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Models for Trust Inference in Social
Networks

Cai-Nicolas Ziegler and Jennifer Golbeck

Abstract Interpersonal trust between any two people in social networks is hard
to gauge, and even harder to infer, given that these two people are not connected
by an immediate social link, such as friendship or acquaintanceship. In order to be
able to make accurate inferences for an arbitrary tuple of people in a given social
environment, we present an approach, named Appleseed, that is based on mechanics
taken from neuropsychology, known as spreading activation models. Compelling in
its simplicity, we relate the concept to trust propagation and evaluation in an intuitive
fashion. While Appleseed works very well when paths between two arbitrary people
in the network can be established, no inference of trust is possible when this is
not the case. To this end, we present several algorithms for inferring trust that go
beyond network structure and demonstrate their accuracy in real social networks.
We also show how these algorithms can be augmented with additional data that may
be available in some contexts.

3.1 Introduction

In our world of information overload and global connectivity leveraged through
the Web and other media types, social trust [29] between individuals becomes an
invaluable and precious good. Hereby, trust exerts an enormous impact on decisions
whether to believe or disbelieve information asserted by other peers. Belief should
only be accorded to statements from people we deem trustworthy. However, when
supposing huge social networks such as the case for social media platforms, trust
judgements based on personal experience and acquaintanceship become unfeasible.
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In general, we accord trust, which has been defined as the “subjective expectation an
agent has about another’s future behavior based on the history of their encounters”
[30], to only small numbers of people. These people, again, trust another limited
set of people, and so forth. The network structure emanating from our person (see
Fig. 3.1), composed of trust statements linking individuals, constitutes the basis for
trusting people we do not know personally.

Wemight be tempted to adopt the policy of trusting all those peoplewho are trusted
by personswe trust. Trustwould thus propagate through the network [21] and become
accorded whenever two individuals can reach each other via at least one trust path.
However, common sense tells us we should not rely upon this strategy. More com-
plex metrics are needed in order to more sensibly evaluate trust between two persons.
Among other features, these trust metrics must take into account social and psycho-
logical aspects of trust and suffice criteria of computability and scalability likewise.

When adopting the most basic policy of trust propagation, all those people who
are trusted by persons we trust are considered likewise trustworthy. Trust would thus
propagate through the network and become accorded whenever two individuals can
reach each other via at least one trust path. However, owing to certain implications of
interpersonal trust, e.g., attack-resistance, trust decay, etc., more complexmetrics are
needed to sensibly evaluate social trust. Subtle social and psychological aspects must
be taken into account and specific criteria of computability and scalability satisfied.

In this chapter, we aim at designing one such complex trust metric,1 particularly
tailored to social filtering tasks by virtue of its ability to infer continuous trust values
through fixpoint iteration, rendering ordered trust-rank lists feasible.

However, one challenge to using network data for trust inference is that when
there are few or no paths to a node in the network, the algorithms may not be able

1 Note that trust concepts commonly adopted forwebs of trust, and similar trust network applications,
are largely general and do not cover specifics such as “situational trust” [26], as has been pointed
out in [13]. For instance, agent ai may blindly trust a j with respect to books, but not trust a j with
respect to trusting others, for a j has been found to accord trust to other people too easily. For our
trust propagation scheme at hand, we also suppose this largely uni-dimensional concept of trust.
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to infer a value. Using TidalTrust, another network-based trust inference algorithm,
and data from FilmTrust, a movie rating website with an underlying trust network,
we show that integrating additional, non-network-based information into the trust
computation, can improve the number of node pairs for which a trust value can
be calculated. Integrating the network and data-based models can also improve the
accuracy of these algorithms.

3.1.1 Trust Representation and Model

We assume that all trust information is publicly accessible for any agent in the sys-
tem, e.g., through machine-readable personal homepages distributed over the net-
work. Agents ai ∈ A = {a1, a2, . . . , an} are associated with a partial trust function
Wi ∈ T = {W1, W2, . . . , Wn} each, where Wi : A → [0, 1]⊥ holds, which corre-
sponds to the set of trust assertions that ai has stated.

Inmost cases, functionsWi (a j )will be very sparse as the number of individuals an
agent is able to assign explicit trust ratings for is much smaller than the total number
n of agents. Moreover, the higher the value of Wi (a j ), the more trustworthy ai deems
a j . Conversely, Wi (a j ) = 0 means that ai considers a j to be not trustworthy. The
assignment of trust through continuous values between 0 and 1, and their adopted
semantics, is in perfect accordance with [26], where possible stratifications of trust
values are proposed. Our trust model defines one directed trust graph with nodes
being represented by agents ai ∈ A, and directed edges from nodes ai to nodes a j

representing trust statements Wi (a j ).
For convenience, we introduce the partial function W : A × A → [0, 1]⊥, which

we define as the union of all partial functions Wi ∈ T .

3.1.2 Overview of Trust Metrics for Social Networks

Trust and reputation ranking metrics have primarily been used for the Public Key
Infrastructure (PKI) [4, 23, 28, 33, 34], rating and reputation systems part of online
communities [14, 22, 24], peer-to-peer networks [3, 18–20, 36], and also mobile
computing [7]. Each of these scenarios favors different trust metrics. For instance,
reputation systems for online communities tend to make use of centralized trust
servers that compute global trust values for all users on the system [14]. On the other
hand, peer-to-peer networks of moderate size rely upon distributed approaches that
are in most cases based upon PageRank [18, 36].

Larger social networks, such as the Semantic Web, are made up of millions of
nodes, i.e., agents. The fitness of distributed approaches to trust metric computation,
such as described in [18, 35], hence becomes limited for various reasons:

Trust data storage. Every agent ai needs to store trust rating information about any
other agent a j on the network. Agent ai uses this information in order to merge it
with own trust beliefs and propagates the synthesized information to his trusted
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agents [22]. For a network organized in a decentralized fashion, the number of
agents for whom to keep trust information will still exceed the storage capacities
of most nodes.

Convergence.The structure of networks not under centralized control is diffuse and
commonly not subject to some higher ordering principle or hierarchy. Further-
more, the process of trust propagation is necessarily asynchronous as there is no
central node of authority. Convergence of trust values might thus take a very long
time.

The huge advantage of distributed approaches to trust propagation and computa-
tion, on the other hand, is the immediate availability of computed trust information
about any other agent a j in the system. Moreover, agents have to disclose their trust
assertions only to peers they actually trust [35]. For instance, suppose that ai declares
his trust in a j by Wi (a j ) = 0.1, which is very low. Hence, ai might want a j not to
know about that fact. As distributed metrics only propagate synthesized trust values
from nodes to successor nodes in the trust graph, ai would not have to openly disclose
his trust statements to a j .

As it comes to centralized, i.e., locally computed, metrics, full trust information
access is required for agents inferring trust. Hence, online communities based on
trust require their users to disclose all trust information to the community server,
but not necessarily to other peers [14]. Privacy thus remains preserved. On social
networks such as the Semantic Web, however, there is no such central authority that
computes trust. Any agent might want to do so. Our own trust model, as well as
trust models proposed in [1, 7, 13], are hence based upon the assumption of publicly
available trust information. Though privacy concerns may persist, this assumption is
vital, owing to the afore-mentioned deficiencies of distributed computation models.
Moreover, centralized global metrics, such as depicted in [14, 31], also fail to fit our
requirements: because of the huge number of agents issuing trust statements, only
dedicated server clusters could be able tomanage thewhole bulk of trust relationships.

Scalar metrics, e.g., PKI proposals [4, 23, 28, 33, 34] and those metrics described
in [13], have poor scalability properties, owing to exponential time complexity [33].

Consequently, we advocate local group trust metrics [43] for the Semantic Web
and other large-scale decentralized networks. Local group trust metrics do not only
compute trust values for a specified pair of agents, (ai , a j ) ∈ V × V , but compute
trust ranks for sets of individuals from V . The predicate local refers to the metric’s
network perspective, which is subjective, adopting the position of one of the agents.
That is, trust values assigned to a j ∈ V are different for two different trust sources ai .

Local group trust metrics bear several welcome properties with respect to com-
putability and complexity, which may be summarized as follows:

Partial trust graph exploration. Global metrics require a priori full knowledge of the
entire trust network. Distributed metrics store trust values for all agents in the
system, thus implying massive data storage demands. On the other hand, when
computing trusted neighborhoods, the trust network only needs to be explored
partially: originating from the trust source, one only follows those trust edges that
seem promising, i.e., bearing high trust weights, and which are not too far away
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from the trust source. Inspection of agent nodes is thus performed in a just-in-time
fashion. Hence, prefetching bulk trust information is not required.

Computational scalability. Tightly intertwined with partial trust graph exploration
is computational complexity. Local group trust metrics scale well to any social
network size, as only tiny subsets of relatively constant size2 are visited.

