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Abstract. We show that the correct mathematical foundation of quan-
tum decision theory, dealing with uncertain events, requires the use of
positive operator-valued measure that is a generalization of the projection-
valued measure. The latter is appropriate for operationally testable events,
while the former is necessary for characterizing operationally uncertain
events. In decision making, one has to distinguish composite non-entangled
events from composite entangled events. The mathematical definition of
entangled prospects is based on the theory of Hilbert-Schmidt spaces and
is analogous to the definition of entangled statistical operators in quan-
tum information theory. We demonstrate that the necessary condition for
the appearance of an interference term in the quantum probability is the
occurrence of entangled prospects and the existence of an entangled strate-
gic state of a decision maker. The origin of uncertainties in standard lot-
teries is explained.

Keywords: Decision theory · Quantum information processing ·
Decisions under uncertainty · Quantum probability · Positive operator-
valued measure · Entangled prospects

1 Introduction

Techniques of quantum theory are nowadays widely employed not only for physics
problems but also in such fields as quantum information processing and quantum
computing [1–5]. Another example is the theory of quantum games [6]. A scheme
of artificial quantum intelligence was suggested [7,8]. Applications of quantum
techniques to cognitive sciences are also quickly growing.

Actually, the idea that human decision making could be characterized by
quantum techniques was advanced long ago by Bohr [9,10]. Since then, a number
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of publications have discussed the possibility of using quantum techniques in
cognitive sciences, as is summarized in the recent books [11–13].

Von Neumann [14] mentioned that the theory of quantum measurements can
be interpreted as decision theory. There is, however, an important difference
between the standard situation in quantum measurements and the often occur-
ring case in realistic decision making. Usual measurements in physics problems
are operationally testable, resulting in well defined numerical values of the mea-
sured observables. In decision making, however, it is common to deal with com-
posite events requiring to take decisions in uncertain situations. While the final
decision should also be operationally testable, intermediate steps often involve
uncertainty that is not operationally testable. The correct description of such
uncertain composite prospects requires the use of more elaborate mathematics
than the projection-valued measure commonly employed for standard physics
problems.

In our previous papers [15–19], we have developed Quantum Decision Theory
(QDT) whose mathematical basis rests on the theory of quantum measurements
and quantum information theory. The strategic state of a decision maker was
represented by a wave function. As is well known, a wave function characterizes
an isolated quantum system. However, in real life, no decision maker can be
absolutely isolated from the society where he/she lives. That is, the character-
ization of a strategic decision-maker state by a wave function is oversimplified.
Simple methods of quantum mechanics are not sufficient for a realistic descrip-
tion of a decision maker that is a member of a society. Being an open system,
a decision maker has to be described by a statistical operator, similarly to any
non-isolated system in quantum theory, which requires the use of the ramified
techniques of quantum statistical theory [20–22].

One could think that, for describing simple psychological laboratory experi-
ments, there is no need of invoking statistical operators and it would be sufficient
to just use pure states characterized by wave functions, since most lab-based
tests on cognition deal with subjects that are typically isolated and the exper-
iments have limited durations. However, in quantum theory, as is well known,
the necessity of using density matrices is dictated by the existence of interac-
tions not merely at the present moment of time, but also at any previous times,
which is always relevant for any alive being. In addition, a system is termed
open if interactions have been present not only with similar systems, but with
any surrounding. Thus, humans are always subject to interactions with many
other people as well as with various information sources, such as TV, radio, tele-
phone, internet, newspapers, and so on. All these numerous interactions always
influence decision makers making them, without doubt, open systems. In order
to reduce a decision maker to a pure quantum-mechanical system for a pure lab-
oratory experiment, it would be necessary to make a surgical operation deleting
all memory and information from the brains of these poor decision makers. The
usual lab tests, fortunately, do not require this, so that decision makers have to
be always treated as open systems described by statistical operators.
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It is worth stressing that a theory based on statistical operators includes,
as a particular case, the pure-state description. So that all results obtained in
the general consideration can be straightforwardly reduced to the latter case by
taking the statistical operator in the pure form |ψ >< ψ|.

