
Intelligent Systems Reference Library 85

Dariusz Król
Damien Fay
Bogdan Gabryś    Editors

Propagation 
Phenomena 
in Real World 
Networks



Intelligent Systems Reference Library

Volume 85

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, University of Canberra, Canberra, Australia, and
University of South Australia, Adelaide, Australia
e-mail: Lakhmi.Jain@unisa.edu.au



About this Series

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent Sys-
tems. The series covers the theory, applications, and design methods of Intelligent
Systems. Virtually all disciplines such as engineering, computer science, avionics,
business, e-commerce, environment, healthcare, physics and life science are
included.

More information about this series at http://www.springer.com/series/8578

http://www.springer.com/series/8578


Dariusz Król • Damien Fay
Bogdan Gabryś
Editors

Propagation Phenomena
in Real World Networks

123



Editors
Dariusz Król
Department of Information Systems
Wrocław University of Technology
Wrocław
Poland

Damien Fay
School of Design, Engineering
and Computing

Bournemouth University
Fern Barrow Poole
UK

Bogdan Gabryś
Computational Intelligence Research
Group,
Smart Technology Research Centre

Bournemouth University
Poole
UK

ISSN 1868-4394 ISSN 1868-4408 (electronic)
Intelligent Systems Reference Library
ISBN 978-3-319-15915-7 ISBN 978-3-319-15916-4 (eBook)
DOI 10.1007/978-3-319-15916-4

Library of Congress Control Number: 2015934449

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

Propagation phenomena have become a pervasive and significant feature of real
world networks. These interdisciplinary phenomena are influencing science, engi-
neering, finance, business, and ultimately society itself. The development of
propagation techniques plays an important role in maintaining existing networks
and has allowed, for example, synchronization in electrical power grids, prediction
of complex system behavior, resource discovery and monitoring, locating biolog-
ical invasions and assessing damage, virus propagation control and containment,
and decomposition and immunization of social and large-scale infrastructure net-
works. By studying propagation processes, one can better understand information
and knowledge spreading in systems which in turn can lead to some improvements
in performance and robustness.

The purpose of this book is to bring into one volume the different types of
propagation models and techniques including: epidemic models, models for trust
inference, coverage strategies for networks, vehicle flow propagation, bio-inspired
routing algorithms, P2P botnet attacks and defenses, fault propagation in gene-
cellular networks, malware propagation for mobiles, information propagation in
crisis situations, financial contagion in interbank networks, and finally how to
maximize the spread of influence in social networks. This volume provides a unique
compendium of current and emerging problems of propagation and related subjects.
Thus, it is truly a guide designed for interdisciplinary use.

Fourteen chapters provided by established scientists in the area of complex
networks have been carefully selected to reflect the diversity, complexity, and the
depth and breadth of this multidisciplinary area which encompasses closely inter-
twined conceptual and empirical issues in real world networks.

More precisely, we start with the critical issues regarding epidemics and their
outbursts in network structures. Chapter 1 mainly focused on susceptible-infectious-
recovered (SIR) and susceptible-infectious-susceptible (SIS) models as well as the
various modeling techniques for studying cascading failures, where the damage
spreads through the network. Chapter 2 explores an interesting example of infor-
mation propagation provided by the shoaling and schooling behaviors of fish. The
presented fish algorithm (FA), considered as a swarm optimization, using bottom-up
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learning of individual perception and the propagation of social information in the
population, can usefully spread information amongst the agents. In Chap. 3, an
approach named Appleseed, which is based on mechanics taken from neuropsy-
chology, known as spreading activation models, is presented. Several algorithms for
inferring trust and distrust that go beyond network structure and demonstrate their
accuracy in real social networks are evaluated and discussed. Chapter 4 examines
how basic network properties can affect the propagation of ideas, beliefs, and
behaviors that shape mental models, showing how these different structures can
either promote or hinder the adaptation of mental models, and indicating what
strategies may be used for improving them. Using methods from statistical
mechanics, in Chap. 5, flooding-based strategies are shown to develop random walk
strategies to maximize the coverage in large-scale unstructured networks, which
takes into account the resource constraints in the form of consumed bandwidth and
latency time.

Modeling propagation in transport and communication networks is the central
topic of the next two contributions. The first of these chapters, Chap. 6 utilizes three
kinds of Petri nets: place/transitions Petri nets, timed Petri nets, and hybrid Petri
nets to model and simulate agents of a transport network. A similar line of research
is explored in Chap. 7 but the focus is on the role of propagation phenomena in bio-
inspired routing.

Another popular area where propagation methods are highly topical is building
reliable systems with respect to errors, faults, and failures. This is the focus of
Chap. 8, where the life cycle of P2P botnets is studied. This chapter provides
guidance for security professionals on how to implement two mitigation techniques
against P2P botnets index poisoning defense and Sybil defense, and one monitoring
technique—passive monitoring—to achieve better performance. Network modifi-
cations with the aim of enhancing robustness against targeted attacks is proposed in
Chap. 9. The outlined procedure optimized for the cost function of Integral Effi-
ciency could be used to generate highly robust and efficient networks. Chapter 10 in
turn examines problems related to propagation phenomena in biological networks.
As an example, carcinogenesis and cancer progression are examined as processes
that propagate molecular failures. These processes are based on evolutionary and
spatial evolutionary games, which describe propagation phenomena in time and
space. A number of recently developed propagation models and algorithms that
could be utilized to understand mobile phone datasets are presented in Chap. 11. It
discusses how to analyze the spreading dynamics of mobile phone malware using
SIR, SIS, and SIDR epidemiological models, how to identify fraudulent activity
over a phone network, and how to predict churners in a phone network. Chapter 12
deals with structural information propagation in crisis situations referring to
disaster, emergency, or catastrophe management loosely defined as all actions taken
before, during, and after the event. It proposes a framework for detecting and
propagating valuable information to the public, and to the first responders in par-
ticular. A model of a financial network and the three methods of the propagation of
losses: the linear threshold algorithm, the graph-theoretic approach, and the ficti-
tious default algorithm, used to simulate contagion in such a network is proposed in
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Chap. 13. The volume closes with Chap. 14. It presents the state of the art in the
area of maximizing the spread of influence in social networks, limitations of using a
static network representation, and recent trends that use temporal properties of
social networks as an alternative.

We are extremely grateful to the Intelligent Systems Reference Library by
Springer for having hosted this theme book. Special thanks are due to series editors:
Janusz Kacprzyk, and Lakhmi C. Jain. We would principally like to express our
most sincere thanks and great appreciation to all those colleagues who have helped
us in the realization of this book, in particular, to the contributors and referees.

Many researchers have contributed to this volume with their work. We deeply
thank them for their great contributions. In alphabetical order they are: Baber
Aslam, Damian Borys, Abdelhamid Bouchachia, Anthony Brabazon, Newton
Paulo Bueno, František Čapkovič, Wei Cui, Fabio Daolio, Derek Doran, Mario
Eboli, Niloy Ganguly, Jennifer Golbeck, Hans J. Herrmann, Roman Jaksik, Prze-
mysław Kazienko, Pavel Krömer, Michał Krześlak, Vitor H.P. Louzada, Veena
Mendiratta, Radosław Michalski, Petr Musilek, Subrata Nandi, Michael ONeill,
Daniela Pohl, Jarosław Śmieja, Andrzej Świerniak, Somnath Tagore, Marco
Tomassini, Ping Wang, Lei Wu, Cai-Nicolas Ziegler, and Cliff C. Zou.

Warm thanks are also due to the following referees who reviewed the chapters
with remarkable expertise and engagement: Nuno Araujo, Francesca Arcelli
Fontana, Emili Balaguer-Ballester, František Čapkovič, Richard Clegg, Ireneusz
Czarnowski, Anirban Dasgupta, Paul Davidsson, Damien Fay, Evelina Gabasova,
Bogdan Gabryś, Sergio Gomez, Hamed Haddadi, Jason Jung, Dariusz Król, Hui Li,
Katarzyna Musial, Marco Rossetti, Ruben Sanchez-Garcia, Antonio Scala, Fabio
Stella, Mirko Viroli, Ye Wu, and Rong Yang.

By way of conclusion, it is worth emphasizing that this work was supported by
the project To what extent can design principles for complex networks be derived
from the study of error propagation phenomenon in smart and bio-inspired network
structures? within the 7th European Community Framework Programme under
grant FP7-PEOPLE-2010-IEF-274375-EPP. Indeed, the true situation is barely
captured by saying that without the EC project it would not have been possible to
start, and no less complete, this volume.

We anticipate that our work results in a coherent and comprehensive presenta-
tion of the vast recent research activity concerning propagation processes in real
world networks. The large number of citations that found room in every chapter
makes us believe that the present volume will be a convenient reference to all
scholars who consider studying this exciting research area. It should be also clear
that these 14 chapters should not be construed as covering all aspects of propa-
gation research.

Wrocław, November 2014 Dariusz Król
Bournemouth Damien Fay

Bogdan Gabryś
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Chapter 1
Epidemic Models: Their Spread, Analysis
and Invasions in Scale-Free Networks

Somnath Tagore

Abstract The mission of this chapter is to introduce the concept of epidemic out-
bursts in network structures, especially in case of scale-free networks. The invasion
phenomena of epidemics have been of tremendous interest among the scientific
community over many years, due to its large scale implementation in real world
networks. This chapter seeks to make readers understand the critical issues involved
in epidemics such as propagation, spread and their combat which can be further
used to design synthetic and robust network architectures. The primary concern in
this chapter focuses on the concept of Susceptible-Infectious-Recovered (SIR) and
Susceptible-Infectious-Susceptible (SIS) models with their implementation in scale-
free networks, followed by developing strategies for identifying the damage caused
in the network. The relevance of this chapter can be understood when methods dis-
cussed in this chapter could be related to contemporary networks for improving
their performance in terms of robustness. The patterns by which epidemics spread
through groups are determined by the properties of the pathogen carrying it, length
of its infectious period, its severity as well as by network structures within the popu-
lation. Thus, accurately modeling the underlying network is crucial to understand the
spread as well as prevention of an epidemic. Moreover, implementing immunization
strategies helps control and terminate theses epidemics.

1.1 Scale-Free Networks

The degree distribution of individuals is one of the most standard and efficient net-
work measures that is existent today. In most of the synthetic as well as practical
networks, many individuals have lesser number of connected neighbours than others.

S. Tagore (B)
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For instance, random networks, small worlds display lesser variation in terms of
neighbourhood sizes, whereas spatial networks have Poisson-like degree distribu-
tions. Moreover, as highly connected individuals are of more importance consider-
ing disease transmission, incorporating them into the current network is of outmost
importance [4]. This is essential in case of capturing the complexities of disease
spread. Architecturally, scale-free networks are heterogenous in nature and can be
dynamically constructed by adding new individuals to the current network structure
one at a time. This strategy is similar to naturally forming links, especially in case
of social networks. Moreover, the newly connected nodes or individuals link to the
already existent ones (with larger connections) in a manner that is preferential in
nature. This connectivity can be understood by a power-law plot with the number
of contacts per individual, a property which is regularly observed in case of several
other networks like that of power grids, world-wide-web, to name a few [14].

Epidemiologists have worked hard on understanding the heterogeneity of scale-
free networks for populations for a long time. Highly connected individuals as well as
hub participants have played essential roles in the spread and maintenance of infec-
tions and diseases. Figure1.1 illustrates the architecture of a system consisting of a
population of individuals. It has several essential components, namely, nodes, links,
newly connected nodes, hubs and sub-groups respectively. Here, nodes correspond
to individuals and their relations are shown as links. Similarly, newly connected
nodes correspond to those which are recently added to the network, such as initiation
of new relations between already existing and unknown individuals [24]. Hubs are

Fig. 1.1 A synthetic scale-free network and its characteristics
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those nodes which are highly connected, such as individuals who are very popular
among others and have many relations and/or friends. Lastly, sub-groups correspond
to certain sections of the population which have individuals with closely associated
relationships, such as group of nodes which are highly dense in nature, or having
high clustering coefficient. Furthermore, it is important in having large number of
contacts as the individuals are at greater risk of infection and, once infected, can
transmit it to others. For instance, hub individuals of such high-risk individuals help
in maintaining sexually transmitted diseases (STDs) in different populations where
majority belong to long-term monogamous relationships, whereas in case of SARS
epidemic, a significant proportion of all infections are due to high risk connected indi-
viduals. Furthermore, the preferential attachment model proposed by Barabási and
Albert [4] defined the existence of individuals of having large connectivity does not
require random vaccination for preventing epidemics. Moreover, if there is an upper
limit on the connectivity of individuals, random immunization can be performed to
control infection.

Likewise, the dynamics of infectious diseases has been extensively studied in case
of scale-free as well as small-world and random networks. In small-world networks,
most of the nodes may not be direct neighbors, but can be reached from all other
nodes via less number of hops, that are number of nodes between start and terminating
nodes. Also, in these networks distance, dist, between two random nodes increases
proportionally to the logarithm of the number of nodes, tot, in the network [15], i.e.,

dist ∝ log tot (1.1)

Watts and Strogatz [24] identified a class of small-world networks and categorized
them as random graphs. These were classified on the basis of two independent fea-
tures, namely, average shortest path length and clustering coefficient. As per Erdős-
Rényi model, random graphs have a smaller average shortest path length and small
clustering coefficient. Watts and Strogatz on the other hand demonstrated that vari-
ous real-world networks have a smaller average shortest path length along with high
clustering coefficient greater than expected randomly. It has been observed that it is
difficult to block and/or terminate an epidemic in scale-free networks with slow tails.
It has especially been seen in case the network correlations among infections and
individuals are absent. Another reason for this effect is the presence of hubs, where
infections could be sustained and reduced by target-specific selections [17].

1.1.1 Power-Law

It has been well known that real-world networks ranging from social to computers
are scale-free in nature, whose degree distribution follows an asymptotic power-law.
These are characterized by degree distribution following a power law,

P(conn) ≈ conn−η (1.2)
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for the number of connections, conn for individuals andη is an exponent.Barabási and
Albert [4] analyzed the topology of a portion of the world-wide-web and identified
‘hubs’. The terminals had larger number of connections than others and the whole
network followed a power-law distribution. They also found that these networks
have heavy-tailed degree distributions and thus termed themas ‘scale-free’. Likewise,
models for epidemic spread in static heavy-tailed networks have illustrated thatwith a
degree distribution having moments resulted in lesser prevalence and/or termination
for smaller rates of infection [14]. Moreover, beyond a particular threshold, this
prevalence turns to non-zero. Similarly, it has been seen that for networks following
power-law,

moment > η −1 (1.3)

does not exist and the prevalence is non-zero for any infection rates. Due to this rea-
son, epidemics are difficult to handle and terminate in static networks having power-
law degree distributions. Figure1.2 illustrates a power-law plot between P(conn)

Fig. 1.2 Power-law curve illustrating P(conn) versus conn in log-log scale
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versus conn in log-log scale. It shows that points in this figure follow a inverse
downgrade line in log-log scale, satisfying ‘scale-free’ behavior.

Likewise, in various instances, networks are not static but dynamic (i.e., they
evolve in time) via some rewiring processes, in which edges are detached and reat-
tached according to some dynamic rule. Steady states of rewiring networks have been
studied in the past. More often, it has been observed that depending on the average
connectivity and rewiring rates, networks reach a scale-free steady state, with an
exponent, η, represented using dynamical rates [17].

1.2 Epidemics

The study of epidemics has always been of interest in areas where biological appli-
cations coincide with social issues. For instance, epidemics like influenza, measles,
and STDs, can pass through large group of individuals, populations, and/or persist
over longer timescales at low levels. These might even experience sudden changes of
increasing and decreasing prevalence. Furthermore, in some cases, single infection
outbreaks may have significant effects on a complete population group [1].

Epidemic spreading can also occur on complex networks with vertices repre-
senting individuals and the links representing interactions among individuals. Thus,
spreading of diseases can occur over the network of individuals as spreading of com-
puter viruses occur over the world-wide-web. The underlying network in epidemic
models is considered to be static while the individual states vary from infected to
non-infected individuals according to certain probabilistic rules. Furthermore, the
evolution of an infected group of individuals in time can be studied by focusing on
the average density of infected individuals in steady state. Lastly, the spread as well
as growth of epidemics can also be monitored by studying the architecture of the
network of individuals as well as its statistical properties [2].

1.2.1 Branching

One of the essential properties of epidemic spread is its branching pattern, thereby
infecting healthy individuals over a time period. This branching pattern of epidemic
progression can be classified on the basis of their infection initiation, spread and
further spread (Fig. 1.3) [5].

1. Infection initiation: If an infected individual comes in contact with a group of
individuals, the infection is transmitted to each with a probability p, independent
of one another. Furthermore, if the same individual meets k others while being
infected, these k individuals form the infected set. Due to this random disease
transmission from the initially infected individual, those directly connected to it
get infected.
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Fig. 1.3 Branching modes and patterns in epidemic progression

2. Spread: Every individual in the original infected set meets k other individuals,
which results in k2 individuals.

3. Further spread: The infection spreads further with each individual in the present
infected set connecting to k healthy individuals with a probability p independent
of individual infection.

1.2.1.1 Reproductive Number

If infection in a branching process reaches an individual set and fails to infect healthy
individuals, then termination of the infection occurs, which leads to no further pro-
gression and infection of other healthy individuals. Thus, there may be two possibil-
ities for an infection in a branching process model. Either it reaches a site infecting
no further and terminating out, or it continues to infect healthy individuals through
contact processes. The quantity which can be used to identify whether an infection
persist or fades out is defined as basic reproductive number [6].

This basic reproductive number, τ, is the expected number of newly infected
individuals caused by a single already infected individual. In case where every indi-
vidual meets k new people and infects each with probability p, the basic reproductive
number is represented as

τ = pk (1.4)

It is quite essential as it helps in identifying whether or not an infection can spread
through a population of healthy individuals. The concept of τ was first proposed by
Alfred Lotka, and applied in the area of epidemiology by MacDonald [13].
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For non-complex population models, τ can be identified if information for ‘death
rate’ is present. Thus, considering death rate, d, and birth rate, b, at the same time,

τ = b

d
(1.5)

Moreover, τ can also be used to determine whether an infection will terminate, i.e.,
τ < 1 or it becomes an epidemic, i.e., τ > 1. But, it cannot be used for comparing
different infections at the same time on the basis of multiple parameters. Several
methods, such as identifying eigenvalues, Jacobian matrix, birth rate, equilibrium
states, population statistics can well be used to analyze and handle τ [18].

1.2.1.2 Branching Models

There are some standard branchingmodels that are existent for analyzing the progress
of infection in a healthy population or network. The first one, Reed-Frost model,
considers a homogeneous close set consisting of total number of individuals, tot. Let
num designate the number of individuals susceptible to infection at time t = 0 and
mnum the number of individuals infected by the infection at any time t [19]. Here,

num + mnum = tot (1.6)

mnum = num (1.7)

Here, Eq.1.7 is in case of a smaller population. It is assumed that an individual x is
infected at time t, whereas any individual y comes in contact with x with a probability

a
num , where a > 0. Likewise, if y is susceptible to infection then it becomes infected
at time t + 1 and x is removed from the population (Fig. 1.4a). In this figure, x or
v1(∗) represents the infection start site, y(v3), v2 are individuals that are susceptible
to infection, num = 0, tot = 11, and mnum = 1.

The second one, 3-clique model constructs a 3-clique sub-network randomly by
assigning a set of tot individuals. Here, for individual/vertex pair (vi, vj) with prob-
ability p1, the pair is included along with vertices triples (vi, vj, vk) with probability
p2. Thus, the corresponding pairs (vi, vj), (vj, vk) and (vk, vi) are also included. This
creates a network

G = g1
⋃

g2 (1.8)

Here, g1, g2 are two independent graphs, where g1 is a Bernoulli graph with edge
probability p1 and g2 with all possible triangles existing independently with a
probability p2 (Fig. 1.4b). In this figure, g1 = (v1, v2, v3), g2 = (v4, v5, v6),
g3 = (v7, v8, v9) are the three 3-clique sub-networks with tot = 9, and
G = g1

⋃
g2

⋃
g3 respectively [21].
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Fig. 1.4 Types of branching models illustrated in synthetic networks: a Reed-Frost, b 3-clique,
c Household
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The third one,Household model assumes that for a given a set of tot individuals or
vertices, g1 is a Bernoulli graph consisting of tot

b disjoint b−cliques, where b � tot
with edge probability p2. Thus, the network G is formed as the superposition of
the graphs g1 and g2, i.e., G = g1

⋃
g2. Moreover, g1 fragments the population

into mutually exclusive groups whereas g2 describes the relations among individuals
in the population. Thus, g1 does not allow any infection spread, as there are no
connections between the groups. But, when the relationship structure g2 is added,
the groups are linked together and the infection can now spread using relationship
connections (Fig. 1.4c). In this figure, tot = 10 where the individuals (v1 to v10) are
linked on the basis of randomly assigned p2 and b = 4 � tot = 10.

1.3 Network Architectures

The interconnected architecture of various networks have been of primary interest to
researchers in various scientific areas. In interconnected networks, failure in vertex
links in one network can cause failure of dependent vertices in other networks. This
results in cascading failures. Similarly, in case of networks without dependencies
among vertices, the level of information flow between the interconnected vertices
affects the epidemic transition on subset levels. Furthermore, percolation threshold
in interacting networks are lower than in single networks, with the appearance of
a giant component in certain cases (Fig. 1.5). A giant component is a connected
sub-graph of a random graph containing a constant fraction of total vertices of the
entire graph. These are extremely prominent in Erdős-Rényi graphs, where each
edge connecting vertex pairs for a set of n vertices remains independently of one
another with a probability p. Here, if p ≤ 1−ε

n for any constant ε > 0, then all the
connected components have size O(logn), and giant component is absent. But, for
p ≥ 1+ε

n a single giant component may reside. Figure1.5a–d illustrate the formation
of a giant component in a random graph with p = 0.002, 0.006, 0.009 in Fig. 1.5b–d
respectively [23].

Thus, it is essential to identify the conditions which results in an epidemic spread
in one network, with the presence of minimal isolated infections on other network
components. Moreover, depending on the parameters of individual sub-networks and
their internal connectivities, connecting them to one another creates marginal effect
on the spread of epidemic. Thus, identifying these conditions resulting in analyzing
spread of epidemic process is very essential. In this case, two different interconnected
network modules can be determined, namely, strongly and weakly coupled. In the
strongly coupled one, all modules are simultaneously either infection free or part of
an epidemic, whereas in the weakly coupled one a new mixed phase exists, where
the infection is epidemic on only one module, and not in others [25].
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Fig. 1.5 Emergence of giant component in an interconnected network. a Original network,
b emergence of giant component, c further emergence, and d final architecture

1.3.1 Concurrency

Generally, epidemicmodels consider contact networks to be static in nature,where all
links are existent throughout the infection course.Moreover, a property of infection is
that these are contagious and spread at a rate faster than the initially infected contact.
But, in cases like HIV, which spreads through a population over longer time scales,
the course of infection spread is heavily dependent on the properties of the contact
individuals. The reason for this being, certain individuals may have lesser contacts at
any single point in time and their identities can shift significantly with the infection
progress [25].

Thus, for modeling the contact network in such infections, transient contacts
are considered which may not last through the whole epidemic course, but only
for particular amount of time. In such cases, it is assumed that the contact links
are undirected. Furthermore, different individual timings do not affect those having
potential to spread an infection but the timing pattern also influences the sever-
ity of the overall epidemic spread. Similarly, individuals may also be involved in
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concurrent partnerships having two or more actively involved ones that overlap in
time. Thus, the concurrent pattern causes the infection to circulate vigorously through
the network [22].

1.4 Propagation Phenomena in Real World Networks

In the last decade, considerable amount of work has been done in characterizing as
well as analyzing and understanding the topological properties of networks. It has
been established that scale-free behavior is one of the most fundamental concepts for
understanding the organization various real-world networks. This scale-free property
has a resounding effect on all aspect of dynamic processes in the network, which
includes percolation. Likewise, for a wide range of scale-free networks, epidemic
threshold is not existent, and infections with low spreading rate prevail over the entire
population [10]. Furthermore, properties of networks such as topological fractality
etc. correlate to many aspects of the network structure and function. Also, some
of the recent developments have shown that the correlation between degree and
betweenness centrality of individuals is extremely weak in fractal network models
in comparison with non-fractal models [20].

Likewise, it is seen that fractal scale-free networks are dis-assortative, making
such scale-free networks more robust against targeted perturbations on hubs nodes.
Moreover, one can also relate fractality to infection dynamics in case of specif-
ically designed deterministic networks. Deterministic networks allow computing
functional, structural as well as topological properties. Similarly, in case of com-
plex networks, determination of topological characteristics has shown that these are
scale-free as well as highly clustered, but do not display small-world features. Also,
by mapping a standard Susceptible, Infected, Recovered (SIR) model to a percola-
tion problem, one can also find that there exists certain finite epidemic threshold.
In certain cases, the transmission rate needs to exceed a critical value for the infec-
tion to spread and prevail. This also specifies that the fractal networks are robust to
infections [11]. Meanwhile, scale-free networks exhibit various essential character-
istics such as power-law degree distribution, large clustering coefficient, large-world
phenomenon, to name a few [16].

1.5 Network Definition and Measurement

Network analysis can be used to describe the evolution and spread of information in
the populations along with understanding their internal dynamics and architecture.
Specifically, importance should be given to the nature of connections, and whether
a relationship between x and y individuals provide a relationship between y and x as
well. Likewise, this information could be further utilized for identifying transitivity-
based measures of cohesion (Fig. 1.6).
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Fig. 1.6 Architectural properties in a hypothetical. a Undirected, b directed network

Meanwhile, research in networks also provide some quantitative tools for describ-
ing and characterizing networks. Degree of a vertex is the number of connectivities
for each vertex in the formof links. For instance, degree(v4) = 3, degree(v2) = 4 (for
undirected graph (Fig. 1.6a)). Similarly for Fig. 1.6b, degreein(v2) = 3 (number of
incoming links),degreeout(v2) = 1 (number of outgoing links).Clustering coefficient
(CC) of a vertex is the compactness of the network, i.e.,
CC(vi) = 2∗link

degree(degree−1) , where degree = degree of vertex vi, link = number of links
among neighbors of vi. For instance, in Fig. 1.6a, CC(v2) = 0.33, CC(v4) = 0.6,
etc. Likewise, Shortest path is the minimum number of links that needs to be parsed
for traveling between two vertices. For instance, in Fig. 1.6a, shortest path between
v4 and v1 = (v4, v2, v1). Diameter of network is the maximum distance between
any two vertices or the longest of the shortest walks. Thus, in Fig. 1.6b, from v4,
one has (v4, v3, v2, v1), (v4, v2, v1), (v4, v5, v2, v1), from v3, we have (v3, v4, v5,

v2, v1), (v3, v4, v2, v1), (v3, v2, v1), from v5, we have (v5, v4, v3, v2, v1), (v5, v4,

v2, v1), (v5, v2, v1).Out of these the longest of the shortestwalks= (v3, v4, v5, v2, v1),
(v5, v4, v3, v2, v1) = 4. Thus, diameter = 4 [15].

Radius of a network is the minimum eccentricity (eccentricity of a vertex vi is
the greatest geodesic distance), i.e., distance between two vertices in a network is
the number of edges in a shortest path connecting them between vi and any other
vertex of any vertex. For instance, in Fig. 1.6b, radius of network = 2. Betweenness
centrality (g(vi)) is equal to the number of shortest paths from all vertices to all
others that pass through vertex vi, i.e.,

g(vi) = vxvy(vi)

vxvy
(1.9)

where vxvy is total number of shortest paths from vertex vx to vertex vy and vxvy(vi)

is the number of those paths that pass through vi. Thus, in Fig. 1.6b, g(v4) = 0.77.
Similarly, Closeness centrality (c(vi)) of a vertex vi describes the total distance of vi

to all other vertices in the network, i.e., sum the shortest paths of vi to all other vertices
in the network. For instance, in Fig. 1.6b, c(v4) = (v4, v3, v2, v1) + (v4, v2, v1) +
(v4, v5, v2, v1) = 8. Lastly, Stress centrality (s(vi)) is the simple accumulation of
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the number of shortest paths between all vertex pairs, sometimes interchangeable
with betweenness centrality [14].

Use of ‘adjacency matrix’, Avivj , describing the connections within a population
is also persistent. Likewise, various network quantities can be ascertained from the
adjacency matrix. For instance, size of a population is defined as the average number
of contacts per individual, i.e.,

num = 1

tot

∑

vivj

Avivj (1.10)

The powers of adjacency matrix can be used to calculate measures of transitiv-
ity [14].

1.5.1 Data Collection Process

One of the key pre-requisites of network analysis is initial data collection. For per-
forming a complete mixing network analysis for individuals residing in a popula-
tion, every relationship information is essential. This data provides great difficulty in
handling the entire population, as well as handling complicated network evaluation
issues. The reason being, individuals have contacts, and recall problems are quite
probable. Moreover, evaluation of contacts requires certain information which may
not always be readily present. Likewise, in case of epidemiological networks, con-
nections are included if they explain relationships capable of permitting the transfer
of infection. But, in most of the cases, clarity of defining such relations is absent.
Thus, various types of relationships bestow risks and judgments that needs to be
sorted for understanding likely transmission routes. One can also consider weighted
networks in which links are not merely present or absent but are given scores or
weights according to their strength [9].

Furthermore, different infections are passed by different routes, and a mixing
network is infection specific. For instance, a network used in HIV transmission
is different from the one used to examine influenza. Similarly, in case of airborne
infections like influenza andmeasles, various networks need to be considered because
differing levels of interaction are required to constitute a contact. The problems
with network definition and measurement imply that any mixing networks that are
obtained will depend on the assumptions and protocols of the data collection process.

Three main standard techniques can be employed to gather such information,
namely, infection searching, complete contact searching and diary-based studies [9].

1.5.1.1 Infection Searching

After an epidemic spread, major emphasis is laid on determining the source and
spread of infection. Thus, each infected individual is linked to one other from
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whom infection is spread as well as from whom the infection is transmitted. As
all connections represent actual transmission events, infection searching methods do
not suffer from problems with the link definition, but interactions not responsible for
this infection transmission are removed. Thus, the networks observed are of closed
architecture, without any loops, walks, cliques and complete sub-graphs [15].

Infection searching is a preliminarymethod for infectious diseaseswith lowpreva-
lence. These can also be simulated using several mathematical techniques based on
differential equations, control theories etc., assuming a homogeneous mixing of pop-
ulation. It can also be simulated in a manner so that infected individuals are identified
and cured at a rate proportional to the number of neighbors it has, analogous to the
infection process. But, it does not allow to compare various infection searching
budgets and thus a discrete-event simulation need to be undertaken. Moreover, a
number of studies have shown that analyses based on realistic models of disease
transmission in healthy networks yields significant projections of infection spread
than projections created using compartmental models [8]. Furthermore, depending
on the number of contacts for any infected individuals, their susceptible neighbors
are traced and removed. This is followed by identifying infection searching tech-
niques that yields different numbers of newly infected individuals on the spread of
the disease.

1.5.1.2 Complete Contact Searching

Contact searching identifies potential transmission contacts from an initially infected
individual by revealing some new individual set who are prone to infection and can
be subject of further searching effort. Nevertheless, it suffers from network definition
issues; is time consuming and depends on complete information about individuals
and their relationships. It has been used as a control strategy, in case of STDs. Itsmain
objective of contact searching is identifying asymptomatically infected individuals
who are either treated or quarantined.

Complete contact searching deals with identifying the susceptible and/or infected
individuals of already infected ones and conducting simulations and/or testing them
for degree of infection spread, treating them as well as searching their neighbors for
immunization. For instance, STDs have been found to be difficult for immunization.
The reason being, these have specifically long asymptomatic periods, during which
the virus can replicate and the infection is transmitted to healthy, closely related
neighbors. This is rapidly followed by severe effects, ultimately leading to the ter-
mination of the affected individual. Likewise, recognizing these infections as global
epidemic has led to the development of treatments that allow them to be managed by
suppressing the replication of the infection for as long as possible. Thus, complete
contact searching act as an essential strategy even in case when the infection seems
incurable [7].
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1.5.1.3 Diary-Based Studies

Diary-based studies consider individuals recording contacts as they occur and allow
a larger number of individuals to be sampled in detail. Thus, this variation from
the population approach of other tracing methods to the individual-level scale is
possible. But, this approach suffers from several disadvantages. For instance, the
data collection is at the discretion of the subjects and is difficult for researchers
to link this information into a comprehensive network, as the individual identifies
contacts that are not uniquely recorded [3].

Diary-based studies require the individuals to be part of some coherent group,
residing in small communities. Also, it is quite probable that this kind of a study may
result in a large number of disconnected sub-groups, with each of them representing
some locally connected set of individuals. Diary-based studies can be beneficial
in case of identifying infected and susceptible individuals as well as the degree of
infectivity. These also provide a comprehensive network for diseases that spread by
point-to-point contact and can be used to investigate the patterns infection spread.

1.6 Robustness

Robustness is an essential connectivity property of power-law graph. It defines that
power-law graphs are robust under random attack, but vulnerable under targeted
attack. Recent studies have shown that the robustness of power-law graph under
random and targeted attacks are simulated displaying that power-law graphs are very
robust under random errors but vulnerable when a small fraction of high degree
vertices or links are removed. Furthermore, some studies have also shown that if
vertices are deleted at random, then as long as any positive proportion remains, the
graph induced on the remaining vertices has a component of order of the total number
of vertices [15].

Many a times it can be observed that a network of individuals may be subject to
sudden change in the internal and/or external environment, due to some perturbation
events. For this reason, a balance needs to be maintained against perturbations while
being adaptable in the presence of changes, a property known as robustness. Studies
on the topological and functional properties of such networks have achieved some
progress, but still have limited understanding of their robustness. Furthermore, more
important a path is, higher is the chance to have a backup path. Thus, removing a link
or an individual from any sub-networkmay also lead to blocking the information flow
within that sub-network. The robustness of a model can also be assessed by means of
altering the various parameters and components associated with forming a particular
link.Robustness of a network can also be studiedwith respect to ‘resilience’, amethod
of analyzing the sensitivities of internal constituents under external perturbation, that
may be random or targeted in nature [18].
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1.7 Models of Infections

Basic disease models discuss the number of individuals in a population that are
susceptible, infected and/or recovered from a particular infection. For this purpose,
various differential equation based models have been used to simulate the events of
action during the infection spread. In this scenario, various details of the infection
progression are neglected, along with the difference in response between individuals.
Models of infections can be categorized as SIR and Susceptible, Infected, Susceptible
(SIS) [9].

1.7.1 Susceptible-Infected-Recovered (SIR)

The SIR model considers individuals to have long-lasting immunity, and divides the
population into those susceptible to the disease (S), infected (I) and recovered (R).
Thus, the total number of individuals (T ) considered in the population is

T = S + I + R (1.11)

the transition rate from S to I is κ and the recovery rate from I to R is ρ. Thus, the
SIR model can be represented as

dS

dT
= γ(T − S) − κ

I

T
S (1.12)

dI

dT
= κ

I

T
S − (γ + ρ)I (1.13)

dR

dT
= ρI − λR (1.14)

Likewise, the reproductivity (θ) of an infection can be identified as the average num-
ber of secondary instances a typical single infected instancewill cause in a population
with no immunity. It determines whether infections spreads through a population;
if θ < 1, the infection terminates in the long run; θ > 1, the infection spreads in a
population. Larger the value of θ, more difficult is to control the epidemic [12].

Furthermore, the proportion of the population that needs to be immunized can be
calculated by

θ = κ

γ + ρ
(1.15)

Similarly, for S(0), I(0), R(0), and θ <= 1,

lim
t→∞(S(t), I(t), R(t)) → (T , 0, 0) (1.16)
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known as disease free stability, whereas if θ > 1 and I(0) > 0, then

lim
t→∞(S(t), I(t), R(t)) → (

T

θ
,
γT

κ
(θ −1),

ρT

κ
(θ −1)) (1.17)

known as endemic stability can be identified.Depending upon these instances, immu-
nization strategies can be initiated [6].

1.7.1.1 Extensions to SIR Model

Although the contact network in a general SIR model can be arbitrarily complex, the
infection dynamics can still being studied as well as modeled in a simple fashion.
Contagion probabilities are set to a uniform value, i.e., p, and contagiousness has a
kind of ‘on-off’ property, i.e., an individual is equally contagious for each of the tI
steps while it has the infection, where 1 is present state of the system. One can extend
the idea that contagion is more likely between certain pairs of individuals or vertices
by assigning a separate probability pvi,vj to each pair of individuals or vertices vi and
vj, for which vi is linked to vj in a directed contact network.

Likewise, other extensions of the contact model involves separating the I state into
a sequence of early, middle, and late periods of the infection. For instance, it could
be used to model an infection with a high contagious incubation period, followed by
a less contagious period while symptoms are being expressed [16].

1.7.1.2 Percolations of SIR Model

In most of the cases, SIR epidemics are thought of dynamic processes, in which the
network state evolves step-by-step over time. It captures the temporal dynamics of
the infection as it spreads through a population. The SIR model has been found to be
suitable for infections, which provides lifelong immunity, like measles. In this case,
a property termed as the force of infection is existent, a function of the number of
infectious individuals is. It also contains information about the interactions between
individuals that lead to the transmission of infection.

One can also have a static view of the epidemics where SIR model for tI = 1.
This means that considering a point in an SIR epidemic when a vertex vi has just
become infectious, has one chance to infect vj (since tI = 1), with probability p. One
can visualize the outcome of this probabilistic process and also assume that for each
edge in the contact network, a probability signifying the relationship is identified.
Furthermore, one can also use the open and blocked healthy edges to represent the
course of the infection spread. A vertex vi will become infected during the epidemic
if and only if there is a path to vi from one of the initially infected nodes that consists
entirely of open edges [3].
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1.7.2 Susceptible-Infected-Susceptible (SIS)

The SIS model can be represented as

dS

dT
= ρI − κS (1.18)

dI

dT
= κS − ρI (1.19)

Removed state is absent in this case. Moreover, after a vertex is over with the Infec-
tious state, it reverts back to the Susceptible state and is ready to initiate the infection
again. Due to this alternation between the S and I states, the model is referred to as
SIS model. The mechanics of SIS model can be discussed as follows [2].

1. At the initial stage, some vertices remain in I state and all others are in S state.
2. Each vertex vi that enters the I state and remains infected for a certain number of

steps tI .
3. During each of these tI steps, vi has a probability p of passing the infection to

each of its susceptible directly linked neighbors.
4. After tI steps, vi no longer remains infected, and returns back to the S state.

The SIS model is predominantly used for simulating and understanding the
progress of STDs, where repeat infections are existent, like gonorrhoea. Moreover,
certain assumptions with regard to random mixing between individuals within each
pair of sub-networks are present. In this scenario, the number of neighbors for each
individual is considerably smaller than the total population size. Such models gener-
ally avoid random-mixing assumptions thereby assigning each individual to a specific
set of contacts that they can infect.

1.7.2.1 Life Cycle of SIS

An SIS epidemic, can run for long time duration as it can cycle through the vertices
multiple number of times. If at any time during the SIS epidemic all vertices are
simultaneously free of the infection, then the epidemic terminates forever. The reason
being, no infected individuals exist that can pass the infection to others. In case if the
network is finite in nature, a stage would arise when all attempts for further infection
of healthy individuals would simultaneously fail for tI steps in a row.

Likewise, for contact networks where the structure is mathematically tractable, a
particular critical value of the contagion probability p is existent, an SIS epidemic
undergoes a rapid shift from one that terminates out quickly to one that persists for
a long time. In this case, the critical value of the contagion probability depends on
the structure of the problem set [1].



1 Epidemic Models: Their Spread, Analysis and Invasions … 19

1.8 Epidemic Invasions, Propagations and Outbursts

The patterns by which epidemics spread through vertex groups is determined by the
properties of the pathogen, length of its infectious period, severity and the network
structures. The path for an infection spread are given by a population state, with
existence of direct contacts between the individuals or vertices. The functioning of
network system depends on the nature of interaction between their individuals. This
is essentially because of the effect of infection-causing individuals and topology of
networks. To analyze the complexity of epidemics, it is important to understand the
underlying principles of its distribution in the history of its existence. In recent years
it has been seen that the study of disease dynamics in social networks is relevant with
the spread of viruses and the nature of diseases [9].

Moreover, the pathogen and the network are closely intertwined with even within
the same group of individuals, the contact networks for two different infections are
different structures. This depends on respective modes of transmission of infections.
For instance, a highly contagious infection, involving airborne transmission, the
contact network includes a huge number of links, including any pair of individuals
that are in contactwith one another. Likewise, for an infection requiring close contact,
the contact network is much sparser, with fewer pairs of individuals connected by
links [7].

1.9 Combat and Immunization

Immunization is a site percolation problemwhere each immunized individual is con-
sidered to be a site which is removed from the infected network. Its aim is to trans-
fer the percolation threshold that leads to minimization of the number of infected
individuals. The model of SIR and immunization is regarded as a site-bond perco-
lation model, and immunization is considered successful if the infected a network
is below a predefined percolation threshold. Furthermore, immunizing randomly
selected individuals requires targeting a large fraction, frac, of the entire population.
For instance, some infections require 80–100% immunization. Meanwhile, target-
based immunization of the hubs requires global information about the network in
question, rendering it impractical in many cases, which is very difficult in certain
cases [6].

Likewise, social networks possess a broad distribution of the number of links,
conn, connecting individuals and analyzing them illustrate that that a large fraction,
frac, of the individuals need to be immunized before the integrity of the infected
network is compromised. This is essentially true for scale-free networks, where
P(conn) ≈ conn−η, 2 < η < 3, where the network remains connected even after
removal of most of its individuals or vertices. In this scenario, a random immuniza-
tion strategy requires that most of the individuals need to be immunized before an
epidemic is terminated [8].
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For various infections, it may be difficult to reach a critical level of immunization
for terminating the infection. In this case, each individual that is immunized is given
immunity against the infection, but also provides protection to other healthy individ-
uals within the population. Based on the SIR model, one can only achieve half of the
critical immunization level which reduces the level of infection in the population by
half. A crucial property of immunization is that these strategies are not perfect and
being immunized does not always confer immunity. In this case, the critical threshold
applies to a portion of the total population that needs to be immunized. For instance,
if the immunization fails to generate immunity in a portion, por, of those immunized,
then to achieve immunity one needs to immunize a portion

Im = τ −1
τ(1 − por)

(1.20)

Here, Im denotes immunity strength. Thus, in case if por is huge it is difficult to
remove infection using this strategy or provides partial immunity. It may also invoke
in various manners: the immunization reduces the susceptibility of an individual to a
particular infection, may reduce subsequent transmission if the individual becomes
infected, or it may increase recovery.

Such immunization strategies require the immunized individuals to become
infected and shift into a separate infected group, after which the critical immuniza-
tion threshold (SI ) needs to be established. Thus, if CIL is the number of secondary
infected individuals affected by an initial infectious individual, then

CIL = τ −1
τ −SI

(1.21)

Thus, SI needs to be less than one, else it is not possible to remove the infection. But,
one also needs to note that an immunization works equally efficiently if it reduces the
transmission or susceptibility and increases the recovery rate. Moreover, when the
immunization strategy fails to generate any protection in a proportion por of those
immunized, the rest 1−por are fully protected. In this scenario, it can be not possible
to remove the infection using random immunization. Thus, targeted immunization
provides better protection than random-based [13].

1.9.1 Complex Topologies and Heterogeneous Structures

In case of homogenous networks, the average degree, conn, fluctuates less and can
assume conn 
 conn, i.e., the number of links are approximately equal to average
degree. However, networks can also be heterogeneous. Likewise, in a homogeneous
network such as a random graph, P(conn) decays faster exponentially whereas for
heterogenous networks it decays as a power law for large conn.

The effect of heterogeneity on epidemic behavior studied in details for many
years for scale-free networks. These studies are mainly concerned with the stationary
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limit and existence of an endemic phase. An essential result of this analysis is the

expression of basic reproductive number which in this case is τ ∞ conn2
conn . Here, τ is

proportional to the second moment of degree, which finally diverges for increasing
network sizes [15].

1.9.2 Damage Patterns

It has been noticed that the degree of interconnection in between individuals for all
form of networks is quite unprecedented. Whereas, interconnection increases the
spread of information in social networks, another exhaustively studied area con-
tributes to the spread of infection throughout the healthy network. This rapid spread-
ing is done due to less stringency of its passage through the network. Moreover,
initial sickness nature and time of infection are unavailable most of the time, and the
only available information is related to the evolution of the sick-reporting process.
Thus, given complete knowledge of the network topology, the objective is to deter-
mine if the infection is an epidemic, or if individuals have become infected via an
independent infection mechanism that is external to the network, and not propagated
through the connected links.

If one considers a computer network undergoing cascading failures due to
worm propagation whereas random failures due to misconfiguration independent
of infected nodes, there are two possible causes of the sickness, namely, random and
infectious spread. In case of random sickness, infection spreads randomly and uni-
formly over the network where the network plays no role in spreading the infection;
and infectious spread, where the infection is caused through a contagion that spreads
through the network, with individual nodes being infected by direct neighbors with
a certain probability [6].

1.9.2.1 Random Sickness

In random damage, each individual becomes infected with an independent proba-
bility ψ1. At time t, each infected individual reports damage with an independent
probability ψ2. Thus, on an average, a fraction ψ of the network reports being
infected, where

ψ = ψ1.ψ2 (1.22)

It is already known that social networks possess a broad distribution of the number of
links, k, originating froman individual. Computer networks, both physical and logical
are also known to possess wide, scale-free, distributions. Studies of percolation on
broad-scale networks display that a large fraction, fc, of the individuals need to be
immunized before the integrity of the network is compromised. This is particularly
true for scale-free networks, where the percolation threshold tends to 1, and the
network remains contagious even after removal ofmost of its infected individuals [9].
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1.9.2.2 Infection Spread

When the hub individuals are targetedfirst, removal of just a fraction of these results in
the breakdownof the network.This has led to the suggestion of targeted immunization
of hubs. To implement this approach, the number for connections of each individual
needs to be known. During infection spread, at time 0, a randomly selected individual
in the network becomes infected. When a healthy individual becomes infected, a
time is set for each outgoing link to an adjacent individual that is not infected,
with expiration time exponentially distributed with unit average. Upon expiration
of a link’s time, the corresponding individual becomes infected, and in-turn begins
infecting its neighbors [7].

1.9.3 Immunity

In general, for an epidemic to occur in a susceptible population the basic reproductive
ratemust be greater than 1. Inmany circumstances not all contacts will be susceptible
to infection. In this case, some contacts remain immune, due to prior infection which
may have conferred life-long immunity, or due to some previous immunization.
Therefore, not all individuals are infected and the average number of secondary
infections decrease. Similarly, the epidemic threshold in this case is the number of
susceptible individuals within a population that is required for an epidemic to occur.
Similarly, the herd immunity is the proportion of population immune to a particular
infection. If this is achieved due to immunization, then each case leads to a new case
and the infection becomes more stable within the population [6].

One of the simplest immunization procedure consists of random introduction of
immune individuals in the population for achieving uniform immunization density. In
this case, for a fixed spreading rate, ξ , the relevant control parameter in the density
of immune individuals present in the network, the immunity, imm. At the mean-
field level, the presence of a uniform immunity reduces ξ by a factor 1 − imm, i.e.,
the probability of identifying and infecting a susceptible and non-immune individual
becomes ξ(1−imm). For homogeneous networks, one observes that, for aconstant ξ ,
the stationary prevalence is given by

ρimm = 0 (1.23)

for imm > immc and

ρimm = (immc − imm)/(1 − imm) (1.24)

for imm ≤ immc Here immc is the critical immunization value above which the
density of infected individuals in the stationary state is null and depends on ξ as
immc = 1 − ξc

ξ
.
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Thus, for a uniform immunization level larger than immc, the network is com-
pletely protected and no large epidemic outbreaks are possible. On the contrary,
uniform immunization strategies on scale-free heterogenous networks are totally
ineffective. The presence of uniform immunization elocally depresses the infections
prevalence for any value of ξ , and it is difficult to identify any critical fraction of
immunized individuals that ensures the eradication of infection [2].

1.10 Understanding Cascading Failures, Natural
Disturbances

Cascading, or epidemic processes are those where the actions, infections or failure of
certain individuals increase the susceptibility of others. This results in the successive
spread of infections from a small set of initially infected individuals to a larger
set. Initially developed as a way to study human disease propagation, cascades ares
useful models in a wide range of application. The vast majority of work on cascading
processes focused on understanding how the graph structure of the network affects
the spread of cascades. One can also focus on several critical issues for understanding
the cascading features in network for which studying the architecture of the network
is crucial [5].

The standard independent cascade epidemic model assumes that the network is
directed graph G = (V, E), for every directed edge between vi, vj, we say vi is a
parent andvj is a child of the correspondingother vertex. Parentmay infect child along
an edge, but the reverse cannot happen. Let V denote the set of parents of each vertex
vi, and for convenience vi ∈ V is included. Epidemics proceed in discrete timewhere
all vertices are initially in the susceptible state. At time 0, each vertex independently
becomes active, with probability pinit. This set of initially active vertices are called
‘seeds’. In each time step, the active vertices probabilistically infects its susceptible
children; if vertex vi is active at time t, it infects each susceptible child vj with
probability pvivj, independently. Correspondingly, a vertex vj susceptible at time t
becomes active in the next time step, i.e., at time t + 1, if any one of its parents
infects it. Finally, a vertex remains active for only one time slot, after which it
becomes inactive and does not spread the infection further as well as cannot be
infected again either [5]. Thus, in this kind of an SIR epidemic, where some vertices
remain forever susceptible because the epidemic never reaches them, while others
transition, susceptible → active for one time step → inactive.

1.11 Conclusions

In this chapter, we discussed some critical issues regarding epidemics and their
outbursts in static as well as dynamic network structures. We mainly focused
on SIR and SIS models as well as identifying key strategies for identifying the
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damage caused in networks. We also discussed the various modeling techniques for
studying cascading failures. Epidemics pass through populations and persists over
long time periods. Thus, efficient modeling of the underlying network plays a crucial
role in understanding the spread and prevention of an epidemic. Social, biological,
and communication systems can be explained as complex networks with their degree
distribution follows a power law, P(conn) ≈ conn−η, for the number of connections,
conn for individuals, representing scale-free (SF) networks.We also discussed certain
issues on epidemic spreading in SF networks characterized by complex topologies
with basic epidemic models describing the proportion of individuals susceptible,
infected and recovered from a particular disease. Likewise, we also explained the
significance of the basic reproduction rate of an infection, that can be identified as the
average number of secondary instances a typical single infected instance will cause
in a population with no immunity. Also, we explained how determining the complete
nature of a network required knowledge of every individual in a population and their
relationships as, the problems with network definition and measurement depend on
the assumptions of data collection processes. Nevertheless, we also illustrated the
importance of invasion resistance methods, with temporary immunity generating
oscillations in localized parts of the network, with certain patches following large
numbers of infections in concentrated areas. Similarly, we also explained the sig-
nificance of damages, namely, random, where the damage spreads randomly and
uniformly over the network and in particular the network plays no role in spreading
the damage; and infectious spread, where the damage spreads through the network,
with one node infecting others with some probability.
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Chapter 2
Information Propagation in a Social
Network: The Case of a Fish Schooling
Algorithm

A. Brabazon, W. Cui and M. O’Neill

Abstract The propagation of information about the environment amongst animals
via social communication has attracted increasing research interest in recent decades
with the realisation that many animal species engage in subtle forms of information
transfer which had previously escaped notice. From an evolutionary perspective,
the widespread existence of social communication mechanisms is not surprising
given the significant benefits which can accrue to behaviours such as sharing of
information on resources and on environmental threats. More generally, we can con-
sider this process as information flowing between a network of nodes or agents,
wherein each agent receives inputs from their senses, processes this information,
and in turn through their resulting actions, can influence subsequent actions of other
agents. Social communication mechanisms of organisms have inspired the develop-
ment of several powerful families of optimization algorithms including ant colony
optimization and honey bee optimization algorithms. One interesting example of
information propagation is provided by the shoaling and schooling behaviours of
fish. In this chapter we develop an optimization algorithm (the Fish Algorithm)
which is inspired by the schooling behaviour of ‘golden shiner’ fish (Notemigonus
crysoleucas) and explore the relative importance of social information propagation
and individual perception mechanisms in explaining the resulting performance of
the algorithm.
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2.1 Introduction

Swarm behaviour has long attracted research attention with the ‘flocking’ (‘boids’)
simulation by Reynolds [31], which mimicked the flocking behaviour of birds, being
one of the earliest and best-known examples of such work. In these simulations the
flock has no leader (no global control) and co-ordinated movement emerges from
the local interactions of individuals in the population. The simulation embeds a few
simple rules whereby individuals move in the same direction as their neighbours,
remain close to their neighbours, and avoid collisions with their neighbours (produc-
ing alignment, cohesion and separation). The key characteristic is that each agent
only needs local information when deciding how to adjust their movements and
yet this, allied to the three simple rules, is sufficient to ensure globally-coordinated
behaviour at flock level.

More recently, mechanisms of collective intelligence and their application as
practical problem-solving tools, has attracted considerable research interest leading
to the development of several families of swarm-inspired algorithms including, ant-
colony optimization [7, 9–12], particle swarm optimization [13, 17, 18], bacterial
foraging optimization algorithms [28, 29], honey bee algorithms [8, 23, 30, 41],
and a developing literature on fish school algorithms. A critical aspect of all of these
algorithms is that powerful, emergent, problem-solving occurs as a result of the
propagation or sharing of information among a network of individuals, where each
individual only possesses local information. Typically the algorithms emphasise the
importance of sensing and of communication processes between the agents, and
this leads in turn to a discussion of what the agents ‘know’ and how information is
propagated or ‘spread’ between individual nodes or agents in the population.

2.1.1 Fish Schooling

Biologists draw an important distinction between dispersion and aggregation
economies. In a dispersion economy an increase in group size is correlated with a
decrease in the fitness of individual group members, so maximal welfare is obtained
when individuals are dispersed and solitary. In contrast, aggregation economies
emphasise how group membership can increase the survival rate of individuals par-
ticularly when population density is low. A particular example of an aggregation
economy is exhibited by some social species of fish which ‘shoal’. ‘Shoaling behav-
iour’ occurs when fish are observed to cluster together. If the fish also demonstrate
a tendency to swim in the same direction in a coordinated manner they are said
to ‘school’. These behaviours are common. Approximately a quarter of fish shoal
for their entire lives (‘obligate shoalers’ such as tuna, herrings and anchovy) and
approximately half shoal for at least part of their lives (‘facultative shoalers’ such as
Atlantic cod). More than 4,000 species of pelagic fish are known to be schooling [33]
and fish aggregations can be very large with Parrish et al. [27] noting that herring
can form schools of a billion or more fish.
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Fish shoal and school for mutual protection and to synergistically achieve certain
tasks [6]. The benefits include defence against predators as the shoal possesses ‘many
eyes’ (or distributed sensing) and has a high-level of vigilance. There is also better
protection from individual capture by predators due to the predator confusion effect
(the many moving targets overloads the predator’s visual channel). The shoal may
exhibit enhanced foraging success as many eyes search for food and information
on food finds is transmitted through the shoal as the fish can visually monitor each
other’s behaviour. Another claimed benefit of schooling is increased hydrodynamic
efficiency as the school moves through the water [33].

Schooling behaviour may also reduce or even eliminate the need for sleep. During
waking, the brain of most vertebrates is busy processing sensory information, partic-
ularly visual information, and this conflicts with the need to refresh and consolidate
memories [22]. During schooling, the need for sensory processing, particularly by
fish inside the school, is greatly lessened and the burden of sensory processing is
shifted from individuals to the entire school [22]. Schooling behavioursmay therefore
play a role similar to that of restful waking or sleep in non-schooling fish species.

2.1.2 How Do Fish Schools Make Decisions?

A natural question facing any modeller who is seeking to develop an optimization
algorithm using fish school inspired behaviours is how do fish schools actually make
decisions—and critically, is there any theoretical reason to suppose that distributed
sensing can generate a more ‘intelligent’ decision than the decision that could be
made by an individual fish?

When we consider the dynamic environment which faces a school of fish, it is
apparent that many complex decisions are faced. In which direction should it swim
if faced by a predator? When should it stop and forage? When and where should it
migrate? In contrast to mammal herds, fish schools have no leader. Each of the fish
in a school has similar sensing capabilities and similar behaviour patterns for acting
on sensory information [33] but there is no strong evidence that individual fish can
undertake highly complex information processing.

A recent study [35] has suggested that fish schools may implement a form of
consensus-based decision making employing a simple quorum rule. Under a quo-
rum rule, an individual’s probability of committing to a particular decision option
increases sharply when a threshold number of other individuals have committed to
it. Hence, if individuals can observe the decisions of others before committing them-
selves to a decision such aswhat direction inwhich to swim, a relatively naive copying
behaviour can be an effective strategy for successful decision making, without the
need for individuals to undertake complicated information processing.

Distributed perception and quorumdecision processes combine therefore to create
a form of collective intelligence which can reduce the need to undertake complex
cognition at agent level, and can also allow robust decision making to take place
even when individual perceptions are noisy. The quality of the decision and the size
of the group are highly correlated [35] so the quality of the decision increases as
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group size increases. This suggests that fish school behaviours can indeed form a
useful platform for the development of optimization algorithms. In this study we
propose an optimization algorithm inspired by a recent study by Berdahl et al. [3]
of golden shiner fish and within this framework, explore the relative importance of
social information propagation and individual perception mechanisms in explaining
the resulting performance of the algorithm.

The remainder of this contribution is organised as follows. Section2.2 provides
some background literature on previous work which has adopted a fish school
metaphor in the development of optimization algorithms and on the specific bio-
logical model underlying this study. Section2.3 describes the proposed algorithm
(termed the ‘Fish Algorithm’). The results from a series of test problems are provided
in Sect. 2.5 and finally, conclusions and opportunities for future work are discussed
in Sect. 2.6.

2.2 Background

A number of previous studies have previously employed a fish school metaphor to
develop algorithms for optimization and clustering ([1, 2, 16, 19, 38, 44] provide a
sampling of this work). Two of the better-known approaches are Fish School Search
(FSS) [2] and the Artificial Fish Swarm Algorithm (AFSA) [19].

In FSS the algorithm implements three fish behaviours, namely feeding, swim-
ming and breeding. The behaviour of feeding is inspired by the natural instinct of
fishes to feed, feeding here is a metaphor for the evaluation of candidate solutions
in the search space; the swimming behaviour aims at mimicking the coordinated
movement of fish in a school guiding the search process; the breeding behaviour is
inspired by natural selection a metaphor for exploitation of better-adapted candidate
solutions. The fish (agents) swim (search) for food (candidate solutions) in an aquar-
ium (search space) and the weight of each fish acts as an innate memory of its past
individual success. Unlike particle swarm optimization (PSO) [17, 18], no direct
memory of a personal best location or a global best location is maintained. FSS has
shown itself to be a powerful optimization algorithm demonstrating good results on
a range of optimization problems.

TheAFSA [19] embeds a number of fish behaviours including preying, swarming,
and following so that the behaviour of an artificial fish depends on its its current state,
its local environmental state (including the quality of its current location and the states
of nearby companions). A good review of the recent literature on AFSA is provided
in [24].

2.2.1 Application of Fish School Algorithms

Fish school algorithms have been applied for a wide variety of applications and an
excellent overview of these is provided by [24]. Canonical versions of fish school
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algorithms typically employ a real-valued representation and are used to search in an
environment/problem space for a ‘point’ which corresponds to an optimal solution
vector (a simple exemplar would be a vector of parameters for a mathematical model
which is being calibrated using a training dataset). Hence, the algorithms can be
applied to any real-valued optimization problem. The canonical algorithms can also
be modified for application to discrete optimization, multi-objective optimization
and clustering.

A sampling of the applications for which fish school algorithms have been
employed include, the determination of the optimal deployment strategy for nodes
in a wireless network [4, 42]; the optimal deployment of directional visible light
sensor networks for battlefield surveillance and intrusion detection [43]; road traffic
network design [21]; the optimization of weights in a feed-forward neural network
model [40]; quality of service (QoS) graded optimization in electric power commu-
nication networks [25]; the optimization of the parameters of membership functions
for a fuzzy logic controller [36]; task scheduling in a multi robot group [37]; aircraft
landing scheduling in a multi-runway airport [5]; and efficient job scheduling in grid
computing [14].

2.2.2 Golden Shiner Fish

A practical issue that arises in attempting to develop an algorithm based on the
behaviour of fish schools is that we have relatively little hard data on the behavioural
mechanisms which underlie schooling phenomena. At the level of the individual,
agents respond to their own sensory inputs, physiological and cognitive states, and
locomotory constraints [15] and it is not trivial to disentangle the relative influence
of each of these. At group-level, it is often difficult to experimentally observe the
mechanics of the movement of animal groups or fish schools, and hence much pre-
vious work developing fish school algorithms has relied on high-level observations
of fish behaviour rather than on granular empirical data on these behaviours.

In this study we draw inspiration from a detailed study of the behaviour of a
species of schooling fish ‘golden shiners’ which display a marked preference for
shaded habitat [3]. These fish are strongly social and form shoals of some 200–250
individuals in the fresh-water lakes where they live.

In order to investigate the mechanism underlying the observed collective response
of golden shiner fish to light gradients, fish were tracked individually to obtain
information on individual and group trajectories. The study examined the degree
to which the motion of individuals is explained by individual perception (steepest
direction of light gradient as seen by the individual fish) and social influences based
on distributed perception (positions of conspecifics). The results indicated that an
individual’s acceleration was more influenced by the location of conspecifics than
by locally-perceived environmental gradients. When the magnitude of the social
vector was high (all conspecifics moving in similar direction) the social influence
was dominant. As noted by [32], all forms of animal communication are closely tied
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to the senses. In the case of fish, visual cues form the primary basis of the social
communication mechanism as schooling fish are able to observe the movements of
their neighbouring conspecifics.

2.3 Fish Algorithm

An important question that underlies the design of foraging strategies, or the design
of optimization algorithms, is what is the most effective way of searching for objects
whose location is not known a priori. In foraging, the search could be guided by exter-
nal cues, either via past experience (memory) or sensory inputs (such as vision) of the
searcher. Alternatively, the search process could be stochastic (i.e. undirected).When
the location of the target objects is unknown, a degree of ‘guessing’ is unavoidable,
and probabilistic or stochastic strategies are required [39].

In the proposed algorithm, the movement of each fish is governed by three
biologically-inspired factors which are described below, and also embeds a stochas-
tic element. In each iteration of the algorithm, a fish is displaced from its previous
position through the application of a velocity vector:

pi,t = pi,t−1 + vi,t (2.1)

where pi,t is the position of the i th fish at current iteration of the algorithm (t), pi,t−1
is the position of the i th fish at the previous iteration (t − 1), and vi,t is its velocity.

