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Propagation Models and Analysis for Mobile
Phone Data Analytics

Derek Doran and Veena Mendiratta

Abstract People in modern society use mobile phones as their primary way to
retrieve information and to connect with others across the globe. The kinds of con-
nections these devices support give rise to networks atmany levels, from those among
devices connected by near-field radio or bluetooth, to society-wide networks of phone
calls made between individuals. This chapter introduces state-of-the-art propagation
models that have been applied to understand such networks. It discusses how the
models are used in many innovative studies, including how short-lived information
spreads between phone callers, how malware spreads within public places, how to
detect fraudulent and scamming activity on a phone network, and to predict the
propensity of a user to unsubscribe from a mobile phone carrier. It concludes with a
discussion of future research opportunities for the study of propagation modeling to
mobile phone data analytics.

11.1 Introduction and Motivation

As of February 2013, an astonishing 6.8 billion mobile phone subscriptions are
active across the world.1 This huge number of subscribers, constituting a majority
of the world’s population, reflects how citizens of countries with varying socioe-
conomic conditions all rely on cellular devices to communicate and connect with
others. These devices, which are typically full of data about who our contacts are,
the kind of information we share, who we communicate with, and our physical loca-
tion have also emerged as an attractive platform to study humanbehaviors and activity
across large geographic regions. For example, the analysis of mobile phone data has

1 http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats.
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led to the development of algorithms that automatically identify physical locations
people are interested in [36] and reveal the typical mobility patterns of people within
a country [5, 7, 41]. Studying the structure of calls placed between mobile devices
have identified strong correlations between physical location and social friendship
strength [14], and have even been used to discover regional economies within devel-
oping countries [34]. Such studies highlight the amazing waysmobile phone datasets
let us study the collective actions of people through the structure of people’s com-
munications, interactions, and friendships. We have only just started to tap into the
intelligence that can be mined from these datasets.

The main function of a mobile phone is to transfer information from one user to
another. This information may be contained in the informal and unstructured data
users transmit via SMS messages and voice calls. It may also be formal, structured
data like images, files, and video transferred between devices in local areas through
near-field communication (NFC) and bluetooth radios, or across the Internet to our
contacts through smartphone apps and other third party services. Records about
these transmissions are typically stored on a mobile device and may be collected
by smartphone applications running in the background, or recorded by the network
service provider. These records may reveal who information was transmitted to, what
type of data was transferred, where the sender physically performed the transmission,
and when the data transfer occurred. The relational nature of this data naturally gives
rise to networks of users or devices within which many kinds of information flow.
Since mobile phones are now ubiquitous across the world, understanding the process
through which information propagates [29] across these networks adds to our basic
understanding of the modern communication patterns humans exhibit.

In this chapter, we present a number of state-of-the-art propagation models and
algorithms that have been applied to networks extracted frommobile phone datasets.
The methods were selected so as to demonstrate the diversity of models that have
been developed for this purpose, and to highlight the way they support many dif-
ferent innovative applications. We first discuss models that support the study of
information diffusion across society. We then present epidemiological models that
are tailored to the unique dynamics of communication between mobile devices in
local areas, and how they are applied to anticipate the dynamics of malware transfer-
ence between devices in local-area networks. Finally, we introduce sender-specific,
receiver-specific, and clustering algorithms that compute the spread of information
or influence and support a host of network provider services, including the identi-
fication of scammers and to predict who is likely to switch providers in the near
future. We emphasize that this chapter is not meant to be a comprehensive survey
of mobile phone data analytics, nor is it meant to present an exhaustive summary
of the many propagation models that have been developed and could be utilized to
understand mobile phone datasets. Instead, it intends to: (i) demonstrate how mod-
eling propagation phenomena is a critical tool for mobile phone data analytics; (ii)
show researchers interested in mobile phone data analytics the kinds of propagation
models and algorithms they should be equipped with; and (iii) expose a number of
avenues of future research in the study of propagation within mobile phone datasets.
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This chapter is organized as follows. Section11.2 introduces the kind of data and
networks that may be extracted from mobile phone communications. Section11.3
presents propagation models used to understand the diffusion of information across
mobile phone networks. Section11.4 discusses epidemiological models and their
application to the studyofmobilemalware. Section11.5 introduces propagationmod-
els used in the development of novel applications for service providers. Section11.6
reflects on the works presented and offers exciting directions for future research.
Concluding remarks are given in Sect. 11.7.

11.2 Mobile Phone Data Analytics

We define mobile phone data analytics as the mining and analysis of datasets
whose records encode communication or interaction activities betweenmobile phone
devices. Such datasets are typically extracted from a collection of devices that indi-
vidually contain information about who the device’s owner (i.e. mobile phone user)
has a relationship with, as defined by the collection of mobile phone numbers in its
contact list. The devices may also carry information about when and to whom the
user transmits information via NFC or bluetooth to neighboring devices, and records
of the SMS messages and phone calls she placed.

Smartphone applications that have sufficient permissions to access a device’s data
may extract information for performing mobile phone data analytics. Because it is
difficult to deploy and obtain permissions for retrieving such information, however,
researchers typically rely on call data records (CDRs) provided by a mobile phone
service provider. The kind of information encoded in a typical CDR is provided
in Table11.1. It includes the phone number of the caller and callee, the duration
of the call, the cost of making the call, if the call was on or off the provider’s
network, the date and duration of the call, and the base station used to connect the
caller’s mobile phone to the network. The position of this base station is used in
many studies to approximate the position of a user when they make a phone call,
while the duration, cost, and whether the call was on network may be attributes
reflecting the strength of a relationship between two individuals. For example, we
may infer that the back and forth off-network calls recorded in entries 1 and 2 of
Table11.1 represent communication between users who share a strong relationship
since they both incurred a financial cost and spoke for a long period of time. The
calling_num and called_num fields may be used to create a directed network
of mobile phone calls between users.

The data collected from a mobile device or by a service provider may capture
the structure of communications and relationships at multiple levels as illustrated
in Fig. 11.1. At the local level, mobile devices equipped with NFC or bluetooth
technology are capable to transmitting data between each other. At this level, the
analysis exploits the position of devices to define a structure of possible local data
transmissions to discover how data propagates in a small public area. These data
transmissions may correspond to the automatic pinging of neighboring bluetooth
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Local Connectivity Social Contacts Calling Network 

Fig. 11.1 Structure within mobile phone datasets among devices (local level), address books
(contact level), and network-wide communication (calling level)

devices for deriving the density of people in an environment or to infer real-life
social networks [37], data transmissions by an intentionally installed application, or
the automatic spreading ofmalware or viruses that runwithout the user knowing [51].
At the contact level, phone numbers collected from the address book of users’ devices
are extracted and aggregated to form a collection of social relationships among users.
At the calling level, CDRs collected by service providersmay be used to study human
communication across large geographic areas.

Many different propagation models and algorithms are applied to mobile phone
data at the local, contact, and calling level. We divide the models covered in this
chapter according to the type of analytics they support in Fig. 11.2, namely by: (i)
understanding information diffusion; (ii) modeling malware propagation; and (iii)
supporting network provider applications. These three types represent the diversity of
the different kinds of mobile phone analytics supported by propagationmodels. They
range fromacademic studies that seek to discover intrinsic qualities about information
dissemination, to theoretical analyses that can be used to solve a widely-applicable
problem facing society, tomodels that are specifically developed to support a business
enterprise.