The goal of the present report is threefold. First, we present the extension
of QDT to the most general case when the decision-maker strategic state is
characterized by a statistical operator. Second, we demonstrate that the correct
mathematical description of uncertain composite events has to be described by
a positive operator-valued measure generalizing the projection-valued measure
used in quantum mechanics. Third, we show that decision making under uncer-
tainty is a rather common phenomenon that happens in the delusively simple
problem of choosing between lotteries and illustrate this by an explicit example.

The important feature of our approach is that we employ the rigorous mathe-
matical techniques developed in the theory of quantum measurements and quan-
tum information theory. In order that the reader with background in psychology
would not confuse mathematical notions used in our paper, we give the necessary
definitions, trying at the same time to keep the exposition concise. Details can
be found in the books [1,2,4,5,23–26] and review articles [3,27].

2 Operationally Testable Events

The operationally testable events in QDT can be characterized by analogy with
operationally testable measurements in quantum theory. Quantum events, obey-
ing the Birkhoff-von Neumann quantum logic [28], form a non-commutative non-
distributive ring R. The nonempty collection of all subsets of the event ring R,
including R, which is closed with respect to countable unions and complements,
is the event sigma algebra Σ. The algebra of quantum events is the pair {Σ,R}
of the sigma algebra Σ over the event ring R. An elementary event An is repre-
sented by a basic state |n〉 generating the event operator defined as a projector

P̂n ≡ |n〉〈n|. (1)

The space of mind of a decision maker is a Hilbert space H that is a closed linear
envelope of the basis {|n〉} spanning all admissible basic states. The strategic
state of a social decision maker is a statistical operator ρ̂ that is a trace-class
positive operator normalized to one. The algebra of observables in QDT is the
family {P̂n} of the event operators whose expected values define the event prob-
abilities

p(An) ≡ Trρ̂P̂n ≡ 〈P̂n〉, (2)

with the trace over H. From this definition, it follows:
∑

n

p(An) = 1, 0 ≤ p(An) ≤ 1,

hence the family {p(An)} forms a probability measure. By the Gleason theorem
[29], this measure is unique for a Hilbert space of dimensionality larger than
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two. In the theory of quantum measurements, the projectors P̂n play the role of
observables, so that, for an event An, one has the correspondence

An → P̂n ≡ |n〉〈n|. (3)

For a union of mutually orthogonal events, there is the correspondence
⋃

n

An →
∑

n

P̂n, (4)

which results in the additivity of the probabilities:

p

(
⋃

n

An

)
=

∑

n

p(An). (5)

The procedure described above is called the standard measurement.
Let us emphasize that all formulas of this and following sections are valid for

an arbitrary statistical operator, which includes the pure form ρ̂ = |ψ〉〈ψ| as a
trivial particular case.

3 Operationally Uncertain Events

It may happen that one cannot tell whether a particular event has occurred, but
it is only known that some of the events An could be realized. This is what is
called an uncertain or inconclusive event.

Assume that the observed event A is a set {An} of possible events. Although
the events Am and An are orthogonal for m �= n, in the case of the uncertain
event A, they form not a standard union but an uncertain union that we shall
denote as

A ≡ {An} ≡
⊎

n

An (6)

in order to distinguish it from the standard union
⋃

n An. The uncertain event
A is characterized by the wave function

|A〉 =
∑

n

an|n〉, (7)

where |an|2 play the role of weights for the events An. Now, instead of the
correspondence (4) for the standard union, we have the correspondence

⊎

n

An → P̂A ≡ |A〉〈A|. (8)

Note that P̂A is not a projector.
The probability of the uncertain event A reads as

p(A) = p

(
⊎

n

An

)
=

∑

n

|an|2p(An) + q(A), (9)
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where the second term

q(A) ≡
∑

m �=n

a∗
man〈m|ρ̂|n〉 (10)

is caused by the interference of the uncertain subevents An that are called modes.
The probability p(A) of the uncertain event A, represented by the uncertain
union (6), does not equal the sum of the event probabilities p(An). In that
sense, the uncertain union (6) is not additive with respect to partial events An,
contrary to the probability of the standard union (5).

4 Composite Non-entangled Prospects

Composite events are termed prospects. These can be sorted in two classes,
entangled and non-entangled [30]. This classification is based on the theory of
Hilbert-Schimdt spaces [31,32], as is explained below.