3.2 Design of Local Group Trust Metrics

Local group trust metrics, in their function as means to compute trust neighborhoods,
have not been subject to mainstream research so far. Significant research has effec-
tively been limited to the work done by Levien [22] who has conceived and deployed
the Advogato group trust metric. This section provides an overview of Advogato and
introduces our own Appleseed trust metric, eventually comparing both approaches.

3.2.1 Outline of Advogato Maxflow

The Advogato maximum flow trust metric has been proposed by Levien and Aiken
[24] in order to discover which users are trusted by members of an online community
and which are not. Trust is computed through one centralized community server and
considered relative to a seed of users enjoying supreme trust. However, the metric
is not only applicable to community servers, but also to arbitrary agents which may
compute personalized lists of trusted peers, not only one single global ranking for the
whole community they belong to. In this case, the active agent himself constitutes
the singleton trust seed. The following paragraphs briefly introduce Advogato’s basic
concepts. For more detailed information, refer to [22–24].

3.2.1.1 Trust Computation Steps

Local group trust metrics compute sets of agents trusted by those being part of the
trust seed. In case of Advogato, its input is given by an integer number n, which is
supposed to be equal to the number of members to trust [24], as well as the trust
seed s, which is a subset of the entire set of users A. The output is a characteristic
function that maps each member to a boolean value indicating his trustworthiness:

TrustM : 2A × N
+
0 → (A → {true, false}) (3.1)

The trust model underlying Advogato does not provide support for weighted trust
relationships in its original version.3 Hence, trust edges extending from individual x

2 Supposing identical parameterizations for the metrics in use, as well as similar network structures.
3 Though various levels of peer certification exist, their interpretation does not perfectly align with
weighted trust relationships.
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to y express blind, i.e., full, trust of x in y. The metrics for PKI maintenance suppose
similar models. Maximum integer network flow computation [8] has been investi-
gated by Reiter and Stubblebine [33, 34] in order to make trust metrics more reliable.
Levien adopted and extended this approach for group trust in his Advogato metric.

Capacities CA : A → N are assigned to every community member x ∈ A based
upon the shortest-path distance from the seed to x . Hereby, the capacity of the seed
itself is given by the input parameter n mentioned before,whereas the capacity of each
successive distance level is equal to the capacity of the previous level l divided by the
average outdegree of trust edges e ∈ E extending from l. The trust graph we obtain
hence contains one single source, which is the set of seed nodes considered as one
single “virtual” node, and multiple sinks, i.e., all nodes other than those defining the
seed. Capacities CA(x) constrain nodes. In order to apply Ford-Fulkerson maximum
integer network flow [8], the underlying problem has to be formulated as single-
source/single-sink, having capacities CE : E → N constrain edges instead of nodes.
Hence, Algorithm 3.1 is applied to the old directed graph G = (A, E, CA), resulting
in a new graph structure G ′ = (A′, E ′, CE ′) (Fig. 3.2).

Figure3.3 depicts the outcome of converting node-constrained single-source/mul-
tiple-sink graphs (see Fig. 3.2) into single-source/single-sink ones with capacities
constraining edges.

Conversion is followed by simple integer maximum network flow computation
from the trust seed to the super-sink. Eventually, the trusted agents x are exactly
those peers for whom there is flow from “negative” nodes x− to the super-sink. An
additional constraint needs to be introduced, requiring flow from x− to the super-sink
whenever there is flow from x− to x+. The latter constraint assures that node x does

func transform (G = (A, E, CA)) {
set E ′ ← ∅, A′ ← ∅;
for all x ∈ A do
add node x+ to A′;
add node x− to A′;
if CA(x) ≥ 1 then
add edge (x−, x+) to E ′;
set CE ′ (x−, x+) ← CA(x) − 1;
for all (x, y) ∈ E do
add edge (x+, y−) to E ′;
set CE ′ (x+, y−) ← ∞;

end do
add edge (x−, supersink) to E ′;
set CE ′ (x−, supersink) ← 1;

end if
end do
return G ′ = (A′, E ′, CE ′ );

}

Algorithm 3.1. Trust graph conversion



3 Models for Trust Inference in Social Networks 59

Fig. 3.2 Trust graph before
conversion for Advogato
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Example 3.1 (Advogato trust computation) Suppose the trust graph depicted in
Fig. 3.2. The only seed node is a with initial capacity CA(a) = 5. Hence, taking
into account the outdegree of a, nodes at unit distance from the seed, i.e., nodes b
and c, are assigned capacities CA(b) = 3 and CA(c) = 3, respectively. The average
outdegree of both nodes is 2.5 so that second level nodes e and h obtain unit capacity.
When computingmaximum integer network flow, agent a will accept himself, b, c, e,
and h as trustworthy peers.

3.2.1.2 Attack-Resistance Properties

Advogato has been designed with resistance against massive attacks from malicious
agents outside of the community in mind. Therefore, an upper bound for the number
of “bad” peers chosen by the metric is provided in [24], along with an informal secu-
rity proof to underpin its fitness. Resistance against malevolent users trying to break
into the community can already be observed in the example depicted by Fig. 3.1,
supposing node n to be “bad”: though agent n is trusted by numerous persons, he is
deemed less trustworthy than, for instance, x . While there are fewer agents trusting
x , these agents enjoy higher trust reputation4 than the numerous persons trusting n.
Hence, it is not just the number of agents trusting an individual i , but also the trust
reputation of these agents that exerts an impact on the trust assigned to i . PageRank
[31] works in a similar fashion and has been claimed to possess properties of attack-
resistance similar to those of the Advogato trust metric [22]. In order to make the
concept of attack-resistance more tangible, Levien proposes the “bottleneck prop-
erty” as a common feature of attack-resistant trust metrics. Informally, this property
states that the “trust quantity accorded to an edge s → t is not significantly affected
by changes to the successors of t” [22].

Attack-resistance features of various trust metrics are discussed in detail in
[23, 38].

3.2.2 The Appleseed Trust Metric

TheAppleseed trustmetric constitutes themain contribution of this chapter and is our
novel proposal for local group trustmetrics. In contrast toAdvogato, being inspiredby
maximum network flow computation, the basic intuition of Appleseed is motivated
by spreading activation models. Spreading activation models have first been pro-
posed by Quillian [32] in order to simulate human comprehension through semantic
memory, and are commonly described as “models of retrieval from long-term mem-
ory in which activation subdivides among paths emanating from an activated mental
representation” [37]. By the time of this writing, the seminal work of Quillian has
been ported to a whole plethora of other disciplines, such as latent semantic indexing

4 With respect to seed node a.
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[5] and text illustration [16]. As an example, we will briefly introduce the spreading
activation approach adopted in [5], used for semantic search in contextual network
graphs, in order to then relate Appleseed to that work.

3.2.2.1 Searches in Contextual Network Graphs

The graph model underlying contextual network search graphs is almost identical in
structure to the one presented in Sect. 3.1.1, i.e., edges (x, y) ∈ E ⊆ A × A connect-
ing nodes x, y ∈ A. Edges are assigned continuousweights through W : E → [0, 1].
Source node s, the node fromwhich we start searching, is activated through an injec-
tion of energy e, which is then propagated to other nodes along edges according to
some set of simple rules: all energy is fully divided among successor nodes with
respect to their normalized local edge weight, i.e., the higher the weight of an edge
(x, y) ∈ E , the higher the portion of energy that flows along that edge. Furthermore,
supposing average outdegrees greater than one, the closer node x to the injection
source s, and the more paths lead from s to x , the higher the amount of energy flow-
ing into x . To eliminate endless, marginal and negligible flow, energy streaming into
node x must exceed threshold T in order not to run dry. The described approach is
captured formally by Algorithm 3.2, which propagates energy recursively.

3.2.2.2 Trust Propagation

Algorithm 3.2 shows the basic intuition behind spreading activation models. In order
to tailor thesemodels to trust computation, later to become theAppleseed trustmetric,
serious adaptations are necessary. For instance, procedure energize(e, s) registers
all energy e that has passed through node x , stored in energy(x). Hence, energy(x)

represents the relevance rank of x . Higher values indicate higher node rank.However,
at the same time, all energy contributing to the rank of x is passed without loss to
successor nodes. Interpreting energy ranks as trust ranks thus implies numerous
issues of semantic consistency as well as computability. Consider the graph depicted
in Fig. 3.4a. Applying spreading activation according to [5], trust ranks of nodes b
and d will be identical. However, intuitively, d should be accorded less trust than b,

procedure energize (e ∈ R
+
0 , s ∈ A) {

energy(s) ← energy(s) + e;
e′ ← e /

∑
(s,n) ∈ E W (s, n);

if e > T then
∀(s, n) ∈ E : energize (e′ · W (s, n), n);

end if
}

Algorithm 3.2. Recursive energy propagation
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Fig. 3.4 Node chains (a)
rank sinks (b)
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since d’s shortest-path distance to the trust seed is higher. Trust decay is commonly
agreed upon [14, 17], for people tend to trust individuals trusted by immediate
friends more than individuals trusted only by friends of friends. Figure3.4b depicts
even more serious issues: all energy, or trust,5 respectively, distributed along edge
(a, b) becomes trapped in a cycle and will never be accorded to any other nodes but
those being part of that cycle, i.e., b, c, and d. These nodes will eventually acquire
infinite trust rank. Obviously, the bottleneck property [22] does not hold. Similar
issues occur with simplified versions of PageRank [31], where cycles accumulating
infinite rank have been dubbed “rank sinks”.

