Determining the scope
13: if rand < δ then
14: scope = B(i)
15: else
16: scope = 1, · · · , N
17: end if
18: Generate a new solution y by applying operator op
19: if y is unfeasible then Repair y
20: end if
21: Apply polynomial mutation to produce y′

22: if y′ is unfeasible then Repair y′

23: end if
24: Evaluate y′

25: if fj(y
′) < z∗

j then z∗
j = fj(y

′) //Updating z∗, for each j = 1, · · · , M

26: end if
27: for each subproblem k in the neighborhood do
28: With k = randomly selected in scope
29: if gte(y′ | λk, z∗) < gte(xk | λk, z∗) then
30: if less than nr replacements then
31: Replace xk by y′

32: Calculate the fitness improvement rate using Equation 6
33: end if
34: end if
35: end for
36: Adjust the Sliding Window
37: Calculate the Credit Assignment using a Decaying Factor (Algorithm 1)
38: end for
39: if g modulo 50 == 0 then
40: Update the utility πi of each subproblem i
41: end if
42: g = g + 1;

43: until g >MAX-EV

The next steps involve the population update process (steps 27 to 35) which
is based on the comparison of the fitness of individuals. In the MOEA/D frame-
work, the fitness of an individual is measured accordingly to a decomposition
function. In this work the Tchebycheff function is used (Equation 1). Accord-
ingly to what is selected for the scope (steps 14 or 16), the neighborhood or the
entire population is updated. To avoid the proliferation of y′ to a great part of
the population, a maximum number of updates (NR) is used.

The population update is as follows: if a new replacement may occur, (i.e.
while nr < NR and there are unselected indexes in scope), a random index (k)
from scope is chosen. If y′ has a better Tchebycheff value than xk (both using
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the kth weight vector - λk) then y′ replaces xk and the number of updated
chromosomes (nr) is incremented. Also, the fitness improvement rate (FIR) is
calculated accordingly to Equation 6 for each replacement.

Then, the sliding window is updated. All successful fitness improvements are
inserted in the sliding window with their associated operator (op). If the sliding
window is full, the least recent operator application is discarded from it.

Afterwards, the credit assignment procedure (Algorithm 1) is called to update
the rewards and if the current generation is a multiple of 50, then the utility
value of each subproblem is updated using Equation 2.

Finally, the evolutionary process stops when the maximum number of eval-
uations (MAX-EV) is reached. MOEA/D-UCB-Tuned and MOEA/D-UCB-V
output the Pareto set and Pareto front approximations.

5 Experiments and Results

In this section we present the experiments conducted to evaluate our proposed
approaches, considering all the unconstrained (bound constrained) instances
from the CEC 2009 multiobjective benchmark (10 instances) [15]. The search
space dimension n is defined as 30 for all the instances. Table 1 shows the char-
acteristics of each instance.

Table 1. Characteristics of unconstrained functions considered

Function Objectives Search space range Properties of Pareto Front

UF1 2 [0, 1] × [-1, 1]n−1 Concave

UF2 2 [0, 1] × [-1, 1]n−1 Concave

UF3 2 [0, 1]n Concave

UF4 2 [0, 1] × [-2, 2]n−1 Convex

UF5 2 [0, 1] × [-1, 1]n−1 21 points front

UF6 2 [0, 1] × [-1, 1]n−1 One isolated point and 2 discon-
nected parts

UF7 2 [0, 1] × [-1, 1]n−1 Continuous straight line

UF8 3 [0, 1]2 × [-2, 2]n−2 Parabolic

UF9 3 [0, 1]2 × [-2, 2]n−2 Planar

UF10 3 [0, 1]2 × [-2, 2]n−2 Parabolic

Our experimental studies can be divided into two parts: (i) to investigate
which UCB based operator selection mechanism among UCB, UCB-Tuned and
UCB-V have the best performance and (ii) to compare the best UCB based
algorithm with some recent MOEA/D variants and NSGA-II. A comparison
against single operator versions was not conducted because it was already done
in [11], where MOEA/D-FRRMAB achieved better results.

During the experiments, we consider the following performance metrics: IGD
(Inverted Generational Distance) and HV (Hypervolume) [10]. Inverted Gener-
ational Distance (IGD) is as a way of estimating how far are the elements in the
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Pareto front approximation (S) produced by one algorithm from those in the
true Pareto front (P ∗) of the problem. This measure is defined as:

IGD =
∑

x∈P ∗ d(x, S)
|P ∗| (7)

where d is the Euclidean distance (measured in objective space). The lower
the IGD better. The hypervolume calculates the area covered by all the solutions
in S using a reference point W :

hypervolume = volume

⎛
⎝

|S|⋃
i=1

vi

⎞
⎠ (8)

where for each solution i ∈ S, a hypercube vi is constructed with reference to
W . The HV is the union of all hypercubes. The higher the HV, the better. The
parameter settings used by MOEA/D-FRRMAB, MOEA/D-UCB-Tuned and
MOEA/D-UCB-V are the same. Table 2 presents the parameters’ values.

Table 2. Parameters used in MOEA/D-FRRMAB, MOEA/D-UCB-Tuned and
MOEA/D-UCB-V

Values Description

DE Parameters

N
600 Population size (for instances with 2-objectives).
1000 Population size (for instances with 3-objectives).

CR 1.0 Crossover rate.
F 0.5 Scaling factor.
pm 1/n polynomial mutation probability.
τ 20 distribution index of polynomial mutation.
MAX-EV 300,000 Maximum number of evaluations.

MOEA/D Parameters

W 20 Number of weight vectors in the neighborhood.
nr 2 Maximal number of solutions replaced by each offspring.
δ 0.9 Probability that parent solutions are selected from the neigh-

borhood.

Multiarmed Bandit Parameters

C 5.0 Coefficient to balance exploration and exploitation.
WS 0.5 * N Sliding window size.
D 1.0 Decaying factor.

5.1 UCB Based Algorithms Comparison

We have first compared the three UCB based algorithms: MOEA/D-FRRMAB,
MOEA/D-UCB-Tuned and MOEA/D-UCB-V. MOEA/D-FRRMAB results
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were obtained by executing the code provided by its authors 2. Each algorithm
was executed 30 times.