The velocity update is a composite of three elements, prior period velocity, an
individual perception mechanism, and social influence via the distributed perception
of conspecifics. The update is:

vi,t = vi,t−1 + DPi,t + IPi,t (2.2)

or more generally
vi,t = w1vi,t−1 + w2DPi,t + w3IPi,t (2.3)

The difference between the two update equations is that weight coefficients are
given to each of the update items in Eq.2.3. In all the experiments of this study,
Eq.2.2 is used for velocity update. While the form of the velocity update bears a
passing resemblance to the standard PSO velocity update, in that both have three
terms, it should be noted that the operationalisation of the individual perception
and distributed perception mechanisms is completely different to the memory-based
concepts of pbest and gbest in PSO. The next subsection explains the operation of
the two perception mechanisms.

2.3.1 Prior Period Velocity

The inclusion of a prior period velocity can be considered as a proxy formomentumor
inertia. Although this feature was not described in the study of golden shiner fish [3],



2 Information Propagation in a Social Network … 33

the inclusion of this term is motivated by empirical evidence from the movement
ecology literature which indicates that organisms tend to move with a ‘directional
persistence’ [39].

2.3.2 Distributed Perception Influence

In all social models, a key element is how the overall population influences the
decisions of each agent at each time step. Typically, the actions of each agent are
influenced by a subset of the population who are within an ‘interaction range’ of
them. This influence can be modelled in a variety of ways including the fraction of
an individual’s neighbours taking a particular course of action or the action of their
nearest neighbour. In this study we model the distributed perception influence for
the i th fish by the following:

DPi =
∑NDP

i
j=1 (p j − pi )

NDP
i

, j �= i (2.4)

where pi is the position of the i th fish, and the sum is calculated over all neighbours
within an assumed range of interaction of the i th fish rDP, that is 0 <| p j − pi |≤ rDP,
where p j is the position of the j th neighbouring fish, and NDP

i is number of neigh-
bours in the assumed range of interaction of the i th fish. If there are no neighbours
in its assumed range of interaction, this term becomes zero. Figure2.1 shows how
the i th fish is affected by the three neighbouring fish (p1, p2, p3) which are within
its visible range (defined by the radius rDP).

Alternative methods of modelling this social influence could be implemented
such as only considering neighbours within the angular visual range of each agent
as suggested by Miller et al. [26]. While this would be more plausible from a bio-
logical perspective, it would impose additional computational complexity so we use
a simpler approach in this chapter which implicitly assumes 360◦ vision. Note that

Fig. 2.1 Illustration of
distributed perception
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Fig. 2.2 Illustration of
individual perception

in this mechanism, no direct account is taken of the light gradient in any direction
by an individual fish, rather the influence on the movement of a fish is completely
determined by the movement of its neighbours.

2.3.3 Individual Perception Influence

Individual perception is implemented as follows. At each update, each fish assesses
the local ‘light’ gradient surrounding it, by drawing NIP

i samples within an assumed
‘visibility’ region of radius rIP. While a real-world fish will have a specific angle
of vision depending on its own body structure, we adopt a random sampling in a
hypersphere around the fish on grounds of generality. The individual perception
influence for the i th fish is determined by:

IPi =
∑NIP

i
j=1(s j − pi ) ∗ f i t j

∑NIP
i

j=1 f i t j

, j �= i (2.5)

where pi is the position of the i th fish, rIP is the radius of the assumed range within
which the i th fish can sense environmental information,NIP

i is the number of samples
which the i th fish generates, s j is the position of the j th sample (0 <| s j − pi |≤ rIP),
and f i t j is the fitness value (or ‘quality’) of the j th sample. Figure2.2 demonstrates
how the i th fish is influenced by the five random samples (s1 − s5) in the perception
range with a radius rIP.

2.4 Experimental Design

In this section we describe the test functions used in all our experiments, we outline
the precise experiments undertaken in this study, and we describe the associated
experimental parameters.
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2.4.1 Benchmark Functions

Twelve standard benchmark problems (outlined in Table2.1) taken from the
optimization literature were used to test the developed algorithms. All problems
are examined at two levels of dimensionality, namely 30 and 60 dimensions. The
aim in all the experiments is to find the vector of values which minimises the value
of a test function, hence, we can define the fitness of a solution vector as the value of
the test function at that location, with lower values (in this case, aswe areminimising)
indicating a better quality (or ‘fitter’) solution.

Two of the functions namely, the Sphere and Rosenbrock functions, represent
unimodal problems. The Griewank and Rastrigin functions are more complex and
containmultiple local optima. In following paragraphs,we provide a brief description
of these test functions in order to provide some intuition as to their structure.

The last six problems are drawn from the optimization benchmark functions used
in the IEEE CEC 2005 Special Session on Real-Parameter Optimization [34]. An
interesting aspect of these functions is that the global optima are shifted or rotated
(shift is given by the parameter o, and the parameter M represents an orthogonal
matrix which is used to rotate the function). The net effect of these processes is to

Table 2.1 Twelve optimization problems

Name Function Search space Optima

Sphere F1(x) = ∑n
i=1 x2i [−3.12 7.12]D 0

Rosenbrock F2(x) = ∑n−1
i=1 [100(xi+1 − x2i )2 + (1 − xi )

2] [−30 30]D 0

Ackley F3(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x2i

)
[−32.768 32.768]D 0

− exp

(
1
D

√∑D
i=1 cos(2πxi )

)
+ 20 + e

Griewank F4(x) = 1 + ∑n
i=1

x2i
4000 − ∏n

i=1 cos(
xi√

i
) [−600 600]D 0

Rastrigin F5(x) = 10n + ∑n
i=1[x2i − 10 cos(2πxi )] [−5.12 5.12]D 0

Schwefel F6(x) = 418.9829 × D − ∑D
i=1 xi sin

(
|xi | 12

)
[−500 500]D 0

Shifted sphere F7(x) = ∑D
i=1 z2i − 450 , z = x − o [−100 100]D −450

Shifted
rosenbrock

F8(x) =∑D−1
i=1 100(z2i − zi+1)

2 + (xi − 1)2 + 390 ,

[−100 100]D 390

z = x − o + 1

Shifted rotated
ackley

F9(x) = −20 exp(−0.2
√

1
D

∑D
i=1 z2i )

− exp( 1
D

∑D
i=1 cos(2π zi ))

[−32 32]D −140

+ 20 + e − 140 , z = (x − o) ∗ M

Shifted rotated
griewank

F10(x) = ∑D
i=1

z2i
4000 − ∏D

i=1 cos(
zi√

i
) + 1

− 180 , z = (x − o) ∗ M

[−600 600]D −180

Shifted rotated
rastrigin

F11(x) = ∑D
i=1 (z2i − 10 cos(2π zi ) + 10)

− 330 , z = (x − o) ∗ M
[−5 5]D −310

Shifted
schwefel

F12(x) = ∑D
i=1(

∑i
j=1 zi )

2 − 450 , z = x − o [−100 100]D −450
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move the global optimum away from the origin in each case, due to the known issues
with using standard, benchmark functions which have their optimum at the origin
[20]. These issues can sometimes be exploited by algorithms to produce an upward
bias in reported performance. Problems include the fact that,

1. many popular benchmark functions are symmetric, and hence have the same
optimal parameter values for all dimensions (for example, a vector of zeros); and

2. the global optimummay lie at the centre of the search space (this canproduce prob-
lems if search agents are initialised randomly along the range of each dimension).

Hence, considering the conventional sphere function,

f (x) =
D∑

i=1

x2i

the shifted sphere function is given by:

f (x) =
D∑

i=1

(xi − oi )
2

and the shifted rotated sphere function is given by:

f (x) =
D∑

i=1

[(xi − oi ) ∗ M]2

2.4.1.1 Sphere Function

This is a relatively simple test function as it is continuous, convex and unimodal. The
function is defined as

∑n
i=1 x2i . In Fig. 2.3, n is set to 2 for ease of illustration, and

−5.12 ≤ xi ≤ 5.12. The objective is to find the values of x1 and x2 which minimise
the value of the function. By inspection, the global minimum (zero) occurs when x1
and x2 are zero. While we illustrate the function here for the case where there are
two inputs, in our experiments on each test function we undertake a search for the
global optimum in both 30 and 60 dimensions.

2.4.1.2 Griewangk’s Function

Griewangk’s function has many local minima in the region of the global minimum,
with these minima being regularly distributed. The presence of many local minima
renders the determination of the optimal value for this function more difficult than
is the case for the Sphere function. The function is defined as:

F(x) = 1 +
n∑

i=1

[
x2i

4000

]
−

n∏

i=1

[
cos

(
xi√

i

)]
(2.6)
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Fig. 2.3 Sphere function

Fig. 2.4 Griewangk’s
function, range +/− 5

where n = 2 (in Fig. 2.4), and−600 ≤ xi ≤ 600. The global minimum (zero) occurs
when all xi are 0.

2.4.1.3 Rastrigin’s Function

Rastrigin’s function has a cosinemodulation to producemany localminima (Fig. 2.5).
This produces a test function which is highly multimodal. However, the location of
the minima are regularly distributed. The function is defined as:

F(x) = n ∗ A +
n∑

i=1

[
x2i − A ∗ cos(2πxi )

]
(2.7)

with A = 10 and n = 2 (in the illustration ) and −5.12 ≤ xi ≤ 5.12. The global
minimum (zero) occurs when all xi are zero.
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Fig. 2.5 Rastrigin’s function

The Rosenbrock function (also known as Rosenbrock’s valley or Rosenbrock’s
banana function) is a non-convex function. The global minimum is inside a long,
narrow, parabolic shaped flat valley. While it is relatively easy to find the valley, it is
difficult to find the global optimum point within this.

2.4.2 Experiments

Two groups of experiments are undertaken. Initially, we determine the performance
of the canonical fish algorithm (denoted as ‘FA’) which uses the velocity update
described in Eq.2.2, on all the test problems. Next we develop three variants of the
canonical FA which switch off, in turn, the momentum, the distributed perception
(DP) and the individual perception (IP) influences (these algorithmic variants are
denoted as FA1, FA2 and FA3 respectively). The performance of each of these vari-
ants on the test problems is examined in order to gain insight into the role that each
of the three components of the velocity update step plays in determining the FA’s
overall performance.

The second set of experiments examines the sensitivity of the canonical FA to
changes in two of its parameters, namely the radius of perception in both rDP &rIP,
and the number of samples (denoted as s) used in the simulated individual perception
(IP) component. The chosen values of these parameters are shown in Table2.2.

From a biological point of view, it is plausible to assume that fish have a bigger
radius for DP than IP, namely rDP > rIP. The value chosen for the two radii is
problem specific, as it is influenced by the choice of the number of fish (N), the
radius (size) of the search space (R) and the dimensionality of the this space (D). In
the FA algorithm, the values of rDP and rIP were chosen after initial experimentation
as R

1.5 D√N
and R

1.8 D√N
so that in most cases each fish has neighbouring fish within the

radius rDP.
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Table 2.2 Parameter setting of algorithms

Algorithm Radius of Radius of Number of Velocity updating equation

DP (rDP) IP (rIP) samples in IP (s)

FA R
1.5 D√N

R
1.8 D√N

5 vi,t = vi,t−1 + DPi,t + IPi,t

FA1 R
1.5 D√N

R
1.8 D√N

5 vi,t = 0 + DPi,t + IPi,t

FA2 R
1.5 D√N

R
1.8 D√N

5 vi,t = vi,t−1 + 0 + IPi,t

FA3 R
1.5 D√N

R
1.8 D√N

5 vi,t = vi,t−1 + DPi,t + 0

FAa R
3 D√N

R
3.6 D√N

5 vi,t = vi,t−1 + DPi,t + IPi,t

FAb R
1 D√N

R
1 D√N

5 vi,t = vi,t−1 + DPi,t + IPi,t

FAc R
1.5 D√N

R
1.8 D√N

10 vi,t = vi,t−1 + DPi,t + IPi,t

FAd R
1.5 D√N

R
1.8 D√N

1 vi,t = vi,t−1 + DPi,t + IPi,t

Note R is the radius of the search space
D is the dimension of the test problem
N is the number of fish

In order to undertake some sensitivity analysis, four variants of the FA algorithm
are developed. In the FAa algorithm, the values of rDP and rIP are set to be half of
those in the FA algorithm. In the FAb algorithm, the values of rDP and rIP are set
to be larger than those in the FA algorithm. In the FAc algorithm, the value of s is
increased to 10 (as against 5 in the FA algorithm). In the FAd algorithm, the value
of s is reduced to 1. Note that in these latter two cases, the effect is to alter the
implicit weighting accorded to the IP mechanism in the velocity update step, as in all
our experiments, each algorithmic variant is accorded the same number of function
evaluations.

We note that in this study the focus is not on designing the ‘best’ possible vari-
ant of the fish algorithm for optimization purposes. Rather, using the framework
outlined in Sect. 2.3 we seek to examine the relative importance of social informa-
tion propagation and individual perception mechanisms in explaining the resulting
performance of the algorithm. We also wish to examine the sensitivity of the per-
formance to changes in key parameters in each mechanism (range of perception and
relative weight placed on IP vs. DP).

2.4.3 Experimental Settings

Table2.3 describes the parameter settings adopted. In each experiment, 40 fish are
used. All reported results are averaged over 30 runs and we test the statistical signif-
icance of all differences in the means using a t-test. In all experiments, an equivalent
number of function evaluations are undertaken in order to ensure a fair comparison
between the different algorithms. The experiments were undertaken on an Intel Core
i7 (2.93GHz) system with 12GB RAM.
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Table 2.3 Parameter setting
of experiments

Parameters Values

Trials 30

Size of fish school N = 40

Dimension of problem D = 30, 60

2.5 Results

Tables2.4, 2.5, 2.6 and 2.7, and Figs. 2.6 and 2.7 present the results from our
experiments. The Tables show for each algorithm variant & test function combi-
nation (for both D = 30 and D = 60), the end of run evaluation for each test function
at the best location (solution vector) found across all 30 runs (‘Best’), the evaluation
of each benchmark function averaged over the best location (solution vector) found
on each of the 30 individual runs (‘Mean’), and the associated standard deviation
over all 30 runs. The Tables also present the results from our statistical testing of a
variety of hypotheses. In all cases, low p values indicate that the null hypothesis of
‘no difference between the means’ is rejected (a 95% level is applied).

Figures2.6 and 2.7 illustrate the ‘Mean’ (defined as above) evaluation of each
benchmark function and indicate how this value changes (improves) as the number
of iterations increases (only the D = 60 case is shown in order to conserve space).

2.5.1 Hypotheses Examined

In order to facilitate interpretation of the statistical tests we outline the notation used
below.

Thefirst set of hypotheses concern the testing of the importance of each component
of the fish algorithm (FA). The null hypothesis is that there is no difference in the
performance (i.e. ‘Mean’) between the algorithm with a component turned off and
the canonical FA. Therefore three hypotheses are tested as follows.

• H1: no difference in performance between the FA and the FA1 algorithm;
• H2: no difference in performance between the FA and the FA2 algorithm;
• H3: no difference in performance between the FA and the FA3 algorithm.

The next set of hypotheses concern the analysis of differing parameter settings for
FA. Four cases are examined, FAa, FAb FAc and FAd and the relevant hypotheses
are denoted as follows.

• Ha : no difference in performance between the FA and the FAa algorithm;
• Hb: no difference in performance between the FA and the FAb algorithm;
• Hc: no difference in performance between the FA and the FAc algorithm;
• Hd : no difference in performance between the FA and the FAd algorithm.
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Table 2.4 End of run results for each algorithmic variant for F1–F6 (30D case)

Algorithm Function 1 Function 2 Function 3 Function 4 Function 5 Function 6

FA Best 23.20 5,711,602 4.75 92.64 1269.10 8572.38

Mean 31.60 10,997,353 5.18 110.91 1605.36 9109.52

Std 4.09 1,809,538 0.15 9.76 123.22 217.68

FAa Best 116.19 126,828,764 8.11 423.36 5755.66 7093.78

Mean 160.83 229,847,840 9.03 550.35 7076.47 7563.07

Std 17.70 38,217,754 0.29 57.36 606.75 263.16

Ha 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FAb Best 22.95 2,941,104 4.63 68.27 1141.99 8476.14

Mean 28.31 7,045,931 5.06 96.18 1426.84 9228.50

Std 2.15 1,817,708 0.15 9.30 105.46 193.53

Hb 0.0003 0.0000 0.0035 0.0000 0.0000 0.0291

FAc Best 25.47 9,864,494 4.89 100.96 1400.92 8129.12

Mean 33.90 15,997,277 5.19 119.82 1734.15 9224.45

Std 3.66 2,195,339 0.13 9.56 135.65 345.81

Hc 0.0254 0.0000 0.8633 0.0007 0.0003 0.1289

FAd Best 67.55 8,788,5 7.48 334.16 4275.20 6603.14

Mean 125.18 130,952,522 8.31 432.63 5439.34 7291.36

Std 27.59 63,633,167 0.40 65.45 781.83 238.38

Hd 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA1 Best 5.87 769,851 3.24 30.26 605.85 9085.49

Mean 11.95 2,016,472 3.82 40.37 804.36 9638.35

Std 2.73 863,653 0.22 7.76 109.39 197.50

H1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA2 Best 142.02 102,254,451 8.65 391.98 5136.39 6705.87

Mean 161.94 219,256,368 9.03 537.83 6996.73 7498.80

Std 11.31 42,204,038 0.19 56.26 553.66 320.17

H2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA3 Best 54.24 34,303,799 6.69 174.07 2803.55 8402.80

Mean 118.95 147,475,612 8.08 375.25 4866.90 9358.78

Std 40.72 76,584,873 0.90 104.84 1748.87 403.90

H3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043

2.5.2 Discussion of Results

Initially we overview Figs. 2.6 and 2.7 to get an idea of the general trends in the
results. Taking a high-level perspective, we note that while the performance of each
algorithmic variant varies depending on the test function examined, the performance
of the canonical version of FA is generally better than that of FA2 or FA3 (which
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Table 2.5 End of run results for each algorithmic variant for F7–F12 (30D case)

Algorithm Function 7 Function 8 Function 9 Function 10 Function 11 Function 12

FA Best 43609.53 33,251,772,403 –119.15 1961.38 341.18 69551.47

Mean 73399.67 51,123,866,487 –119.06 3363.09 429.12 153085.92

Std 7333.86 5,270,435,371 0.03 426.19 35.67 45548.08

FAa Best 60402.13 36,139,582,367 –119.18 1687.58 273.99 73671.21

Mean 73453.61 52,326,755,580 –119.06 2343.38 345.95 92338.86

Std 6757.77 7,917,980,119 0.03 241.66 35.97 11512.57

Ha 0.9765 0.4913 0.7135 0.0000 0.0000 0.0000

FAb Best 48692.70 18,887,598,328 –119.19 2137.20 246.97 68000.39

Mean 56701.66 29,121,822,007 –119.07 2684.83 307.88 123883.58

Std 4172.39 3,406,108,447 0.05 196.01 29.30 46059.22

Hb 0.0000 0.0000 0.1841 0.0000 0.0000 0.0165

FAc Best 63122.53 46,219,215,386 –119.15 2833.47 399.57 69209.61

Mean 84807.43 65,737,688,501 –119.02 3928.29 518.35 162667.01

Std 8166.06 11,155,657,744 0.05 462.02 58.75 50988.65

Hc 0.0000 0.0000 0.0025 0.0000 0.0000 0.4459

FAd Best 54346.58 11,983,840,968 –119.26 1372.58 162.86 46895.82

Mean 65107.04 29,184,496,221 –119.14 1788.40 286.61 75499.57

Std 5908.49 7,029,267,934 0.05 228.13 38.78 9330.60

Hd 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA1 Best 63849.53 24,242,817,446 –119.15 2921.08 356.39 63231.72

Mean 78639.07 45,195,413,457 –119.06 3887.02 476.55 127709.92

Std 7724.06 10,278,935,692 0.03 483.17 50.81 45586.37

H1 0.0092 0.0067 0.8309 0.0000 0.0001 0.0352

FA2 Best 51504.81 35,277,599,066 –119.10 1802.17 249.84 85342.68

Mean 71047.83 53,586,077,306 –119.05 2295.75 356.74 99470.47

Std 8502.51 10,895,945,623 0.03 277.71 44.55 7656.39

H2 0.2560 0.2698 0.2514 0.0000 0.0000 0.0000

FA3 Best 60643.40 23,910,071,808 –119.15 2913.74 341.82 74311.54

Mean 101787.20 83,404,345,263 –118.97 4014.97 573.92 144463.81

Std 16783.55 27,221,806,065 0.07 567.37 105.95 37769.59

H3 0.0000 0.0000 0.0000 0.0000 0.0000 0.4281

have DP and IP turned off respectively), but that FA1 variant (in which momentum
is turned off) appears to perform better than FA on several problems. Looking at the
three variants FA1–FA3, FA1 performs better than either of the other two variants,
with FA2 generally slightly outperforming FA3.

Taking the results together, it appears that DP (distributed perception) and IP
(individual perception) contribute usefully to the search process but that the impor-
tance of momentum is not clearly demonstrated. It also appears that the DP and IP
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Table 2.6 End of run results for each algorithmic variant for F1–F6 (60D case)

Algorithm Function 1 Function 2 Function 3 Function 4 Function 5 Function 6

FA Best 287.79 311,582,651 6.10 850.62 4602.89 17392.30

Mean 379.79 607,913,058 9.21 1305.69 15203.91 18062.21

Std 40.32 88,975,366 1.05 142.69 2687.78 324.02

FAa Best 316.91 513,332,990 9.16 1230.04 14316.41 16740.36

Mean 394.05 631,994,795 9.66 1386.62 16719.04 17920.98

Std 32.12 64,533,215 0.22 81.55 1105.92 449.75

Ha 0.1355 0.2350 0.0250 0.0091 0.0060 0.1682

FAb Best 77.71 26,742,064 5.49 243.21 3860.06 19609.69

Mean 88.42 36,348,031 5.92 307.41 4223.62 20443.04

Std 4.12 4,381,860 0.11 18.18 163.05 302.90

Hb 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FAc Best 85.60 43,270,190 5.62 305.97 3916.05 17972.25

Mean 237.08 449,166,558 7.65 776.13 7813.33 18633.15

Std 121.05 247,705,930 1.58 459.70 5026.22 387.10

Hc 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000

FAd Best 312.57 371,304,375 8.89 1013.70 12571.32 16910.43

Mean 388.55 589,343,313 9.70 1360.94 16819.07 17670.53

Std 33.65 104,217,530 0.27 118.10 1412.29 322.42

Hd 0.2795 0.4060 0.0011 0.0544 0.0003 0.0000

FA1 Best 25.57 2,635,463 3.83 82.36 1444.85 19840.50

Mean 30.98 4,880,904 4.18 107.38 1847.15 21007.05

Std 3.58 1,429,855 0.14 11.29 159.25 443.44

H1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA2 Best 322.44 492,743,476 9.16 1017.49 15048.75 17191.05

Mean 387.32 622,753,537 9.62 1334.03 16640.72 18069.47

Std 24.19 69,381,378 0.18 109.47 816.48 392.15

H2 0.3843 0.4742 0.0393 0.3916 0.0069 0.9380

FA3 Best 322.44 492,743,476 8.39 961.99 12802.50 19901.43

Mean 389.43 632,722,577 9.62 1303.44 16563.01 20945.41

Std 26.05 73,067,155 0.33 137.22 1230.47 416.20

H3 0.2764 0.2427 0.0472 0.9508 0.0146 0.0000

mechanisms can produce relatively similar levels of performance by the end of each
experiment.

Next, we take a high-level overview of the performance of FA versus the
algorithmic variants with different parameter settings (FAa–FAd). As before, the
performance of the algorithmic variants depends on the test problem but in gen-
eral, the ordering of performance (on the 60D cases in the Figures) appears to be
FAb > FAc > FA > FAd > FAa. This ordering is plausible as fish in the algorithmic
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Table 2.7 End of run results for each algorithmic variant for F7–F12 (60D case)

Algorithm Function 7 Function 8 Function 9 Function 10 Function 11 Function 12

FA Best 159458.20 101,440,099,772 –118.92 5367.39 1163.32 330672.22

Mean 210503.03 188,388,985,169 –118.80 7107.06 1420.50 397832.08

Std 19728.45 32,095,577,831 0.03 726.08 89.72 37187.04

FAa Best 173831.05 142,801,200,876 –118.92 5655.23 1180.41 284368.86

Mean 213184.06 212,224,115,674 –118.80 7197.15 1420.27 374998.36

Std 17464.80 21,633,796,969 0.04 823.27 107.99 44435.06

Ha 0.5794 0.0013 0.6089 0.6547 0.9928 0.0350

FAb Best 108596.74 59,065,713,240 –118.88 3658.36 884.23 311357.75

Mean 130188.82 70,454,662,207 –118.80 5137.79 1079.93 713842.41

Std 7705.40 6,690,493,140 0.03 686.85 64.09 338861.85

Hb 0.0000 0.0000 0.9847 0.0000 0.0000 0.0000

FAc Best 150520.29 106,064,987,767 –118.85 4919.17 1124.88 308881.61

Mean 181714.55 166,416,739,386 –118.79 7095.28 1330.02 521952.55

Std 13605.42 36,340,990,005 0.03 1036.29 92.02 108045.25

Hc 0.0000 0.0160 0.3545 0.9595 0.0003 0.0000

FAd Best 192437.89 125,451,253,553 –118.93 5592.48 1231.55 239554.04

Mean 218978.72 190,448,882,676 –118.86 7100.64 1426.49 296261.74

Std 12060.85 27,148,876,846 0.03 662.18 89.36 27396.78

Hd 0.0134 0.7504 0.0000 0.9666 0.7655 0.0000

FA1 Best 146554.32 66,996,750,338 –118.89 6427.89 1059.54 351171.76

Mean 162332.97 86,987,862,848 –118.80 7144.74 1162.22 864918.75

Std 9607.24 11,310,775,223 0.03 404.89 57.04 346570.48

H1 0.0000 0.0000 0.8134 0.8048 0.0000 0.0000

FA2 Best 187090.19 140,251,557,412 –118.85 5772.94 1132.50 301394.25

Mean 211949.44 200,622,613,125 –118.79 7009.69 1404.10 393418.16

Std 11137.19 21,475,434,745 0.02 705.40 111.61 46386.99

H2 0.7278 0.0880 0.6529 0.6003 0.5329 0.6858

FA3 Best 197106.30 192,083,954,497 –118.82 6664.71 1300.24 314263.05

Mean 251792.25 274,617,244,480 –118.69 9179.32 1707.49 664776.88

Std 20690.26 44,967,767,801 0.03 1189.09 157.68 193674.39

H3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

variant FAb have a wider ‘perception radius’ than do the fish in any of the other algo-
rithmic variants allowing them to perceive information from a greater volume of
the search space. Conversely, the relatively poorer search performance of FAa is not
unexpected as it has a smaller perception radius than the other algorithm variants.

Hence, from a high-level overview of Figs. 2.6 and 2.7, the key points are that
while IP and DP provide useful information for the search process, the momentum
mechanism does not appear to be as important. It is also evident that the performance
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Fig. 2.6 Average best performance (averaged over 30 trials) of each algorithm variant on test
problems F1–F6 (60D)

of the algorithm is sensitive to choices of perception radius, with increases in this
parameter leading to enhanced performance.

Next, we proceed to look at the results in Tables2.4, 2.5, 2.6 and 2.7 in order to
obtain finer detail.
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Fig. 2.7 Average best performance (averaged over 30 trials) of each algorithm variant on test
problems F7–F12 (60D)

2.5.3 Analysis of Components in FA

Comparing the mean (of the best results found across each of the 30 trials) perfor-
mance of FA with FA1, FA outperforms FA1 in 5 out of 12 cases (30D) and 4 out of
12 cases (60D). In all but one case, the difference in mean performance between the
algorithms is significant. Hence, the conclusion drawn is that there is no compelling
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evidence that the addition of a momentum mechanism has led to enhanced search
performance. It is noted that the inclusion of a momentummechanism in these exper-
iments was motivated by general findings in the behavioural ecology literature [39]
that organisms tend to display directional persistence rather than it being a distinct
mechanism displayed by golden shiner fish [3].

Comparing the performance of FAwithFA2,wenote that FAoutperformsFA2 in 7
out of 12 cases (30D) and 8 out of 12 cases (60D). In 9 cases (30D) and 1 case (60D)
the difference is statistically significant. The conclusion drawn is that FA slightly
outperforms FA2, but that the degree of outperformance becomes less (statistically
speaking) as we move to the 60D case.

Comparing FA with FA3, FA outperforms FA3 in 11 out of 12 cases (30D) and
10 out of 12 cases (60D). In 11 cases (30D) and 8 cases (60D) the difference is
statistically significant. The conclusion drawn is that FA generally outperforms FA3
and that, based on the results for FA2 and FA3, the inclusion of both IP and DP
mechanisms (as distinct from only including one mechanism) produces a better
quality search process.

We also compare the performance of FA2 and FA3, and find that FA2 outperforms
FA3 in 7 out of 12 cases (30D) and 9 out of 12 cases (60D), indicating that a
IP mechanism produces a better search performance than DP alone. This is not
surprising as the DPmechanism is not driven by any feedback from the environment,
and therefore, on its own is similar to a random search process. Aswould be expected,
the standard deviation of the results produced by FA3 is generally higher than those
produced by either FA1 or FA2.

Hence, the results suggest that while social information propagation can usefully
spread information on good locations amongst the population of agents, it needs
to be informed by information from the individual perception mechanism in order
to strongly guide the search process. Combining the results, across the algorithmic
variants we get a general performance ordering of FA1 > FA > FA2 > FA3.

2.5.4 Parameter Sensitivity Analysis

The detailed ‘end of run’ results from the FAa, FAb FAc and FAd variant algorithms
are shown in Tables2.4, 2.5, 2.6 and 2.7. Initially, we compare the results of each
algorithmic variant with the performance of the canonical algorithm FA.

We note that FA outperforms FAa in 8 out of 12 cases (30D) and 9 out of 12
cases (60D). In 9 cases (30D) and 4 cases (60D) these differences are statistically
significant. This suggests that FA generally performs better than FAa, which is not
unexpected given that FA has a wider perception radius.

Examining FA versus FAb, FA performs better in only 2 out of 12 cases (30D)
and 1 out of 12 cases (60D). The differences in mean performance are statistically
significant in 10 (30D) and 11 (60D) cases respectively. The strong performance of
FAb arises as in this variant of the algorithm, the fish have a wider perception radius
than they do in FA.
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Comparing the results of FAa and FAb we note that FAa performs better on the
majority of test problems. Combining the results from the above analyses, we can
conclude that the choice of perception radius is a critical parameter for the algorithm.

The FAc variant employs 10 samples in each IP step. The canonical FA out-
performs FAc in 12 out of 12 cases (30D) but in only 3 out of 12 cases (60D),
with the differences in performance being significant in 8 (30D) and 10 (60D) cases
respectively. It it interesting to note the switch in relative performance when the
dimensionality of the test problems is increased.

In contrast to FAc, the variant FAd only undertakes a single sampling in each IP
step. Comparing FA with FAd, FA performs better in 5 out of 12 cases (30D) and in
7 out of 12 cases (60D). The differences in performances are significant in 12 out of
12 cases (30D) and 6 out of 12 cases (60D).

Comparing FAc and FAd, it is not clearly evident that either outperforms the
other, as the performance ranking between the two varies across the test problems.
The conclusion is that the results from the FA algorithm are not clearly impacted by
choice of number of IP samplings.

2.6 Conclusions

The propagation of information about the environment amongst a population via
social communication has attracted increasing research interest in recent decades
with the realisation that many animal species engage in subtle forms of information
transfer which had previously escaped notice. More generally, we can consider this
process as information flowing in a network of nodes or agents, wherein each agent
receives inputs from their senses and from conspecifics, processes this information,
and in turn through their resulting actions, subsequently influence actions of other
agents.

In this study we draw inspiration from the schooling behaviour of ‘golden shiner’
fish which alter their movement in an effort to track shade and develop a novel
optimization algorithm, the fish algorithm (FA). The FA can be considered as a
swarm algorithm as the search process embeds bottom-up learning via information
flow between agents (fish). We assess the utility of the algorithm on a series of test
problems and undertake an analysis of the algorithm by examining the importance of
its component elements for the search process. The results indicate thatmomentumor
‘directional persistence’mechanism is not found to be particularly useful but that best
results are obtained when using a mix of information from individual perception and
social communication. While social communication can usefully spread information
on good locations amongst the population of agents, it needs to be supplemented by
information from the individual perception mechanism in order to strongly guide the
search process.

The current study indicates several interesting areas for follow up research.
Obviously the results from any study only extend to the test problems and spe-
cific parameter settings examined, and future work could seek to examine the utility
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of the algorithm in additional problem domains. A factor which is not fully included
in current work is that fish do not select shoal mates randomly but rather prefer to
shoal with healthy fish, and fish which are similar in size and age to themselves. The
algorithms developed in this chapter could be adapted to incorporate these issues
more comprehensively.

At an even deeper level, the results of the study highlight the question as to what is
the optimal balance between the use of individual perception and the propagation of
social information in the population? In other words, what weight should be placed
on each factor in order to optimise the search process. Further investigation of this
issue has potential to assist in our understanding as to how best to tailor optimization
algorithms for specific problem environments, and for deepening our understanding
of the foraging strategies of various organisms.
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Chapter 3
Models for Trust Inference in Social
Networks

Cai-Nicolas Ziegler and Jennifer Golbeck

Abstract Interpersonal trust between any two people in social networks is hard
to gauge, and even harder to infer, given that these two people are not connected
by an immediate social link, such as friendship or acquaintanceship. In order to be
able to make accurate inferences for an arbitrary tuple of people in a given social
environment, we present an approach, named Appleseed, that is based on mechanics
taken from neuropsychology, known as spreading activation models. Compelling in
its simplicity, we relate the concept to trust propagation and evaluation in an intuitive
fashion. While Appleseed works very well when paths between two arbitrary people
in the network can be established, no inference of trust is possible when this is
not the case. To this end, we present several algorithms for inferring trust that go
beyond network structure and demonstrate their accuracy in real social networks.
We also show how these algorithms can be augmented with additional data that may
be available in some contexts.

3.1 Introduction

In our world of information overload and global connectivity leveraged through
the Web and other media types, social trust [29] between individuals becomes an
invaluable and precious good. Hereby, trust exerts an enormous impact on decisions
whether to believe or disbelieve information asserted by other peers. Belief should
only be accorded to statements from people we deem trustworthy. However, when
supposing huge social networks such as the case for social media platforms, trust
judgements based on personal experience and acquaintanceship become unfeasible.
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In general, we accord trust, which has been defined as the “subjective expectation an
agent has about another’s future behavior based on the history of their encounters”
[30], to only small numbers of people. These people, again, trust another limited
set of people, and so forth. The network structure emanating from our person (see
Fig. 3.1), composed of trust statements linking individuals, constitutes the basis for
trusting people we do not know personally.

Wemight be tempted to adopt the policy of trusting all those peoplewho are trusted
by personswe trust. Trustwould thus propagate through the network [21] and become
accorded whenever two individuals can reach each other via at least one trust path.
However, common sense tells us we should not rely upon this strategy. More com-
plex metrics are needed in order to more sensibly evaluate trust between two persons.
Among other features, these trust metrics must take into account social and psycho-
logical aspects of trust and suffice criteria of computability and scalability likewise.

When adopting the most basic policy of trust propagation, all those people who
are trusted by persons we trust are considered likewise trustworthy. Trust would thus
propagate through the network and become accorded whenever two individuals can
reach each other via at least one trust path. However, owing to certain implications of
interpersonal trust, e.g., attack-resistance, trust decay, etc., more complexmetrics are
needed to sensibly evaluate social trust. Subtle social and psychological aspects must
be taken into account and specific criteria of computability and scalability satisfied.

In this chapter, we aim at designing one such complex trust metric,1 particularly
tailored to social filtering tasks by virtue of its ability to infer continuous trust values
through fixpoint iteration, rendering ordered trust-rank lists feasible.

However, one challenge to using network data for trust inference is that when
there are few or no paths to a node in the network, the algorithms may not be able

1 Note that trust concepts commonly adopted forwebs of trust, and similar trust network applications,
are largely general and do not cover specifics such as “situational trust” [26], as has been pointed
out in [13]. For instance, agent ai may blindly trust a j with respect to books, but not trust a j with
respect to trusting others, for a j has been found to accord trust to other people too easily. For our
trust propagation scheme at hand, we also suppose this largely uni-dimensional concept of trust.
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to infer a value. Using TidalTrust, another network-based trust inference algorithm,
and data from FilmTrust, a movie rating website with an underlying trust network,
we show that integrating additional, non-network-based information into the trust
computation, can improve the number of node pairs for which a trust value can
be calculated. Integrating the network and data-based models can also improve the
accuracy of these algorithms.

3.1.1 Trust Representation and Model

We assume that all trust information is publicly accessible for any agent in the sys-
tem, e.g., through machine-readable personal homepages distributed over the net-
work. Agents ai ∈ A = {a1, a2, . . . , an} are associated with a partial trust function
Wi ∈ T = {W1, W2, . . . , Wn} each, where Wi : A → [0, 1]⊥ holds, which corre-
sponds to the set of trust assertions that ai has stated.

Inmost cases, functionsWi (a j )will be very sparse as the number of individuals an
agent is able to assign explicit trust ratings for is much smaller than the total number
n of agents. Moreover, the higher the value of Wi (a j ), the more trustworthy ai deems
a j . Conversely, Wi (a j ) = 0 means that ai considers a j to be not trustworthy. The
assignment of trust through continuous values between 0 and 1, and their adopted
semantics, is in perfect accordance with [26], where possible stratifications of trust
values are proposed. Our trust model defines one directed trust graph with nodes
being represented by agents ai ∈ A, and directed edges from nodes ai to nodes a j

representing trust statements Wi (a j ).
For convenience, we introduce the partial function W : A × A → [0, 1]⊥, which

we define as the union of all partial functions Wi ∈ T .

3.1.2 Overview of Trust Metrics for Social Networks

Trust and reputation ranking metrics have primarily been used for the Public Key
Infrastructure (PKI) [4, 23, 28, 33, 34], rating and reputation systems part of online
communities [14, 22, 24], peer-to-peer networks [3, 18–20, 36], and also mobile
computing [7]. Each of these scenarios favors different trust metrics. For instance,
reputation systems for online communities tend to make use of centralized trust
servers that compute global trust values for all users on the system [14]. On the other
hand, peer-to-peer networks of moderate size rely upon distributed approaches that
are in most cases based upon PageRank [18, 36].

Larger social networks, such as the Semantic Web, are made up of millions of
nodes, i.e., agents. The fitness of distributed approaches to trust metric computation,
such as described in [18, 35], hence becomes limited for various reasons:

Trust data storage. Every agent ai needs to store trust rating information about any
other agent a j on the network. Agent ai uses this information in order to merge it
with own trust beliefs and propagates the synthesized information to his trusted
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agents [22]. For a network organized in a decentralized fashion, the number of
agents for whom to keep trust information will still exceed the storage capacities
of most nodes.

Convergence.The structure of networks not under centralized control is diffuse and
commonly not subject to some higher ordering principle or hierarchy. Further-
more, the process of trust propagation is necessarily asynchronous as there is no
central node of authority. Convergence of trust values might thus take a very long
time.

The huge advantage of distributed approaches to trust propagation and computa-
tion, on the other hand, is the immediate availability of computed trust information
about any other agent a j in the system. Moreover, agents have to disclose their trust
assertions only to peers they actually trust [35]. For instance, suppose that ai declares
his trust in a j by Wi (a j ) = 0.1, which is very low. Hence, ai might want a j not to
know about that fact. As distributed metrics only propagate synthesized trust values
from nodes to successor nodes in the trust graph, ai would not have to openly disclose
his trust statements to a j .

As it comes to centralized, i.e., locally computed, metrics, full trust information
access is required for agents inferring trust. Hence, online communities based on
trust require their users to disclose all trust information to the community server,
but not necessarily to other peers [14]. Privacy thus remains preserved. On social
networks such as the Semantic Web, however, there is no such central authority that
computes trust. Any agent might want to do so. Our own trust model, as well as
trust models proposed in [1, 7, 13], are hence based upon the assumption of publicly
available trust information. Though privacy concerns may persist, this assumption is
vital, owing to the afore-mentioned deficiencies of distributed computation models.
Moreover, centralized global metrics, such as depicted in [14, 31], also fail to fit our
requirements: because of the huge number of agents issuing trust statements, only
dedicated server clusters could be able tomanage thewhole bulk of trust relationships.

Scalar metrics, e.g., PKI proposals [4, 23, 28, 33, 34] and those metrics described
in [13], have poor scalability properties, owing to exponential time complexity [33].

Consequently, we advocate local group trust metrics [43] for the Semantic Web
and other large-scale decentralized networks. Local group trust metrics do not only
compute trust values for a specified pair of agents, (ai , a j ) ∈ V × V , but compute
trust ranks for sets of individuals from V . The predicate local refers to the metric’s
network perspective, which is subjective, adopting the position of one of the agents.
That is, trust values assigned to a j ∈ V are different for two different trust sources ai .

Local group trust metrics bear several welcome properties with respect to com-
putability and complexity, which may be summarized as follows:

Partial trust graph exploration. Global metrics require a priori full knowledge of the
entire trust network. Distributed metrics store trust values for all agents in the
system, thus implying massive data storage demands. On the other hand, when
computing trusted neighborhoods, the trust network only needs to be explored
partially: originating from the trust source, one only follows those trust edges that
seem promising, i.e., bearing high trust weights, and which are not too far away
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from the trust source. Inspection of agent nodes is thus performed in a just-in-time
fashion. Hence, prefetching bulk trust information is not required.

Computational scalability. Tightly intertwined with partial trust graph exploration
is computational complexity. Local group trust metrics scale well to any social
network size, as only tiny subsets of relatively constant size2 are visited.

3.2 Design of Local Group Trust Metrics

Local group trust metrics, in their function as means to compute trust neighborhoods,
have not been subject to mainstream research so far. Significant research has effec-
tively been limited to the work done by Levien [22] who has conceived and deployed
the Advogato group trust metric. This section provides an overview of Advogato and
introduces our own Appleseed trust metric, eventually comparing both approaches.

3.2.1 Outline of Advogato Maxflow

The Advogato maximum flow trust metric has been proposed by Levien and Aiken
[24] in order to discover which users are trusted by members of an online community
and which are not. Trust is computed through one centralized community server and
considered relative to a seed of users enjoying supreme trust. However, the metric
is not only applicable to community servers, but also to arbitrary agents which may
compute personalized lists of trusted peers, not only one single global ranking for the
whole community they belong to. In this case, the active agent himself constitutes
the singleton trust seed. The following paragraphs briefly introduce Advogato’s basic
concepts. For more detailed information, refer to [22–24].

3.2.1.1 Trust Computation Steps

Local group trust metrics compute sets of agents trusted by those being part of the
trust seed. In case of Advogato, its input is given by an integer number n, which is
supposed to be equal to the number of members to trust [24], as well as the trust
seed s, which is a subset of the entire set of users A. The output is a characteristic
function that maps each member to a boolean value indicating his trustworthiness:

TrustM : 2A × N
+
0 → (A → {true, false}) (3.1)

The trust model underlying Advogato does not provide support for weighted trust
relationships in its original version.3 Hence, trust edges extending from individual x

2 Supposing identical parameterizations for the metrics in use, as well as similar network structures.
3 Though various levels of peer certification exist, their interpretation does not perfectly align with
weighted trust relationships.
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to y express blind, i.e., full, trust of x in y. The metrics for PKI maintenance suppose
similar models. Maximum integer network flow computation [8] has been investi-
gated by Reiter and Stubblebine [33, 34] in order to make trust metrics more reliable.
Levien adopted and extended this approach for group trust in his Advogato metric.

Capacities CA : A → N are assigned to every community member x ∈ A based
upon the shortest-path distance from the seed to x . Hereby, the capacity of the seed
itself is given by the input parameter n mentioned before,whereas the capacity of each
successive distance level is equal to the capacity of the previous level l divided by the
average outdegree of trust edges e ∈ E extending from l. The trust graph we obtain
hence contains one single source, which is the set of seed nodes considered as one
single “virtual” node, and multiple sinks, i.e., all nodes other than those defining the
seed. Capacities CA(x) constrain nodes. In order to apply Ford-Fulkerson maximum
integer network flow [8], the underlying problem has to be formulated as single-
source/single-sink, having capacities CE : E → N constrain edges instead of nodes.
Hence, Algorithm 3.1 is applied to the old directed graph G = (A, E, CA), resulting
in a new graph structure G ′ = (A′, E ′, CE ′) (Fig. 3.2).

Figure3.3 depicts the outcome of converting node-constrained single-source/mul-
tiple-sink graphs (see Fig. 3.2) into single-source/single-sink ones with capacities
constraining edges.

Conversion is followed by simple integer maximum network flow computation
from the trust seed to the super-sink. Eventually, the trusted agents x are exactly
those peers for whom there is flow from “negative” nodes x− to the super-sink. An
additional constraint needs to be introduced, requiring flow from x− to the super-sink
whenever there is flow from x− to x+. The latter constraint assures that node x does

func transform (G = (A, E, CA)) {
set E ′ ← ∅, A′ ← ∅;
for all x ∈ A do
add node x+ to A′;
add node x− to A′;
if CA(x) ≥ 1 then
add edge (x−, x+) to E ′;
set CE ′ (x−, x+) ← CA(x) − 1;
for all (x, y) ∈ E do
add edge (x+, y−) to E ′;
set CE ′ (x+, y−) ← ∞;

end do
add edge (x−, supersink) to E ′;
set CE ′ (x−, supersink) ← 1;

end if
end do
return G ′ = (A′, E ′, CE ′ );

}

Algorithm 3.1. Trust graph conversion
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Fig. 3.2 Trust graph before
conversion for Advogato

Seed 

c

3

 

a 

5 

b

3

i

0

f

1

g

0

 

d 

0 

 

e 

1 

 

h 

1 

not only serve as an intermediate for the flow to pass through, but is actually added
to the list of trusted agents when reached by network flow. However, the standard
implementation of Ford-Fulkerson traces shortest paths to the sink first [8]. The
above constraint is thus satisfied implicitly already.

1

11

1

0

22

1

4

Seed

h+

e+

a+ b+ c+

c-b-a-

h-

       0 

e-

Super Sink
s

Fig. 3.3 Trust graph after conversion for Advogato



60 C.-N. Ziegler and J. Golbeck

Example 3.1 (Advogato trust computation) Suppose the trust graph depicted in
Fig. 3.2. The only seed node is a with initial capacity CA(a) = 5. Hence, taking
into account the outdegree of a, nodes at unit distance from the seed, i.e., nodes b
and c, are assigned capacities CA(b) = 3 and CA(c) = 3, respectively. The average
outdegree of both nodes is 2.5 so that second level nodes e and h obtain unit capacity.
When computingmaximum integer network flow, agent a will accept himself, b, c, e,
and h as trustworthy peers.

3.2.1.2 Attack-Resistance Properties

Advogato has been designed with resistance against massive attacks from malicious
agents outside of the community in mind. Therefore, an upper bound for the number
of “bad” peers chosen by the metric is provided in [24], along with an informal secu-
rity proof to underpin its fitness. Resistance against malevolent users trying to break
into the community can already be observed in the example depicted by Fig. 3.1,
supposing node n to be “bad”: though agent n is trusted by numerous persons, he is
deemed less trustworthy than, for instance, x . While there are fewer agents trusting
x , these agents enjoy higher trust reputation4 than the numerous persons trusting n.
Hence, it is not just the number of agents trusting an individual i , but also the trust
reputation of these agents that exerts an impact on the trust assigned to i . PageRank
[31] works in a similar fashion and has been claimed to possess properties of attack-
resistance similar to those of the Advogato trust metric [22]. In order to make the
concept of attack-resistance more tangible, Levien proposes the “bottleneck prop-
erty” as a common feature of attack-resistant trust metrics. Informally, this property
states that the “trust quantity accorded to an edge s → t is not significantly affected
by changes to the successors of t” [22].

Attack-resistance features of various trust metrics are discussed in detail in
[23, 38].

3.2.2 The Appleseed Trust Metric

TheAppleseed trustmetric constitutes themain contribution of this chapter and is our
novel proposal for local group trustmetrics. In contrast toAdvogato, being inspiredby
maximum network flow computation, the basic intuition of Appleseed is motivated
by spreading activation models. Spreading activation models have first been pro-
posed by Quillian [32] in order to simulate human comprehension through semantic
memory, and are commonly described as “models of retrieval from long-term mem-
ory in which activation subdivides among paths emanating from an activated mental
representation” [37]. By the time of this writing, the seminal work of Quillian has
been ported to a whole plethora of other disciplines, such as latent semantic indexing

4 With respect to seed node a.
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[5] and text illustration [16]. As an example, we will briefly introduce the spreading
activation approach adopted in [5], used for semantic search in contextual network
graphs, in order to then relate Appleseed to that work.

3.2.2.1 Searches in Contextual Network Graphs

The graph model underlying contextual network search graphs is almost identical in
structure to the one presented in Sect. 3.1.1, i.e., edges (x, y) ∈ E ⊆ A × A connect-
ing nodes x, y ∈ A. Edges are assigned continuousweights through W : E → [0, 1].
Source node s, the node fromwhich we start searching, is activated through an injec-
tion of energy e, which is then propagated to other nodes along edges according to
some set of simple rules: all energy is fully divided among successor nodes with
respect to their normalized local edge weight, i.e., the higher the weight of an edge
(x, y) ∈ E , the higher the portion of energy that flows along that edge. Furthermore,
supposing average outdegrees greater than one, the closer node x to the injection
source s, and the more paths lead from s to x , the higher the amount of energy flow-
ing into x . To eliminate endless, marginal and negligible flow, energy streaming into
node x must exceed threshold T in order not to run dry. The described approach is
captured formally by Algorithm 3.2, which propagates energy recursively.

3.2.2.2 Trust Propagation

Algorithm 3.2 shows the basic intuition behind spreading activation models. In order
to tailor thesemodels to trust computation, later to become theAppleseed trustmetric,
serious adaptations are necessary. For instance, procedure energize(e, s) registers
all energy e that has passed through node x , stored in energy(x). Hence, energy(x)

represents the relevance rank of x . Higher values indicate higher node rank.However,
at the same time, all energy contributing to the rank of x is passed without loss to
successor nodes. Interpreting energy ranks as trust ranks thus implies numerous
issues of semantic consistency as well as computability. Consider the graph depicted
in Fig. 3.4a. Applying spreading activation according to [5], trust ranks of nodes b
and d will be identical. However, intuitively, d should be accorded less trust than b,

procedure energize (e ∈ R
+
0 , s ∈ A) {

energy(s) ← energy(s) + e;
e′ ← e /

∑
(s,n) ∈ E W (s, n);

if e > T then
∀(s, n) ∈ E : energize (e′ · W (s, n), n);

end if
}

Algorithm 3.2. Recursive energy propagation
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Fig. 3.4 Node chains (a)
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since d’s shortest-path distance to the trust seed is higher. Trust decay is commonly
agreed upon [14, 17], for people tend to trust individuals trusted by immediate
friends more than individuals trusted only by friends of friends. Figure3.4b depicts
even more serious issues: all energy, or trust,5 respectively, distributed along edge
(a, b) becomes trapped in a cycle and will never be accorded to any other nodes but
those being part of that cycle, i.e., b, c, and d. These nodes will eventually acquire
infinite trust rank. Obviously, the bottleneck property [22] does not hold. Similar
issues occur with simplified versions of PageRank [31], where cycles accumulating
infinite rank have been dubbed “rank sinks”.

3.2.2.3 Spreading Factor

We handle both issues, i.e., trust decay in node chains and elimination of rank sinks,
by tailoring the algorithm to rely upon our global spreading factor d. Hereby, let in(x)

denote the energy influx into node x . Parameter d then denotes the portion of energy
d · in(x) that node x distributes among successors, while retaining (1−d) · in(x). For
instance, suppose d = 0.85 and energy quantity in(x) = 5.0 flowing into node x .
Then, the total energy distributed to successor nodes amounts to 4.25, while the
energy rank energy(x) of x increases by 0.75. Special treatment is necessary for

5 The terms “energy” and “trust” are used interchangeably in this context.
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nodes with zero outdegree. For simplicity, we assume all nodes to have an outdegree
of at least one, which makes perfect sense, as will be shown later.

The spreading factor concept is very intuitive and, in fact, very close to realmodels
of energy spreading through networks. Observe that the overall amount of energy in
the network, after initial activation in0, does not change over time. More formally,
suppose that energy(x) = 0 for all x ∈ A before injection in0 into source s. Then
the following equation holds in every computation step of our modified spreading
algorithm, incorporating the concept of spreading factor d:

∑

x ∈ A

energy(x) = in0 (3.2)

Spreading factor d may also be seen as the ratio between direct trust in x and
trust in the ability of x to recommend others as trustworthy peers. For instance, Beth
et al. [4] and Maurer [28] explicitly differentiate between direct trust edges and
recommendation edges.

We commonly assume d = 0.85, though other values may also seem reasonable.
For instance, having d ≤ 0.5 allows agents to keep most of the trust they are granted
for themselves and only pass small portions of trust to their peers. Observe that
low values for d favor trust proximity to the source of trust injection, while high
values allow trust to also reach more distant nodes. Furthermore, the introduction
of spreading factor d is crucial for making Appleseed retain Levien’s bottleneck
property, as will be shown in later sections.

3.2.2.4 Rank Normalization

Algorithm 3.2 makes use of edge weight normalization, i.e., the quantity ex→y of
energy distributed along (x, y) from x to successor node y depends on the relative
weight of x → y, i.e., W (x, y) compared to the sum of weights of all outgoing edges
of x :

ex→y = d · in(x) · W (x, y)
∑

(x,s) ∈ E
W (x, s)

(3.3)

Normalization is common practice in many trust metrics, among those PageRank
[31], EigenTrust [18], and AORank [14]. However, while normalized reputation or
trust seem reasonable for models with plain, non-weighted edges, serious interfer-
ences occur when edges are weighted, as is the case for our trust model adopted in
Sect. 3.1.1.

For instance, refer to Fig. 3.5a for unwanted effects: The amounts of energy that
node a accords to successors b and d, i.e., ea→b and ea→d , respectively, are identical
in value. Note that b has issued only one trust statement W (b, c) = 0.25, stating that
b’s trust in c is rather weak. On the other hand, d assigns full trust to individuals e,
f , and g. Nevertheless, the overall trust rank for d will be much higher than for any
successor of d, for c is accorded ea→b ·d, while e, f , and g only obtain ea→d ·d ·1/3
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Fig. 3.5 Issues with trust
normalization

0.25 

0.7 0.7

1

1
1

c 

b 

e

f

d

g

a

(a)

(b)

0.25 

0.7 

0.7

1 

1 b 

c 

a 

each. Hence, c will be trusted three times as much as e, f , and g, which is not
reasonable at all.

3.2.2.5 Backward Trust Propagation

The above issue has already been discussed by Kamvar et al. [18], but no solu-
tion has been proposed therein, arguing that “substantially good results” have been
achieved despite the drawbacks. We propose to alleviate the problem by making use
of backward propagation of trust to the source: whenmetric computation takes place,
additional “virtual” edges (x, s) from every node x ∈ A \ {s} to the trust source s
are created. These edges are assigned full trust W (x, s) = 1. Existing backward
links (x, s), along with their weights, are “overwritten”. Intuitively, every node is
supposed to blindly trust the trust source s, see Fig. 3.5b. The impacts of adding
backward propagation links are threefold:

Mitigating relative trust. Again, we refer to Fig. 3.5a. Trust distribution in the under-
lying case becomes much fairer through backward propagation links, for c now
only obtains ea→b · d · (0.25/(1 + 0.25)) from source s, while e, f , and g are
accorded ea→d · d · (1/4) each. Hence, trust ranks of both e, f , and g amount to
1.25 times the trust assigned to c.

Avoidance of dead ends. Dead ends, i.e., nodes x with zero outdegree, require special
treatment in our computation scheme. Two distinct approaches may be adopted.
First, the portion of incoming trust d · in(x) supposed to be passed to successor
nodes is completely discarded,which contradicts our intuitionof no energy leaving
the system. Second, instead of retaining (1− d) · in(x) of incoming trust, x keeps



3 Models for Trust Inference in Social Networks 65

all trust. The latter approach is also not sensible as it encourages users to not issue
trust statements for their peers. Luckily, with backward propagation of trust, all
nodes are implicitly linked to the trust source s, so that there are no more dead
ends to consider.

Favoring trust proximity. Backward links to the trust source s are favorable for nodes
close to the source, as their eventual trust rank will increase. On the other hand,
nodes further away from s are penalized.

3.2.2.6 Nonlinear Trust Normalization

In addition tobackwardpropagation,wepropose supplementarymeasures to decrease
the negative impact of trust spreading based on relative weights. Situations where
nodes y with poor ratings from x are awarded high overall trust ranks, thanks to the
low outdegree of x , have to be avoided. Taking the squares of local trust weights
provides an appropriate solution:

ex→y = d · in(x) · W (x, y)2
∑

(x,s) ∈ E
W (x, s)2

(3.4)

As an example, refer to node b in Fig. 3.5b. With squared normalization, the total
amount of energy flowing backward to source a increases,while the amount of energy
flowing to the poorly trusted node c decreases significantly. Accorded trust quantities
eb→a and eb→c amount to d · in(b) · (1/1.0625) and d · in(b) · (0.0625/1.0625),
respectively. A more severe penalization of poor trust ratings can be achieved by
selecting powers above two.

3.2.2.7 Algorithm Outline

Having identified modifications to apply to spreading activation models in order
to tailor them for local group trust metrics, we are now able to formulate the core
algorithm of Appleseed. Input and output are characterized as follows:

Trustα : A × R
+
0 × [0, 1] × R

+ → (trust : A → R
+
0 ) (3.5)

The first input parameter specifies trust seed s, the second trust injection e, para-
meter three identifies spreading factor d ∈ [0, 1], and the fourth argument binds
accuracy threshold Tc, which serves as convergence criterion. Similar to Advogato,
the output is an assignment function of trust with domain A. However, Appleseed
allows rankings of agents with respect to trust accorded. Advogato, on the other
hand, only assigns boolean values indicating presence or absence of trust.

Appleseed works with partial trust graph information. Nodes are accessed only
when needed, i.e., when reached by energy flow. Trust ranks trust(x), which
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correspond to energy(x) in Algorithm 3.2, are initialized to 0. Any unknown node u
hence obtains trust(u) = 0. Likewise, virtual trust edges for backward propagation
from node x to the source are added at the moment that x is discovered. In every iter-
ation, for those nodes x reached by flow, the amount of incoming trust is computed
as follows:

in(x) = d ·
∑

(p,x) ∈ E

(
in(p) · W (p, x)

∑
(p,s) ∈ E

W (p, s)

)
(3.6)

Incoming flow for x is hence determined by all flow that predecessors p distribute
along edges (p, x). Note that the above equationmakes use of linear normalization of
relative trust weights. The replacement of linear by nonlinear normalization accord-
ing to Sect. 3.2.2.6 is straight-forward, though. The trust rank of x is updated as
follows:

trust(x) ← trust(x) + (1 − d) · in(x) (3.7)

Trust networks generally contain cycles and thus allow no topological sorting of
nodes. Hence, the computation of in(x) for reachable x ∈ A becomes inherently
recursive. Several iterations for all nodes are required in order to make the computed
information converge towards the least fixpoint. The following criterion has to be sat-
isfied for convergence, relying upon accuracy threshold Tc briefly introduced before.

Definition 3.1 (Termination) Suppose that Ai ⊆ A represents the set of nodes that
were discovered until step i , and trusti (x) the current trust ranks for all x ∈ A. Then
the algorithm terminates when the following condition is satisfied after step i :

∀x ∈ Ai : trusti (x) − trusti−1(x) ≤ Tc (3.8)

Informally, Appleseed terminates when changes of trust ranks with respect to the
preceding iteration i − 1 are not greater than accuracy threshold Tc.

Moreover, when supposing spreading factor d > 0, accuracy threshold Tc > 0,
and trust source s part of some connected component G ′ ⊆ G containing at least two
nodes, convergence, and thus termination, is guaranteed. The following paragraph
gives an informal proof:

Proof (Convergence of Appleseed)Assume that fi denotes step i’s quantity of energy
flowing through the network, i.e., all the trust that has not been captured by some
node x through function trusti (x). From Eq.3.2 follows that in0 constitutes the upper
boundary of trust energy floating through the network, and fi can be computed as
follows:

fi = in0 −
∑

x ∈ A

trusti (x) (3.9)

Since d > 0 and ∃(s, x) ∈ E, x �= s, the sum of the current trust ranks trusti (x) of
all x ∈ A is strictly increasing for increasing i . Consequently, limi→∞ fi = 0 holds.
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func Trustα (s ∈ A, in0 ∈ R
+
0 , d ∈ [0, 1], Tc ∈ R

+) {
set in0(s) ← in0, trust0(s) ← 0, i ← 0;
set A0 ← {s};
repeat
set i ← i + 1;
set Ai ← Ai−1;
∀x ∈ Ai−1 : set ini (x) ← 0;
for all x ∈ Ai−1 do
set trusti (x) ← trusti−1(x) + (1 − d) · ini−1(x);
for all (x, u) ∈ E do

if u /∈ Ai then
set Ai ← Ai ∪ {u};
set trusti (u) ← 0, ini (u) ← 0;
add edge (u, s), set W (u, s) ← 1;

end if
set w ← W (x, u) /

∑
(x,u′) ∈ E W (x, u′);

set ini (u) ← ini (u) + d · ini−1(x) · w;
end do

end do
set m = maxy ∈ Ai {trusti (y) − trusti−1(y)};

until (m ≤ Tc)
return (trust : {(x, trusti (x)) | x ∈ Ai });

}

Algorithm 3.3. Outline of the Appleseed trust metric

Moreover, since termination is defined by some fixed accuracy threshold Tc > 0,
there exists some step k such that limi→k fi ≤ Tc.

3.2.2.8 Parameterization and Experiments

Appleseed allows numerous parameterizations of input variables, some of which
are subject to discussion in the section at hand. Moreover, we provide experimental
results exposing the observed effects of parameter tuning. Note that all experiments
have been conducted on data obtained from “real” social networks: we have written
several Web crawling tools to mine the Advogato community Web site and extract
trust assertions stated by its more than 8,000 members.6 Hereafter, we converted
all trust data to our trust model proposed in Sect. 3.1.1. The Advogato commu-
nity server supports four different levels of peer certification, namely Observer,
Apprentice, Journeyer, and Master. We mapped these qualitative certifica-
tion levels to quantitative ones, assigning W (x, y) = 0.25 for x certifying y

6 Crawls have been executed in September 2004.
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as Observer, W (x, y) = 0.5 for an Apprentice, and so forth. The Advogato
community undergoes rapid growth and our crawler extracted 3,224,101 trust asser-
tions. Preprocessing and data cleansing were thus inevitable, eliminating reflexive
trust statements W (x, x) and shrinking trust certificates to reasonable sizes. Note
that some eager Advogato members have issued more than two thousand trust state-
ments, yielding an overall average outdegree of 397.69 assertions per node.Clearly,
this figure is beyond dispute. Hence, applying our set of extraction tools, we tailored
the test data obtained from Advogato to our needs and extracted trust networks with
specific average outdegrees for the experimental analysis.