A roadmap of the specific models presented in this chapter is listed in Table11.2,
including a brief summary of the model and the network level it operates on. Infor-
mation diffusion studies rely on structural models that capture spreading dynamics
(causality trees), statistical approaches for characterizing complex distributions (mix-
ture models and correlation metrics), and algorithms for finding users who play a
critical role in the diffusion process (user clustering). The analysis of malware uses
carefully designed SIR, SIS, and SIDR epidemiological models that also incorporate
the unique mobility dynamics of mobile phone devices in public spaces. Practical
applications utilize user clustering algorithms and new models for energy propaga-
tion across a mobile phone network.
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Fig. 11.2 Roadmap of the propagation models and the studies they support in this chapter

11.3 Information Diffusion

No matter the medium used to transmit information between mobile phone devices
and their users, the chance that information spreads from one user to another depends
on the strength of the relationship they share and on the dynamic nature of the
information as it passes through the network of mobile users. Intuitively, the strength
of the relationship shared between two users strongly impacts when, how often, and
what kind of information is shared. Calls to a family member, for example, may
happen much more frequently compared to calls made to a bank or doctor’s office,
increasing the chance of meaningful information dissemination. The dynamic nature
of different types of information as it passes through a network is also critical. For
example, information about topical news stories may experience a large number of
transmissions due to the ‘buzz’ surrounding breaking news, but the frequency of
these transmissions may decay over time as this news becomes less relevant. As
another example, a person may broadly share a major life event with all of their
contacts, but share a more personal story to a small subset of her contacts. We next
examine information propagation models and algorithms that incorporates either of
these aspects to make discoveries about the nature of mobile phone communication
patterns.
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Table 11.2 Propagation models and methods in this chapter

Propagation model Summary Structure level

Information diffusion (Sect. 11.3)

Finite mixture model Model the distribution of times between
and duration of diffusions between links

Network

Mobility correlation metrics Search for relationships between physical
mobility and creating new network
connections

Network

Causality trees Models pass-along dynamics where
information transmissions can only
happen within a window of time τ

Contact

Community based greedy algorithm Identify most influential members of a
phone network under a weighted influence
diffusion model

Network

Malware propagation (Sect. 11.4)

SIR-based model Models malware spreading dynamics
where devices can recover and immunize
themselves from infection

Local

SIS-based model Model steady-state infection levels of
malware in local areas where devices
cannot be immune from infection

Local

SIDR-based model Optimize the maximum damage that may
be caused by a malware epidemic that not
only infects but also kills devices

Local

Novel applications (Sect. 11.5)

Sender-centric energy propagation Model accumulation of influence where
senders force information on receivers

Network

Receiver-centric energy propagation Model accumulation of influence where
receivers deicide what information is
retained

Network

Markov clustering algorithm Discover fraudulent users based on the
structure of information propagation

Network

11.3.1 Characterizing Diffusion Frequency: Finite Mixture
Models

One of the most basic properties of communication patterns are the frequency with
which transmissions are made between users. Kim et al. [26] performed a compre-
hensive analysis of these frequencies by analyzing the communication activity of
over one million bi-directional pairs of mobile phone subscribers from a nation-
wide cellular provider. Using metadata about each subscriber, they classified pairs
by whether they are both in-network, if they are in different networks (out-network),
and if they are family members. The objective of their study is to develop a universal
model that can accurately capture the frequency of information exchange across all
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three classes of users, as characterized by the inter-arrival times between calls made
between pairs.

An initial analysis by the authors revealed that the empirical distribution of inter-
arrival times do not follow a single exponential distribution, suggesting that the call
arrival process is not Poisson for at least one class of pairs. They thus propose a
finite mixture model to universally characterize the inter-arrival times of all pairs. A
mixture model assumes that the data is drawn from a finite number of K distributions
as specified by:

f (y;ψ) =
n∏

i=1

f (yi,ψ) =
n∏

i=1

K∑

k=1

wkfk(yi; θk) (11.1)

where fk(yi; θk) is one of the K distributions of the mixture, y = (y1, . . . , yn) is the
vector of observations, andw1, . . . , wk are positivemixingweights assigned such that∑K

k=1 wk = 1. They decide to consider mixture models of Gamma, Lognormal, and
Gaussian distributions because they all are capable ofmodeling non-negative random
variables with a large range of possible density shapes. The model’s collection of
parameters ψ can be estimated by the expectation-maximization algorithm and use
the Akaike Information Criterion [27] and Minimum Description Length [4] metrics
to find the best number of components K .

11.3.1.1 Model Application

The authors fitted Gamma, Lognormal, and Gaussian finite mixture models to the
distribution of inter-arrival times across all pairs of users andwithin the three different
types of pairs. Although each pair of users exhibit a unique calling pattern, they
find that the lognormal mixture model offers a very tight fit (MSE = 0.3605 ×
10−4). Family pairs were found to require a mixture model that is of higher order for
fitting their inter-arrival time distributions, but of lower order to fit their call duration
distribution. In contrast, out-of-network pairs need a low order mixture model to
capture inter-arrival times and high order model to capture call durations. About
27% of all pairs’ inter-arrival time distributions are best fitted by a single order
model.

11.3.2 User Mobility and Diffusion: Mobility Correlation
Metrics

The distribution of peoples’ physical locations are intimately related to the way
information diffuses among users of a mobile phone network. This is because, prac-
tically, information passed through mediums like NFC or bluetooth require devices
to be near each other. Furthermore, sociological studies confirm how we are more
likely to connect and share information with those near us because the social links
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encouraging this behavior are driven by spatial proximity [43]. Understanding the
way humans diffuse physically is thus an important consideration when studying the
spread of information across a mobile phone network.

Call data records record the id of the cell phone tower used by a sender and
receiver used during a conversation. By mapping these id’s to the physical position
of the tower, we can study the approximate locations where a user regularly submits
mobile phone calls and their daily trajectories through a geographic area. We can
also find correlations between the physical proximity of two users and frequency
of calls made between them. Such correlations can be expressed using a variety of
metrics proposed by Wang et al. [48]:

1. Distance. This metric refers to the most likely physical distance separating two
users in the network. Let Li(x) be the location of user x during his ith recorded
call and n(x) be the total number of calls made by x. Let

PV (x, l) =
n(x)∑

i=1

1(l = Li(x))/n(x) (11.2)

be the probability that a user x visits a location l where 1(q) is an indicator
function that returns 1 if the statement q evaluates to true and 0 otherwise. The
most likely location of user x is thus given byML(x) = argmaxl∈Loc PV (x, l). We
can define the distance d between users x and y as d(x, y) = dist(ML(x), ML(y))
where dist is a measure of geographic distance.

2. Spatial Co-location rate. This metric captures the likelihood that two users visit
in the same location but not necessarily at the same time. Assuming their visits
are independent, it is given as:

CoL(x, y) =
∑

l∈Loc

PV (x, l) × PV (y, l) (11.3)

where Loc is the set of locations that both x and y have been recorded as visiting.
3. Cosine similarity. This metric uses cosine similarity to capture how similarly two

users frequent the same locations. It is given as:

Cos(x, y) =
∑

l∈Loc

CoL(x, y)

||PV (x, l)|| × ||PV (y, l)|| (11.4)

4. Weighted cosine similarity. This metric corresponds to the tf-idf version of cosine
similarity. In essence, the tf-idf version adds weight to co-location events within
low-density areas, that is, areas where users are seldom seen, and penalizes high-
density areas. For example, pairs that frequent seldom visited locations may be
more likely to have a relation than those who both frequent common locations.

5. Co-location rate. This metric measures the probability two users will be located
in the same location in the same day and hour. It is given as:
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CoL =
∑n(x)

i=1

∑n(y)
j=1 θ(�T − |Ti(x) − Tj(y)|)1(Li(x) = Lj(y))
∑n(x)

i=1

∑n(y)
j=1 θ(�T − |Ti(x) − Tj(y)|)

(11.5)

where θ(x) is the Heaviside step function and �T = 1 h. The numerator counts
the number of times two users visit the same location at the same time, normalized
by how frequently they are active at the same time.

6. Weighted Co-location rate. This is the tf-idf version of CoL where the normaliza-
tion factor is the log of the number of users at each location in the same hour.

7. Extra-role Co-location rate. Thismetric is definedbyCoL taken over only evening
andweekend hours. Co-location during these timesmay be an important predictor
of an offline relationship.

11.3.2.1 Model Application

Wang et al. applied these mobility correlation metrics to a dataset consisting of
over 6 million users and 90 million calls [48]. Their analysis focuses on the 50,000
most active individuals in the dataset. They find that the geographical distances
between pairs exhibit a heavy-tailed distribution, which is consistent with a number
of previous findings [28, 31, 33]. The CoL and SCoL measures of co-location rates
reveal how many pairs can be found to be visiting the same locations, but for short
periods of time. Furthermore, the geographical distance between two users decays
only logarithmically with the Col and Cos measures of proximity.