3.2.2.3 Spreading Factor

We handle both issues, i.e., trust decay in node chains and elimination of rank sinks,
by tailoring the algorithm to rely upon our global spreading factor d. Hereby, let in(x)

denote the energy influx into node x . Parameter d then denotes the portion of energy
d · in(x) that node x distributes among successors, while retaining (1−d) · in(x). For
instance, suppose d = 0.85 and energy quantity in(x) = 5.0 flowing into node x .
Then, the total energy distributed to successor nodes amounts to 4.25, while the
energy rank energy(x) of x increases by 0.75. Special treatment is necessary for

5 The terms “energy” and “trust” are used interchangeably in this context.
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nodes with zero outdegree. For simplicity, we assume all nodes to have an outdegree
of at least one, which makes perfect sense, as will be shown later.

The spreading factor concept is very intuitive and, in fact, very close to realmodels
of energy spreading through networks. Observe that the overall amount of energy in
the network, after initial activation in0, does not change over time. More formally,
suppose that energy(x) = 0 for all x ∈ A before injection in0 into source s. Then
the following equation holds in every computation step of our modified spreading
algorithm, incorporating the concept of spreading factor d:

∑

x ∈ A

energy(x) = in0 (3.2)

Spreading factor d may also be seen as the ratio between direct trust in x and
trust in the ability of x to recommend others as trustworthy peers. For instance, Beth
et al. [4] and Maurer [28] explicitly differentiate between direct trust edges and
recommendation edges.

We commonly assume d = 0.85, though other values may also seem reasonable.
For instance, having d ≤ 0.5 allows agents to keep most of the trust they are granted
for themselves and only pass small portions of trust to their peers. Observe that
low values for d favor trust proximity to the source of trust injection, while high
values allow trust to also reach more distant nodes. Furthermore, the introduction
of spreading factor d is crucial for making Appleseed retain Levien’s bottleneck
property, as will be shown in later sections.

3.2.2.4 Rank Normalization

Algorithm 3.2 makes use of edge weight normalization, i.e., the quantity ex→y of
energy distributed along (x, y) from x to successor node y depends on the relative
weight of x → y, i.e., W (x, y) compared to the sum of weights of all outgoing edges
of x :

ex→y = d · in(x) · W (x, y)
∑

(x,s) ∈ E
W (x, s)

(3.3)

Normalization is common practice in many trust metrics, among those PageRank
[31], EigenTrust [18], and AORank [14]. However, while normalized reputation or
trust seem reasonable for models with plain, non-weighted edges, serious interfer-
ences occur when edges are weighted, as is the case for our trust model adopted in
Sect. 3.1.1.

For instance, refer to Fig. 3.5a for unwanted effects: The amounts of energy that
node a accords to successors b and d, i.e., ea→b and ea→d , respectively, are identical
in value. Note that b has issued only one trust statement W (b, c) = 0.25, stating that
b’s trust in c is rather weak. On the other hand, d assigns full trust to individuals e,
f , and g. Nevertheless, the overall trust rank for d will be much higher than for any
successor of d, for c is accorded ea→b ·d, while e, f , and g only obtain ea→d ·d ·1/3
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Fig. 3.5 Issues with trust
normalization
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each. Hence, c will be trusted three times as much as e, f , and g, which is not
reasonable at all.

3.2.2.5 Backward Trust Propagation

The above issue has already been discussed by Kamvar et al. [18], but no solu-
tion has been proposed therein, arguing that “substantially good results” have been
achieved despite the drawbacks. We propose to alleviate the problem by making use
of backward propagation of trust to the source: whenmetric computation takes place,
additional “virtual” edges (x, s) from every node x ∈ A \ {s} to the trust source s
are created. These edges are assigned full trust W (x, s) = 1. Existing backward
links (x, s), along with their weights, are “overwritten”. Intuitively, every node is
supposed to blindly trust the trust source s, see Fig. 3.5b. The impacts of adding
backward propagation links are threefold:

Mitigating relative trust. Again, we refer to Fig. 3.5a. Trust distribution in the under-
lying case becomes much fairer through backward propagation links, for c now
only obtains ea→b · d · (0.25/(1 + 0.25)) from source s, while e, f , and g are
accorded ea→d · d · (1/4) each. Hence, trust ranks of both e, f , and g amount to
1.25 times the trust assigned to c.

Avoidance of dead ends. Dead ends, i.e., nodes x with zero outdegree, require special
treatment in our computation scheme. Two distinct approaches may be adopted.
First, the portion of incoming trust d · in(x) supposed to be passed to successor
nodes is completely discarded,which contradicts our intuitionof no energy leaving
the system. Second, instead of retaining (1− d) · in(x) of incoming trust, x keeps
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all trust. The latter approach is also not sensible as it encourages users to not issue
trust statements for their peers. Luckily, with backward propagation of trust, all
nodes are implicitly linked to the trust source s, so that there are no more dead
ends to consider.

Favoring trust proximity. Backward links to the trust source s are favorable for nodes
close to the source, as their eventual trust rank will increase. On the other hand,
nodes further away from s are penalized.

3.2.2.6 Nonlinear Trust Normalization

In addition tobackwardpropagation,wepropose supplementarymeasures to decrease
the negative impact of trust spreading based on relative weights. Situations where
nodes y with poor ratings from x are awarded high overall trust ranks, thanks to the
low outdegree of x , have to be avoided. Taking the squares of local trust weights
provides an appropriate solution:

ex→y = d · in(x) · W (x, y)2
∑

(x,s) ∈ E
W (x, s)2

(3.4)

As an example, refer to node b in Fig. 3.5b. With squared normalization, the total
amount of energy flowing backward to source a increases,while the amount of energy
flowing to the poorly trusted node c decreases significantly. Accorded trust quantities
eb→a and eb→c amount to d · in(b) · (1/1.0625) and d · in(b) · (0.0625/1.0625),
respectively. A more severe penalization of poor trust ratings can be achieved by
selecting powers above two.

3.2.2.7 Algorithm Outline

Having identified modifications to apply to spreading activation models in order
to tailor them for local group trust metrics, we are now able to formulate the core
algorithm of Appleseed. Input and output are characterized as follows:

Trustα : A × R
+
0 × [0, 1] × R

+ → (trust : A → R
+
0 ) (3.5)

The first input parameter specifies trust seed s, the second trust injection e, para-
meter three identifies spreading factor d ∈ [0, 1], and the fourth argument binds
accuracy threshold Tc, which serves as convergence criterion. Similar to Advogato,
the output is an assignment function of trust with domain A. However, Appleseed
allows rankings of agents with respect to trust accorded. Advogato, on the other
hand, only assigns boolean values indicating presence or absence of trust.

Appleseed works with partial trust graph information. Nodes are accessed only
when needed, i.e., when reached by energy flow. Trust ranks trust(x), which
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correspond to energy(x) in Algorithm 3.2, are initialized to 0. Any unknown node u
hence obtains trust(u) = 0. Likewise, virtual trust edges for backward propagation
from node x to the source are added at the moment that x is discovered. In every iter-
ation, for those nodes x reached by flow, the amount of incoming trust is computed
as follows:

in(x) = d ·
∑

(p,x) ∈ E

(
in(p) · W (p, x)

∑

(p,s) ∈ E
W (p, s)

)
(3.6)

Incoming flow for x is hence determined by all flow that predecessors p distribute
along edges (p, x). Note that the above equationmakes use of linear normalization of
relative trust weights. The replacement of linear by nonlinear normalization accord-
ing to Sect. 3.2.2.6 is straight-forward, though. The trust rank of x is updated as
follows:

trust(x) ← trust(x) + (1 − d) · in(x) (3.7)

Trust networks generally contain cycles and thus allow no topological sorting of
nodes. Hence, the computation of in(x) for reachable x ∈ A becomes inherently
recursive. Several iterations for all nodes are required in order to make the computed
information converge towards the least fixpoint. The following criterion has to be sat-
isfied for convergence, relying upon accuracy threshold Tc briefly introduced before.