It is well known that quantum-mechanical wave functions, pertaining to a
Hilbert space, can be either entangled, or non-separable, and non-entangled, or
separable. Similarly, by constructing the appropriate Hilbert-Schmidt space, it
is possible to introduce the notions of entangled, or non-separable operators,
and of non-entangled, or separable operators. We need this classification for a
bipartite system, that is, consisting of two parts, although the definition can be
straightforwardly generalized for a multi-partite case.

Let us consider a bipartite quantum system, with one subsystem correspond-
ing to a Hilbert space HA and the other, to a Hilbert space HB . The subsystem,
defined in HA, is characterized be a set of operators, acting on HA. For what
follows, we keep in mind the operators of observables represented by the pro-
jectors of operationally testable events. The set of operators on HA forms an
algebra of observables A. Respectively, the subsystem in HB is characterized by
an algebra B acting on HB. For any two operators Â1 and Â2 in the algebra A,
it is possible to introduce a scalar product

(Â1, Â2) ≡ TrAÂ+
1 Â2,

where the trace is over the space HA, inducing the Hilbert-Schimdt norm

||Â|| ≡
√

(Â, Â).

Then the operator algebra A, complemented by the above scalar product, becomes
a Hilbert-Schmidt space. The same can be done for the algebra B becoming a
Hilbert-Schmidt space with the scalar product defined in the same way.

The system, composed of two parts, is a composite system defined in the
tensor-product Hilbert space HA

⊗HB . The operator algebra A ⊗ B acts on
this tensor-product space. For any two operators Ĉ1 and Ĉ2 of the latter algebra,
one defines the scalar product

(Ĉ1, Ĉ2) ≡ TrABĈ+
1 Ĉ2,
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with the trace over the space HA

⊗HB . Thus, the algebra A ⊗ B, comple-
mented by this scalar product, becomes a composite Hilbert-Schmidt space. In
this way, the operators of a Hilbert-Schmidt space can be treated similarly to
the vectors of a Hilbert space.

One tells that the operator Ĉ, acting on the composite Hilbert-Schmidt space,
is separable, or not-entangled, if and only if it can be represented as

Ĉ =
∑

γ

ĈγA

⊗
ĈγB ,

where ĈγA and ĈγB are the operators from the related algebras of observables,
acting on HA and HB , respectively. Such separable operators have been widely
used in scattering theory [33]. On the contrary, if the operator cannot be reduced
to the separable form, it is termed non-separable, or entangled.

The classification of the operators onto separable and entangled is intensively
employed in quantum information theory [1–5], where one considers statistical
operators. In quantum decision theory [15–19], this classification is applied to
prospect operators. A prospect operator that cannot be represented in the sep-
arable form is called entangled or non-separable, while when it can be reduced
to that form, it is termed non-entangled, or separable. Similarly, the prospects,
represented by the corresponding prospect operators, can be distinguished onto
entangled and non-entangled. Exactly this classification will be used below.

Suppose we consider two elementary events An, represented by a vector |n〉
from a Hilbert space HA, and Bα, represented by a vector |α〉 from a Hilbert
space HB . The composite event, formed by these two elementary events, is
treated as a tensor product An

⊗
Bα. In this notation, the event An is assumed

to happen after the event Bα. The composite event An

⊗
Bα is represented by

the vector
|nα〉 = |n〉

⊗
|α〉 (11)

from the tensor-product Hilbert space

HAB ≡ HA

⊗
HB . (12)

The composite event of observing An and Bα induces the correspondence

An

⊗
Bα → P̂n

⊗
P̂α, (13)

where
P̂α ≡ |α〉〈α|

is a projector in HB .
The strategic state is now a statistical operator ρ̂ on the tensor-product space

(12). The joint probability of the composite event (13) becomes

p(An

⊗
Bα) = Trρ̂P̂n

⊗
P̂α ≡ 〈P̂n

⊗
P̂α〉, (14)
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with the trace over the space (12). The composite event (13) is the simplest
composite event, which enjoys the factor form, being composed of two elementary
events, and being called non-entangled.

More complicated structures arise when at least one of the events is a union.
It is important to emphasize the difference between the standard union and the
uncertain union introduced in (6).

When the composite event is a product of an elementary event An and a
standard union of mutually orthogonal events Bα, we can employ the known
property of composite events:

An

⊗ ⋃

α

Bα =
⋃

α

An

⊗
Bα.