Since mobility and information diffusion are intimately related to each other, the
authors utilize thesemetrics to predict whether new information diffusions will occur
in the future. They train a C4.5 decision tree to classify whether a potential connec-
tion in the calling network that does not exist during time period t will emerge at
time period t + 1. The tree is trained with network structure and mobility correlation
metrics and yields a precision of 73.5% and recall of 66.1%. Compared to clas-
sifiers that only consider network structure metrics, this precision and recall is an
order of magnitude higher. This confirms that humanmobility patterns are intimately
associated with the future diffusion of information across new connections.

11.3.3 Modeling Pass-Along Dynamics: Causality Trees

An intriguing type of information people share between both their peers and close
contacts are breaking news stories or rumors.We define such information to be short-
lived, as people become disinterested in news and rumors the longer it has been since
it broke out on the network. To model the dissemination of such information, we
consider pass-along spreading processes [39]. A pass-along spreading process is
defined as onewhere a user can only pass information to some subset of their contacts,
and only within a short a period of time τ since she received the information. This
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Fig. 11.3 Example of a
pass-along dynamic modeled
by a causality tree where
d = 3 and s = 9. The root
user of the tree passes
information along to ko = 2
out of his k′

o = 7 contacts.
Users with the same color
exist at the same depth of the
tree

pass-along process repeats for every user that has received this information, until no
new users have become informed. Figure11.3 illustrates how a pass-along process
is modeled as a diffusion tree whose depth d corresponds to the maximum distance
from the initiator to an informed user, size s is the number of users who become
informed, and whose paths represent a sequence of consecutive communications
whose time between calls are always less than or equal to τ.

A causality tree can be used to model the probability a user k will be contacted
by ki other users and subsequently pass along information to ko users within a given
τ. Such an event corresponds to a user in a causality tree that has in-degree ki and
out-degree ko given τ. These probabilities can be used to identify the extent to which
a user in the network chooses to participate in the pass-along process. For example,
a user who is entirely disinterested in spreading information would be represented
in the model as a user in the tree with large in-degree and low out-degree. Users
excited to pass information widely corresponds to those having large out-degrees in
the cascade tree. Let k′

i and k′
o be the in- and out-degree of node k across a network of

contacts (e.g., the number of others who have k as a contact and number of contacts k
has, respectively). Since k receives and sends information from and to only a subset
of all contacts during a pass-along along process, the probability k has in-degree ki

and out-degree ko in a causality tree is given by:

p(ki, ko; τ) =
∞∑

k′
i=ki;k′

o=ko

p∞(k′
i, k′

o) (11.6)

×
(

k′
i

ki

)
Ti(k

′
i, τ)

k(1 − Ti(k
′
i, τ))

k′
i−ki

×
(

k′
o

ko

)
To(k

′
o, τ)

k(1 − To(k
′
o, τ))

k′
o−ko
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where p∞(i, o) is the probability of finding a node with in-degree i and out-degree
o in the contact network and To(k′

i, τ) (Ti(k′
i, τ)) is the probability that a user will

send (receive) information to (from) k′
i (k

′
o) users within τ time. We can simplify

Eq.11.6 by assuming that the number of users k chooses to send information to
is independent of the number of sources k received the information from, so that
Ti(k′

i, τ) = To(k′
o, τ) = T(k, τ). If we assume that the frequency with which calls

are made over a communication link follow a Poisson process [47], we can model
the probability that k will send short-lived information to a contact within τ time
as 1 − exp(− ρ τ), where ρ is defined as the sending rate of k. Thus, we can define
T(k, τ) as:

T(k, τ) =
∫

dρ p(ρ)(1 − exp(− ρτ)) (11.7)

where p(ρ) is the probability density of user sending rates across the network.
While p(ki, ko; τ) represents the dynamics of individuals in a pass-along process,

statistics about the causality tree itself sheds light into the overall reach and partic-
ipation of users sharing short-lived information. The recursive nature of a cascade
tree can be exploited for this purpose. For example, to compute the probability of
observing a tree with size s p(s; τ), we begin by defining the probability of find-
ing a tree of size s = 1 by p(s = 1; τ) = p(ko = 0; τ), i.e., the probability of a
tree whose root node has out-degree zero. p(s = 2; τ) can then be defined as the
probability that a root node has out-degree 1 and its child node also has out-degree
1. We can continue to extend this definition recursively to define all p(s′; τ) for
s′ < s. This recursive relationship may be expressed by the generating function
G(z, τ) = E(zs) = ∑

s=1 p(s; τ)zs, which obeys the self-consistency equation:

G(z; τ) = zg(1, G(z; τ); τ) (11.8)

where g(1, y; τ) is the generating function for the probability a user in a cascade tree
has out-degree ki:

g(1, y; τ) =
∑

ko

p(ko; τ)yko (11.9)

The cascade size distribution can thus be found by taking derivatives of the generating
function:

p(s = n; τ) = 1

n!
∂nG(z; τ)

∂zn
|z=0 (11.10)

A similar recursive formulation can be used to model the probability a tree has
depth d p(d; τ). Let Ed(τ) be the probability a causality has some depth less than or
equal to d. This probability obeys the relation:
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Ed(τ) = g1(Ed−1(τ); τ) = gd(0; τ) (11.11)

where g1(y; τ) = g(1, y τ) and gn(y; τ) = g1(gn−1(y; τ); τ). Then the probability of
a tree having depth d is given as:

p(d; τ) = Ed(τ) − Ed−1(τ) = gd(0; τ) − gd−1(0; τ) (11.12)

11.3.3.1 Model Application

Peruani et al. proposed the propagation model based on causality tree presented
above [39]. They applied it to a mobile phone dataset from a European telecom
with 1,044,397 users that made 13,983,433 calls between them. They derive the
parameters of the model from the dataset, and identify a very close fit between the
modeled cascade size and probability distributions with the observations they make
in the original dataset.

The model’s application draws a number of findings about the nature of pass-
along dynamics in a mobile phone network. Specifically, they find the existence of
super-spreaders and receivers, who are giant hubs that absorb or widely dissemi-
nate information along the network. They also discover that pass-along dynamics
are extremely sensitive to the correlation of users’ in- and out-degree distributions.
Furthermore, at large time-scales (τ), the spreading dynamics actually become dom-
inated by correlations in the topological structure of users in the network, not the
pass-along process. In other words, pass-along processes only capture the dynamics
of information exchange at a very local level (e.g. to degree 1 or 2-neighbors).

11.3.4 Diffusion Maximization: Community Based Greedy
Algorithm

A third-party wishing to influence as many people as possible may wish to find
k seed nodes who can maximize the spread of their influential information across
the network. These seed nodes represent influential users, defined as those who
share information with the intention of changing another’s personal opinions or
beliefs. If an influencer is successful, newly influenced people subsequently pass their
information off through their set of connections, and so forth. Influence propagation
thus exhibits the same pass-along dynamics modeled by causality trees, but without
a time constraint. In other words, an influencer may try to sway another at any time,
regardless of the time passed since they themselves became influenced. The extent
to which influence propagates through a network thus depends only on the position
and number of influencers that begin the diffusion process.
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Although finding the k users to initially influence such that the maximum
number of others on the network become influenced is an NP-hard problem, greedy
algorithms are capable of finding an approximate solution to within a factor of
(1 − 1/e − ε) [8, 21, 32], the algorithms are too inefficient to process very large
mobile phone networks. Instead, community-based greedy algorithms that identify
the top-k most influential nodes in a mobile phone network have been proposed as
a way to efficiently solve this problem [49]. We first define the diffusion speed of
information from user vi to vj in the network as:

λij = 2λ̄
wij

wmax + wmin
(11.13)

where λ̄ is the empirically measured average calling rate of users in a network
and wij is the weight of the directed connection from i to j. These weights should
correspond to a quality of the connection such that the higher its value, the faster the
rate of information diffusion. For example, the number of calls or SMS messages
sent between the users could correspond to a connection weight. The algorithm then
considers the following diffusion process:

1. Select a set of active seed nodes S0 active at an initial time t = 0.
2. Increment the time clock to t = t+1. Choose a node vi from the set St−1. For every

directed neighbor vj of vi, try to influence her with probability λij. If successful,
add vj to the set St .

3. Update St = St ∪ (St−1 \ vi).
4. Repeat steps 2 and 3 until the set of active nodes St = ∅.
5. The set of all nodes influenced by the seed set S0 is given as VS = ⋃t−1

i=0 Si. Define
the degree of influence of S0 to be R(S0) = VS/N where N is the number of users
in the mobile phone network.