Definition 3.1 (Termination) Suppose that Ai ⊆ A represents the set of nodes that
were discovered until step i , and trusti (x) the current trust ranks for all x ∈ A. Then
the algorithm terminates when the following condition is satisfied after step i :

∀x ∈ Ai : trusti (x) − trusti−1(x) ≤ Tc (3.8)

Informally, Appleseed terminates when changes of trust ranks with respect to the
preceding iteration i − 1 are not greater than accuracy threshold Tc.

Moreover, when supposing spreading factor d > 0, accuracy threshold Tc > 0,
and trust source s part of some connected component G ′ ⊆ G containing at least two
nodes, convergence, and thus termination, is guaranteed. The following paragraph
gives an informal proof:

Proof (Convergence of Appleseed)Assume that fi denotes step i’s quantity of energy
flowing through the network, i.e., all the trust that has not been captured by some
node x through function trusti (x). From Eq.3.2 follows that in0 constitutes the upper
boundary of trust energy floating through the network, and fi can be computed as
follows:

fi = in0 −
∑

x ∈ A

trusti (x) (3.9)

Since d > 0 and ∃(s, x) ∈ E, x �= s, the sum of the current trust ranks trusti (x) of
all x ∈ A is strictly increasing for increasing i . Consequently, limi→∞ fi = 0 holds.
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func Trustα (s ∈ A, in0 ∈ R
+
0 , d ∈ [0, 1], Tc ∈ R

+) {
set in0(s) ← in0, trust0(s) ← 0, i ← 0;
set A0 ← {s};
repeat
set i ← i + 1;
set Ai ← Ai−1;
∀x ∈ Ai−1 : set ini (x) ← 0;
for all x ∈ Ai−1 do
set trusti (x) ← trusti−1(x) + (1 − d) · ini−1(x);
for all (x, u) ∈ E do

if u /∈ Ai then
set Ai ← Ai ∪ {u};
set trusti (u) ← 0, ini (u) ← 0;
add edge (u, s), set W (u, s) ← 1;

end if
set w ← W (x, u) /

∑
(x,u′) ∈ E W (x, u′);

set ini (u) ← ini (u) + d · ini−1(x) · w;
end do

end do
set m = maxy ∈ Ai {trusti (y) − trusti−1(y)};

until (m ≤ Tc)
return (trust : {(x, trusti (x)) | x ∈ Ai });

}

Algorithm 3.3. Outline of the Appleseed trust metric

Moreover, since termination is defined by some fixed accuracy threshold Tc > 0,
there exists some step k such that limi→k fi ≤ Tc.

3.2.2.8 Parameterization and Experiments

Appleseed allows numerous parameterizations of input variables, some of which
are subject to discussion in the section at hand. Moreover, we provide experimental
results exposing the observed effects of parameter tuning. Note that all experiments
have been conducted on data obtained from “real” social networks: we have written
several Web crawling tools to mine the Advogato community Web site and extract
trust assertions stated by its more than 8,000 members.6 Hereafter, we converted
all trust data to our trust model proposed in Sect. 3.1.1. The Advogato commu-
nity server supports four different levels of peer certification, namely Observer,
Apprentice, Journeyer, and Master. We mapped these qualitative certifica-
tion levels to quantitative ones, assigning W (x, y) = 0.25 for x certifying y

6 Crawls have been executed in September 2004.
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as Observer, W (x, y) = 0.5 for an Apprentice, and so forth. The Advogato
community undergoes rapid growth and our crawler extracted 3,224,101 trust asser-
tions. Preprocessing and data cleansing were thus inevitable, eliminating reflexive
trust statements W (x, x) and shrinking trust certificates to reasonable sizes. Note
that some eager Advogato members have issued more than two thousand trust state-
ments, yielding an overall average outdegree of 397.69 assertions per node.Clearly,
this figure is beyond dispute. Hence, applying our set of extraction tools, we tailored
the test data obtained from Advogato to our needs and extracted trust networks with
specific average outdegrees for the experimental analysis.

Trust Injection

Trust values trust(x) computed by the Appleseed metric for source s and node x may
differ greatly from explicitly assigned trust weights W (s, x). We already mentioned
before that computed trust ranks may not be interpreted as absolute values, but rather
in comparison with ranks assigned to all other peers. In order to make assigned rank
values more tangible, though, one might expect that tuning the trust injection in0

to satisfy the following proposition will align computed ranks and explicit trust
statements:

∀(s, x) ∈ E : trust(x) ∈ [W (s, x) − ε, W (s, x) + ε] (3.10)

However, when assuming reasonably small ε, the approach does not succeed.
Recall that computed trust values of successor nodes x of s do not only depend on
assertionsmade by s, but also on trust ratings asserted by other peers. Hence, a perfect
alignment of explicit trust ratings with computed ones cannot be accomplished.
However, we propose a heuristic alignmentmethod, incorporated into Algorithm 3.4,
which has proven to work remarkably well in diverse test scenarios. The basic idea
is to add another node i and edge (s, i) with W (s, i) = 1 to the trust graph G =
(A, E, W ), treating (s, i) as an indicator to testwhether trust injection in0 is “good” or
not. Consequently, parameter in0 has to be adapted in order to make trust(i) converge

func Trustheu (s ∈ A, d ∈ [0, 1], Tc ∈ R
+) {

add node i , edge (s, i), set W (s, i) ← 1;
set in0 ← 20, ε ← 0.1;
repeat
set trust ← Trustα (s, in0, d, Tc);
in0 ← adapt (W (s, i), trust(i), in0);

until trust(i) ∈ [W (s, i) − ε, W (s, i) + ε]
remove node i , remove edge (s, i);
return Trustα (s, in0, d, Tc);

}

Algorithm 3.4. Heuristic weight alignment method
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towards W (s, i). The trust metric computation is hence repeatedwith different values
for in0 until convergence of the explicit and the computed trust value of i is achieved.
Eventually, edge (s, i) and node i are removed and the computation is performed
one more time. Experiments have shown that our imperfect alignment method yields
computed ranks trust(x) for direct successors x of trust source s which come close
to previously specified trust statements W (s, x).

Spreading Factor

Small values for d tend to overly reward nodes close to the trust source and penalize
remote ones. Recall that low d allows nodes to retainmost of the incoming trust quan-
tity for themselves, while large d stresses the recommendation of trusted individuals
and makes nodes distribute most of the assigned trust to their successor nodes.

Experiment 1 (Spreading factor impact) We compare distributions of computed
rank values for three diverse instantiations of d, namely d1 = 0.1, d2 = 0.5, and
d3 = 0.85. Our setup is based upon a social network with an average outdegree of
6 trust assignments, and features 384 nodes reached by trust energy spreading from
our designated trust source. We furthermore suppose in0 = 200, Tc = 0.01, and
linear weight normalization. Computed ranks are classified into 11 histogram cells
with nonlinear cell width. Obtained output results are displayed in Fig. 3.6. Mind
that we have chosen logarithmic scales for the vertical axis in order to render the
diagram more legible. For d1, we observe that the largest number of nodes x with
ranks trust(x) ≥ 25 is generated. On the other hand, virtually no ranks ranging from
0.2 to 1 are assigned, while the number of nodes with ranks smaller than 0.05 is again
much higher for d1 than for both d2 and d3. Instantiation d3 = 0.85 exhibits behavior
opposed to that of d1. No ranks with trust(x) ≥ 25 are accorded, while interim ranks
between 0.1 and 10 are much more likely for d3 than for both other instantiations of
spreading factor d. Consequently, the number of ranks below 0.05 is lowest for d3.

Fig. 3.6 Spreading factor
impact
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The experiment demonstrates that high values for parameter d tend to distribute
trust more evenly, neither overly rewarding nodes close to the source, nor penalizing
remote ones too rigidly. On the other hand, low d assigns high trust ranks to very
few nodes, namely those which are closest to the source, while the majority of nodes
obtains very low trust rank. We propose to set d = 0.85 for general use.

Convergence

We already mentioned before that the Appleseed algorithm is inherently recur-
sive. Parameter Tc represents the ultimate criterion for termination. We demonstrate
through an experiment that convergence is reached very fast, no matter how large the
number of nodes trust is flowing through, and no matter how large the initial trust
injection.

Experiment 2 (Convergence rate) The trust network we consider has an aver-
age outdegree of 5 trust statements per node. The number of nodes for which trust
ranks are assigned amounts to 572. We suppose d = 0.85, Tc = 0.01, and linear
weight normalization. Two separate runs were computed, one with trust activation
in1 = 200, the other with initial energy in2 = 800. Figure3.7 demonstrates the rapid
convergence of both runs. Though the trust injection for the second run is 4 times
as high as for the first, convergence is reached in only few more iterations: run one
takes 38 iterations, run two terminates after 45 steps.