Trust Injection

Trust values trust(x) computed by the Appleseed metric for source s and node x may
differ greatly from explicitly assigned trust weights W (s, x). We already mentioned
before that computed trust ranks may not be interpreted as absolute values, but rather
in comparison with ranks assigned to all other peers. In order to make assigned rank
values more tangible, though, one might expect that tuning the trust injection in0

to satisfy the following proposition will align computed ranks and explicit trust
statements:

∀(s, x) ∈ E : trust(x) ∈ [W (s, x) − ε, W (s, x) + ε] (3.10)

However, when assuming reasonably small ε, the approach does not succeed.
Recall that computed trust values of successor nodes x of s do not only depend on
assertionsmade by s, but also on trust ratings asserted by other peers. Hence, a perfect
alignment of explicit trust ratings with computed ones cannot be accomplished.
However, we propose a heuristic alignmentmethod, incorporated into Algorithm 3.4,
which has proven to work remarkably well in diverse test scenarios. The basic idea
is to add another node i and edge (s, i) with W (s, i) = 1 to the trust graph G =
(A, E, W ), treating (s, i) as an indicator to testwhether trust injection in0 is “good” or
not. Consequently, parameter in0 has to be adapted in order to make trust(i) converge

func Trustheu (s ∈ A, d ∈ [0, 1], Tc ∈ R
+) {

add node i , edge (s, i), set W (s, i) ← 1;
set in0 ← 20, ε ← 0.1;
repeat
set trust ← Trustα (s, in0, d, Tc);
in0 ← adapt (W (s, i), trust(i), in0);

until trust(i) ∈ [W (s, i) − ε, W (s, i) + ε]
remove node i , remove edge (s, i);
return Trustα (s, in0, d, Tc);

}

Algorithm 3.4. Heuristic weight alignment method
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towards W (s, i). The trust metric computation is hence repeatedwith different values
for in0 until convergence of the explicit and the computed trust value of i is achieved.
Eventually, edge (s, i) and node i are removed and the computation is performed
one more time. Experiments have shown that our imperfect alignment method yields
computed ranks trust(x) for direct successors x of trust source s which come close
to previously specified trust statements W (s, x).

Spreading Factor

Small values for d tend to overly reward nodes close to the trust source and penalize
remote ones. Recall that low d allows nodes to retainmost of the incoming trust quan-
tity for themselves, while large d stresses the recommendation of trusted individuals
and makes nodes distribute most of the assigned trust to their successor nodes.

Experiment 1 (Spreading factor impact) We compare distributions of computed
rank values for three diverse instantiations of d, namely d1 = 0.1, d2 = 0.5, and
d3 = 0.85. Our setup is based upon a social network with an average outdegree of
6 trust assignments, and features 384 nodes reached by trust energy spreading from
our designated trust source. We furthermore suppose in0 = 200, Tc = 0.01, and
linear weight normalization. Computed ranks are classified into 11 histogram cells
with nonlinear cell width. Obtained output results are displayed in Fig. 3.6. Mind
that we have chosen logarithmic scales for the vertical axis in order to render the
diagram more legible. For d1, we observe that the largest number of nodes x with
ranks trust(x) ≥ 25 is generated. On the other hand, virtually no ranks ranging from
0.2 to 1 are assigned, while the number of nodes with ranks smaller than 0.05 is again
much higher for d1 than for both d2 and d3. Instantiation d3 = 0.85 exhibits behavior
opposed to that of d1. No ranks with trust(x) ≥ 25 are accorded, while interim ranks
between 0.1 and 10 are much more likely for d3 than for both other instantiations of
spreading factor d. Consequently, the number of ranks below 0.05 is lowest for d3.

Fig. 3.6 Spreading factor
impact
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The experiment demonstrates that high values for parameter d tend to distribute
trust more evenly, neither overly rewarding nodes close to the source, nor penalizing
remote ones too rigidly. On the other hand, low d assigns high trust ranks to very
few nodes, namely those which are closest to the source, while the majority of nodes
obtains very low trust rank. We propose to set d = 0.85 for general use.

Convergence

We already mentioned before that the Appleseed algorithm is inherently recur-
sive. Parameter Tc represents the ultimate criterion for termination. We demonstrate
through an experiment that convergence is reached very fast, no matter how large the
number of nodes trust is flowing through, and no matter how large the initial trust
injection.

Experiment 2 (Convergence rate) The trust network we consider has an aver-
age outdegree of 5 trust statements per node. The number of nodes for which trust
ranks are assigned amounts to 572. We suppose d = 0.85, Tc = 0.01, and linear
weight normalization. Two separate runs were computed, one with trust activation
in1 = 200, the other with initial energy in2 = 800. Figure3.7 demonstrates the rapid
convergence of both runs. Though the trust injection for the second run is 4 times
as high as for the first, convergence is reached in only few more iterations: run one
takes 38 iterations, run two terminates after 45 steps.

For both runs, we assumed accuracy threshold Tc = 0.01, which is extremely
small and accurate beyond necessity already. However, experience taught us that
convergence takes place rapidly even for very large networks and high amounts of
trust injected, so that assuming the latter value for Tc poses no scalability issues.
In fact, the amount of nodes taken into account for trust rank assignment in the

Fig. 3.7 Convergence of
Appleseed
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above example well exceeds practical usage scenarios: mind that the case at hand
demands 572 files to be fetched from the Web, complaisantly supposing that these
pages are cached after their first access. Hence, we claim that the actual bottleneck
of group trust computation is not the Appleseed metric itself, but downloads of trust
resources from the network. This bottleneck might also be the reason for selecting
thresholds Tc greater than 0.01, in order to make the algorithm terminate after fewer
node accesses.

Testbed Design and Experimental Trials

Trust metrics and models for trust propagation have to be intuitive, i.e., humans must
eventually comprehend why agent ai has been accorded a higher trust rank than a j

and come to similar results when asked for personal judgement. Consequently, we
implemented our own testbed, which graphically displays social networks. We made
use of the yFiles [39] library to perform complex graph drawing and layouting tasks.
The testbed allows for parameterizing Appleseed through dialogs. Detailed output
is provided, both graphical and textual. Graphical results comprise the highlight-
ing of nodes with trust ranks above certain thresholds, while textual results return
quantitative trust ranks of all accessed nodes, the number of iterations, and so forth.
We also implemented the Advogato trust metric and incorporated the latter into our
testbed. Hereby, our implementation of Advogato does not require a priori complete
trust graph information, but accesses nodes “just in time”, similar to Appleseed. All
experiments were conducted on top of the testbed application.

3.2.3 Comparison of Advogato and Appleseed

Advogato and Appleseed are both implementations of local group trust metrics.
Advogato has already been successfully deployed into the Advogato online commu-
nity, though quantitative evaluation results have not been provided yet. In order to
evaluate the fitness of Appleseed as an appropriate means for group trust computa-
tion, we relate our approach to Advogato for qualitative comparison:

(F.1) Attack-resistance. This property defines the behavior of trust metrics in case
of malicious nodes trying to invade into the system. For evaluation of attack-
resistance capabilities, we have briefly introduced the “bottleneck property” in
Sect. 3.2.1.2, which holds for Advogato. In order to recapitulate, suppose that s
and t are nodes and connected through trust edge (s, t). Node s is assumed good,
while t is an attacking agent trying to make good nodes trust malevolent ones.
In case the bottleneck property holds, manipulation “on the part of bad nodes
does not affect the trust value” [22]. Clearly, Appleseed satisfies the bottleneck
property, for nodes cannot raise their impact by modifying the structure of trust
statements they issue.Bear inmind that the amount of trust accorded to agent t only
depends on his predecessors and does not increase when t adds more nodes. Both,
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spreading factor d and normalization of trust statements, ensure that Appleseed
maintains attack-resistance properties according to Levien’s definition.

(F.2) Eager truster penalization. Wehave indicated before that issuingmultiple trust
statements dilutes trust accorded to successors. According to Guha [14], this
does not comply with real world observations, where statements of trust “do not
decrease in value when the user trusts one more person […]”. The malady that
Appleseed suffers from is common to many trust metrics, most notably those
based upon finding principal eigenvectors [18, 31, 35]. On the other hand, the
approach pursued by Advogato does not penalize trust relationships asserted by
eager trust dispensers, for node capacities do not depend on local information.
Remember that capacities of nodes pertaining to level l are assigned based on the
capacity of level l − 1, as well as the overall outdegree of nodes part of that level.
Hence, Advogato encourages agents issuing numerous trust statements, while
Appleseed penalizes overly abundant trust certificates.

(F.3) Deterministic trust computation. Appleseed is deterministic with respect to
the assignment of trust rank to agents. Hence, for any arbitrary trust graph
G = (A, E, W ) and for every node x ∈ A, linear equations allow for charac-
terizing the amount of trust assigned to x , as well as the quantity that x accords to
successor nodes. Advogato, however, is non-deterministic. Though the number of
trusted agents, and therefore the computed maximum flow size, is determined for
given input parameters, the set of agents is not. Changing the order in which trust
assertions are issued may yield different results. For example, supposeCA(s) = 1
holds for trust seed s. Furthermore, assume s has issued trust certificates for two
agents, b and c. The actual choice between b or c as trustworthy peer with maxi-
mum flow only depends on the order in which nodes are accessed.

(F.4) Model and output type. Basically, Advogato supports non-weighted trust state-
ments only. Appleseed is more versatile by virtue of its trust model based on
weighted trust certificates. In addition, Advogato returns one set of trusted peers,
whereas Appleseed assigns ranks to agents. These ranks allow to select most trust-
worthy agents first and relate them to each other with respect to their accorded
rank. Hereby, the definition of thresholds for trustworthiness is left to the user
who can thus tailor relevant parameters to fit different application scenarios. For
instance, raising the application-dependent threshold for the selection of trustwor-
thy peers, which may be either an absolute or a relative value, allows for enlarging
the neighborhood of trusted peers. Appleseed is hence more adaptive and flexible
than Advogato.

The afore-mentioned characteristics of Advogato and Appleseed are briefly summa-
rized in Table3.1.

Table 3.1 Characteristics of
Advogato and Appleseed

Feature F.1 Feature F.2 Feature F.3 Feature F.4

Advogato Yes No No Boolean

Appleseed Yes Yes Yes Ranking
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3.3 Distrust

The notion of distrust is one of the most controversial topics when defining trust
metrics and trust propagation. Most approaches completely ignore distrust and only
consider full trust or degrees of trust [4, 23, 28, 30, 33, 35]. Others, among those
[1, 3, 6, 13], allow for distrust ratings, though, but donot consider the subtle semantic
differences that exist between those two notions, i.e., trust and distrust. Consequently,
according to [9], “distrust is regarded as just the other side of the coin, that is, there is
generally a symmetric scale with complete trust on one end and absolute distrust on
the other”. Furthermore, some researchers equate the notion of distrust with lack of
trust information. However, in his seminal work on the essence of trust, Marsh [26]
has already pointed out that those two concepts, i.e., lack of trust and distrust, may
not be intermingled. For instance, in absence of trustworthy agents, one might be
more prone to accept recommendations from non-trusted persons, being non-trusted
probably because of lack of prior experiences [27], than from persons we explicitly
distrust, the distrust resulting from bad past experiences or deceit. However, even
Marsh pays little attention to the specifics of distrust.

Gans et al. [9] were among the first to recognize the importance of distrust, stress-
ing the fact that “distrust is an irreducible phenomenon that cannot be offset against
any other social mechanisms”, including trust. In their work, an explicit distinction
between confidence, trust, and distrust is made. Moreover, the authors indicate that
distrust might be highly relevant to social networks. Its impact is not inherently
negative, but may also influence the network in an extremely positive fashion. How-
ever, the primary focus of this work is on methodology issues and planning, not
considering trust assertion evaluations and propagation through appropriate metrics.

Guha et al. [15] acknowledge the immense role of distrust with respect to trust
propagation applications, arguing that “distrust statements are very useful for users
to debug their web of trust” [14]. For example, suppose that agent ai blindly trusts a j ,
which again blindly trusts ak . However, ai completely distrusts ak . The distrust state-
ment hence ensures that ai will not accept beliefs and ratings from ak , irrespective
of him trusting a j trusting ak .

3.3.1 Semantics of Distrust

The non-symmetrical nature of distrust and trust, being two dichotomies, has already
been recognized by recent sociological research [25]. In this section, we investigate
the differences between distrust and trust with respect to inference opportunities and
the propagation of beliefs.

3.3.1.1 Distrust as Negated Trust

Interpreting distrust as the negation of trust has been adopted by many trust metrics,
among those trust metrics proposed by Abdul-Rahman and Hailes [1, 2], Jøsang
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et al. [17], and Chen and Yeager [6]. Basically, these metrics compute trust values
by analyzing chains of trust statements from source s to target t , eventually merg-
ing them to obtain an aggregate value. Each chain hereby becomes synthesized into
one single number through weighted multiplication of trust values along trust paths.
Serious implications resulting from the assumption that trust concatenation relates
to multiplication [35], and distrust to negated trust, arise when agent ai distrusts a j ,
who distrusts ak

7:

¬ trust(ai , a j ) ∧ ¬ trust(a j , ak) |= trust(ai , ak) (3.11)

Jøsang et al. [17] are aware of this rather unwanted effect, but do not question
its correctness, arguing that “the enemy of your enemy could well be your friend”.
Guha [14], on the other hand, indicates that two distrust statements canceling out
each other commonly does not reflect desired behavior.

3.3.1.2 Propagation of Distrust

The conditional transitivity of trust [1] is commonly agreed upon and represents
the foundation and principal premiss that trust metrics rely upon. However, no con-
sensus in literature has been achieved with respect to the degree of transitivity and
the decay rate of trust. Many approaches therefore explicitly distinguish between
recommendation trust and direct trust [1, 4, 6, 17, 28] in order to keep apart the
transitive fraction of trust from the non-transitive. Hence, in these works, only the
ultimate edge within the trust chain, i.e., the one linking to the trust target, needs to
be direct, while all others are supposed to be recommendations. For the Appleseed
trust metric, this distinction is made through the introduction of spreading factor
d. However, the conditional transitivity property of trust does not equally extend
to distrust. The case of double negation through distrust propagation has already
been considered. Now suppose, for instance, that ai distrusts a j , who trusts ak . Sup-
posing distrust to propagate through the network, we come to make the following
inference:

distrust(ai , a j ) ∧ trust(a j , ak) |= distrust(ai , ak) (3.12)

The above inference ismore than questionable, forai penalizesak simply for being
trusted by an agent a j that ai distrusts. Obviously, this assumption is not sound and
does not reflect expected real-world behavior. We assume that distrust does not allow
formaking direct inferences of any kind. This conservative assumptionwell complies
with [14].

7 We oversimplify by using predicate calculus expressions, supposing that trust, and hence distrust,
is fully transitive.
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3.3.2 Incorporating Distrust into Appleseed

We compare our distrust model with Guha’s approach, making similar assumptions.
Guha computes trust by means of one global group trust metric, similar to PageR-
ank [31]. For distrust, he proposes two candidate approaches. The first one directly
integrates distrust into the iterative eigenvector computation and comes up with one
single measure combining both trust and distrust. However, in networks dominated
by distrust, the iteration might not converge [14]. The second proposal first computes
trust ranks by trying to find the dominant eigenvector, and then computes separate
distrust ranks in one single step, based upon the iterative computation of trust ranks.
Suppose that Dai is the set of agents who distrust ai :

DistrustRank(ai ) =
∑

a j ∈Dai

TrustRank(a j )

|Dai |
(3.13)

The problem we perceive with this approach refers to superimposing the compu-
tation of distrust ranks after trust rank computation, which may yield some strange
behavior: suppose an agent ai who is highly controversial by engendering ambiguous
sentiments, i.e., on the one hand, there are numerous agents that trust ai , while on the
other hand, there are numerous agents who distrust ai . With the approach proposed
by Guha, ai ’s impact for distrusting other agents is huge, resulting from his immense
positive trust rank. However, this should clearly not be the case, for ai is subject to
tremendous distrust himself, thus leveling out his high trust rank.

Hence, for our own approach, we intend to directly incorporate distrust into the
iterative process of the Appleseed trust metric computation, and not superimpose
distrust afterwards. Several pitfalls have to be avoided, such as the risk of non-
convergence in case of networks dominated by distrust [14]. Furthermore, in absence
of distrust statements, we want the distrust-enhanced Appleseed algorithm, which
we denote by Trustα− , to yield results identical to those engendered by the original
version Trustα .

3.3.2.1 Normalization and Distrust

First, the trust normalization procedure has to be adapted. We suppose normalization
of weights to the power of q, as has been discussed in Sect. 3.2.2.6. Let in(x), the trust
influx for agent x , be positive. As usual, we denote the global spreading factor by
d, and quantified trust statements from x to y by W (x, y). Function sign(x) returns
the sign of value x . Note that from now on, we assume W : E → [−1,+1], for
degrees of distrust need to be expressible. Then the trust quantity ex→y passed from
x to successor y is computed as follows:

ex→y = d · in(x) · sign(W (x, y)) · w, (3.14)
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Fig. 3.8 Network
augmented by distrust
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where

w = |W (x, y)|q
∑

(x,s) ∈ E
|W (x, s)|q

The accorded quantity ex→y becomes negative if W (x, y) is negative, i.e., if x
distrusts y. For the relative weighting, the absolute values |W (x, s)| of all weights
are considered. Otherwise, the denominator could become negative, or positive trust
statements could become boosted unduly. The latter would be the case if the sum
of positive trust ratings only slightly outweighed the sum of negative ones, making
the denominator converge towards zero. An example demonstrates the computation
process:

Example 3.2 (Distribution of Trust and Distrust) We assume the trust network as
depicted in Fig. 3.8. Let the trust energy influx into node a be in(a) = 2, and global
spreading factor d = 0.85. For simplicity reasons, backward propagation of trust
to the source is not considered. Moreover, we suppose linear weight normaliza-
tion, thus q = 1. Consequently, the denominator of the normalization equation is
|0.75| + | − 0.5| + |0.25| + |1| = 2.5. The trust energy that a distributes to b hence
amounts to ea→b = 0.51, whereas the energy accorded to the distrusted node c is
ea→c = −0.34. Furthermore, we have ea→d = 0.17 and ea→e = 0.68.

Observe that trust energy becomes lost during distribution, for the sum of energy
accorded along outgoing edges of a amounts to 1.02, while 1.7 was provided for
distribution. The effect results from the negative trust weight W (a, c) = −0.5.

3.3.2.2 Distrust Allocation and Propagation

We now analyze the case where the influx in(x) for agent x is negative. In this case,
the trust allocated for x will also be negative, i.e., in(x) · (1− d) < 0. Moreover, the
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energy in(x) ·d that x may distribute among successor nodes will be negative as well.
The implications are those which have been mentioned in Sect. 3.3.1, i.e., distrust
as negation of trust and propagation of distrust. For the first case, refer to node f in
Fig. 3.8 and assume in(c) = −0.34, which is derived from Example 3.2. The trusted
agent a distrusts c who distrusts f . Eventually, f would be accorded d · (−0.34) ·
(−0.25),which ispositive. For the secondcase, node g wouldbe assigned thenegative
trust quantity d · (−0.34) · (0.75), simply for being trusted by f , who is distrusted.
Both unwanted effects can be avoided by not allowing distrusted nodes to distribute
any energy at all. Hence, more formally, we introduce a novel function out(x):

out(x) =
{

d · in(x), if in(x) ≥ 0
0, else

(3.15)

This function then has to replace d · in(x) when computing the energy distributed
along edges from x to successor nodes y:

ex→y = out(x) · sign(W (x, y)) · w, (3.16)

where

w = |W (x, y)|q
∑

(x,s) ∈ E
|W (x, s)|q

This design decision perfectly aligns with assumptions made in Sect. 3.3.1 and
prevents the inference of unwanted side-effects mentioned before. Furthermore,
one can see easily that the modifications introduced do not affect the behavior of
Algorithm 3.3 when not considering relationships of distrust.

3.3.2.3 Convergence

In networks largely or entirely dominated by distrust, the extended version of Apple-
seed is still guaranteed to converge. We therefore briefly outline an informal proof,
based on Proof 3.2.2.7:

Proof (Convergence in presence of distrust) Recall that only positive trust influx
in(x) becomes propagated, which has been indicated in Section3.3.2.2. Hence, all
we need to show is that the overall quantity of positive trust distributed in compu-
tation step i cannot be augmented through the presence of distrust statements. In
other words, suppose that G = (A, E, W ) defines an arbitrary trust graph, contain-
ing quantified trust statements, but no distrust, i.e., W : E → [0, 1]. Now consider
another trust graph G ′ = (A, E ∪ D, W ′), which contains additional edges D, and
weight function W ′ = W ∪ (D → [−1, 0[). Hence, G ′ augments G by additional
distrust edges between nodes taken from A. We now perform two parallel computa-
tions with the extended version of Appleseed, one operating on G and the other on
G ′. In every step, and for every trust edge (x, y) ∈ E for G, the distributed energy
ex→y is greater or equal to the respective counterpart on G ′, because the denominator
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of the fraction given in Eq.3.16 can only become greater through additional distrust
outedges. Second, for the computation performed on G ′, negative energy distributed
along edge (x, y) can only reduce the trust influx for y andmay hence even accelerate
convergence.

However, as can be observed from the proof, there exists one serious implication
arising from having distrust statements in the network: the overall accorded trust
quantity does not equal the initially injected energy anymore. Moreover, in networks
dominated by distrust, the overall trust energy sum may even be negative.

Experiment 3 (Network impact of distrust) We observe the number of iterations
until convergence is reached, and the overall accorded trust rank of 5 networks. The
structures of all these graphs are identical, being composed of 623 nodes with an
average indegree and outdegree of 9. The only difference applies to the assigned
weights, where the first graph contains no distrust statements at all, while 25% of
all weights are negative for the second, 50% for the third, and 75% for the fourth.
The fifth graph contains nothing but distrust statements. The Appleseed parameters
are identical for all 5 runs, having backward propagation enabled, an initial trust
injection in0 = 200, spreading factor d = 0.85, convergence threshold Tc = 0.01,
linear weight normalization, and no upper bound on the number of nodes to unfold.
Figure3.9a clearly demonstrates that the number of iterations until convergence,
given on the vertical axis,decreaseswith the proportion of distrust increasing, observ-
able along the horizontal axis. Likewise, the overall accorded trust rank, indicated on
the vertical axis of Fig. 3.9b, decreases rapidly with increasing distrust, eventually
dropping below zero. The same experiment was repeated for another network with
329 nodes, an average indegree and outdegree of 6, yielding similar results.

The effects observable in Experiment 3 only marginally affect the ranking itself,
for trust ranks are interpreted relative to each other. Moreover, compensation for lost
trust energy may be achieved by boosting the initial trust injection in0.
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3.4 Expanding Network Coverage

Among the network-based algorithms for computing trust, there is one commonprob-
lem: coverage. In social networks there are often many users who are disconnected
from the main cluster or who are connected in a way that computing an accurate trust
value would be difficult. This naturally leads to the question of how we can improve
network coverage, and potentially accuracy, in trust computation.

We propose one solution to this which incorporates similarity measures grounded
in our sociological understanding of trust. Sociological definitions of trust have two
components: a belief and a commitment. For example, in a context, if Alice trusts
Bob, it implies that Alice believes that Bob will provide useful information and that
she is willing to take action based on that information [10]. If we consider this in the
context of information on the Web, trust in a person means that the user is willing to
take actions, like buying a product, based on others’ reviews. This, of course, gets to
the core of why we want to compute trust in the first place; if we know how much
the user trusts the author of some online content, we can use that to help optimally
sort, filter, and aggregate the information.

Network flow-based algorithms, like Appleseed and Advogato presented above
work very well on connected graph components, but they cannot infer trust between
people who are not connected by paths in the social network. In those situations,
trust can be inferred from other sources of information. In our previous work, we
identified a series of similarity measures drawn from underlying data that can esti-
mate trust effectively. We will discuss this work further in Sect. 3.4.1. This method
can infer trust between any two users as long as they have rated a common set
of items upon which to compute similarity. However, computing trust based only
on nuanced similarity measures loses some of the insights that come from the
network.

In some cases, we will be able to compute trust values with both algorithms for
a pair of users. In other cases, we may be able to compute only one (or perhaps
neither). A combination of the methods will obviously achieve better coverage, but
how to effectively use both values when available is an open question. In this section,
we present a model that integrates trust computed from social networks and trust
inferred from data similarity. We show results on how to optimally use both models
and demonstrate their accuracy on a real-world dataset.

3.4.1 Revisiting Trust Inference Algorithms

Above, we discussed twomajor trust inference algorithms: Advogato andAppleseed.
For the experiments here, we used the TidalTrust [12] algorithm, a simple trust
inference algorithm that gives a good indication of howmanypairs of users a network-
based algorithm can reach. Readers will note similarities between TidalTrust and the
algorithms presented above.
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3.4.1.1 TidalTrust: An Algorithm for Inferring Trust

TidalTrust is a modified breadth-first search-base algorithm. The source’s inferred
trust rating for the sink, denoted ts,p, is a weighted average of source s’s neighbors’
ratings of sink p. The source node begins a search for the sink. It will poll each of its
neighbors to obtain their rating of the sink. If the neighbor has a direct rating of the
sink, that value is returned. If the neighbor does not have a direct rating for the sink,
it queries all of its neighbors for their ratings, computes the weighted average, and
returns the result. Each neighbor repeats this process. Essentially, the nodes perform
a breadth-first search from the source to the sink, and then inferred values are passed
back to the source. The basic process of values for the sink flowing back to the source
are shown in Fig. 3.10.

Network-based inference algorithms rely on the social network. This provides a
benefit because recommendations can be made for users who have rated no items
because trust is inferred from the social connections. However, it has a corresponding
drawback that trust can only be computed when users are connected in that network.

TidalTrust incorporates two factors to limit the size of the search and improve
accuracy. Previous research has shown the following [11]:

• Shorter paths have a lower error.
• Using nodes with higher trust ratings leads to lower error.

Fig. 3.10 An illustration of direct trust values between nodes a and b, ta,b, and between nodes b
and c, tb,c. Using a trust inference algorithm, it is possible to compute a value to recommend how
much a may trust c, ta,c
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Limiting the depth of TidalTrust’s search should lead to more accurate results,
since the error often increases as depth increases. If accuracy decreases as path length
increases, as the earlier analysis suggests, then shorter paths are more desirable.
However, the tradeoff is that fewer nodes will be reachable if a limit is imposed on the
path depth. To balance these factors, the path length can vary from one computation
to another. Instead of a fixed depth, the shortest path length required to connect the
source to the sink becomes the depth. This preserves the benefits of a shorter path
length without limiting the number of inferences that can be made.

The previous results also indicate that the most accurate information will come
from thehighest trustedneighbors. To incorporate this into the algorithm,weestablish
a minimum trust threshold, and only consider connections in the network with trust
ratings at or above the threshold. This value cannot be fixed before the search because
we cannot predict what the highest trust value will be along the possible paths. If
the value is set too high, some nodes may not have assigned values and no path will
be found. If the threshold is too low, then paths with lower trust may be considered
when it is not necessary. We define a variable, max, that represents the largest trust
value that can be used as a minimum threshold such that a path can be found from
source to sink. Our max is computed while searching for paths to the sink by tracking
trust values that have been seen.

TidalTrust is a modified breadth-first search. The inferred trust rating of source s
for sink p, denoted ts,p, is a weighted average of the source’s neighbors’ ratings of
the sink. This is succinctly represented as follows:

ts,p =

∑

j ∈ adj(s) ∧ ts, j ≥ max

ts, j × t j,p

∑

j ∈ adj(s) ∧ ts, j ≥ max

ts, j

(3.17)

The source node begins a search for the sink. It will poll each of its neighbors
to obtain their rating of the sink. If the neighbor has a direct rating of the sink, that
value is returned. If the neighbor does not have a direct rating for the sink, it queries
all of its neighbors for their ratings, computes the weighted average as shown above,
and returns the result .

To improve the accuracy of the algorithm, path length and path strength consid-
erations are included. Each node that is reached performs this process, keeping track
of the current depth from the source. Each node will also keep track of the strength of
the path to it. Nodes adjacent to the source will record the source’s rating assigned to
them. Each of those nodes will poll their neighbors. The strength of the path to each
neighbor is the minimum of the source’s rating of the node and the node’s rating of its
neighbor. The neighbor records the maximum strength path leading to it. Once a path
is found from the source to the sink, the depth is set at the maximum depth allowable.
Since the search is proceeding in a breadth-first search fashion, the first path found
will be at the minimum depth. The search will continue to find any other paths at
the minimum depth. Once this search is complete, the trust threshold (max) is estab-
lished by taking the maximum of the trust paths leading to the sink. With the max
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value established, each node can complete the calculations of a weighted average by
taking information from nodes that they have rated at or above the max threshold.

The accuracy of this algorithm is addressed in depth in [10, 12]. While the error
will very from network to network, our experiments in two real world social networks
show the results to be accurate to within about 10%.

3.4.1.2 Similarity-Based Trust Inference

It has been long known in the sociological literature and more recently shown in the
computer science literature that trust correlates strongly with similarity between peo-
ple [42, 43]. In our previouswork [40]we showed that in addition to overall similarity,
there is also a correlation between trust and several nuanced similarity measures. In
a context where people rate items, those ratings can be used to compute values that
go beyond simple similarity. Specifically, trust between people is tied to the largest
single difference over items they have both rated, and to the agreement on movies
where one user has given extreme ratings. We also showed that some people tend
to be more trusting than others, and thus inferred trust values can be adjusted up or
down to account for this. We used these nuanced similarity measures in this research.

3.4.1.3 Experimental Network

When working with trust, data is usually one of the greatest challenges. Trust infor-
mation is private, and for that reason there are no publicly available datasets with this
information. In 2004, we developed and launched FilmTrust,8 a Web-based social
network centered aroundmovies.Users create profiles and link to friends and rate how
much they trust each friend’s opinion about movies. Users can also rate and review
movies. The network has been live on the web and growing on its own since 2004.
Thus, it serves as a useful real-world dataset upon which we can run experiments.

The FilmTrust network has 1,610 total members. Many do not have any friends
in the social network; 712 people have at least one friend and there are 1,465 edges
in the network. The average trust rating is 6.83. The network has a central giant
component, and many small subnetworks.

Most users have rated movies in the network; 1,250 people have rated at least
one movie. These movie ratings are used in the similarity-based trust inference tech-
niques. In total, we have either trust ratings or movie ratings from 1,339 of the 1,610
users.

3.4.2 Experimental Analysis

Our experimental analysis executes the network-based and similarity-based algo-
rithms over the FilmTrust network, and then follows that with the integrated trust

8 See http://trust.mindswap.org/FilmTrust.

http://trust.mindswap.org/FilmTrust
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Fig. 3.11 A visualization of
the FilmTrust network

inference algorithm. We compare these methods for accuracy and coverage of the
network. We begin this section by describing the setup for each algorithm and then
present the results of our experiments. We show that an integrated model does pro-
duce significantly more accurate results and better coverage than either method alone
(Fig. 3.11).

3.4.2.1 Trust Inference Setup

The network-based trust inference algorithm, FilmTrust, was able to run directly on
the FilmTrust network, so no special setup was required. For the similarity-based
algorithm, we needed to develop a method for integrating our earlier insights on
similarity measures that relate to trust into an algorithm. In that mentioned earlier
work we identified four measures made over users’ item ratings that relate to trust:
overall similarity, similarity on extremes (items that received very high or very low
ratings from a user), the single largest difference between users on a given item,
and the source’s propensity to trust. We computed similarity measures in two ways:
as mean average error (MAE) and using the Pearson correlation. Thus, we had six
total measures: the average difference (AD), overall correlation (COR), average
difference on extremes (XD), correlation on extremes (XCOR), the single largest
difference (MD), and the source’s propensity to trust (PT). A linear combination of
these values can predict trust and is given in Eq.3.18, where ω indicates the weight
given to each measure.

ts,p = ωAD × AD + ωCOR × COR + ωXD × XD

+ ωXCOR × XCOR + ωMD × MD + ωPT × PT
(3.18)

It is worth noting that for some pairs of people, some of these values may be
unavailable. For example, it is common for users to have no movies in common
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Table 3.2 Weights for
similarity measures
determined in a multivariate
linear regression analysis

Weight Extreme values available No extreme values

ωAD −1.8084 −0.5951

ωCOR 1.0589 0.8269

ωXD 0.1751

ωXCOR 0.0655

ωMD 0.2489 0.1145

ωPT 1.0568 0.9946

where the source has assigned an extreme rating. Thus, the weights will be different
depending on whether or not the two measures on extreme-rated items are available.
Theweights (ω values) will vary between networks based on the behavior of the users
and context of the data. To determine the optimal weights for the FilmTrust dataset,
we ran a multivariate linear regression analysis. To achieve the most meaningful
results from the regression, we selected a subset of node pairs who had at least 10
items in common. To compute values for XD and XCOR, we required at least 3
items in common with extreme ratings from the source. The results of this regression
analysis are shown in Table3.2.

3.4.2.2 Integrated Trust Model

Combining the network-based and similarity-based trust inference algorithms into
an integrated algorithm has two major benefits. First, it provides a more thorough
coverage so trust can be inferred for a greater number of individuals. If someone is
not in the social network, the ratings similarity method can be used. If they have not
rated enough items but have friends, the social network method can be used. The
second benefit is the potential for improved accuracy when trust can be inferred using
both the network-based trust inference algorithm and the similarity-based inference
algorithm.

Our approach was to use a linear combination of the trust values produced from
each base algorithm. To combine these values, we ran amultivariate linear regression
analysis using known trust values as a ground truth. We found ωsim = 0.869 and
ωnet = 0.195. Thus, the integrated trust value was computed as follows:

Tint = ωsim ∗ Tsim + ωnet × Tnet (3.19)

3.4.3 Results

The next sections present results on coverage and accuracy of the presented appro-
aches. These experiments were executed on real-world social networks on the Web.
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3.4.3.1 Coverage

The FilmTrust network we used for our experiments has 1,610 nodes, but only 1,339
have input any data to the system. Thus, we have 1,339 × 1,338 = 1,791,582
total pairs for which trust can be inferred. The network has a somewhat high rate
of members who have no friends in the social network. Of the 1,339 participating
members, only 712 (53.17%) have any social connections in the network. Recall
also that the edges are directed in the network. Nodes must have outgoing edges in
order to infer trust to any other nodes. Only 480 nodes have outgoing edges. Thus, we
would expect to be able to infer trust values for no more than 480× 712 = 341,280
pairs of users if we are using a network-based trust inference algorithm. Note that
any algorithm that infers trust by searching paths in the network will have this limit.
TidalTrust, which infers trust for any sink reachable from the source, was able to
compute values for 69,016 pairs. While this is less than 4% of the total number of
pairs, it is just over 20% of the nodes who have some social network data. The other
80% of pairs for which a value represent nodes that have no indirect connections in
the network (e.g. pairs of nodes not connected to the giant component).

Using the similarity-based method, trust can be inferred for any pair of users who
have data in common. In the FilmTrust network, 503,912 ( 28%) pairs of users have
at least one item in common. However, one single item is a very weak basis for
computing trust, and is insufficient for computing the correlation measures we need
for our method. We set a lower threshold of 3 items in common for computing a
similarity-based trust value. With this restriction, 302,336 pairs had an inferred trust
value, which is 16.88% of the total number of pairs

Not surprisingly, when used together, these methods give better coverage than
either achieves on its own. We could infer trust for 342,504 pairs, just shy of 20%
of the network. This is less than the sum of the coverage of the two methods, since
some pairs have inferred trust from both algorithms. Of the 342,504 pairs for which
trust could be inferred, values from both methods were available for 28,878 pairs
(8.43% of the covered pairs, and 1.6% of all pairs).

It is important to note that these coverage rates are unique to the network we are
examining here. Other networks may have vastly different coverage rates based on
the behavior of the users. Previous work has shown dramatically different rates of
participation in the social networking component ofwebsites.However, the improved
coverage using two types of algorithms is not surprising and should expected in other
datasets (Table3.3).

Table 3.3 Pairs of nodes for
which trust can be inferred
using different methods

Method Coverage (in % of all pairs)

Similarity-based 302,366 (16.88%)

Network-based 69,016 (3.85%)

Integrated 342,504 (19.12%)
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3.4.3.2 Accuracy

Improved coverage is useful, but can results from two algorithms also improve the
accuracy of trust inferences? We investigated this by using the 1,465 pairs of nodes
with a known trust value, i.e. where one user had assigned a trust rating to another
in the social network. These were our ground truth values against which the inferred
values were compared.

With the TidalTrust algorithm,we tested accuracy by selecting a pair of nodeswith
a known trust rating, ignoring the edge between them in the network, and then running
the algorithm to infer a trust value. This would allow us to see what the algorithm
would infer if the relationship did not exist. The similarity-based algorithm was run
for any pair of nodes with 3 or more rated items in common.

Of the 1,465 pairs, TidalTrust inferred values for 881 pairs. The similarity-based
approach found values for 763 pairs. The intersection of these sets where both meth-
ods inferred results comprises 490 pairs. We used those 490 pairs for our analysis so
we were comparing the accuracy of all three methods over the same users.

We compared the accuracy of the inferred trust value computedwith the integrated
trust equation to the accuracy of the trust value inferred using each algorithm indi-
vidually. Accuracy was measured as both mean absolute error (MAE) and root mean
square error (RMSE). For each accuracy measure, an ANOVA indicated statistically
significant differences among the three methods. For both accuracy measures, a two-
tailed Student’s t-test showed that the integrated trust method was significantly more
accurate than both the network-based and similarity-based trust estimates alone.

This indicates that using both trust inference techniques, the results not only
provide inferred trust values for more pairs of users than either method could do
alone, but they also can be combined to provide more accurate trust inferences for
pairs where both methods generate results.

3.5 Discussion and Outlook

In this chapter, we advocated the need for local group trust metrics, presenting our
metric Appleseed. Appleseed’s nature largely resembles Advogato, bearing similar
complexity and attack-resistance properties, but offers one particular feature that
makes Appleseed much more suitable for certain applications than Advogato: the
ability to compute rankings of peers according to their trustworthiness rather than
binary classifications into trusted and untrusted agents (Table3.4).

Table 3.4 Accuracy of trust
inference methods

Method Accuracy (MAE) Accuracy (RMSE)

Similarity-based 1.36 1.78

Network-based 1.88 2.47

Integrated 1.27 1.67
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Originally designed as an approach to social filtering within our decentralized
recommender framework [41], Appleseed suits other application scenarios as well,
such as group trust computation in online communities, open rating systems, ad-hoc
and peer-to-peer networks.

For instance, Appleseed could support peer-to-peer-based file-sharing systems
in reducing the spread of self-replicating inauthentic files by virtue of trust propa-
gation [18]. In that case, explicit trust statements, resulting from direct interaction,
would reflect belief in someone’s endeavor to provide authentic files.

We also showed that augmenting group trust metrics with additional information
that can indicate trust, such as nuanced similarity over rated items, can improve the
number of user pairs for whom trust can be inferred.
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Chapter 4
Assessing the Role of Network Effects
in Propagation Phenomena in Real
World Networks

Newton Paulo Bueno

Abstract Despite the growing evidence that interpersonal and social dynamics play
a major role in the formation of beliefs, feelings and behaviors, studies on dynamic
systems seldom mention the role of social networks in shaping MMs and thus in
affecting systems behavior. The general purpose of this chapter is to contribute to
bridge that gap by presenting a number of structural properties of social networks
that can influence the propagation of ideas, beliefs and behaviors that shape mental
models. Specifically it aims at three goals: (a) to show how to identify different types
of social networks, (b) to discuss how these different structures can either promote
or hinder the adaptation of mental models in problematic systems, and (c) to discuss
some basic strategies to fix inadequate mental models in different types of networks.

4.1 Introduction

According recent studies social interaction is of paramount importance for the spread
of behaviors and beliefs ranging from obesity to willingness of women in less devel-
oped countries to adopt contraceptive measures [7, 10, 26]. How fast these different
types of influences travel through social networks shaping people’s mental models,
as it’s been shown, depends on certain key properties of their structure. For example,
studies in diffusion have found that centralization and radiality (terms to be defined
below) are positively related to innovativeness in social networks [3], whereas assor-
tative biases in the joint distribution of attributes such as the number of relations
that agents have within the network, race, age and social status influence negatively
diffusion [18, 23].

Yet, if the problem were only that the speed of diffusion may vary with the net-
work structure, using traditional differential equation approaches as in epidemiology
for studying propagation of social phenomena might be justifiable [20, 25]. The real
problem arises when social networks display certain structural properties—such as
high centralization and disassortativity which indicate that network effects are more
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important than system (feedback) effects in shaping mental models. Under those
circumstances, generalized statements about, say, policy effectiveness across differ-
ent policy domains lack validity, because even small changes in parameters can be
magnified dramatically by network effects. SIR-type system dynamics models (sd),
for instance, can of course display tipping point properties due to what we may call
systemic effects, i.e. changes in feedback loop dominance [5, 24]. We are not aware,
however, of any procedure to assess the impact of network effects in actual systems
only by means of traditional SD diffusion models, which are based on homogenous-
mixing assumptions.1 This suggests that other computational approaches, such as
agent based modeling and network analysis, are called for to be used in conjunction
with SD models to fully address the impact of network properties on diffusion of
ideas that can shape MMs [11, 26, 29].

Yet, there are a number of structural properties of social networks that can quali-
tatively affect diffusion paths of ideas, beliefs and feeling, and hence mental models
formation, in relatively predictable ways. As decision makers do not usually need to
develop perfect and complete mental models of complex environments to reach bet-
ter decisions but only understand key principles, uncover those qualitative patterns
may suffice to improve performance in most of dynamic environments [13].

The purpose of this chapter is to discuss how basic network properties can affect
the diffusion of ideas through social networks, showing how these different structures
can either promote or hinder the adaptation of MMs, and indicating what strategies
may be used for improving MMs in problematic systems (see footnote 1).

4.2 Basic Concepts and Ideas on Networks

Different types of social networks have different percolation thresholds and hence
present different diffusion patterns. The question of percolation is equivalent to
whether there exists a path from one side of the network to the other through which
information can flow. When there is such a path we define the giant component
as the unique largest connected component of a network. The presence of a giant
component implies that a macroscopic fraction of the network is connected, which
plays a central role in diffusion problems. For instance, the size of a particular giant
component gives an idea of the most vertices that one might possibly reach starting
from a single vertex [16].

The determination of whether a network presents a giant component large enough
to allow rapid diffusion of information depends ultimately on its centralization degree
relatively to its average degree. An actor’s degree is the number of relations he has
within the network. A network’s mean degree is the average number of relations

1 For example, the Bass model that assumes that interpersonal influence is an essential component
in the diffusion process is not, strictly speaking, a network model. It avoids discussing contact
networks at all by making use of a fully mixed approximation, in which it is assumed that every
individual has an equal chance of coming into contact with every other, per unity of time.



4 Assessing the Role of Network Effects … 93

between all vertices of the network. The centrality of an entire network indexes the
tendency of a single vertex to bemore central that all other points in the network [12].

A network is said to be assortatively mixed if agents (vertices) are more likely to
maintain relationshipswithwhomare similar to themselves in patterns attributes such
as centrality degree, race, age, social status. In diassortative networks, in contrast,
high degree vertices such as the opinion leaders in social networks—tend to be
connected to low degree ones, which are relatively disconnected from each other. A
network is said to be highly centralized if one vertex or a small number of vertices
have much higher degree than the other vertices (or if it is easily accessible all other
unities or if it lies on several shortest paths between other unities). Relatively higher
variance to the mean degree, which indicates a larger centralization degree, makes a
network more conducive to information diffusion, as it provides higher degree nodes
to lead to the formation of giant components.

The critical threshold of percolation, that is the mass of adopters of new attitudes
or behaviors required to trigger the formation of a giant component, depends on two
moments of networks degree distribution: the mean degree (4.1) and the squared
mean degree (4.2).

〈k〉 =
∞∑

k=0

kpk (4.1)

〈k2〉 =
∞∑

k=0

k2 pk (4.2)

The critical percolation threshold is given by [20]

φC = 〈k〉
〈k2〉 − 〈k〉 (4.3)

The size of the corresponding giant component S, that is the fraction of agents
that are in the giant component (the formula is valid for a random graph but can be
used to approximate the size of giant cluster is other types of networks as well) can
be computed numerically through the following equation [20]:

S = 1 − e−〈k〉S (4.4)

Which can be rewritten as in Eq.4.5:

k = ln(1 − S)

−(S)
(4.5)

Thus, if for instance the mean degree is greater than five, nearly all agents will
become members of the giant cluster. If it is lower or equal than 1, on the other hand,
a giant cluster cannot emerge. For checking this result, notice that the giant cluster
consistent with a mean degree of 1.025 would contain only 5% of agents, while the
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giant cluster that could emerge in a network with a mean degree of 1.0025 would
contain less than 1% of the agents. For mean degrees lower than 1, there are no
consistent positive values for S.

The main metrics that can be used to measure network characteristics that influ-
ence the level of resilience or flexibility of mental models are as follows.

4.2.1 Mean Degree

The mean degree of a network—k—is positively connected to diffusion. The expla-
nation is that, according Eqs. (4.3 and 4.4), the higher the mean degree of a social
network the sooner a new idea or belief will percolate and the larger the size of
the giant cluster that will emerge. In low connected networks—mean degree lower
than 1—the separation between vertices could be large, and there is no giant clus-
ter, instead the network consists of many components that are small relative to the
number of nodes. For more connected and relatively homogeneous in-degree net-
works, on the other hand, we can compute their epidemic threshold (that is the line
that separates an initially growing number of people adopting a new idea from an
initially decreasing one) exactly like we do in system dynamics SIR-type models.
Specifically, we can easily show that the lower the mean degree of a network, the
higher must be the probability of infection relatively to the recovery rate in order to
new ideas to spread [20].

4.2.2 Centralization Degree

A more centralized network speeds up diffusion because the critical mass for per-
colation is reached sooner than in less centralized ones. For confirming this result,
observe that the larger the heterogeneity in degree and therefore the centralization of
a network, the larger the denominator of the formula for computing its percolation
threshold (Eq.4.3). Thus, new ideas and behaviors can propagate rapidly once they
reach some high ranking nodes, i.e. the hubs [22]. Most of complex highly central-
ized systems, such as the WEB, the cell, and scientist and professional networks,
contain hubs. An important result from recent studies in network analysis is that
highly centralized networks are less vulnerable to random failures but more fragile
to targeted attacks to high ranking nodes. Lower centralized homogeneous networks,
on the other hand, are more fragile to random shocks, once they are close enough
their percolation threshold [2]. This result may have important implications for the
speed with which people adapt their mental models to new information, as we shall
discuss later.
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4.2.3 Assortativity Degree

Assortativity correlates negatively to diffusion due to the homophily principle, that
is due to the fact that people are more likely to maintain relationships with whom
are similar to themselves. Assortativity can be associated with the emergence of a
core-periphery structure, in which a set of a densely connected actors constitute the
core of the network while many other (low degree) actors constitute the periphery.

More connected people in assortatively mixed networks (e.g., agents 1 and 2) link
mostly to each other, whereas in disassortatively mixed networks there are highly
connected actors (the opinion leaders) who connect relatively disconnected people
to the social network’s core.

Figures4.1 and 4.2 depict a computer generated assortativelymixed network at the
top and a disassortative one at the bottom.As new ideas usually enter a system through
higher status members (e.g., vertices 1, 2), a higher degree of homophily would
mean that new information usually would not reach the periphery in assortatively
mixed networks. It would tend to spread horizontally, rather than vertically, which
slows down the rate of diffusion. Heterophilous disassortatively mixed networks, in
contrast, are said to be radial oneswhich aid rapid diffusion [28]. In this class of radial
networks followers (e.g., vertices 12, 13, 14) tend to seek themore connected opinion
leaders of higher socioeconomic status and/or more formal education, perceived as
more technically competent (e.g., vertices, 1, 11). This makes the most influential
opinion leaders potential key targets in diffusion campaigns because they are in
general influential in political, health, agricultural and educational issues [23].

One way to assess the assortativity degree of a social network is by computing
an assortativity coefficient (r), based on the correlation between centrality degrees.
A positive value for r indicates a tendency to high degree nodes to connect to other
high degree nodes.

Table4.1 displays the calculated r for some assortatively and disassortatively
mixed systems, which confirms the insight that there is a tendency for the social
networks to have a positive r, indicating assortatively mixing by degree, while tech-
nological and biological networks have negative links, indicating disassortatively
mixing [21].

An alternative way to access the assortativity degree of a social network of inter-
est is by testing whether a given dataset has a hypothesized core-periphery structure
as in the adjacency matrix in Fig. 4.2 [3]. A built-in function of the computer pro-
gram UCINET, to be used in Sect. 4.4, allows us to compute the Pearson correlation
coefficient (fitness) between actual data sets and the adjacency matrix in Fig. 4.2.

Table 4.1 Correlation in degrees

Math

coautorship Film actors Power grid Internet Train routes Marine food web

r 0.120 0.208 −0.003 −0.0189 −0.0333 −0.263
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Fig. 4.1 Assortatively
mixed network

Fig. 4.2 Disassortatively mixed network

4.3 Basic Types of Social Networks

Recent research in network science has identified three types of networks as of
more interest to applied human sciences. Random networks in which links are ran-
domly distributed across vertices and form a bell-shaped distribution; in this kind
of network, most of vertices have a typical number of links, with the frequency of
remaining rapidly decreasing on either side of the maximum. Most of real social
networks, however, follow the so-called small world pattern according which com-
munities organize along homophilous links, presenting weakly connected clusters of
individuals, who have relatively small numbers of connection outside their own clus-
ters, and small path length between apparently widely separated vertices [30]. One
example of this type of network is the one studied by Granovetter [15] which showed
that we get most relevant information from acquaintances linked to us through weak
and long range ties, and not from close friends. A third type is defined as scale free
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networks, where most vertices have only a few links, and a tiny minority the hubs
are disproportionately highly connected, such as the World Wide Web.

The latter, therefore, present skewness in their degree distribution, which is the
typical signature of social network in which network effects have an important influ-
ence on how agents behave. The highly connected agents in the networkmay exercise
a powerful influence on the behavior of the low connected ones [22]. If they can be
persuaded to change their beliefs or behaviors this can trigger a cascade of behavior
change though the entire social network, as predicted by the two-step flow model of
influence [17, 32]. In small-world networks in which hubs are not supposed to exist,
on the other hand, attempts to identify and influence opinion leaders are a waste of
time and resources.

A better strategy to encourage the spread of new ideas or behaviors through these
systems is to attempt to influence a critical mass, for instance by advertisement like
in the Bass model, which would allow the news to percolate across the population
by word-of-mouth.

Network science, thus, explains us why some campaigns seeking changing long
lasting mental models in fields such health, politics and sustainable practices and
technologies fail to spread while other have a dramatic impact, namely the fact that
the effectiveness of a policy will be contingent on the type of network upon which it
is being enacted. If a particular network is best approximated by a random or a small-
world pattern, then the concept of influential is not so important, and qualitative paths
of ideas and behaviors diffusion can be roughly predicted through traditional system
dynamics models of diffusion. But if the networks resemble a scale-free pattern,
conclusions based on those models can be severely misleading, which suggests the
need of complement analysis with other approaches such as agent based modeling.

4.4 Illustration: Assessing the Network Structure
of a Small Irrigation System

In order to illustrate the above reasoningwe created aNetLogo landscape for an actual
irrigation project the Gorotuba River irrigation district—in the northwest region of
the state of Minas Gerais/Brazil [33].

The landscape, depicted in Figs. 4.3 and 4.4, was populated with 450 families and
40 firms. The thicker line represents the main irrigation channel while the thinner
ones represent the secondary channels of the project. Families and firms were placed
in their actual locations in the district. We assumed that firms differ from families in
that they are less lazy statistician than families, in the sense they search around by a
larger radius to get information about the environment before taking actions.

The number of the agents located within the searching radius, measured for the
geodesic distance among cells in the grid, was used as a proxy to each agent’s
centrality degree in their social network. Based on these assumptions we built a
binary social matrix in which each cell assumes value zero if agents are not related
to each other and 1 otherwise. We finally built the graph for the social network of
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Fig. 4.3 The Gorutuba River irrigation district: wide view

Fig. 4.4 The Gorutuba River irrigation district: partial view

Fig. 4.5 Social network of the irrigation district of Gorotuba River: centrality degree
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Table 4.2 Structural properties of theGorotubaRiver irrigation district’s underlying social network

Rewiring level Mean degree r Centralization (%) Percolation
threshold

Fitness to an idealized
core-periphery structure

0 0.96 0.272 1.54 0.82 0.18

1% 9.87 0.008 2.22 0.07 0.07

the Gorotuba irrigation district in Fig. 4.5 with basis on the social matrix above with
the computer program UCINET [4].

The next step was randomly rewiring the social network in order to allow agents
to establish relations with more distant neighbors. Hence a 1% of matrix rewiring for
instance means that agents link now to previously disconnected agents with 1% of
probability, that is that each agent establishes connectionwith four new neighbors, on
average. As expected from previous studies in social networks (see for instance [30],
even a few extra links are sufficient to drastically increase the average connectivity
among agents, as measured by the network’s mean degree (Fig. 4.6).

Are rewired networks more conducive to the diffusion of new ideas than the orig-
inal network? Table4.2 displays some key structural network’s properties calculated
as explained in Sect. 4.2 for two different rewiring levels of the social network at
hand.

While the difference in centralization is insignificant, there seems to be a tendency
for the non-rewired network to display a structure less favorable to information prop-
agation. For instance, the mean degree of 0.96 implies that a giant component of
adopters is unlikely to emerge in the non-rewired network [16] whereas the percola-
tion threshold of 0.82 means that more than 80% of the population has to be infected

Fig. 4.6 Social network of the irrigation district of Gorotuba River: centrality degree (1% rewired
matrix)
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in order to trigger a cascade of information. The rewired network is also more radial,
i.e., less assortative than the actual one.

Assortatively mixed networks usually display structural characteristics of small
world networks, such as relatively high percolation thresholds, which means that
mentalmodels in such settings can remain stable and resilient to new information for a
long time, until, unexpectedly, attitudes and behavior change in a cascade in response
to seemingly unimportant changes, for example in environmental parameters as a
reduction in the amount of rainfall.

The problem for the diffusion of information in more homogeneous and less
connected networks like the Gorotuba district, specifically, is that the percolation
threshold is high because producers are too weakly connected to trigger cascades
of adoption of, say, more sustainable behaviors through their underlying social net-
works.

This seems to be a problem even in developed countries in which farmers are
supposed to be more informed and conscious on the need of adopting sustainable
irrigationpractices. InAustralia, for example,while the level of uptakeof drought pre-
diction is highwithin government agencies, less thanone third of farmers take drought
predictions into account. Furthermore, farmer’s preparedness to change major deci-
sions is not generally influenced by this information. This is true even in extreme
situations such as El Niño events, and despite the fact that drought link is widely
known and accepted within the Australian agricultural community [34].

The rewired Gorotuba network, on the other hand, tends to present some charac-
teristics of scale free networks, such as relatively highly connected hubs, capable of
disseminating information widely. These networks differ from small worlds in that
social contagious does not require any epidemic threshold is crossed. The explana-
tion is that, in the presence of highly connected hubs, social contagion may spread

Fig. 4.7 The spread of new
ideas in small-word and
scale-free network
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quickly if the disease infects even a single hub near a vulnerable cluster of agents (for
examples of this type of scenario, see [19]). Figure4.7 (Adapted from [32]) compares
typical diffusion paths in assortative and disassortative networks.

The attractiveness of a new idea is given for the probability of an agent to be
convinced to adopt a new idea by a former adopter. The larger the contact rate (k),
that is the mean degree of the network, the larger the number of people exposed
to the new idea, the faster the spread of the new idea throughout the network (the
smaller the percolation threshold in Eq.4.3 and the larger the size of the cluster of
final adopters (Eq.4.5).

4.5 Discussion and Conclusion

The process of adaptation of mental models to new information tends to follow
different qualitative patterns in different kinds of social networks. Networks in which
social processes can play the major role, such as the spread of infectious diseases,
rumors, riots and fads tend to be characterized by assortative mixing in-degree as it is
typical of small-world networks [31]. In contrast, socio-ecological networks and large
size techno-social systems, such as transportation systems and power distribution
grids, are in general characterized by disassortative mixing in-degree and hence tend
to resemble scale-free networks [29]. Economic networks, finally, present properties
of both disassortatively and assortartively mixed systems [16].

In the most common type of purely social networks—small-worlds—as there are
no especially influential agents, a relatively large critical mass of infected individuals
is required for triggering mental model changes. In technological and economic
networks, in contrast, if a small number of highly connected agents are influenced
by new ideas and beliefs the whole process can be very rapid. Our simulations,
however, suggest that the addition of a few extra links among agents into small-
world networks can dramatically reduce their percolation threshold i.e., the size of
the critical mass of infected individuals required to trigger a cascade of change and,
hence, decrease the length of the time delay required to adjust mental models.

These results indicate that there is a considerable room for policies seeking to
improve mental models deemed inadequate, though the kinds of approaches which
might work on a type of network may have little impact on another. We can think of
three basic types of strategies for doing so: (a) to identify opinion leaders and convince
them to change their mental models; (b) to try to percolate clusters of individuals
with new ideas and behaviors and (c) to alter the structure of the network.

The first strategy probably works best in technological systems, such as the inter-
net and the world wide web, which are ultimate scale-free disassortatively mixed
networks As such networks are robust against random failures but vulnerable to
attacks on their highest degree vertices, the easier way to encourage mental models
changes is to persuade such highly connected vertices, say the more connected per-
sons on Facebook. These persons, even when they are otherwise ordinary people,
are important simply because they have so many connections. When diffusion starts
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with these individuals the delay time between the introduction of an innovation and
the emergence of the critical mass required to trigger its diffusion is eliminated [27].

That can be true with the proviso that is many times easier said than done because
it can be hard to influence these people. Studies in diffusion have shown that opinion
leaders have followers but in general are not willing to be the first to adopt new
ideas [23].

In small-world-like networks, on the other hand, elite individuals interact mainly
with one another which implicates that the first strategy is often ineffective. If we
nevertheless attempt to introduce changes in mental models through higher status
individuals, the new ideas would tend to spread horizontally not trickling down to
non-elites.

Yet, as these systems generally exhibit tipping point properties, it is theoretical
possible to speed upMMchanges if wemanage to percolate clusters of similar people
by persuading a critical number of them. An even more efficient strategy, inspired
in vaccination campaigns, might be to attempt to influence the friends of randomly
picked individuals. The non-intuitive rationale for this strategy is that for the most
types of social networks, the agents connected to any set of randomly selected ones
tend to be more connected than they own [6].

More specifically, a random sample of individuals will have a mean degree of µ
(the mean degree for the population); but the friends of these random individuals
will have a mean degree de plus a quantity defined by the variance of the degree
distribution divided by µ [8].

The third strategy to encourage changes inmental models is to change the connec-
tion between people rather than focusing on getting people individually to change
their behavior. For example, if a network is much sparse, like in the non-rewired
version of the Gorotuba irrigation district, the propagation of information across it
is likely to be very limited (because a giant cluster of even modest size is unlikely
to emerge if the network’s mean degree is low). Policies seeking to change MMs in
this case should be directed toward increasing social connections among agents.

Another example is on measures capable to prevent the spread of undesirable
behaviors. For instance, there is currently clear evidence that obesity is a social
phenomenon, in the sense its prevalence occurs through social networks with clear
boundaries. That is because the social pressure and influences on not to become obese
are relaxed when other people are already obese. Accordingly, Christakis and Fowler
[7] have identified discernible clusters of obese persons, which are not attributable to
the selective formation of social ties among obese persons, but to the fact that people
are influenced the most by whom they resemble, which means that homophily plays
a key role in these networks formation. This and other public health issues, such as
alcoholism and drug addiction, therefore, seems to require interventions based on
measures that provide peer support, that is that modify the person’s social network
to another in which prevalent mental models do not see obesity, for example, as the
default mode of the underlying social network.

Just to give a very preliminary idea on how to use network concepts to analyze
a real-world situation, consider the mass protests that have taken place recently in
Brazil. Since mid-2013, the country has experienced waves of increasingly violent
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riots against corruption and the low quality of public services, which politicians
and intellectuals have proved completely unprepared to understand because mental
models regarding the problem seem, at least partially, wrong.

The mental model often made explicit by members of the federal government and
by some influent intellectuals, in the first place, is the protests even the violent ones
are essentially legitimate, which means that measures to reduce political violence
should be more political than punitive. The President herself, a politician with a
leftist orientation, received leaders of one these events at office just one day after
they had wounded police officers and attempted to violently invade the president’s
office. Protesters’ mental model, secondly, which has certainly been encouraged by
government behavior, appears to be that the cost/benefit of adopting increasingly
violent attitudes is favorable as that behavior allows the most violent among them
to assume a position of prominence in their social networks. Public opinion finally,
after having enthusiastically supported a firstwave of (peaceful) protests, began to see
them more and more as manifestations of troublemakers that need to be suppressed.
The murder of a journalist who was following one of these events by rioters in
Rio de Janeiro apparently have contributed to spread this sense of outrage among
the majority of the population and part of the authorities. But what exactly should
be done?

Two main strategies, thus far only vaguely outlined, are on the table. The first
one, sponsored by influent members of the government and by most of intellectuals,
is to try to identify and convince protest leaders to change their behavior by means
of negotiation around issues like bus and metro ticket prices, which might induce, at
least in theory, their followers to do the same.

The second strategy championed basically by police members and by some politi-
cians from more conservative opposition parties, is to make the laws more severe,
ranking violent acts in protests as terrorism, which in principle would increase the
costs of violent action for perpetrators. This is not the place to try to assess the merits
of each strategy. Yet, our analysis gives some (speculative) clues about the possible
consequences of each one.

It suggests, for instance, that a prerequisite for the first strategy work is that the
protesters’ network is disassortative, i.e., that there are influentials to be influenced.
Moreover, this measure would make sense only if the supposed leaders could in
fact be induced to change their behavior, which seems at best unlikely, since these
people would have to abandon just the practices that have brought them notoriety
among their peers. Secondly, it informs us that a condition for the second measure to
work is that the protesters’ network is predominantly assortative. Only in this kind
of network, it would make sense to attempt inducing cascades of changes in mental
models by percolating clusters of relatively homogenous protesters using the fear of
more rigorous punishments. Even so, it would be necessary that the police forces
and justice courts were sufficiently efficient to identify and remove a critical mass
of troublemakers from the network, which is far from being certain at this point.