Under this process, we can efficiently find a set of seed nodes S such that |S| = k
if we assume that the mobile phone network can be divided into many communities
of users. A community is a set of users who frequently communicate with each other
and are more likely to be swayed by information originating within it. If information
originating from one community will have almost no influence over the members
of another, a good approximation for finding the top influencers of the network is
to find users within individual communities that maximize the spread of influence
within them. The algorithm for finding these communities are given in [49].

Let Ik be the set of the k seed users that leaves the strongest amount of influence
on the network. To find Ik , assume that we already have constructed the set Ik−1 thus
far. We define by how much the degree of influence across the network will increase
by adding the most influential member within community Cm to the set Ik as:

�Rm = max{Rm(Ik−1 ∪ vj) − Rm(Ik−1)|vj ∈ Cm} (11.14)
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Thus, we can choose the kth influential user to add to Ik−1 by choosing the most
influential member in the community that has the largest �Rm value. �Rm can
be found using any previously proposed less efficient algorithm to find the most
influential user within a small network [8]. This less efficient algorithm is expected
to perform in a reasonable amount of time since it only runs across a community of
the entire calling network.

We can use dynamic programming to efficiently choose the community from
which an influential user is added Ik . Let R[m, k] be the influence degree yielded if
the kth most influential user is selected from one of the first m communities. Then,

R[m, k] = max(R[m − 1, k], R[m, k − 1] + �Rm) (11.15)

where R[m, 0] = 0 and R[0, k] = 0. In other words, if a user from the first m − 1
communities yields a smaller influence degree than choosing the most influential
user from community m, choose it from Cm. Otherwise, choose it from one of the
m − 1 former communities. The choice of these former communities is represented
by s[m, k]. It is given by:

s[m, k] =
{

s[m − 1, k], R[m − 1, k] ≥ R[M, k − 1] + �Rm

m, R[m − 1, k] < R[m, k − 1] + �Rm
(11.16)

with s[0, k] = 0.

11.3.4.1 Model Application

Wang et al. presented and applied this community-based greedy algorithm to a net-
work of SMS messages between 723,201 users collected by a major telecom com-
pany [49]. Under many choices ofK and λ̄, the community-basedmethodwas able to
find a set of users that yields the largest spread of influence in the network compared
to many previously proposed algorithms. It has modest run-times (on the order of
thousands of seconds) under the entire range of parameter settings used for experi-
mental analysis under a simple hardware configuration (2.0 GHz Xeon 8 Core CPU;
8GB Memory; Debian 4.0 Operating System). Experimental analysis finds that the
improvement in influence degree rises exponentially fast with λ̄ (the average rate of
diffusion). Influence degree increases just logarithmically with K , with very small
gains for K > 15. The study also finds that approximately M = 25 communi-
ties offers the best tradeoff between minimizing computation time and maximizing
influence degree. In summary, the method demonstrates how a small number of
influencers (∼15) are sufficient to widely disseminate influence across society-wide
communication networks. Furthermore, numerous latent communities exist within a
mobile phone network, where members are likely to influence each other.
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11.4 Malware Propagation

Security and network researchers envision mobile phones as being the next frontier
for malware [9, 10, 15] due to the many vulnerabilities present in mobile platforms
[20], the un-savvy users operating mobile devices, and the private and valuable
information they store on them. A 2011 Mobile Threats Report by Juniper Net-
works Mobile Threat Center found a 155% increase in mobile malware over the past
year [45]; by the end of the same year McAfee Labs had collected over 75 million
samples of mobile malware. Malware is capable of changing mobile phone con-
figurations, spamming SMS messages, dialing pay-to-call numbers, and collecting
private information stored on the device.

Understanding the development of malware on a mobile phone network, and
devising techniques to combat this threat, require novel propagation models. This is
because these always-on devices may be susceptible to infection through local NFC
or bluetooth transmissions , by connecting to a compromised public access point, or
through a compromised link shared across a contact network via SMS [38]. These
infections may thus quickly propagate through a mobile network as it infects and
transmits from device to device. In many ways, this is analogous to the spread of an
infectious disease through a population of people who congregate in public places.
Thus, many researchers have proposed different variations of common epidemio-
logical models (e.g. SI [3], SIR [23], SIS [24]) to better understand the spreading
dynamics of mobile phonemalware, and to propose methods that thwart their spread.
This section details some of these recent models and methods, and discusses their
application to mobile phone networks.

11.4.1 Infection Dynamics with Recoverable Devices: SIR
Epidemiological Model

Rhodes et al. introduced an extended SIR epidemiological model for modeling
the spread of malware opportunistically shared between bluetooth enabled smart-
phones [42]. The model considers not just the rate at which devices become sus-
ceptible (S), infected (I), or recovered (R), but also the rate at which devices come
into contact with each other and the devices’ transmission profiles. We first assume
that mobile devices are spatially distributed over a fixed region with density ρ. Each
individual device moves independently of all others with constant velocity v. If any
device moves within the transmission radius R of another device in the area, the
devices make contact and there is an opportunity for malware to spread. Thus, a new
individual device that moves with its own velocity vi will be exposed to contact by
device i during a time period dt if it lies within a rectangular-shaped area that is cov-
ered by the movement of i and lies in the direction of the vector w = vi −v. The total

area covered by i during dt is given by dA = 2Rwdt wherew =
√

v2i + v2 − 2vi cosφ

is the relative speed of the device and φ is the angle between velocity vectors. Thus,
the number of devices in transmission range of i is given by:
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γ =
2π∫

0

dNφ

dt
= ρ R

π

2π∫

0

wd φ (11.17)

This reduces to:

γ = 4 ρ R

π
(vi + v)

π /2∫

0

(
1 − 4vvi

(v + vi)2
sin2 ω

)1/2

dω (11.18)

If we make the simplifying assumption that the new device i moves with the same
velocity as all other devices (so that vi = v), we can write Eq.11.18 as an elliptic
integral and use its standard form to find:

γ = 8
π

ρ vR (11.19)

If a single device transmits malware to another within its range with probability p,
the infection rate of devices in the system is β = p γ.

The model also considers a radial decay function to compute the probability a
susceptible device becomes infected. The choice of a radial decay function is based
on the fact that the longer a device spends in the transmission range of an infected
user, the higher its chance of becoming infected, and the closer one device is to
another, the longer it will take for them to be out of transmission range. Thus, we
compute the probability a device at position r gets transmittedmalware by computing
the path length between r and contact with an infected node given by 2(R2 − r2)1/2,
multiply it by the probability of infection upon falling in transmission range p, and
normalize by the total transmission range:

p(r) = p

R
(R2 − r2)1/2 (11.20)

Integrating over all positions r and substituting p and R for p(r) in the formulation
of β, we get:

β = 8
π

ρ v

R∫

0

p(r)dr (11.21)

which solves to:

β = 2R ρ vp (11.22)
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Using this new infection rate, we apply the SIR model to specify a malware outbreak
by the differential equations:

dS
dt

= − β
SI
N

(11.23)

dI
dt

= β
SI
N

− δ I (11.24)

dR
dt

= δ I (11.25)

where I is the number of devices infected, S is the number of susceptible devices,
and N is the total number of devices on the network.

11.4.1.1 Model Application

The authors compared the output of the SIR-based model to a simulation of an
outbreak of malware in a setting with a device density of 3000 devices/km2, mean
velocity of 2km/day, transmission probability p = 0.1, transmission range of 5–40m
per device, andwith a recovery rate of 1 device per 5days. They find that the epidemic
dynamics are mostly caused by the aggregation of many dyadic interactions, rather
than spreading the malware to multiple devices at once due to the the small transmis-
sion range of the devices. However, as transmission radius increases, the SIS-model
comes to a much stronger agreement with the simulation results. They conclude that
the dynamics of malware propagation are greatly affected by the characteristics of
the devices and of the environment they operate under. When malware that devices
can recover from are transmitted over far-reaching channels, the SIS-model captures
its infection dynamics very well.