In the right-hand side here, we have the union of mutually orthogonal composite
events, since Bα are assumed to be mutually orthogonal. Therefore

p

(
An

⊗ ⋃

α

Bα

)
=

∑

α

p(An

⊗
Bα). (15)

That is, the probability of a composite event, with one of the factors being the
standard union of mutually orthogonal events, is additive. Such events are also
termed non-entangled.

It is important to stress that the used terminology is in agreement with
the notions of separable and non-entangled operators, as is formulated at the
beginning of this section. Really, in the present case, the bipartite system is
described by the tensor product of the algebras of observables A ≡ {P̂n} and
B ≡ {P̂α}. The event An

⊗ ⋃
α Bα induces the event operator that has the form

P̂

(
An

⊗ ⋃

α

Bα

)
=

∑

α

P̂n

⊗
P̂α,

corresponding to the definition of a separable, or non-entangled operator.

5 Composite Entangled Prospects

The situation is essentially different when dealing with an uncertain union. In
that case, composite events are represented by prospect operators that cannot
be represented in the separable form.

Let us have such an uncertain union

B ≡ {Bα} ≡
⊎

α

Bα (16)

corresponding to a vector
|B〉 =

∑

α

bα|α〉. (17)
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The composite event, or prospect

πn = An

⊗
B = An

⊗⊎

α

Bα, (18)

corresponds to the prospect state

|πn〉 = |n〉
⊗

|B〉 =
∑

α

bα|nα〉. (19)

The composite event (18) induces the correspondence

πn → P̂ (πn) ≡ |πn〉〈πn| (20)

defining the prospect operator P̂ (πn).
At this point, it is necessary to make an important comment clarifying the

notion of entanglement. The latter is correctly defined when it is explicitly stated
what object is considered and with respect to which parts it is entangled or not.
Recall that, in quantum mechanics, one considers the entanglement of a wave
function of a composite system with respect to the wave functions of its parts,
which are not arbitrary functions. Wave functions can be defined as eigenfunc-
tions of Hamiltonians. In the case of statistical operators, one considers their
entanglement or separability with respect to statistical operators of subsystems,
but not with respect to arbitrary operators [1–5]. In the general case of operators
from a Hilbert-Schmidt space, one considers their entanglement with respect to
the operators from the corresponding Hilbert-Schmidt subspaces, but not with
respect to arbitrary operators not pertaining to the prescribed subspaces.

The prospect state (19) could be qualified as not entangled with respect to
arbitrary functions from the Hilbert spaces HA and HB . However, the function
|B〉 does not correspond to an operationally testable event, while exactly the
latter are of our interest. Hence the formal separability of (19) in the Hilbert
space is of no importance. What is important is the separability or entanglement
of operationally testable events.

In our case, the operationally testable events correspond to the related pro-
jectors forming the algebras of observables A ≡ {P̂n} and B ≡ {P̂α}. Com-
plementing them by the appropriate scalar products, we get the corresponding
Hilbert-Schmidt spaces. A prospect πn is characterized by the prospect operator
(20). According to the general theory, a prospect operator is separable if and
only if it can be reduced to the linear combination of the tensor products of
operators from the Hilbert-Schmidt subspaces. However, the prospect operator
(20) reads as

P̂ (πn) =
∑

α

|bα|2P̂n

⊗
P̂α +

∑

α�=β

bαb∗
βP̂n

⊗
|α〉〈β|.

The first term in the right-hand side does correspond to the definition of separa-
bility, while the second term does not, since |α〉〈β|, with α �= β, does not pertain
to the algebra of observables B ≡ {P̂α}. Hence, the prospect operator (20) is not
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separable, that is, it is entangled. Respectively, prospect (18), corresponding to
this prospect operator can also be termed entangled, since it cannot be repre-
sented as a union of mutually orthogonal events. The entangling properties of
operators can be quantified by the measure of entanglement production [34–36].
The amount of entanglement produced in the process of decision making can be
calculated as shown in Ref. [37].

The prospect states (19) are not necessarily orthogonal and do not need to
be normalized to one. Because of this, the prospect operators, generally, are not
projectors. However, the resolution of unity is required:

∑

n

P̂ (πn) = 1̂AB , (21)

where 1̂AB is the unity operator in the space (12). The family {P̂ (πn)} composes
a positive operator-valued measure.