While the insights and simulations presented in the chapter shall be seen more
like thought experiments than real experiments, we believe they can have important
implications for both empirical and theoretical studies in system dynamics. The most
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important of them seems to be we can no longer think of people as only individuals
reaching carefully considered decisions as social networks foster strong norms about
a wide range of topics, including life goals, moral values, and even clothing. People’s
desires and preferences, thus, are mostly based on what respective peer community
agrees is valuable rather than on rational reflection based directly on their individ-
ual biological drives or inborn morals. There is now robust evidence that, in these
circumstances, providing social network incentives to change mental models is a far
more powerful method of changing behaviors than the traditional method of using
individual incentives.

Models of social interaction have been developed to explain the observation of
large differences in outcomes in the absence of significant differences in fundamen-
tals. In those models each persons action changes not only in response to direct
changes in fundamentals, but also because of the change in the behavior of his or her
peers. These models show that if social interaction is large enough one may observe
different outcomes from exactly the same fundamentals.

In a classic study in the field, Glaeser et al. [14] showed that the large variation
in crime rates across large American cities at that time could be better explained
by a model of social interaction rather than by the usual social-economic variables.
More recently, a number of economic studies have broadened this framework to
analyze, for instance, the occurrence of large drops in aggregate economic activity
due to the propagationofmicroeconomic shocks through input-output linkages across
different firms or sectors within the economy [1], interbank risk contagion caused
by idiosyncratic small shocks [21], and the adoption of new products. For instance,
commercials in big events are often used to advertise products where network effects
are important in the sense it is rational to be one of a large population of adopters. A
classic example was the introduction of the AppleMacintosh in the 1984 Super Bowl
by a commercial directed by Ridley Scott in which Apple did not simply inform each
viewer about the product, but also told each viewer that many other viewers were
informed about the Macintosh [9]. Overall, therefore, as the patterns of connections
in a network can have profound impacts on the propagation of ideas, beliefs and
behaviors in actual settings, it seems important to develop a better understanding of
characteristics that describe who interacts to whom in actual settings.
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Chapter 5
Resource Constrained Randomized
Coverage Strategies for Unstructured
Networks

Subrata Nandi and Niloy Ganguly

Abstract Most of the information management algorithms in large-scale
unstructured networks, require one to maximize the coverage (C) i.e. expected num-
ber of distinct visited nodes. An unstructured system lacks an index. Hence, to max-
imize coverage, flooding-based strategies are used when there is an abundance of
bandwidth (B) and single randomwalker is used in abundance of time (T ). However,
there exists an inherent tradeoff between coverage speed and bandwidth utilization.
Hence, in practical scenarios, when the amount of resource, both bandwidth B and
time T are finite, it is nontrivial to design strategies that maximizes network cover-
age. This chapter defines the extended network coverage problem under constrained
resources, reveals the underlying challenge and discusses some of the recent works
that design randomized strategies to maximize coverage C(B, T ). Specifically, the
chapter explains how the understanding of K -random walk dynamics has been used
to develop uniform and non-uniform proliferating random walk strategies to achieve
the goal. These coverage strategies may be useful in designing efficient services,
e.g. search, gathering and routing for large scale networks like sensors, peer-to-peer,
computing grids, etc.

5.1 Introduction

Information management [1] in large-scale distributed systems ranging from social
networks and the Internet to ad-hoc [17], peer-to-peer (P2P) [7, 14, 23], delay tol-
erant networks [12], sensor [16] and mesh networks, computing grid etc. require
services like search [1, 4, 6, 10], dissemination [30, 33], gathering [24], spreading
[18, 19] and routing [35, 40] of information. Depending on how the data is orga-
nized, such networks may be classified into two broad categories—structured and
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unstructured. In structured networks an index or hash table is maintained whereby
the index is used to locate the node containing the data, whereas in unstructured
networks, no such indices are stored explicitly. As a result, unstructured networks do
not incur any overhead for maintaining the index structure and can handle high churn
rates efficiently. Large networks are inherently dynamic and follow a decentralized
architecture as they lack centralized control or authority. Hence, information in such
systems is generally organized in an unstructured fashion.

All real-world networks work under resource constraints. Assume for its execu-
tion, each service request be allocated T time steps and B units of bandwidth quota,
as resource. Bandwidth here refers to the total number of messages required to be
passed among the nodes corresponding to a service request. Hence, it is an implicit
measure of physical resource, the amount of communication bandwidth and battery
power used by a service. Time refers to the maximum latency that is allowed for the
execution of a service starting from its initiation. Starting from a single node, most
of the underlying information management algorithms for unstructured networks,
require to maximize the expected number of distinct visited nodes, the coverage
[C(B, T )] of the network, consuming B amount of bandwidth within a service time
of T units.

It may be intuitively noted that by fixing the maximum lifetime T of a service,
real network systems also place an implicit limit to the overall amount of bandwidth
consumption per service request, thereby resource constraint. However, to know the
underlying challenge and classical flavor in designing such resource constrained
coverage strategies, one require to get an insight of how the optimal utilization of
the allocated resources impact the performance of coverage algorithms. The details
has been elaborated in Sect. 5.2.

The primary objective of this chapter is to provide the reader with the motivation
of designing resource constrained coverage algorithms for real networks. At first,
we present a systematic understanding of the underlying challenges involved in
dealing with the inherent tradeoff between the coverage speed and the wastage of
bandwidth related to such problems. Then we go on formulating the general problem
definition and subsequently discuss in details the optimal algorithm (with zerowalker
memory) to solve it, covering our works in [27–29], which forms the major content
of this chapter. Accordingly, the design of solution for optimal coverage for regular
d-dimensional grids for d > 2 has been elaborated in details. However, nodes in real
world networks do not always exhibit homogeneous degrees. To bridge this gap and
to have completeness, in the later portion, briefly we discuss our work in [32] which
extends the optimal algorithm and designs a solution to the problem assuming finite
walker memory, considering more realistic resource constraints and present some
results on random geometric graphs.

The problem of estimating random-walk-based coverage on graphs has been
studied since 1951 by Dvoretzky and Erdos [11]. However, in [27] for the first
time, we formulated the extended coverage problem which explores the challenge of
designing optimal strategies with explicit control of resources (bandwidth and time
consumption). Flooding and 1-RW can be trivially noted to be optimal under
abundance of bandwidth and time, respectively. However the strategies in the
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Fig. 5.1 Phase diagram showing the zones in the bandwidth (B) and time (T ) space, served by the
strategies producing optimal coverage for the allocated resources ofB and T towards execution of a
service, on a d-dimensional regular grid network. The phase boundaries are annotated with the plot
of asymptotic functions of bandwidth consumption with time, corresponding to a 3-dimensional
grid, as an example. Flooding and 1-RW are optimal in the limit of large (unbounded) B and
T , respectively. The memory-less, uniform proliferation strategy P∗(t)-RW is optimal for time

constraints O(B
2
d ) ≤ T ≤ B, i.e., in Zone 2. The history-based(h), non-uniform proliferation

strategy P(t, h)-RW-e is near optimal in the time constraint range O(B
1
d ) < T < O(B

2
d ), i.e., in

Zone 2

intermediate range was unknown. There is a inherent tradeoff between coverage
speed and bandwidth utilization (details in Sect. 5.2). However, for d-dimensional
regular grid, we have shown that without any additional memory, in the problem
space, the coverage algorithm P∗(t)-RW produces optimal coverage same as 1-RW
(maximum achievable for an allocated bandwidth) at a much higher speedup. Our
strategy is based on random walkers proliferating in a uniform rate. Also, a class of
proliferating random walks P(t)-RW was shown be the best performing strategy in
a generalized case. Later extending P(t)-RW, using small walker memory, in [32]
we derived an near optimal strategy P(t, h)-RW-e for the generalized case. The find-
ings are summarized in Fig. 5.1 where the application ranges of the strategies are
compared in the phase diagram (T ,B), by denoting the strategy which yields the
maximum node coverage C(T ) at given (T ,B).

The rest of the chapter is organized in six sections. Section5.2 provides the back-
ground and problem definition. Sections5.3, 5.4 and 5.5 discusses design of the
strategies P∗(t)−RW, P(t)-RW and P(t, h)-RW-e. The related literature has been
highlighted in Sect. 5.6. Finally, Sect. 5.7 concludes.

5.2 Background and Problem Definition

Due to the lack of an index and in absence of additionalmemory in the nodes (sites) or
the messages, the coverage strategies either use some variants of flooding or random
walk (RW). Let’s consider two simpler cases of computing coverage: [C(∗, T )]
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Fig. 5.2 Figure a illustrates the basic flooding process at time t=3, starting from node labeled ‘0’.
Arrows denote the direction of message forward. The yellow circles denote a node visit in some
previous time (denoted by label) step. Yellow ‘bursts’ denote a redundant visit at the current step.
The corresponding table shows the change in coverage, bandwidth, efficiency and redundancy at a
particular time step. Here, redundancy increases fast with time. Figure b illustrates a 3-RW on a two
dimensional grid. Three random walkers are shown in bigger circles. The smaller circles in gray
and black represent respectively, unvisited and visited grid points. At time t = 1, all three walkers
start from the source node. The mutual overlap (a walker revisiting some other walker’s trail) and
own overlap (revisiting its own trail) has been shown at t = 2 and 3

i.e. when there is no restriction in B and [C(B, ∗)] when there is no restriction in
T . When there is abundance of bandwidth B, flooding produces optimal coverage
in minimum time. Here, optimal coverage refers to the maximum possible coverage
under given constraints of bandwidth and time. In flooding, a node forwards the
copy of a received message to all its neighbors except one from which it received
the message. Figure5.2a illustrates flooding in a 2-D grid of 25 nodes. It shows that
flooding maximizes speed of coverage (i.e. coverage per unit of time) at the cost
of huge wastage of bandwidth. Flooding is a highly inefficient coverage process1

as number of redundant visits increase exponentially with time. Hence, in many
occasions flooding is not accepted in spite of its high speedup.

When there is no restriction of time, single random walk (1-RW) strategy produces
optimal coveragewithminimumwastage of bandwidth. In 1-RW, themessage packet
ismodeled as a randomwalker,which originate from the start node, and spread around
to serach/disseminate/gather the desired information. In each time step the walker
is forwarded from its current node to a randomly selected neighbor node [2, 10].
The random walker produces a overlap, i.e.redundant visit of a node when it jumps
onto its own trail. Hence, it runs for time T = B units and is the most efficient
strategy producing optimal coverage say, C1, however with least speedup. Hence,
for a given bandwidth B there is an inherent tradeoff between the coverage speed
and the wastage of bandwidth. Let’s now ask [27] a counter intuitive question:

1 This chapter uses the term process, strategy and algorithm is used interchangeably.
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• Fundamental Question—Given bandwidth quota B, can we design a random
walk strategy which produces the same coverage (C1) that of a 1-RW but with a
higher speedup, i.e. consuming the allocated bandwidth in time T < B units? In
other words, can higher speedup be achieved without an increase in amount of
bandwidth wastage?

In an attempt to achieve both higher coverage speedup one may consider using
K (>1)-RW [21], where K number of independent random walkers start from the
initial node to reach more distinct nodes than a single random walker can visit
during the same time. The number of walkers remain fixed throughout the process.
An illustration of 3-RW in Fig. 5.2b shows that overlaps in a multiple random walk-
based strategy are of two kinds. First, overlap with its own trail, which is can’t be
avoided even if a single walker is in the system. Secondly, the mutual overlap in
which two or more walkers visit the same node either in the same time step or in
different time steps. Unlike multiple walkers, a single random walker only has its
inherent overlap, hence, a K-RW will always be less efficient than 1-RW, therefore
will fail to achieve the same coverage. Hence, given B there is an upper bound Cmax

to the amount of achievable coverage which equals C1, i.e., the coverage obtained
by 1-RW. By using a larger K , the allocated bandwidth B can be consumed faster,
however, at the cost of reduced coverage due to increased mutual overlap. Therefore,
K (>1)-RW can’t be the answer to the above question.

A further observation is that (refer Fig. 5.2) with time the K random walkers
disperse (move ‘far’ apart), reducing mutual overlap, however leaving unexplored
area (unvisited nodes) in between. Hence, to simultaneously satisfy both objectives:
first, to nullify/reduce the mutual overlap of a K (�1)-RW and secondly, to ensure
higher coverage speed, a proliferating random walk (p(t)-RW) [15] strategy may
be considered. In a proliferating walk, a walker self-replicates at its current node
with rate p(t) > 0 at time t , such that each walker produces another walker after
every 1/p(t) time steps, on average. The walker count thus increases exponentially
with time, hence, the bandwidth consumption too, increases exponentially. It may be
noted that estimating the suitable non-zero proliferation rate is critical in designing
a bandwidth constrained optimal coverage algorithm.

Previously developed algorithms have either set application-specific rules for
walker proliferation or used a constant rate p(t) = PC , where PC satisfies the condi-
tionB = ∑T

t=1 K (t) = ∑T
t=1(1+ PC )t−1. Here T is the service time. To achieve our

desired objective, starting with a small walker count PC -RW and each proliferating
at a constant moderate rate PC , could be used. This, however, as demonstrated in this
chapter (Sect. 5.3) by numerical simulation and quantitative comparison of different
algorithms is a naive strategy, that neither guarantees elimination of mutual overlap
(that might affect efficiency) in the early stage nor reduction of the uncovered area
(that might affect speed) at the later stage (Fig. 5.3).

Noting the above fact, to solve the above-posed fundamental question, one now
specifically has to solve the following problems:
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Fig. 5.3 Figure illustrates the K = 8-RWprocess for 3 time steps, all starting fromnode labeled ‘0’.
Arrows denote the direction of message forward. The yellow circles denotes a visited node, label
denotes the visit time. Yellow ‘bursts’ denote a redundant visit at the current step. The corresponding
table shows the change in coverage, bandwidth, efficiency and redundancy at a particular time step.
Here, redundancy decreases with time

• Problem 1: Given B, starting from a single node, without any memory of
visited nodes, can Cmax be achieved much faster (compared to 1-RW) i.e.,
at T = Tmin � B by multiple walkers using a suitably chosen proliferation
strategy?

In simple terms one need to design an optimal coverage strategy for C(B, ∗).
The solution to the above network-challenge is not trivial even for regular grids. In
Sect. 5.3 of this chapter, we study the problem for infinite d-dimensional Euclidean
grids. With a deeper understanding of K-RW dynamics, in Sect. 5.3.2 we discuss
how to design a uniform time varying random walk proliferation strategy (P∗−RW)

[27] which ensures minimal wastage with an speedup of S = B
Tmin

= O(Tmin
( d
2 −1)).

However, a real-world service operating with bandwidth B may need to complete
even faster, i.e. within a time constraint T < Tmin . In such case, the random walk
process is forced to consume the allocated bandwidth in less than optimal time.
Hence process can deviate from the optimality criterion and afford to waste some
bandwidth to achieve higher speedup, instead. As a result, C(B, T ) will always be
less than Cmax . Hence, two important questions of practical relevance is:

• Problem 2: Given B and T , assuming zero memory of random walkers, what
proliferation strategy optimizes coverage C(B, T ), where T < Tmin?

In Sect. 5.4, we show that for the above problem, in regular grids a random walk
proliferation strategy P(t)−RWobtained by extending the optimal strategy P∗−RW
performs the best compared to naive strategies PC−RW and � B

T �-RW. However, the
relative advantage of P(t)−RW decreases sharply as time constraint reduces, i.e.
T � Tmin . Analysing the co-relation between mutual overlap and walker density,
In [32] we developed a near-optimal strategy based on nonuniform random walk
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proliferation P(t, h)−RW-ewhich achieves 3.5 timesmore coverage than P(t)−RW.
Here each walker is accommodated with a finite memory and h is the number of
mutual overlaps experienced by a walker in last H hops. The brief description of
P(t, h)−RW-e is presented in Sect. 5.5.

5.3 Coverage Strategy for C(B, ∗) Under Unconstrained
Time

In their pioneering work Larralde et al. [21, 22] studied the K -RW dynamics on
regular grids from a statistical mechanics perspective. It was the first attempt to visu-
alize the dynamics of multiple K � 1 random walkers on an infinite d-dimensional
Regular grid. They also derived an asymptotic expression for C(T ). Later it was
supported by a more rigorous solution by Yuste et al. [41]. The design of our strategy
takes insights from Larralde’s work. Section5.3.1 presents the K -RW dynamics on
Regular grids and summarizes the results and important observations that we derive
from their work. The optimal coverage strategy P∗(t) is derived in Sect. 5.3.2 for
d-dimensional regular grids. Section5.3.3 presents the experimental verification of
Larralde’s results as well as optimality of P∗(t). Finally the Sect. 5.3.4 draws the
conclusion.

5.3.1 K-RW Dynamics on Regular Grids

Figure5.4 illustrates Larralde’s experiment on the visualization of the surface geom-
etry of spreading of K independent random walkers all starting from a single node,
on a 2-dimensional regular grid [22]. It shows that random walkers move far apart
from each other as time increases. Table5.1 summarizes the key analytical results
derived in [21, 22, 41]. It shows that when K random walkers all start from a single

Fig. 5.4 a Visualization of the actual set of sites (nodes) covered (visited) by K = 500 random
walkers all starting froma single source in a twodimensional surface, at a sequence of four successive
times t , showing the progressive roughening of the surface of this set as time increases. The set
of visited sites are shown as white, individual random walkers shown in red and unvisited virgin
territory is shown in black. b illustrates the case for K =1,000 at a later time. The roughening of
the surface is due to the fact that with increase in time random walkers go far apart from each other.
(Figure courtesy [21, 22])
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Table 5.1 Table shows the expression for Coverage increments�C(t) achieved by K � 1 random
walkers at a time step t for three different time regimes in a d(>2)-dimensional regular grid [21,
22, 41] (ξ

′
and ξ are parameters)

It may be noted that for d = 1, 2, the K random walkers show the same behavior in regimes I and
II with identical tc

1 . But for d = 1 regime III does not occur and occurs at tc
2 ∼ eK for d = 2

point on an infinite d-dimensional Regular grid the system of walkers exhibit three
distinct regimes of spread. For each regime, the table gives the expressions for the
asymptotic coverage at time t (C(t)) and the increase in coverage at time t (�C(t))
during one time step and the crossover times from regime I–II (tc

1 (K )) and II–III
(tc
2(K )). It may be observed from the values, that as t increases beyond the crossover

times tc
1 and tc

2 , the coverage increases uniformly but with qualitatively different
behavior within each of the three regimes. Moreover the regime I is much short lived
compared to regime II. An important to note that the analytical modeling of Larralde
and Yuste is based on a key underlying assumption that walker count is large i.e.,
K � 1. Hence, for small vales of K the exact expressions may not match although
the qualitative nature is expected to hold true (details discussed in Sect. 5.3.3).

In regime I, all the walkers clutter together and the mutual overlap probability is
very high. However, unvisited neighbors of all the visited nodes are reached during
the next step, resulting in a flooding-like coverage. The considered K -RW enters
regime II when t passes tc

1 as the walkers gradually move away from each other
and less walkers co-occupy nodes. However, still some amount of mutual overlap
persists. In regime III, the walkers are sufficiently separated such that mutual overlap
almost vanishes. As a result, from time t = tc

2 (K ) onwards, i.e., crossover from
regime II–III, each walker behaves independently like a single random walker with
non-overlapping exploration space.

Critical Observation—We observe that t = tc
2 (K ) is an optimal time for efficient

coverage since it yields a high coverage increment per time step due to low mutual
overlap and low wastage of inter-walker space. The crossover time tc

2 (K ) is reached
early if K is small.

Let us denote by E(t) the efficiency during time step t , which is defined as the
ratio of the coverage increments, �C(t), to the number of walkers used during time
step t . In regimes I and II efficiency, E(t), increases with time but reaches and keeps
the peak value E(t ≥ tc

2 ) = Emax as it enters regime III. Emax is the efficiency of a
single random walker.
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5.3.2 Strategy P∗(t) for d-Dimensional Grids

With a constant number (K ) of walkers the system will cross over from regime II–III
at a time

tc
2 (K ) = ξ × K

2
d−2 (5.1)

If no further walkers are introduced, the systemwill stay in regime III where overlaps
do not decrease further. But at the same time coverage speed i.e., �C(t) remains
constant with respect to time. Hence, large parts of the network remain unexplored.
However, the initial overlap of k-RW during time t < tc

2 (K ) can be avoided by start-
ing with a small number of random walkers at t = 1 and proliferating each walker
at a suitable rate P∗(t) at each time step. Thus the system can always remain at the
regime II–III boundary as desired. The exact expression of P∗(t) is derived next.

Calculation of P∗(t)—Let the per walker proliferation rate P∗(t) produce K (t)
walkers at time t . Then K (t) can be obtained from the following recurrence:

K (t + 1) = K (t) × (1 + P∗(t)) (5.2)

We consider a slowly changing walker number K (t) and extend the dependency of
tc
2 (K ) on K from Eq.5.1 to K (t) by adiabatic approximation and insert the require-
ment that K (t) maintains the system at the regime boundary.

tc
2 (K ) = t = ξ × K (t)

2
d−2 ⇒ K (t) =

(
t

ξ

) d−2
2

(5.3)

Hence, the initial walker count is K (1) = ξ− d−2
2 which provides the starting value

for the recurrence in Eq.5.2. Substituting the values of K (t +1) and K (t) as obtained
from Eq.5.3 into Eq.5.2, we get:

(
t + 1

ξ

) d−2
2 =

(
t

ξ

) d−2
2 × (1 + P∗(t))

(5.4)

Hence by simplifying the above Eq.5.4, P∗(t) is obtained as following:

P∗(t) =
(
1 + 1

t

) d−2
2 − 1 (5.5)



116 S. Nandi and N. Ganguly

Expanding P∗(t) in powers of 1
t and ignoring the higher order terms in 1

t in the
asymptotic range t � 1, the proliferation rate takes the form

P∗(t) ≈ d − 2

2
× 1

t
(5.6)

showing a fast decay with time. Hence, K (t + 1) − K (t) � 1 and the adiabatic
approximation in Eq.5.3 is consistent.

Since P∗(t)-RW consumes the bandwidth B in Tmin time steps, we can write
B = ∑Tmin

t=1 K (t), where substituting K (t) from Eq.5.3 we get:

B = K (1) ×
Tmin∑

t=1

t
d−2
2 (5.7)

We estimateB by approximating the discrete sum of bandwidth consumption in each
time step as an integral and solving it, as following:

B ≈
T min∫

1

(
t

ξ

) d−2
2

dt

=
(
1

ξ

) d−2
2

[
t

d
2

d
2

]T min

1

=
(
1

ξ

) d−2
2 × 2

d

[
T min

d
2 − 1

]
(5.8)

Calculation of Speed-up S—The strategy P∗(t)-RWutilizes the given bandwidthB
in a best possible way, consuming it in least time Tmin = O(B

2
d ), providing maximal

possible coverage Cmax . Tmin is the lower bound on the time to consume B. Given
B, the ratio of the time taken to obtain Cmax by 1-RW to the time taken by P∗(t)-RW
is defined as the service speed-up, S expressed as:

S = B

Tmin
= O(B

d−2
d ) = O(Tmin

( d
2 −1)) (5.9)

It may be noted that for calculating the values of S and P∗(t), an empirical
estimation of ξ is needed.We present an empirical estimation of ξ in next subsection.
In addition Sect. 5.3.3 provides an empirical verification of Larralde’s results and
also the approximative result for the service speed-up and the performance of the
proliferation rate P∗(t)-RW.
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5.3.3 Empirical Verification

A regular torus grid has been used in our simulations, with large number of nodes
so that the observed random walk is free from boundary (along a dimension) effects.
Here the main challenge is to store the node adjacency information of a sufficiently
large grid. A grid size of L has been chosen for simulation. Correspondingly for grid
dimensions, d =3, 4, 5 and 6, L is chosen to be respectively 6253, 1304, 485 and 256.
To store the grid structure, an array of size L is used, that equals the size of the grid.
Each node has 2×d neighbor nodes. Hence storing the adjacency information of the
entire topology requires huge memory. To cope up with the memory limitations, we
have maintained the adjacency list data structure as following. Each element of the
array is a record (typically consuming 24 bytes storage), corresponding to a grid node
with one field storing the address of the neighborhood list (dynamically allocated),
with respective tags storing the information whether the neighbor is visited or not.
Before starting each simulation run, we initialize all the neighbor list entries toNULL
and allocate their space only when a particular node gets visited. At the starting of the
next runwe de-allocate all the neighborhood list entries. Let’s consider as an example
d = 4, hereL = 25×108, hence the initialized node array occupies 600MB (approx)
space. For chosen values of B=100,000, at the end of a run, the total space consumed
by the allocated neighborhood lists is (105 × 8 × 4 × 2) (approx.) = 6.4 MB, as
each node has entry corresponding to 8 neighbors storing neighbor-id and visit tag
for each and a long INT consumes 4 bytes. Hence the total space consumption in
each run is restricted to 610 MB (approx.). We used a machine with 4GB RAM. All
simulation data were averaged over 10,000 realizations.

The simulation results are directed towards identifying the following facts:

1. Existence of three distinct regimes for any K -RW process where K > 1.
2. Identification of the crossover time from regime II–III t = tc

2 (K )which is impor-
tant as it is an optimal time for obtaining efficient coverage and also used to
estimate ξ .

3. Verifying the optimality of P∗(t).

Observing the regimes—To identify the regimes we plot the efficiency E(t) across
time t for a K > 1-RW process. Figure5.5a shows the lin-log scale plot of the effi-
ciency E(t) during the time step t versus t for K = 1 and 3 for d =3, as a case. The
presence of three distinct regimes has been shown. Regime I is observable in the 1st
step. Regime II is observed by decreasing difference in efficiency with compared to
single random walker. Regime III is denoted by the time during which the efficiency
almost matches with that of a single walker with a steady small non-zero difference.
The non zero difference is due to the stochastic nature of the experiment. Figure5.5b
illustrates the crossover time from regime II–III for K = 3 (tc

3 = 1, 620) which is
estimated from the intersection of the asymptotic of regime II (decreasing difference)
and regime III (fluctuating difference around a constant nonzero average). Similar
behavior has been observed for any K > 1 across different dimensions d =4, 5
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Fig. 5.5 a Efficiency E(t) versus time t (on lin-log scale) for K -RW on a 3-dimensional Euclidean
grid of |L| = 1,304 nodes. K = 1 is shown in red star throughout. Three regimes for K = 3 are shown,
regime I in green circles, regime II in blue triangles and regime III in black boxes which occur
overlayed on red stars. For 3-RW the crossover time from regime II–III (tc

2 (3)= 1,620) is estimated
from the intersection of the asymptotic (denoted by solid black lines) of regime II (decreasing
difference) and regime III (fluctuating difference around a constant nonzero average), as shown in
figure (b) by a log-log plot of |E1 − E3|

and 6. The above plots provides a qualitative confirmation of the results in Table5.1
even when K is relatively small.

Empirical estimation of ξ—For a given K , we go on estimating tc
2 (K ) empirically

from the plot of difference in efficiency |E1 − EK | versus t . K -RW simulations for
different discrete values of K are performed. For grid d =3 as a case, the values of
tc
2 (K ) are recorded for different walker number, K = 1–12 at an interval of 1, and
then a least square fit of Eq.5.1 to the values is made. The fit yields ξ = 176.12.
Figure5.6 presents the plot of recorded tc

2 (K ) values and the fitted curve. For grid
dimensions d =4, 5 and 6, experiments produced the values of ξ = 96, 30 and 18
respectively, as used in our work.
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Fig. 5.6 Figure shows the
plot of recorded tc

2 (K )

values versus random walker
count K as ‘�’ symbols for
grid d =3, as an example.
The solid line illustrates the
curve obtained as a result of
least square fit of equation
tc
2 = ξ K 2 (refer Eq.5.1) to
the data, which yields the
value of ξ = 176.12

Theoretically, as ξ > 1 for grid dimensions d = 3 . . . 6, it implies that the initial
walker number K (1) < 1. However, in order to run the simulation, the coverage
process has to start with at least one random walker. To nullify this discretization
effect we modify P∗(t) to P∗(t + t ′) where t ′ is the earliest time when K (t ′) just
becomes ≥1, if simulated for continuous K with P∗(t) and K (1) = ξ− d−2

2 . Substi-
tuting K (t = t ′) = 1 in Eq.5.3 yields t ′ = ξ . P∗(t + t ′) ensures that �K (t), the
increase in walker count, remains the same as desired by the analytic rate in Eq.5.5,
even if the coverage starts with K (1) = 1.

Verification of the optimality of P∗(t) (in terms of efficiency and time)—To have
a through understanding of the behavior of P∗(t) to know how the proliferation rate
impact the functioning within the different regimes, we extend Eq.5.5 as following:

P(t) =
(
1 + 1

t + ξ − 1

)(α× d−2
2 )

− 1 (5.10)

Two modifications are made. First, we included a new parameter α in the exponent
term. The parameter α tunes the degree of freedom of the coverage process for
exploring new nodes within regimes II–III. This suitable choice of the value of α

lets us control in which regime the process should operate. When α > 1, process
functions within regime II with constant efficiency E < Emax . When we choose
α < 1, it lets the system function within regime III with constant efficiency Emax . In
both cases the system operating point correspondingly maintains a constant distance
from the regime II–III boundary. Secondly, the ξ term is included to consider at least
one initial walker at the start of the coverage process. We denote P(t)|α=1,ξ=1 as
P∗(t).

The optimality of P∗(t) is derived analytically through Eqs. 5.3–5.5. The deriva-
tions tell that, theoretically, using α = 1, one can attain maximum possible coverage
in minimum time. Hence, it is expected that the coverage of P(t)-RW is exactly
similar to that of 1-RW for α ≤ 1, whereas coverage should sharply fall as α is
increased beyond 1. Figure5.7 shows the relative difference in coverage between
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Fig. 5.7 The plot shows the
relative difference in
coverage
Cmax −C(T )

Cmax
× 100% obtained

using the generalized
coverage algorithm P(t)-RW
with respect to 1-RW for
d = 3 and 6 dimensional
regular grid for different
values of α. The simulations
considered allocated
bandwidth of B = 5 × 104

P(t)-RW and 1-RW and reveals that it is as low as 0.3% for α < 1, whereas it
increases significantly for α > 1, for grid dimensions d = 3 and 6. Qualitatively
similar results hold for dimensions 4 and 5. Hence in experimental validation we
could not exactly reproduce the theoretical result. There is a very small difference
albeit a difference, for α ≤ 1, which is due to the stochastic nature of the experiment.
Further the absence of abrupt rise in difference in coverage for α > 1 stems from the
smooth transition between regimes II (α > 1) and III (α < 1).

That is why, we look further into the dynamics of the random walkers around that
region α = 1 and show that it becomes muchmore difficult to cover new area beyond
the optimal strategy. We study the behavior of P(t)-RW (Eq.5.10) as a function of α

taking d = 3 as a case study. For a given constraint in B, the performance of P∗(t)
can be assessed in the context of the coupled optimization problems of latency T
and coverage C . The performance is compared with respect to to 1-RW. Figure5.8
presents results on dimensions 3 and 6. From Fig. 5.8a we observe that efficiency
decreases fast if one tries to consume the given B slightly faster by increasing α

beyond 1. On the other hand, in order to increase the efficiency slightly further than
that achieved by P∗(t), by decreasing α below 1, one would have to spend a much
longer time T (Fig. 5.8b). The same behavior has been found for other investigated
grid dimensions d =4 and 5. Hence the solution space is multi-dimensional which
requires design of an objective function that combines both factors, time and the
efficiency.

Verifying optimality of P∗(t) (in terms of combined metric M(α))—For quantita-
tive assessment of the coupled optimization problem in a multi-dimensional solution
space, ametric is required that combines time and efficiency. Among several possible
combinations, we consider the combined product metric M as:

M(α) = T (α) × (Emax − Eavg(α)) (5.11)

M combines the time needed to consume the allocated bandwidth (first factor) with
a measure for the wastage of bandwidth (Emax − Eavg(α)) as compared to the
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Fig. 5.8 Performance of the generalized coverage algorithm P(t) for different α, for d =3 and
6 considering allocated bandwidth B = 1 × 104, as a typical case. a and b show plot of mean
efficiency Eavg = ∑T

t=1
E(t)

T and the time T taken by a P(t)-RW to consume the given bandwidth
B, respectively, for different values of α. The dashed lines corresponds to Emax and equals the mean
efficiency of a 1-RW

Fig. 5.9 Plot of Combined metric M(α) = T (α) ∗ (Emax − Eavg) as function of α for d = 3
as a case

maximally achievable efficiency, Emax of the 1-RW. The desired algorithm shall
operate fast and waste little, hence it minimizes M . Figure5.9 shows the plot of
M(α) for grid dimension d =3. M(α) gets moderate values for small α (regime III),
where a few walkers take a lot of time. On the other hand M(α) gets relatively large
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Fig. 5.10 Plot of
analytically derived
Speed-up

S = B
Tmin

= O(Tmin
( d
2 −1))

versus the minimal time
Tmin = TP∗(t)−RW to
consume the given
bandwidth B for different
dimensions d = 3, 4, 5 and 6
of an regular grid

values for large α (regime II), where many walkers waste bandwidth due to mutual
overlap. It may be significant to note that in particular, M(α) increases rapidly for
α > 1 as the efficiency decreases rapidly beyond α = 1. The minimum of M(α) is
found at α = 1. These numerical results confirm, that within the class of generalized
algorithms given by Eq.5.10, P*(t) with α = 1 provides the best performance as
measured by the product metric of 5.11. The same behavior has been found for all
investigated network dimensions, d =4, 5 and 6.

Verifying speed-up—Figure5.10 plots the analytical result for the service speed-up
(Eq.5.9). The speed-up is significant and it has been found (refer [27] for details) that
the theoretical and simulation values of S match well except for small Tmin because,
there the approximation of Eq.5.5 by Eq.5.6 fails.

5.3.4 Remarks

As it is found that in absence of additional memory, for a given B when there is
no restriction in service time proliferating random P∗(t)-RW provides optimal node
coverage (=C1) in time Tmin ; which solves the 1st problem of Sect. 5.2. Here, to
achieve the same coverage of 1-RW but with a significant speedup, starting with a
single walker, in each time step all random walkers present in the system need to
proliferate at a time dependent uniform rate P∗(t). However, in many real-world
network applications the demand for time of completion of service T may be much

smaller than Tmin = O(B 2
d ). Considering this fact in the next section we discuss

about a strategy that achieves optimal coverage C(B, T ) when T � Tmin ; which
solves the 2nd problem.
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5.4 Strategy for C(B,T ) with Zero Walker Memory

This section seeks solution to the second problem raised in Sect. 5.2, to find the best
strategy to maximize coverage, when there is both bandwidth and time T < Tmin

constraint, under the assumption that no overlap history is maintained by the random
walkers. The probable strategies and their performance evaluation is presented in
Sects. 5.4.1 and 5.4.2, respectively.

5.4.1 Coverage Strategies P(t)−RW(α > 1), �B
T �-RW

and PC-RW

P(t)-RW designed in Sect. 5.3.3 actually refers to a class of coverage strategies
where P(t)-RW at α = 1 is actually P∗(t)-RW, the optimal strategy to consume the
bandwidth quota B. Hence, in a scenario, when time constraint T < Tmin is given,
P∗(t)-RW, if used, will result in some excess (unutilized) bandwidth of amount
Be = ∑Tmin

t=T ( t
ξ
)

d−2
2 left even after allocated time limit has elapsed. It has been

observed in Sect. 5.3.3 that α controls the speed of bandwidth consumption in P(t)
(refer Eq.5.10). α > 1 consumes B faster than Tmin . Hence, to ensure complete
utilization of bandwidth within time limit, as a natural extension one may use pro-
liferating random walk P(t)-RW, with a suitably chosen value of α > 1 in such a
scenario.

Apart from P(t)-RW(α > 1), two more naive random walks may be used.
First, � B

T �-RW, which use multiple K = � B
T � random walkers all starting from

the start point. Secondly, PC -RW, which use random walkers with a constant pro-
liferating rate independent of time. Here, PC is estimated empirically such that
B = ∑T

t=1 K (t − 1)× (1+ PC ), and B just gets consumed within allocated time T .
We assume K (1) = 1. A comparative analysis of all the three strategies is given next.

5.4.2 Performance Evaluation

The performances of � B
T �-RW, PC -RW and P(t)-RW are compared in Fig. 5.11 with

K=� B
T �, PC and α chosen such thatB was consumed within T . Simulations are done

with B =50,000 and 25,000 for d =3 as a case. Figure5.11a, b show the perfor-
mance of P(t)-RW to be superior, especially when T � Tmin , where P(t)-RW
yields almost 10 and 20% more coverage than � B

T �-RW and PC -RW, respectively.
Simulation results for other dimensions d = 4, 5 and 6 also exhibit similar behavior.
The performance of P(t)-RW improves for higher bandwidth and lower dimension-
ality. The results imply that the class of proliferating strategies P(t)-RW can suitably
control the proliferation rate to produce more coverage when, compared to the time,
there is an abundance of bandwidth, which however is not as much as required
for flooding. However, from Fig. 5.11b it may be noted that as T decreases the
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Fig. 5.11 a Shows coverage C(T ) versus T for P(t)-RW, � B
T �-RW and PC -RW, with d =3 as

a case, for B = 5 × 104 and 25 × 103. b Shows relative difference in C(T ) versus T obtained
respectively, by PC -RW and � B

T �-RW compared to P(t)-RW. For T � Tmin , P(t)-RW yields
almost 10 and 20% more coverage than � B

T �-RW and PC -RW, respectively. However, for high
values of T , the difference among the strategies are insignificant

advantage of P(t)-RW over � B
T �-RW and PC -RW reduces. A study of the dynamics

of P(t)-RW is done next to investigate the reason.

Analyzing the dynamics of P(t)-RW for α > 1—The systemdynamicswhen P(t)-
RW is usedwith values ofα > 1 is presented in Fig. 5.12. Plots in Fig. 5.12a show that
when T < Tmin and α > 1, after the initial transient the efficiency of the P(t)-RW
remains steady, however at a lower value compared to the efficiency of P∗(t). The
plot in Fig. 5.12b shows a nearly constant difference in efficiency |Eα=1 − Eα=1.5|
in asymptotic time range. It implies that the coverage process operates at a point in
regime II whose distance from regime II–III boundary remains fixed. However, when
T � Tmin , then α � 1. For relatively large values of α compared to 1, the efficiency
falls sharply with time. As a result the difference in efficiency plot exhibits a positive
slope (Fig. 5.12d). It implies that when α � 1, the strategy P(t) fails to operate at
some point in regime II whose distance remains fixed relative to the regime II–III
boundary, rather with time the operating point gradually shifts deep into regime I.
Hence, experiments shows that as long as α is not too great, the system stabilizes
at some point in Regime II (but relatively close to the boundary of Regime II–III)
and maintains a constant efficiency, implication being that P(t)-RW(α 1) tries to
maintain an near optimal position.
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Fig. 5.12 Figures show, given B =50,000 in d = 3 as a case, using P(t)-RW, how the allocated
time T affects the coverage efficiency. a and c plots efficiency E(t) versus time (t) in lin-log scale
for α = 1.5 and α = 3.5 respectively, along with α = 1.0. b and d show the difference in efficiency
plot versus time in log-log scale for α = 1.5 and α = 3.5 respectively. As recorded the time taken to
consume B is T = Tmin = 7413, 4600 and 250 respectively for α = 1.0, 1.5 and 3.5. As observed
E(t) remains steady in (a) when T << Tmin however it falls drastically with time in (c) when
T < Tmin

5.4.3 Remarks

Although P(t)-RW for α > 1 is found to be the best performing strategy for maxi-
mizingC(B, T ) in absence ofwalker and nodememory, the optimality of the strategy
has not been proved. Moreover, the efficiency of P(t)-RW falls very rapidly as the
constraint on time become stricter. As T � Tmin the system functions at some
point far from the regime II–III boundary, hence random walkers experiences higher
mutual overlap as well higher walker density. However, it may be intuitively under-
stood that density is directly related to their mutual overlap and that all walkers may
not experience similar amount of mutual overlap. It triggers the motivation to use
a different approach altogether, of adding small memory to random walkers so that
they can proliferate in a nonuniform rate based on the amount of mutual overlap they
experience, which has been explored in [32]. In the next section, briefly we present
the work.
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5.5 Strategy for C(B,T ) with Finite Walker Memory

The main drawback of P(t)−RW is that, although the best performer with respect to
naive strategies, it was not shown to be optimal. Secondly, it is highly inefficient and
performsmiserably under stricter time constraints. In this sectionwepresent ourwork
in [32] which overcomes these limitations. [32] investigates the problem: Assuming
walkers have small memory, starting from a single node, design a random walk that
maximize the number of distinctly visited nodes, i.e., coverage (C(B, T )), when the
system operates with similar dynamics as that of regime II of the K-RW process.
In contrast to the approaches discussed till now, they proposed that each walker
maintains the mutual overlap history they experience. The work is inspired by the
deeper understanding of the dynamics of mutual overlap in regime II, discussed in
Sect. 5.5.1. Section5.5.2 presents the design of a nonuniform proliferating random
walk strategy P(t, h)-RW where h measures the number of mutual overlap. The
performance evaluation of the strategy has been shown in Sect. 5.5.3.

5.5.1 Dynamics of Mutual Overlap

The objective is to analyze the amount ofmutual overlap experienced by each random
walker present in the system at a particular point of time. To record the count of
mutual overlaps, each random walker is equipped with a finite memory of size H .
Let during the last H visits a walker encounters h mutual overlaps. It is intuitive
to understand that walker density is related to their mutual overlap. The dynamics
has been studied under the above postulate. Hence, the value of h will provide a
measure (temporal approximation) of the spatial density of other walkers present
in the walker’s current proximity. To estimate the walker density at different places
throughout the system, the whole system, a regular grid of dimension 3 is divided
in an arbitrary fashion into small cubes of size 10 × 10 × 10. The walker count in
each cube in then counted. To understand the dynamics, the system is restricted to
operate with dynamics similar to regime II of K -RW, hence, P(t)−RW with α � 1
is considered. Figure5.13a plots the walker density for P(t)−RW, varying α and the
developed strategy P(t, h)−RW (discussed in Sect. 5.5.2). The standard deviation of
the mutual overlap among the walkers using is relatively high. These results reveal
that a large fraction of the area containing walkers stays sparse in walker density
and there exists a huge heterogeneity in the density of the walkers when a walker
proliferates at a higher rate to gain more speedup.

Figure5.13b shows the plot of mutual overlap versus walker density level for the
K = 50-RW in the regime II. It reveals that exists two considerably different mutual-
overlap characteristics with density states denoted as: d-low (low density) and d-high
(high density). It may be noted that the mutual-overlap level in d-low-state is very
low. However, as density increases there is a sudden changes to a d-high state, where
themutual overlap is high and remains almost constant, irrespective ofminor changes
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Fig. 5.13 a Lin-log plot of the number of cubes (10 × 10 × 10 node sized) containing walkers in
a 3-dimensional regular grid ,considering P(t)-RW for α =9, 10, 11, 12 and the designed strategy
P(t,h)-RW (refer Sect. 5.5.2) with γ = 16 and H = 20. Comparisons are made at the 200th time step
under constraints T = 200 and B = 105 units. b The plot of mutual overlap versus density level
using K = 50-RW for 1,000 time steps obtained from simulations. (Figure courtesy [32])

in the density level. It may be trivially noted that it is the walkers which operate in
the d-low state that contribute significantly to overall coverage achieved.the walkers
at the d-high state has negligible impact in coverage speed-up.

5.5.2 Design of History-Based Proliferation P(t, h)-RW

The history-based proliferation strategy is designed based on the following facts
observed in the previous subsection: (a) the amount of mutual overlap is a nonlinear
increasing function of walker density, (b) over time, due to the probabilistic nature
of spread of walkers, the walker density in the system does not stay uniform over all
places and (c)walkers only in the d-low state contribute significantly to the increase in
coverage at each instant. Hence, an optimal strategy to proliferate need to maximize
the number of walkers in the d-low-state. A simple way through which walkers can
identify themselves as d-low-state walkers is by tracking the ratio of h

H .
The required strategy can be summarized as follows [32]: For maximal coverage,

choose a decent history size H for each walker and proliferate only those walkers
which have not encountered any walker in the last H node visits.

The history-based proliferation strategy P(t, h)-RWhas been designed by extend-
ing Eq.5.10. The non-uniformity in the proliferation is achieved by replacing α as
following:

αh = α ×(1 − h

H
)
γ (5.12)



128 S. Nandi and N. Ganguly

Here, the parameter γ controls the variation of the proliferation rate for different
levels of mutual overlap faced by the walkers. For γ = 0, the strategy is same as
P(t)-RW. Higher values of γ would trigger proliferation of walkers having low
mutual overlap (h value).

5.5.3 Performance Evaluation of P(t, h)-RW and
P(t, h)-RW-e

The plots in Fig. 5.14 measure coverage values under different time constraints and
B = 105. A huge improvement (≈2 times more coverage) is noted by P(t, h)-RW
(γ = 16, H = 20) over K -RW, PC -RW and P(t)-RW. P(t, h)-RW was found to
perform much better than P(t)-RW. A closer investigation shows that the superior
performance of P(t, h)-RW is attributed to the fact that, here, relatively higher num-
ber of random walkers operate in d-low-state compared to other strategies.

Optimality of parameters γ and H—It has been observed that at γ = 0 both
P(t)-RW and P(t, h)-RW behaves the same as expected, however the performance
benefits of P(t, h)-RW is more prominent as γ increases. It has been found that
highest coverage has been achieved for γ = 16. It is also found that for γ ≥ 16,
actually, those walkers which get zero mutual overlap (i.e., h = 0) in the last H visits
are proliferated. The version of P(t, h)-RWwith γ ≥ 16 is denoted as P(t, h)-RW-e.

Fig. 5.14 Plot of the coverage achieved by the strategies [K -RW, PC -RW, P(t)-RW, and P(t, h)-
RW (γ = 16, H = 20)] versus time. Here all of them consume B = 105 units under varying time
constraints ranging from as required by flooding to 1-RW. The coverage has been plotted in lin-log
scale. The inset shows the plot of the coverage achieved by P(t, h)-RW-e, for different values of
history size (H ), under time constraint T = 200 and bandwidth constraints 40,000 and 60,000 units
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Fig. 5.15 aThe comparisonof the coverage achievedby PC -RWand P(t, h)-RW-e after consuming
varying bandwidth upto 4 × 104, for T = 100, in a connected random geometric graph with
25,000 nodes randomly distributed in a two-dimensional area of size 200 × 200 with the radius of
communication (r) as 2 units. b The comparison of coverage (log scale in %)achieved by PC -RW
and P(t, h)-RW-e in the random geometric graph with the same configuration as (a) with the value
of r as 2, 3, and 4

Figure5.15 inset shows the effect of different H values on the achieved coverage in
P(t, h)-RW-e under time constraint T = 200 and B = 105. It has been found that
for a history size H ≈ 30, the algorithm produced optimal coverage.
Results on random geometric graphs—Simulation results other than regular grids
i.e. on 2-dimensional regular grid with diagonals connected, random geometric
graphs, etc. has been be studied. A d-dimensional random geometric graph [32]
with radius of communication r is created by randomly distributing nodes in a
d-dimensional hyperspace and connecting each pair of nodes if the Euclidian dis-
tance between them is ≤r . Various spatially embedded networks like sensor and ad
hoc networks are often modeled as random geometric graphs. As P(t)-RW is not
defined for graphs other than regular grids (with d > 2) hence, in such cases, the per-
formance of P(t, h)-RW-e is compared only with PC -RW. Plots in Fig. 5.15 shows
that for a two-dimensional randomgeometric graphwith 25,000 nodes and r = 2 units
produces around (233%) improvement in the achieved coverage by P(t, h)-RW-e
over PC -RW. For random regular graph of with r= 3 and 4 the performance improve-
ments are 195 and 185%, respectively. Further experimental evidences reveal for a
highly clustered sparse network, any existing random-walk-based strategy will incur
high wastage of resources due to large mutual overlap. In such cases, the proposed
strategy, P(t, h)-RW-e, can perform significantly better than others.
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5.6 Related Literature

The problem of estimating the coverageC(T ) by a 1-RWon a d-dimensional Euclid-
ean space has been proposed by Dvoretzky and Erdos [11] in 1951. Indeed, the
complete characterization of C(T ) presents a formidable mathematical challenge
because the quantity is non-Markovian even when the underlying random walk is a
Markov process [37]. The analytical estimate in [11] shows that during the first T
steps C(T ) ≈ π×T

log T for (d = 2), whereas C(T ) ≈ T × γd while (d ≥ 3), where
0 < γd < 1. The qualitative difference in the results between d ≤ 2 and higher
dimensions can be explained from the remarkable observation by Pólya [31] in 1921
that a point moving randomly will, with probability 1, return infinitely often to the
origin if d ≤ 2 while if d > 2, then it will, again with probability 1, wander off to
infinity.

Although the properties of coverage C(T ) due to 1-RW have been thoroughly
studied in detail in general references [38], the coverage (diffusion) problem due to
multiple random walkers are not solvable through simple averaging over the prop-
erties of a single random walker, even when walkers do not interact with each other.
Inspite of its mathematical challenge, C(T ) is nevertheless used as a metric to ana-
lyze a wide range of problems in physical sciences such as diffusion-limited reaction,
defect annealing, exciton trapping, etc. [22, 38] to problems related to computer net-
works. The recent development of experimental techniques allow the observation of
events caused by single particles of an ensemble, provides additional impetus to the
study of these of multi-particle diffusion problems.

In their pioneering work, Larralde et al. [21, 22] studied the dynamics of multiple
K � 1 random walkers on an infinite d-dimensional Euclidean lattice and derived
an asymptotic expression for C(T ), which later was followed by a more rigorous
solution by Yuste et al. [41]. The most striking feature that emerges from their study
is the existence of three different regimes in the dependence of C(T ) on K and T .

Another direction of work on coverage related problems is focused on computing
the bounds of the cover time (C(n)), i.e., the expected number of steps needed for a
single random walker to visit all the vertices of a finite graph of size n. It has been
shown by Matthews [25] that for any graph G, hmin × Hn = C = hmax × Hn ,
where hmax and hmin are respectively the maximum and minimum of the expected
number of steps taken by a random walk to move over all ordered pairs of nodes
and Hk = ln k + �(1) is the k-th harmonic number. However, the above bound
is not always tight. They further reported that a random walker takes about 2n

log 2n

steps to visit every point. Interestingly, some threshold phenomenon is occurring
at time t = 2n−1 log 2n , because before it some unvisited points are close to one
another whereas after this time they are sparsely distributed. Feige [34] has shown
that for any connected graph G, the cover time satisfies (1 + o(1))n ln n ≤ C(n) ≤
(1+ o(1)) 4

27n3. For example, the lower bound is achieved for a complete graph Kn

and for a lollipop graph consisting of a path of length n
3 joined to a clique of size

2n
3 the cover time is asymptotic to the upper bound. The cover time of a random
walk on a random r -regular graph was studied by Cooper et al. in [8] where it was
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shown that with high probability (whp) for r = 3 the cover time is asymptotic to
θr × n × ln n, where θr = (r−1)

(r−2) . In a recent work [9] it has been shown that, for
K independent walkers each starting from K different vertices on random regular
graph G, the cover time CG(K ) is asymptotic to CG

K , implying exactly a linear(K )
speed-up compared to a single random walker. Alon et al. [3] computed the cover
time for a wide class of graphs considering that all K walkers start from the same
node. Results show that a wide range of speed-ups are possible apart from linear, for
example log K speed-up for a cycle and exponential in K for a bar-bell graph when
the walk starts at the center of bar-bell. Further, they show for d-dimensional lattices,
hypercubes and E-R random graphs, there exists lower bound in speed-up which is
linear in K when K < O(log1−ε n), for any constant ε > 0. The important insight
drawn is that obtaining linear speed-up using K -RW indeed requires bounding the
value of K such that mutual overlap is reduced.

More recently, coverage maximization by using multiple (K ) walkers has become
a subject of growing interest to (computer) network scientists. It may be noted that
in a typical application scenario (like search), generally an object to be searched
is replicated in multiple nodes, hence it is sufficient enough to cover/visit a certain
fraction of nodes. From a application designer’s perspective it is important to estimate
the Partial Cover Time (PCT), defined as the expected number of steps required by
a random walk to visit a constant c fraction of the nodes, where c can be 50, 80%
etc. The main analytical result is that the upper bound on the PCT is asymptotically
smaller than Matthews bound [25] on the Cover Time. Intuitively, it means that
on sufficiently large graphs, almost all the time used by a walk to cover the entire
graph is spent trying to reach the last log(n) nodes. For a grid (a d-regular graph)
with d = 4 the maximum hitting time is n × log(n). PCT becomes O(nlog(n)).
Bisnik et al. [6] studied the performance of K random walk search in terms of
the replication/popularity ratio of the resource being searched for and the random
walk parameters, K the walker count and T the TTL. They show that the random
walk parameters must be a function of the resource parameters to obtain the best
performance. Wu et al. [39] modeled the coverage problem of multiple random
walkers initiated from m randomly chosen nodes, in a random graph. They found
that for small c although the problem is similar to the coupon collector problem,
however when c is large it fails due to the finite size effect, for which they introduced
a refinement. The refinement is introduced by considering the ‘dirty links’, i.e., the
already visited links of a current node.
Observation—Though there is an implicit attempt to increase bandwidth utilization,
none of the schemes have an explicit control over total bandwidth consumption, hence
is not suitable to design bandwidth constrained coverage strategy. In the perspective
of the extended coverage discussed in this chapter, it may be noted that rather than
designing a strategy to achieve the speed-up in coverage, the prime focus of research
is towards characterization of coverage, computing bounds of cover time and PCT,
and estimation of speed-up achieved by using multiple walkers.
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5.7 Conclusions

In this chapter we have presented the formulation of an extended coverage problem
which takes into account the resource constraints in the form of consumed bandwidth
B and latency time T . Using methods from statistical mechanics, we have shown the
design of the optimal coverage strategy P∗(t)-RWsuch that it exploits the advantages
of both randomwalk regimes II and III by keeping the process at the regime boundary.
This new algorithm yields similar efficient coverage as a single random walker, but
S = O(B(d−2)/d) times faster in regular grids, resulting in significant service speed-
up. Alon et al. [3] has shown that for a d-dimensional grid, a suitably chosen K -RW
can cover the grid with little mutual overlap within the time T1

log1−ε n
, where T1 is the

time taken by a single walker. Compared to that, the strategy of proliferating random
walk algorithm P∗(t)-RW dramatically improves the result, it yields coverage with
minimum overlap in much shorter time T1

n
d−2
2
.

Further, we have extended the algorithm to a class of proliferating random walk
algorithms which can be used to efficiently cover the entire 〈B, T 〉 spectrum as
shown in Fig. 5.1. The derived scaling behavior of the phase boundaries can be used
to estimate the effect of resourceB andT preallocation in terms of obtained coverage.
In other words, the minimum latency can be estimated if a certain desired level of
coverage is required with a preallocated bandwidth.

The approach towards the design of the algorithm presented here for a regular grid
topology can immediately be adopted to search unstructured networks with almost
homogeneous node degrees e.g. sensor networks mobile ad hoc networks which are
typicallymodeled as randomgeometric graphs [2, 4, 24].However, the precise details
of Eq.5.10 might require modifications if the same strategy shall be applied to other
complex networks having widely varying heterogenous nodes degrees like small
world, [36], power-law [5] and the Internet. Adding small memory to nodes might
help in such occasions. Perhaps some of the strategies will require replacement of the
unbiased random walk by a biased random walk [13], thereby allowing the walkers
to choose their next step with non-uniform probability among nearest neighbors.

In real world systems, node stores message packets using buffers of finite size,
hence can hold a message queue of finite length. As a result an increase in load
may lead to congestion [20, 35] of packets resulting to packet loss. However, in
the optimal coverage algorithm P∗(t)-RW, the proliferation rate is relatively low
which leads low walker density i.e. message count. Therefore, our work did not
consider constrained local queue length and the corresponding problem of conges-
tion. Here, walkers behave as isolated entities within regime III and we expect no
issues of congestion with our algorithm P∗(t)-RW. However, in order to understand
the dynamics of information dissemination, it is practically important to study the
impact of congestion and congestion-aware coverage strategies are needed to be
designed, especially when the time constraint T is much less than Tmin .
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In addition to our analytical approach toward todayś pre-allocation problems, our
proposed coverage algorithm can also be used for upcoming sophisticated appli-
cations like service differentiation, where each node will get a different quality of
service based on subscription level or its history of cooperation [24, 26].
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Chapter 6
Petri Net-Based Modelling and Simulation
of Transport Network Segments

František Čapkovič

Abstract Three kinds of Petri nets are utilized here in order to model and simulate
segments of a transport network. The segments are understood to be agents.A suitable
cooperation of the agents makes it possible to model and simulate the vehicle flow
propagation in the network. Place/transitions Petri nets (P/T PN) are utilized in order
to find the safe and unambiguous structure of the controller for the traffic lights
placed at the road intersections. After finding such a structure the time specifications
are assigned to the P/T PN. Thus, timed Petri nets (TPN) arise from P/T PN. The
TPN model yields the possibility to analyze the time relations among the traffic
lights. Subsequently, hybrid Petri nets, more precisely first-order hybrid Petri nets,
are used for finding the flows of vehicles moving on the roads within the bounds
of possibility determined by the traffic lights. A generalization towards the more
complicated segment is pointed out too. A possibility of the modular interconnection
of the segments is mentioned in connection with the vehicle flow propagation in the
transport network.

6.1 Introduction and Preliminaries

Transport networks are a specific kind of the realworld networks. They strongly affect
present life as well as the human social behaviour, living environment, industry (e.g.
in case of the just-in-time manufacturing), and many other areas. On the other hand
they bring many problems that need to be solved. The vehicle flow propagation in
the transport networks is one of the examples of the propagation phenomenon in
complex networks in general [19].

It is the everyday’s race against time. Consequently, the most important task is
to assure the transport safety. Therefore, modelling and simulation are important
parts of the transport systems design, control and continuous running. There are
many approaches how to deal with them. General understanding the problems and
the formulation of corresponding approaches that describe how to solve them are
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introduced e.g. in [1–3, 11, 12, 14, 15, 22]. These approaches do not use PN.
The PN-based approaches (alternative to the previous ones) can be found e.g. in
[17, 18, 20, 28–30] and in many other papers. Here, in this chapter, the agent-
based approach to Petri net-based modelling and simulation of transport systems is
presented. Motivation for this follows especially from: (i) the ability of PN to yield
both the graphical model and the analytical one; (ii) the possibility to use the existing
methods for analyzing the PN structure and finding the PN basic properties like
reachability of states, invariants, etc.; (iii) the ability to remove emerging deadlocks;
(iv) the possibility to work with simpler modules and to synthesize more complicated
structures from the modules; (v) the ability to synthesize supervisors in order to
control the PN-based models; (vi) the fact that no paper from the quoted PN-based
ones tries to solve these problems simultaneously.

Three kinds of PN are utilized here in order to model and simulate segments
(modules) of the transport network. Namely, place/transition Petri nets (P/T PN),
timed Petri nets (TPN) and hybrid Petri nets are used. While P/T PN and TPN are
used for modelling and simulation of discrete modules representing the traffic lights
placed at the road intersections, HPN are used for modelling and simulation of the
road network together with the flows of vehicles. P/T PN handle the discrete tokens
representing the step-by-step evolution of the states driven by discrete events. P/T PN
work without any timing. TPN yield discrete time functions specifying the duration
of the states. HPN offer the possibility to model the flows of vehicles controlled by
the discrete events occurring in P/T PN and/or TPN.

P/T PN [21, 23] are bipartite directed graphs with two kinds of nodes and two
kinds of edges. While the nodes are represented by the places and transitions, the
edges are represented by the arcs directed from places to transitions and the arcs
directed in opposite direction. Thus, P/T PN is a triple P N = 〈P, T, B〉, where P ,
|P| = n, is a finite set of places and T , |T | = m is a finite set of transitions. They
have to satisfy the conditions P ∪ T �= ∅; P ∩ T = ∅; B ⊆ (P × T ) ∪ (T × P)

Here, F ⊆ (P × T ) represents the set of the arcs directed from places to transitions,
while G ⊆ (T × P) expresses the set of the arcs directed from transitions to places.
The set of input and output transitions of a place p ∈ P are, respectively, denoted
by • p and p•. Similarly, the set of input and output places of a transition t ∈ T are,
respectively, denoted by •t and t•.

However, there is also a possibility to evolve the marking of the places in P/T
PN. A function M0 : P → N0 is the initial marking [represented below in (6.1) by
the initial state vector x0], where N0 is the set of nonnegative integers. A transition
t ∈ T is said to be enabled at M0 if, for all p ∈ •t , M0(p) ≥ 1. A transition
may be fired if it is enabled. Firing a transition t at marking M removes one token
from each of its input places and puts one token to each of its output places. It
leads to a new marking M ′. This process is denoted by M[t > M ′, however it can
be represented by the discrete state equation (6.1) introduced below. The set of all
markings reachable from M0 is denoted by R(M0). The notation set of feasible states
is sometimes used too. The PN marking represents step-by-step evolution of the PN
dynamics. The dynamics can be expressed formally by the quadruplet 〈X, U, δ, x0〉,
X ∩ U = ∅, where X is a set of state (marking) vectors xk expressing by its entries
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the states (0—no token, 1—one token, 2—two tokens,...) of elementary places in
different steps k = 0, 1, . . . , K of the dynamics development, U is a set of control
vectors uk—i.e. state vectors of transitions—expressing by its entries the states (1—
enabled, 0—disabled) of elementary transitions in different steps k = 0, 1, . . . , K .
δ : X ×U → X is the P/T PN transition function and x0 is the initial state (marking).
The sets B, F , G can be expressed, respectively, by the incidence matrices B, F, G,
where B = GT − F. Consequently, the PN dynamics (represented formally by the
PN transition function δ) can be expressed by the restricted linear discrete system

xk+1 = xk + B · uk (6.1)

F · uk ≤ xk; k = 0, 1, . . . , K (6.2)

The nonzero entries of the matrices F, G represent, respectively, the existence
and/or multiplicity of corresponding edges (arcs) between places and transitions
and vice versa.

A transition t is said to be live if, for any marking M ∈ R(M0), there exists a
sequence of transitions firable from M which contains t . A PN is said to be live if
all the transitions are live. A PN is said to be safe if for any marking M ∈ R(M0),
M(pi ) ≤ 1, for all places pi ∈ P .