Table 3 and Table 4 show the results obtained by each algorithm on UF1
to UF10. Accordingly to the IGD metric, MOEA/D-UCB-Tuned was the best
algorithm on UF2, UF3, UF5, UF6, UF7 and UF9 while MOEA/D-FRRMAB
was the best on UF1, UF4 and UF10 and MOEA/D-UCB-V was the best only
on UF8. Furthermore, the HV metric also indicated that MOEA/D-UCB-Tuned
was the best algorithm on UF2, UF3, UF6, UF7 and UF9 while MOEA/D-
FRRMAB was the best on UF1 and UF4 and MOEA/D-UCB-V was the best
on UF5, UF8 and UF10. It is important to note that MOEA/D-UCB-Tuned was
the most consistent algorithm when considering both metrics.

Table 3. Comparison of FRRMAB, UCB-Tuned and UCB-V on IGD. Mean and stan-
dard deviation. Dark gray cells indicate the best results. Light gray cells are equivalent
accordingly to the Wilcoxon rank sum test [3] with 95% confiability.

MOEA/D-FRRMAB MOEA/D-UCB-Tuned MOEA/D-UCB-V
UF1 9.89e − 047.8e−05 1.00e − 036.9e−05 1.10e − 039.7e−05
UF2 2.11e − 035.9e−04 2.04e − 036.1e−04 2.64e − 031.2e−03
UF3 5.37e − 037.0e−03 4.82e − 039.7e−03 6.17e − 036.0e−03
UF4 5.45e − 023.9e−03 5.45e − 024.4e−03 5.58e − 023.4e−03
UF5 3.07e − 015.3e−02 2.89e − 014.1e−02 3.10e − 015.7e−02
UF6 8.44e − 025.5e−02 6.96e − 023.3e−02 1.36e − 011.9e−01
UF7 1.17e − 031.9e−04 1.15e − 031.7e−04 1.30e − 032.3e−04
UF8 2.96e − 026.0e−03 2.97e − 024.8e−03 2.71e − 022.7e−03
UF9 4.14e − 023.9e−02 3.80e − 023.6e−02 4.49e − 024.3e−02
UF10 4.86e − 015.7e−02 5.06e − 017.1e−02 4.98e − 016.5e−02

Table 4. Comparison of FRRMAB, UCB-Tuned and UCB-V on HV. Mean and stan-
dard deviation. Dark gray cells indicate the best results. Light gray cells are equivalent
accordingly to the Wilcoxon rank sum test [3] with 95% confiability.

MOEA/D-FRRMAB MOEA/D-UCB-Tuned MOEA/D-UCB-V
UF1 6.65e − 011.3e−04 6.65e − 011.0e−04 6.65e − 011.5e−04
UF2 6.64e − 015.3e−04 6.64e − 017.5e−04 6.63e − 011.5e−03
UF3 6.58e − 011.1e−02 6.60e − 018.5e−03 6.57e − 018.0e−03
UF4 2.55e − 015.0e−03 2.54e − 015.4e−03 2.53e − 014.7e−03
UF5 3.22e − 025.8e−02 3.84e − 026.2e−02 4.23e − 026.2e−02
UF6 2.39e − 012.9e−02 2.40e − 012.3e−02 2.25e − 019.2e−02
UF7 4.98e − 013.4e−04 4.98e − 012.8e−04 4.98e − 013.8e−04
UF8 4.22e − 011.3e−02 4.22e − 011.1e−02 4.28e − 015.0e−03
UF9 7.36e − 015.3e−02 7.40e − 014.7e−02 7.30e − 015.8e−02
UF10 1.75e − 021.7e−02 1.32e − 021.8e−02 2.26e − 022.0e−02

The Friedman test [3] indicated with 95% confiability that, when considering
all CEC 2009 instances, MOEA/D-UCB-Tuned was statistically better than the
other UCB based algorithms in both metrics. So, it was possible to conclude
that the proposed MOEA/D-UCB-Tuned was the best UCB based AOS method
among the three (MOEA/D-FRRMAB, MOEA/D-UCB-Tuned and MOEA/D-
UCB-V) compared in these experiments. The better performance obtained by
2 Available in http://www.cs.cityu.edu.hk/∼51888309/code/FRRMAB.rar

http://www.cs.cityu.edu.hk/~51888309/code/FRRMAB.rar
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Table 5. The IGD statistics for MOEA/D-UCB-Tuned, ADEMO/D, MOEA/D-DRA,
ENS-MOEA/D, MOEA/D-DRA-CMX+SPX and NSGA-II. Dark gray cells emphasize
the best results while light gray cells emphasize the second best results. ’-’ indicates
values that are not available in the original work.

CEC09 Algorithm Median Mean Std Min Max

UF1

MOEA/D-UCB-Tuned 0.001000 0.001000 0.000071 0.000843 0.001139
ADEMO/D 0.001053 0.001105 0.000134 0.000919 0.001505
MOEA/D-DRA 0.001503 0.001526 0.000090 0.001417 0.001757
MOEAD-CMX-SPX 0.004171 0.004292 0.000263 0.003985 0.005129
ENS-MOEA/D - 0.001642 0.000125 - -
NSGA-II 0.095186 0.094731 0.003249 0.088511 0.103222

UF2

MOEA/D-UCB-Tuned 0.001740 0.002043 0.000619 0.001560 0.003618
ADEMO/D 0.003559 0.003692 0.001229 0.002156 0.007758
MOEA/D-DRA 0.003375 0.003502 0.001039 0.002326 0.006638
MOEAD-CMX-SPX 0.005472 0.005615 0.000412 0.005149 0.006778
ENS-MOEA/D - 0.004048 0.001005 - -
NSGA-II 0.035151 0.035071 0.001479 0.032968 0.039164

UF3

MOEA/D-UCB-Tuned 0.002960 0.004818 0.009852 0.001039 0.055887
ADEMO/D 0.001640 0.002364 0.001348 0.001336 0.006504
MOEA/D-DRA 0.001488 0.003948 0.004131 0.001086 0.014019
MOEAD-CMX-SPX 0.005313 0.011165 0.013093 0.004155 0.068412
ENS-MOEA/D - 0.002591 0.000456 - -
NSGA-II 0.089894 0.090817 0.016815 0.062901 0.126556