For both runs, we assumed accuracy threshold Tc = 0.01, which is extremely
small and accurate beyond necessity already. However, experience taught us that
convergence takes place rapidly even for very large networks and high amounts of
trust injected, so that assuming the latter value for Tc poses no scalability issues.
In fact, the amount of nodes taken into account for trust rank assignment in the

Fig. 3.7 Convergence of
Appleseed
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above example well exceeds practical usage scenarios: mind that the case at hand
demands 572 files to be fetched from the Web, complaisantly supposing that these
pages are cached after their first access. Hence, we claim that the actual bottleneck
of group trust computation is not the Appleseed metric itself, but downloads of trust
resources from the network. This bottleneck might also be the reason for selecting
thresholds Tc greater than 0.01, in order to make the algorithm terminate after fewer
node accesses.

Testbed Design and Experimental Trials

Trust metrics and models for trust propagation have to be intuitive, i.e., humans must
eventually comprehend why agent ai has been accorded a higher trust rank than a j

and come to similar results when asked for personal judgement. Consequently, we
implemented our own testbed, which graphically displays social networks. We made
use of the yFiles [39] library to perform complex graph drawing and layouting tasks.
The testbed allows for parameterizing Appleseed through dialogs. Detailed output
is provided, both graphical and textual. Graphical results comprise the highlight-
ing of nodes with trust ranks above certain thresholds, while textual results return
quantitative trust ranks of all accessed nodes, the number of iterations, and so forth.
We also implemented the Advogato trust metric and incorporated the latter into our
testbed. Hereby, our implementation of Advogato does not require a priori complete
trust graph information, but accesses nodes “just in time”, similar to Appleseed. All
experiments were conducted on top of the testbed application.

3.2.3 Comparison of Advogato and Appleseed

Advogato and Appleseed are both implementations of local group trust metrics.
Advogato has already been successfully deployed into the Advogato online commu-
nity, though quantitative evaluation results have not been provided yet. In order to
evaluate the fitness of Appleseed as an appropriate means for group trust computa-
tion, we relate our approach to Advogato for qualitative comparison:

(F.1) Attack-resistance. This property defines the behavior of trust metrics in case
of malicious nodes trying to invade into the system. For evaluation of attack-
resistance capabilities, we have briefly introduced the “bottleneck property” in
Sect. 3.2.1.2, which holds for Advogato. In order to recapitulate, suppose that s
and t are nodes and connected through trust edge (s, t). Node s is assumed good,
while t is an attacking agent trying to make good nodes trust malevolent ones.
In case the bottleneck property holds, manipulation “on the part of bad nodes
does not affect the trust value” [22]. Clearly, Appleseed satisfies the bottleneck
property, for nodes cannot raise their impact by modifying the structure of trust
statements they issue.Bear inmind that the amount of trust accorded to agent t only
depends on his predecessors and does not increase when t adds more nodes. Both,
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spreading factor d and normalization of trust statements, ensure that Appleseed
maintains attack-resistance properties according to Levien’s definition.

(F.2) Eager truster penalization. Wehave indicated before that issuingmultiple trust
statements dilutes trust accorded to successors. According to Guha [14], this
does not comply with real world observations, where statements of trust “do not
decrease in value when the user trusts one more person […]”. The malady that
Appleseed suffers from is common to many trust metrics, most notably those
based upon finding principal eigenvectors [18, 31, 35]. On the other hand, the
approach pursued by Advogato does not penalize trust relationships asserted by
eager trust dispensers, for node capacities do not depend on local information.
Remember that capacities of nodes pertaining to level l are assigned based on the
capacity of level l − 1, as well as the overall outdegree of nodes part of that level.
Hence, Advogato encourages agents issuing numerous trust statements, while
Appleseed penalizes overly abundant trust certificates.

(F.3) Deterministic trust computation. Appleseed is deterministic with respect to
the assignment of trust rank to agents. Hence, for any arbitrary trust graph
G = (A, E, W ) and for every node x ∈ A, linear equations allow for charac-
terizing the amount of trust assigned to x , as well as the quantity that x accords to
successor nodes. Advogato, however, is non-deterministic. Though the number of
trusted agents, and therefore the computed maximum flow size, is determined for
given input parameters, the set of agents is not. Changing the order in which trust
assertions are issued may yield different results. For example, supposeCA(s) = 1
holds for trust seed s. Furthermore, assume s has issued trust certificates for two
agents, b and c. The actual choice between b or c as trustworthy peer with maxi-
mum flow only depends on the order in which nodes are accessed.

(F.4) Model and output type. Basically, Advogato supports non-weighted trust state-
ments only. Appleseed is more versatile by virtue of its trust model based on
weighted trust certificates. In addition, Advogato returns one set of trusted peers,
whereas Appleseed assigns ranks to agents. These ranks allow to select most trust-
worthy agents first and relate them to each other with respect to their accorded
rank. Hereby, the definition of thresholds for trustworthiness is left to the user
who can thus tailor relevant parameters to fit different application scenarios. For
instance, raising the application-dependent threshold for the selection of trustwor-
thy peers, which may be either an absolute or a relative value, allows for enlarging
the neighborhood of trusted peers. Appleseed is hence more adaptive and flexible
than Advogato.

The afore-mentioned characteristics of Advogato and Appleseed are briefly summa-
rized in Table3.1.

Table 3.1 Characteristics of
Advogato and Appleseed

Feature F.1 Feature F.2 Feature F.3 Feature F.4

Advogato Yes No No Boolean

Appleseed Yes Yes Yes Ranking
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3.3 Distrust

The notion of distrust is one of the most controversial topics when defining trust
metrics and trust propagation. Most approaches completely ignore distrust and only
consider full trust or degrees of trust [4, 23, 28, 30, 33, 35]. Others, among those
[1, 3, 6, 13], allow for distrust ratings, though, but donot consider the subtle semantic
differences that exist between those two notions, i.e., trust and distrust. Consequently,
according to [9], “distrust is regarded as just the other side of the coin, that is, there is
generally a symmetric scale with complete trust on one end and absolute distrust on
the other”. Furthermore, some researchers equate the notion of distrust with lack of
trust information. However, in his seminal work on the essence of trust, Marsh [26]
has already pointed out that those two concepts, i.e., lack of trust and distrust, may
not be intermingled. For instance, in absence of trustworthy agents, one might be
more prone to accept recommendations from non-trusted persons, being non-trusted
probably because of lack of prior experiences [27], than from persons we explicitly
distrust, the distrust resulting from bad past experiences or deceit. However, even
Marsh pays little attention to the specifics of distrust.

Gans et al. [9] were among the first to recognize the importance of distrust, stress-
ing the fact that “distrust is an irreducible phenomenon that cannot be offset against
any other social mechanisms”, including trust. In their work, an explicit distinction
between confidence, trust, and distrust is made. Moreover, the authors indicate that
distrust might be highly relevant to social networks. Its impact is not inherently
negative, but may also influence the network in an extremely positive fashion. How-
ever, the primary focus of this work is on methodology issues and planning, not
considering trust assertion evaluations and propagation through appropriate metrics.

Guha et al. [15] acknowledge the immense role of distrust with respect to trust
propagation applications, arguing that “distrust statements are very useful for users
to debug their web of trust” [14]. For example, suppose that agent ai blindly trusts a j ,
which again blindly trusts ak . However, ai completely distrusts ak . The distrust state-
ment hence ensures that ai will not accept beliefs and ratings from ak , irrespective
of him trusting a j trusting ak .

3.3.1 Semantics of Distrust

The non-symmetrical nature of distrust and trust, being two dichotomies, has already
been recognized by recent sociological research [25]. In this section, we investigate
the differences between distrust and trust with respect to inference opportunities and
the propagation of beliefs.

3.3.1.1 Distrust as Negated Trust

Interpreting distrust as the negation of trust has been adopted by many trust metrics,
among those trust metrics proposed by Abdul-Rahman and Hailes [1, 2], Jøsang
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et al. [17], and Chen and Yeager [6]. Basically, these metrics compute trust values
by analyzing chains of trust statements from source s to target t , eventually merg-
ing them to obtain an aggregate value. Each chain hereby becomes synthesized into
one single number through weighted multiplication of trust values along trust paths.
Serious implications resulting from the assumption that trust concatenation relates
to multiplication [35], and distrust to negated trust, arise when agent ai distrusts a j ,
who distrusts ak

7:

¬ trust(ai , a j ) ∧ ¬ trust(a j , ak) |= trust(ai , ak) (3.11)

Jøsang et al. [17] are aware of this rather unwanted effect, but do not question
its correctness, arguing that “the enemy of your enemy could well be your friend”.
Guha [14], on the other hand, indicates that two distrust statements canceling out
each other commonly does not reflect desired behavior.