P/T PN do not contain time parameters. The time parameters can be introduced
into places, transitions, arcs, even into tokens representing the marking [24, 25].
Here, in this chapter we will use only the time parameters assigned to the P/T PN
transitions. Thus, the TPN arise from P/T PN.

HPN [13] are a combination of discrete PN (P/T PN or TPN) and continuous PN.
Theymodel the coexistence of discrete and continuous variables and have two groups
of places and transitions—discrete and continuous. Consequently, there are three
kinds of directed arcs here: (i) between discrete places and discrete transitions; (ii)
between continuous places and continuous transitions; (iii) between discrete places
and continuous transitions as well as between the continuous places and discrete
transitions. The discrete places and transitions handle discrete tokens. The continuous
places and transitions handle continuous variables. Here, they can model the flows
of vehicles. The set of places P = Pd ∪ Pc, where Pd is a set of discrete places
and Pc is a set of continuous places (figured by double concentric circles). The set
of transitions T = Td ∪ Tc, where Td is a set of discrete transitions and Tc is a
set of continuous transitions (figured by double rectangles). Td contains a subset of
immediate (no-timed) transitions and/or a subset of timed transitions (deterministic
and/or non-deterministic).

Firstly, the P/T PNmodel of the traffic lights cooperation will be introduced in this
chapter. Possible ambiguities occurring in such a model are removed by means of a
supervisor which can be synthesized by means of the methods used in control theory
for discrete-event systems (DES). Then, the time parameters will be included into
the transitions of the P/T PNmodel. In this manner, the TPNmodel is obtained. Next,
the HPN model will be created by means of connecting the TPN model of traffic
lights with the continuous PN model of the intersection of two roads. After this,
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the possibility of the generalization for bidirectional running the vehicles on both
intersecting roads will be mentioned. Namely, the HPN model of the bidirectional
running of vehicles on the roads will be created and a simple multiplexer of the
corresponding traffic lights will be introduced. For all simulations based on the
mentioned models the Matlab tool HYPENS [26, 27] will be used. Simultaneously,
author’s experience with using this tool [5, 8–10] as well as with the modular agent-
based approach to modelling and supervisory control of complex systems [4, 7] will
be applied.

The segments (modules) of the transport network are understood here to be agents.
Then, the suitable agent cooperation makes possible to model and simulate the vehi-
cle flow propagation in the larger segments or in thewhole network. The first segment
(module, agent)—the safe and unambiguous structure of the controller for the traffic
lights placed at the road intersections—is modelled by TPN that arose from P/T PN
after assigning time specifications to their transitions. The second segment—used
for finding the flows of vehicles moving on the roads within the bounds of possibil-
ity determined by the traffic lights—is modelled by HPN. The third segment—the
multiplexer of the traffic lights belonging to the intersecting roads—is modelled
by TPN.

6.2 The Agent-Based Approach to the Traffic
Lights Control

Traffic lights are one of the most important parts of a transport system. As it is
presented in [20], the safety control of the traffic lights is not any simple thing.
However, due to the importance of the traffic lights, new approaches to their control
are continuously explored. Moreover, there exist many consecutive intersections
in large-scale transport systems. Therefore, a modular approach to modelling and
control of the traffic lights seems to be convenient. To illustrate the complexity of a
simplemodule, consider the traffic light Li belonging to the road Di at an intersection.
The simplest form of the intersection is displayed below in Fig. 6.3. The traffic lights
can be modelled by P/T PN given in Fig. 6.1. Here, A1

i and A2
i can be understood to

be the cooperating agents.
The interpretation of the PN places and transitions is the following: p1—the green

color is on; p2—the end of the green; p3—the yellow color is on; p4—the end of the
yellow; p5—the red color is on; p6—the start of the green; p7—the light is green
responsive; p8—the start of the yellow; p9—the light is yellow responsive; p10—the
start of the red; p11—the conversion to the yellow; p12—the conversion to the red.

The transitions t j , j = 1, . . . , 8, represent the discrete events—e.g. the starts
and/or ends of the individual colors.

In the right picture in Fig. 6.1 where are two traffic lights the numbering of the
places and transitions of the couple of agents continues—p13 corresponds with p1,
p14 corresponds with p2, etc. It is also necessary to point out the feedback from p5
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Fig. 6.1 The agent-based P/T PN model of the single traffic light (the left picture) and the P/T PN
model of two cooperating traffic lights, when each of them is placed on one of the intersecting roads
(the right picture)

to t1 as well as the feedback from p17 to t9. These feedbacks realize the cooperation
of the traffic lights. Namely, p25 and p26 make possible mutual switching the colors
of the traffic lights L1 and L2.

The modular approach to solving the problem of traffic light control is introduced
in [28, 29]. However, the reachability graph (RG) of such a structure is ambigu-
ous. Namely, the succession of the control steps is not straight-lined. There exists
branching in the RG. To remove the ambiguity, it is necessary to add a supervisor
which will guarantee the RG without any branching—i.e. the single succession of
the states. Using the PN-based supervision theory of discrete event systems [6, 16]
a supervisor can be synthesized.

6.2.1 The Supervisor Synthesis

The supervisor synthesis is performed by means of the mutual exclusion of the con-
troversial states. The exclusion is based on the P/T PN place invariants (P-invariants).



140 F. Čapkovič

Namely, the P-invariant of the P/T PN is the vector v satisfying the condition

vT · x = vT · x0 (6.3)

for each state vector x reachable from the initial state vector x0. Alternative definition
is used in the form

vT · B = 0 (6.4)

and in case of more P-invariants it has the following form

VT · B = 0 (6.5)

with V being the matrix. The columns of V contain the P-invariants which we are
looking for. Imposing the conditions on the linear combinations of the state vectors
entries in the form as follows

Lp · x ≤ b (6.6)

and removing the inequality by introducing the (ns × 1) vector xs of slack variables
we have

Lp · x + xs = b (6.7)

and for the initial state
Lp · x0 + x0s = b (6.8)

where Lp is (ns ×n)matrix of integers and b is (ns ×1) vector of integers. Thus, the
vector xs , being the supervisor state vector, can be obtained. The vector x0s represents
the initial state vector of the supervisor. Comparing (6.7) with (6.5) we can write

(Lp Is) · (BT BT
s )T = 0 (6.9)

and after multiplying
Bs = −Lp · B (6.10)

where Is is (s × s) identity matrix, Bs represents the structure of the supervisor,
(Lp Is) corresponds to (more precisely, it is forced instead) VT and (BT BT

s )T

corresponds to (more precisely, it is forced instead) B. Because Bs = GT
s − Fs , the

supervisor incidence matrices Fs , Gs can be easily found.
In more general cases it is necessary to impose conditions also on the vector of

transitions and/or on the Parikh’s vector vP = ∑K
k=0 uk (relative to the step-by-step

evolution of the system (6.1)) in the form

Lp · x + Lt · u + LvP · vP ≤ b (6.11)

where Lt , LvP are (ns × m) matrices of integers. The Parikh’s vector vP is coherent
with the evolution of the P/T PN marking from the initial state x0 into the terminal



6 Petri Net-Based Modelling … 141

state xk . To set priorities among firing the P/T PN transitions, the Parikh’s vector is
decisive (authoritative). Therefore, only the simplified condition (6.11) in the form

LvP · vP ≤ b (6.12)

has to be imposed. Then, the incidence matrices of the supervisor and the initial state
of the supervisor are the following

Fs = max(0, LvP ) (6.13)

GT
s = max(0, (−max(0, (LvP )))) − min(0, (LvP )) (6.14)

x0s = b − LvP · v0P (6.15)

Using this methodology in our case, it is possible to ensure the priorities λ(t) at
firing the transitions as follows

λ(t5) > λ(t14) (6.16)

λ(t13) > λ(t6) (6.17)

It means that

− λ(t5) + λ(t14) < 0 (6.18)

λ(t6) − λ(t13) < 0 (6.19)

Consequently, the supervisor was synthesized by means of substituting the matrix

LvP =
(
0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

)
(6.20)

into (6.12). Thus, from (6.13), (6.14) we have

Fs =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)
(6.21)

GT
s =

(
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

)
(6.22)

The P/T PN structure of the supervised system is displayed in Fig. 6.2. The supervisor
is created by the P/T PN places p27, p28. With respect to the incidence matrices
Fs, Gs , the directed arcs from p27 to t14 and from p28 to t6 as well as from t5 to p27
and from t13 to p28 incorporate the supervisor into the original (non-supervised) P/T
PN displayed in Fig. 6.1 left. Thus the unambiguous reachability tree (RT) can be
found.
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Fig. 6.2 The agent-based P/T PN model of the supervised traffic lights on the intersection of two
roads

The reachability tree (RT) yields all states R(M0) reachable from the initial state
x0. Connecting all leaves of the RT with the same name into one we obtain the
reachability graph (RG). The complexity of computations depends on the RT size
and complexity of its structure. The adjacencymatrix forRT and the adjacencymatrix
for the corresponding RG is the same quadratic matrix. The dimensionality of the
adjacency matrix corresponds to the number of the RT nodes. The nodes represent
the P/T PN state vectors. The RT root N1 represents the initial state vector x0. The
RT leaves are the state vectors reachable from the initial state. The state vectors can
be stored as the columns of the matrix Xreach . The ideal RT is the RT without any
branching. It means that the immediate succession of states—i.e. the structure where
the nodes lie on a straight line—is the most favourable case. After introducing the
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supervisor, we have obtained just the simplest RT and RG. Namely, the unambiguous
RT without any branching corresponding to the supervised P/T PN model given in
Fig. 6.2 has the following form

N1
t6→ N2

t1→ N3
t2→ N4

t7→ N5
t3→ N6

t4→ N7
t8→ N8

t14→ N9
t9→ N10

t10→
N11

t5→ N12
t11→ N13

t12→ N14
t16→ N15

t13→ N1. (6.23)

Here, the nodes Nk, k = 1, . . . , 16, represent the P/T PN model state vectors
x0, . . . , x15 being the rows of the following matrix XT

reach. In each row the last
two entries concern the supervisor state.

XT
reach =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.24)

In our case the RG certifies that the evolution of the supervised P/T PN model is
unambiguous, correct and sound. However, the time relations are most important for
the traffic lights placed at the road intersections. Consequently, let us introduce the
time into the transitions of the supervised P/T PN model given in Fig. 6.2.

6.2.2 Timed Petri Net-Based Model

Namely, for example, let the red color on the traffic light shines for 30 time units
(seconds), while the green color shines for 27 units and the amber (yellow) color
shines for 3 units. Thus, the times assigned to the particular transitions of the P/T
PN-based model are the following
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Fig. 6.3 The simple intersection. D1, D2 represent the directions of traffic on the corresponding
roads, while L1, L2 represent the corresponding traffic lights

t1 � 30, t2 � 27, t3 � 0.01, t4 � 3, t5 � 0.01, t6 � 0.01,

t7 � 0.01, t8 � 0.01, t9 � 30, t10 � 27, t11 � 0.01, t12 � 3,

t13 � 0.01, t14 � 0.01, t15 � 0.01, t16 � 0.01. (6.25)

In this manner we obtained the TPN-based model.
Consider now crossing of two simple roads given in Fig. 6.3. Apply now timing

the colors on the traffic lights for the whole intersection. For simulation using the
TPN model we will use the tool HYPENS in Matlab. In case of the deterministic
timing of the TPN transitions, the simulation results are given in the left column
of pictures introduced in Fig. 6.4 (for the traffic light L1) and in the left column of
pictures introduced in Fig. 6.5 (for the traffic light L2).

In order to test a possibility of changing the deterministic timing of the TPN
transitions (i.e. to shorten or enlarge the time delays) in a small range, we can use a
non-deterministic timingwith different kinds of probability distribution (discrete uni-
form, exponential, Poisson’s, Rayleigh’s,Weitbull’s, etc.).When the achieved results
do not differ distinctly from the results corresponding to the original deterministic
timing, changing the time delays is not necessary.

Consider now the non-deterministic timing of the transitions with the discrete
uniform probability distribution fx = 1/(b − a) when x ∈ (a, b) and fx = 0
otherwise, with a, b for individual transitions being the entries of the vectors
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Fig. 6.4 The evolution of markings of the places p1, p3, p5 in time representing, respectively,
the green, yellow and red colors in the first traffic light L1 are displayed. The simulation results
at the deterministic timing the TPN transitions are placed in the left column, while the simulation
results at the non-deterministic timing the TPN transitions (with the discrete uniform probability
distribution) are displayed in the right column

a = (29, 26, 0.005, 2, 0.005, 0.005, 0.005, 0.005, 29, 26, 0.005, 2, 0.005, 0.005, 0.005, 0.005)

b = (31, 28, 0.015, 4, 0.015, 0.015, 0.015, 0.015, 31, 28, 0.015, 4, 0.015, 0.015, 0.015, 0.015)

Then,weobtain the simulation results given in the right columnof pictures introduced
in Fig. 6.4 (for the first traffic light L1) and in the right column of pictures introduced
in Fig. 6.5 (for the second traffic light L2).

As we can see (cf. the left and right columns of pictures in Fig. 6.4 as well as
the left and right columns of pictures in Fig. 6.5), the results are practically the
same in both the deterministic case and non-deterministic one. It means that in
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Fig. 6.5 The evolution of markings of the places p13, p15, p17 in time representing, respectively,
the green, yellow and red colors in the second traffic light L2 are displayed. The simulation results
at the deterministic timing the TPN transitions are placed in the left column, while the simulation
results at the non-deterministic timing the TPN transitions (with the discrete uniform probability
distribution) are displayed in the right column

our case the control of the traffic lights seems to be robust. Therefore, it is useless
to change the deterministic timing (i.e. the time delays of the TPN transitions).
However, unfortunately, we cannot generalize from the only one case. In case of
other parameters of the discrete uniform probability distribution or in case of using a
different kind of the probability distribution (e.g. exponential, Poisson’s, Rayleigh’s,
Weitbull, etc.) the situation can be completely different.
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6.3 Modelling the Intersection by Means
of Hybrid Petri Nets

The real intersection given in Fig. 6.3 can be modelled by means of HPN. The con-
tinuous PN given in Fig. 6.6 models the crossing roads. The directed arcs to/from
T2 and to/from T6 point out the interconnections with the TPN model corresponding
to the P/T PN model given in Fig. 6.2. During simulation the HPN model is able to
offer the corresponding flows of the vehicles which are moving on the roads. The
above introduced discrete TPN (corresponding to P/T PN displayed in Fig. 6.2) mod-
els switching the colors of the traffic lights. The edges leading to/from the discrete
places, which are the components of the TPN model, denote the mutual connection
of the continuous part of the HPN model with the discrete part of the HPN model.
Namely, the places in the parentheses (p13) and (p5) represent, respectively, the alter-
natives to the places p17 and p1. The usage of the particular places depends on the
starting situation. Namely, the active p1 means the green color in the first traffic light
L1 (in the first direction D1—cf. Fig. 6.3) and the active p17 means the red color
in the second traffic light L2 (in the crossing direction D2). Likewise, the active p5
means the red color in L1 (in the direction D1) and the active p13 means the green
color in L2 (in the direction D2).

Having the HPNmodel, we can simulate the traffic on the intersection completely.
Wewill do this bymeans of the universal toolHYPENS inMatlab.Namely,HYPENS
[26, 27] is able to model timed discrete PN, continuous PN and hybrid PN (more
precisely, first-order hybrid Petri nets).

Fig. 6.6 The HPN model of
the intersection depicted in
Fig. 6.3



148 F. Čapkovič

6.4 Simulation of Vehicle Flow Propagation
Controlled by Traffic Lights

After connecting the TPN model of switching the colors of the traffic lights (cor-
responding to the P/T PN model displayed in Fig. 6.2) with the model of the roads
based on continuous PN given in Fig. 6.6 we are able to simulate the traffic on the
crossing roads D1, D2 in time by means of the tool HYPENS in Matlab. In this
manner, we can simulate not only the function of the traffic lights L1, L2 but also
the corresponding flows of vehicles on the roads D1, D2 controlled by means of the
traffic lights. Thus, the cooperation of two modules is concerned. The first module
is represented by the TPN model which ensures switching the colors of the traffic
lights, while the second module is constituted by the model of the intersection based
on continuous PN. The cooperation of these modules in the process of simulation
gives us the picture about the vehicle flow propagation with respect to possibilities
that are determined by means of the traffic lights.

The simulation results are displayed in Fig. 6.7. Two columns of pictures are
introduced there. Each columncontains four pictures. They show theflowsof vehicles
on the roads D1, D2 in front of the traffic lights and behind the traffic lights. Namely,
the piecewise-linear courses of flows of vehicles in time for different initial conditions
(i.e. for different initial colors of the traffic lights) are displayed there in the graphical
form. The left column corresponds to the situation, when in the traffic light L1 the
green color shines (in Fig. 6.2 p1 is active), while in the traffic light L2 the red
color shines (in Fig. 6.2 p17 is active). The right column corresponds to the opposite
situation, i.e. when in L1 the red color shines (in Fig. 6.2 p5 is active), while in L2
the green color shines (in Fig. 6.2 p13 is active).

When we compare the pictures of both columns each other as well as the pictures
inside each column each other we ascertain that the flows of vehicles correspond to
switching the colors in the traffic lights. Simultaneously, we ascertain that the flows
of vehicles on the roads D1 and D2 are correct. These facts corroborate that the HPN
model works correctly.

6.5 Generalization

Only the simple segment of the transport system consisting of the simple intersection
of two roads was presented above. However, by means of assembling such simple
segments more complicated structures of the transport systems can be modelled. The
modular approach in building the models is transparent and checking the correctness
of the global model is simple. In order to generalize the approach used for the simple
intersection introduced in Fig. 6.3 e.g. for the bidirectional flows of vehicles on the
roads D1, D2 we can built the HPN model of the bidirectional flows of vehicles
given in Fig. 6.8. It is sufficient to use the same module twice. Of course, the second
module is used in the opposite direction. However, in such a case a multiplexer
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Fig. 6.7 The simulation results at using theHPN. The evolution ofmarkings of theHPN continuous
places P1, P3, P6 and P7 in time representing, respectively, the flows of vehicles in front of the
traffic light L1 on the road D1, in front of the traffic light L2 on the road D2, in the road D1 behind
the intersection and in the road D2 behind the intersection. The situation when the TPN places p5,
p13 are connected with the continuous model of the intersection is displayed in the left column. The
situation when the TPN places p1, p17 are connected with the continuous model of the intersection
is displayed in the right column
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Fig. 6.8 The HPN model of
the intersection of the roads
with bidirectional flows of
the vehicles

[17] between the traffic lights has to be synthesized. The multiplexer is another
important module at the PN-based modelling and control of the transport systems.
The general methodology for the synthesis of multiplexers is out of the scope of this
chapter. But, a simple TPN model of such a device is sufficient in our case. It can be
created e.g. in the form displayed in Fig. 6.9. The symbols Da, Db, Dc, Dd indicate

Fig. 6.9 The structure of
the multiplexer of the traffic
lights. The symbols
Gx , Yx , Rx , x = a, b, c, d,
express the light colors—i.e.
green, yellow and red.
Da, Db, Dc, Dd denote the
places in the corresponding
TPN models of the traffic
lights
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the directions to/from the continuous transitions T2, T6, T10, T14 placed in Fig. 6.8.
They symbolize the places in the TPNmodel of the multiplexer. Therefore, the same
symbols indicate the places in the TPN model of the multiplexer given in Fig. 6.9.
Thus, we obtained another structure—the HPN model of the bidirectional traffic on
the intersecting roads D1, D2. It is more complicated than the structure given in
Fig. 6.3. However, the difficulty of the work with the model during the simulation in
HYPENS is the same like in case of the simpler model.

Although any segment is only a relatively simple module, in general more and
more complicated structure of the transport system can be built bymeans of a suitable
combination of such modules. In other words, the segments can be interconnected.
Such a modular building of the models makes possible to model and simulate com-
plex transport systems. Namely, the interconnected segments may cover e.g. the
road structure of a village, a section of a town (ward), the whole town, a district, etc.
Consequently, the corresponding PN models can be created. The dynamic coopera-
tion among the adjacent segments (agents) of the transport system will be realized
by means of the mutual exchange of the vehicles. The global road structure of the
transport system can be modelled and simulated by means of the cooperation of the
PN modules corresponding to the individual segments. Videlicet, we can compose
bigger PN structures from the PN modules practically arbitrarily.

6.6 Conclusion

At present, the vehicle flow propagation in the transport networks represents very
important factor of human life. It affects practically all fields of society. Therefore,
it is necessary to analyze the matters around the transport systems, and especially
around the vehicle flow propagation, carefully. Modelling and simulation help us
to do this effectively. Of course, the most important task is to assure the safety of
people. The successful control of the vehicle flow propagation by means of traffic
lights is an efficient way how to do this. Although there exist different approaches
[1–3, 11, 12, 14, 15, 22], the Petri net-based approach was chosen here in order
to deal with the modelling and simulation of the vehicle flow propagation in the
transport systems. Motivation for this was based especially on the personal experi-
ence with different kinds of PN. However, the existence of the (i) methodology for
testing the properties of PN; (ii) user friendly tools for modelling and simulation of
PN; (iii) possibility to utilize the exact mathematical tool for modelling and control
(supervision) of PN; etc. played also a motivating role in deciding what approach
will be used. But the most important motivation was the affection to the modularity.
Namely, the more complicated PN models can be built from simpler models without
any invincible difficulties. The own PN-based approach presented here starts from
knowledge acquired from [17, 18, 20, 28–30]. In contrast to these sources just the
modularity at building the PN models presented here, in this chapter, is primary. It
makes possible to proceed from simpler structures towards more complicated ones.
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Three kinds of Petri nets were utilized here in order to model and simulate the
segments of the transport system. Namely, P/T PN, TPN and HPN (more precisely
FOHPN). Even, it can be said that four kinds of PNwere used becauseHPN consist of
two parts—continuous PN and discrete PN (P/T PN and/or TPN). Just the continuous
PN can be understood to be the fourth kind of PN used here. The simple transport
system segment consisting of the intersection of two roads equipped by the traffic
lights given in Fig. 6.3 was studied. At first only the one-way traffic on the roads was
taken into account, and afterwards the bidirectional traffic on the roadswas examined.
Just here the importance of modularity principles was demonstrated, because the
cooperation of two simple modules (like that given in Fig. 6.3) creates the more
complicated one (given in Fig. 6.8).

Firstly, P/T PN were used for synthesizing the safe and unambiguous structure
modelling the traffic lights in the road intersections. The synthesis of the supervisor
assuring these properties—see Figs. 6.1, 6.2—was performed by P/T PN too. Also
here the modular approach was used. Thus, the unambiguous structure of the P/T
PN-based model of two traffic lights was achieved—see Fig. 6.2. The supervisor
was synthesized by means of the condition imposed on the Parikh’s vector entries.
In such a way the priorities between transitions were resolved and the reachability
tree without any branching was achieved. Next, the supervised P/T PN model was
transformed into the TPN model by means of assigning the time specifications into
the P/T PN transitions.

TPN were used here for finding the time relations in the traffic lights placed
at the road intersection. The simulation results are shown in Figs. 6.4 and 6.5.
While in Fig. 6.4 the deterministic timing of TPN-based model is displayed, the
non-deterministic timing (with discrete uniform probability distribution) displayed
in Fig. 6.5 shows that in our case no changing the times is necessary. Namely, the
courses of the variables in both figures are practically the same.

P/T PN and/or TPN can be utilized in the HPN model (more precisely in the
FOHPNmodel). The continuous part of the HPNmodel expresses the road network.
When this model is used in the simulation process we are able to gain the flows of the
vehicles through the intersection. For the HPNmodel of the simple intersection given
in Fig. 6.3 the results introduced in Fig. 6.6 were achieved. The generalization of the
HPNmodel of the intersection towards themore complicated case—the bidirectional
traffic in the roads—was shown in Fig. 6.8. The multiplexer of the traffic lights,
the TPN model of which is introduced in Fig. 6.9, makes possible to alternate the
throughput of the intersecting roads.

Although only a simple isolated segment of the transport system and its dou-
bling (in case of the bidirectional traffic on the roads) were analyzed, modelled
and simulated, the achieved results and obtained knowledge may be exploited in
more complicated transport network. Namely, at using of the modular approach the
individual modules can be interconnected and more complicated structures can be
built. Thus, e.g. the road structure of a village, town, district, etc. can be covered by
means of the segments and corresponding global PN models can be created. Then,
the mutual exchange of the vehicles between the adjacent segments can be enabled.
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Chapter 7
Bio-inspired Routing Strategies for Wireless
Sensor Networks

Pavel Krömer and Petr Musilek

Abstract Successful behavioural and communication strategies of biotic
communities can serve as an inspiration for algorithms used to design, manage,
and control real-world networks. Many natural systems exhibit complex yet efficient
behaviours. Some animal communities display sophisticated behavioural patterns
arising from fairly simple activities of their members. The behaviours of ant colonies,
swarms of bees, schools of fish, and even some human communities, can be seen as
properties of distributed systems consisting of individual agents performing straight-
forward actions and communicating using simple strategies. Formally, the behaviour
of such communities can be modelled as a massive yet intuitive multiagent system.
The ensuingmodels can be applied to a variety of networking problems. This chapter
looks at routing in wireless sensor networks andmobile ad-hoc networks as tasks that
bear similarities to communication in biotic societies and swarms, and underlines
the role of propagation phenomena in routing. It summarizes the basic principles
of swarm intelligence and evolutionary computing and reviews recent advances in
biologically-inspired network routing.

7.1 Introduction

There is a growing need for intelligent protocols and algorithms to design, man-
age, and control complex cyber-physical systems such as wireless sensor networks
(WSN), sensor-actuator networks, mobile ad-hoc networks (MANET) and vehicular
ad-hoc networks (VANET). In some applications, such as environmental monitor-
ing [12, 42, 53], these networks are faced with many requirements and challenges
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that include autonomous operation, strict energy constraints, low computing power,
multi-hop communication, robustness, reliability, adaptability, the ability to operate
under harsh environmental conditions, etc. Routing protocols define the strategies
and patterns that determine how such distributed networks communicate, and how
data propagates [31] from one node to another and eventually outside the network.
During the last decade, bio-inspired routing protocols have emerged as a group of
methods suitable to address the complex multi-faceted nature of the problem, and
specifically to contribute to the energy efficient network routing.

WSN share several properties with MANET and VANET. They are composed
of a potentially large number of wireless nodes that perform prescribed tasks and
exchange data [12, 17, 35]. Due to their limited transmission range, they communi-
cate in a multi-hop fashion [35, 42]. In MANET, nodes are typically mobile, more
powerful and homogeneous, i.e. without distinct roles. WSN nodes, on the other
hand, usually have lower computing power, constrained memory, and limited energy
available for their operation. Individual WSN nodes have often different roles and
utilize diverse hardware (e.g. various types of sensors or energy storage devices).
The roles of WSN nodes can be predefined and static, or dynamically assigned in
response to the current state of the network or the environment [35, 38, 42]:

• sensor nodes collect, store, and eventually communicate data to other nodes. These
nodes are the most common, low-power, low-cost devices. They have limited
energy available for their operation, consisting in the simple tasks of sampling and
transmitting data.

• relay nodes play an important role in long distance multi-hop communication.
Theymaintain the connections betweenWSN segments. Typically, they havemore
powerful hardware and consume more energy compared to the sensor nodes.

• sink nodes are responsible for transmission of data outside the WSN to where it
is required. A network can feature one or more sink nodes, sometimes referred to
as base station(s).

Individual wireless sensor nodes sometimes have relatively low-precision sensors,
but the large number of nodes usually found in sensor networks allows the system
as a whole to maintain high spatio-temporal resolution. With the rising complex-
ity of WSN, self-organization and optimization becomes an integral part of their
operation [42].

WSN can be used, for example, to monitor indoor or outdoor environments [12,
42]. Typical applications inside buildings include monitoring of temperature, light,
humidity, air quality, and a number of safety-related detection tasks (e.g. of smoke
or structural deformations). Outdoor applications include monitoring of habitats,
environments, agriculture, disaster warning systems, traffic oversight, pollution and
water quality assessment, etc. [7].

Most WSN operate according to two main paradigms [12]: sample and send,
where sensor nodes collect measurements and send them to a sink, and in-network
processing, where nodes perform additional tasks, such as data aggregation, event
detection, or actuation.
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Sensing is usually performed by wireless sensor nodes independently. They peri-
odically activate their sensors (e.g. strain, vibration, temperature, or gas sensing
devices) and record the measurements characterizing the environment where are
they located. This operation is driven by a particular static or dynamic schedule,
sometimes called sensing rate [46].

A multi-hop wireless transmission is performed to deliver data from wireless
sensor nodes to one or more network sinks. Routing algorithms are essential for
determining the way data is propagated from one node to another. They have a
major influence on important network properties such as communication overhead,
data availability (immediacy), network lifetime, and so on. The general objective of
WSN routing is to maximize system performance. Performance of a WSN is, how-
ever, a broad and rather vaguely defined concept that comprisesmany sensor/network
aspects such as reliability, measurement accuracy, sensor calibration, and error detec-
tion [12]. Other routing metrics include communication latency (time needed for a
packet to get from its source to a destination), route length, and network energy effi-
ciency. Energy efficiency can be defined, for example, as the ratio of received data
and consumed energy [17].

The growth of WSN that can easily scale up to multiple thousands of nodes
and the variety of deployment conditions make efficient WSN routing a complex
optimization problem. In many cases, this is further exacerbated by the strict energy
constraints.

The main traditional routing approaches are [45]:

• hierarchical routing that is based on node clustering and role assignments (e.g.
Low Energy Adaptive Clustering Hierarchy (LEACH) [24], or Power-efficient
Gathering in Sensor Information Systems (PEGASIS) [34]),

• QoS aware routing that focuses on achieving quality of service (QoS) require-
ments, and

• location based routing that employs location information for routing purposes.

From another perspective, WSN routing algorithms can be classified as [37]:

• proactive algorithms that construct data routes independently of the current com-
munication requirements,

• reactive algorithms that respond to the communication needs of sensor nodes and
construct routes on-demand, and

• hybrid algorithms that combine the proactive and reactive methods.

Proactive and reactive routing algorithms suffer from different types of problems.
Proactive routing generates large overhead, whereas reactive routing yields high
communication delays.

During the last decade, many challenges of MANET andWSN routing have been
addressed using various bio-inspired approaches [22, 29, 37, 49, 52]. Bio-inspired
methods are often based on a combination of proactive and reactive approaches,
allowing them to accomplish adaptive routing, improve network load balancing, and
contribute to network topology discovery [37]. As a result, so called bio-inspired
routing has become a first class WSN routing paradigm [45]. This chapter provides
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Fig. 7.1 Tag cloud formed
from the surveyed articles

an up-to-date survey of the latest developments in the area of bio-inspired routing in
WSN. It complements previous surveys on this and similar topics [37, 42, 49, 61],
by considering new application opportunities, new challenges of massive monitoring
networks, as well as the emergence of new bio-inspired algorithms. A tag cloud
composed of the most frequent, non-trivial terms from surveyed research articles is
shown in Fig. 7.1. It clearly illustrates the emphasis on routing, performance, and
energy efficiency and the dominance of ant-like algorithms in these papers.

The rest of this chapter is organized into four sections. The bio-inspired methods
that are applied in the area of WSN routing most often are reviewed in Sect. 7.2. This
includes the description of several methods of swarm intelligence and evolutionary
computing, and a short summary of several other bio-inspired methods. Section7.3
provides an up-to-date, detailed, annotated survey of bio-inspired routing methods.
Section7.4 summarizes the contents of the chapter, brings major conclusions, and
outlines future prospects of this exciting research area.

7.2 Biologically-Inspired Methods

There are two main groups of bio-inspired methods used to solve WSN routing
problems: swarm intelligence and evolutionary computing. The algorithms based
on swarm intelligence [17, 21, 29, 52] include methods inspired by Ant Colony
Optimization, Particle Swarm Optimization, and Honey Bee Mating Optimization.
Evolutionary methods for WSN routing are mostly based on Genetic Algorithms
[2, 17, 37, 49]. The benefits of combining traditional and bio-inspired routing
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algorithms have been recognized as well [29]. This section provides a brief overview
of the principles of swarm intelligence and evolutionary computing, and the descrip-
tion of several selected algorithms.

7.2.1 Swarm Intelligence

Swarm intelligence [9] is a collection of methods to solve complex, real-world prob-
lems using the paradigm of collective behaviour of distributed agents. This paradigm
has been inspired by the intelligent behaviour of systems composed of many sim-
ple individuals, such as ants, bees, bats, etc. Similarly, an artificial swarm system
consists of many unsophisticated agents that cooperate in order to achieve desired
behaviour [8]. This approach is concerned with exploiting global behavioural pat-
terns emerging from local interactions, rather than with the design of sophisticated
central controllers governing the entire system.

7.2.1.1 Ant Colony Optimization

Ant Colony Optimization (ACO) [18] is a meta-heuristic approach based on certain
behavioural patterns of foraging ants. Ants have shown the ability to find optimal
paths between their nests and sources of food. This intelligent path-finding activity
is based on stigmergy—indirect communication through modification of the envi-
ronment. Ants travel randomly to find food, and when returning to their nest, they
lay down pheromones. When other foraging ants encounter a pheromone trail, they
are likely to follow it. The more ants travel on the same trail, the more intensive the
pheromone trace is, and the more attractive it is for other ants.

Emulation of this behaviour can be used as a probabilistic computational technique
for solving complex problems that can be cast as finding optimal paths [18]. An
artificial ant, k, placed on vertex, i , moves to node, j, with probability

pk
i j = τα

i j
ηβ

i j
∑

l∈N k
i
(τα

il
ηβ

il)
, (7.1)

where Nik represents the neighbourhood of node i for ant k (i.e. a set of nodes that
are available for the ant to move to), τi j represents the amount of pheromones placed
on arc ai j , and ηi j corresponds to a-priori information reflecting the cost of passing
the arc ai j . After ants finish their forward movement, they return to the nest with
food. The tour of ant k is denoted T k . Its length, Ck , is used to specify the amount
of pheromones, �τk

i j , to be placed by the ant on each arc, i j , on the trail that led to
the food source
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�τk
i j =

{
1

Ck if arc (i, j) belongs to T k

0 otherwise
, (7.2)

τi j = τi j +
m∑

k=1

�τk
i j . (7.3)

Alternatively, �τk
i j can be derived from the solution quality expressed as the amount

of food collected, Lk .
After all ants finish one round of their movement, the amount of pheromones on

each arc is reduced through evaporation

τi j = (1 − ρ)τi j . (7.4)

The coefficients α, β and ρ are general parameters of the algorithm that control the
ratio between exploitation of known solutions and exploration of new areas of the
search space. This canonical form of the ACO algorithm is called Ant System (AS).
A pseudocode describing an AS with n ants is shown in Algorithm 7.1.

Algorithm 7.1 Ant System
Generate initial pheromone matrix P with respect to graph topology
0 → generation
while Termination criteria not met do

Place n ants randomly on graph vertices.
Set the amount of collected food for each ant to 0
foreach ant do

Move forward on the graph; follow the probabilistic (7.1)

Compute the amount of collected food corresponding to ants trail
end
Find ant with the largest amount of collected food; let the ant lay pheromones in P on its trail
according to (7.3)

Evaporate pheromones in P according to (7.4)
generation + 1 → generation

end

There are numerous variants of the ant algorithm. Modifications of the original
ant system, such as elitist ant system and ant colony system [18], max-min ant
system, fast ant system, ant-Q, and antabu, have been designed and applied in various
problem domains, including bioinformatics, scheduling, data clustering, text mining,
and robotics [20]. They have also been successfully used for finding optimal paths in
complex networks. They perform best when the problem to be solved has suitable a
priori heuristic information, and especially when some sort of local search algorithm
is employed [18].

Among bio-inspired routing methods, ACO has been used most often. This can
be attributed to their mutual similarity. Multi-hop data transmission is similar to
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stigmergy in ant communities, a form of communication in massive multiagent sys-
tems. Such natural communication strategies have evolved over millions of years
and are effective in coordinating colonies of up to several millions of individuals.
Emulation of these principles represents a natural choice for the management and
control of massive artificial multiagent systems. There are ant-like routing methods
for MANET and VANET that focus on improving communication overhead [22],
reliability [3], scale [16, 25], and communication cost distribution [28]. Ant-inspired
WSN routing methods are primarily motivated by optimization of energy consump-
tion [4, 10, 15, 50]. However, many other objectives have been pursued, including
network security [5], self-organization [15], dealing with multiple sinks [38], etc.

7.2.1.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a global, population-based search and opti-
mization algorithm based on simulation of swarming behaviour of bird flocks, fish
schools and even human social groups [11, 20, 30]. PSO uses a population of motile
candidate particles characterized by their position, xi , and velocity, vi , inside an
n−dimensional search space they collectively explore. Each particle remembers the
best position (in terms of fitness function) it visited, yi , and is aware of the best
position discovered so far by the entire swarm ȳ. In each iteration, the velocity of
particle i is updated [20] according to

vt+1
i = vt

i + c1r t
1(yi − xt

i ) + c2rr
2(ȳt − xt

i ), (7.5)

where c1 and c2 are positive acceleration constants that influence the tradeoff between
exploration and exploitation. Vectors r1 and r2 contain random values sampled from
a uniform distribution. The position of particle i is updated given its velocity [20] as
follows

xt+1
i = xt

i + vt+1
i . (7.6)

A basic global PSO (gbest) according to [20, 30] is summarized in Algorithm 7.2.
PSO is useful for dealing with problems whose solution can be represented as a

point or surface in an n−dimensional search space. Candidate solutions (particles)
are placed in this space and provided with a random initial velocity. The particles
then move through the search space and are periodically evaluated using a fitness
function. Over time, particles are accelerated towards those locations in the problem
space that have relatively better fitness values.

In addition to the basic model, there is a number of alternative versions of PSO
algorithm including self-tuning PSO, niching PSO, and multiple-swarm PSO. These
variants have been developed to improve the convergent properties of the algorithm,
or to solve other specific problems [11, 20]. A new variant of PSO utilizing the ideas
of immune algorithms [40] and orthogonal learning has been recently used to solve
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Algorithm 7.2 gbest Particle Swarm Optimization
Create population of M particles with random position and velocity
Evaluate an objective function f ranking the particles in the population
while Termination criteria not satisfied do

for i ∈ {1, . . . , M} do
Set personal and global best position:
if f (xi ) < f (yi ) then

yi = xi
end
if f (xi ) < f (ȳ) then

ȳ = xi
end
Update velocity of particle i by (7.5) and its position by (7.6)

end
end

the challenging task of route recovery and maintenance in networks with mobile
sinks [27].

7.2.1.3 Marriage in Honey Bees Optimization

Marriage in Honey Bees Optimization (MBO) [1] is a bio-inspired optimization
algorithm that builds on the principles of division of roles and specialization, visual
stigmergy, and reproduction strategies found in bee colonies. The principles govern-
ing bee colonies are significantly different from those of ant colonies [21]. As the
name suggests, the main inspiration for MBO is the complex reproductive behaviour
of honey bees.

A honey bee colony consists of a single queen and a number of other individuals
that aremorphologically uniform, but specialize in different tasks. The single purpose
of male bees (drones) is to mate with the queen and contribute to the reproduction of
the colony. The drone dies immediately after its role in the mating process has been
accomplished [1].

The drones are males born from unfertilized eggs. They are haploid, i.e. they have
only one set of chromosomes which is used to fertilize eggs. The mating process
involves several mating flights in which the queen mates with several drones and
stores their sperm in a special organ called spermatheca [1].

The algorithm considers the mating flight as a set of state-space transitions and
probabilistic mating encounters. The queen is initialized with certain energy level
and leaves for the mating flight. She returns to the hive when the energy is depleted
or her spermatheca full. Drone d mates with queen q with the probability given by
an annealing function

pqd = e− | fq − fd |
s(t) , (7.7)
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where pqd represents the probability of successful mating (adding the sperm of d
to the spermatheca of q), fq and fd stand for the fitnesses of the queen and drone
respectively, and s(t) represents the speed of the queen q at the time of the encounter.

After each transition, the speed, s(t), and energy, e(t), of the queen are decreased
using

s(t + 1) = αs(t), (7.8)

e(t + 1) = e(t) − �e, (7.9)

where α ∈ [0, 1] is a scaling factor and �e is a fixed energy reduction step.
When the flight ends, the queen starts breeding by randomly selecting a sperm

from the spermatheca and combining it with her genome. The new solution is then
subject to random mutation. The algorithm also utilizes a set of worker bees that
care of a number of broods [1]. They represent different heuristics that are applied to
improve solutions generated by the algorithm. A new solution that has better quality
than any of the existing queens replaces the queen in the next iteration. An outline
of the generic MBO is shown in Algorithm 7.3.

Algorithm 7.3 Marriage in Honey Bees Optimization
Initialize workers; generate Q queens at random and evaluate them
Use local search to find a good queen
for flight f ∈ {1, . . . , max_ f lights} do

for queen q ∈ {1, . . . , Q} do
Initialize energy, speed, and position
while energy(t) > threshold do

Move q to the next state Choose drone d according to (7.7)
if d is selected then

Add d’s sperm to spermatheca
end
Update q’s energy and speed using (7.8) and (7.9), respectively

end
end
Generate broods by crossover and mutation
Use workers to improve the broods
Update fitness and replace low-fit queens by brood with better fitness

end

TheMBOalgorithm combinesmeta-heuristic and heuristic approaches in a coher-
ent bio-inspired framework. In addition to reproductive behaviour, other aspects of
bees’ lives have been used as an inspiration for routing algorithms, such as forag-
ing [55], division of labour, and stigmergy [59].
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7.2.2 Evolutionary Algorithms

Evolutionary computing is a group of iterative stochastic search and optimization
methods based on the programmatical emulation of successful optimization strate-
gies observed in nature [39]. Evolutionary algorithms use Darwinian evolution and
Mendelian inheritance to model the survival of the fittest using the processes of
selection and heredity [20].

7.2.2.1 Genetic Algorithms

TheGenetic Algorithm (GA) is a population-based, meta-heuristic, soft optimization
method [39].GAs can solve complex optimization problems by evolving a population
of encoded candidate solutions. The solutions are ranked using a problem specific
fitness function. Artificial evolution, implemented by iterative application of genetic
and selection operators, leads to the discovery of solutionswith above-averagefitness.
The basic workflow of the standard GA is shown in Algorithm 7.4.

Problem encoding is an important part of the genetic search. It translates candi-
date solutions from the problem domain (phenotype) to the encoded search space
(genotype) of the algorithm. In other words, it defines the internal representation
of the problem instances used during the optimization process. The representation
specifies the chromosome data structure and the decoding function [13]. The data
structure defines the actual size and shape of the search space.

Crossover is themainoperator that distinguishesGAs fromother population-based
stochastic search methods [39]. Its role in GAs has been thoroughly investigated and
it has been labeled the primarily creative force in the evolutionary search process. It
propagates so called building blocks (solution patterns with above average fitness)
from one generation to another, and creates new, better performing, building blocks
through their recombination. It can introduce large changes in the population with
small disruption of these building blocks [60]. In contrast, mutation is expected
to insert new material into the population by random perturbation of chromosome
structure. This way, new building blocks can be created or old disrupted [60].

GAs have been successfully used to solve a number of non-trivial multimodal
optimization problems. They are capable of effectively searching large, potentially
noisy solution spaces. Their clear principles, ease of interpretation, intuitive practical
use, and significant results, have made GAs the method of choice for many applica-
tions. In the area of WSN routing, GAs have been used towards various objectives
including improved energy efficiency [23, 48] and increased network lifetime [6].
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Algorithm 7.4 Genetic Algorithm
Define objective (fitness) function and problem encoding
Encode initial population P of possible solutions as fixed length strings
Evaluate chromosomes in initial population using the objective function
while Termination criteria not satisfied do

Apply selection operator to select parent chromosomes for reproduction: sel(Pi ) → parent1,
sel(Pi ) → parent2

Apply crossover operator on parents with respect to crossover probability to produce new chro-
mosomes: cross(pC , parent1, parent2) → {offspring1, offspring2}
Apply mutation operator on offspring chromosomes with respect to mutation probability:
mut (pM , offspring1) → offspring1, mut (pM , offspring2) → offspring2

Create new population from current population and offspring chromosomes:
migrate(offspring1, offsprig2, Pi ) → Pi+1

end

7.2.3 Other Bio-inspired Algorithms

Swarm intelligence and evolutionary computation are the two major categories of
bio-inspired algorithms.However, a number of other biological processes have served
as an inspiration for various algorithms. Two interesting bio-inspired methods that
have been recently used for WSN routing are based on cell biology and bacterial
foraging.

7.2.3.1 Cell Biology

Different aspects of cell biology have inspired routing algorithms forWSN, for exam-
ple consider the recently proposed attractor selection model based on the biology of
E. Coli [33], and the pheromone protocol inspired by the life of unicellular organism
dictyostelium discoideum [43].

The attractor selection model [33] provides a bio-inspired mechanism for adap-
tively selecting one ofmany possibilities. Each alternative is described by a system of
stochastic differential equations modeled after messenger RNA (mRNA) synthesis
and degradation. The algorithm converges to solutions that have high value of output
probability for one alternative and low output probabilities for all other options.

The second WSN approach rooted in cell biology [43] uses a set of simple local
rules describing the behavioural patterns of dictyostelium discoideum to implement a
simple variant of the well-known swarm intelligence principle of following the path
with the best fitness. The unicellular amoeboid dictyostelium discoideum produces
a chemical signal (a type of pheromone) that attracts other individuals. Wandering
dictyostelia are sensitive to the pheromone.An individual that detects the signal emits
a pheromone itself and moves in the direction with highest pheromone density. This
simple indirect communication strategy can be used to solve global optimization
problems.
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7.2.3.2 Bacterial Foraging Optimization Algorithm

Bacterial Foraging Optimization Algorithm (BFOA) is a recent bio-inspired method
[14, 44]. It is a swarm-intelligent algorithm that implements the distinctive food
searching strategy of the bacterium E. Coli as a type of parallel, nongradient opti-
mization.

E. Coli is a simple and common microorganism that has developed a successful
survival strategy combining collective and individual decision making. The foraging
behaviour involves motility, swarming, reproduction, elimination and dispersal [14,
44]. Motility of the bacteria, called chemotaxis, involves two types of movements:
swimming and tumbling. Swimming bacteria move in a fixed direction. Tumbling,
on the other hand, is a movement that results in a change of the movement direction.
The choice between swimming and tumbling depends on whether the bacteria per-
ceives its environment as favorable. Swarming represents a social self-organization
of a group of bacteria that influence each other. Reproduction leads to elimination
of the least healthy bacteria and asexual reproduction of the most fit individuals.
The best individuals produce clones that initially share their location. Elimination
and dispersal serve as simulations of sudden changes in the environment and are
implemented as the random removal of existing (healthy) bacteria and the random
creation of new ones.

One particular part of the complex BFOA algorithm, the chemotaxis, has been
recently used for WSN routing in [26]. It simulates the movement of the bacterium
as a series of steps described as follows

θ
i ( j + 1) = θ

i ( j) + C(i)
�(i)√

�T (i)�(i)
, (7.10)

where θ
i ( j) is the position of the i-th bacterium at chemotactic step j, C(i) is the

size of the step taken in the direction of the tumble, and �(i) is a random tumble
vector subject to ∀x ∈ �(i) : x ∈ [−1, 1]. The value of C(i) is selected with respect
to the quality of the solution represented by bacterium i located in chemotactic step
j at position θ

i ( j). The decision between swimming and tumbling is controlled by
a simple logic. If the quality of the solution improves, swim in the current direction;
otherwise, tumble. Chemotaxis has been successfully used as the main principle of
a recent energy efficient WSN routing algorithm [26].

7.3 Bio-inspired WSN Routing Algorithms

This section provides a detailed overview of selected works on bio-inspired routing
in the areas of WSN, MANET, and VANET. It is organized in a chronological way
to capture the evolution of requirements, algorithms, and results in the field of bio-
inspired routing methods.
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The use of ACO for network routing can be traced back to 2002. The study by Sim
and Sun [56] is an example of an early application of swarm intelligence in the field
of general computer networking. It uses ACO to avoid network traffic congestion
by continuously updating routing tables. To mitigate stagnation and improve opti-
mization results, the authors use several distinct ant colonies—an approach called
MultipleACO. This study has confirmed thatmeta-heuristic, agent-based approaches
can have different main objectives (e.g. load balancing, QoS). It has also shown that
the problem of routing naturally matches the traditional application area of ant-like
algorithms originally developed for optimal path finding.

Güneş et al. [22] proposed an ACO-based routing method called Ant Routing
Algorithm (ARA) for use in MANETs. The algorithm is designed to achieve robust
and reliable on-demand routing in the environment of dynamic wireless networks
with mobile nodes. Its goal is to find a multi-hop route between two nodes interested
in data exchange. The algorithm operates in two phases. During the route discovery
phase, special agents called forward ant (FANT) and backward ant (BANT) are
used to construct a routing table for the ensuing data exchange. The FANT agents
are broadcast to the network by the sender node in a flood-like manner, while the
BANT agents are returned by the recipient node. BANTs also mark their route by
pheromones in routing tables of the nodes they visit. In the route maintenance phase,
data packets are routed between the sender and recipient using probabilistic decision
rules driven by pheromones in the local routing tables. Continuous updates of the
pheromones either maintain or alternate the initial route depending on the actual state
of the network. The algorithm operates in a distributed manner relying only on local
information.As a result, it enables adaptive on-demand routingwith a small overhead.
Through software simulations, ARAwas compared with traditionalMANET routing
algorithms such as the Ad-hoc On-Demand Distance Vector (AODV), Destination-
Sequenced Distance Vector (DSDV), and Dynamic Source Routing (DSR). The bio-
inspired algorithm performed on par with the traditional methods in terms of packet
delivery rate and the number of lost packets, but with a lower overhead.

The problem of routing in large scale MANETs was addressed by an ant-like
approach in the work of Heissenbüttel and Braun [25]. The authors were interested
in an efficient routing in wireless networks covering large geographical areas and
comprising of large number of nodes. One of the research objectives was to avoid
the flood-like broadcasting of forward agents (as in ARA) in order to scale to large
networks. The proposed solution is based on the abstraction of physical network
topology and creation of a logical topology employed for routing. Close nodes are
grouped together to form logical routers (i.e. groups of nodes with identical rout-
ing tables), logical links between logical routers, and eventually logical multi-hop
paths. The resulting routing algorithm, called Mobile Ants-based Routing (MABR),
uses a single routing table and link cost table for each logical router. Otherwise, its
operations are similar to those of ARA [22].

Another ant-based routing algorithm designed specifically for MANET is due
to Hussein and Saadawi [28]. The algorithm, named Ant Routing Algorithm for
Mobile Ad-hoc Networks (ARAMA), was designed as distributed, self-organizing,
and multiobjective. It pays attention to node mobility, elevated error rates, energy
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constraints, and unbalanced energy distribution in the network. As in the previous
cases, one of the main reasons to use a bio-inspired algorithm was the need for a
robust procedure that would yield lower overhead than the traditional routing meth-
ods and therefore provide better performance and scalability. The basic operations
of ARAMA are similar to those of ARA. Forward and backward ants are used to
construct on-demand probabilistic routes between sender and receiver. However,
the metrics for path evaluation, as well as the intensity of path discovery, are more
sophisticated. Path evaluation considers the number of hops, communication delay,
quality of service, and node battery state. Path discovery intensity (i.e. the intensity
of sending forward and backward ants) is a function of network dynamics. Computer
simulations have shown that ARAMA contributes to fair and balanced energy usage
across the network.

A routing algorithm called Termite was developed by Roth and Wicker [51] as a
robust, bio-inspired procedure forMANET routing. It uses route request and response
packets to create and maintain adaptive routing tables. Route request packets, assum-
ing the role of forward ants, are propagated through the network in a randomwalk-like
manner until they reach their destination or die. Route reply packets, analogous to
backward ants, are sent back to the source and update pheromones in routing tables of
the nodes they visit. In addition, this algorithm uses two other types of packets: hello
packets broadcast by nodes when they find themselves isolated, and special seed
packets that spread the pheromones of each node in an attempt to reduce the need
for route construction and to lower the number of route request packets. Stigmergy
concepts of linear pheromone updates and exponential pheromone decay are used
to keep routing tables up-to-date with changing network topology. However, rather
than using a specific bio-inspired method, this algorithm uses a number of general
ideas of swarm intelligence.

An adaptive hybrid algorithm designed for routing in networks spread across
geographically disperse locations was proposed by Alena and Lee [3] in 2005. The
routing strategy utilizes a combination of stigmergy-based probabilistic routing and
a-priori information extracted from topographic and radio coverage maps. The ant-
inspired portion of the algorithm uses an elitist approach with stronger pheromone
updates on best routes found in each iteration. Route discovery and optimization is
implemented by periodically sending forward ants to randomdestinations. Backward
ants returning to senders update routing tables of all visited nodes according to the
actual state of the network. The algorithm also addresses communication interrup-
tions and performance problems. The goodness of a route is evaluated on the basis
of trip time which reflects a number of metrics such as number of hops and commu-
nication congestion. The algorithm has been evaluated through complex simulations
of a network of 50 mobile nodes in a realistic environment described by topographic
maps. A comparison of the proposed algorithm with AODV and Ant-AODV has
shown that the new algorithm performs best and can be considered for extremely
demanding WSN applications such as planetary exploration [3].

Di Caro et al. [16] proposed a complex ant-based routing algorithm forMANETs.
The algorithmwas based upon another ant-based routingmethod developed forwired
networks. However, it was extended to address the challenges of routing in WSN
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with dynamic topology and genericmotile nodeswithout predefined roles. In contrast
to previous ant-inspired routing methods (e.g. ARA [22]), the proposed AntHocNet
algorithm aims to achieve a balance between proactive and reactive behaviour to
establish a robust stochastic multi-path routing. AntHocNet’s reactive path setup
phase is triggered by data transmission. Forward ants are broadcast to the network
with the goal of creating mesh-like (i.e. highly parallel) initial paths. During the sto-
chastic routing phase, the packets are sent between the source and destination nodes
according to the routing tables, which follow the stochastic path selection rules
known from previous ant-inspired routing algorithms. The proactive path mainte-
nance and exploration phase of AntHocNet includes periodically sending forward
ants to explore new paths and routing configurations. The algorithm also uses several
additional optimization techniques to maintain up-to-date routing information: hello
messages are used for local communication, and link failure information is broadcast
to the network. Computer simulations have shown that the algorithm yields low end-
to-end delay and good packet delivery ratio, especially at higher node movement
speeds [16]. However, the communication overhead of AntHocNet is higher than
that of AODV.

The behaviour of honey bees inspired an energy-aware reactive routing algorithm
for MANET introduced by Wedde et al. [59]. The main objective of the algorithm is
to maximize network lifetime by distributing communication across multiple paths.
This allows to achieve balanced energy consumption without compromising on per-
formance. The algorithm successfully applied honey bee-inspired routing principles
originally developed for wired networks in the environment of mobile ad-hoc net-
works. It is based on a complex and biologically well-described analogy between
honey bee foraging strategies and network traffic patterns. In this analogy, every
network node is modelled as a virtual bee hive with different compartments and dif-
ferent types of bees that travel across the network. Each hive contains bee packers
who receive packets and transfer them to suitable bee foragers. The foragers act as
transport agents sensitive to some optimization criteria, such as transport delay or
node energy. Foragers also collect information about global network status. Finally,
scout bees are broadcast to the network in order to discover new routes and share
routing information with foragers.

The initial works on bio-inspired routing have shown that inspiration from nature
can contribute to the improvement of efficiency and robustness of routing in wireless
networks, and particularly in MANETs. They have, however, focused only on some
aspects of the routing problem, such as network scaling, congestion elimination, and
minimization of routing overhead, but ignored other aspects like energy efficiency
and network lifetime.

An energy efficient WSN routing algorithm based on ACO was developed by
Camilo et al. [10] in 2006. This study proposed and compared three ant-based rout-
ing strategies. Simple ant routing is a straightforward proactive routing algorithm
utilizing forward and backward ants. The second algorithm, called improved ant
routing, introduces energy awareness as a part of the route evaluation criteria. The
third algorithm, named energy efficient ant based routing (EEABR), aims at reducing
the amount of information saved in each routing packet (i.e. forward and backward
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ant). In contrast to previous approaches, each ant contains information about the
average energy on the route up to the current node, rather than complete data on
energy level for each visited node. The reduction of routing packet size contributes
to lower data overhead and higher energy efficiency (ratio of consumed energy to
transmitted data packets).

Rahmani et al. [48] developed an agent-based WSN routing strategy using a
parallel GA. This approach combines stochastic, cost-based next-hop selection (the
probability of sending packet to a neighbour is proportional to the cost of routing
to the neighbour) with greedy selection of the neighbour with the highest remaining
energy. This allows it to achieve a globally energy-efficient behaviour. A parallel GA
is used to find the optimal parameters of the routing function. The search for optimal
parameters for certain group of nodes is performed periodically by the base station.

A robust bio-inspired MANET routing algorithm focusing on QoS is due to Leib-
nitz et al. [33]. Unlike previous approaches, this method is inspired by the micro-
scopic world of cell biology. In particular, it mimics the attractor selection process
to adaptively select next-hop nodes. Routing operations of the adaptive response by
attractor selection (ARAS) algorithm consist of two phases. The route setup phase
finds a route with minimal number of broadcasts. The route maintenance phase fol-
lows this route through a probabilistic selection of next-hops, and piggybacks the
information about route quality in a process similar to the forward and backward ant
transmission in other ant-inspired methods. Software simulations have shown that
ARAS has performance comparable to AODV, but with a lower overhead. However,
this method has not been compared to other bio-inspired routing methods.

In 2009, Okdem and Karaboga [41] presented an algorithm and hardware plat-
form for ACO-like WSN routing. The use of specialized hardware was motivated
by the constrained energy and low processing power of wireless sensor nodes. The
main routing objective is the maximization of network lifetime by spreading energy
consumption across nodes through multi-path energy-aware routing. In the proposed
algorithm, the sender node initializes communication with the base station, while the
intermediate nodes are used to relay packets following an energy-aware probabilistic
path-selection rule. Up-to-date information about the current status of transmission
paths is propagated back to the nodes as a part of acknowledgement packets. Addi-
tionally, the nodes propagate their own energy level information to their neighbours.
Matlab software simulations have shown that the proposed algorithm is more energy
efficient than EEABR [10] when a hardware implementation of the routing chip
is used.

A hybrid energy-awareWSN routing algorithm combining self-organized cluster-
ing and an improvedACOwaspresented in [47]. The algorithmuses self-organization
to form clusters of nodes, select cluster heads, and establish a cluster head chain
for communication between the base station and clusters. The routing algorithm
operates in rounds. In each round, new clusters are formed on the basis of node
location and energy level. Next, node chains are created by energy-aware ACO
within each cluster. Finally, cluster heads representing the clusters are selected. All
energy demanding operations are initialized and/or performed by the base station.
The routing itself, however, is static and deterministic, following the configuration
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created by the process outlined above. Software simulations have shown that the
proposed algorithm is more efficient than the traditional hierarchical routing algo-
rithm (LEACH [24]).

Bari et al. [6] developed a WSN data gathering schedule that maximizes network
lifetime; where lifetime is defined as the time when the first of fixed relay nodes
stops operating due to depletion of its energy source. The scheduling task is cast as
a global combinatorial optimization problem and solved using GA. To account for
energy constraints, the algorithm considers energy dissipation of the sensor nodes.
In addition, it can cope with energy depletion or the failure of critical nodes through
dynamic rerouting. Compared to traditional techniques, such as integer linear pro-
gramming, the GA-based scheduling approach can efficiently deal with very large
networks.

The performance of two existing ant-based routing protocols under different appli-
cation scenarios was studied by Domínguez-Medina and Cruz-Cortés [17]. They
compared anACO-based location-aware routing (ACLR) utilizing closeness of node
neighbours, and the energy efficient ant-based routing EEABR [10]. This study sim-
ulated different WSN hardware and covered different network scenarios, including
balanced versus imbalanced energy allocation, and fixed versus randomly selected
source and destination nodes. The study has concluded that EEABR outperformed
ACLR in terms of energy consumption, but the use ofACLR resulted in lower latency.

In 2010, Matsumoto et al. [38] proposed a bio-inspired data routing scheme
designed to increase WSN lifetime by efficient data gathering, communication bal-
ancing, and quick adaptation to changes of network topology. The method was
designed with special focus on networks with multiple sinks and large numbers
of nodes. Each sink is assigned a distinct pheromone that is propagated to the net-
work via a process called pheromone dispersion.Data transmissions are subsequently
routed towards sinks following their pheromones. Software simulations have shown
that the proposed algorithm outperforms several other ant-based routing algorithms,
as well as a traditional multiple sink-aware routing protocol.

Another bio-inspired routing algorithm for WSN with multiple sinks was pro-
posed by Paone et al. [43]. This protocol, inspired by the behaviour of unicellular
organisms, operates in a highly distributed manner without global information about
the network. The route construction phase of the protocol is called signaling. During
signaling, each node spreads its forwarding attitude (i.e. information about its ability
and willingness to route information towards sinks), and routing tables are created.
In the routing phase, data packets are routed towards sinks following a probabilistic
path selection principle. Computer simulations have shown that the proposed proto-
col performs better than directed fusion and yields good self-repairing capabilities.

A bio-inspired protocol for balanced packet routing, called BiO4SeL, was pro-
posed in [50] and later extended in [15]. The main objective of the algorithm is to
increase network lifetime by distributing data transmission paths between network
nodes and base stations with respect to their remaining energy levels. The protocol
operates in 3 stages. In the bootstrap phase, each node broadcasts information about
its energy level. During the initial route discovery phase, the base station broadcasts
special iant packets that discover optimal paths and construct routing tables. By
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design, BiO4SeL’s iant packets avoid construction of long and invalid paths. In the
probabilistic data forwarding phase, routing tables are used for data transmission and
maintained by these packets. Simulations have shown that the method scales well,
maintains good packet delivery rate, and achieves the best network lifetime when
compared to other relevant routing algorithms such as AODV and ARAMA [28]. It
also features low overhead, especially in scenarios with a few nodes producing data.

A routing algorithm for underwater WSN applications was presented by Vieira
et al. [57]. The main goal of the protocol is to secure a reliable adaptive route towards
mobile sinks in a swarm of mobile sensors monitoring local underwater events in
space and time. The underwater environment is especially challenging due to the
presence of water currents and because of the properties of underwater acoustic
communication. Conventional routing protocols are not suitable for such conditions.
One of the main aspects of the proposed protocol is the distribution of location infor-
mation from sinks (special underwater vehicles or surface buoys) that are equipped
by GPS and do not suffer from energy constraints. With the help of location infor-
mation, the trajectory of mobile sinks on the 2D upper hull of the underwater swarm
creates a pheromone trail capturing the position and direction of the underwater
nodes. The routing has two principal stages: first, data packets are routed vertically
towards the upper hull and then in a 3D cylinder to the location of mobile sinks using
a geographic routing protocol.