UF4

MOEA/D-UCB-Tuned 0.053997 0.054511 0.004454 0.047378 0.067366
ADEMO/D 0.040184 0.040846 0.001617 0.038520 0.045140
MOEA/D-DRA 0.060765 0.060285 0.004757 0.051492 0.070912
MOEAD-CMX-SPX 0.063524 0.064145 0.004241 0.055457 0.075361
ENS-MOEA/D - 0.042070 0.001325 - -
NSGA-II 0.080935 0.080737 0.002809 0.074034 0.084683

UF5

MOEA/D-UCB-Tuned 0.287825 0.289346 0.041842 0.215209 0.373328
ADEMO/D 0.161385 0.162010 0.008849 0.141540 0.203285
MOEA/D-DRA 0.220083 0.254930 0.089484 0.146933 0.511464
MOEAD-CMX-SPX 0.379241 0.418508 0.135554 0.211058 0.707093
ENS-MOEA/D - 0.248110 0.042555 - -
NSGA-II 0.214958 0.220145 0.051622 0.154673 0.331853

UF6

MOEA/D-UCB-Tuned 0.064828 0.069553 0.033633 0.051310 0.244601
ADEMO/D 0.063794 0.063468 0.002938 0.057753 0.068737
MOEA/D-DRA 0.207831 0.326176 0.287571 0.053371 0.823381
MOEAD-CMX-SPX 0.248898 0.327356 0.185717 0.056972 0.792910
ENS-MOEA/D - 0.060847 0.019840 - -
NSGA-II 0.080177 0.080728 0.006460 0.067996 0.090331

UF7

MOEA/D-UCB-Tuned 0.001113 0.001154 0.000174 0.000998 0.001704
ADEMO/D 0.001663 0.001692 0.000263 0.001335 0.002574
MOEA/D-DRA 0.001569 0.001945 0.001364 0.001336 0.008796
MOEAD-CMX-SPX 0.004745 0.006262 0.003307 0.003971 0.014662
ENS-MOEA/D - 0.001728 0.000852 - -
NSGA-II 0.048873 0.048977 0.001959 0.044634 0.051968

UF8

MOEA/D-UCB-Tuned 0.029520 0,029741 0.004885 0.021318 0.042125
ADEMO/D 0.081807 0.083363 0.010145 0.065271 0.118021
MOEA/D-DRA 0.040352 0.040667 0.003788 0.033777 0.050412
MOEAD-CMX-SPX 0.056872 0.057443 0.003366 0.051800 0.065620
ENS-MOEA/D - 0.031006 0.003005 - -
NSGA-II 0.112219 0.113226 0.002742 0.109836 0.121190

UF9

MOEA/D-UCB-Tuned 0.025449 0.038029 0.036903 0,021770 0,151891
ADEMO/D 0.030595 0.038481 0.027877 0.025448 0.142735
MOEA/D-DRA 0.137856 0.123078 0.039018 0.025008 0.139986
MOEAD-CMX-SPX 0.144673 0.097693 0.054285 0.033314 0.151719
ENS-MOEA/D - 0.027874 0.009573 - -
NSGA-II 0.106841 0.106981 0.000681 0.105806 0.108729

UF10

MOEA/D-UCB-Tuned 0.493070 0.506181 0.072184 0.361202 0.661469
ADEMO/D 0.549185 0.563805 0.088759 0.412789 0.784204
MOEA/D-DRA 0.406094 0.408770 0.066770 0.210500 0.553572
MOEAD-CMX-SPX 0.467715 0.462653 0.038698 0.391496 0.533234
ENS-MOEA/D - 0.21173 0.019866 - -
NSGA-II 0.257846 0.259851 0.012541 0.234047 0.288036
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MOEA/D-UCB-Tuned was a consequence of it focusing more on the exploitation
than the other algorithms while the poor performance of MOEA/D-UCB-V could
be attributed to its emphasis on exploration3. This happened mainly because
the variance influence on MOEA/D-UCB-Tuned was limited to 1/4 while it is
unlimited in MOEA/D-UCB-V (see steps 12 and 15 of Algorithm 2).

5.2 Comparison with Literature

In the comparison with literature, we only use the IGD metric. This is due to a
lack of data from some of the algorithms. We evaluate the IGD metric of the final
approximation over 30 independent executions of MOEA/D-UCB-Tuned against
ADEMO/D, MOEA/D-DRA, ENS-MOEA/D, MOEA/D-DRA-CMX+SPX and
NSGA-II for each CEC09 test instance using the same reference set.

Table 5 presents median, mean, standard deviation (std), minimum (min)
and maximum (max) of IGD metric values. The IGD-metric values of the ENS-
MOEA/D and MOEA/D-DRA-CMX+SPX are those described in [17] and [9],
respectively. With respect to the IGD values, MOEA/D-UCB-Tuned is the best
algorithm on UF1, UF2, UF7, UF8 and UF9 and the second best algorithm
on UF4 and UF6. Its performance is poor on UF3, UF5 and UF10. Similar
results are obtained when considering the mean of the IGD values. These results
show that MOEA/D-UCB-Tuned can be favorably compared with state-of-the-
art algorithm from the literature.

6 Conclusions

In this paper, we proposed two new multiarmed bandit-based AOS methods,
MOEA/D-UCB-Tuned and MOEA/D-UCB-V, to adaptively select appropriate
operators in MOEA/D algorithms. As credit assignment, we used the FRR app-
roach proposed in [11]. Our operator pool was constituted by four commonly
used DE mutation operators. We conducted experimental studies on some test
instance from the CEC 2009 MOEA Competition.

The main contribution of this work was the proposal and investigation of new
combinations of UCB algorithms and the MOEA/D framework. The best pro-
posed approach (MOEA/D-UCB-Tuned) used an operator selection mechanism
that was based on the UCB-Tuned method from the multiarmed bandit litera-
ture. The better performance of MOEA/D-UCB-Tuned was expected based on
the results presented on the multiarmed bandit literature. We also showed that
the best proposed approach was favorably compared with state-of-the-art adap-
tive operator selection MOEA/D variants based on probability (ENS-MOEA/D
and ADEMO/D) and multiarmed bandits (MOEA/D-FRRMAB) methods.