The prospect probability

p(πn) ≡ Trρ̂P̂ (πn) ≡ 〈P̂ (πn)〉, (22)

with the trace over space (12), becomes the sum of two terms:

p(πn) = f(πn) + q(πn). (23)

The first term
f(πn) ≡

∑

α

|bα|2p(An

⊗
Bα) (24)

contains the diagonal elements with respect to α, while the second term

q(πn) ≡
∑

α�=β

b∗
αbβ〈nα|ρ̂|nβ〉 (25)

is formed by the nondiagonal elements. By construction and due to the resolution
of unity (21), the prospect probability (22) satisfies the properties

∑

n

p(πn) = 1, 0 ≤ p(πn) ≤ 1, (26)

which makes the family {p(πn)} a probability measure.
Expression (25) is caused by the quantum nature of the considered events

producing interference of the modes composing the uncertain union (16). Because
of this, the term (25) can be called the quantum factor, interference factor, or
coherence factor. The quantum term (25) may be nonzero only when prospect
(18) is entangled in the sense of the nonseparability of the prospect operator in
the Hilbert-Schmidt space.

Classical probability has to be a marginal case of quantum probability. To
this end, we have to remember the quantum-classical correspondence principle
advanced by Bohr [38]. This principle tells us that classical theory is to be the
limiting case of quantum theory, when quantum effects vanish. In the present
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case, this implies that when the quantum interference factor tends to zero, the
quantum probability has to tend to a classical probability. Such a process is also
called decoherence. According to the principle of the quantum-classical corre-
spondence, we have

p(πn) → f(πn), q(πn) → 0, (27)

which means that the decoherence process leads to the classical probability
f(πn). Being a probability, this classical factor needs to be normalized, so as
to satisfy the conditions

∑

n

f(πn) = 1, 0 ≤ f(πn) ≤ 1. (28)

As a consequence of the above equations, the interference factor enjoys the prop-
erties ∑

n

q(πn) = 0, −1 ≤ q(πn) ≤ 1. (29)

The first of these equations is called the alternation condition.
One should not confuse the effect of decoherence, based on the quantum-

classical correspondence principle, when quantum measurements are reduced
to classical, with the Kochen-Specker theorem [39] stating the impossibility of
simultaneous embedding of all commuting sub-algebras of the algebra of quan-
tum observables in one commutative algebra, assumed to represent the classical
structure of the hidden-variables theory, if the Hilbert space dimension is at
least three. This theorem places certain constraints on the permissible types
of hidden-variable theories, which try to explain the apparent randomness of
quantum mechanics as a deterministic model featuring hidden states. The the-
orem excludes hidden-variable theories that require elements of physical reality
to be non-contextual, i.e., independent of the measurement arrangement. The
exclusion of such hidden variables is exactly due to the existence of quantum
entanglement.

Our consideration has nothing to do with hidden variables. We do not intend
to replace quantum theory by a classical theory with hidden variables. Vice
versa, the whole of our approach is completely based on the standard tech-
niques of quantum theory and all results are in full agreement with the known
properties of quantum theory. Being always in the frame of quantum theory, we
consider a very well known effect called decoherence that manifests the transition
from quantum to classical behavior. This effect is intimately connected with the
quantum-classical correspondence principle, formulated by Bohr and widely used
in quantum theory. According to this principle, the results of quantum theory
reduce to those of classical theory, when quantum effects, such as entanglement
and interference, are washed out. The effect of decoherence is well understood
and described in the frame of quantum theory [40–42].

As is mentioned above, the quantum term arises only when the considered
prospect is entangled in the sense of the nonseparability of the prospect operator
in the Hilbert-Schmidt space. The other necessary condition for the existence of
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the quantum term is the entanglement in the strategic state ρ̂. To illustrate
that a disentangled strategic state does not produce interference, let us take the
system state in the disentangled product form

ρ̂ = ρ̂A

⊗
ρ̂B .

Then, the quantum interference term becomes

q(πn) =
∑

α�=β

b∗
αbβ〈n|ρ̂A|n〉〈α|ρ̂B |β〉.

Taking into account the normalization condition

TrAρ̂A =
∑

n

〈n|ρ̂A|n〉 = 1,

we get ∑

n

q(πn) =
∑

α�=β

b∗
αbβ〈α|ρ̂B |β〉 = 0.