Villalba et al. [58] proposed an extension toAntHocNet [16] to achieve autonomous
operation and self-organization. Like AntHocNet, the new algorithm combines
proactive and reactive aspects. However, it prefers routes that share neither nodes nor
links (disjoint link/disjoint-node routes). This behaviour is implemented using two
distinct types of pheromones called real pheromones and virtual pheromones. Sim-
ulation experiments concentrating on the number of hops in routes have shown that
the modified bio-inspired algorithm performs better than AntHocNet in terms of data
throughput, transmission success rate, average end-to-end delay, and communication
overhead.

Ekbatanifard et al. [19] developed an energy-efficient QoS-routing algorithm
using multiobjective GAs. The GA finds the least-cost energy-efficient path that sat-
isfies delay constraints. The objectives optimized by the algorithm include communi-
cation reliability (expected number of transmissions for successful data forwarding),
energy consumption (sum of energy costs of the routing tree), and the probability that
end-to-end delay constraint is met. The algorithm utilizes a traditional multiobjective
GA called NSGA2 to find a set of pareto-optimal routing trees.

In 2010, Luo [36] proposed another QoS-based routing algorithm using a GA. It
uses a probabilistic q-bit based representation of a set of routes connecting nodes to
sinks, mutation and rotation operators, and a fitness function sensitive to communica-
tion bandwidth and energy costs. Simulations performed by the author have showed
that the proposed approach achieved better throughput, lower delay, and longer net-
work lifetime than hierarchical routing when the number of network nodes was large.

Apparently, energy efficiency became a major topic for the second generation of
bio-inspired routing algorithms. Two algorithms, EEABR and AntHocNet, became
the de-facto baseline methods for the development of further bio-inspired routing
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methods. Advanced applications such as routing in networks withmultiple sinks, and
underwater routing, have also been addressed by bio-inspired algorithms. Advanced
variants of bio-inspired algorithms, including parallel and multiobjective GAs and
hybrid algorithms, have been used.

A security motivated bio-inspired routing algorithm based on ACO and principles
of fuzzy logic was created by Sethi and Udgata [54]. The primary objective of this
algorithm is to improve network security and to increase attack resilience. Each
node is assigned a trusted value determined by a fuzzy inference system from packet
drop rate and the ratio between route reply time and time-to-live. This value also
becomes part of a probabilistic next-hop selection rule used by an ACO-inspired
routing procedure.

Zungeru et al. [61, 62] developed an ACO-based routing protocol for visual sen-
sor networks. It addresses the specific requirements of video and image streaming
applications (e.g. high bandwidth). The improved algorithm extending the original
EEABR was developed to address the challenges of video surveillance, traffic mon-
itoring, and environmental applications. It improves energy efficiency by intelligent
initialization of routing tables, smart route maintenance strategy, prioritization of
neighbouring nodes, and reduced frequency of network flooding. The simulations
have shown that the new algorithm achieved in visual sensor network applications
30% lower energy consumption than EEABR. It’s performance in other metrics was
comparable to that of EEABR.

Ahybrid ant-inspiredWSNrouting algorithmcombining the elements of proactive
and on-demand routing strategies was presented by Almshreqi et al. [4]. It uses
information about average and minimum route energy to find transmission path
patterns and to spread out the energy cost of the communication. A simulation has
showed that the proposed algorithm performs better than EEABR in terms of total
energy consumption and energy efficiency.

Da Silva et al. [55] introduced a newbee-inspired algorithm for data dissemination
and propagation. The algorithm extends the traditional hierarchical cluster-based
protocols LEACHandLEACH-Cwith bee-inspired concepts. It is designed forWSN
with continuous data flow. Such networks generate and process data continuously
rather than in an event-driven manner. Using a realistic energy consumption model,
the proposed method applies bee strategies to form clusters and select cluster heads.
The algorithm preferably selects nodes located near data sources that have high
levels of remaining energy and require very little energy to communicate with the
base station. Simulation experiments have shown that this bio-inspired algorithm
performs better than both LEACH and LEACH-C in terms of the number of packets
sent to the base station, network lifetime, and the time until the first node in the
network dies (i.e. the full network coverage time).

In 2012,Hoa andKim [26] proposed aWSN routing algorithmbased on the behav-
iour of the bacteria E. Coli. The algorithm constructs an in-network gradient field
with maximum gradient concentration in and around the sink. The gradient of each
node is based on its location relative to the sink. When the gradient field is formed,
packets are routed using biased random walk. Directional bias of each node is based
on its past efficiency as a relay for communication with sink. During the transmis-
sion, packets observe the gradient field and tumble in case they detect a decrease
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of the gradient on their route. The advantages of the algorithm include locality (no
global information is needed), implicit load-balancing, and energy efficiency. It has
been shown that the algorithm performs better than the shortest-path strategy, and
yields relatively less mean communication delay and average energy consumption.

A secure ACO-inspired WSN routing algorithm was developed by Alrajeh et
al. [5]. The use of a bio-inspired approach was motivated mainly by the need to
strengthen the security of the network against network-layer attacks and WSN-
specific attacks (such as sinkhole attack, false routing, and so on). The proposed
reactive multi-path routing algorithm associates a special trust value with each node.
The trust value is later used as a part of a decision rule for next-hop selection to route
packets along paths that are both efficient and secure. Simulation experiments have
demonstrated that the algorithm is performance-wise worse compared to LEACH,
but better in terms of security.

Bitam et al. [7] proposed another security-oriented bio-inspired routing algo-
rithm. The hybrid routing algorithm termed HyBR is designed specially for VANET.
It incorporates communication patterns inspired by bee swarms applied to vehicle-
to-vehicle and roadside-to-vehicle communication. It also utilizes principles of geo-
graphic and topology-based routing and employs a GA to find optimum routes. The
algorithm has been evaluated by simulations of a realistic road network modelled
after the city of Biskra in Algeria. It has been found superior to AODV and the greedy
perimeter stateless routing (GPSR) protocols.

A fishing spider-inspired clustering method was used as a part of hierarchical
routing algorithm in the work of K. Lee and H. Lee [32]. This algorithm is based on
the analogy between water surface waves sensed by the fishing spider and concentric
radio signals detected by wireless sensor nodes. The main aim of the algorithm is to
formnode clusters and select cluster heads on the basis of node neighbourhood degree
and remaining energy levels. Such strategy is local and inexpensive, but it reflects the
state of the entire network and changes with the environment in order to improve self-
organization. Simulations have shown that the algorithm achieved longer network
lifetime, higher remaining energy levels, and better scalability than LEACH.

A new genetic approach to energy efficient WSN routing was proposed by Gupta
et al. [23]. This new scheme called Genetic Algorithm-based Routing (GAR) applies
a GA to find efficient routes in a 2-level WSN. It conducts periodical search for a set
of suitable next-hop nodes for each node in the network. The generic GA has been
extended with modified crossover and mutation operators. The performance of this
routing algorithm has been compared to traditional hierarchical routing and to the
algorithm presented in [6]. The GAR algorithm has been found better in terms of
achieved network lifetime.

In 2014, Hu et al. [27] proposed a bio-inspired algorithm for efficient routing in
WSNwith multiple mobile sinks. The method utilizes a multiple-swarm cooperative
PSO to quickly recover routes damaged by the movements of the sink. The study
introduced a new variant of PSO based on orthogonal immune learning to embrace
the problem. The proposed algorithm, in combination with AODV, achieved lower
packet loss, lower latency, and higher energy efficiency than three other AODV-based
protocols.
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The recent years have confirmed the trends observed in the field of bio-inspired
routing algorithms. Energy efficiency has become the top optimization goal, espe-
cially for routing in an energy constrained WSN. Moreover, network security has
emerged as a new aspect of bio-inspired routing. Traditional bio-inspired algorithms
including ant colony optimization, genetic algorithms, and particle swarm optimiza-
tion, as well as hybrid algorithms and new bio-inspired algorithms, have been used
to address the routing problems with success.

A mind map created from a citation graph of all surveyed research articles is
shown in Fig. 7.2. The elliptical nodes represent bio-inspired approaches, and each
rectangular node indicates an article. Each link represents implementation and/or a
direct reference between the article and the bio-inspired approach it connects.

Fig. 7.2 Mind map illustrating the surveyed bio-inspired routing methods, individual research
papers, and their mutual references
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7.4 Conclusions

This chapter presents an up-to-date survey of recent studies dealing with bio-inspired
approaches to routing in wireless sensor networks. Wireless communication is an
essential part of WSN operations. Multi-hop data transmission strategies have to be
adopted in order to deal with limited communication range of nodes’ radios and
energy constraints imposed by their limited power sources.

The traditional routing methods are challenged by the growing volume, extensive
spatial coverage, and generally high complexity of contemporary WSN. Determin-
istic, global approaches can hardly address such complex tasks in an efficient way.
On the other hand, bio-inspired methods draw their inspiration from natural systems
that have properties similar toWSNs. For example, swarm-intelligent algorithms are
essentially exchanging information in the way WSN should: in a local and compu-
tationally efficient, yet globally highly effective fashion. In contrast, evolutionary
approaches can be used for global optimization, even of large scale networks. Var-
ious flavours of swarm and evolutionary algorithms, as well as other bio-inspired
methods, introduce peculiar strategies that can be applied to achieve diverse routing
goals.

In computer applications, bio-inspired methods were first used for optimization
and search. As a result, they can be easily used to find communication patterns
suitable to satisfy arbitrary objectives (communication latency, throughput, energy
efficiency). Bio-inspired methods are also tightly linked to data mining and knowl-
edge discovery. Often, they are used to extract hidden information from data or to
uncover implicit patterns. That makes them sensitive to changes in network state and
configuration, and thus capable of achieving adaptive routing behaviour.

The limited scope of this chapter could not possibly include all relevant studies.
However, it provides a broad and logically structured overview of the most signifi-
cant trends in bio-inspired routing strategies for wireless sensor networks. The works
surveyed in this chapter can be informally classified according to the type of net-

Table 7.1 Classification of bio-inspired routing algorithms

Algorithm type Network type

WSN MANET/VANET

Ant-inspired [4, 5, 10, 15, 17, 38, 41, 47,
50, 57, 61, 62]

[3, 16, 22, 25, 28, 54, 58]

Bee-inspired [55] [7, 59]

Swarm intelligence [51]

Genetic algorithm [6, 19, 23, 36, 48]

Cell biology-inspired [43] [33]

Bacteria-inspired [26]

Particle swarm optimization [27]

Other bio-inspired (fishing
spider)

[32]
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work and the nature of the routing algorithm, as shown in Table7.1. However, many
alternative classifications based on different criteria can be devised:

• the type of the algorithm (from the optimization point of view)—continuous opti-
mization [27] versus discrete optimization (other)

• the type of the routing method—hierarchical routing [32, 47, 55] versus non-
hierarchical routing (other)

• the number of sinks in the network—multiple [27, 38, 43, 57] versus single (other)
• the main objective—scalability [15, 16, 25, 32, 50], security [5, 7, 54], energy-
efficiency (other)

• etc.

Such classifications are, however, necessarily inaccurate. Some algorithms combine
two or more methods and some are suitable for multiple types of networks.

Efficient multi-hop routing is a challenging research problem whose solution is
essential for practical operation of the future generation ofmassivewireless networks.
A particular data transmission strategy defines:

• the way data, and eventually information, is shared among the nodes and propa-
gated across the network, and

• the structure, amount, and propagation patterns of meta-data (such as routing
tables, logs, or node role assignments), that is used to keep the network operational
and its communication efficient.

Meta-data is created and propagated through the network with a single objective:
to provide a framework formonitoring the environment and propagating the collected
data to the user. From this perspective, the amount ofmeta-data should beminimized.
However, it can be also perceived as a source of complementary information about
the network and, indirectly, the monitored environment.

In the bio-inspired analogy, data corresponds to food or fitness, and meta-data
is represented, for example, by pheromones, genes or coordinates. Each routing
algorithm, mimicking certain biological communication and optimization strategy,
affects the organization, scalability, sensitivity, adaptability, speed, and other proper-
ties of the network. Lessons learned from nature will undoubtedly be invaluable for
attaining the objectives of the next-generation WSN: to facilitate autonomous, accu-
rate, immediate, and cost-effective monitoring of vast heterogeneous environments,
with adequate spatial and temporal resolution.
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Chapter 8
Analysis of Peer-to-Peer Botnet Attacks
and Defenses

Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

Abstract A“botnet” is a network of computers that are compromised and controlled
by an attacker (botmaster). Botnets are one of the most serious threats to today’s
Internet. Most current botnets have centralized command and control (C&C) archi-
tecture. However, peer-to-peer (P2P) structured botnets have gradually emerged as
a new advanced form of botnets. Due to the distributive nature of P2P networks,
P2P botnets are more resilient to defense countermeasures. In this chapter, first we
systematically study P2P botnets alongmultiple dimensions: bot candidate selection,
network construction, C&C communication mechanisms/protocols, and mitigation
approaches. Then we provide mathematical analysis of two P2P botnet elimination
approaches—index poisoning defense and Sybil defense, and one P2P botnet mon-
itoring technique—passive monitoring based on infiltrated honeypots or captured
bots. Simulation experiments show that our mathematical analysis is accurate.
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8.1 Introduction

8.1.1 Botnets

A “botnet” is a network of compromised computers (bots) running malicious soft-
ware, usually installed via all kinds of attacking techniques such as Trojan horses,
worms and viruses. These zombie computers are remotely controlled by an attacker
(botmaster). Botnets with a large number of computers have enormous cumulative
bandwidth and computing capability. They are exploited by botmasters for initiat-
ing various malicious activities, such as email spam, distributed denial-of-service
attacks, password cracking and key logging. Botnets have become one of the most
significant threats to the Internet.

Today, centralized botnets are still widely used. In a centralized botnet, bots are
connected to several servers (called command and control servers) to obtain com-
mands. This architecture is easy to construct and efficient in distributing a botmaster’s
commands; however, it has a weak link—the command and control (C&C) servers.
Shutting down those servers would cause all bots in a botnet to lose contact with
their botmaster. In addition, defenders can easily monitor the botnet by creating a
decoy to join a specified C&C channel.

In the last few years, peer-to-peer (P2P) botnets, such as Trojan.Peacomm botnet,
Stormbotnet and its newly improved versionWaledac botnet, have emerged as attack-
ers gradually realize the limitation of traditional centralized botnets. “Peer-to-peer
botnets” are defined as botnets that rely on peer-to-peer communication mechanisms
to facilitate the command and control by their botmasters. There are different ways
for a P2P botnet to utilize P2P communication for its command and control. For
example, a P2P botnet could use a P2P network (either an existing P2P network,
or a unique P2P network formed by its bot members) to directly disseminate its
botmaster’s commands to all bot members, or it could use a P2P network to dis-
seminate the IP addresses of C&C servers to bot members (like what Storm botnet
[53] does, which utilizes an existing P2P protocol to form a hierarchical multi-tier
command and control architecture). Due to the fundamental distributive nature of
P2P networks, P2P botnets are robust against removal of bots and C&C servers,
and have shown great advantages over traditional centralized botnets. As the next
generation of botnets, they are more robust and difficult for security community to
defend against.

Researchers have started to pay attention to P2P botnet threat in recent years.
Trojan.Peacomm botnet, Stormnet andWaledac botnet have been dissected in details
in literature [18, 19, 27, 41, 43, 54].Andriesse et al. [5] reverse engineeredP2Pbotnet
Zeus. However, in order to effectively fight against this new form of botnets, it is
not enough to simply enumerate and analyze every individual P2P botnet we have
encountered in the wild. Instead, we need to study P2P botnets in a more systematic
way. Therefore in this book chapter we try to explore the nature of various kinds
of P2P botnets, analyzing their similarities and differences, and discussing their
weaknesses and possible defenses.
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8.1.2 Botnet Countermeasures

From our understanding, botnet countermeasures can be classified into three cate-
gories: detection, monitoring, and mitigation.

Detection refers to detecting and identifying a botnet in a network. It includes
identifying botmembers byvariousways, such as signature-basedmalware detection,
networkflowmonitoring, honeypot infiltration, etc.; it also includes discoveringC&C
channels, such as locating the Internet Relay Chat (IRC) servers of an IRC-based
botnet.

Monitoring refers to infiltrating a discovered botnet and monitoring its activities.
It can help people better understand a botmaster’s motivation, a botnet’s behavior and
design, etc. There are two types of monitoring: active—actively contact bot members
to explore their behaviors, and passive—set up traps and wait for bots to contact,
such as dark address space monitoring.

Mitigation refers to eliminating a discovered botnet, by either curing all/most bots
in a botnet or disabling its botmaster’s capability in command and control. Upon
botnet detection and monitoring, mitigation is the ultimate goal for botnet defense.
Because most botnets are large and contain bots located in areas that are beyond our
control, in most cases curing all/most bots in a detected botnet is not feasible. There-
fore, botnet mitigation usually means isolating bots by disrupting a botnet’s C&C
channels. This idea can be easily applied to centralized botnets, because in a cen-
tralized botnet, the C&C traffic will go through one or a few clearly-defined central
servers. As long as we are able to identify the centralized servers of a botnet and stop
botnet-related network activities to/from these servers, we can stop the communica-
tion between a botmaster and his/her bots, resulting in disabling the botnet. On the
other hand, as a P2P botnet utilizes a P2P network to pass important messages across
the entire botnet, it is generally much harder to disrupt the information distribution.

There are many research works focusing on botnet detection and monitoring (dis-
cussed in Sect. 8.4), but few research works studying botnet mitigation. For P2P bot-
nets, researchers have presented twomitigation techniques—indexpoisoningdefense
and Sybil defense [24, 27]. The original ideas behind these two techniques were first
introduced to “sabotage”1 legitimate P2P networks, and now defenders leverage the
same ideas to fight against P2P botnets. Empirical studies on index poisoning defense
and Sybil defense have been presented in [24, 27], which have shown that they can
successfully disrupt the communication of P2P botnets.

In our preliminary study [65], we presented the systematic study of P2P botnets,
and provided the mathematical analysis of index poisoning and Sybil defense, but
without much discussion and with no simulation evaluation. In this chapter, we
study index poisoning defense and Sybil defense techniques further by providing
new simulation study and detailed discussions. In addition, we present our new

1 Index poisoning was introduced by media companies to prevent illegal distribution of copyrighted
content in P2P networks [36], while Sybil attack was to subvert a reputation system in P2P
networks [17].
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investigation on passive monitoring technique, providing both the analytical study
of the capability of a monitoring node in a P2P botnet, and the simulation evaluation.
To the best of our knowledge, we are the first to provide mathematical analysis on the
performance of index poisoning defense, Sybil defense and passive monitoring, not
only for P2P botnets, but also for their corresponding attacks targeting general P2P
systems. We also confirm the accuracy of our analysis with simulation experiments.
We hope to shed light on P2P botnets, and help researchers and security professionals
be well prepared and develop effective defenses against them.

8.1.3 Contributions

The major contributions of this chapter are summarized as follows.

• We systematically study P2P botnets alongmultiple dimensions: infection vectors,
bot candidate selection, bootstrap procedure, network structure, C&Cmechanisms
and communication protocols.

• Wemathematically analyze the performance of two popular P2P botnet mitigation
techniques: index poisoning defense and Sybil defense.

• We also carefully study passive monitoring of P2P botnets: based on the mathe-
matical analysis of the capability of a monitoring node in a P2P botnet, we are
able to provide a lower bound for the number of bots that an infiltrated node can
monitor.

• We develop a Kademlia-based P2P botnet simulator. All the analytical results
presented in this chapter have been shown to be accurate by simulation-based
experiments using this simulator.

• From attackers’ perspective, we propose a novel and realistic technique that might
be deployed by them to counterattack the index poisoning defense. This method
guarantees that command related indices published in a P2P botnet can be gener-
ated by and only by botmasters, not by ordinary bots.

• We obtain one counter-intuitive finding: if the index poisoning defense is valid
(when a botnet adopts existing P2P protocols and relies on indices to dissemi-
nate commands), P2P botnets are equally easy (or hard) to defend compared to
traditional centralized botnets.

• The mathematical analysis presented in this chapter is also suitable for modeling
index poisoning attack and Sybil attack in legitimate P2P networks, and hence,
contribute to the security research for legitimate P2P systems as well.

8.1.4 Chapter Organization

The remainder of the chapter is organized as follows. In Sect. 8.2, we study the life
cycle of P2P botnets, which is composed of three stages. Upon our understand-
ing of P2P botnets, a number of countermeasures are presented in Sect. 8.3, and
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special attentions are given to two mitigation techniques—index poisoning defense
(Sect. 8.3.2) and Sybil defense (Sect. 8.3.3), and one passive monitoring technique
(Sect. 8.3.4). We review the related work in Sect. 8.4 and conclude in Sect. 8.5.

8.2 A Systematic Study on P2P Botnets

The life cycle of botnets is composed of three stages. Stage one—recruitingmembers,
a botmaster needs to compromise many computers in the Internet, so that he/she can
control them remotely. Stage two—forming the botnet, bots need to find a way to
connect to each other and form a botnet. Stage three—standing by for instructions,
after the botnet is built up, all bots are ready to receive communication from their
botmaster for further instructions, such as launching an attack or performing an
update. In this section, we will discuss each stage in detail.

8.2.1 Stage One: Recruiting Bot Members

P2P networks are gaining popularity in distributed applications, such as file-sharing,
web caching, network storage [9]. In these content-trading P2P networks, without
a centralized authority it is not easy to guarantee that the contents exchanged are
not malicious. For this reason, these networks become the ideal venue for malicious
software to spread. It is straightforward for attackers to target vulnerable hosts in
existing P2P networks as bot candidates and build their zombie army. Many P2P
malware have been reported, such as Gnuman [1], VBS.Gnutella [1] and SdDrop
[4]. They can be used to compromise a host and make it become a bot.

However, in this way, the scale of a botnet will be limited by the size of an existing
P2P network, and the network will be the only propagation media. On the contrary,
P2P botnets we have witnessed in recent years [19, 27, 57] do not confine themselves
to existing P2P networks. They have shown that it is more flexible and practical if bot
members are recruited from the entire Internet through all possible spread mediums
like emails, instant messages and file exchanging.

8.2.2 Stage Two: Forming the Botnet

Upon infection, the next important thing is to let newly compromised computers
join the botnet network and connect to other bots. Otherwise, they are just isolated
individual computers without much use for botmasters.

Now for the convenience of further discussion, we first introduce three terms:
“parasite”, “leeching” and “bot-only” P2P botnets. Each of them represents a class
of P2P botnets. In a parasite P2P botnet, all bots are selected from vulnerable hosts
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within an existing P2P network. The botnet uses this available P2P network for
command and control. A leeching P2P botnet refers to one whose members join an
existing P2P network and depend on this P2P network for C&C communication, but
the bots could be vulnerable hosts that were either inside or outside of the existing
P2P network. For example, the early version of Storm botnet [27] belongs to this
class of botnet. A bot-only P2P botnet builds its own P2P network, in which all the
members are bots, such as Stormnet [27] and Nugache [57].

If all bots are selected from an existing P2P network, it is not necessary to perform
any further action to form the botnet, because bots can find and communicate with
each other by simply using current P2P protocol. In other words, for a parasite P2P
botnet, up to this point, the botnet construction is done and the botnet is ready to be
operated by its botmaster.

However, if a random host on the Internet is compromised, it has to know how to
find and join the botnet, which is the case for leeching botnets and bot-only botnets.
As we know current P2P file-sharing networks provide the following two general
ways for new peers to join a network:

1. An initial peer list is hard-coded in each P2P client. When a new peer is up, it will
try to contact peers in that initial list to update its neighboring peer information.

2. There is a shared web cache, such as Gnutella web cache [15], stored at some
place on the Internet, and the location of the cache is put in the client code. Thus
a new peer can refresh its neighboring peer list by going to the web cache and
fetching the latest updates.

This initial procedure of finding and joining a P2P network is usually called
“bootstrap” procedure. It can be directly adopted for P2P botnet construction. Either
a predetermined list of peers or the locations of predetermined web caches need to be
hard-coded in the bot code. Then a newly infected host knows which peer to contact
or at least where to find candidates of neighboring peers it will contact later.

For instance, Trojan.Peacomm [19] is a piece of malware to create a P2P botnet
which uses the Overnet P2P protocol for controlling the bots. A list of Overnet nodes
that are likely to be online is hard-coded into the bot’s installation binary. When
a victim is compromised and runs a Trojan.Peacomm, it will try to contact peers
in this predefined list to bootstrap onto the Overnet network. Another P2P botnet,
Stormnet [27], uses a similar bootstrapmechanism: the information about other peers
with which a new bot member communicates after the installation phase, is encoded
in a configuration file that is also stored on the victim machine by Storm worm
binary.

8.2.3 Stage Three: Standing by for Instructions

Once a botnet is built up, all bots in the botnet are standing by for instructions from
their botmaster to perform illicit activities or updates. Therefore C&C mechanism
is very important and is the major part of a botnet design. It directly determines the
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communication topology of a botnet, and hence affects the robustness of a botnet
against network/computer failures, or security monitoring and mitigation.

The C&C mechanisms can be categorized as either pull or push mechanism. Pull
mechanism, i.e., “command publishing/subscribing”, refers to the manner that bots
retrieve commands actively from a place where botmasters publish commands. On
the contrary, push mechanism, i.e., “command forwarding”, means bots passively
wait for commands to reach them and then forward received commands to others.

For centralized botnets, pull mechanism is commonly used. Take HTTP-based
botnets as an example, a botmaster publishes commands on a web page, and bots
periodically visit this web page via HTTP to check for any command updates. In the
following, we will discuss how pull and push C&C mechanisms can be applied in
P2P botnets.

8.2.3.1 Leveraging Existing P2P Protocols

As we discussed above, both parasite and leeching P2P botnets depend on existing
P2P networks. Thus it is natural to leverage the existing P2P protocols used by the
host P2P networks for C&C communication. Besides, these protocols have been
tested in P2P file-sharing applications for a long time, so they tend to be less error-
prone than newly designed ones, and have nice properties to improve performance of
P2P systems and mitigate network problems, such as link failure or churn (“churn”
refers to network dynamics caused by nodes’ joining and leaving activities). The
following discussion is based on parasite and leeching P2P botnets, but bot-only
botnet can adopt these protocols as well.

In P2P file-sharing systems, file index, which is used by peers to locate the desired
content, may be centralized (e.g., Napster), distributed over a fraction of the file-
sharing nodes (e.g., Gnutella), or distributed over all or a large fraction of the nodes
(e.g., Overnet). A peer can send out query message for the file it is searching for, and
the message will be passed around according to the routing algorithm implemented
in the system. The search will terminate when query hits are returned or the query
message expires.

Botmasters can easily adopt the above procedure to disseminate commands in
pull-style. They can insert records associated with some predefined file titles or
hash values into the index, but rather than putting the content location information,
botnet commands are attached. In order to get commands issued by botmasters,
bots periodically initiate queries for those files or hashes, and nodes who preserve
the corresponding records will return query hits with commands encoded. In other
words, bots subscribe the content (i.e., commands) published by their botmaster.

The early version of Stormbotnet [27] is a good example to showhowaP2P botnet
could leverage an existing P2P network or implement an existing P2P protocol for
the pull-style command and control, although it uses the Overnet P2P network to
pass the locations of its C&C servers instead of botmaster’s commands. In Storm
botnet, every day there are 32 keys queried by bots to retrieve important information.
These 32 keys are calculated by a built-in algorithm, which takes the current date
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and a random number from [0–31] as input. Therefore, when issuing a command,
the botmaster needs to publish it under 32 different keys. Trojan.Peacomm botnet
[19] employs the similar design.

Compared to pull mechanism, implementation of push mechanism on existing
P2P protocols is more complicated. There are two major design issues:

• Which peers should a bot forward a command to?
• How to forward commands: using in-band (normal P2P traffic) or out-of-band
messages (non-P2P traffic)?

To address the first issue, the simplest way is to let a bot use its current known
neighboring peers as targets. But the problem of this approach is that command
distribution may be slow or sometimes disrupted, because (1) some bots have a
small number of neighbors, or (2) some peers in a bot’s neighbor list are not bot
members in the case of parasite or leeching P2P botnets. One solution to this problem
is that letting bots claim they have predefined popular files available, and forwarding
commands to peers appearing in the search results for those files. Thus the chance of
commands hitting an actual bot is increased. These predefined popular files behave
as the watchwords for the botnet, but could give defenders a clue to identify bots.

For the second issue, whether using in-band or out-of-band message to forward a
command depends on what the peers in the target list are. If a bot targets its neigh-
boring peers, in-band message is a good choice. A bot could encode a command in
a query message, which can only be interpreted by bots, send it to all its neighbors,
and rely on them to continue passing on the command in the botnet. This scheme is
easy to implement and hard for defenders to detect, because there is no difference
between command forwarding traffic and normal P2P traffic. On the other hand, if
the target list is generated in other ways, like using peers in returned search results
discussed above, bots have to contact those peers using out-of-band message. Obvi-
ously out-of-band traffic are easier to detect, and hence, can disclose the identities
of bots who initiate such traffic.

The discussion above mainly focused on unstructured P2P networks, where query
messages are flooded to the network. In structured P2P networks (e.g., Overnet), a
query message is routed to the nodes whose node IDs are closer to the queried key,
whichmeans queries for the same key are always forwarded by the same set of nodes.
Therefore, to let more bots receive a command, the command should be associated
with different keys, such that it can be sent to different parts of the network.

8.2.3.2 Design a New P2P Communication Protocol

It is convenient to adopt existing P2P protocols for P2P botnet C&C communication,
however, the inherited drawbacks of existing P2P protocols may limit botnet design
and performance. A botnet can be more flexible if it uses a new protocol designed
by its botmaster.

The advanced hybrid P2P botnet [63] and the super botnet [61] are two newly
designed P2P botnets, whoseC&Ccommunication are not dependent on existing P2P
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protocols. Both of them implement push and pull C&Cmechanisms. In a hybrid P2P
botnet, when a bot receives a command, it forwards the command to all the peers in its
peer list (push), and those who cannot accept connections from others periodically
contact other bots in their peer lists and try to retrieve new commands (pull). A
super botnet is composed of a number of small centralized botnets. Commands are
pushed from one small botnet to another, and within a small centralized botnet, bots
pull the commands from their C&C servers. Furthermore, the hybrid P2P botnet is
able to effectively avoid bootstrap procedure (required by most of the existing P2P
protocols) by (1) passing a peer list from one bot to a host that is infected by this bot,
and (2) exchanging peer lists when two bots communicate.

The drawback of designing a new protocol for P2P botnet communication is that
the new protocol has never been tested before. When a botnet using this protocol is
deployed, the network may not be as stable and robust as expected due to complex
network conditions and defenses.

8.2.4 Discussion

Several features can be extracted to represent a P2P botnet during its life cycle:
infection vectors, bot candidates, bootstrap procedure,members in the network, com-
munication protocols and C&C styles. Parasite, leeching and bot-only P2P botnets
share common features but differ in others, which is summarized in Table8.1. It
is shown that parasite P2P botnets are less flexible but require no bootstrap proce-
dure. This is an advantage of the parasite botnets over the other two classes. Botnets
are most vulnerable during bootstrap stage and the propagation could be stopped
if bootstrap information is compromised by defenders. Leeching and bot-only P2P
botnets are similar, but the former ones are more stealthy. This is because leeching
botnets resides in existing P2P networks, resulting in bot members being mixed with
legitimate nodes and hard to be detected.

Table 8.1 Comparison among three types of P2P botnets

Features Parasite Leeching Bot-only

Infection vectors P2P malware Any kind of malware Any kind of malware

Bot candidates Vulnerable hosts Vulnerable hosts Vulnerable hosts

P2P networks in the internet in the internet

Bootstrap procedure None Required Optional

Members in the
network

Legitimate peers
and bots

Legitimate peers
and bots

Only bots

Communication
protocols

Existing P2P protocols Existing P2P protocols Self-designed or
existing

P2P protocols

C&C styles Pull or push Pull or push Pull or push
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8.3 Countermeasures

As discussed in Sect. 8.1.2, we believe P2P botnet defense study should be composed
with three areas of research: detection, monitoring, and mitigation. Botnet detection
has been widely studied by other researchers such as in [10, 28], and hence, we
will not discuss it in this book chapter. Instead, we will exploit and analyze possible
solutions for P2P botnet monitoring and mitigation.

In research on P2P file-sharing networks, people have long noticed that most P2P
protocols are susceptible to index poisoning attack [36] and Sybil attack [17]. Since
existing P2P botnets, such as Trojan.Peacomm and Stormnet, directly utilize exist-
ing P2P protocols, security defenders could rely on the same principle to conduct
index poisoning defense and Sybil defense. In [16, 19, 27], researchers have pointed
out that index poisoning defense and Sybil defense can be used to fight against P2P
botnets. However, none of them have presented detailed analysis of the performance
of these two mitigation approaches, nor have they discussed in detail how attackers
might evade these defenses. In this section, we explain how and why these two mit-
igation approaches work, how attackers can evade them, and give analytical studies
to evaluate their performance. Meanwhile, for P2P botnet monitoring, we study and
analyze the effectiveness of using a captured bot or an infiltrated honeypot to monitor
the members of a P2P botnet.

Before we introduce our analysis of mitigation and monitoring approaches, we
will first provide basic background introduction on theKademlia P2P protocol, which
is the protocol used by the famous Trojan.Peacomm and Stormnet P2P botnets con-
sidered in our study.

Notations used in this section are summarized and explained in Table8.2.

Table 8.2 Parameters used in analysis

Symbol Meaning

Kademlia m The number of bits used to represent a node ID or a key

k The maximum number of nodes in a bucket in a routing table

�b The number of bits improved per step for a lookup

c The number of bits two binary numbers (node ID or key)

share in common in their prefixes

Botnet N The number of nodes in a P2P network

Nbot The number of bots in a P2P network

Ntz The number of bots in the target zone

Nindex The number of nodes poisoned in the target zone

NSybil The number of Sybil nodes added to the target zone

Nquery The number of bots sending out queries for commands

lt z The length of a search path in the target zone

Psuccess The probability of a bot getting a real command
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8.3.1 Background on Kademlia P2P Protocol

Kademlia is a distributed hash table (DHT) protocol designed for P2P networks
[39]. Since it is the protocol implemented in Overnet, a P2P network used by
Trojan.Peacomm and Stormnet, this kind of network is our focus in the follow-
ing sections. Because of page limit, we cannot provide detailed introduction. For
more information about Kademlia and Kad, please refer to [39, 51, 58].

In a Kademlia-based network, each node has a unique node ID, which is repre-
sented by an m-bit binary number. Every node has a routing table containing m lists;
each list corresponds to one specific bit of the node ID. Such a list is usually referred
as a k-bucket, where k is the maximum number of nodes in each list.

Nodes stored in node A’s i th k-bucket (i = 0, 1, ..., m − 1) are the nodes whose
node ID must have the first i bits in common with node A’s ID, but have a different
(i +1)-th bit from node A’s ID. Figure8.1 is an example of a routing table on a node
whose ID starts with 1011.

In the distributed hash table preserved in Kademlia-based network, each entry is a
〈key, value〉 pair, in which the key is also an m-bit binary number, and the value part
stores the corresponding file or node information. Each 〈key, value〉 pair is stored on
nodes whose node IDs are the closest ones to the key in the network, and the distance
is computed as the exclusive or (XOR) of the key and the node ID. The distance
between two nodes is computed in the same way.

Fig. 8.1 Routing table of a node whose ID has m bits and starts with 1011 (For illustration purpose,
we only use 4-bit prefix to represent each node). The table contains m lists; each list holds at most
k nodes and is called “k-bucket”. In the 0th k-bucket, the first bit of each node’s ID differs from
1011; in the 1st k-bucket, each node’s ID has the same first bit as 1011, but different second bit. In
the 2nd k-bucket, nodes share the first two bits with 1011, but have a different third bit. The rest of
the k-buckets follow the same manner
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Kademlia uses iterative routing mechanism. When node A searches for a key, it
first finds α nodes that are the closest ones to the key in its routing table, and then
initiates lookup queries to these α nodes. Each one of these nodes will send back a
response with either the corresponding value part if the 〈key, value〉 pair is stored on
it, or a certain number of nodes that are the closest ones to the key in its own routing
tables if it does not have the pair node A is looking for. A lookup query stops when
there is a query hit or when it expires.

Besides Kademlia, Kad is another popular DHT protocol for P2P networks [2].
It has been deployed by eMule [3] file-sharing application. However, Kad is based
on Kademlia with a slightly different routing table structure and parameter settings,
such as the number of bits of a node ID (it is 160 in Kademlia, but 128 in Kad). These
differences do not affect our study on Kademlia-based P2P network in the following,
so our analysis applies to bothKademlia andKad networks. In the later discussion,we
do not differentiate Kademlia from Kad, unless it is explicitly mentioned otherwise.

8.3.2 Index Poisoning Defense

8.3.2.1 Defense Idea

Originally, media companies introduced index poisoning attack to prevent illegal dis-
tribution of copyrighted content in P2P networks. The main idea is to insert massive
number of bogus records into the index system. If a peer receives a bogus record, it
could end up not being able to locate the file (nonexistent location), or downloading
the wrong file [36].

As we discussed in Sect. 8.2.3, P2P botnets that implement C&C mechanism of
command publishing/subscribing make use of the indices in P2P networks to dis-
tribute commands. We refer such botnets as “index-based” P2P botnets. If defenders
are able to figure out the index keys of the botnet command related index records,
they can try to “poison” the index system by announcing false information under the
same keys. If the false information overwhelms the real command content, bots that
query and retrieve commands will likely end up obtaining false commands. In this
way, the C&C channels of the botnet are disrupted.

We believe there are three reasons that index-based P2P botnets are vulnerable to
index poisoning defense.

First, a security defect of P2P protocol itself is the root cause. In most P2P net-
works, there is no central authority to manage the file index system, such that any
node, no matter benign or malicious, is able to insert records into the index system.
There is no way to authenticate the publishing node and content of the records.

Second, with the help of honeypot and reverse engineering techniques, defenders
are able to analyze bot behaviors and bot code, and figure out the bot command
related index keys.

Third, in some sense, the C&C architecture of this type of P2P botnets is similar to
that of the traditional centralized botnets because of the limited number of index keys
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Fig. 8.2 Similarity of logical C&C structures between traditional centralized botnets and index-
based P2P botnets. a Centralized botnet. b Index-based P2P bonet

for command distribution. As shown in Fig. 8.2, in centralized botnets, commands
are published at central sites, where bots are going to fetch the commands; on the
other hand, in index-based P2P botnets, commands cmd are inserted in the index
system by botmasters under special index keys, such as k2, k3 and ki , which are
known by bots and queried for retrieving commands.

From the aspect of C&C architecture, index-based P2P botnets logically rely
on central points (predefined index keys), while traditional botnets physically rely
on central points (predefined C&C servers) for communication. From the aspect
of defense, for a traditional C&C botnet, defenders shut down C&C channels by
physically removing the C&C servers or blocking access to the servers; while for
a P2P botnet, defenders overwhelm real command related records by many bogus
records under the same keys (the basic idea of index poisoning technique) to disrupt
C&C communication. Therefore, we can draw a conclusion that P2P botnets are not
absolutely harder to defend than traditional centralized botnets. If index poisoning
defense is valid for a P2P botnet, the P2P botnet is equally easy (or hard) to defend
compared with a traditional centralized botnet.

8.3.2.2 Attackers’ Possible Counterattack

Although index poisoning defense is effective, it is still possible for attackers to evade
it, if they can eliminate the causes discussed in Sect. 8.3.2.1.

Overbot [50], a new botnet protocol designed by Starnberger et al., addressed the
second and the third issues. In Overbot, each bot generates its own index key for
retrieving command and that key dynamically changes at a certain rate. In addition
the communication between bots and sensors (nodes used by a botmaster to publish
commands) is encrypted. Thus, it is very difficult for defenders to crack or predict the
index key. Even though defenders are able to do it for one single bot, it is not help-
ful, because different bots have different index keys. However, for the same reason,
sensors have to publish a 〈key, command〉 pair for each bot they know periodically,
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which dramatically increases the sensors’ workloads and makes them more suscep-
tible to be detected. In other words, the advantages of Overbot come with the cost of
introducing scalability and detectability issues.

Now we present a novel and realistic method that attackers might use to deal with
index poisoning defense—an authentication enforcement for command generation
and index manipulation. It addresses the first cause of index-based P2P botnets being
vulnerable to index poisoning (Sect. 8.3.2.1). In this approach, only botmasters can
insert records to the command index preserved on bots. Bots can only query to fetch
commands.

To realize the authentication, a botmaster generates a pair of public/private keys
〈K +, K −〉, and hard-codes the public key K + into the bot code. Later, when the
botmaster wants to issue a command m under key k, he/she can insert a record
〈k, m, K −(H(m))〉 instead of 〈k, m〉 into the index on a bot, saying bot A, where
H(m) is the hash value of m (i.e., the command is signed by the botmaster). Bot A
can decide if the record is created by its botmaster or not by using the public key K +
to verify the signature. If the signature is authentic, bot A stores this record in the
index and waits for others to query, otherwise it discards the fake one. In this way,
the index on a bot will not be polluted.

In addition, this authentication mechanism can prevent the spread of false com-
mands. Even if defenders manage to store entries with forged commands in the index
on controlled peers (e.g., honeypots infected by a captured bot binary), bots can ver-
ify the authenticity of received commands using the public key and disregard the
false ones.

Most existing P2P protocols have not implemented this kind of authentication
mechanism. Thus in order to deploy it, attackers need to modify the existing P2P
protocols, which implies that this counterattack technique can only be applied to bot-
only P2P botnets because the botnets cannot join existing P2P file-sharing networks
anymore.

8.3.2.3 Analytical Study

In this section, we give an analytical study on performance of index poisoning
defense against index-based P2P botnets. Our target is a P2P botnet that imple-
ments Kademlia-based DHT protocol for C&C communication. Similar study can
be conducted on P2P botnets utilizing other protocols.

As introduced in Sect. 8.3.1, in aKademlia-basedDHT, each entry is a 〈key, value〉
pair, and each pair is stored on at least one node whose node ID is closest to the key
in the network. If defenders want to pollute a P2P botnet’s index records under key
K , they need to contact nodes (poisoned nodes) whose IDs are close to K , and store
pairs like 〈K , false value〉 on them. In this way, when a bot queries for key K to
retrieve commands, those poisoned nodes will have a good chance to appear on the
search path and return false query value, and hence, prevent bots from reaching nodes
who possess the real commands. As illustrated in Fig. 8.3, a bot node A initiates a
lookup for index key K , the search path is supposed to go through node B1, B2, B3,
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Fig. 8.3 A search path for a
key, where node A is the
initiator and node D is the
destination. On this path
node B4 could be a node
targeted by defenders to
interrupt the search

B4 and B5, until it reaches node D who has the pair 〈K , command〉. If a pair 〈K ,
false command〉 has been added in the index on node B4, when the lookup message
reaches node B4, the node would return the false command and terminate the search.

We assume that node IDs are uniformly distributed over the entire Kademlia ID
space, which is supported by the study in [51]. Suppose defenders choose Nindex

nodes whose IDs have at least the first c bits in common with K to inject and poison
their index records. We call the zone around K the “target zone” and all poisoned
nodes are in the target zone. Only when a lookup path enters the target zone, it is
possible that a poisoned node will be chosen, return a search result and terminate
the search. Let x be the probability of choosing a poisoned node in one lookup step,
then 1 − x is the probability of not choosing one. Therefore the probability of a bot
obtaining the real command is

Psuccess = (1 − x)lt z (8.1)

where lt z is the length of a search path within the target zone.
When a peer initiates a lookup for a key, in general, the expected number of steps

required to perform a lookup is given as follows [58]:

l = log2 N

�b
(8.2)

where N is the size of the network. We assume all nodes in the P2P network are bots,
so Nbot = N in this case.�b is the number of bits improved per step, which depends
on the structure of the routing table. Thus within the target zone, lt z = log2Ntz/�b.
Since node IDs are uniformly distributed, the number of nodes in the target zone is
Ntz = N/2c, and x = Nindex/Ntz . The complete formula to calculate Psuccess is

Psuccess = (1 − 2c × Nindex

N
)(log2 N−c)/�b (8.3)

According to Eq. (8.3), the performance of index poisoning technique depends on
four parameters.We have provided numerical results in Fig. 8.4 to show their impacts
on Psuccess by changing the parameters.

Figure8.4a illustrates that a botnet would be more robust to index poisoning
defense, if for each lookup more bits can be improved, i.e., the average length of
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search path is shorter.When the search path is short, poisoned nodes have less chance
to be chosen along the path.2

It is shown in Fig. 8.4b that in order to achieve better performance, defenders
could choose a larger c, i.e. choosing nodes that are closer to the command related
key to poison. However it is not always a good idea to choose a large c, because we
want to have at least one step along the lookup path in the target zone, otherwise bots
can directly get commands without going through any node in the target zone. In
other words, lt z ≥ 1, i.e., c ≤ log2 N − �b. In our case, N = 980,000, �b = 3.25,
so c ≤ 16.7, and for the setup c = 9 and c = 10 used in Fig. 8.4b, lt z is 3.35 and
3.05 respectively.

The size of the network would also affect the performance of index poisoning
defense. However, it does not matter that much, since given a fixed percentage of
poisoned nodes in the target zone, it can barely change lt z due to the log2 operator
(log2980,000 = 19.90 and log2(12,000 × 28) = 22.29).3

8.3.2.4 Simulation Evaluation

To evaluate the accuracy of our analysis, we develop a P2P botnet simulator based
on OverSim [8], an open source P2P simulator. The P2P botnet we simulate employs
Kademlia protocol for the C&C communication.

In [58], Stutzbach et al. defined a system D(b, r, k), which uses b-bit symbols
with r -bit resolution and k-buckets, to represent the routing table structure of a
Kademlia-based DHT protocol. According to this definition, the routing table struc-
ture implemented in our simulator can be denoted as D(1, 1, 8) (i.e., b = 1, r = 1,
k = 8), which is consistent with the basic Kademlia design. Correspondingly, the

2 The value of �b was estimated in [58]. 3.25 is the worst case, while 6.98 is the best case.
3 An estimate was given in [58] that the Kad network has around 980,000 concurrent peers. Authors
of [51] claimed that the population of peers in Kad network is between 12,000×28 and 20,000×28.



8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 199

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

# of poisoned nodes

P s
u

cc
es

s
Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

# of poisoned nodes

P su
cc

es
s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

100 200 300 400 500 600
0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of poisoned nodes

P s
u

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

(a) (b) (c)

Fig. 8.5 Comparison between analytical and simulation results of Psuccess for index poisoning
defense. The simulated P2P botnet is Kademlia-based with a D(1, 1, 8) routing table structure,
and c = 3. a Nbot = N = 10,000, m = 16. b Nbot = N = 20,000, m = 16. c Nbot = N =
10,000, m = 160

average bits improved per lookup step in our simulated system is �b = 4.41.4 To
reduce the computation time, we set m to be 16 instead of 160 which is the default
setting in Kademlia protocol. Experiments on comparing the performance of index
poisoning defense with different values of m (Fig. 8.5a, c) show that the value of m
does not matter.

We consider two different sizes of such botnets with N = 10,000, and N =
20,000, respectively. The parameters we change are Nquery, the number of bots who
queries for commands and Nindex, the number of bots whose indices have been
poisoned. The node IDs of these Nindex poisoned nodes share at least the first c = 3
bits with a given command related key. In each simulation run, every bot in the set
of Nquery query bots looks for the command once; and we calculate Psuccess based
on how many of them actually obtain the real command. To derive the average value
of Psuccess, we conducted at least 20 simulation runs for each botnet configuration.

Figure8.5 shows the experiment results comparing to the analytical result obtained
from our analysis. According to Eq. (8.3), Psuccess does not depend on Nquery. There-
fore, only one curve is plotted as the analytical result (the solid blue line in the figure).
As we can see, the analytical result matches with simulation results of Psuccess with
around 10% of errors. Figure8.5c plots the results from another simulation with the
same settings as Fig. 8.5a, except that m = 160. According to our analysis, Eq. (8.3),
Psuccess does not depend on the value of m. Figure8.5c confirms this conclusion.

8.3.3 Sybil Defense

8.3.3.1 Defense Idea

In a normal P2P file-sharing network, “Sybil attack” is referred as the forging of
multiple identities by attackers to subvert the reputation system [17]. The reason of

4 Please refer to the paper [58] for the detailed formulas to compute �b given the routing table
structure D(b, r, k).
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P2P networks being vulnerable to Sybil attack is that peers can join the network
without authentication or validation of their identities. It is an inherent vulnerability
for most P2P networks and protocols [52, 64].

For the same reason, an index-based P2P botnet that implements a traditional P2P
protocol will also be susceptible to Sybil-based defense as well. With the knowledge
of index keys used for command distribution, defenders can add Sybil nodes (such
as honeypots) into the botnet to re-route or monitor the command related traffic.
How to set up Sybil nodes depends on the actual P2P system implementation. In
an unstructured P2P network, in order to capture more botnet traffic, defenders will
set up Sybils to be peers with more important roles, e.g. setting up Sybil nodes as
ultrapeers in Gnutella because only ultrapeers are allowed to forward messages. In
a structured P2P network, such as Kad, the node IDs of Sybil nodes should not be
chosen randomly, but be close to a known command related index key, as discussed
in [16, 27]. In this way, command query traffic for the key will go through Sybil
nodes with a high probability according to the Kad’s routing algorithm. We call such
defense “targeted” Sybil defense.

For defenders, the cost for Sybil defense is usually higher than index poisoning
defense. This is because either a physical or a virtual machine is needed to set up
a Sybil node; in other words, more Sybil nodes require more computer resources,
while publishing different records to poison index system can be done by a single
node.

8.3.3.2 Attackers’ Possible Counterattack

Similarly, approaches used for protecting today’s P2P networks from Sybil attack
may also work for botmasters to prevent defenders from infiltrating their P2P botnets
using Sybil nodes. Here we briefly introduce possible counterattack methods.

In Kademlia-based P2P networks, a node ID can be constructed by hashing the
node’s IP address as what Chord does [55], rather than being randomly generated
by a joining node itself like what Kad does [51]. If the network uses a node’s IP
address to generate the node ID, Sybil nodes will not be able to choose any IDs they
want. When a botmaster applies this scheme in his/her P2P botnet, defenders cannot
target a specific key to set up their Sybil nodes. In this case, Sybil nodes are just
randomly added into the botnet, which is referred as “random” Sybil defense. This
kind of Sybil defense is much less effective than targeted Sybil defense as explained
in the next section.

Furthermore, caching technique [39], which was meant to solve “hot spots” prob-
lem, can also be utilized by a P2P botnet to reduce the effectiveness of Sybil defense.
Because the command related index records will be stored not only on bots that were
chosen at the beginning by their botmaster (e.g., unstructured network) or according
to the protocol (e.g., structured network), but also on bots that may not be easily
identified. Thus even targeted Sybil defense cannot cover all the bots that possess
the command information.
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8.3.3.3 Analytical Study

Now we analyze Sybil defense on the same type of P2P botnets as in Sect. 8.3.2.3,
Kademlia-based P2P botnets. The notations have the same meaning unless explicitly
mentioned otherwise.

If node IDs can be chosen randomly, defenders can create special NSybil Sybil
nodes, whose node IDs share at least the first c bits with an index key K , and add
them into the botnet. Once a Sybil node is on the path of a command lookup, it can
re-route the message or return a false command and terminate the search, and hence,
prevent the query bot from obtaining the real command.

As we can see, Sybil defense shares the same defense principle with index poi-
soning defense. They both try to manipulate the command lookup path, as shown
in Fig. 8.3. Sybil defense achieves this manipulation by adding new special nodes
(controlled by defenders) to the network, i.e., node B4 in Fig. 8.3 is a Sybil node
added by defenders, while index poisoning defense achieves this by poisoning the
nodes (bots probably) already in the network.

Following the same analysis procedure as what we used in Sect. 8.3.2.3, the prob-
ability of a bot successfully getting the real command Psuccess can be calculated using
Eq. (8.1), except that x becomes the probability of choosing a Sybil at each step along
the search path within the target zone, which is NSybil/(NSybil + Ntz). So

Psuccess = (1 − NSybil

NSybil + Ntz
)lt z (8.4)

where lt z = log2(NSybil + Ntz)/�b, and Ntz = Nbot/2c.
Differing from what used in the index poisoning defense analysis, the size of the

network used in Sybil defense analysis is not the number of the bots, but the total
number of bots and Sybil nodes, i.e., N = Nbot + Nsybil, since Sybil nodes added by
defenders are not real bots.

When a verification mechanism for node ID is applied in the botnet (Sect. 8.3.3.2)
such that defenders can only conduct random Sybil defense, the whole network
becomes the target zone, i.e., Ntz = Nbot. Simply substituting Ntz in Eq. (8.4) by
Nbot , we can get the following formula to compute Psuccess in this “random” Sybil
defense.

Psuccess = (1 − NSybil

NSybil + Nbot
)log2(NSybil+Nbot )/�b (8.5)

It is shown in Fig. 8.4c that under the same circumstance targeted Sybil defense
greatly outperforms the random one. This is because in the former case, Sybil nodes
with specially chosen IDs have more chances to appear along a search path than
those in the latter case. With limited resources that defenders may use to launch
Sybil defense, if the Sybil nodes are closer to the key K (i.e., larger c), the defense
performance would be better. Furthermore, Sybil defense is more effective if the
network is smaller.
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8.3.3.4 Simulation Evaluation

We use simulation experiments as well to verify our analysis. The network settings
and parameter configurations are the same as those used in Sect. 8.3.2.4.

We assume NSybil Sybil nodes, whose node IDs share at least the first 3 bits (c =3)
with a given key, are added by defenders during the construction of the botnet. When
the botnet is built up, the whole network has N = Nbot + NSybil nodes, and Nquery

bots will start querying for commands. Again, we use 20 simulation runs to obtain the
average simulation results. The simulation results alongwith the numerical results are
plotted in Fig. 8.6, which shows that our analysis is consistent with the simulations.

8.3.4 P2P Botnet Passive Monitoring

Botnet monitoring is an important component in the overall botnet defense. A good
monitoring could collect valuable information about the botnet under observation,
such as the size of the botnet, the unique features of the botnet network traffic, and
the identities of bots, etc.

Monitoring systems can be classified as either active or passive. Activemonitoring
usually starts with one or a couple of known bots within the network. By actively
contacting these bots, defenders could get to know the identities and information of
more bots, and make contacts with those newly discovered bots in the next round.
The monitoring is done actively and iteratively until no more unknown bots can
be discovered. Passive monitoring is carried out by Sybil nodes put by defenders
in the botnet. Unlike active monitoring, these nodes do not actively contact other
nodes in the network; they only perform the routine tasks like other normal nodes,
such as forwarding traffic and responding to queries. Nodes that have contacted
the monitoring nodes are recorded for further analysis. Passive monitoring has the

100 200 300 400 500 600

0.4

0.5

0.6

0.7

0.8

0.9

1

# of sybil nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

(a) (b)

100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

# of sybil nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

Fig. 8.6 Comparison between analytical and simulation results of Psuccess for Sybil defense. The
simulated P2P botnet is Kademlia-based with a D(1, 1, 8) routing table structure, and c = 3.
a Nbot = 10,000. b Nbot = 20,000



8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 203

advantage of being stealthy, and hence, harder for botmasters to detect and remove
those monitoring nodes from their botnets.

In this section, we provide mathematical analysis of the effectiveness of passive
monitoring. In other words, we would like to figure out how many bots in a P2P
botnet a passive monitoring node can monitor after a certain time period. In this
section we address this problem in a Kademlia-based P2P botnet as well.

8.3.4.1 Analytical Study

Suppose defenders have set up one passive monitoring node in a P2P botnet. We
want to estimate the number of bots that have this monitoring node in their routing
tables, denoted as Nrouting. According to Kademlia protocol, a node would contact
nodes in its routing table from time to time because of query or routing table refresh
activities. Therefore, Nrouting is the lower bound for the number of bots that can be
observed by a passive monitoring node.

In a Kademlia-based P2P botnet with N nodes, we denote each node as Bi , where
i = 1, 2, ..., N , and the time of node Bi joining the network is denoted as ti , where
we assume ti < t j , if i < j , and ti �= t j , if i �= j , i.e., no two nodes join the network
at the same time. Moreover, when node Bi joins the network, the current size of the
network is denoted as Ni . Because of the way we index the nodes, we can easily
know that Ni = i .

To compute the number of nodes who have a specific node Bi in their routing
tables, we need to consider two types of nodes: the nodes joining the network before
Bi , referred as Nodesbefore, and the nodes joining the network after Bi , referred as
Nodesafter.

When node Bi joins the network, there are already Ni−1 = i − 1 nodes in the
network. We can classify these Ni−1 nodes into m groups. The c-th group (c =
0, 1, 2, · · · , m − 1) contains the nodes whose IDs share the first c bits with node
Bi ’s ID but differ at the (c + 1)-th bit. Because node IDs are uniformly distributed,
the number of nodes in the c-th group is Nshare(c) = Ni−1/2c+1. If a node in
the c-th group whose c-th bucket is not full (i.e., Nshare(c) ≤ k), it will add node
Bi in this bucket, otherwise it will not contain node Bi in its routing table. As c
increases, the size of c-th group monotonously decreases. When 0 ≤ c < c0 where
c0 = �logNi−1/k −1� (c0 is obtained by letting Nshare(c) = k), Nshare(c) > k, and
hence, we do not need to consider nodes in these groups. Therefore the number of
Nodesbefore who would add node Bi into their routing tables can be calculated as
follows:

Nbefore(i) =
m−1∑

c=c0

Ni−1

2c+1 , (8.6)

where c0 = �logNi−1/k −1�, which is obtained by letting Nshare = k.
After node Bi has joined the network, for the nodes joining in later on, they may

add node Bi into their routing tables as well. Let’s consider a node B j , i < j , the
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probability of these two nodes’ IDs sharing the first c bits but differing at the (c+1)-th
bit is

Pshare(c) = 2m−(c+1) − N j

2c+1

2m − N j
= 1

2c+1 , c = 0, 1, ..., m − 1. (8.7)

Suppose node Bi and node B j share the first c bits but differ at the (c + 1)-th bit
in their IDs, there are Nshare(c) = N j−1/2c+1 candidates for node B j to pick and
add to its c-th k-bucket, and node Bi is in this candidate set. We can consider two
possible scenarios. When Nshare(c) > k, node B j randomly picks k nodes from the
candidate set to put in its routing table; when Nshare(c) ≤ k, all the nodes in the
candidate set will be chosen. Therefore, the probability of node B j adding node Bi

into its routing table is

Padd(c) =

⎧
⎪⎪⎨

⎪⎪⎩

k
N j−1
2c+1

,
N j−1

2c+1 > k

1,
N j−1

2c+1 ≤ k

(8.8)

Let c1 = �logN j−1/k −1�, i.e., N j−1/2c1+1 = k, we can rewrite Eq. (8.8) and get
Eq. (8.9).

Padd(c) =

⎧
⎪⎨

⎪⎩

k
N j−1
2c+1

, c < c1

1, c ≥ c1

(8.9)

Therefore, the number of Nodesafter that would have node Bi in its routing table
can be calculated as follows:

Nafter(i) =
m−1∑

c=0

Pshare(c) × Padd(c) (8.10)

For a specific node Bi , the total number of nodes having it in their routing tables is

Nrouting(i) = Nbefore(i) + Nafter(i) (8.11)

and the average number of nodes that have amonitoring node in their routing tables is

N routing = 1

N

N∑

i=1

Nrouting(i) (8.12)

8.3.4.2 Simulation Evaluation

Still we simulate the same Kademlia-based P2P botnet as the one in Sects. 8.3.2.4
and 8.3.3.4. We carry out two types of experiments: P2P botnets without churn and



8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 205

botnets with churn, where churn refers to the network dynamics caused by nodes’
joining and leaving activities.

For P2Pbotnetswithout churn,we consider once a botnet is constructed, the botnet
is stable, i.e., no nodeswill leave the network and nomore nodeswill join the network
as well. N routing, the average number of nodes which have a given monitoring node
in their routing tables for different scales of networks is shown in Fig. 8.7a. We can
see that our analysis precisely estimates N routing.

However, in the real world, the churn does exist in P2P botnets. To make our
experiment more realistic, we introduce the churn events in our simulations. In our
simulated P2P network, node joining and node leaving events will happen, and we
assume the time interval between two churn events tchurn follows a truncated normal
distribution (i.e., tchurn ∼ N (μ, σ 2) and tchurn > 0). In order not to favor any one
of the node’s joining and node’s leaving, when a churn event happens, we set the
probability of it being a node’s joining Pin and of it being a node’s leaving Pout to
be the same, i.e., they are both 50%.

Figure8.7b shows our simulation results when considering churn. In our experi-
ments, all simulations run for the same amount of time (30,000 unit time) and tchurn

follows the same distribution (μ = 15 and σ = μ/3). As a result, in each simulation,
there are around 2,000 node joining/leaving events. If the size of the network is small,
only a small fraction of original bot nodes (e.g., the first N nodes) still exist in the
network when the simulation ends. But in a relatively large network, a large fraction
of original nodes still exist in the network. For example, when N = 200, there are
around 4–5% of the first 200 nodes still in the network at the end of the simulation;
while when N=30,000, 96% of the original 30,000 nodes remain in the network.
From another perspective, we can view this phenomenon as the illustration of mon-
itoring performance under different churn intensities. Since in our experiments, we
cover the sizes of network ranging from 200 to 30,000, we have considered the mon-
itoring performance under different churn intensities. As what is shown in Fig. 8.7b,
our analysis can still well evaluate Nrouting even with churn.
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Fig. 8.7 Comparison between analytical and simulation results of N routing. The simulated P2P
botnet is Kademlia-based with a D(1, 1, 8) routing table structure. a Without churn. b With churn
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8.3.5 Others Countermeasures

In the following, we present several general ideas to defend against P2P botnets.

8.3.5.1 Detection

Being able to detect bot infection can stop a new-born botnet in its infant stage.
Signature-based malware detection is effective and still widely used. But anti-
signature techniques, such as polymorphic technique [31], make it possible for mal-
ware to evade such detection systems. Therefore, instead of doing static analysis,
defenders start considering dynamic information for detection. For example, the
system proposed by Gu et al. [21] is based on dynamic pattern matching.

Anomaly detection is another direction, since bots usually exhibit different behav-
iors from legitimate P2P users, such as sending queries periodically, always querying
for the same content, or repeatedly querying but never downloading.

In addition, distributed detection is another approach, such as the self-defense
infrastructure presented in [69], and two approaches against ultra-fast topological
worms in [67].