3.3.1.2 Propagation of Distrust

The conditional transitivity of trust [1] is commonly agreed upon and represents
the foundation and principal premiss that trust metrics rely upon. However, no con-
sensus in literature has been achieved with respect to the degree of transitivity and
the decay rate of trust. Many approaches therefore explicitly distinguish between
recommendation trust and direct trust [1, 4, 6, 17, 28] in order to keep apart the
transitive fraction of trust from the non-transitive. Hence, in these works, only the
ultimate edge within the trust chain, i.e., the one linking to the trust target, needs to
be direct, while all others are supposed to be recommendations. For the Appleseed
trust metric, this distinction is made through the introduction of spreading factor
d. However, the conditional transitivity property of trust does not equally extend
to distrust. The case of double negation through distrust propagation has already
been considered. Now suppose, for instance, that ai distrusts a j , who trusts ak . Sup-
posing distrust to propagate through the network, we come to make the following
inference:

distrust(ai , a j ) ∧ trust(a j , ak) |= distrust(ai , ak) (3.12)

The above inference ismore than questionable, forai penalizesak simply for being
trusted by an agent a j that ai distrusts. Obviously, this assumption is not sound and
does not reflect expected real-world behavior. We assume that distrust does not allow
formaking direct inferences of any kind. This conservative assumptionwell complies
with [14].

7 We oversimplify by using predicate calculus expressions, supposing that trust, and hence distrust,
is fully transitive.



3 Models for Trust Inference in Social Networks 75

3.3.2 Incorporating Distrust into Appleseed

We compare our distrust model with Guha’s approach, making similar assumptions.
Guha computes trust by means of one global group trust metric, similar to PageR-
ank [31]. For distrust, he proposes two candidate approaches. The first one directly
integrates distrust into the iterative eigenvector computation and comes up with one
single measure combining both trust and distrust. However, in networks dominated
by distrust, the iteration might not converge [14]. The second proposal first computes
trust ranks by trying to find the dominant eigenvector, and then computes separate
distrust ranks in one single step, based upon the iterative computation of trust ranks.
Suppose that Dai is the set of agents who distrust ai :

DistrustRank(ai ) =
∑

a j ∈Dai

TrustRank(a j )

|Dai |
(3.13)

The problem we perceive with this approach refers to superimposing the compu-
tation of distrust ranks after trust rank computation, which may yield some strange
behavior: suppose an agent ai who is highly controversial by engendering ambiguous
sentiments, i.e., on the one hand, there are numerous agents that trust ai , while on the
other hand, there are numerous agents who distrust ai . With the approach proposed
by Guha, ai ’s impact for distrusting other agents is huge, resulting from his immense
positive trust rank. However, this should clearly not be the case, for ai is subject to
tremendous distrust himself, thus leveling out his high trust rank.

Hence, for our own approach, we intend to directly incorporate distrust into the
iterative process of the Appleseed trust metric computation, and not superimpose
distrust afterwards. Several pitfalls have to be avoided, such as the risk of non-
convergence in case of networks dominated by distrust [14]. Furthermore, in absence
of distrust statements, we want the distrust-enhanced Appleseed algorithm, which
we denote by Trustα− , to yield results identical to those engendered by the original
version Trustα .

3.3.2.1 Normalization and Distrust

First, the trust normalization procedure has to be adapted. We suppose normalization
of weights to the power of q, as has been discussed in Sect. 3.2.2.6. Let in(x), the trust
influx for agent x , be positive. As usual, we denote the global spreading factor by
d, and quantified trust statements from x to y by W (x, y). Function sign(x) returns
the sign of value x . Note that from now on, we assume W : E → [−1,+1], for
degrees of distrust need to be expressible. Then the trust quantity ex→y passed from
x to successor y is computed as follows:

ex→y = d · in(x) · sign(W (x, y)) · w, (3.14)
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Fig. 3.8 Network
augmented by distrust
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where

w = |W (x, y)|q
∑

(x,s) ∈ E
|W (x, s)|q

The accorded quantity ex→y becomes negative if W (x, y) is negative, i.e., if x
distrusts y. For the relative weighting, the absolute values |W (x, s)| of all weights
are considered. Otherwise, the denominator could become negative, or positive trust
statements could become boosted unduly. The latter would be the case if the sum
of positive trust ratings only slightly outweighed the sum of negative ones, making
the denominator converge towards zero. An example demonstrates the computation
process:

Example 3.2 (Distribution of Trust and Distrust) We assume the trust network as
depicted in Fig. 3.8. Let the trust energy influx into node a be in(a) = 2, and global
spreading factor d = 0.85. For simplicity reasons, backward propagation of trust
to the source is not considered. Moreover, we suppose linear weight normaliza-
tion, thus q = 1. Consequently, the denominator of the normalization equation is
|0.75| + | − 0.5| + |0.25| + |1| = 2.5. The trust energy that a distributes to b hence
amounts to ea→b = 0.51, whereas the energy accorded to the distrusted node c is
ea→c = −0.34. Furthermore, we have ea→d = 0.17 and ea→e = 0.68.

Observe that trust energy becomes lost during distribution, for the sum of energy
accorded along outgoing edges of a amounts to 1.02, while 1.7 was provided for
distribution. The effect results from the negative trust weight W (a, c) = −0.5.

3.3.2.2 Distrust Allocation and Propagation

We now analyze the case where the influx in(x) for agent x is negative. In this case,
the trust allocated for x will also be negative, i.e., in(x) · (1− d) < 0. Moreover, the
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energy in(x) ·d that x may distribute among successor nodes will be negative as well.
The implications are those which have been mentioned in Sect. 3.3.1, i.e., distrust
as negation of trust and propagation of distrust. For the first case, refer to node f in
Fig. 3.8 and assume in(c) = −0.34, which is derived from Example 3.2. The trusted
agent a distrusts c who distrusts f . Eventually, f would be accorded d · (−0.34) ·
(−0.25),which ispositive. For the secondcase, node g wouldbe assigned thenegative
trust quantity d · (−0.34) · (0.75), simply for being trusted by f , who is distrusted.
Both unwanted effects can be avoided by not allowing distrusted nodes to distribute
any energy at all. Hence, more formally, we introduce a novel function out(x):

out(x) =
{

d · in(x), if in(x) ≥ 0
0, else

(3.15)

This function then has to replace d · in(x) when computing the energy distributed
along edges from x to successor nodes y:

ex→y = out(x) · sign(W (x, y)) · w, (3.16)

where

w = |W (x, y)|q
∑

(x,s) ∈ E
|W (x, s)|q

This design decision perfectly aligns with assumptions made in Sect. 3.3.1 and
prevents the inference of unwanted side-effects mentioned before. Furthermore,
one can see easily that the modifications introduced do not affect the behavior of
Algorithm 3.3 when not considering relationships of distrust.

3.3.2.3 Convergence

In networks largely or entirely dominated by distrust, the extended version of Apple-
seed is still guaranteed to converge. We therefore briefly outline an informal proof,
based on Proof 3.2.2.7:

Proof (Convergence in presence of distrust) Recall that only positive trust influx
in(x) becomes propagated, which has been indicated in Section3.3.2.2. Hence, all
we need to show is that the overall quantity of positive trust distributed in compu-
tation step i cannot be augmented through the presence of distrust statements. In
other words, suppose that G = (A, E, W ) defines an arbitrary trust graph, contain-
ing quantified trust statements, but no distrust, i.e., W : E → [0, 1]. Now consider
another trust graph G ′ = (A, E ∪ D, W ′), which contains additional edges D, and
weight function W ′ = W ∪ (D → [−1, 0[). Hence, G ′ augments G by additional
distrust edges between nodes taken from A. We now perform two parallel computa-
tions with the extended version of Appleseed, one operating on G and the other on
G ′. In every step, and for every trust edge (x, y) ∈ E for G, the distributed energy
ex→y is greater or equal to the respective counterpart on G ′, because the denominator
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of the fraction given in Eq.3.16 can only become greater through additional distrust
outedges. Second, for the computation performed on G ′, negative energy distributed
along edge (x, y) can only reduce the trust influx for y andmay hence even accelerate
convergence.

However, as can be observed from the proof, there exists one serious implication
arising from having distrust statements in the network: the overall accorded trust
quantity does not equal the initially injected energy anymore. Moreover, in networks
dominated by distrust, the overall trust energy sum may even be negative.