Acknowledgments. The authors acknowledge CNPq, CAPES and Fundação
Araucária for the partial financial support. They also acknowledge the authors of the
MOEA/D-FRRMAB for providing its source code.

3 Data not shown due to a lack of space.
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Abstract. Bilevel decision making and optimization problems are com-
monly framed as leader-follower problems, where the leader desires to
optimize her own decision taking the decisions of the follower into account.
These problems are known as Stackelberg problems in the domain of game
theory, and as bilevel problems in the domain of mathematical program-
ming. In a number of practical scenarios, both the leaders and the fol-
lowers might be faced with multiple criteria bringing bilevel multi-criteria
decision making aspects into the problem. In such cases, the Pareto-
optimal frontier of the leader is influenced by the decision structure of the
follower facing multiple objectives. In this paper, we analyze this effect by
modeling the lower level decision maker using value functions. We study
the problem using test cases and propose an algorithm that can be used
to solve such problems.

Keywords: Stackelberg game · Bilevel optimization · Multi-objective
optimization · Evolutionary algorithms · Quadratic approximations

1 Introduction

Bilevel optimization problems have been widely studied by both researchers as
well as practitioners. The work has been driven by a number of applications that
are bilevel in nature; for instance in transportation (network design, optimal
pricing) [2,14], economics (Stackelberg games, principal-agent problem, policy
decisions) [10,23,24,28], management (network facility location, coordination of
multi-divisional firms) [1,27], engineering (optimal design, optimal chemical equi-
libria) [12,26]. The recent methodological and practical developments on bilevel
optimization have been mostly directed towards problems with single objective
at both levels. Apart from a few studies in classical optimization [8,9] and evolu-
tionary optimization [7,11,18], little work has been done in the domain of multi-
objective bilevel optimization. Most of these studies have not considered decision
making intricacies that can arise from hierarchical decision interactions in the
presence of multiple objectives.
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part I, LNCS 9018, pp. 426–443, 2015.
DOI: 10.1007/978-3-319-15934-8 29
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While solving a bilevel optimization problem with multiple objectives at both
levels, many a times the assumption is that the follower has little decision mak-
ing power. This means the follower allows the leader to utilize any solution from
her (follower’s) frontier. This is an optimistic assumption and is often not realis-
tic. A leader may anticipate the decisions of a follower and optimize her decisions
accordingly, but it is unrealistic to assume that the leader can choose the solu-
tions best suited to her from the follower’s frontier. In this paper, we study cases
where the lower level decision maker has sufficient power to make a deterministic
decision from her own frontier. We analyze what kind of an impact deterministic
lower level decisions have on the upper level frontier. We also highlight issues that
need further attention.

Tobeginwith,we provide a review of some of the recentwork onmulti-objective
bilevel optimization. This is followed by the description of multi-objective bilevel
optimization with and without decision making at the lower level. The lower level
decision making aspects and its impact on the upper level Pareto-frontier are ana-
lyzed using two test problems. Thereafter, we propose an evolutionary algorithm
to solve such multi-objective bilevel optimization problems where the lower level
decisions are determined by a value function. The performance of the evolutionary
algorithm is evaluated on test problems and comparisons have been drawn with an
earlier approach [7].

2 Past Studies onMulti-objective Bilevel Optimization

There exists a significant amount of work on single objective bilevel problems,
but little has been done on multi-objective bilevel problems primarily because of
the computational and decision making complexities that such problems offer. In
this section, we highlight the few studies available on multi-objective bilevel opti-
mization. Studies by Eichfelder [8,9] utilize classical techniques to handle simple
multi-objective bilevel problems. The lower level problems are handled using a
numerical optimization technique, and the upper level problem is handled using
an adaptive exhaustive search method. This makes the solution procedure com-
putationally demanding and non-scalable to large-scale problems. The method is
close to a nested strategy, where each of the lower level optimization problems are
solved to Pareto-optimality. Shi and Xia [18] use ε-constraint method at both lev-
els of multi-objective bilevel problem to convert the problem into an ε-constraint
bilevel problem. The ε-parameter is elicited from the decision maker, and the prob-
lem is solved by replacing the lower level constrained optimization problem with
its KKT conditions. The problem is solved for different ε-parameters, until a sat-
isfactory solution is found.

One of the first studies, utilizing an evolutionary approach for bilevel multi-
objective algorithms was by Yin [29]. The study involved multiple objectives at
the upper lever, and a single objective at the lower level. The study suggested a
nested genetic algorithm, and applied it on a transportation planning and manage-
ment problem. Later Halter and Mostaghim [11] used a particle swarm optimiza-
tion based nested strategy to solve a multi-component chemical system. The lower
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level problem in their application problem was linear for which they used a spe-
cialized linear multi-objective PSO approach. Recently, a hybrid bilevel evolution-
ary multi-objective optimization algorithm approach coupled with local search
was proposed in [7] (For earlier versions, refer [4–6,20]). In the paper, the authors
handled non-linear as well as discrete bilevel problems with relatively large
r number of variables. The study also provided a suite of test problems for bilevel
multi-objective optimization. Other recent work related to bilevel multi-objective
optimization can be found in [13,15–17,30]. There has been some work done on
decision making aspects primarily at the upper level. For example, in [19] an inter-
action with the upper level decision maker is performed during optimization to
find the most preferred point instead of the entire Pareto-frontier. Since multi-
objective bilevel optimization is computationally expensive, such an approach was
justified as it led to enormous savings in computational expense. However, deci-
sion making at the lower level was ignored in this study.

3 Bilevel Multi-objective Optimization and Decision
Making

In this section, we provide different formulations for a bilevel multi-objective
optimization problem that contains two levels of optimization. The upper level
optimization problem is the leader’s problem (upper level decision maker) and
the lower level optimization problem is the follower’s problem (lower level deci-
sion maker). First, we consider a formulation, where there is no decision making
involved at the lower level and all lower level Pareto-optimal solutions are con-
sidered at the upper level. Second, we consider a formulation, where the decision
maker acts at the lower level and chooses a solution to her liking. This becomes
the only possible feasible solution at the upper level.