8.3.5.2 Monitoring

Monitoring botnets help people better understand their motivations, working pat-
terns, evolution of designs, etc. There are two effective ways to conduct P2P botnet
monitoring.

For parasite and leeching P2P botnets, we can choose legitimate nodes in the
host P2P networks as sensors for botnet monitoring. Usually sensors are peers that
play important roles in the network communication, such as ultrapeers in Gnutella
networks, such that more information can be collected. In DHT-based P2P networks,
the search path of a specific key is relatively fixed, even if the search starts at dif-
ferent nodes. So the sensor selection depends on the monitoring targets and routing
algorithm implemented in the system.

Honeypot techniques [49] are widely used for botnet monitoring. The way to set
up honeypots in a P2P botnet is similar to choosing sensors. The difference is that
honeypots are hosts added to the network on purpose by defenders, while sensors
are chosen from the nodes who are already in the network.

8.3.5.3 Mitigation

The ultimate purpose of studying botnets is to shut them down. We can either
(1) remove discovered bots, or (2) shut down C&C channels of botnets.

A botnet that relies on bootstrapping for construction is vulnerable during its early
stage. Isolating or shutting down bootstrap servers or the bots in the initial list that



8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 207

are hard-coded in bot code can effectively prevent a new-born botnet from growing
into a real threat.

P2P botnets can also be shut down or partially disabled by removing bot members.
There are two modes of bot removal: random and targeted. The former means disin-
fecting the host whenever it is identified as a bot. The latter means removing critical
bots, such as the ones that are important for C&C communication, when we have
the knowledge of the topology or C&C architecture of a P2P botnet. Two metrics to
evaluate the effectiveness of targeted removal were proposed in [63].

Shutting down detected bots is slow in disabling a botnet and sometimes impossi-
ble to do (e.g., you have no control of infected machines abroad). So a more effective
and feasible way is to interrupt botnet C&C communication such that bots cannot
receive orders from their botmaster. This approach has been carried out well for
centralized botnets through shutting down the central C&C sites, but is believed to
be more difficult to do for P2P botnets.

However, we find that this general understanding of “P2P botnet is much more
robust against defense” is misleading. In fact, index-based P2P botnets are as vul-
nerable as centralized botnets, if the counter defense methods we presented in
Sects. 8.3.2.2 and 8.3.3.2 are not implemented. Index poisoning defense (Sect. 8.3.2)
and Sybil defense (Sect. 8.3.3) can be quite effective to fight against such botnets.

8.3.6 Discussion

It is worthy to point out that the search process we discussed in Sects. 8.3.2.3 and
8.3.3.3 can be performed in two different manners—iterative and recursive. Let us
use the scenario presented in Fig. 8.3 to explain the difference between these two
search modes: the iterative search route would be A → B1 → A → B2 → A →
B3 → A → B4 → A → B5 → A → D, while the recursive search route would be
A → B1 → B2 → B3 → B4 → B5 → D → B5 → B4 → B3 → B2 → B1 →
A. A P2P protocol could use either one of them. For instance, Kademlia employs
the iterative search algorithm, and the Nugache P2P botnet has implemented the
recursive routing. Although the routes are different, our analysis applies to both of
the search algorithms. This is because, in our analysis, what we care about is the
number of distinct nodes that a search message would go through besides node A
and node D within a target zone; this number depends on the length of the path
A → B1 → B2 → B3 → B4 → B5 → D, and in both search cases this length is
the same.

In addition, as we mentioned before, the ideas of index poisoning and Sybil were
first introduced in legitimate P2P networks, and passive monitoring can also be
deployed in current P2P file sharing networks. When P2P botnets use the same P2P
protocols, these techniques can be leveraged to fight against these botnets as well.
Therefore, our analysis of these three techniques is applicable to not only P2P botnets,
but also to legitimate P2P systems.Moreover, in our analysis, wemainly talked about
P2P botnets utilizing Kademlia for command and control; however, index poisoning
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defense and Sybil defense techniques are also valid for P2P botnets that rely on
P2P networks for other communication, such as Storm botnet, which utilizes a P2P
network to help bots join its hierarchical multi-tier command and control network.
Therefore, our analysis is valid for general P2P botnets, no matter whether they use
P2P networks for command dissemination, or for other communications.

8.4 Related Work

P2P botnets, as a new form of botnet, have appeared in the last few years and obtained
people’s attention. In [19]Grizzard et al., conducted a case study onTrojan.Peacomm
botnet. Later on, Holz et al., adapted tracking technique used to mitigate IRC-based
botnets and extended it to analyze Stormworm botnets [27]. Trojan.Peacomm botnet
and Stormnet are two typical P2P botnets. Although bots in these two botnets are
infected by two different malware, Trojan.Peacomm and Storm worm respectively,
both of their C&C mechanisms are based on Kademlia [39]. And a botnet protocol
which is also based on Kademlia was proposed by Starnberger et al. [50]. Moreover,
to be well prepared for the future, there are some other botnets whose architecture is
similar to P2P architecture, such as an advanced hybrid P2P botnet [63], super botnet
[61] and the Loosely Coupled P2P botnet (lcbot) [11]. Wang et al. [62] studied P2P
botnets alongmultiple dimensions including botnet construction, command and con-
trol mechanisms, performance measurements, and mitigation approaches. Rossow et
al. [45] used formal graph model to capture the intrinsic properties and fundamental
vulnerabilities of P2P botnets; however, this work does not provide mathematical
modeling of the mitigation techniques against P2P botnets. Han et al. [25] presented
a matrix model for P2P botnets and provided formulas of five performance metrics
including connection degree, connection degree ratio, connection ratio, exposure
ratio and average hop count. Singh et al. [48] Built a distributed intrusion detection
framework that can be used to detect P2P Botnet by machine learning approach.

There have been some systematic studies on general botnets. Barfor and Yeg-
neswaran [7] studied and compared four widely-used IRC-based botnets from seven
aspects: botnet control mechanisms, host control mechanisms, propagation mecha-
nisms, exploits, delivery mechanisms, obfuscation and deception mechanisms. Con-
sidering aspects such as attacking behavior, C&C model, rally mechanism, commu-
nication protocol, evasion technique and other observable activities, Trend Micro
[40] proposed a taxonomy of botnet threads. In [13] Dagon et al., also presented a
taxonomy for botnets but from a different perspective. Their taxonomy focuses on the
botnet structure and utility. And in 2008, a botnet research survey [70] done by Zhu et
al., classified research work on botnets into three categories: bot anatomy, wide-area
measurement study and botnet modeling and future botnet prediction. Bailey et al.
presented another survey, which provided an overview of current botnets, discussed
how different types of networks can affect the effectiveness of botnet detectionmech-
anism, and talked about various detection techniques that have been proposed [6].
What differs our work from theirs is that we focused on newly appeared P2P botnets,
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and tried to understand P2P botnets along four dimensions: P2P botnet construction,
C&C mechanisms, measurements and defenses.

Modeling P2P botnet propagation is one dimension we did not discuss in this
chapter. Król [34] presented theoretical study of malware propagation in various
complex networks. In the research work [46], Ruitenbeek and Sanders presented a
stochastic model of the creation of a P2P botnet. In [14], Dagon et al., proposed a
diurnal propagation model for computer online/offline behaviors and showed that
regional bias in infection will affect the overall growth of the botnet. [44] formulated
an analytical model that emulates the mechanics of a decentralized Gnutella type of
peer network and studied the spread ofmalware on such networks. Both [68] and [59]
presented an analytical propagationmodel of P2Pworms, but the former targets topo-
logical scan based P2Pworms, while the latter targets passive scan based P2Pworms.

Many researchers have investigated on detection and mitigation of traditional
centralized C&C botnets. Wurzinger et al. presented an approach to automatically
generate models for botnet detection [66]. Their models are generated based on
the fact that every bot responds to the botmaster in a specific way. Researchers
try to distinguish bot behavior from human behavior, in order to detect botnets.
For example, in [38], malicious channels created by bots are differentiated from
normal traffic generated by human beings; and in [22], hypothesis testing is used to
separate botnet C&C dialogs from human-human conversations. Pattern recognition
approaches and clustering algorithms arewidely used for botnet detection. Chang and
Daniels proposed a node behavior profiling approach to capture the node behavior
clusters in a network for botnet C&C communication detection [10]. And a Bayesian
approach for detecting bots based on the similarity of their DNS traffic to that of
known bots is presented in [60]. In addition, Gu et al., proposed three botnet detection
systems: BotMiner [20]—a botnet detection framework by performing cross cluster
correlation on captured communication and malicious traffic, BotSniffer [23]—a
system that can identify botnet C&C channels in a local area network based on
the observation that bots within the same botnet will demonstrate spatial-temporal
correlation and similarity and BotHunter [21]—a bot detection system using IDS-
Driven Dialog Correlation according to defined bot infection dialog model.

Furthermore, botnet infiltration and monitoring is also an very active topic in bot-
net research community. In [29], Kang et al., presented a passive P2Pmonitor, which
can enumerate the infected hosts regardless whether or not they are behind a firewall
or NAT, and conducted an empirical study on Storm botnet. Li et al. [35], monitored
botnets probing activities and addressed the problems like botnet’s scanning strate-
gies and attack target selection policies. In [30], Kanich et al., pointed out a number of
challenges that arise in using crawling to measure the size, topology, and dynamism
of distributed botnets. People infiltrate specific botnets, such as MegaD botnet [12],
Torpig bot [56] and [41], in order to understand their architectures, communication
protocols, behaviors, etc. In addition, botnet infiltration and monitoring can be very
helpful for fighting against malicious activities. In [32, 33, 42], the data collected
through infiltrating and monitoring botnets are used for spam detection and analysis.
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Some researchers have studied theoretical models of complex network in terms of
network robustness against general network failure or malicious attacks. Schneider
et al. [47] presentedmathematical analysis of complex networks and introduced a new
measure for robustness. They have demonstrated that electricity grid and Internet can
significantly improve their robustness against malicious attacks with small changes
in the network structure. Hayes et al. [26] presented a new algorithm to improve self-
healing in peer-to-peer networks against node insertion or deletion attacks. Louzada
et al. [37] presented a new rewiring method to modify a network topology improving
its robustness, based on the evolution of the network largest component during a
sequence of targeted attacks.

8.5 Conclusion

P2P botnets, as a new advanced form of botnets, have attracted attentions from both
botmasters and security defenders. In this chapter, we first presented a systemat-
ical study on P2P botnets. We discussed in detail each stage in the life cycle of
P2P botnets, and classified P2P botnets into three categories: parasite, leeching and
bot-only P2P botnets. Then among possible directions for P2P botnet defense, we
focused on two mitigation techniques against P2P botnets—index poisoning defense
and Sybil defense, and one monitoring technique— passive monitoring, and ana-
lyzed their effectiveness in terms of several factors, such as the size of a botnet,
the settings of the communication protocol, the range of the defense deployment.
Simulation-based experiments have shown that our analysis is accurate. This work
provides guidance for security professionals on how to carry out these three defense
techniques to achieve better performance. In themean time, we discussed how attack-
ers might react to avoid or reduce the effectiveness of index poisoning defense and
Sybil defense techniques, which help people get prepared for the future in case such
methods are deployed by attackers. Furthermore, based on our study, we obtained a
counterintuitive finding: because of the similar information dissemination structure,
P2P botnets that rely on index for command or other critical information dissemina-
tion may be as easy (or as hard) to be shut down as the centralized botnets.
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Chapter 9
Generating Robust and Efficient Networks
Under Targeted Attacks

Vitor H.P. Louzada, Fabio Daolio, Hans J. Herrmann
and Marco Tomassini

Abstract Much of our commerce and travel depends on the efficient operation of
large scale networks. Some of those, such as electric power grids, transportation
systems, communication networks, and others, must maintain their efficiency even
after several failures, or malicious attacks. We outline a procedure that modifies any
given network to enhance its robustness, defined as the size of its largest connected
component after a succession of attacks, whilst keeping a high efficiency, described
in terms of the shortest paths among nodes. We also show that this generated set of
networks is very similar to networks optimized for robustness in several aspects such
as high assortativity and the presence of an onion-like structure.

9.1 Introduction

In recent years, insights provided by network analysis have attracted a lot of attention
from practitioners. As a result, it has been shown that several artificial (e.g. the
Internet, electric-grids, etc.) and natural systems (e.g. chemical reaction networks,
food networks, gene regulatory networks, etc.) present characteristics that allows
one to classify them as Complex Networks. Their structure and the dynamics of
phenomena taking place on them have been intensively studied [5], thanks to the
availability of large data sets [8].

An important aspect of a network is the capability to withstand failures and
fluctuations in the functionality of its nodes and links. The design of networked
infrastructures with these capabilities can be thought of as an optimization task. An
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early important work in this field is Albert et al. [1] where the authors showed by
numerical simulations that scale-free networks, while they are robust against random
removal of nodes, are much more vulnerable to the removal of nodes according to
their degree. In other words, in a scale-free network if the nodes are removed in
decreasing order of degree, starting with the most connected ones, then the network
falls apart very quickly.

In Schneider et al. [9], a procedure is described that successfully modifies scale-
free networks so that the largest connected component still has a considerable size
after several attacks targeted at the most connected nodes. This feature guarantees
that there is at least one path connecting a large number of nodes after attacks and is
considered an appropriate definition of robustness. A natural question that follows
is the maintenance of network efficiency after attacks, i.e., a network is efficient in
this sense if “good paths” among nodes do not cease to exist after several targeted
failures. Using a consolidated definition of efficiency, we propose an optimization
procedure that modifies existing networks in order to improve their efficiency under
targeted attacks.

This chapter is organized as follows. In Sect. 9.2, we present our measures of
robustness, efficiency, and a method to optimize a specific characteristic of a net-
work. Then, we show in Sect. 9.3 several comparisons of optimized and unoptimized
networks. We highlight the major points of our contribution in Sect. 9.4.

9.2 Model

The proposed methodology is an extension of the work of Schneider et al. [9], who
used a hill-climbing procedure to optimize robustness against targeted attacks. We
modify this approach by adding a simulated annealing strategy [4] to avoid the
search getting trapped in local maxima. Previous approaches have successfully used
simulated annealing to increase network robustness [3]. Here however we extend our
focus to the following objectives: Robustness, Efficiency, and a combined measure
of both. We create three sets of networks optimized for these cost functions and
compare their characteristics. In what follows, we describe the cost functions and
the optimization procedure.

9.2.1 Robustness

The definition of network robustness might change according to a specific applica-
tion. In this work, we call an attack the removal of a node of the network, and the
robustness we measure by the size of the largest connected component (LCC) of the
network after this removal, as proposed by Schneider et al. [9]. To quantify it, we
proceed with a series of attacks and subsequently measure the robustness after each
node removal. Hence, robustness R is defined as:
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R = 1

N

N∑

Q=1

S

(
Q

N

)
(9.1)

where N is the number of nodes, Q is the number of nodes removed from the network,
and S(q) is the size of the LCC after a fraction q = Q/N of nodes were removed.
The attacks performed are targeted to the nodes with highest degree of the network:
we find the most connected node, remove it, calculate S(q), update the degrees, and
find the new most connected node to repeat the process. In case two nodes have the
same degree, we choose the one with the smallest index. The value R is therefore
unique for each network.

9.2.2 Efficiency

One can think of network efficiency as a low cost of communication among its
members. In this light, we relate efficiency with the shortest paths between all pairs
of nodes, thus following Latora andMarchiori [6] who defined the network efficiency
E as:

E =
N∑

i, j=1
i �= j

1

li j
(9.2)

where li j stands for the shortest path length between nodes i and j . If i and j belong
to separate connected components of the network, we set li j → ∞ to guarantee a
consistent behavior of the cost function.

9.2.3 Integral Efficiency

Keeping in mind that we would like to keep the efficiency of networks after attacks, it
is straightforward to modify the definition of E to account for this. Hence, we define
Integral Efficiency I nt E as:

I nt E = 1

N

N∑

Q=1

E

(
Q

N

)
(9.3)

where E(q) stands for the efficiency of the network after the removal of q = Q/N
nodes. Nodes are removed according to a targeted attack such as in Sect. 9.2.1. The
value of E(0) is the cost function E defined in Sect. 9.2.2. By choosing this quantity
instead of E , which does not consider nodes removal in its definition, we try to avoid
that the shortest paths among nodes increases after targeted attacks.
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9.2.4 Optimization Procedure

In their work, Schneider et al. [9] propose a simple hill-climbing search to modify
the network topology in order to optimize the robustness R whilst keeping the degree
of each node fixed. This restriction in often present in the modification of artificial
systems, such as electric grids where constructing a receiver for a new power line
in a station might be impractical. Hence, only swaps between lines (edges in the
network) are possible. A consequence of this restriction is that the underlying degree
distribution of the network remains unchanged after swaps. Clearly, if we had no
constraints on the degree distribution, we could design the topology starting from
scratch with the robustness and efficiency as objectives in mind, obtaining different
optimal topologies.

Next, we present an improved version of the optimization approach using simu-
lated annealing and we describe it for any cost function M that changes after link
modification:

1. Initial State. Let G(N , E) be a network with |N | nodes and |E | edges.
2. Edge swap. Choose two pairs of edges (i, j) and (k, l) ∈ E randomly and create

the network G∗ by deleting the edges (i, j) and (k, l), and adding the edges (i, l)
and (k, j).

3. Acceptance probability. Calculate the transition probability p of the system as:

p =
⎧
⎨

⎩
exp

(
− M(G) − M(G∗)

T

)
if M(G∗) < M(G)

1 if M(G∗) ≥ M(G)

4. Comparison. Make G = G∗ with probability p, otherwise discard G∗. Return
to Step 2.

This approach allows a network G∗ with M(G∗) < M(G) to be chosen with
finite probability. By doing this, global minima could be reached and inferior local
minima could be avoided. Notice that, for the three cost functions studied here, the
value of M(G) is unique for each network G. Furthermore, by decreasing the value
of T according to the amount of edge swaps executed, it is possible to decrease the
acceptance ratio of worst networks when an optimum point is close. We decrease the
temperature as function of the number τ of edge swaps, by following the equation:
T (τ ) = 0.0001 × 0.8τ . Variations to this function have shown little effect on the
results. The search is stopped when a predefined amount of edge swaps is reached.

9.3 Results

The procedure outlined in Sect. 9.2.4 is applied to the cost functions: R (Robust-
ness as described in Sect. 9.2.1), E (Efficiency as described in Sect. 9.2.2), and
I nt E (Integral Efficiency as described in Sect. 9.2.3), starting from the same set of
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randomly generated of Barabási-Albert (BA) networks. Hence, we created three sets
of networks: Robustness set, Efficiency set, and Integral Efficiency set. As a control,
we compare to the original set of BA networks, from now on called the Unoptimized
set.

The Unoptimized set is composed of 100 networks of n = 1000 nodes and
average degree 〈k〉 = 5.95. The size of the networks was chosen based on a trade-off
between the appearance of topological features such as the scale-free phenomenon,
only present in large networks, and computational cost, as the I nt E cost function
requires O(n3) operations to be calculated. The amount of edge swaps, 10,000,
was chosen so that for each optimized set its cost function is already statistically
different from the Unoptimized set. It is possible to see that this goal was achieved
by comparing the values in bold for columns 〈E〉, 〈R〉, and 〈I nt E〉 in Table9.1. To
provide a visualization of the network structure created, some examples of each set
are drawn in Fig. 9.1.

To analyze the robustness of each set, a plot of s(Q) versus Q is shown in Fig. 9.2,
inwhich the area below each curve represents R for each set.As expected, theRobust-
ness set shows a bigger area (23% of increase), keeping a considerable size of the
LCC after several attacks. Indeed, Schneider et al. [9] obtained an improvement of
almost 75% for this cost function, but by using a much more exhaustive approach:
their search stops after 10,000 edge-swaps without increase in R. Therefore, our
results show that it is possible to increase network robustness using less computa-
tional effort. The plot also shows that E , a cost function that does not consider attacks
in its formulation, has a bad performance in this scenario. We conclude that, though
more efficient, networks optimized exclusively for E might not be appropriated in a
realistic context, in contrast to I nt E , which considers both effects. Moreover, it is
interesting to note also that the curves for R and the Integral Efficiency set have com-
parable areas, considering the standard deviation of the measurements as detailed in
Table9.1.

In Fig. 9.3, the cost function I nt E is analyzed through the plot of E(Q) versus Q,
showing that, as expected, the Integral Efficiency set has the better performance, i.e.
the area under the corresponding curve is bigger. Interestingly, the curve referring
to the set of networks obtained by optimizing for E alone shows that both have
about the same performance as the unoptimized ones for this cost function (data on
Column 〈I nt E〉 of Table9.1).

Table 9.1 Average values of the cost functions, standard deviation in subscripts

Network set 〈k〉 〈cc〉 〈r〉 〈E〉 〈R〉 〈I nt E〉
Unoptimized 5.950 0.02420.0033 −0.0850.015 0.14860.0012 0.18370.0053 0.03080.0011

E 5.950 0.00530.0014 −0.0760.011 0.15390.0015 0.18260.0056 0.03100.0012
R 5.950 0.02000.0027 0.0380.024 0.14590.0013 0.22660.0055 0.03720.0012
IntE 5.950 0.01950.0029 0.0550.026 0.14560.0013 0.22680.0052 0.03910.0012

Each set comprises 100 networks with n = 1000 nodes. 〈k〉 = average degree, 〈cc〉 = average of
clustering coefficient, 〈r〉 = average assortativity coefficient, 〈E〉 = average efficiency, 〈R〉 = average
robustness, 〈I nt E〉 = average integral efficiency
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Fig. 9.1 Examples of networks belonging to each set. Networks are drawn using the k-core decom-
position, represented by the different intensities of gray

0 200 400 600

Q

0

0.2

0.4

0.6

0.8

1

s(
Q

)

Unoptmized

Robustness set
Efficiency set

Integral Efficiency set

Fig. 9.2 Largest component size after the removal of Q nodes. The area bellow each curve is the
cost function R. Symbols represent sets optimized for different cost functions and are larger than
the standard deviation
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Fig. 9.3 Network efficiency E(Q) after the removal of Q nodes. The area bellow each curve is the
cost function I nt E . Symbols represent sets optimized for different cost functions are larger than
the standard deviation

Another interesting aspect of the work of Schneider et al. [9] is the topology
obtained by this optimization: a so-called onion-like structure. In this topology, each
layer is composed of nodes connected with nodes of the same degree, with few
connections between layers. A direct procedure to generate this topology can be
found in the work of Wu et al. [10].

To investigate the presence of an onion-like structure on our optimized sets, three
quantities were analyzed. In Fig. 9.4, we show the k-core decomposition [2] for sev-
eral k, showing that the Robustness and Integral Efficiency sets have several k-core’s
or layers, thus confirming a hierarchical structure of the network. The Efficiency
set does not present this clear hierarchy, but has more layers than the Unoptimized
set. In the inset of Fig. 9.4 we show that the Integral Efficiency set and the Robust-
ness set of networks have the greater assortativity through the plot of Newman’s r
coefficient [7]; the Efficiency set is as dissortative as the Unoptimized set.

Finally, we also measure the robustness for each layer of a network. To do so, we
analyze the sub-graph of each network composed of Nk nodes with degree smaller of
equal to k. In this sub-graph, Sk represents the size of its largest cluster. In Fig. 9.5,
we plot Sk/Nk for several values of k. This plot shows that the Robustness and
the Integral Efficiency sets present practically the same increase in robustness with
respect to the Unoptimized set. In contrast, the Efficiency set does not show any
improvement with respect to the original scale-free unoptimized networks.

Given the several layers showed by the k-core decomposition, its dissortative
nature, and the increase in robustness of each layer, we conclude that the Integral
Efficiency set also has an onion-like structure similar to the Robustness set.
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Fig. 9.4 Main plot shows the K-core decomposition for several values of k. It can be seen that
the same network optimized for I nt E presents more layers than the network resulted after the
optimization for R. Inset showsBox-and-whiskers plot of the degree assortativity throughNewman’s
r coefficient. Thick lines depict the median value; lower and higher hinges gives the 0.25 and 0.75
quantiles, respectively; the whiskers extend to 1.5 times this inter-quantile range. Values outside
this range are considered outliers and appear as circle dots in the plot
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Fig. 9.5 Relative size of the largest component in networks composed of nodes of degree less
than k. Symbols represent sets optimized for different cost functions are larger than the standard
deviation
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9.4 Discussion

We outline here a procedure that optimizes a specific characteristic in any type of
network and create three sets of BA networks with distinguishable features. Though
BA networks are known to be resilient to random removals of nodes and present
other interesting properties [1], we show here a method that creates networks with
a certain specific characteristic enhanced, which might be useful in some realistic
scenarios.

Firstly, our results show that the Integral Efficiency set substantially improved
efficiency after attacks, compared to the Robustness, Efficiency, and Unoptimized
sets.Moreover, this set also sustains a large connected cluster after attacks. Therefore,
this cost-function could be used to generate highly robust and efficient networks.

Another important result of our work is that networks optimized for I nt E also
present an onion-like structure. This result suggests that this structure is generically
the optimal scale-free net independently of the chosen cost function. It also helps the
design of networks from scratch, as it is possible to construct scale-free networks
which present this structure.

It is also interesting to note that the Integral Efficiency set maintains several
similarities with the Robustness set, such as: high assortativity, size of the largest
cluster after attacks, efficiency after attacks, size of the largest cluster for each degree
layer, and a hierarchical structure regarding the k-core decomposition. In fact, the
Integral Efficiency set has a slightly better performance on assortativity and efficiency
after attacks, while the Robustness set has a better performance on the others.

Future works might focus on the structures of the three generated sets. The Effi-
ciency set does not present an onion-like structure, remaining unclear if this opti-
mization could lead to a different structure. The Integral Efficiency set might have
a hidden feature that differentiates it from the Robustness set. By finding a typical
structure of optimized networks, new networks could be designed from scratch with
a desired feature. Also, we would like to investigate other cost functions that might
lead to onion-like structures, and the case of weighted networks, as they are closer
to real applications.
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Chapter 10
Cancer—A Story on Fault Propagation
in Gene-Cellular Networks

Damian Borys, Roman Jaksik, Michał Krześlak, Jarosław Śmieja
and Andrzej Świerniak

Abstract We discuss problems related to propagation phenomena in biological
networks. As an example we consider processes leading to carcinogenesis and devel-
opment of cancer, seen as a complex genetic disease from a system theoretic point
of view. We present particular regulatory mechanisms which make the cell cycle
a fault tolerant system. Then we indicate weak points in this system leading to
mutagenesis and cancer progression. The next stage in this cascade of events is
related to an angiogenic switch, which in turn may be treated as a trigger of metasta-
sis. All these processes result from communication, competition and subordination
between normal and cancer cells.We illustrate interaction processes bymodels based
on evolutionary games and spatial evolutionary games, which describe propagation
phenomena in time and space.

10.1 Introduction

Biological networks belong to the most complex real world networks (see [61]), in
which propagation phenomena are still far from being completely recognized. We
present an example of such complex processes, cascade ofwhich leads to carcinogen-
esis and development of cancer disease. More precisely, we treat cancer as a result of
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fault propagation in biological networks built of signaling pathways in gene-cellular
system.

Cancer is a disease of genes and molecules, and our increasing understanding of
the processes related to its genesismakes it possible to develop exciting new strategies
for prevention, avoidance and correction of changes leading to carcinogenesis and
progression of the disease (see [17]). An explosion of interest in research concerning
these issues is related to development of the so called systems biology [102], which
brought advances in our knowledge on deregulation of genomes and alteration in
metabolic and signaling pathways leading to cancer cells phenotype and contributed
to search for molecular targets for anticancer strategies.

The starting point of the disease remains still one of the most enigmatic and exclu-
sive aspects of cancer pathogenesis. How does it happen that in an almost perfect
fault tolerant control system such as cell cycle some cells may change their geno-
type through mutation and thus start the process of carcinogenesis? Discrete events
contributing to this process are followed by propagation of faults in the regulatory
network that controls intracellular processes through the system of signaling and reg-
ulatory pathways. The cells maymigrate as pathfinders or pathgenerators (see [106]),
as competing individuals or cooperatively. Discovery of processes determining inter-
action between different cells, their communication, competition and subordination
is still a challenge for researchers. These difficulties lead to development of various
approaches tomodeling and analysis of the regulatory networks. Cancer cells are sub-
ject to a variety of stress factors which provide selective pressure acting on increased
variation created by progressive deregulation of cancer cells genomes. Tumors, like
normal tissues, have physiological constraints on growth such as oxygen and nutri-
ents availability. For this reason, tumors remain in dormant state unless they develop
in a well vascularized area or are able to recruit their own vasculature. Tumors do
this by the so called angiogenic switch, a discrete event in tumor development that
can occur at different stages in tumor-progression pathway. This event becomes, in
turn, the beginning of metastasis responsible for about 90% of deaths from cancer.
The important finding is that it is necessary to take into account both time and spatial
distribution of signal transduction among cells in studies related to carcinogenesis,
tumor growth and development, its motility and invasion (see [67]).

Our contribution is based on system engineering rather than systems biology way
of thinking, although the border between them is fuzzy. In the following section we
present our understanding of mechanisms behind properties of fault tolerant con-
trol systems responsible for proliferation of eukaryotic cells. They constitute the
first, intracellular network under consideration, in which transmitted signals allow
switching into consecutive phases. We concentrate on several known feedback reg-
ulators and monitoring systems that control the cell cycle. The subsequent section
is devoted to failures which may evade this control machinery and propagate in the
biological network leading to the development of cancer. Section10.4 deals with a
subsequent step in this cascade initiated by an angiogenic switch, which is responsi-
ble for progression of the disease. Finally, Sect. 10.5 describes one of the approaches
that may be used to model both time and spatial phenomena related to cell to cell
interactions in the discussed propagation processes. It is based on the theory of
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evolutionary games and spatial evolutionary games, and we discuss various issues
related to this approach illustrating them with our original results obtained for a
four-phenotype model of extracellular signal interactions. This approach enables at
least a quantitative analysis of phenomena addressed in Sects. 10.2–10.4.

10.2 Cell Cycle as a Fault Tolerant Control System

10.2.1 Cells—The Building Blocks of Life

Every living cellmay be considered as a device capable of executing various chemical
processes necessary for the organism to survive, develop and reproduce. The basic
elements of animal cells include cytoplasm and its organelles which function as
factories where various chemical processes take place, and cell nucleus, which stores
the genetic information used to control all of the cell functions. The most important
element of cell nucleus is the deoxyribonucleic acid (DNA) which can be considered
as a set of instructions on how to build individual elements of the cellular machinery
and how to control their functions.

The instructions are encodedbasedon a specificorder of fourDNAsubunits, called
nucleotides, used to organize information, control its availability and allow to copy its
specific elements termedgenes.Genes canbe considered as regions of theDNAwhich
contain information on the structure of specific proteins encoded using a universal
genetic code, conserved trough all living organisms. In a process called transcription
the information contained in genes is copied to a matrix build from ribonucleic acid
(RNA). Each matrix is then used to produce multiple copies of a specific protein in
a process called translation. The most important feature of this mechanism is that its
efficiency depends not only on the structure of the produced protein but also on the
concentration and activity of various other molecules involved in its production [2].

Proteins have various functions in the cell and in many cases proteins of the same
type are used in different processes depending on cell conditions and various protein
modifications. Proteins are the building blocks of the cell, maintaining its shape and
internal structure [2]. They also catalyze biochemical reactions [75], carry molecules
from one place to another [83], control the efficiency of gene expression [95] and
bind to other molecules, thereby controlling their stability [42]. Proteins variability
and versatility combined with their changing concentration creates a system of great
complexity, which allows the cell to initiate various processes based on its current
requirements. To make this possible, the cell requires a sophisticated control system
that can respond to various external signals and its internal “sensor” readings.

10.2.2 Information Processing and Signal Propagation

The mechanism of intracellular signal propagation is mainly based on the balance
between production and degradation rates of various molecules. The molecules can
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Fig. 10.1 The basic mechanisms of intracellular protein level regulation

interact with each other, thereby affecting their stability or promoting the production
process. The basic regulatory mechanisms of such type include interactions of spe-
cific proteins (transcription factors)with theDNA, thus initiating theRNAproduction
process, and protein-RNA interactions or interactions between various RNA types
that usually lead to an increased RNA decay (Fig. 10.1).

The regulatory mechanisms, despite utilizing different kinds of molecules, are
all based on a target recognition processes of high specificity, which allow binding
of just one or few of molecules out of many thousands encountered. The selective
binding depends on the formation of many weak non-covalent bonds, like hydrogen
bonds, ionic bonds, and van der Waals attractions, which allow to create a stable
connection between the molecules if the affinity between them is high or a short-
lived interaction if the affinity is weak. Protein modifications form another element
of intracellular signal propagation systems. Almost every protein in the cell can be
chemically modified after its synthesis, affecting its activity, stability and cellular
location. Such modification may initiate or inhibit certain processes including those
responsible for cell metabolism, differentiation or immunological response [58].

Two of the most common modification mechanisms utilized by signal propaga-
tion systems include protein phosphorylation and ubiquitination. Phosphorylation,
and the reverse process of dephosphorylation, work by adding or removing an addi-
tional phosphatase group to specific protein residues. The enzymes which take part
in these processes (kinases and phosphatases) target proteins from all classes, like
other enzymes, structural proteins, or various signaling molecules. Such mechanism
creates a switch that can turn on or off specific functions of various proteins by
changing their activity or affecting molecule binding capabilities [27].

10.2.3 Intracellular Regulatory Systems

There are over 26,000 genes in a human cell which encode about 47,600 distinct
RNA templates [79]. This can lead to the creation of over 120,000 unique proteins
[21]. Incorporation of feasible protein modifications further extends the regulatory
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capabilities of the cell, creating an incredibly sophisticated system. In order to
maintain its stability, the cell utilizes thousands of both positive and negative feed-
back loops responsible for the control of various processes.

Negative feedback loops are an essential component of complex organisms allow-
ing them tomaintain homeostasis by regulating synthesis and turnover rate of various
chemical substances. Positive feedback loops are not that common but still they play
an important role in the intracellular regulation. Positive feedback loops work by
either activating protein A through protein B which is responsible for protein A acti-
vation or more commonly through double negation where A blocks an A-inhibiting
factor B [78]. Such mechanisms are used when the regulatory system is required to
take immediate action in response to, for example, detection of DNA damages [59,
80]. Rapid regulatory system response is a key component of many signal transduc-
tion pathways and plays an important role in the cell cycle associated processes that
allow the cells to grow and divide, making it one of the most sophisticated regulatory
systems.

10.2.4 The Cell Cycle Clock

Cell cycle is a very complex sequential process controlled by a variety ofmechanisms
whichmake up a system similar to a clock governing cellular proliferation. The entire
process is controlled by specific checkpoints which stop the cycle unless a specific
signal is received, ensuring that all stages are properly timed and proceed in an
appropriate order. Moreover, no transition from one stage to another takes place
unless certain criteria are met.

The typical eukaryotic cell cycle lasts around 24h and includes four phases
G1, S, G2 and M . G1 phase, also called the growth phase, is used by the cell to
increase its size and prepare proteins necessary for the synthesis phase (S), where
the DNA is replicated creating two identical copies of each chromosome. In the
G2 phase the cell growth continues, preparing it for the mitosis phase (M), in which
daughter chromosomes are separated and the cell divides. The duration of each phase
varies significantly between different cell types, although in typical cells the G1 and
S phases are the longest ones while M phase is the shortest (around 5% of the entire
cycle time). Relative duration of each phase for a typical human cell is presented on
Fig. 10.2.

The time dependency of the cell cycle is maintained by a set of proteins termed
cyclin-dependent kinases (Cdks) and their association with regulatory subunits
cyclins that are responsible for Cdks activity. Cyclins represent a group of pro-
teins which, as the name implies, undergo a cycle of production and degradation
through the entire process. Cyclins bind to the Cdks, which usually have a con-
stant level, but require cyclins to gain their protein kinase activity. Because of that,
cyclin-Cdk activity also oscillates and the phase of the oscillations determines the
moment of initiation of specific processes and allows to trigger an additional control
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Fig. 10.2 Cell cycle phases with their relative timesmatching a typical fast proliferatinghuman cell

processes if the level of specific cyclin is high or low for an abnormally extended
amountof time.

Initiation of specific cell cycle events is dependent on the oscillations in the cyclin-
Cdk complexes, for example, activation of M-phase cyclin-Cdk complex triggers
mitosis, while the initiation of S-phase requires high amount of active S-phase
cyclin-Cdk complexes. Activity of such complexes depends on various regulatory
mechanisms, similar to those used in other crucial intracellular processes, like bind-
ing of inhibitory proteins, protein modifications (phosphorylation, ubiquitination),
and control of the transcription rate for genes coding for various elements of the cell
cycle-related pathways.

The fluctuation in activity of cyclin-Cdk complexes leads to changes in the phos-
phorylation level of various proteins that either activate or inhibit specific elements
of the cell cycle, like mitosis or DNA replication. Cyclins also help to guide Cdks
to specific target proteins providing very high specificity of the cyclin-Cdk complex
dependent regulation, in which only a certain substrate protein or small group of
proteins is affected.
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10.2.5 Cell Cycle Checkpoints

The cell cycle checkpoints are one of the most important elements of the entire
process, providing correct order of all events. The the next step can be initiated only
if the previous one was completed successfully and if the cell state, which sometimes
changes rapidly due to environmental conditions and extracellular signals, is suitable
to carry on to the next step.

There are three main checkpoints in the cell cycle at the end of G1, G2 and
M-phases (Fig. 10.2). The main role of G1 checkpoint is to prevent replication of
damaged DNA. It does that by monitoring the level of DNA damage whose presence
activates a specific protein kinase—ATM [59]. ATM is responsible for phosphory-
lation of Cdks2 family of proteins which activate the cell cycle arrest mechanism,
providing time necessary to initiate the DNA repair processes [77]. If the repair is
impossible or inefficient, the cell will arrest the cycle until certain criteria are meet.
This prevents various problems that might occur if the cell progressed prematurely to
the next step and replicate a damaged fragment of the DNA [14]. G2 checkpoint also
monitors the DNA damage level and additionally ensures that the DNA was prop-
erly replicated before the cycle moves to the mitosis phase. By inhibiting B1/Cdc2
cyclin the cell reduces the level of Cdc2 protein which prevents it from entering the
M-phase of the cycle until the replication is complete and/or the DNA damages are
repaired [14]. M-phase checkpoint is the final security mechanism that controls the
genome integrity, ensuring that each daughter cell receives its complete set of newly
replicated chromosomes [22].

In general, the checkpoints prevent a catastrophic cell division, when daughter
cells receive only a part of the DNA, or the DNA received is damaged, which might
lead to genomic instability. The control system which provides that is highly respon-
sive to information received fromeach of the controlled stages, changing the course of
each process when necessary. The regulation usually operates through process inhi-
bition instead of stimulation, leading to the cell cycle arrest. The signals are triggered
if at least one of the required conditions is not met, like appropriate level of nutrients
necessary to conduct the process, sufficient growth level or completed duplication of
various cellular components [2]. Such design has a significant advantage that can be
justified from the control theory point of view. A system is much more fault resistant
if it is required to detect a single “stop” signal generated by at least one of its elements
rather than detect an appropriate level of “go” signal which would indicate that all
preceding processes completed successfully. Utilizing these checkpoints provided
the cells with extreme robustness in the course of the evolution. However the perfor-
mance of checkpoint-based control mechanisms would be insufficient without the
p53 protein signaling pathway, considered as the guardian of the genome integrity.

Since the control system regulating the cell cycle is so effective, mathematical
models describing its dynamics often do not entail its details. Instead, it is usually
based on the compartmental approach tomodeling (inwhich compartments represent
subpopulations being in the same phase of the cell cycle). This is particularly useful
when the goal of modeling is to predict responses not of an individual cell, but of a
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cell population, to external control actions representing, for example, phase-specific
therapeutic agents (see [91]).

10.2.6 Stress Resistance and Damage Recovery

The cell cycle is designed to withstand damage that might occur to the cell during
one of the cycle phases. This prevents the cell from undergoing an improper division
and from passing damaged genetic material to the daughter cells, that would have
catastrophic consequences for the entire organism. The most common sources of
damage that occur during the cell cycle are genotoxic substances and factors like
reactive oxygen species [52] or ultraviolet [86] and ionizing radiation [45], which
induce various kinds of the DNA damage. The detection of such damages is not as
simple as verifying if the DNA helicase is broken, since apart from generating DNA
breaks the factors mentioned above can lead to chemical modifications of certain
DNA monomers and single-nucleotide substitutions [14]. The total length of the
DNA, which in human cells exceeds three billion nucleotides, requires an extremely
sensitive and effective regulatory mechanism that could detect damages and prevent
them from being propagated to the daughter cells during mitosis. The regulatory
module of the p53 protein provides such mechanism, which when activated by the
presence of DNA damage, controls a variety of processes that protect the cell and
activate its self-degradation if necessary [80].

p53 is a transcription factor activated by the ATM protein kinase in response to
the DNA damages. The main protective role of the p53 protein is to initiate cell cycle
arrest mechanisms in either G1 or G2 phase and activate the DNA repair machinery
[109]. In normal conditions the level of active p53 is very low, maintained by two
feedback loops, one positive and one negative [50], illustrated on Fig. 10.3. The
negative feedback involves the Mdm2 protein, which is activated by p53 and at
the same time responsible for p53 degradation [51]. The positive feedback, which
involves the AKT protein, works through double negation. AKT enhances theMdm2
mediated p53degradation, and by itself is negatively regulated by the p53. This allows

Fig. 10.3 Simplified model
of the p53 protein regulation ATM
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damage
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p53 to inhibit its own inhibiting factor—AKT, creating a positive feedback loop that
significantly increases p53 concentration [18].

In stress conditionsATMdisrupts theMdm2-mediated p53 degradation, leading to
rapid p53 elevation [72]. This mechanism works like a countdown clock providing
the cell with a certain amount of time to repair the damaged DNA. If the repair
is not efficient, the level of active p53 keeps rising, triggering the transcription of
proapoptotic genes that initiate the programmed cell death termed apoptosis. The
p53 regulatory module ensures that the cell repairs the damages before replicating its
DNA. However if the damages are too severe the cell is destroyed in order to prevent
damage from propagating to daughter cells, and in turn, affecting the entire organism.

Cell cycle is an extremely well designed regulatory system capable of controlling
a complex cell proliferation process even in very harmful cellular conditions created
by genotoxic factors. Its robustness and the ability to deal with distinct types of cell
damage by the use of various checkpoints and repair mechanisms makes it an almost
perfect fault tolerant system.

10.3 Carcinogenesis—Failure of the Cell Cycle
Control System

As indicated in the preceding section, multiple regulatory mechanisms help to main-
tain the cell cycle and, ultimately, lead to cell division, after which two cells with the
same genetic information begin their life cycles. While there is a lot of redundancies
in these mechanisms, when several of their components fail, the errors add up, and
instead of preventing individual cells from exerting harmful effects on the organ-
ism, they might get amplified. First, these errors propagate through the intracellular
signaling networks and, subsequently, they spread in cell populations through the
transmission network that allow cells to communicate with each other, for example
releasingmitogens that stimulate neighboring cells into entering the division process.
Thus, one can view the cross-linked extra- and intracellular processes as a network
within the network.

Onemight distinguish two basic types of control mechanisms that should be taken
into account when looking at the cell cycle as an almost failure-resistant system. The
first one concerns processes activated when DNA is damaged, as only complete,
correct DNA should be replicated (Fig. 10.4). The other type includes the processes
that determine the length of cell cycle and are based on the checkpoints mentioned
in the preceding section.

10.3.1 Failure of DNA Repair Mechanisms

DNA damage arise naturally in all cells (e.g. 55,000 single strand breaks per cell per
day were reported in [60]). Different types of damage are detected by appropriate



234 D. Borys et al.

DNA
damage

p53 pathway

S G M

cell cycle arrest, DNA repair, apoptosis

Fig. 10.4 Two basic mechanisms, destabilizing cell cycle: promoting entry into S phase and block-
ing the apoptosis pathway

sensory proteins, activating repair mechanisms. If the repair is not possible, which is
signaled by a prolonged high level of respective proteins, the programmed cell death,
apoptosis, should be initiated. Despite all these mechanisms, mutations, rearrange-
ments and other disruption of genetic informationmay take place, particularly during
DNA replication. They are the most dangerous when they occur in genes that code
for proteins controlling either cell cycle or DNA repair processes, since in these cases
the error signal propagates through the cell gene regulatory network an later may
spread in population, leading to development of cancer. In the case of genes involved
in repair processes, the result is loss of genomic stability. For example, mutations
in genes coding proteins responsible for initiating double strand breaks recogni-
tion and triggering DNA damage response are associated with a high incidence of
leukemia and lymphoma [41, 84]. Another example is the chromosomal transloca-
tion that leads to a proliferation signal resulting in development of chronic myeloid
lymphoma [19]. Mutations in mismatch repair genes are involved in development
of diffuse large B cell lymphomas [25]. Large fraction of colorectal tumors show
an abnormal shortening or lengthening of dinucleotide repeat sequences, known as
microsatellite instability. It arises whenmismatch repair is defective due tomutations
in mismatch repair genes. Familial forms of breast, ovarian and pancreatic cancer
are associated with mutations in recombination modifying genes [65].

The accumulation of DNA defects leads to the increased number of DNA muta-
tions that develop into carcinogenesis. This should be counteracted by, among others,
control actions exerted by the tumor suppressor p53. In addition to its involvement in
DNA repair, responses to heat shock, as well as other factors, it also plays a critical
role in arresting the cell cycle when DNA damage is detected and plays a key role
in promoting apoptosis, when damaged DNA cannot be repaired. However, proper
functioning of p53 pathways depends on its proper form. In the majority of human
cancers p53 is dysfunctional, most frequently due to a point mutation within its
DNA binding domain [88]. Such mutation is associated with inducing expression
of cell cycle-promoting genes, such as cyclin A, cyclin B1, cdk1, and cdc25C, and
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to an increase in DNA synthesis [16]. Moreover, mutant p53 enhances proliferation
by cooperation with various cell cycle-related factors such as ETS, E2F, and MYC
[15]. All this evidence is behind continuous extensive investigation of p53 pathways
[49] and development of mathematical models that support experimental research.
Depending on their main goal, these models can be either very simple, focused on
a single regulatory action [31, 80] or larger, comprising more feedback loops, both
positive and negative [55, 56].

One of the mechanisms that supports p53 actions is binding of the p19 (ARF)
protein to Mdm2. Since Mdm2 normally promotes p53 degradation (see Fig. 10.3),
activation of p19 leads to increasing levels of p53, resulting in cell cycle arrest or
apoptosis. Loss or mutation in the p19 gene disrupts this process and may lead to
cancer [43, 100]. Another gene, whose transcription is induced by p53 following
DNA damage is p21. Since p21 is involved in controlling entry into the S phase, its
role in disruption of the cell cycle is described in the subsequent section.

10.3.2 Cell Cycle Disruption

When the mutated gene is associated with cell cycle control, it usually leads to
accelerated cell division and failure to respect checkpoints in passing from one phase
to another. This property is a characteristic feature of cancer.

It seems that the most critical, with respect to possible alterations of the cell
cycle, is the G1-S transition (Fig. 10.5). Though this passage is controlled by many
pathways, at least partly redundant, this is the key in triggering error propagation
in cell cycle. One of the possible sources of failure has already been mentioned in
the closing paragraph of the preceding section. It involves the p21 protein that binds
to the G1/S-Cdk and S-Cdk complexes inhibiting their activities and thus blocking
entry into the S phase. Since p53 is a transcription factor for p21, if it does not
work properly, p21 cannot be induced, which leads to initiation of damaged DNA
replication. However, there is a growing evidence that p21 can function as both a
tumor suppressor and an oncogene [104].

Replication of damaged DNA is not the only problem that may arise in cell cycle
and contribute to the development of cancer. Another one lies in acceleration of the
cell cycle, caused by earlier than necessary entry into the S phase (Fig. 10.5). This
entry is dependent on increased activity of the E2F protein. It can be promoted either
by inducing transcription of E2F gene or by inactivation of the retinoblastoma protein
(Rb) that acts as a brake on the cell cycle progression. This, in turn, can be achieved
through the activation of the G1-Cdk cyclin (cyclin D-Cdk4), preceded by increased
cyclin D1 production.

The cyclin D1 is frequently overexpressed in a wide range of cancers, sometimes
coincident with gene amplification or somatic mutations of the gene coding it. A
frequent alternative splicing leads to production of cyclin D1b protein that lacks a
specific phosphorylation site required for nuclear export, leading to its accumulation
in the nucleus and increased interaction with Rb, and, subsequently, promoting entry
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into the S phase [39]. While this could be prevented by another control mechanism,
based on the p16 protein that blocks the formation of an active D1-cdk4 complex,
many cancer cells have either a deleted, inactivated or silenced p16 gene [2, 33].
Moreover, some mutations in the p16 gene promote cancer metastasis [20]. On top
of this, in some cancers p16 is overexpressed and despite that, these cancersmay have
poor prognoses [108]. This suggests that our knowledge of even this, relatively small
part of the signaling network, is far from complete and caution is recommended,
concerning conclusions drawn from experimental work and mathematical modeling
that supports it. Another important regulator of the cell cycle is the p27 protein. Its
increased degradation, natural in a normal cell cycle, leads to G1/S-Cdk activation,
thus promoting entry into the S phase. It has been found that in some tumors p27 is
mutated in a way that reduces its stability [71]. The ultimate result of such mutation
is, once again, uncontrolled entry into the S phase and acceleration of the cell cycle.

One of the most extensively studied family of proteins is the NF-κB (nuclear fac-
tor κB) transcription factor family. It is a key element in many regulatory networks,
playing a crucial role in pathways activated by a wide variety of stimuli and environ-
mental challenges. It is also involved in regulation of the cell cycle [63], controlling,
among others, different cyclins [73]. Its actions promote cell proliferation and cell
growth, as well as block induction of apoptosis by inducing transcription of genes
coding inhibitor of apoptosis proteins [32].
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One should also remember that environment also contributes to stability of the cell
cycle. Extracellular signals from neighboring cells, called mitogens may overcome
intracellular mechanisms that block or slow the cell cycle [2]. They act through
signaling pathways involving a small GTPase Ras. A mutation in Ras-coding gene
may cause it to be permanently active, thus leading to continuous progress of the
cell cycle [26, 54, 89, 94] as well as helping to fuel metabolic pathways, supporting
growth and division [105]. Thesemutations are found in about 25%of human cancers
and are highly prevalent in hematopoietic malignancies [103]. On the other hand,
viral infections may also lead to changes that promote activation of transition to
the next phases of the cell cycle under wrong conditions, and, ultimately, result in
carcinogenesis. For example, human papilloma virus produces oncoproteins E6 and
E7, which disrupt, otherwise well-performing, regulatory network. The first of these
blocks p-53 mediated activation of the p21 protein, while the other inactivates Rb,
thus activating E2F and inducing cell cycle progression independent of the G1-S
checkpoint Cdks (Fig. 10.5) [1, 82].

Themechanisms described above are only a sample ofwhat experimental research
has discovered in recent years. It is clear that the sheer complexity of the regulatory
networks under consideration makes the planning of experiments and analysis of
their results extremely difficult. This is exactly the point, at which mathematical
modeling may prove useful and the reason for a rising popularity of models of large
signaling pathways on one hand, and basic regulatory modules on the other. These
models help to find missing elements of the signaling network [87], identify kinetic
parameters of the processes [37] that can be subsequently used to better experiment
planning [36], analyze the effects of external stimulation of these pathways [15, 81].
Among the models describing various pathways and regulatory networks one can
easily find those focused on the cell cycle and the mechanisms described in this
section (see [7, 24, 99]), allowing to predict the propagation of faults, mentioned
above, and its consequences for the cell fate.

10.4 Tumor Angiogenesis and its Role in Disease Progression

Tumor—as a result of fault propagation occurring in the cell cycle, has one general
feature—fast and uncontrolled proliferation of its cells leading to its unstable growth
and development. However, in-situ tumor is able to increase its size only up to
some limits, about 1–2 mm in diameter, above which tumor experience hypoxia and
acidosis due to the inadequacy of nutrient supply and metabolic waste clearance by
vessels. By exceeding this limit tumor starts a new malignant phase, which is often
followed by the process of metastasis. Metastasis is the spread of cancer cells into
lymphatic and blood vessels, circulate through the bloodstream, and then invade and
grow in normal tissues elsewhere. This state forms a direct threat to the body of a
host. In other words, a fault emerging during the cell cycle, propagated by replication
of mutants, characterized by excessive cell proliferation and their invasion to the
neighboring or distant organs, affects the activity of very complex mechanisms at the
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tissue, organorwhole body level. This fault propagation, surpassing cellular level, can
destroy an organism built with billions of cells, if not intercepted or stopped in time.

One of the crucial steps and also necessary conditions for cancer invasiveness
and motility is creation and development of an autonomous blood vessel network.
During this process, called angiogenesis, new blood vessels are built basing on the
existing network of vessels and penetrate the neighborhood of cancerous cells, sup-
plying them with nutrients and oxygen and removing waste products. This is not the
only factor determining malignancy of tumor. In the literature [47, 48] one can find
six general, distinctive and complementary capabilities—hallmarks of cancer—that
enable tumor growth and metastasis. They include: sustaining proliferative signal-
ing, evading growth suppressors (insensitivity to anti-growth signals), resisting cell
death (evading apoptosis), activating invasion and metastasis, enabling replicative
immortality, inducing angiogenesis. First three of them have been addressed in the
preceding section. This section focuses on angiogenesis.

The existence of well-developed vascular network is crucial for normal tissue
homeostasis. The process of angiogenesis occurs in healthy tissues at some stage
of their development and is one of the factors sustaining their natural growth, also
allowing embryogenesis, organs growth etc. During embryogenesis, the develop-
ment of the vasculature involves the birth of new endothelial cells (a thin layer of
endothelial cells lines the interior surface of blood vessels and lymphatic vessels) and
their assembly into tubes (vasculogenesis) and sprouting (angiogenesis) of new ves-
sels from existing ones [76]. This process is also important for wound healing, tissue
repair or female reproductive cycle. Therefore, in controlled and regulated situations,
angiogenesis is a highly indispensable mechanism resulting, in normal conditions,
in generally quiescent vasculature. The vascular endothelial cells that form walls of
blood vessels rarely divide but angiogenesis can stimulate them to do this.

Tumor cells, like any other cells, depend on nutrients and oxygen supplies. They
also need to secrete products of metabolic processes—toxic wastes and carbon diox-
ide. That is why, taking into account the excessive proliferation rates, without neo-
vasculature the size of tumor volume cannot exceed some limits determined by
penetration range of supplies from existing vasculature. Angiogenesis is initiated by
cancerous tumor cells producing and releasing molecules that constitute signals to
surrounding normal tissue. This signaling activates certain genes in the host tissue,
which code for proteins that promote growth of new blood vessels.

10.4.1 Pro and Anti-Angiogenic Factors and Mechanism
of Angiogenesis

Angiogenesis is regulated by both activator (proangiogenic factor) and inhibitor
(antiangiogenic factor) molecules. Normally, inhibitors dominate, blocking growth,
maintaining the state of equilibrium in the vascular system. When the need for new
blood vessels arises, activator production rate increases and the number of inhibitors
decreases. This prompts the growth and division of vascular endothelial cells and the
formation of new blood vessels begins (Fig. 10.6). Thus during tumor progression,
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Fig. 10.6 Schematic presentation of tumor angiogenesis and its role in tumor growth

Fig. 10.7 The angiogenic switch

an “angiogenic switch” is activated causing normally quiescent vasculature to sprout
new vessels that help sustain expanding neoplastic growths [6, 46]. This angiogenic
switch is considered as a discrete event in the tumor development involving a change
in the local equilibrium between activators and inhibitors of angiogenesis and is a
result of a tilt towards pro-angiogenic regulators (Fig. 10.7). This signaling activates
particular genes in the surrounding tissue that produce proteins which promote the
growth and sprouting of blood vessels and thus tumor development. First studies on
this phenomenon date back to the sixties and early seventies of the last century, when
the group of Folkman [35] described the hypothesis that tumors produce diffusible
factors that evoke angiogenesis. They also formulated a suggestion that identifica-
tion of key molecular players driving tumor angiogenesis could result in effective
strategies to inhibit it, and ultimately enable tumor starvation.

There are several mechanisms used by cancer cells to launch new vessels forma-
tion: sprouting from existing vessels (angiogenesis), recruitment of bone marrow-
derived endothelial progenitor cells to form new vessels (vasculogenesis) and split-
ting a single vessel into two (splitting angiogenesis). Moreover cancer cells can
intercept existing blood vessels or incorporate itself into the vessel wall to obtain
nutrients for their growth.

The process of tumor angiogenesis occurs without superordinate control and the
resulting vascular network is structurally abnormal. Anatomically, tumor vessels are
dilated, tortuous, and saccular with disorderly interconnection and branching [44].
Also, unlike the normal tissue vasculature, sites of increased as well as reduced
vessel density appears. Angiogenesis in normal tissues, for example, during wound
healing, is strictly controlled leading to a regular network. It justifies the description
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of tumor as “awound that does not heal” [30]. Tumor abnormal vasculature alters also
tumor microenvironment and allows for growth and progression of tumor. Despite
numerous efforts to explain the process, it is still not clear why cancer so easily
breaks down the regulatory pathways involved in control of angiogenesis.

More than a dozen different proteins and molecule types have been identified
as proangiogenic. Among them, two proteins are reported to be the most important
for tumor growth: the vascular endothelial growth factor A (VEGF-A, also known
as VEGF) and the basic fibroblast growth factor (bFGF). Both are produced inside
tumor cells and then secreted into the surrounding tissue. When they reach endothe-
lial cells (EC), they bind to specific receptors on the cells membranes. This activates
an internal signaling cascade, that finally promotes expression of specific genes in
nucleus of the endothelial cells, which are responsible to make products needed for
new endothelial cell growth, and starts further steps toward the creation of new blood
vessels (Fig. 10.8).

The first of these steps involves production of special enzymes (matrix
metalloproteinases—MMPs), which are subsequently released from the endothelial
cells into the surrounding tissue. The MMPs break down the extracellular matrix—
a support material that fills spaces between cells. This permits the migration and
division of these motile cells. When their number reaches a certain threshold, new
cells organize into tubes and evolve into a mature network of blood vessels, with
the help of an adhesion factor, such as integrin α or β [76]. Signaling cascade,
starting from VEGF-VEGFR2 (VEGF receptor), promotes contraction of the EC
cytoskeleton and weakens cellular connections ultimately causing EC migration
[44]. Moreover, perivascular cells (PVCs, a connecting tissue at the periphery of
vessels), pericytes as well as vascular smooth cells, around tumor vessels change
their characteristics. Normally, they interact closely with ECs to prevent vessel leak-
age but during angiogenesis they often become detached, facilitating EC movement.

Fig. 10.8 Signal cascade during tumor agniogenesis
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The presence of VEGF and bFGF is not enough to begin blood vessel growth. For
angiogenesis to begin, these activator molecules must overcome a variety of angio-
genesis inhibitors that normally restrain blood vessel growth. The list of factors can
be found in many reviews, e.g. [76, 101]. Among them, proteins called angiostatin,
endostatin, and thrombospondin appear to be especially important.

10.4.2 Angiogenesis—An Essential Step Towards
Tumor Metastasis

As stated earlier, angiogenesis allows tumor to grow beyond the avascular velocity
limit and thus become amalignant type. It is also important that angiogenesis is a crit-
ical component of tumormetastasis and that highly vascular tumors have the potential
to produce metastases [107]. Developing vascular network into the tumor mass pro-
vides an efficient route of exit for cancer cells to leave the primary site and enter the
bloodstream. This process facilitates the entry of cancer cells into the blood circula-
tion by building the network of highly permeable blood vessels.Another consequence
of tumor angiogenesis, associated with changes at the cellular level—defined by
loosely connected ECs and poorly associated PVCs—is leakage of intravascular flu-
ids and plasma proteins. This, together with lack of lymphatic vessels responsible for
clearance, in turn, results in increased interstitial fluid pressure (IFP). Together with
local vessels collapse, caused bymechanical stress from the proliferating cancer cells,
regions of hypoxia (lack of oxygen) and acidosis within tumor appear. Hypoxia is not
only responsible for promoting angiogenesis, by promoting production and release
of VEGF, inducing HIF1α production (hypoxia—inducible transcription factor), it
also activates oncogenes that promote invasive growth and metastasis [12]. As a
result, it promotes invasive and malignant behavior of tumor cells. Moreover, tumor
cells prove to be much more resistant to hypoxic conditions [44].

Another aspect of a tumor-induced angiogenesis is its impact on development
and efficacy of anticancer therapies. Reduced functionality of the immature vascular
network decreases the ability of treatment agents to reach their target. There is a lot of
ongoing research on anti-angiogenic treatment strategies that would potentially force
the tumor into a dormant state. One of the result of studies of tumor angiogenesis is
the notion of “normalization” of tumor vasculature [29, 57]. Therefore, nowadays
antiangiogenic therapy is considered often to be an essential component of multi-
drug cancer therapy, especially when combined with chemotherapy (see [90] and
references therein). Although tumor eradication in such combined therapy may still
be the primary goal, the chaotic structure of the angiogenically created vascular net-
work leads to another target for antiangiogenic agents (the so called pruning effect)
to facilitate more efficient drug delivery. The basic idea is to first re-establish vascu-
lature functionality using some initial treatment, and then use a proper killing agent.

The result of unrepaired fault in cell cycle can be amutant cell whose proliferation
is disrupted. Having reached all mentioned hallmarks of cancer thismutant and faulty
cell has a potential to grow excessively and evade apoptosis mechanism. By replica-
tion in a healthy tissue environment, faulty genetic information penetrate host body.
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When some critical mass is reached, this faulty group activates signaling cascade that
allows new vessel creation and further growth with possible invasion. From this point
of view angiogenesis is one of the crucial steps in multiphase tumor progression and
can be promoted by the discrete angiogenic switch, like a light switch.

10.5 Are Cancer Cells Good Players?

In 1997 Tomlinson and Bodmer [98] proposed to use methods of Evolutionary Game
Theory (EGT) for modeling interactions and communication in a population of cells.
This theory combines tools of the game theory with present knowledge of population
biology and evolution [68, 85]. EGT differs from the standard game theory by devi-
ating from the assumption about a rational decision making by competing players
to treating strategies as phenotypes of individuals, acquired through the evolution.
Moreover, in this approach the players represent subpopulations, containing indi-
viduals with different phenotypes (strategies), who can cooperate or compete for
resources. As a result of different environmental adaptations following a sequence
of games through the time (generations), the population may tend to stabilize its
structure, at the same time gaining a stable monomorphism or polymorphism of
population phenotypes. Such state is called to be evolutionary stable. The evolu-
tionary stable strategy (ESS) is defined as a phenotype that, if adopted by the vast
majority of a population, will not be displaced by any other phenotype [69].