As a result, we find
q(πn) = 〈n|ρ̂A|n〉

∑

n

q(πn) = 0.

So, the disentangled strategic state does not allow for the appearance of a non-
trivial quantum interference term.

The quantum term (25) is a random quantity satisfying a very important
property called the quarter law [16–19]. For a prospect lattice, L ≡ {πn : n =
1, 2, . . . NL} the absolute value of the aggregate quantum factor can be estimated
as

|q̄| ≡ 1
NL

NL∑

j=1

| q(πj) | =
1
4
. (30)

The value 1/4 for the aggregate attraction factor can be shown [43] to arise
for a large class of distributions characterizing the attraction factors of different
decision makers.

Expression (24), corresponding to classical probability, is defined as an objec-
tive term, whose value is prescribed by the prospect utility, justifying to call this
term the utility factor. The quantum term (25) describes the attractiveness of the
prospect to a decision maker, so that it is named the attraction factor [15–19].
A prospect π1 is more useful than π2, if and only if f(π1) > f(π2). A prospect π1

is more attractive than π2, when and only when q(π1) > q(π2). And a prospect
π1 is preferable to π2, if and only if p(π1) > p(π2). Hence, a prospect can be
more useful but less attractive, as a result being less preferable.
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6 Uncertainty in Standard Lotteries

It can be shown [30], that the necessary condition for the quantum term to be
nonzero requires that the considered prospect be entangled and the strategic
state ρ̂ also be entangled. This implies that the decision is made under uncer-
tainty [44].

A typical situation in decision making is when one chooses between several
lotteries. One may ask what kind of uncertainty is ascribed to such a choice
between the lotteries.

Suppose we consider a family {Ln} of lotteries enumerated with the index
n = 1, 2, . . . , NL. Each lottery is the set

Ln = {xi, pn(xi) : i = 1, 2, . . .} (31)

of payoffs xi and payoff probabilities pn(xi). A decision maker has to choose one
of these lotteries.

The choice between the lotteries is a random procedure involving uncertainty.
First of all, when choosing a lottery, one does not know exactly what would be a
payoff whose occurrence is characterized by the related probability. Moreover, in
each choice, there always exists uncertainty caused by two reasons. One reason
is the decision-maker doubt about the objectivity of the setup suggesting the
choice. The other origin of uncertainty is caused by subjective hesitations of the
decision maker with respect to his/her correct understanding of the problem and
his/her knowledge of what would be the best criterion for making a particular
choice. Let us denote by B1 the decision-maker confidence in the empirical setup
as well as in his/her ability of making a correct decision. Then B2 corresponds
to the disbelief of the decision maker in the suggested setup and/or in his/her
understanding of the appropriate criteria for the choice. The combination of
belief and disbelief is the set

B = {B1, B2} =
⊎

α

Bα (α = 1, 2).

In this way, even choosing between simple lotteries Ln, one actually confronts
the composite prospects

πn = Ln

⊗
B, (32)

where the event of selecting a lottery Ln is denoted by the same letter, which
should not lead to confusion. The choice is made under uncertainty incorporated
into the set B = {B1, B2} of belief and disbelief.

The prospect probability is given by (23). The utility factor, characterizing
the objective part of the probability, in the case of the choice between the lotteries
can be defined [16,19] as

f(πn) =
U(πn)∑
n U(πn)

, (33)

ordering the prospects according to their expected utilities

U(πn) =
∑

i

u(xi)pn(xi), (34)
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where u(xi) is a utility function. The attraction factors can be evaluated as is
explained in the previous section.

For example, dealing with the prospect lattice L = {π1, π2}, in which the
prospect πi is more attractive than πj , the prospect probabilities are estimated
by the expressions

p(πi) = f(πi) + 0.25,

p(πj) = f(πj) − 0.25. (35)

To illustrate how the procedure described above works, let us consider the
lotteries discussed by Kahneman and Tversky [45]. Consider, for instance, the
lotteries

L1 = {6, 0.45 | 0, 0.55}, L2 = {3, 0.9 | 0, 0.1}.

Calculating their expected utilities, we assume, for simplicity, linear utility func-
tions u(x) = cx. The corresponding utility factors of both the lotteries are equal,

f(π1) = 0.5, f(π2) = 0.5.