3.1 Bilevel Multi-objective Optimization

Bilevel multi-objective optimization problems contain two levels of multi-objective
optimization tasks. There are two types of variables in these problems; namely, the
upper level variables xu ∈ XU ⊂ R

n, and the lower level variables xl ∈ XL ⊂ R
m.

The lower level multi-objective problem is solved with respect to the lower level
variables, while the upper level variables act as parameters to the optimization
problem. The optimistic formulation of such problems requires that the Pareto-
optimal solutions of the lower level optimization problem may be considered as
possible feasible solutions for the upper level optimization problem. Below, we pro-
vide two equivalent definitions of a bilevel multi-objective optimization problem.

Definition 1. def:bilevel1 For the upper-level objective function F : Rn ×R
m →

R
p and lower-level objective function f : Rn × R

m → R
q
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minimize
xu∈XU ,xl∈XL

F (xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ argmin
xl

{f(xu, xl) = (f1(xu, xl), . . . , fq(xu, xl)) :

gj(xu, xl) ≤ 0, j = 1, . . . , J}
Gk(xu, xl) ≤ 0, k = 1, . . . , K

The above definition can be stated in terms of set-valued mappings as follows:

Definition 2. def:bilevel2 Let Ψ : Rn ⇒ R
m be a set-valued mapping,

Ψ(xu) = argmin
xl

{f(xu, xl) = (f1(xu, xl), . . . , fq(xu, xl)) : gj(xu, xl) ≤ 0, j = 1, . . . , J},

which represents the constraint defined by the lower-level optimization problem,
i.e. Ψ(xu) ⊂ XL for every xu ∈ XU . Then the bilevel multi-objective optimization
problem can be expressed as a constrained multi-objective optimization problem as
follows:

minimize
xu∈XU ,xl∈XL

F (xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ Ψ(xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Ψ can be interpreted as a parameterized range-constraint for the lower-level
decision vector xl.

3.2 Decision Making at Lower Level

According to the formulation of a multi-objective bilevel problem in the previ-
ous sub-section, the follower provides all Pareto-optimal points to the leader, who
chooses the most suitable point in accordance with the upper level objectives.
However, this is rarely the case, as in reality it might often happen that the fol-
lower is interested in optimizing her own objectives and making her own decision
for a given upper level vector. If the leader wants to solve such a problem where
the follower has sufficient decision making power, then she needs to have a com-
plete knowledge of the follower’s decision structure. The decision structure of the
follower may be represented in the form of a value function. If the value function
of the lower level decision maker is known, then such an optimization problem can
be formulated as follows:

Definition 3. def:bilevel3 For the upper-level objective function F : Rn × R
m →

R
p and lower-level objective function f : Rn × R

m → R
q

minimize
xu∈XU ,xl∈XL

F (xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ argmin
xl

{V (f1(xu, xl), . . . , fq(xu, xl);ω) : gj(xu, xl) ≤ 0, j = 1, . . . , J}

Gk(xu, xl) ≤ 0, k = 1, . . . , K,
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where V denotes the follower’s value function, and ω is the parameter vector
of the assumed value function form. For instance, if V is linear, such that
V (f1(xu, xl), . . . , fq(xu, xl);ω) =

∑q
i=1 ωifi(xu, xl), then ωi ∀ i ∈ {1, . . . , q} rep-

resent the value function parameters.
If it is assumed that the lower level decision maker always returns a single point

for a given xu, then the definition gets modified as follows:

Definition 4. def:bilevel4 For the upper-level objective function F : Rn × R
m →

R
p and lower-level objective function f : Rn × R

m → R
q

minimize
xu∈XU ,xl∈XL

F (xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl =argmin
xl

{V (f1(xu, xl), . . . , fq(xu, xl)) : gj(xu, xl) ≤ 0, j = 1, . . . , J}

Gk(xu, xl) ≤ 0, k = 1, . . . , K

In this paper, we aim to solve the problem formulated above. We assume that
the leader has a complete knowledge of the follower’s value function. Based on
this information, we solve the bilevel problem to identify the upper level Pareto-
frontier. Once the upper level Pareto-frontier is available to the leader, it becomes
a multi-criteria decision making problem for the leader that we do not consider in
this paper.

4 A Graphical Representation for Bilevel Multi-objective
Optimization with Lower Level Decisions

Bilevel optimization problems are known to be computationally demanding. How-
ever, in case of multiple objectives at both levels of a bilevel optimization problem,
an additional difficulty enters because the decision making aspects need to be con-
sidered. Even though the upper level decision maker is aware of the objectives of
the lower level decision maker, she has little idea about the decisions the lower
level decision maker might make from a multitude of lower level Pareto-optimal
solutions. In order to handle the problem, the upper level decision maker needs to
identify the preference structure of the lower level decision maker through studies
or surveys.

Figure 1 shows the scenario, where the shaded region (Ψ(xu)) represents the
follower’s Pareto-optimal solution for any given leader’s decision (xu). These are
the rational actions, which the follower may make for a given leader’s action. If the
leader is aware of the follower’s objectives, she will be able to identify the shaded
region completely by solving the multi-objective optimization problem for the fol-
lower for all xu. However, information about the follower’s preferences on the lower
level Pareto-optimal solutions is required by the leader to make an appropriate
decision. If the preferences of the follower are perfectly known, then the lower level
decision for any xu is given by σ(xu), shown in the figure. In such a case, it is possi-
ble for the leader to solve the hierarchical optimization task completely, only when
σ(xu) is available.
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Fig. 1. Lower level Pareto-optimal solutions (ψ(xu)) and corresponding decisions σ(xu)

Next, we look at the multi-objective bilevel problem in the objective spaces of
the leader and the follower. In the case when the leader solves the bilevel problem
taking into account the actions of the follower, each point on the leader’s Pareto-
frontier corresponds to one of the points on the follower’s Pareto-frontier. This
has been shown in Figure 2, where points Au, Bu and Cu are realized when the
follower’s choices are Al, Bl and Cl. Points Al, Bl and Cl lie on the lower level
Pareto-optimal front corresponding to x

(1)
u , x

(2)
u and x

(3)
u respectively. If the fol-

lower decides to use a different preference structure, the Pareto-frontier for the
leader may change. It may happen that the Pareto-frontier at the upper level
improves, deteriorates or does not change. It may also happen that with change
in the follower’s preferences, upper level points x

(1)
u , x

(2)
u and x

(3)
u are no longer

a part of the upper level frontier. Therefore, the Pareto-optimal solutions at the
upper level are entirely dependent on the decision structure of the follower. In the
next section, using examples we compare the leader’s frontier corresponding to a
follower with sufficient decision power and a follower with no decision power.