11.4.2 Infection Dynamics Without Immunization: SIS
Epidemiological Model

Mickens et al. developed an extension of the Kephart-White (KW) epidemiolog-
ical model [22] that also considers the mobility of devices within a constrained
area [35]. This is an SIS (Susceptible–Infected–Susceptible) epidemiological model
where devices may cycle between susceptible and infected. In other words, a device
can never be completely immune and may become infected again once cured.

The traditional KWmodel assumes a homogeneous network topology inwhich all
devices have a similar number of neighbors k̄. If I is the fraction of devices infected at
a particular moment in time, the KWmodel describes the propagation of an infection
as the differential equation:

dI

dt
= β k̄I(1 − I) − δI (11.26)
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where t is the current time, β is the propagation rate of malware from one device to
another, and δ is the rate at which any infected device is cured. Holding these rates
and k̄ constant, this equation has a steady state solution of:

I = 1 − δ

β k̄
(11.27)

Thus, we require

β k̄ > δ (11.28)

for an infection to persist in the network. These parameters can be mapped to model
the spread of mobile device malware by letting k̄ be the average number of devices
within communication range of any other device, β be the probability a malware
infected device transmits it to a health neighbor during a time period �t, and δ be
the probability an infected device cures itself during time �t. However, extensive
analysis by the authors confirm that the KW model does not accurately model the
dynamics of malware that spreads by NFC or bluetooth transmissions in a local
mobile phone network. This is because the homogeneity assumption held by the
KW model is broken by the fact that mobile devices move around a region and have
a limited transmission radius. The number of neighbors a device has at any given
time is thus constantly in flux and should not be represented by a constant value k̄.
Furthermore, the KW model does not incorporate parameters for the velocity of
mobile devices within an area, which they find to be a major factor in how quickly
malware spreads in their simulations.

To extend the KW model, the authors consider the spatiotemporal dynamics of
devices within a large rectangular area using a random waypoint mobility model.
In this mobility model, devices randomly select a destination point, travel there,
pause for a constant time tp, and then choose another random destination point. The
waypoints are independently chosen prior to departing. The speed at which devices
move between waypoints is given as a random velocity chosen uniformly within
some pre-specified range. Under this mobility model, the spatial density function of
devices over a square region is given as:

S(x, y) = pp

a2
+ (1 − pp)

36

a6
(x2 − a2

4
)(y2 − a2

4
) (11.29)

where a is the length of a side of the square region and pp = tp/E[T ] where E[T ] is
the average time a node takes tomove from onewaypoint to another. Thus, if a device
is at position (xi, yi), we can derive the probability that it is within communication
range of another device by the integral:

c(xi, yi) =
∫ yi+r

yi−r

∫ xi+
√

r2−(y−yi)
2

xi−
√

r2−(y−yi)
2

S(x, y)dxdy (11.30)
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where r is the radius of communication for all devices.We use c to find the probability
a device at (xi, yi) has ki devices within communication range by:

Pr(x, y, k = ki) =
(

N − 1

k

)
c(x, y)k(1 − c(x, y))N−k−1 (11.31)

The expected probability two devices will be within communication range of each
other is thus:

c̄ =
∫ a/2
−a/2

∫ a/2
−a/2 c(x, y)dxdy

a2
(11.32)

and the probability any device will have ki devices in communication range across
the entire region is:

Pr(k = ki) =
∫ a/2
−a/2

∫ a/2
−a/2 Pr(x, y, k = ki)dxdy

a2
(11.33)

To consider mobility under the KW model, the connectivity fluctuations induced
by mobility need to be incorporated. We can do so by considering the average travel
time of a device from one waypoint to another E[T ] as a queue or pipe that takes
E[T ] time to traverse. If the probability a device at any location has ki neighbors is
Pr(k = ki), the amount of time it spends with ki neighbors while moving from one
location to another is given by E[T ] × Pr(k = ki). For example, E[T ] × Pr(k = k0)
is the amount of time a device has no neighbors while it travels from one destination
to another, and hence can be subjected to malware cures. Otherwise, for E[T ] × Pr
(k = (ki > 0)) time units, the device is subject to an infection pressure proportional
to β ki and a cure pressure proportional to δ. The extended KW model thus requires

N−1∑

ki=0

β kiPr(k = ki)E[T ] > c δ E[T ] (11.34)

for a malware outbreak in the network to exist, where c is a constant account for
global factors affecting connectivity. Since Eq.11.33 tells us the percentage of time
a device has ki other neighbors, the total number of devices with ki neighbors across
the local area is given by N × Pr(k = ki) where N is the number of devices in the
local network.

To help compute the steady-state infection level of the mobile network, let us
assume that the stretches of time a node has ki neighbors are large relative to the unit
of time used to measure infection rates �t. Consider a collection of N queues {Qki},
each of which initially has N × Pr(k = ki) devices in it. When a device enters Qki ,
it spends E[T ] × Pr(k = ki) time in it before exiting. Each queue can be thought of
as a separate KW process described by the rates of infection β and curing δ, where
all devices in the queue have the same k̄ = ki neighbors. Treating all devices in the
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Fig. 11.4 Queueing network for finding steady-state infection levels. Each queue is loaded with
devices that have the same number of neighbors, so queue i starts with N × Pr(k = ki) devices.
A random proportion of devices in queues (shown in black) are infected. At every time-step, we
infect and cure devices according to a KW process that runs separately within each queue. After
E[T ] × Pr(k = ki) time-steps, a device in queue i departs and is divided into 1/N units. These
small units are then distributed across all of the queues

same queue under the same KW process is intuitive because they all have the same
number of ki neighbors, which is a core assumption of the KW model.

We can utilize a network of these queues, illustrated in Fig. 11.4, to find the steady-
state infection levels. We initially place N × Pr(k = ki) in each queue and assign a
randomproportion Iinit ∈ [0, 1] of its devices to be infectedwithmalware. Themodel
then iteratively updates itself in increments of �t. At each update, it first simulates
a propagation of the malware in each queue Qki using the KW equation:

dIQki

dt
= β kiIQKi

(1 − IQKi
) − δ IQKi

(11.35)

Every �t time units, the model checks if the exit time of any device has exceeded
the current time, and if so, it removes the device from its queue, divides it into N
equally sized pieces, and enqueue’s one of these pieces into the rest of the queues.
Finally, every queue updates its infected percentage IQki

to reflect its newly enlarged
population and infection percentages. At any moment during this process, the total
number of infected devices in the network is given by:

N−1∑

ki=0

IQki
× |Qki | (11.36)

where |Qki | is the number of devices in a queue. The steady state number of infected
devices can be found by continuing to iterate the model until these values converge.
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11.4.2.1 Model Application

Mickens et al. simulated a mobile device network where devices have a 100m com-
munication radius and move within a square region with 1000m sides. Using various
device velocities and number of devices in the network, they compare the predicted
proportion of infections given under the KW model and their extended queueing
based model against the simulation results. They find that the steady-state infections
projected by the KW model was different from the simulation by 12.5%, while the
queueing model was only off by 4.0%. Their analysis also discovers that epidemics
are unstable under many parameter settings. For example, in five simulation runs
lasting 200,000 s, one epidemic died out almost immediately, another lasted the
entire time, and the others lasted between one- and three-fourths of the total simula-
tion time. Thus, while the extended KWmodel accurately predicts average levels of
infection, it hides the instability of the malware propagation process.

Finally, the authors apply their model to a scenario where the spatial distribution
of devices across the region is strongly skewed, that is, where devices tend to favor
specific areas within the region. This scenario may better reflect real-life mobility
patterns, as users tend to congregate around popular landmarks within a region. The
waypoint mobility model was modified so that nodes have a higher probability to
travel to one of three ‘hot-spots’ in the square region. For different values of N , the
queueing model outperforms the KW model in predicting the steady-state infection
levels under the modified mobility model, but the relative improvement is not as
large. The authors hypothesize that their queueing based model, which only captures
the number of neighbors a device has at any time, does not necessarily capture the
spatial distribution of devices within a geographic region.

11.4.3 Maximizing Malware Damage: SIDR Epidemiological
Model

Khouzani et al. propose the analysis of an SIDR epidemiological model to estimate
the maximum amount of damage malware can impart on a local mobile wireless
network [25]. They define damage as a cumulative function that increases with the
number of devices that may be infected or dead. Their model allows this damage
function to be generally defined, and assumes that the malware wishes to maximize
damage subject to specific constraints on the energy consumption of its host devices.