Experiment 3 (Network impact of distrust) We observe the number of iterations
until convergence is reached, and the overall accorded trust rank of 5 networks. The
structures of all these graphs are identical, being composed of 623 nodes with an
average indegree and outdegree of 9. The only difference applies to the assigned
weights, where the first graph contains no distrust statements at all, while 25% of
all weights are negative for the second, 50% for the third, and 75% for the fourth.
The fifth graph contains nothing but distrust statements. The Appleseed parameters
are identical for all 5 runs, having backward propagation enabled, an initial trust
injection in0 = 200, spreading factor d = 0.85, convergence threshold Tc = 0.01,
linear weight normalization, and no upper bound on the number of nodes to unfold.
Figure3.9a clearly demonstrates that the number of iterations until convergence,
given on the vertical axis,decreaseswith the proportion of distrust increasing, observ-
able along the horizontal axis. Likewise, the overall accorded trust rank, indicated on
the vertical axis of Fig. 3.9b, decreases rapidly with increasing distrust, eventually
dropping below zero. The same experiment was repeated for another network with
329 nodes, an average indegree and outdegree of 6, yielding similar results.

The effects observable in Experiment 3 only marginally affect the ranking itself,
for trust ranks are interpreted relative to each other. Moreover, compensation for lost
trust energy may be achieved by boosting the initial trust injection in0.
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3.4 Expanding Network Coverage

Among the network-based algorithms for computing trust, there is one commonprob-
lem: coverage. In social networks there are often many users who are disconnected
from the main cluster or who are connected in a way that computing an accurate trust
value would be difficult. This naturally leads to the question of how we can improve
network coverage, and potentially accuracy, in trust computation.

We propose one solution to this which incorporates similarity measures grounded
in our sociological understanding of trust. Sociological definitions of trust have two
components: a belief and a commitment. For example, in a context, if Alice trusts
Bob, it implies that Alice believes that Bob will provide useful information and that
she is willing to take action based on that information [10]. If we consider this in the
context of information on the Web, trust in a person means that the user is willing to
take actions, like buying a product, based on others’ reviews. This, of course, gets to
the core of why we want to compute trust in the first place; if we know how much
the user trusts the author of some online content, we can use that to help optimally
sort, filter, and aggregate the information.

Network flow-based algorithms, like Appleseed and Advogato presented above
work very well on connected graph components, but they cannot infer trust between
people who are not connected by paths in the social network. In those situations,
trust can be inferred from other sources of information. In our previous work, we
identified a series of similarity measures drawn from underlying data that can esti-
mate trust effectively. We will discuss this work further in Sect. 3.4.1. This method
can infer trust between any two users as long as they have rated a common set
of items upon which to compute similarity. However, computing trust based only
on nuanced similarity measures loses some of the insights that come from the
network.

In some cases, we will be able to compute trust values with both algorithms for
a pair of users. In other cases, we may be able to compute only one (or perhaps
neither). A combination of the methods will obviously achieve better coverage, but
how to effectively use both values when available is an open question. In this section,
we present a model that integrates trust computed from social networks and trust
inferred from data similarity. We show results on how to optimally use both models
and demonstrate their accuracy on a real-world dataset.

3.4.1 Revisiting Trust Inference Algorithms

Above, we discussed twomajor trust inference algorithms: Advogato andAppleseed.
For the experiments here, we used the TidalTrust [12] algorithm, a simple trust
inference algorithm that gives a good indication of howmanypairs of users a network-
based algorithm can reach. Readers will note similarities between TidalTrust and the
algorithms presented above.
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3.4.1.1 TidalTrust: An Algorithm for Inferring Trust

TidalTrust is a modified breadth-first search-base algorithm. The source’s inferred
trust rating for the sink, denoted ts,p, is a weighted average of source s’s neighbors’
ratings of sink p. The source node begins a search for the sink. It will poll each of its
neighbors to obtain their rating of the sink. If the neighbor has a direct rating of the
sink, that value is returned. If the neighbor does not have a direct rating for the sink,
it queries all of its neighbors for their ratings, computes the weighted average, and
returns the result. Each neighbor repeats this process. Essentially, the nodes perform
a breadth-first search from the source to the sink, and then inferred values are passed
back to the source. The basic process of values for the sink flowing back to the source
are shown in Fig. 3.10.

Network-based inference algorithms rely on the social network. This provides a
benefit because recommendations can be made for users who have rated no items
because trust is inferred from the social connections. However, it has a corresponding
drawback that trust can only be computed when users are connected in that network.

TidalTrust incorporates two factors to limit the size of the search and improve
accuracy. Previous research has shown the following [11]:

• Shorter paths have a lower error.
• Using nodes with higher trust ratings leads to lower error.

Fig. 3.10 An illustration of direct trust values between nodes a and b, ta,b, and between nodes b
and c, tb,c. Using a trust inference algorithm, it is possible to compute a value to recommend how
much a may trust c, ta,c
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Limiting the depth of TidalTrust’s search should lead to more accurate results,
since the error often increases as depth increases. If accuracy decreases as path length
increases, as the earlier analysis suggests, then shorter paths are more desirable.
However, the tradeoff is that fewer nodes will be reachable if a limit is imposed on the
path depth. To balance these factors, the path length can vary from one computation
to another. Instead of a fixed depth, the shortest path length required to connect the
source to the sink becomes the depth. This preserves the benefits of a shorter path
length without limiting the number of inferences that can be made.

The previous results also indicate that the most accurate information will come
from thehighest trustedneighbors. To incorporate this into the algorithm,weestablish
a minimum trust threshold, and only consider connections in the network with trust
ratings at or above the threshold. This value cannot be fixed before the search because
we cannot predict what the highest trust value will be along the possible paths. If
the value is set too high, some nodes may not have assigned values and no path will
be found. If the threshold is too low, then paths with lower trust may be considered
when it is not necessary. We define a variable, max, that represents the largest trust
value that can be used as a minimum threshold such that a path can be found from
source to sink. Our max is computed while searching for paths to the sink by tracking
trust values that have been seen.

TidalTrust is a modified breadth-first search. The inferred trust rating of source s
for sink p, denoted ts,p, is a weighted average of the source’s neighbors’ ratings of
the sink. This is succinctly represented as follows:

ts,p =

∑

j ∈ adj(s) ∧ ts, j ≥ max

ts, j × t j,p

∑

j ∈ adj(s) ∧ ts, j ≥ max

ts, j

(3.17)

The source node begins a search for the sink. It will poll each of its neighbors
to obtain their rating of the sink. If the neighbor has a direct rating of the sink, that
value is returned. If the neighbor does not have a direct rating for the sink, it queries
all of its neighbors for their ratings, computes the weighted average as shown above,
and returns the result .

To improve the accuracy of the algorithm, path length and path strength consid-
erations are included. Each node that is reached performs this process, keeping track
of the current depth from the source. Each node will also keep track of the strength of
the path to it. Nodes adjacent to the source will record the source’s rating assigned to
them. Each of those nodes will poll their neighbors. The strength of the path to each
neighbor is the minimum of the source’s rating of the node and the node’s rating of its
neighbor. The neighbor records the maximum strength path leading to it. Once a path
is found from the source to the sink, the depth is set at the maximum depth allowable.
Since the search is proceeding in a breadth-first search fashion, the first path found
will be at the minimum depth. The search will continue to find any other paths at
the minimum depth. Once this search is complete, the trust threshold (max) is estab-
lished by taking the maximum of the trust paths leading to the sink. With the max
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value established, each node can complete the calculations of a weighted average by
taking information from nodes that they have rated at or above the max threshold.

The accuracy of this algorithm is addressed in depth in [10, 12]. While the error
will very from network to network, our experiments in two real world social networks
show the results to be accurate to within about 10%.

3.4.1.2 Similarity-Based Trust Inference

It has been long known in the sociological literature and more recently shown in the
computer science literature that trust correlates strongly with similarity between peo-
ple [42, 43]. In our previouswork [40]we showed that in addition to overall similarity,
there is also a correlation between trust and several nuanced similarity measures. In
a context where people rate items, those ratings can be used to compute values that
go beyond simple similarity. Specifically, trust between people is tied to the largest
single difference over items they have both rated, and to the agreement on movies
where one user has given extreme ratings. We also showed that some people tend
to be more trusting than others, and thus inferred trust values can be adjusted up or
down to account for this. We used these nuanced similarity measures in this research.

3.4.1.3 Experimental Network

When working with trust, data is usually one of the greatest challenges. Trust infor-
mation is private, and for that reason there are no publicly available datasets with this
information. In 2004, we developed and launched FilmTrust,8 a Web-based social
network centered aroundmovies.Users create profiles and link to friends and rate how
much they trust each friend’s opinion about movies. Users can also rate and review
movies. The network has been live on the web and growing on its own since 2004.
Thus, it serves as a useful real-world dataset upon which we can run experiments.

The FilmTrust network has 1,610 total members. Many do not have any friends
in the social network; 712 people have at least one friend and there are 1,465 edges
in the network. The average trust rating is 6.83. The network has a central giant
component, and many small subnetworks.

Most users have rated movies in the network; 1,250 people have rated at least
one movie. These movie ratings are used in the similarity-based trust inference tech-
niques. In total, we have either trust ratings or movie ratings from 1,339 of the 1,610
users.