5 Examples

In this section, we consider two examples from the literature [7,8] and solve the
problem analytically to show how the frontier at the upper level changes when the
lower level decision maker exercises her decisions. A comparison has been made
against the scenario when no lower level decision making is performed.

Example 1. Consider the following bilevel multi-objective optimization prob-
lem [8] with two objectives at each level. It contains three variables with y1, y2
belonging to xl and x belonging to xu.

minimize F (x, y1, y2) =

{
y1 − x

y2

}
,

subject to (y1, y2) ∈ argmin
(y1,y2)

{
f(x, y1, y2) =

(
y1

y2

) ∣∣∣∣g1(x, y1, y2) = x2 − y2
1 − y2

2 ≥ 0

}
,

G1(y1, y2) = 1 + y1 + y2 ≥ 0,
−1 ≤ y1, y2 ≤ 1, 0 ≤ x ≤ 1.

(1)
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Fig. 2. The small figures show the follower’s problem for different xu. When the fol-
lower’s preference structure is known, the leader optimizes the bilevel problem such that
the follower’s decisions corresponds to the leader’s Pareto-frontier. Al, Bl and Cl repre-
sent the follower’s decisions for x

(1)
u , x

(2)
u and x

(3)
u respectively. Au, Bu and Cu are the

corresponding points for the leader in the leader’s objective space.

For any fixed value of x, the feasible region of the lower-level problem is the area
inside a circle with center at origin (y1 = y2 = 0) and radius equal to x. The
Pareto-optimal set for the lower-level optimization task for a fixed x is the south-
west quarter of the circle:

{(y1, y2) ∈ R2 | y2
1 + y2

2 = x2, y1 ≤ 0, y2 ≤ 0}.

.
Let us first consider the upper level frontier with no lower level decision mak-

ing. This represents the best possible frontier at the upper level as all the lower
level Pareto-optimal members are available to the upper level decision maker. It
is an ideal scenario for the upper level decision maker, where she freely chooses a
suitable point from the lower level frontier. For the above example, such an upper
level frontier is shown in Figure 3. The upper level Pareto-optimal set for this sce-
nario can be generated as follows:

(x, y1, y2)
∗ =

{
(y1, y2, x) ∈ R3

∣∣ x ∈
[

1√
2

, 1

]
, y1 = −1 − y2, y2 = −1

2
± 1

4

√
8x2 − 4

}
. (2)

From the Figure 3 it is clear that at most two members from the lower level fron-
tiers corresponding to x ∈ [

√
0.5, 1] participate in the upper level front. Note that

for x = 0.9 points B and C are Pareto-optimal at the upper level and point A is
infeasible because of the upper level constraint.

Next, let us consider the problem in the context of this paper, where the lower
level decision maker has sufficient power to choose a point from her Pareto-optimal
front. If one assumes a particular value function, say V (f1, f2) = 5x2f1 + f2, then
the upper level frontier is given as shown in Figure 4. It is noteworthy that the
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assumed value function also contains x. This kind of dependency may not always
exist, but has been considered here to show that the lower level value function may
take any possible form. The theoretical upper level Pareto-optimal frontier corre-
sponding to the deterministic lower level value function is theoretically given as:

V (f1, f2) = 5x2f1 + f2, then y1 = −
√

25x6

(1 + 25x4)
, y2 = −

√
x2 − y2

1 , x ∈ [0.447, 0.797]

The leader’s Pareto-optimal frontier corresponding to deterministic decisions
of the follower is much worse as compared to the Pareto-optimal frontier corre-
sponding to no decisions by the follower. From Figure 4 the leader can easily eval-
uate how worse she gets from the best possible frontier when she chooses a point
on the Pareto-optimal frontier with deterministic lower level decisions.

PO front with no
lower level decisions
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A

PO fronts
at upper level
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B
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Fig. 3. Example 1: Upper level Pareto-
optimal front (with no lower level decision
making) and few representative lower level
Pareto-optimal fronts in upper level objec-
tive space
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Fig. 4. Example 1: Upper level (UL)
Pareto-optimal front when lower level
(LL) decisions are given by V (f1, f2) =
5x2f1 + f2

Example 2. Let us consider another simple multi-objective bilevel optimization
problem that is discussed in [6,7]. The problem is scalable in terms of lower level
variables, and contains a single upper level variable. For K variables at the lower
level, xl = (y1, . . . , yK) and xu = (x); the problem is defined as follows:

Minimize F (xu, xl) =

(
(y1 − 1)2 +

∑K
i=2 y2

i + x2

(y1 − 1)2 +
∑K

i=2 y2
i + (x − 1)2

)
,

subject to

(y1, y2, . . . , yK) ∈ argmin
(y1,y2,...,yK)

{
f(xu, xl) =

(
y2
1 +
∑K

i=2 y2
i

(y1 − x)2 +
∑K

i=2 y2
i

)}
,

−1 ≤ (x, y1, y2, . . . , yK) ≤ 2.