Under an SIDR model, devices may fall under one of four states: susceptible (S),
where an unprotected device is not yet infected; infective (I), where a device has
been loaded with malware, and may propagate it to others, but the malware has not
yet attacked the device; dead (D), where the malware successfully compromised the
device; and recovered (R), where an updated device is immune from the infection.
We letnα(t)be the number of devices in stateα ∈ {S, I, D, R} such that∑α nα(t) = N
is the number of devices in the model, and the proportion of all devices in each state
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as S(t), I(t), D(t), and R(t) respectively so that S(t) + I(t) + D(t) + R(t) = 1. We
assume that an outbreak begins at time t = 0 with the infection of I(0) = I0 devices.
The initial conditions of the system are R(0) = D(0) = 0 and S(0) = 1 − I(0).

Infections occur as devices within a region A move with velocity v. Infective
devices transmit malware once they fall within a given transmission range. The
probability of an infection is based on two factors: the density of devices within
A, given as ν1 = |N |/|A|, and the rate at which a given pair of devices contact
each other, given as ν2 = 1/A [18]. If u(t) is the product of an infected device’s
transmission range and rate at which it scans for devices to transmit to, the process
of malware transmissions from an infected to susceptible device can be modeled
by an exponential random process whose rate at time t is β̂u(t) where β̂ = ν1ν2.
Infected devices will be killed after an exponentially distributed random amount of
time with rate v(t). An infected or susceptible device may also recover after infection
by healing or immunizing itself with rates given by B(I(t)) andQ(S(t)), respectively.
The rate functions B and Q can be defined in any way the modeler would like, as long
as they meet the following criteria: (i) limx→0 B(x) < ∞ and limx→0 Q(x) < ∞;
(ii) for 0 < x < 1,B andQ are positive and differentiable; and (iii) xB(x) is a concave
non-decreasing function of x and xq(x) is also a non-decreasing function of x.

Under these infection and recovery dynamics, we can model the rates at which
devices transition between states using the continuous timeMarkov chain in Fig. 11.5.
We represent the state vector of this chain as V = (nS(t), nI (t), nD(t)), dropping
nR(t) since nS(t)+ nI (t)+ nD(t) = 1− nR(t). Let β = limN→∞ N β̂, q(S) = Q(S)S,
and b(I) = B(I)I . According to [30], S(t), I(t), andD(t)will converge to the solution
of the following differential equations as N grows:

dS(t)

dt
= − β u(t)I(t)S(t) − q(S(t)) S(0) = 1 − I0 (11.37)

dI(t)

dt
= β uI(t)S(t) − b(I(t)) − v(t)I(t) I(0) = I0 (11.38)

dD(t)

dt
= v(t)I(t) D(0) = 0 (11.39)

These equations satisfy 0 ≤ S(t), I(t), D(t) and S(t) + I(t) + D(t) ≤ 1 for all t.
We now consider an attacker who wants to infect a local area in such a way that

the amount of damage caused by the malware infection during a window of time
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[0, T ] is maximized. Since damage corresponds to both the infection and killing of
devices in the network, the damage function can take the following general form:

J = κD(T) +
T∫

0

f (I(t))dt (11.40)

κ is a positive ‘reward’ per device killed and f is an increasing convex function where
f (0) = 0. An attacker will try to maximize J by regulating two parameters of the
malware: the rate at which it will kill devices v(t) and the product of the malware’s
transmission range and scanning rates u(t). The choice of parameters for these values
are subject to:

0 ≤ v(t) ≤ vmax (11.41)

0 ≤ umin ≤ u(t) ≤ umax (11.42)
T∫

0

h(u(t))dt ≤ C (11.43)

The upper bound on v(t) represents an inherit maximum speed at which a device can
be killed by an infection. The bounds on u(t) represent maximum transmission rates
caused by the physical properties of an environment. The integral constraint over
h(u(t)) ensures that the malware infection does not fully deplete an infected device’s
power, which it relies on to spread the infection and to eventually kill the device. It
is assumed that h is a non-decreasing and non-negative function. Once the malware
chooses v and u, the Markov chain’s state vector V will be specified at all times
t, allowing us to solve the system of differential equations and hence compute the
damage J of the attack. We can then find optimal functions that control the killing,
transmission, and scanning rates v(t) and u(t) to maximize J .

11.4.3.1 Model Application

Khouzani et al. studied the proposed SIDR model and damage function under var-
ious parameter settings to gain insights about the malware infection and recovery
processes [25]. From the optimal forms of v(t) and u(t), they discover how malware
should start with a small killing rate that gradually increases over time. This way,
infected devices are given an opportunity to infect others before being killed off.
When the time window is almost over, however, devices should adopt a high killing
rate to take as many down as possible. Furthermore, the malware should not decrease
an infected devices transmission and scanning rates until approximately one third
of the time window has elapsed. If the network can increase the recovery B(t) and
immunization rates (Q(t) and B(t)) of devices, the malware must extend the period
during which its transmission and scanning rates are highest (u(t) = umax).
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The authors also find a relationship between recovery rates and the total damage
imposed by malware. Interestingly, they find that the amount by which damage is
reduced decreases exponentially with the rate of recovery. However, with larger
recover rates comes larger bandwidth and power costs for the devices.

11.5 Novel Applications

Mobile service providers collect a wealth of information about their customers and
their calling behaviors.Hiddenwithin these records are patterns thatmay be exploited
to help the provider offer better service to their customers, or to make discoveries that
may eventually lead to financial gains. For example, a simple analysis may reveal
calling towers that are used very frequently, yet are associated with dropped calls
and degraded service. Such towers should be given a higher priority for maintenance,
before customers within its range decide to change providers as a result of poor
service. As another example, users who receive an extraordinarily large number of
calls may be targeted for a deeper investigation, to see if the number is being used
as a calling center or for some other inappropriate purpose.

Beyond looking for outliers or correlations in a dataset, advanced data analytics are
alsoutilized tofindmore sophisticatedpatterns to answermore challengingquestions.
In this section, we present novel propagation models used in such advanced analytics
that predicts the likelihood that a customer will soon churn, or move to a different
service provider and identifies fraudulent activity in a calling network. Churning is
a significant problem for service providers because, in today’s society where nearly
everyone has a mobile phone, it has become very expensive to attract customers who
do not yet have a phone to join their service. Furthermore, today’s users are more
informed about the kind of devices, the quality of the service, and the perks offered by
the providers. Such providers must thus devote a significant amount of effort towards
customer retention, rather than acquisition. Fraudulent activity in a calling network
relates to voice-related security threats where users may reveal sensitive or private
information through social engineering techniques and by calling international phone
numbers. These calls carry a financial cost to both the subscribers and the service
provider.

11.5.1 Churn Prediction: Sender-Centric Energy Propagation

The decision to drop a service provider is based not only on a user’s own satisfaction
with the service, butmay also be the result of social pressures from friends, family, and
other close contacts who have already decided to churn. Researchers have thus turned
to energy propagation models across the calling network of a mobile phone provider,
where energy refers to information that may persuade another user to churn. In this
model, users marked to have churned during a month is seeded with an amount of
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energy E. These churners divide this energy into smaller portions and disseminates
it across all of their connections. Users who receives portions of this energy then
replicates it, divides it into even smaller portions, and spreads the energy across its
contacts. This process of accumulating, dividing, and spreading energy repeats until
the fraction of energy received at any user drops below some threshold t. Figure11.6
illustrates this spreading process. The churner (black node) distributes E/c energy to
its three contacts, where c is some positive constant. These three contacts store this
energy and then replicate a fraction E/c2 of it to be sent to each of its own contacts.
The total energy accumulated by a user may thus represent the likelihood that she
will soon churn from the service provider.

Rather than having every user propagate a constant fraction 1/c of its energy
to others, we define a transfer function F(c) that returns what proportion of stored
energy is transferred to each of a user’s contacts. This transfer function is defined
by the sender of the influence, putting them in control of how much energy each
recipient will be exposed to. Because the receivers have no choice but to accept
the energy it receives and pass it along, we refer to this energy propagation model
as being sender-centric. Sender-centric propagation models may differ in the way
senders choose what contacts to receive, and by how F(c) is defined.