3.4.2 Experimental Analysis

Our experimental analysis executes the network-based and similarity-based algo-
rithms over the FilmTrust network, and then follows that with the integrated trust

8 See http://trust.mindswap.org/FilmTrust.

http://trust.mindswap.org/FilmTrust
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Fig. 3.11 A visualization of
the FilmTrust network

inference algorithm. We compare these methods for accuracy and coverage of the
network. We begin this section by describing the setup for each algorithm and then
present the results of our experiments. We show that an integrated model does pro-
duce significantly more accurate results and better coverage than either method alone
(Fig. 3.11).

3.4.2.1 Trust Inference Setup

The network-based trust inference algorithm, FilmTrust, was able to run directly on
the FilmTrust network, so no special setup was required. For the similarity-based
algorithm, we needed to develop a method for integrating our earlier insights on
similarity measures that relate to trust into an algorithm. In that mentioned earlier
work we identified four measures made over users’ item ratings that relate to trust:
overall similarity, similarity on extremes (items that received very high or very low
ratings from a user), the single largest difference between users on a given item,
and the source’s propensity to trust. We computed similarity measures in two ways:
as mean average error (MAE) and using the Pearson correlation. Thus, we had six
total measures: the average difference (AD), overall correlation (COR), average
difference on extremes (XD), correlation on extremes (XCOR), the single largest
difference (MD), and the source’s propensity to trust (PT). A linear combination of
these values can predict trust and is given in Eq.3.18, where ω indicates the weight
given to each measure.

ts,p = ωAD × AD + ωCOR × COR + ωXD × XD

+ ωXCOR × XCOR + ωMD × MD + ωPT × PT
(3.18)

It is worth noting that for some pairs of people, some of these values may be
unavailable. For example, it is common for users to have no movies in common
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Table 3.2 Weights for
similarity measures
determined in a multivariate
linear regression analysis

Weight Extreme values available No extreme values

ωAD −1.8084 −0.5951

ωCOR 1.0589 0.8269

ωXD 0.1751

ωXCOR 0.0655

ωMD 0.2489 0.1145

ωPT 1.0568 0.9946

where the source has assigned an extreme rating. Thus, the weights will be different
depending on whether or not the two measures on extreme-rated items are available.
Theweights (ω values) will vary between networks based on the behavior of the users
and context of the data. To determine the optimal weights for the FilmTrust dataset,
we ran a multivariate linear regression analysis. To achieve the most meaningful
results from the regression, we selected a subset of node pairs who had at least 10
items in common. To compute values for XD and XCOR, we required at least 3
items in common with extreme ratings from the source. The results of this regression
analysis are shown in Table3.2.

3.4.2.2 Integrated Trust Model

Combining the network-based and similarity-based trust inference algorithms into
an integrated algorithm has two major benefits. First, it provides a more thorough
coverage so trust can be inferred for a greater number of individuals. If someone is
not in the social network, the ratings similarity method can be used. If they have not
rated enough items but have friends, the social network method can be used. The
second benefit is the potential for improved accuracy when trust can be inferred using
both the network-based trust inference algorithm and the similarity-based inference
algorithm.

Our approach was to use a linear combination of the trust values produced from
each base algorithm. To combine these values, we ran amultivariate linear regression
analysis using known trust values as a ground truth. We found ωsim = 0.869 and
ωnet = 0.195. Thus, the integrated trust value was computed as follows:

Tint = ωsim ∗ Tsim + ωnet × Tnet (3.19)

3.4.3 Results

The next sections present results on coverage and accuracy of the presented appro-
aches. These experiments were executed on real-world social networks on the Web.
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3.4.3.1 Coverage

The FilmTrust network we used for our experiments has 1,610 nodes, but only 1,339
have input any data to the system. Thus, we have 1,339 × 1,338 = 1,791,582
total pairs for which trust can be inferred. The network has a somewhat high rate
of members who have no friends in the social network. Of the 1,339 participating
members, only 712 (53.17%) have any social connections in the network. Recall
also that the edges are directed in the network. Nodes must have outgoing edges in
order to infer trust to any other nodes. Only 480 nodes have outgoing edges. Thus, we
would expect to be able to infer trust values for no more than 480× 712 = 341,280
pairs of users if we are using a network-based trust inference algorithm. Note that
any algorithm that infers trust by searching paths in the network will have this limit.
TidalTrust, which infers trust for any sink reachable from the source, was able to
compute values for 69,016 pairs. While this is less than 4% of the total number of
pairs, it is just over 20% of the nodes who have some social network data. The other
80% of pairs for which a value represent nodes that have no indirect connections in
the network (e.g. pairs of nodes not connected to the giant component).

Using the similarity-based method, trust can be inferred for any pair of users who
have data in common. In the FilmTrust network, 503,912 ( 28%) pairs of users have
at least one item in common. However, one single item is a very weak basis for
computing trust, and is insufficient for computing the correlation measures we need
for our method. We set a lower threshold of 3 items in common for computing a
similarity-based trust value. With this restriction, 302,336 pairs had an inferred trust
value, which is 16.88% of the total number of pairs

Not surprisingly, when used together, these methods give better coverage than
either achieves on its own. We could infer trust for 342,504 pairs, just shy of 20%
of the network. This is less than the sum of the coverage of the two methods, since
some pairs have inferred trust from both algorithms. Of the 342,504 pairs for which
trust could be inferred, values from both methods were available for 28,878 pairs
(8.43% of the covered pairs, and 1.6% of all pairs).

It is important to note that these coverage rates are unique to the network we are
examining here. Other networks may have vastly different coverage rates based on
the behavior of the users. Previous work has shown dramatically different rates of
participation in the social networking component ofwebsites.However, the improved
coverage using two types of algorithms is not surprising and should expected in other
datasets (Table3.3).

Table 3.3 Pairs of nodes for
which trust can be inferred
using different methods

Method Coverage (in % of all pairs)

Similarity-based 302,366 (16.88%)

Network-based 69,016 (3.85%)

Integrated 342,504 (19.12%)
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3.4.3.2 Accuracy

Improved coverage is useful, but can results from two algorithms also improve the
accuracy of trust inferences? We investigated this by using the 1,465 pairs of nodes
with a known trust value, i.e. where one user had assigned a trust rating to another
in the social network. These were our ground truth values against which the inferred
values were compared.

With the TidalTrust algorithm,we tested accuracy by selecting a pair of nodeswith
a known trust rating, ignoring the edge between them in the network, and then running
the algorithm to infer a trust value. This would allow us to see what the algorithm
would infer if the relationship did not exist. The similarity-based algorithm was run
for any pair of nodes with 3 or more rated items in common.

Of the 1,465 pairs, TidalTrust inferred values for 881 pairs. The similarity-based
approach found values for 763 pairs. The intersection of these sets where both meth-
ods inferred results comprises 490 pairs. We used those 490 pairs for our analysis so
we were comparing the accuracy of all three methods over the same users.

We compared the accuracy of the inferred trust value computedwith the integrated
trust equation to the accuracy of the trust value inferred using each algorithm indi-
vidually. Accuracy was measured as both mean absolute error (MAE) and root mean
square error (RMSE). For each accuracy measure, an ANOVA indicated statistically
significant differences among the three methods. For both accuracy measures, a two-
tailed Student’s t-test showed that the integrated trust method was significantly more
accurate than both the network-based and similarity-based trust estimates alone.

This indicates that using both trust inference techniques, the results not only
provide inferred trust values for more pairs of users than either method could do
alone, but they also can be combined to provide more accurate trust inferences for
pairs where both methods generate results.

3.5 Discussion and Outlook

In this chapter, we advocated the need for local group trust metrics, presenting our
metric Appleseed. Appleseed’s nature largely resembles Advogato, bearing similar
complexity and attack-resistance properties, but offers one particular feature that
makes Appleseed much more suitable for certain applications than Advogato: the
ability to compute rankings of peers according to their trustworthiness rather than
binary classifications into trusted and untrusted agents (Table3.4).

Table 3.4 Accuracy of trust
inference methods

Method Accuracy (MAE) Accuracy (RMSE)

Similarity-based 1.36 1.78

Network-based 1.88 2.47

Integrated 1.27 1.67
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Originally designed as an approach to social filtering within our decentralized
recommender framework [41], Appleseed suits other application scenarios as well,
such as group trust computation in online communities, open rating systems, ad-hoc
and peer-to-peer networks.

For instance, Appleseed could support peer-to-peer-based file-sharing systems
in reducing the spread of self-replicating inauthentic files by virtue of trust propa-
gation [18]. In that case, explicit trust statements, resulting from direct interaction,
would reflect belief in someone’s endeavor to provide authentic files.

We also showed that augmenting group trust metrics with additional information
that can indicate trust, such as nuanced similarity over rated items, can improve the
number of user pairs for whom trust can be inferred.
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