(3)
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For any x, the Pareto-optimal solutions of the lower level optimization problem
are given as follows: {xl ∈ RK

∣∣y1 ∈ [0, x], yi = 0, for i = 2, . . . , K}. In this paper,
we choose K = 14, such that the problem contains 15 variables. The best possi-
ble frontier at the upper level may be obtained when there is no decision maker
at the lower level, and all the lower level Pareto-optimal members are available
at the upper level. In this example, such a frontier corresponds to the following
conditions: {(xu, xl) ∈ RK+1

∣∣y1 = x, yi = 0, for i = 2, . . . , K, x ∈ [0.5, 1.0]}.
Now let us consider that there exists a decision maker at the lower level, whose

value function is V (f1, f2) = 2f1 + f2. The upper level frontier for this case is
shown in Figure 6. The theoretical upper level Pareto-optimal frontier for the
deterministic lower level value function is given as:

V (f1, f2) = 2f1 + f2, then y1 =
x

3
, yi = 0 ∀ i = 2, . . . , K, x ∈ [0.300, 1.201]

We once again observe that the realized Pareto-optimal frontier for the leader is
much worse when the follower freely exercises her decisions.
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Fig. 5. Example 2: Upper level Pareto-
optimal front (with no lower level decision
making) and few representative lower level
Pareto-optimal fronts in upper level objec-
tive space
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6 AlgorithmDescription

In this section, we introduce an evolutionary algorithm for solving bilevel prob-
lems where the upper level has multiple objectives and the lower level decisions
are modeled using a value function. This means that the algorithm solves a prob-
lem with multiple objectives at upper level and single objective at the lower level.
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Randomly initialize UL population of size N (Refer 6.1) 

Produce UL offspring using UL population members (Refer 6.4) 

Get LL members for UL offspring using quadratic approximation (Refer 6.5) 

If number of tag 1  
members in population 

is less than N/2 
Perform LL optimization for each UL offspring. 

Tag UL offspring as 1 

Tag UL offspring as 0 

Termination 
(Refer 6.7) 

No 

Yes 

Stop Perform LL optimization for each UL member (Refer 6.2) 

Tag UL member as 1 if LL optimization is successful, else 0; assign fitness (Refer 6.3) 

If mean squared error (emse)  
for quadratic approximation  

is less than e0  

Tag UL offspring as 1 if LL optimization is successful, else 0; assign Fitness 

Update UL population (Refer 6.6) 

Start 

No 

Yes 

No 

Yes 

LL: Lower Level 
UL: Upper Level 

Fig. 7. Flowchart for m-BLEAQ

The approach is an extension of a recently proposed algorithm for single objec-
tive bilevel optimization [21,22], and is referred as multi-objective bilevel evolu-
tionary algorithm based on quadratic approximations (m-BLEAQ). The proposed
approach is based on estimation of unknown lower level decisions using quadratic
approximations, when lower level decisions corresponding to a few upper level vec-
tors are known. The approximation helps in reducing the number of lower level
optimization calls that leads to computational savings. The working of the algo-
rithm has been shown through a flowchart in Figure 7.

6.1 Population Structure

The population structure at the upper level is shown in Figure 8. The first col-
umn represents the upper level population members and the second column repre-
sents the corresponding lower level population members that have been computed
through lower level optimization or quadratic approximation. Based on the qual-
ity of the lower level members the upper level members are tagged as 0 or 1. For
tag 1 upper level members the corresponding lower level members are expected to
be close to lower level optimum.
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Fig. 8. Population structure at upper level of m-BLEAQ

6.2 Lower Level Optimization

A steady state evolutionary algorithm1 for global optimization is used at the lower
level to find the optimum. The fitness assignment at the lower level is performed
based on lower level function value and constraints. The upper level vector for
which lower level optimization is being performed is kept fixed during the opti-
mization run.

Step 1. Randomly initialize a lower level population of size N . Assign fitness to
the members based on lower level objective functions and constraints.

Step 2. Randomly choose 6 members from the population, and perform a tour-
nament selection. This gives 3 parents for crossover.

Step 3. Create 2 offsprings from the parents using genetic operators on the lower
level variables only.

Step 4. Randomly choose 2 members from the population, and pool them with
2 offsprings. The 2 best members from the pool replace the chosen members
from the population.

Step 5. Perform a termination check. Proceed to next generation (Step 2), if the
termination criteria is not satisfied, otherwise proceed to the next step.

Step 6. The best obtained lower level member is paired with the corresponding
upper level member in the upper level population.

6.3 Fitness Evaluation

Fitness assignment for feasible upper level member is performed based on their
non-domination rank and crowding distance [3]. For a given upper level member
x, if the non-domination rank is given as NR(x) and crowding distance within its
frontier is given as CD(x), then the fitness for the member is calculated as follows:

Fu(x) =
1

NR(x) + e−CD(x)
, (4)

1 A classical optimization strategy can be used to replace the lower level evolutionary
algorithm, if the lower level optimization problem adheres to the requirements of the
classical approach.
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Fitness for an infeasible upper level member is computed by subtracting the sum
of upper level constraint violations from the fitness value of the worst feasible
member.

The fitness during lower level optimization is given by lower level function val-
ues for the feasible members. For the infeasible lower level members, we subtract
the sum of lower level constraint violations from the fitness value of the worst fea-
sible member at that level.

6.4 Genetic Operations

A parent centric crossover and a polynomial mutation is performed to generate
new parents. The crossover operator is similar to the PCX operator proposed in
[25] with slight modifications. The operator requires 3 parents to create an off-
spring that are selected using tournament selection. The crossover operation is
performed as show below:

c = x(p) + ωξd + ωη
p(2) − p(1)

2
(5)

The terms used in the above equation are defined as follows:

– x(p) is the index parent
– d = x(p) − g, where g is the mean of μ parents
– p(1) and p(2) are the other two parents
– ωξ = 0.1 and ωη = dim(x(p))

||x(p)−g||1 are the two parameters.

Upper level crossovers and mutations are performed on upper level variables, while
lower level crossovers and mutations are performed on lower level variables.

6.5 Quadratic Approximations

At any generation of the m-BLEAQ algorithm, we attempt to maintain at least
N
2 tag 1 members. These are the upper level members for which the lower level
optimal solutions are accurately known. We utilize these members to compute the
lower level optimal solutions of the new upper level members. Based on the qual-
ity of the quadratic approximation, the estimated lower level optimum might be
accurate or inaccurate. Figure 9 shows a scenario where there are three members
for which lower level decisions are known. We utilize these members to construct
a quadratic approximation that provides an estimate for the unknown lower level
decision.