Dasgupta et al. proposed the following sender-centric energy propagation model
for churn prediction [11]. Consider a diffusion process where at each time step t there
is a set of active usersX whosemembers x ∈ X have energyE(x, t). At time step t+1,
every active user in X transfers a fraction of its energy to all of their neighbors y. The
fraction of energy sent is a function of two parameters: the spreading factor d and
transfer function F. d is a constant that lets the modeler decide by how far the energy
propagation should spread. Low values d keep the process very local, while high
values of d lets energy spread far away from the churner. F should be designed in a
way that reflects the relative ‘strength’ a connection to one contact is over another, so
that more energy is transferred over stronger connections. For example, information
shared by a good friend who one has strong connections to will be given higher
consideration. If Wxy is the strength of a connection from x to y, F may be defined as:
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F = W (x, y)∑
{(x,s)|s∈N(x)} W (x, s)

(11.44)

The set of active users at time t + 1 is then given by the set of nodes who received
energy. The energy propagation process terminates at time t∗ if no new nodes are
exposed at time t∗ or if the amount of energy any node is exposed to falls below a
threshold value ET .

11.5.1.1 Model Application

Dasgupta et al. use the above sender-centric model to predict churners in a mobile
call graph [11]. They define connection strength as Wxy = 2/(1 + e−cxy) − 1 where
cxy is the total number of calls placed from user x to y. They then select a threshold
energy value Tc, where any user on the network that collects more than Tc energy is
predict to become a churner. They investigate the fraction of all churners correctly
caught as Tc decreases to include a larger fraction of users on the network. They find
that the set of users having the 10% largest amounts of energy contain approximately
45% of all churners in a givenmonth. From the perspective of amobile phone service
provider this is a strong result. For example, the provider can invest in a marketing
campaign that targets just 10% of its subscribers with discounts, in an attempt to
prevent almost half of all potential churners from switching service providers. By
comparison, the 10% most probable churners labeled by a decision-tree classifier
that uses features about the frequency a user utilizes her mobile phone service and
her connectivity contains only approximately 40% of all churners.

11.5.2 Churn Prediction: Receiver-Centric Energy
Propagation

In a sender-centric energy propagation model, the transfer function F(c) is defined as
a function of some features about the sender of information. However, one may hold
the philosophic belief that it is the receiver of information, rather than the sender,
who ultimately decides the degree to which she becomes influenced. This idea gives
rise to an alternative class of energy propagation models that are receiver-centric.
The rules that govern a receiver-centric propagation process may be summarized as
follows [40]:

1. A user who receives energy by a neighbor will decide what proportion should be
retained. This retention should be proportional to the strength of the relationship
between the receiver and the sender.

2. A user only retains energy originating from a churner once.
3. However, users retain energy many times if the energies originate from different

sources.
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4. When a user receives some amount of influence by a neighbor, she chooses the
proportion to be retained. She subsequently replicates and transmits this propor-
tion to every one of her neighbors.

The first rule ensures that the total influence retained by a receiver will be grounded
in the relationship held between the receiver and sender. The second rule captures the
idea that, if a user is exposed to energy from the same source but at different iterations
of the propagation, she will only retain energy from the first exposure. Intuitively,
multiple exposures of energy originating from the same source would contain same
information, which the receiver already considered during her first exposure. The
information or influence contained in energy sent from distinct sources, however, is
unique. Hence, in the third rule, a receiver is allowed to retain energy multiple times
if the source of the energy is distinct. Finally, the receiver will transmit a copy of all
energy she retains to all of her contacts. Her contacts will then independently decide
how much energy they should retain.

Phadke et al. introduce a receiver-centricmodel for predicting churners in amobile
phone network [40]. They define a strength for the relationship between users X and
Y using a vector of calling attributes (x1, . . . , xn). Each attribute xi is normalized

by dividing it by |xi|, where |xi| =
√∑d

k=1 x2ik so that they are of unit length. For a
relationship k, let k = α1 x1+α2 x2+· · ·+αn xn be theweighted sumof its normalized
attributes. The strength of the relationship between X and Y can be defined by any
monotonically increasing function of k; the authors use WXY (k) = 1 − e−k/ε2 . This
exponential function is based on the idea thatwhen a strong relationship is established
between twousers, there is a higher likelihood that the information or influencewithin
the energy passed along that connection will be retained by the receiver. ε is a tunable
parameter that controls the degree to which the strength of a relationship is affected
by the magnitude of it’s attributes.

The model computes the total amount of energy received by a user in an iterative
process. It begins with the passing of E energy from every node that churned in the
previous month to all of its neighbors. Let Ni be the set of neighbors of node i. A
neighbor j of a churner i will choose to retain

Ej = Wij

Wj
Ei (11.45)

whereWj is the sumof the strength of all relationships j is a part of andEi is the energy
contained by churner i. These neighbors will then pass Ej units to its neighbors, and
so forth, until the number of iterations exceeds a threshold value (in their study,
they terminate the process after three iterations). After the process terminates, each
receiver adds together all of the energy it received.
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11.5.2.1 Model Application

Phadke et al. apply the receiver-centric model to a dataset of calls placed between
over half a million users and churners during a two month period. For a single
month of data, the authors compute the strength of each connection using the call
time, number of calls made, and neighborhood overlap as relationship features. They
tuned the weights αi empirically in order to maximize the predictive accuracy of the
propagation model. They then consider a boosted decision tree ensemble classifier
that uses the amount of energy retrained along with features such as whether a
contract has ended, the number of days a user is connected, the number of calls
made to churners, and the charged rate for making phone calls to assign each users
a probability that they will churn in the subsequent month. They find that without
the energy feature, the classifier finds 35% of all future churners among the top
10% most likely users predicted to churn. By adding the energy accumulated, this
percentage rises to approximately 40%. In summary, they find the receiver-centric
energy propagation model to be a viable alternative to a sender-centric model.

11.5.3 Isolating Fraudulent Activity: Markov Clustering
Algorithm

Jiang et al. [19] present a method for identifying fraudulent activity performed over
voice calls in a cellular network by analyzing the structure of a calling network.
Their method is rooted in the following features about fraudulent activity on mobile
phone networks: (i) callers on a phone network seeking to commit fraud tend to
contact a large number of people and will attract more victims to call fraudulent
numbers compared to a typical user of the phone network; and (ii) fraudsters may
utilize many international phone numbers at once to distribute their scheme, which
lets them increase the number of victims that can be reached. This activity may be
represented by observing the same set of domestic users (victims) who all call the
same set of foreign (fraudulent) numbers.

These two features suggest that fraudulent activitymaybe characterized byfinding
community structures containing large numbers of international calls to the same
collection of phone numbers. To find these communities, themethod uses theMarkov
ClusteringAlgorithm (MCL). This algorithmfinds communities by iterating over two
steps: network expansion and inflation. At iteration i, the expansion step takes the
square of the adjacency matrix of the network to simulate the probability of random
walks of length i + 1 that start and terminate at every user in the call graph. In the
inflation step, the elements of the squared adjacency matrix are raised to a power β,
and then the matrix is scaled diagonally so that the resulting adjacency matrix is
Markovian. In essence, the inflation step modifies the probabilities associated with
random walks in a way that favors more probable walks. As the process repeats,
matrix entries corresponding to links in low probability walks will converge to zero,
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so the converged adjacency matrix will only contain connections in high probability
walks. The connected components of this convergedmatrix correspond to community
structures.

To find communities that contain fraudsters, themethod looks for 2-by-2 bi-partite
cliques from domestic to international numbers. These 2-by-2 bi-partite cliques are
the smallest structural unit that corresponds to fraudulent activity, where a set of
victims who do not know each other both call the same two fraudulent numbers. The
method filters out all communities that do not exhibit at least α bi-partite cliques of
any size that have at least γ victims.