The second prospect is more attractive, being more certain. Then, employing
rule (35), we have

p(π1) = 0.25, p(π2) = 0.75.

The experimental results of Kahneman and Tversky [45] are

pexp(π1) = 0.14, pexp(π2) = 0.86,

where pexp(πi) is the ratio of the number of the decision makers, choosing the
lottery Li, to the total number of participants. Within the statistical errors of
±0.1 of these experiments, our theoretical prediction agrees with the empirical
results.

Another example by Kahneman and Tversky [45] is the choice between the
lotteries

L1 = {6, 0.001 | 0, 0.999}, L2 = {3, 0.002 | 0, 0.998},

which enjoy the same utility factors

f(π1) = 0.5, f(π2) = 0.5,

as in the previous example. The uncertainties of the two lotteries are close to
each other. However, the gain in the first prospect is essentially larger, which
makes it more attractive, hence, the second prospect less attractive. As a result,
the prospect preference reverses, as compared to the previous case, with the
prospect probabilities

p(π1) = 0.75, p(π2) = 0.25.

The experimental data of Kahneman and Tversky [45] are

pexp(π1) = 0.73, pexp(π2) = 0.27.
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Thus our theoretical prediction practically coincides with the empirical data.
We also have analyzed a number of other experimental examples, obtaining

good agreement of our theoretical predictions with empirical results. However, we
shall not overload the present report by the description of all these experiments,
which will be the topic of a separate paper.

7 Conclusion

Decision making very often meets the necessity of deciding under uncertainty.
Applying quantum techniques to decision making, one has to use the appropriate
mathematical tools. We have shown that the correct mathematical foundation
of quantum decision theory, dealing with uncertain events, requires the use of
positive operator-valued measure that is a generalization of the projection-valued
measure. The latter is used for operationally testable events, but cannot be
applied to uncertain events typical of decision making under uncertainty. Such
operationally uncertain events require the use of the operator-valued measure.
In decision making, one has to distinguish composite non-entangled events from
composite entangled events. The accurate mathematical formulation of entangled
events is based on the notion of entangled or nonseparable prospect operators in
a Hilbert-Schmidt space. This should not be confused with the entanglement of
functions in a Hilbert space. The operationally testable events are called modes.
Therefore the entanglement of such events can be termed mode entanglement.

According to the principle of quantum-classical correspondence, classical
probabilities can be treated as a limiting case of quantum probabilities, when the
effect of decoherence is present. We consider the occurrence of classical probabil-
ities exactly in this sense, which is completely in the frame of quantum theory.
We stress that the Kochen-Specker theorem, proving the impossibility of non-
contextual hidden variables has no relation to our approach.

Quantum probability can be essentially different from the form of classical
probability only for entangled events, defined through the mode entanglement in
a Hilbert-Schmidt space. The necessary condition for the appearance of a quan-
tum interference term in the quantum probability is the occurrence of entangled
prospects and the existence of an entangled strategic state of a decision maker.
The origin of uncertainties in standard lotteries is explained. Our approach makes
it possible to provide theoretical predictions that are in good numerical agree-
ment with the results of empirical observations.

Our approach is principally different from those of other authors [11] in sev-
eral basic points. First, we develop a general theory based on rigorous mathe-
matics of quantum measurement theory and quantum information theory, which
can be applied to any decision-making processes. Different from [11] and others,
we do not construct special schemes for studying some particular problems. Sec-
ond, we give a mathematically correct definition of quantum joint probabilities
as the probabilities of composite events realized in different measurement chan-
nels and represented in tensor-product Hilbert spaces. In contrast, other authors
usually consider a single Hilbert space and deal with the Lüders probabilities
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of consecutive events, which are, actually, transition probabilities, but cannot
be treated as conditional probabilities [30]. Third, we emphasize the necessity
of entangled events for the appearance of quantum effects, such as the arising
interference. Fourth, we define the entanglement of operationally testable events
as mode entanglement described by the nonseparable prospect operators in a
Hilbert-Schmidt space. Fifth, our theory allows for quantitative predictions of
decision making, without any fitting parameters, including quantitative expla-
nations of classical decision-making paradoxes. This makes our approach unique,
since there is no other approach that could be compared with empirical results
without invoking fitting parameters.
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