Figure 9 explains the approximation in the presence of a single lower and upper
level variable. When multiple lower and upper level variables are present, we uti-
lize all the upper level variables to construct the quadratic approximation for each
lower level variable. Therefore, the number of quadratic approximations are as
many as the number of lower level variables, and each lower level variable is a
function of all the upper level variables. We choose the closest upper level members
for quadratic approximation around the point for which we intend to estimate the
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Fig. 9. Approximating decisions for an unknown upper level vector when decisions cor-
responding to few upper level vectors are known

lower level decision. Such an approximation is expected to provide a reliable local
estimate. We propose to utilize at least 1

2 [(dim(xu)+1)(dim(xu)+2)]+dim(xu)
upper level points for constructing the approximation.

6.6 Update at Upper Level

The upper level population is updated by choosing 2 worst members from the
population. The members are pooled with 2 offsprings generated through genetic
operations, and the best members from the pool are chosen to replace the selected
population members.

6.7 Termination

At the upper level we terminate the algorithm based on maximum upper level
function evaluations (Tmax). We use an improvement based termination at the
lower level such that if the improvement in the lower level function value is less
than 1e − 5 for 100 consecutive generations then we terminate the optimization.

6.8 Archiving

We store all the tag 1 upper level members produced by the algorithm in an archive.
The final upper level Pareto-optimal solutions are presented to the user by pro-
viding the best frontier in the archive set.

6.9 Parameters

For all the computations in this paper we fix the algorithm parameters as N = 50.
Crossover probability is fixed at 0.9 and the mutation probability is fixed at 0.1.
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7 Results

We evaluate the m-BLEAQ algorithm on the examples that we discussed in an
earlier section. Since we know the Pareto-optimal frontier for both problems, it is
easy to test the performance using Inverted Generalization Distance (IGD) [31]
metric. We compare our results against the H-BLEMO approach proposed in [7].

In order to compute the IGD value, we generate 500 evenly distributed points
on the upper level Pareto-optimal front of the two problems. An average distance
in some sense [31] is computed between these evenly distributed points and the
points on the frontier achieved by the algorithm. The smaller the IGD value the
better is the performance of the approach. The IGD metric is able to provide
a measure for both convergence and diversity. While presenting the results for
m-BLEAQ and H-BLEMO we fix the maximum number of upper level function
evaluations (Tmax) and then determine the IGD value achieved by both meth-
ods. H-BLEMO has been slightly modified at the lower level to incorporate a sim-
ilar lower level termination criteria as in m-BLEAQ. The results are presented in
Tables 1, 2, 3 and 4. Figures 10 and 11 show the Pareto-optimal fronts achieved
by m-BLEAQ from one of the sample runs for the two test problems.
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Fig. 10. Example 1: Pareto-optimal front
obtained using m-BLEAQ from one of the
runs when Tmax = 5000
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Fig. 11. Example 2: Pareto-optimal front
obtained using m-BLEAQ from one of the
runs when Tmax = 5000

It is noteworthy that the H-BLEMO is capable of handling multiple objectives
at both levels, but in the current formulation the lower level is represented by a
value function, which means that H-BLEMO is handling a single objective prob-
lem at the lower level and a multi-objective problem at the upper level. On the
other hand m-BLEAQ cannot directly handle multiple objectives at both levels.
However, with multiple objectives at upper level and single objective at lower level
m-BLEAQ is able to achieve much lower IGD values as compared to H-BLEMO
for the same number of upper level function evaluations and much fewer lower
level function evaluations.
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Table 1. Minimum, median and maximum IGD values obtained from 21 runs of m-
BLEAQ and H-BLEMO when Tmax = 5000

Prob. No of Vars. IGD (m-BLEAQ) IGD (H-BLEMO)
Min Med Max Min Med Max

Ex1 3 0.0021 0.0026 0.0033 0.0425 0.0409 0.0980

Ex2 15 0.0017 0.0027 0.0036 0.0398 0.0683 0.0532

Table 2.Minimum, median and maximum lower level function evaluations (LLFE) from
21 runs of m-BLEAQ and H-BLEMO when Tmax = 5000

Prob. LLFE (m-BLEAQ) Savings:
H-BLEMO (Med)
m-BLEAQ (Med)

Min Med Max LLFE

Ex1 56043 73689 81201 5.12

Ex2 33054 47679 66533 5.38

Table 3. Minimum, median and maximum IGD values obtained from 21 runs of m-
BLEAQ and H-BLEMO when Tmax = 10000

Prob. No of Vars. IGD (m-BLEAQ) IGD (H-BLEMO)
Min Med Max Min Med Max

Ex1 3 0.0008 0.0011 0.0013 0.0206 0.0361 0.0500

Ex2 15 0.0009 0.0012 0.0013 0.0178 0.0243 0.0305

Table 4.Minimum, median and maximum lower level function evaluations (LLFE) from
21 runs of m-BLEAQ and H-BLEMO when Tmax = 10000

Prob. LLFE (m-BLEAQ) Savings:
H-BLEMO (Med)
m-BLEAQ (Med)

Min Med Max LLFE

Ex1 77735 94104 99187 8.57

Ex2 45377 65674 91898 7.63

8 Conclusions and FutureWork

In this paper, we have analyzed bilevel optimization problems with multiple objec-
tives. In order to account for deterministic decisions of the follower, multiple objec-
tives at the lower level have been replaced by a value function. We have considered
a realistic scenario in this paper where the follower has some decision power based
on which she chooses a solution from her Pareto-optimal frontier. Through exam-
ples we have shown that decisions of the follower may have significant impact on
the leader’s frontier when compared against the case of not accounting the fol-
lower’s decisions.
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We have extended a recently proposed algorithm for single objective bilevel
optimization (BLEAQ) to handle multi-objective bilevel problems with determin-
istic lower level decision. The extended algorithm (m-BLEAQ) is found to be com-
putationally efficient when compared against an earlier proposed strategy
(H-BLEMO). As a future research, we intend to study how the frontier at the upper
level changes when the decision structure (value function) of the follower varies. It
is not always possible to deterministically ascertain the value function of a decision
maker. Therefore, future efforts will be directed towards handling problems with
lower level decision uncertainty. It will also be interesting to consider cooperation
between leader and follower, where the follower agrees to return a part of her fron-
tier as possible lower level decisions to the leader. Such kind of cooperation by the
follower may lead to an improved Pareto-optimal frontier at the upper level. Such
a study will also allow to evaluate the extent of compromises and gains that can
be made by the leader and the follower through mutual cooperation.
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