11.5.3.1 Model Application

Jiang et al. use the MCL-based method to analyze a dataset of all international voice
calls made within the voice network of a major service provider [19]. They take two
sources of user reports to build a ground truth list of fraudulent calls, referred to as an
international revenue share fraud (IRSF) list: (i) numbers reported by customers to
the provider’s customer care center; and (ii) a list of phone numbers tied to customer
complaints that were posted online in blogs, social media, and forums [1, 50]. They
run theMCLdetection algorithmondifferentmonths of data (Jan–May2011) to study
the expected lag that will occur between when fraudulent activity occurs and when
it will be reported in the IRSF or online list of fraud numbers. They choose α = 5
and γ = 10 after observing that these settings filter out over 98% of the subgraphs
while capturing over 90% of all communities that exhibit fraud. They compare the
numbers in these fraud communities against a list of over 24,000 numbers fraudulent
numbers covered in the IRSF lists. They find that the extracted communities only
contain 11% of the numbers in the list. However, these 11% of numbers attract
phone calls from 85% of all victims, and are the root cause of 78% of all fraudulent
calls in the network. Furthermore, when the authors exclude dormant numbers in the
IRSF list (numbers not yet utilized or advertised by fraudsters), the detection rate
increases from 11 to over 50%.

The authors also evaluate whether the MCL algorithm can be used to identify
fraudsters early, before they are reported or recorded on an IRSF list. For all fraud
numbers contained in the communities extracted, the gap between the month it was
extracted from in the data and the month it was added to the IRSF list is compared.
For more than 80% of the fraud numbers, the detection method precedes the user
reports and in more than 60% of these cases, the fraud numbers are discovered at
least one month sooner than when a report is shared by a user.

11.5.3.2 Summary of Findings

The models presented in this chapter found a number of important characteristics
and newfindings aboutmobile phone communication networks.We summarize these
findings next.
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• Diffusion processes are governed by heavy-tailed distributions. The distribu-
tions of how long information propagates between two users, and the frequency
of these propagations, are characterized by mixtures of Lognormal distributions.

• Physical co-location is strongly correlated with the formation of future con-
nections Users that propagate information between each other are likely to be
co-located for brief periods of time. Whether or not two users exist in the same
location strongly predicts whether they will form new connections in the future.

• Short-lived information over calling networks does not diffuse widely.
The total number of others that receive short-lived information is strongly cor-
related with the in- and out-degree distribution of the users participating in the
diffusion process. Propagations of short-lived information are generally limited to
a very local level and do not spread far and wide across a calling network.

• Epidemiological models are a flexible tool to understand local-level interac-
tions and the spreading of malware. Epidemiological models have been used to
successfully model the dynamics of malware that spreads at local levels. Different
kinds of models can incorporate specific properties of mobile devices, including
the range of their transmissions and energy constraints. SIP-based models become
less accurate if transmissions can only be performed devices are within very close
proximity. SIS-based models may be used in scenarios where devices can never
become immunized. SIDR-based models work under scenarios where devices can
be killed or disabled by malware. To maximize damage, malware should wait
for infections to spread before killing devices. As the recovery rates of devices
increase, the total damage of a malware outbreak drops exponentially.

• Energy propagation models can help identify future churners. Irrespective of
whether a modeler uses a sender-centric or receiver-centric propagation model, we
can identify a large proportion of future churners by the total energy or influence
they accumulate frompast churners. Both sender- and receiver- centric propagation
models offer promising results.

• Finding user communities with bi-partite cliques can identify fraudulent
activity. Bi-partite cliques may correspond to users who send calls to the same
subset of fraudulent phone numbers on the network. 80% of the communities
found through a Markov clustering algorithm containing such bi-partite cliques
include fraudulent numbers not yet been reported by users.

11.6 Future Research Directions

The state-of-the-art propagationmodels presented in this chapter represent significant
advances inmobile phone data analytics. However, many opportunities remainwhere
researchers may build off of, extend, and use the discoveries made by these methods
to propose new kinds of models.We next present a small sampling of these research
opportunities.

1. Marry structure and decisions in the diffusion of information. The propa-
gation models reviewed in this chapter concentrate on either the structure of a
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diffusion process or on how individuals decide what information should be saved.
For example, causality tree models only reason about the probability that certain
subsets of a user’s connections will be transmitted information within a given
time period. Epidemiological models also rely on the structure of the network as
users’ devices form connections by their spatiotemporal dynamics within a local
area. Sender- and receiver-centric energy propagation models, however, simply
assume that information spreads widely across all connections. They then con-
centrate onmodeling the process of deciding to retain information, including who
makes the decision (sender or receiver) and how that decision is made.
More faithful models of information diffusion should simultaneously consider
both structure and decision-making. For example, one should not assume that
churners will decide to submit all of their contacts to peer influence. Further-
more, a receiver of short-term information spreading through a causality tree
may decide to not propagate the news further if she is disinterested in the infor-
mation, if her social relationship with the sender is weak, or if she does not believe
that her set of contacts would be interested in the information.

2. Explore the tradeoffs between sender- and receiver-centric propagation. For
the churn prediction problem, both sender- and receiver-centric models have been
demonstrated to be similarly successful. Yet these two model types are under-
pinned by two very different philosophies: one asserts that the person who sends
information controls howmuch the receiver absorbs, while the other believes that
the receiver of information individually decides how much they will accept. One
kind of model may be more applicable than the other depending on the setting.
For example, marketing studies have demonstrated the persuasive effect that a
strong advertisement [46] or speaker [44] can have on the amount of information
retrained by others. On the other hand, peoples’ experiences and knowledge also
modulate the amount of information they choose to retain [16]. The settings under
which either a sender- or receiver-centric propagation model is more appropriate
remains an open question. Hybrid models that integrate both sender and receiver
effects may be an effective development.

3. Build new epidemiological models that operate on other network levels. Epi-
demiological models have mostly been applied to local level networks. Although
the analogy between the exchange of information among devices that are physi-
cally close and the exchange of diseases between people makes applications at the
local level intuitive, the spread of information and data need not be restricted by
the proximity of devices. For example, there now exist compromised applications
that may submit spam messages and fraudulent links to other contacts in a per-
son’s address book [2]. Epidemiological models that operate at the contact level
may suitably represent the spread of such SMS spam. Furthermore, the spread of
rumors and lies across a calling networkmay be thought of as a systemic spread of
mis-information that convinces or (infects) gullible (susceptible) individuals on
the network. Thus, an epidemiological model operating at the calling level may
characterize the spread of mis-information by accounting for a user’s propensity
for believing and spreading false information.
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4. Recognize the differences between devices. Mobile phone devices are built
with hardware that supports a variety of technological features. For example, as
of 2014, only Android handsets with NFC chips built in are capable of spread-
ing malware to other devices over this medium. Furthermore, devices that either
have SMS messaging disabled or cannot support receiving them will not be able
to receive information that spreads across this medium. It is thus necessary to
consider the heterogeneous mix of devices with varying capabilities within prop-
agation models over mobile phones. Furthermore, differences between devices
are not only associated with hardware configurations, but also by their brand. For
example, recent intriguing results have found Apple iPhone users to have more
connections to others on average, and are more likely to be connected with an
iPhone than an Android user [6]. Thus, at the contact level, there may be a higher
propensity for information to propagate from one device to another.

5. Integrate social features. Ultimately, contact and calling level networks formed
out of mobile phone data are social networks where the ties users have with many
others correspond to offline relationships. Numerous methods in the literature
exist to extract the social qualities of such relationships. For example, analysis of
ego-network structures can identify users exhibiting egocentric or selfish tenden-
cies [12] as well as those who sport different kinds of social roles [17]. Depending
on these roles and tendencies, a user may exhibit different behaviors in a propa-
gation model. For example, egocentric individuals who will speak with everyone
simply to be noticed may send new information to all of their contacts, irrespec-
tive of whether that information is fact or fiction. Or perhaps users that lie on the
periphery of two communities may decide to not let information move from one
to another, out of consideration that the other community may be disinterested.
We should also consider social features as we assign weights corresponding to the
strength, and hence amount of information that propagates, across connections.
For example, we know that exceptionally strong and weak social connections
prevent a network of mobile phone calls from fragmenting into a large number
of disconnected components [13], and are thus critical avenues for information
to diffuse widely across the network.

11.7 Concluding Remarks

This chapter presented a collectionof recently developedpropagationmodels used for
mobile phone data analytics. This collection of models revealed important statistical
qualities of information propagation processes over mobile phone networks, were
used to model unique propagation phenomena, and utilized in a number of novel
applications. Based on the qualities of the models, it identified a number of open
opportunities for researchers to develop ever more sophisticated and realistic models
of propagation phenomenon within mobile phone networks.
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