Classical models of cancer development assume that mutations which pro-
mote development of cancer cells affect only individual cells in which they occur
[34, 64, 97]. However, recent studies point out that tumor cells are able to adopt
various genetic strategies which may influence the rate of their own development.
Moreover, amutation in one cell can also affect neighboring cells [98]. Itmay be com-
binedwith cooperative behaviors or competition for resources, such as space, oxygen
and nutrition that occurs between different subspecies within the same tumor [70].
This leads to a conclusion that tumors should be analyzed as complex ecosystems or
networks [3, 23] in which internal communication between tumor cells, and between
tumor and normal cells, their competition for resources, hierarchical subordination,
and collaboration play an important role in cancer development and differentiation or
disease transmission and reaction to stresses including therapy [8, 40]. In otherwords,
the development of the disease and its progress depend on propagation of results of
interactions between individual cells in the network both in time and space.

10.5.1 Evolutionary Games, Spatial Evolutionary Games
and Mixed Spatial Evolutionary Games

Different cells with different phenotypes participate in evolutionary games. Diverse
correlations, interactions and cells coexistence in population have been studied,
taking into account the possible domination of tumor cells (phenotypes acquired



10 Cancer—A Story on Fault Propagation … 243

by mutations). Tomlinson and Bodmer [98] have been followed by others, who
considered production of cytotoxic substances, production of growth factors leading
to tumor angiogenesis [5], invasion and metastasis [66], tumor-environment interac-
tions [38], the radiation-induced bystander effect [92], resistance to chemotherapy
and p53 vaccine [9], interactions between osteoclasts and osteoblasts [28], tumor-
stroma interactions [40], interaction between different tumors [9] and other issues
(see [8, 93] for a survey and other references). Thus, the basic phenomena described
in the previous sections could be modeled by this machinery.

Roughly speaking, the evolutionary game is defined by the pay-off table (matrix)
in which both rows and columns represent possible phenotypes and the entries are
changes in fitness resulting from interaction between two phenotypes. Evolutionary
strategies are defined as fractions of phenotypes in the population.

Using EGT we are able to predict whether the given population has a tendency
to become heterogeneous or rather only one phenotype will prevail, dominating the
whole population. To track propagation of results of the game in the network in time,
we may use replicator dynamics equations [53] describing the fate of population in
time starting from initial state and converging to the equilibrium defined by ESS. If
xi (i = 1, . . . , n) denote the evolutionary strategies then their replicator dynamics
is defined by the set of n − 1 equations:

ẋi = xi (E(i) − E(x))

where E(i) denotes the average profit of the strategy i in the population defined by
x , and E(x)—the average profit of this population.

However, because of assumptions about perfect mixing it gives only mean field
results. As a result, it is not possible to take into account effects of local arrangements
on intercellular interactions.

The machinery of EGT supported by replicator dynamics enables analysis of time
evolution of phenotype structure in cell populations. On the other hand, it gives no
information about spatial distribution of these phenotypes in tumors. Incorporation of
this information is possible when themethodology of spatial evolutionary games the-
ory (SEGT), which enables study of players’ allocation, is applied.Moreover, the use
ofSEGTenables considerationof propagationofmodeledphenomena in the network.

This is why they have become very popular recently, although they are based on
the quite old idea of cellular automata [74]. Spatial tools have already been used in
modeling of carcinogenesis [4]. The line of reasoning presented there has been the
starting point for our analysis, as the most suited to the applications focused on in
our investigations The spatial games are played iteratively on a lattice forming torus
and each tie in a competition is solved randomly. The following steps are performed
every iteration [4]: payoff updating—the sum of local fitness in the neighborhood,
removing players—cell mortality, reproduction—defining which phenotype will be
on an empty place. There are three ways of including cell mortality in terms of
updating the lattice [4]: synchronous—all cells are replaced in accordance to the
lattice from previous iteration, asynchronous—one cell is chosen randomly, semi-
synchronous—10% of random players participate in the game.
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Semi-synchronous updating is used in analysis presented here. Numerous studies
and simulations (e.g. [4, 62, 66, 92]) show that this method reflects a biologically
relevant situation. Indeed, synchronous updating would introduce a kind of a global
controller of the system (everything is replaced at one time instant), while during
asynchronous updating small cell clusters could not be removed. The next step of the
algorithm is the replacement for chosen players. The important factor for this phase
is the local adaptation, so the sum of eight scores (number of players may be differ-
ent for different neighborhoods) from cell–cell interaction is calculated, according
to a pay-off matrix. Basically, in the examples that follow two kinds of reproduction
are presented: deterministic—the winner is the strongest player, probabilistic—local
adaptation is divided by sum of local fitness in a neighborhood. According to the
authors the latter shall allow phenotypes with lower fitness, but with a better spatial
arrangement to dominate the population. Two other methods have been introduced in
[62]: quantitative—suggesting correlation between players with the same phenotype
(a counterpart for the probabilistic one), and switching—if the differences between
adaptations are relatively big, then the quantitative reproduction is the choice (a
chance for weaker players). In the appropriate case the deterministic reproduction
shall be used. To define a threshold responsible for the choice of one of the repro-
ductions, an additional correction factor, given as a ratio of minimal and maximal
fitness has been added.

In the case of application of SEGT to analyze cancer cells behavior, the question
that arises is whether each cell has only one strategy (represents one phenotype) or
rather it should be treated as containing different strategies. The new idea which
we have used in modeling spatial effects associated with evolution of cancer cells
is related to their heterogeneity. It leads to the conclusion that cancer cells should
be considered as representing different phenotypes at the same time, described by
frequency of occurrences. The spatial games resulting from this assumption will be
called mixed spatial evolutionary games (MSEG).

Modification of the way spatial games are used requires the change in definition
of the local fitness (adaptation). It is defined in a way similar to an expected result
of the game with mixed-type strategies. The result given by each pair of strategies
is multiplied by their frequency of occurrence. Hence, the analysis is more complex
and difficult, due to an increased number of feasible spatial structures. Nevertheless,
for simplification, both types of spatial games may be represented in a way similar
to the mean-field models.

The new formulation of spatial games also definesmortality of the cells in a differ-
entway.Here, chosen player stays alive and either its phenotypes ratio is changed or it
affects cells in the neighborhood. Additionally to two basic reproductions (determin-
istic and probabilistic) at least three additional could be added for the mixed spatial
games: weighted mean of the strongest players—the weighted mean accordingly to
players payoffs is taken, weighted mean of the best clusters—players are organized
into clusters and the weighted mean is calculated for players in the strongest cluster,
spreading reproduction—mentioned previously possibility to impact surrounding
cells. Players with smaller payoff (multiplied by the correcting factor) are taken into
account for the weighted mean. For mean weighted reproductions an additional
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parameter (factor) is needed to define the number of cells or clusters for the
computation. Switching reproduction defined previously for SEGTmay be also used
for MSEG. In this case switches take place between the deterministic reproduction
and the weighted mean of the strongest players).

10.5.2 Four-Phenotype Model of Interaction Between Tumor
Cells—Time and Space Propagation

EGT-based theory may give an answer to the question if there exists a stable equi-
librium (ESS) between different phenotypes (strategies, clones) leading to a strong
heterogeneous structure of cancer cell population. It also provides clues as to how
such structure might depend on parameters, which characterize interactions between
tumor cells and environment, and the initial distribution of phenotypes in the pop-
ulation (initial conditions). It should be stressed that analysis of evolutionary stable
strategies allows to study asymptotic properties of the population only. Unfortu-
nately, in almost all published studies on EGT models the analysis is limited to two
or three phenotypes. The exception is our paper [93], in which interactions between
four different phenotypes of cells are illustrated using three-dimensional simplexes
and time courses. As far as we know, the only other work which considers four phe-
notypes is [10]. However, instead of studying different equilibrium points between
phenotypes and their dynamics, the authors analyzed there only the final results (dif-
ferent subpopulations), with respect to changes of fitness parameters. It is important
to notice that the dimension of replicator dynamics equations in the case of three
phenotypes is equal to two, which means that complex dynamical behaviors typical
for nonlinear dynamics should be absent. In our opinion, it is one of the major disad-
vantages of the small number of considered strategies. An important finding is that
four-phenotype model implies third order dynamics of replication, which enables
existence of complex dynamical behaviors, including strange attractors. This may be
a crucial hallmark of evolutionary game theory analysis. To illustrate advantages of
our approach to analysis of increasing number of strategies let us consider the model
which combines two classical models of Tomlinson [96, 98] (Table 10.1). The model
contains four different strategies/phenotypes of cells:

A production of a growth factor in a paracrine fashion;
P production of cytotoxic substance harmful to the neighbors;

Table 10.1 Proposed pay-off matrix

Strategies A P Q R

A 1 − i + j 1 + j − e + g 1 + j − h 1 + j

P 1 − i + j − f 1 − f − e + g 1 − h 1 − f

Q 1 − i + j 1 − e 1 − h 1

R 1 − i + j 1 − e + g 1 − h 1
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Q resistance to the cytotoxic substance;
R neutrality

Parameters used to define the measure of fitness are given by: the profit from
growth factors ( j), the cost of producing the growth factors (i), the harmful effects
of cytotoxins ( f ), the cost of producing cytotoxins (e), the profit from affecting
neighbors by cytotoxin (g), the cost of resistance to cytotoxin (h). Assuming that
the basic cost of the interaction of two individuals is 1, the changes in the measure
of fitness defined by the entries of the matrix could be easily deduced. For example,
when A meets A, it benefits from production of growth factors but also covers the
cost of such production. In what follows, by E(k) we will denote the average profit
of the strategy in the column k in population with fractions of phenotypes defined by
A, P, Q and R. In the Tomlinson model of the so called angiogenic games the only
condition to reach a stable evolutionary state is that the cost of producing growth
factors i should be smaller than the benefit j . In the extended model the expected
pay-offs (the sum of the products of frequency and pay-off) are defined as:

E(1) = 1 − i + j − f · P E(2) = 1 − e + j · A − f · P + g · (A + P + R)

E(3) = 1 − h + j · A E(4) = 1 + j · A − f · P

To achieve quadruple equilibrium following relations should be satisfied:

E(1) = E(2) = E(3) = E(4) E(1) = E(4) → A = ( j − i)/j

E(3) = E(4) → P = h/ f E(2) = E(3) → Q = (g − e)/g

R = 1 − A − P − Q

For the polymorphic coexistence between all strategies, each expected frequency
has to be constrained to the values between 0 and 1. If the equations above are not
satisfied, the results may lead to points that indicate different than quadromorphic
populations. The equilibrium point could be either an attractor or a repeller, and
the population itself may be unstable. The large number of parameters and four
phenotypes cause that the analysis of the model is not as trivial as in the case of
separate models. To illustrate the feasibility of the model final states, we can present
them in relation to two parameters. Figure10.9 shows that different monomorphic
and polymorphic populations may be obtained for various values of parameters. The
disadvantage of this approach is that the dynamics is not shown. Moreover, the exact
ratios of phenotypes are arbitrarily assumed and the simulation was performed only
for one set of initial frequencies (in the presented case they are all equal). Some
basic dependencies may be seen at the first glance, like threshold value of e equal
0.5 which is related to the value of g. However, the interpretation of other results
is not so obvious, for instance the small area of A, P, Q population just above the
quadromorphic one. The second simulation has beenperformed for different values of
f and i . The results are evenmore distinct not only in terms of quantitative results, but
also in terms of the shapes of regions. Due to a very large number of different results
and combinations of the parameters, we discuss only the case when the population
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Fig. 10.9 Different subpopulations in accordance to changing parameters

Fig. 10.10 Mean-field results for i = 0.3, j = 0.4, f = 0.4, g = 0.5, e = 0.3, h = 0.1

is quadromorphic. The EGT analysis (the mean field model) (Fig. 10.10) shows that
the steady state is reached in oscillatory way. Q-cells dominate (due to a relatively
small h), P- and A-cells have got the same value of final frequencies of occurrences
and the smallest fraction in the population is constituted by R-cells.

SEGT model simulation (Fig. 10.11) was performed for a lattice generated ran-
domly and only once (different initial lattices and stability of the SEGT would also
be an interesting subject of studies). Probabilistic and deterministic reproductions
provided results more or less similar to themean-fieldmodel. Inmost simulation iter-
ations all phenotypes existed in the population. However, at the end of deterministic
reproduction A-cells have been repressed. Together with quite strong oscillations,
it may indicate that the process changes frequently and may depend on cells cho-
sen in each iteration (semi-synchronous updating). Similar results can be obtained
with switching reproduction, but then the oscillations are smaller and A-cells vanish
shortly after the simulation start. Quantitative reproduction gives quite a different
result in comparison with other reproduction types as well as the mean-field model.
Here R-cells are the dominating ones, which is contrary to the results of the mean-
field model, but a bit more similar to the switching-type reproduction (which may
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Fig. 10.11 SEGT results for i = 0.3, j = 0.4, f = 0.4, g = 0.5, e = 0.3, h = 0.1

Fig. 10.12 MSEG results for i = 0.3, j = 0.4, f = 0.4, g = 0.5, e = 0.3, h = 0.1

contain also some quantitative parts). What is more, only two phenotypes survive in
the population. Figure10.12 presents results of the MSEG approach for four repro-
duction schemes: probabilistic and deterministic as for classic SEGT andwith factors
3 and 5 for weighted mean reproduction and intervals one, respectively.

Similarly as for SEGT, the initial lattice was generated randomly. It is not possible
to compare directly the final lattices, however the generation-charts (analogous to
those given by replicator dynamics in a mean-field game) are comparable. As we can
see, the dynamics ismore stable than in its SEGT counterpart. Probabilistic reproduc-
tion gives results quite similar to the mean-field outcome (Q-cells are the dominating
ones). Other reproduction types give different results, regarding domination in the
population. However, all of them show that a quadromorphic population is possible.
In the case ofMSEG, the final lattices show not only the different structures and clus-
ters of phenotypes, but also different fractions of phenotypes for each, particular cell.
The model yields a large but finite number of diverse results. However, the analysis
is complex due to numerous parameters, intermediate relations between phenotypes
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and different possible scenarios, defining the game. Other strategies may be incorpo-
rated in a similar way, which increases the complexity and dependency of the analysis
onmassive simulations and graphical representations. Yet another possible extension
resulting from mixing different Tomlinson’s models consists in including an addi-
tional phenotype M (the cells producing an autocrine antiapoptotic factor). In this
case it is impossible to get a stable polymorphic population with all phenotypes. For
the simplex representation (phase portrait) there are points and regions that overlap
each other. For instance, the point exactly in the middle may be read as a dimorphic
(M and R), trimorphic (A, P and Q) population or even a population with all phe-
notypes (if it was possible for this model). Unfortunately, by increasing amount of
phenotypes and the size of the lattice (whichmay be crucial formore accurate results)
the simulation becomesmore andmore complex in terms of numerical computations.

Although the results of modeling and simulation have only quantitative meaning,
they are biologically relevant. Comparing them to results of different experiments
with cell lines performed by biologists cooperating with us facilitates discussion
of the impact of different parameters on the development of phenomena related to
interactions of the cell populations. Moreover, these results are used to plan new
experiments which may explain processes still far from being recognized. It also
enables study of cancer as a network society of communicating smart cells [11].

10.6 Conclusions and Discussion

In this chapter we have been concerned with three issues related to the process
of cancer development and transition of the disease understood as propagation of
molecular failures in biological network:

• The molecular mechanisms controlling and monitoring the cell cycle;
• The fragility of some signaling pathways, which may induce neoplastic transfor-
mation in cells leading to carcinogenesis;

• The role of angiogenic switch in cancer evolution and metastasis.

The main purpose of the study was to outline our own views on the issues asso-
ciated with treating the cancer as a result of fault propagation in the gene—cellular
network. The study is in large part a critical survey of published material includ-
ing our own contribution. This review, although partly idiosyncratic, covers such
major areas of cancer-related phenomena as the role of cell cycle clock, mutagene-
sis, avoidance of apoptosis, production of growth factors, motility and invasion, and
intra- and extracellular signaling. A complete review of approaches used to study
these phenomena would require a separate volume devoted solely to mathematical
modeling. Therefore we have chosen to focus on only one of possible mathematical
and system theoretic tools for their modeling: theory of games. More precisely, we
discuss our own simulation results related to the possible dynamics and/or spatial
distribution of the processes discussed in this chapter. These results are based on the
theory of evolutionary games and spatial evolutionary games. Moreover, we present
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our original contribution to this area, resulting from a new class of population games
called mixed evolutionary games.

Our study is far from being an exhaustive review, even with respect to processes
related to spatial and temporal propagation of carcinogenic signals in the intracellular
networks. It is strongly related to our professional experience based on our back-
ground and collaboration with biologists and clinicians. This experience direct our
considerations towards system engineering mechanisms in the processes described
above. Moreover, there exists a number of questions devoted to the systemic treat-
ment of phenomena and processes related to cancer development, which are absent
in our study. Cancer is a complex systemic disease, in which inherited mutations are
supplemented by acquired “hits”, due to chance or exposure to environmental and
behavioral factors. Some of the somatic mutations are under selection (the driver
mutations) but most are neutral (passenger mutations). Despite a progress in systems
biology methods, it is still not clear how to distinguish them (see [13]). As we have
mentioned, cancer cells prevail over regulatory circuits which subordinate them for
the good of the organism. We have not attempted to answer the “very engineering”
question why, instead, they switch on a long-suppressed circuitry, which allows them
to function semi-autonomously, very much at the expense of the “host” organism.
Some researchers suggest that it is related to the reverse evolution of those cells to
the roots of multi-cellular life (see [11]). It would provide at least a partial answer
to the one of the most intriguing question of propagation phenomena in biological
networks: why is it so easy for cancer to break down the regulatory pathways? Yet
another process, only mentioned in our study, which justifies this way of thinking, is
high leveled self-organization of cancer cells, which allows them to enroll collabo-
ration of normal cells such as fibroblasts, create their own vasculature, and organize
themselves similarly as bacteria do to explore and colonize remote environments (in
the metastatic process). On the other hand, the progress in the self-organization and
evolutionary advantage of cancer populations is considered by other researchers as a
step forward in the evolution. We hope that some of these problems could be studied
with the tools presented in this chapter.
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Chapter 11
Propagation Models and Analysis for Mobile
Phone Data Analytics

Derek Doran and Veena Mendiratta

Abstract People in modern society use mobile phones as their primary way to
retrieve information and to connect with others across the globe. The kinds of con-
nections these devices support give rise to networks atmany levels, from those among
devices connected by near-field radio or bluetooth, to society-wide networks of phone
calls made between individuals. This chapter introduces state-of-the-art propagation
models that have been applied to understand such networks. It discusses how the
models are used in many innovative studies, including how short-lived information
spreads between phone callers, how malware spreads within public places, how to
detect fraudulent and scamming activity on a phone network, and to predict the
propensity of a user to unsubscribe from a mobile phone carrier. It concludes with a
discussion of future research opportunities for the study of propagation modeling to
mobile phone data analytics.

11.1 Introduction and Motivation

As of February 2013, an astonishing 6.8 billion mobile phone subscriptions are
active across the world.1 This huge number of subscribers, constituting a majority
of the world’s population, reflects how citizens of countries with varying socioe-
conomic conditions all rely on cellular devices to communicate and connect with
others. These devices, which are typically full of data about who our contacts are,
the kind of information we share, who we communicate with, and our physical loca-
tion have also emerged as an attractive platform to study humanbehaviors and activity
across large geographic regions. For example, the analysis of mobile phone data has

1 http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats.

D. Doran (B)

Department of Computer Science and Engineering, Kno.e.sis Research Center,
Wright State University, Dayton, OH 45435, USA
e-mail: derek.doran@wright.edu

V. Mendiratta
Bell Labs, Alcatel-Lucent, Naperville, IL 60563, USA
e-mail: veena.mendiratta@alcatel-lucent.com

© Springer International Publishing Switzerland 2015
D. Król et al. (eds.), Propagation Phenomena in Real World Networks,
Intelligent Systems Reference Library 85, DOI 10.1007/978-3-319-15916-4_11

257

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats


258 D. Doran and V. Mendiratta

led to the development of algorithms that automatically identify physical locations
people are interested in [36] and reveal the typical mobility patterns of people within
a country [5, 7, 41]. Studying the structure of calls placed between mobile devices
have identified strong correlations between physical location and social friendship
strength [14], and have even been used to discover regional economies within devel-
oping countries [34]. Such studies highlight the amazing waysmobile phone datasets
let us study the collective actions of people through the structure of people’s com-
munications, interactions, and friendships. We have only just started to tap into the
intelligence that can be mined from these datasets.

The main function of a mobile phone is to transfer information from one user to
another. This information may be contained in the informal and unstructured data
users transmit via SMS messages and voice calls. It may also be formal, structured
data like images, files, and video transferred between devices in local areas through
near-field communication (NFC) and bluetooth radios, or across the Internet to our
contacts through smartphone apps and other third party services. Records about
these transmissions are typically stored on a mobile device and may be collected
by smartphone applications running in the background, or recorded by the network
service provider. These records may reveal who information was transmitted to, what
type of data was transferred, where the sender physically performed the transmission,
and when the data transfer occurred. The relational nature of this data naturally gives
rise to networks of users or devices within which many kinds of information flow.
Since mobile phones are now ubiquitous across the world, understanding the process
through which information propagates [29] across these networks adds to our basic
understanding of the modern communication patterns humans exhibit.

In this chapter, we present a number of state-of-the-art propagation models and
algorithms that have been applied to networks extracted frommobile phone datasets.
The methods were selected so as to demonstrate the diversity of models that have
been developed for this purpose, and to highlight the way they support many dif-
ferent innovative applications. We first discuss models that support the study of
information diffusion across society. We then present epidemiological models that
are tailored to the unique dynamics of communication between mobile devices in
local areas, and how they are applied to anticipate the dynamics of malware transfer-
ence between devices in local-area networks. Finally, we introduce sender-specific,
receiver-specific, and clustering algorithms that compute the spread of information
or influence and support a host of network provider services, including the identi-
fication of scammers and to predict who is likely to switch providers in the near
future. We emphasize that this chapter is not meant to be a comprehensive survey
of mobile phone data analytics, nor is it meant to present an exhaustive summary
of the many propagation models that have been developed and could be utilized to
understand mobile phone datasets. Instead, it intends to: (i) demonstrate how mod-
eling propagation phenomena is a critical tool for mobile phone data analytics; (ii)
show researchers interested in mobile phone data analytics the kinds of propagation
models and algorithms they should be equipped with; and (iii) expose a number of
avenues of future research in the study of propagation within mobile phone datasets.
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This chapter is organized as follows. Section11.2 introduces the kind of data and
networks that may be extracted from mobile phone communications. Section11.3
presents propagation models used to understand the diffusion of information across
mobile phone networks. Section11.4 discusses epidemiological models and their
application to the studyofmobilemalware. Section11.5 introduces propagationmod-
els used in the development of novel applications for service providers. Section11.6
reflects on the works presented and offers exciting directions for future research.
Concluding remarks are given in Sect. 11.7.

11.2 Mobile Phone Data Analytics

We define mobile phone data analytics as the mining and analysis of datasets
whose records encode communication or interaction activities betweenmobile phone
devices. Such datasets are typically extracted from a collection of devices that indi-
vidually contain information about who the device’s owner (i.e. mobile phone user)
has a relationship with, as defined by the collection of mobile phone numbers in its
contact list. The devices may also carry information about when and to whom the
user transmits information via NFC or bluetooth to neighboring devices, and records
of the SMS messages and phone calls she placed.

Smartphone applications that have sufficient permissions to access a device’s data
may extract information for performing mobile phone data analytics. Because it is
difficult to deploy and obtain permissions for retrieving such information, however,
researchers typically rely on call data records (CDRs) provided by a mobile phone
service provider. The kind of information encoded in a typical CDR is provided
in Table11.1. It includes the phone number of the caller and callee, the duration
of the call, the cost of making the call, if the call was on or off the provider’s
network, the date and duration of the call, and the base station used to connect the
caller’s mobile phone to the network. The position of this base station is used in
many studies to approximate the position of a user when they make a phone call,
while the duration, cost, and whether the call was on network may be attributes
reflecting the strength of a relationship between two individuals. For example, we
may infer that the back and forth off-network calls recorded in entries 1 and 2 of
Table11.1 represent communication between users who share a strong relationship
since they both incurred a financial cost and spoke for a long period of time. The
calling_num and called_num fields may be used to create a directed network
of mobile phone calls between users.

The data collected from a mobile device or by a service provider may capture
the structure of communications and relationships at multiple levels as illustrated
in Fig. 11.1. At the local level, mobile devices equipped with NFC or bluetooth
technology are capable to transmitting data between each other. At this level, the
analysis exploits the position of devices to define a structure of possible local data
transmissions to discover how data propagates in a small public area. These data
transmissions may correspond to the automatic pinging of neighboring bluetooth
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Local Connectivity Social Contacts Calling Network 

Fig. 11.1 Structure within mobile phone datasets among devices (local level), address books
(contact level), and network-wide communication (calling level)

devices for deriving the density of people in an environment or to infer real-life
social networks [37], data transmissions by an intentionally installed application, or
the automatic spreading ofmalware or viruses that runwithout the user knowing [51].
At the contact level, phone numbers collected from the address book of users’ devices
are extracted and aggregated to form a collection of social relationships among users.
At the calling level, CDRs collected by service providersmay be used to study human
communication across large geographic areas.

Many different propagation models and algorithms are applied to mobile phone
data at the local, contact, and calling level. We divide the models covered in this
chapter according to the type of analytics they support in Fig. 11.2, namely by: (i)
understanding information diffusion; (ii) modeling malware propagation; and (iii)
supporting network provider applications. These three types represent the diversity of
the different kinds of mobile phone analytics supported by propagationmodels. They
range fromacademic studies that seek to discover intrinsic qualities about information
dissemination, to theoretical analyses that can be used to solve a widely-applicable
problem facing society, tomodels that are specifically developed to support a business
enterprise.

A roadmap of the specific models presented in this chapter is listed in Table11.2,
including a brief summary of the model and the network level it operates on. Infor-
mation diffusion studies rely on structural models that capture spreading dynamics
(causality trees), statistical approaches for characterizing complex distributions (mix-
ture models and correlation metrics), and algorithms for finding users who play a
critical role in the diffusion process (user clustering). The analysis of malware uses
carefully designed SIR, SIS, and SIDR epidemiological models that also incorporate
the unique mobility dynamics of mobile phone devices in public spaces. Practical
applications utilize user clustering algorithms and new models for energy propaga-
tion across a mobile phone network.



262 D. Doran and V. Mendiratta

Fig. 11.2 Roadmap of the propagation models and the studies they support in this chapter

11.3 Information Diffusion

No matter the medium used to transmit information between mobile phone devices
and their users, the chance that information spreads from one user to another depends
on the strength of the relationship they share and on the dynamic nature of the
information as it passes through the network of mobile users. Intuitively, the strength
of the relationship shared between two users strongly impacts when, how often, and
what kind of information is shared. Calls to a family member, for example, may
happen much more frequently compared to calls made to a bank or doctor’s office,
increasing the chance of meaningful information dissemination. The dynamic nature
of different types of information as it passes through a network is also critical. For
example, information about topical news stories may experience a large number of
transmissions due to the ‘buzz’ surrounding breaking news, but the frequency of
these transmissions may decay over time as this news becomes less relevant. As
another example, a person may broadly share a major life event with all of their
contacts, but share a more personal story to a small subset of her contacts. We next
examine information propagation models and algorithms that incorporates either of
these aspects to make discoveries about the nature of mobile phone communication
patterns.
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Table 11.2 Propagation models and methods in this chapter

Propagation model Summary Structure level

Information diffusion (Sect. 11.3)

Finite mixture model Model the distribution of times between
and duration of diffusions between links

Network

Mobility correlation metrics Search for relationships between physical
mobility and creating new network
connections

Network

Causality trees Models pass-along dynamics where
information transmissions can only
happen within a window of time τ

Contact

Community based greedy algorithm Identify most influential members of a
phone network under a weighted influence
diffusion model

Network

Malware propagation (Sect. 11.4)

SIR-based model Models malware spreading dynamics
where devices can recover and immunize
themselves from infection

Local

SIS-based model Model steady-state infection levels of
malware in local areas where devices
cannot be immune from infection

Local

SIDR-based model Optimize the maximum damage that may
be caused by a malware epidemic that not
only infects but also kills devices

Local

Novel applications (Sect. 11.5)

Sender-centric energy propagation Model accumulation of influence where
senders force information on receivers

Network

Receiver-centric energy propagation Model accumulation of influence where
receivers deicide what information is
retained

Network

Markov clustering algorithm Discover fraudulent users based on the
structure of information propagation

Network

11.3.1 Characterizing Diffusion Frequency: Finite Mixture
Models

One of the most basic properties of communication patterns are the frequency with
which transmissions are made between users. Kim et al. [26] performed a compre-
hensive analysis of these frequencies by analyzing the communication activity of
over one million bi-directional pairs of mobile phone subscribers from a nation-
wide cellular provider. Using metadata about each subscriber, they classified pairs
by whether they are both in-network, if they are in different networks (out-network),
and if they are family members. The objective of their study is to develop a universal
model that can accurately capture the frequency of information exchange across all
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three classes of users, as characterized by the inter-arrival times between calls made
between pairs.

An initial analysis by the authors revealed that the empirical distribution of inter-
arrival times do not follow a single exponential distribution, suggesting that the call
arrival process is not Poisson for at least one class of pairs. They thus propose a
finite mixture model to universally characterize the inter-arrival times of all pairs. A
mixture model assumes that the data is drawn from a finite number of K distributions
as specified by:

f (y;ψ) =
n∏

i=1

f (yi,ψ) =
n∏

i=1

K∑

k=1

wkfk(yi; θk) (11.1)

where fk(yi; θk) is one of the K distributions of the mixture, y = (y1, . . . , yn) is the
vector of observations, andw1, . . . , wk are positivemixingweights assigned such that∑K

k=1 wk = 1. They decide to consider mixture models of Gamma, Lognormal, and
Gaussian distributions because they all are capable ofmodeling non-negative random
variables with a large range of possible density shapes. The model’s collection of
parameters ψ can be estimated by the expectation-maximization algorithm and use
the Akaike Information Criterion [27] and Minimum Description Length [4] metrics
to find the best number of components K .

11.3.1.1 Model Application

The authors fitted Gamma, Lognormal, and Gaussian finite mixture models to the
distribution of inter-arrival times across all pairs of users andwithin the three different
types of pairs. Although each pair of users exhibit a unique calling pattern, they
find that the lognormal mixture model offers a very tight fit (MSE = 0.3605 ×
10−4). Family pairs were found to require a mixture model that is of higher order for
fitting their inter-arrival time distributions, but of lower order to fit their call duration
distribution. In contrast, out-of-network pairs need a low order mixture model to
capture inter-arrival times and high order model to capture call durations. About
27% of all pairs’ inter-arrival time distributions are best fitted by a single order
model.

11.3.2 User Mobility and Diffusion: Mobility Correlation
Metrics

The distribution of peoples’ physical locations are intimately related to the way
information diffuses among users of a mobile phone network. This is because, prac-
tically, information passed through mediums like NFC or bluetooth require devices
to be near each other. Furthermore, sociological studies confirm how we are more
likely to connect and share information with those near us because the social links
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encouraging this behavior are driven by spatial proximity [43]. Understanding the
way humans diffuse physically is thus an important consideration when studying the
spread of information across a mobile phone network.

Call data records record the id of the cell phone tower used by a sender and
receiver used during a conversation. By mapping these id’s to the physical position
of the tower, we can study the approximate locations where a user regularly submits
mobile phone calls and their daily trajectories through a geographic area. We can
also find correlations between the physical proximity of two users and frequency
of calls made between them. Such correlations can be expressed using a variety of
metrics proposed by Wang et al. [48]:

1. Distance. This metric refers to the most likely physical distance separating two
users in the network. Let Li(x) be the location of user x during his ith recorded
call and n(x) be the total number of calls made by x. Let

PV (x, l) =
n(x)∑

i=1

1(l = Li(x))/n(x) (11.2)

be the probability that a user x visits a location l where 1(q) is an indicator
function that returns 1 if the statement q evaluates to true and 0 otherwise. The
most likely location of user x is thus given byML(x) = argmaxl∈Loc PV (x, l). We
can define the distance d between users x and y as d(x, y) = dist(ML(x), ML(y))
where dist is a measure of geographic distance.

2. Spatial Co-location rate. This metric captures the likelihood that two users visit
in the same location but not necessarily at the same time. Assuming their visits
are independent, it is given as:

CoL(x, y) =
∑

l∈Loc

PV (x, l) × PV (y, l) (11.3)

where Loc is the set of locations that both x and y have been recorded as visiting.
3. Cosine similarity. This metric uses cosine similarity to capture how similarly two

users frequent the same locations. It is given as:

Cos(x, y) =
∑

l∈Loc

CoL(x, y)

||PV (x, l)|| × ||PV (y, l)|| (11.4)

4. Weighted cosine similarity. This metric corresponds to the tf-idf version of cosine
similarity. In essence, the tf-idf version adds weight to co-location events within
low-density areas, that is, areas where users are seldom seen, and penalizes high-
density areas. For example, pairs that frequent seldom visited locations may be
more likely to have a relation than those who both frequent common locations.

5. Co-location rate. This metric measures the probability two users will be located
in the same location in the same day and hour. It is given as:
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CoL =
∑n(x)

i=1

∑n(y)
j=1 θ(�T − |Ti(x) − Tj(y)|)1(Li(x) = Lj(y))
∑n(x)

i=1

∑n(y)
j=1 θ(�T − |Ti(x) − Tj(y)|)

(11.5)

where θ(x) is the Heaviside step function and �T = 1 h. The numerator counts
the number of times two users visit the same location at the same time, normalized
by how frequently they are active at the same time.

6. Weighted Co-location rate. This is the tf-idf version of CoL where the normaliza-
tion factor is the log of the number of users at each location in the same hour.

7. Extra-role Co-location rate. Thismetric is definedbyCoL taken over only evening
andweekend hours. Co-location during these timesmay be an important predictor
of an offline relationship.

11.3.2.1 Model Application

Wang et al. applied these mobility correlation metrics to a dataset consisting of
over 6 million users and 90 million calls [48]. Their analysis focuses on the 50,000
most active individuals in the dataset. They find that the geographical distances
between pairs exhibit a heavy-tailed distribution, which is consistent with a number
of previous findings [28, 31, 33]. The CoL and SCoL measures of co-location rates
reveal how many pairs can be found to be visiting the same locations, but for short
periods of time. Furthermore, the geographical distance between two users decays
only logarithmically with the Col and Cos measures of proximity.

Since mobility and information diffusion are intimately related to each other, the
authors utilize thesemetrics to predict whether new information diffusions will occur
in the future. They train a C4.5 decision tree to classify whether a potential connec-
tion in the calling network that does not exist during time period t will emerge at
time period t + 1. The tree is trained with network structure and mobility correlation
metrics and yields a precision of 73.5% and recall of 66.1%. Compared to clas-
sifiers that only consider network structure metrics, this precision and recall is an
order of magnitude higher. This confirms that humanmobility patterns are intimately
associated with the future diffusion of information across new connections.

11.3.3 Modeling Pass-Along Dynamics: Causality Trees

An intriguing type of information people share between both their peers and close
contacts are breaking news stories or rumors.We define such information to be short-
lived, as people become disinterested in news and rumors the longer it has been since
it broke out on the network. To model the dissemination of such information, we
consider pass-along spreading processes [39]. A pass-along spreading process is
defined as onewhere a user can only pass information to some subset of their contacts,
and only within a short a period of time τ since she received the information. This
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Fig. 11.3 Example of a
pass-along dynamic modeled
by a causality tree where
d = 3 and s = 9. The root
user of the tree passes
information along to ko = 2
out of his k′

o = 7 contacts.
Users with the same color
exist at the same depth of the
tree

pass-along process repeats for every user that has received this information, until no
new users have become informed. Figure11.3 illustrates how a pass-along process
is modeled as a diffusion tree whose depth d corresponds to the maximum distance
from the initiator to an informed user, size s is the number of users who become
informed, and whose paths represent a sequence of consecutive communications
whose time between calls are always less than or equal to τ.

A causality tree can be used to model the probability a user k will be contacted
by ki other users and subsequently pass along information to ko users within a given
τ. Such an event corresponds to a user in a causality tree that has in-degree ki and
out-degree ko given τ. These probabilities can be used to identify the extent to which
a user in the network chooses to participate in the pass-along process. For example,
a user who is entirely disinterested in spreading information would be represented
in the model as a user in the tree with large in-degree and low out-degree. Users
excited to pass information widely corresponds to those having large out-degrees in
the cascade tree. Let k′

i and k′
o be the in- and out-degree of node k across a network of

contacts (e.g., the number of others who have k as a contact and number of contacts k
has, respectively). Since k receives and sends information from and to only a subset
of all contacts during a pass-along along process, the probability k has in-degree ki

and out-degree ko in a causality tree is given by:

p(ki, ko; τ) =
∞∑

k′
i=ki;k′

o=ko

p∞(k′
i, k′

o) (11.6)

×
(

k′
i

ki

)
Ti(k

′
i, τ)

k(1 − Ti(k
′
i, τ))

k′
i−ki

×
(

k′
o

ko

)
To(k

′
o, τ)

k(1 − To(k
′
o, τ))

k′
o−ko
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where p∞(i, o) is the probability of finding a node with in-degree i and out-degree
o in the contact network and To(k′

i, τ) (Ti(k′
i, τ)) is the probability that a user will

send (receive) information to (from) k′
i (k

′
o) users within τ time. We can simplify

Eq.11.6 by assuming that the number of users k chooses to send information to
is independent of the number of sources k received the information from, so that
Ti(k′

i, τ) = To(k′
o, τ) = T(k, τ). If we assume that the frequency with which calls

are made over a communication link follow a Poisson process [47], we can model
the probability that k will send short-lived information to a contact within τ time
as 1 − exp(− ρ τ), where ρ is defined as the sending rate of k. Thus, we can define
T(k, τ) as:

T(k, τ) =
∫

dρ p(ρ)(1 − exp(− ρτ)) (11.7)

where p(ρ) is the probability density of user sending rates across the network.
While p(ki, ko; τ) represents the dynamics of individuals in a pass-along process,

statistics about the causality tree itself sheds light into the overall reach and partic-
ipation of users sharing short-lived information. The recursive nature of a cascade
tree can be exploited for this purpose. For example, to compute the probability of
observing a tree with size s p(s; τ), we begin by defining the probability of find-
ing a tree of size s = 1 by p(s = 1; τ) = p(ko = 0; τ), i.e., the probability of a
tree whose root node has out-degree zero. p(s = 2; τ) can then be defined as the
probability that a root node has out-degree 1 and its child node also has out-degree
1. We can continue to extend this definition recursively to define all p(s′; τ) for
s′ < s. This recursive relationship may be expressed by the generating function
G(z, τ) = E(zs) = ∑

s=1 p(s; τ)zs, which obeys the self-consistency equation:

G(z; τ) = zg(1, G(z; τ); τ) (11.8)

where g(1, y; τ) is the generating function for the probability a user in a cascade tree
has out-degree ki:

g(1, y; τ) =
∑

ko

p(ko; τ)yko (11.9)

The cascade size distribution can thus be found by taking derivatives of the generating
function:

p(s = n; τ) = 1

n!
∂nG(z; τ)

∂zn
|z=0 (11.10)

A similar recursive formulation can be used to model the probability a tree has
depth d p(d; τ). Let Ed(τ) be the probability a causality has some depth less than or
equal to d. This probability obeys the relation:
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Ed(τ) = g1(Ed−1(τ); τ) = gd(0; τ) (11.11)

where g1(y; τ) = g(1, y τ) and gn(y; τ) = g1(gn−1(y; τ); τ). Then the probability of
a tree having depth d is given as:

p(d; τ) = Ed(τ) − Ed−1(τ) = gd(0; τ) − gd−1(0; τ) (11.12)

11.3.3.1 Model Application

Peruani et al. proposed the propagation model based on causality tree presented
above [39]. They applied it to a mobile phone dataset from a European telecom
with 1,044,397 users that made 13,983,433 calls between them. They derive the
parameters of the model from the dataset, and identify a very close fit between the
modeled cascade size and probability distributions with the observations they make
in the original dataset.

The model’s application draws a number of findings about the nature of pass-
along dynamics in a mobile phone network. Specifically, they find the existence of
super-spreaders and receivers, who are giant hubs that absorb or widely dissemi-
nate information along the network. They also discover that pass-along dynamics
are extremely sensitive to the correlation of users’ in- and out-degree distributions.
Furthermore, at large time-scales (τ), the spreading dynamics actually become dom-
inated by correlations in the topological structure of users in the network, not the
pass-along process. In other words, pass-along processes only capture the dynamics
of information exchange at a very local level (e.g. to degree 1 or 2-neighbors).

11.3.4 Diffusion Maximization: Community Based Greedy
Algorithm

A third-party wishing to influence as many people as possible may wish to find
k seed nodes who can maximize the spread of their influential information across
the network. These seed nodes represent influential users, defined as those who
share information with the intention of changing another’s personal opinions or
beliefs. If an influencer is successful, newly influenced people subsequently pass their
information off through their set of connections, and so forth. Influence propagation
thus exhibits the same pass-along dynamics modeled by causality trees, but without
a time constraint. In other words, an influencer may try to sway another at any time,
regardless of the time passed since they themselves became influenced. The extent
to which influence propagates through a network thus depends only on the position
and number of influencers that begin the diffusion process.
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Although finding the k users to initially influence such that the maximum
number of others on the network become influenced is an NP-hard problem, greedy
algorithms are capable of finding an approximate solution to within a factor of
(1 − 1/e − ε) [8, 21, 32], the algorithms are too inefficient to process very large
mobile phone networks. Instead, community-based greedy algorithms that identify
the top-k most influential nodes in a mobile phone network have been proposed as
a way to efficiently solve this problem [49]. We first define the diffusion speed of
information from user vi to vj in the network as:

λij = 2λ̄
wij

wmax + wmin
(11.13)

where λ̄ is the empirically measured average calling rate of users in a network
and wij is the weight of the directed connection from i to j. These weights should
correspond to a quality of the connection such that the higher its value, the faster the
rate of information diffusion. For example, the number of calls or SMS messages
sent between the users could correspond to a connection weight. The algorithm then
considers the following diffusion process:

1. Select a set of active seed nodes S0 active at an initial time t = 0.
2. Increment the time clock to t = t+1. Choose a node vi from the set St−1. For every

directed neighbor vj of vi, try to influence her with probability λij. If successful,
add vj to the set St .

3. Update St = St ∪ (St−1 \ vi).
4. Repeat steps 2 and 3 until the set of active nodes St = ∅.
5. The set of all nodes influenced by the seed set S0 is given as VS = ⋃t−1

i=0 Si. Define
the degree of influence of S0 to be R(S0) = VS/N where N is the number of users
in the mobile phone network.

Under this process, we can efficiently find a set of seed nodes S such that |S| = k
if we assume that the mobile phone network can be divided into many communities
of users. A community is a set of users who frequently communicate with each other
and are more likely to be swayed by information originating within it. If information
originating from one community will have almost no influence over the members
of another, a good approximation for finding the top influencers of the network is
to find users within individual communities that maximize the spread of influence
within them. The algorithm for finding these communities are given in [49].

Let Ik be the set of the k seed users that leaves the strongest amount of influence
on the network. To find Ik , assume that we already have constructed the set Ik−1 thus
far. We define by how much the degree of influence across the network will increase
by adding the most influential member within community Cm to the set Ik as:

�Rm = max{Rm(Ik−1 ∪ vj) − Rm(Ik−1)|vj ∈ Cm} (11.14)
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Thus, we can choose the kth influential user to add to Ik−1 by choosing the most
influential member in the community that has the largest �Rm value. �Rm can
be found using any previously proposed less efficient algorithm to find the most
influential user within a small network [8]. This less efficient algorithm is expected
to perform in a reasonable amount of time since it only runs across a community of
the entire calling network.

We can use dynamic programming to efficiently choose the community from
which an influential user is added Ik . Let R[m, k] be the influence degree yielded if
the kth most influential user is selected from one of the first m communities. Then,

R[m, k] = max(R[m − 1, k], R[m, k − 1] + �Rm) (11.15)

where R[m, 0] = 0 and R[0, k] = 0. In other words, if a user from the first m − 1
communities yields a smaller influence degree than choosing the most influential
user from community m, choose it from Cm. Otherwise, choose it from one of the
m − 1 former communities. The choice of these former communities is represented
by s[m, k]. It is given by:

s[m, k] =
{

s[m − 1, k], R[m − 1, k] ≥ R[M, k − 1] + �Rm

m, R[m − 1, k] < R[m, k − 1] + �Rm
(11.16)

with s[0, k] = 0.

11.3.4.1 Model Application

Wang et al. presented and applied this community-based greedy algorithm to a net-
work of SMS messages between 723,201 users collected by a major telecom com-
pany [49]. Under many choices ofK and λ̄, the community-basedmethodwas able to
find a set of users that yields the largest spread of influence in the network compared
to many previously proposed algorithms. It has modest run-times (on the order of
thousands of seconds) under the entire range of parameter settings used for experi-
mental analysis under a simple hardware configuration (2.0 GHz Xeon 8 Core CPU;
8GB Memory; Debian 4.0 Operating System). Experimental analysis finds that the
improvement in influence degree rises exponentially fast with λ̄ (the average rate of
diffusion). Influence degree increases just logarithmically with K , with very small
gains for K > 15. The study also finds that approximately M = 25 communi-
ties offers the best tradeoff between minimizing computation time and maximizing
influence degree. In summary, the method demonstrates how a small number of
influencers (∼15) are sufficient to widely disseminate influence across society-wide
communication networks. Furthermore, numerous latent communities exist within a
mobile phone network, where members are likely to influence each other.
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11.4 Malware Propagation

Security and network researchers envision mobile phones as being the next frontier
for malware [9, 10, 15] due to the many vulnerabilities present in mobile platforms
[20], the un-savvy users operating mobile devices, and the private and valuable
information they store on them. A 2011 Mobile Threats Report by Juniper Net-
works Mobile Threat Center found a 155% increase in mobile malware over the past
year [45]; by the end of the same year McAfee Labs had collected over 75 million
samples of mobile malware. Malware is capable of changing mobile phone con-
figurations, spamming SMS messages, dialing pay-to-call numbers, and collecting
private information stored on the device.

Understanding the development of malware on a mobile phone network, and
devising techniques to combat this threat, require novel propagation models. This is
because these always-on devices may be susceptible to infection through local NFC
or bluetooth transmissions , by connecting to a compromised public access point, or
through a compromised link shared across a contact network via SMS [38]. These
infections may thus quickly propagate through a mobile network as it infects and
transmits from device to device. In many ways, this is analogous to the spread of an
infectious disease through a population of people who congregate in public places.
Thus, many researchers have proposed different variations of common epidemio-
logical models (e.g. SI [3], SIR [23], SIS [24]) to better understand the spreading
dynamics of mobile phonemalware, and to propose methods that thwart their spread.
This section details some of these recent models and methods, and discusses their
application to mobile phone networks.

11.4.1 Infection Dynamics with Recoverable Devices: SIR
Epidemiological Model

Rhodes et al. introduced an extended SIR epidemiological model for modeling
the spread of malware opportunistically shared between bluetooth enabled smart-
phones [42]. The model considers not just the rate at which devices become sus-
ceptible (S), infected (I), or recovered (R), but also the rate at which devices come
into contact with each other and the devices’ transmission profiles. We first assume
that mobile devices are spatially distributed over a fixed region with density ρ. Each
individual device moves independently of all others with constant velocity v. If any
device moves within the transmission radius R of another device in the area, the
devices make contact and there is an opportunity for malware to spread. Thus, a new
individual device that moves with its own velocity vi will be exposed to contact by
device i during a time period dt if it lies within a rectangular-shaped area that is cov-
ered by the movement of i and lies in the direction of the vector w = vi −v. The total

area covered by i during dt is given by dA = 2Rwdt wherew =
√

v2i + v2 − 2vi cosφ

is the relative speed of the device and φ is the angle between velocity vectors. Thus,
the number of devices in transmission range of i is given by:
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γ =
2π∫

0

dNφ

dt
= ρ R

π

2π∫

0

wd φ (11.17)

This reduces to:

γ = 4 ρ R

π
(vi + v)

π /2∫

0

(
1 − 4vvi

(v + vi)2
sin2 ω

)1/2

dω (11.18)

If we make the simplifying assumption that the new device i moves with the same
velocity as all other devices (so that vi = v), we can write Eq.11.18 as an elliptic
integral and use its standard form to find:

γ = 8
π

ρ vR (11.19)

If a single device transmits malware to another within its range with probability p,
the infection rate of devices in the system is β = p γ.

The model also considers a radial decay function to compute the probability a
susceptible device becomes infected. The choice of a radial decay function is based
on the fact that the longer a device spends in the transmission range of an infected
user, the higher its chance of becoming infected, and the closer one device is to
another, the longer it will take for them to be out of transmission range. Thus, we
compute the probability a device at position r gets transmittedmalware by computing
the path length between r and contact with an infected node given by 2(R2 − r2)1/2,
multiply it by the probability of infection upon falling in transmission range p, and
normalize by the total transmission range:

p(r) = p

R
(R2 − r2)1/2 (11.20)

Integrating over all positions r and substituting p and R for p(r) in the formulation
of β, we get:

β = 8
π

ρ v

R∫

0

p(r)dr (11.21)

which solves to:

β = 2R ρ vp (11.22)
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Using this new infection rate, we apply the SIR model to specify a malware outbreak
by the differential equations:

dS
dt

= − β
SI
N

(11.23)

dI
dt

= β
SI
N

− δ I (11.24)

dR
dt

= δ I (11.25)

where I is the number of devices infected, S is the number of susceptible devices,
and N is the total number of devices on the network.

11.4.1.1 Model Application

The authors compared the output of the SIR-based model to a simulation of an
outbreak of malware in a setting with a device density of 3000 devices/km2, mean
velocity of 2km/day, transmission probability p = 0.1, transmission range of 5–40m
per device, andwith a recovery rate of 1 device per 5days. They find that the epidemic
dynamics are mostly caused by the aggregation of many dyadic interactions, rather
than spreading the malware to multiple devices at once due to the the small transmis-
sion range of the devices. However, as transmission radius increases, the SIS-model
comes to a much stronger agreement with the simulation results. They conclude that
the dynamics of malware propagation are greatly affected by the characteristics of
the devices and of the environment they operate under. When malware that devices
can recover from are transmitted over far-reaching channels, the SIS-model captures
its infection dynamics very well.

11.4.2 Infection Dynamics Without Immunization: SIS
Epidemiological Model

Mickens et al. developed an extension of the Kephart-White (KW) epidemiolog-
ical model [22] that also considers the mobility of devices within a constrained
area [35]. This is an SIS (Susceptible–Infected–Susceptible) epidemiological model
where devices may cycle between susceptible and infected. In other words, a device
can never be completely immune and may become infected again once cured.

The traditional KWmodel assumes a homogeneous network topology inwhich all
devices have a similar number of neighbors k̄. If I is the fraction of devices infected at
a particular moment in time, the KWmodel describes the propagation of an infection
as the differential equation:

dI

dt
= β k̄I(1 − I) − δI (11.26)
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where t is the current time, β is the propagation rate of malware from one device to
another, and δ is the rate at which any infected device is cured. Holding these rates
and k̄ constant, this equation has a steady state solution of:

I = 1 − δ

β k̄
(11.27)

Thus, we require

β k̄ > δ (11.28)

for an infection to persist in the network. These parameters can be mapped to model
the spread of mobile device malware by letting k̄ be the average number of devices
within communication range of any other device, β be the probability a malware
infected device transmits it to a health neighbor during a time period �t, and δ be
the probability an infected device cures itself during time �t. However, extensive
analysis by the authors confirm that the KW model does not accurately model the
dynamics of malware that spreads by NFC or bluetooth transmissions in a local
mobile phone network. This is because the homogeneity assumption held by the
KW model is broken by the fact that mobile devices move around a region and have
a limited transmission radius. The number of neighbors a device has at any given
time is thus constantly in flux and should not be represented by a constant value k̄.
Furthermore, the KW model does not incorporate parameters for the velocity of
mobile devices within an area, which they find to be a major factor in how quickly
malware spreads in their simulations.

To extend the KW model, the authors consider the spatiotemporal dynamics of
devices within a large rectangular area using a random waypoint mobility model.
In this mobility model, devices randomly select a destination point, travel there,
pause for a constant time tp, and then choose another random destination point. The
waypoints are independently chosen prior to departing. The speed at which devices
move between waypoints is given as a random velocity chosen uniformly within
some pre-specified range. Under this mobility model, the spatial density function of
devices over a square region is given as:

S(x, y) = pp

a2
+ (1 − pp)

36

a6
(x2 − a2

4
)(y2 − a2

4
) (11.29)

where a is the length of a side of the square region and pp = tp/E[T ] where E[T ] is
the average time a node takes tomove from onewaypoint to another. Thus, if a device
is at position (xi, yi), we can derive the probability that it is within communication
range of another device by the integral:

c(xi, yi) =
∫ yi+r

yi−r

∫ xi+
√

r2−(y−yi)
2

xi−
√

r2−(y−yi)
2

S(x, y)dxdy (11.30)
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where r is the radius of communication for all devices.We use c to find the probability
a device at (xi, yi) has ki devices within communication range by:

Pr(x, y, k = ki) =
(

N − 1

k

)
c(x, y)k(1 − c(x, y))N−k−1 (11.31)

The expected probability two devices will be within communication range of each
other is thus:

c̄ =
∫ a/2
−a/2

∫ a/2
−a/2 c(x, y)dxdy

a2
(11.32)

and the probability any device will have ki devices in communication range across
the entire region is:

Pr(k = ki) =
∫ a/2
−a/2

∫ a/2
−a/2 Pr(x, y, k = ki)dxdy

a2
(11.33)

To consider mobility under the KW model, the connectivity fluctuations induced
by mobility need to be incorporated. We can do so by considering the average travel
time of a device from one waypoint to another E[T ] as a queue or pipe that takes
E[T ] time to traverse. If the probability a device at any location has ki neighbors is
Pr(k = ki), the amount of time it spends with ki neighbors while moving from one
location to another is given by E[T ] × Pr(k = ki). For example, E[T ] × Pr(k = k0)
is the amount of time a device has no neighbors while it travels from one destination
to another, and hence can be subjected to malware cures. Otherwise, for E[T ] × Pr
(k = (ki > 0)) time units, the device is subject to an infection pressure proportional
to β ki and a cure pressure proportional to δ. The extended KW model thus requires

N−1∑

ki=0

β kiPr(k = ki)E[T ] > c δ E[T ] (11.34)

for a malware outbreak in the network to exist, where c is a constant account for
global factors affecting connectivity. Since Eq.11.33 tells us the percentage of time
a device has ki other neighbors, the total number of devices with ki neighbors across
the local area is given by N × Pr(k = ki) where N is the number of devices in the
local network.

To help compute the steady-state infection level of the mobile network, let us
assume that the stretches of time a node has ki neighbors are large relative to the unit
of time used to measure infection rates �t. Consider a collection of N queues {Qki},
each of which initially has N × Pr(k = ki) devices in it. When a device enters Qki ,
it spends E[T ] × Pr(k = ki) time in it before exiting. Each queue can be thought of
as a separate KW process described by the rates of infection β and curing δ, where
all devices in the queue have the same k̄ = ki neighbors. Treating all devices in the
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Fig. 11.4 Queueing network for finding steady-state infection levels. Each queue is loaded with
devices that have the same number of neighbors, so queue i starts with N × Pr(k = ki) devices.
A random proportion of devices in queues (shown in black) are infected. At every time-step, we
infect and cure devices according to a KW process that runs separately within each queue. After
E[T ] × Pr(k = ki) time-steps, a device in queue i departs and is divided into 1/N units. These
small units are then distributed across all of the queues

same queue under the same KW process is intuitive because they all have the same
number of ki neighbors, which is a core assumption of the KW model.

We can utilize a network of these queues, illustrated in Fig. 11.4, to find the steady-
state infection levels. We initially place N × Pr(k = ki) in each queue and assign a
randomproportion Iinit ∈ [0, 1] of its devices to be infectedwithmalware. Themodel
then iteratively updates itself in increments of �t. At each update, it first simulates
a propagation of the malware in each queue Qki using the KW equation:

dIQki

dt
= β kiIQKi

(1 − IQKi
) − δ IQKi

(11.35)

Every �t time units, the model checks if the exit time of any device has exceeded
the current time, and if so, it removes the device from its queue, divides it into N
equally sized pieces, and enqueue’s one of these pieces into the rest of the queues.
Finally, every queue updates its infected percentage IQki

to reflect its newly enlarged
population and infection percentages. At any moment during this process, the total
number of infected devices in the network is given by:

N−1∑

ki=0

IQki
× |Qki | (11.36)

where |Qki | is the number of devices in a queue. The steady state number of infected
devices can be found by continuing to iterate the model until these values converge.
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11.4.2.1 Model Application

Mickens et al. simulated a mobile device network where devices have a 100m com-
munication radius and move within a square region with 1000m sides. Using various
device velocities and number of devices in the network, they compare the predicted
proportion of infections given under the KW model and their extended queueing
based model against the simulation results. They find that the steady-state infections
projected by the KW model was different from the simulation by 12.5%, while the
queueing model was only off by 4.0%. Their analysis also discovers that epidemics
are unstable under many parameter settings. For example, in five simulation runs
lasting 200,000 s, one epidemic died out almost immediately, another lasted the
entire time, and the others lasted between one- and three-fourths of the total simula-
tion time. Thus, while the extended KWmodel accurately predicts average levels of
infection, it hides the instability of the malware propagation process.

Finally, the authors apply their model to a scenario where the spatial distribution
of devices across the region is strongly skewed, that is, where devices tend to favor
specific areas within the region. This scenario may better reflect real-life mobility
patterns, as users tend to congregate around popular landmarks within a region. The
waypoint mobility model was modified so that nodes have a higher probability to
travel to one of three ‘hot-spots’ in the square region. For different values of N , the
queueing model outperforms the KW model in predicting the steady-state infection
levels under the modified mobility model, but the relative improvement is not as
large. The authors hypothesize that their queueing based model, which only captures
the number of neighbors a device has at any time, does not necessarily capture the
spatial distribution of devices within a geographic region.

11.4.3 Maximizing Malware Damage: SIDR Epidemiological
Model

Khouzani et al. propose the analysis of an SIDR epidemiological model to estimate
the maximum amount of damage malware can impart on a local mobile wireless
network [25]. They define damage as a cumulative function that increases with the
number of devices that may be infected or dead. Their model allows this damage
function to be generally defined, and assumes that the malware wishes to maximize
damage subject to specific constraints on the energy consumption of its host devices.

Under an SIDR model, devices may fall under one of four states: susceptible (S),
where an unprotected device is not yet infected; infective (I), where a device has
been loaded with malware, and may propagate it to others, but the malware has not
yet attacked the device; dead (D), where the malware successfully compromised the
device; and recovered (R), where an updated device is immune from the infection.
We letnα(t)be the number of devices in stateα ∈ {S, I, D, R} such that∑α nα(t) = N
is the number of devices in the model, and the proportion of all devices in each state
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as S(t), I(t), D(t), and R(t) respectively so that S(t) + I(t) + D(t) + R(t) = 1. We
assume that an outbreak begins at time t = 0 with the infection of I(0) = I0 devices.
The initial conditions of the system are R(0) = D(0) = 0 and S(0) = 1 − I(0).

Infections occur as devices within a region A move with velocity v. Infective
devices transmit malware once they fall within a given transmission range. The
probability of an infection is based on two factors: the density of devices within
A, given as ν1 = |N |/|A|, and the rate at which a given pair of devices contact
each other, given as ν2 = 1/A [18]. If u(t) is the product of an infected device’s
transmission range and rate at which it scans for devices to transmit to, the process
of malware transmissions from an infected to susceptible device can be modeled
by an exponential random process whose rate at time t is β̂u(t) where β̂ = ν1ν2.
Infected devices will be killed after an exponentially distributed random amount of
time with rate v(t). An infected or susceptible device may also recover after infection
by healing or immunizing itself with rates given by B(I(t)) andQ(S(t)), respectively.
The rate functions B and Q can be defined in any way the modeler would like, as long
as they meet the following criteria: (i) limx→0 B(x) < ∞ and limx→0 Q(x) < ∞;
(ii) for 0 < x < 1,B andQ are positive and differentiable; and (iii) xB(x) is a concave
non-decreasing function of x and xq(x) is also a non-decreasing function of x.

Under these infection and recovery dynamics, we can model the rates at which
devices transition between states using the continuous timeMarkov chain in Fig. 11.5.
We represent the state vector of this chain as V = (nS(t), nI (t), nD(t)), dropping
nR(t) since nS(t)+ nI (t)+ nD(t) = 1− nR(t). Let β = limN→∞ N β̂, q(S) = Q(S)S,
and b(I) = B(I)I . According to [30], S(t), I(t), andD(t)will converge to the solution
of the following differential equations as N grows:

dS(t)

dt
= − β u(t)I(t)S(t) − q(S(t)) S(0) = 1 − I0 (11.37)

dI(t)

dt
= β uI(t)S(t) − b(I(t)) − v(t)I(t) I(0) = I0 (11.38)

dD(t)

dt
= v(t)I(t) D(0) = 0 (11.39)

These equations satisfy 0 ≤ S(t), I(t), D(t) and S(t) + I(t) + D(t) ≤ 1 for all t.
We now consider an attacker who wants to infect a local area in such a way that

the amount of damage caused by the malware infection during a window of time
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[0, T ] is maximized. Since damage corresponds to both the infection and killing of
devices in the network, the damage function can take the following general form:

J = κD(T) +
T∫

0

f (I(t))dt (11.40)

κ is a positive ‘reward’ per device killed and f is an increasing convex function where
f (0) = 0. An attacker will try to maximize J by regulating two parameters of the
malware: the rate at which it will kill devices v(t) and the product of the malware’s
transmission range and scanning rates u(t). The choice of parameters for these values
are subject to:

0 ≤ v(t) ≤ vmax (11.41)

0 ≤ umin ≤ u(t) ≤ umax (11.42)
T∫

0

h(u(t))dt ≤ C (11.43)

The upper bound on v(t) represents an inherit maximum speed at which a device can
be killed by an infection. The bounds on u(t) represent maximum transmission rates
caused by the physical properties of an environment. The integral constraint over
h(u(t)) ensures that the malware infection does not fully deplete an infected device’s
power, which it relies on to spread the infection and to eventually kill the device. It
is assumed that h is a non-decreasing and non-negative function. Once the malware
chooses v and u, the Markov chain’s state vector V will be specified at all times
t, allowing us to solve the system of differential equations and hence compute the
damage J of the attack. We can then find optimal functions that control the killing,
transmission, and scanning rates v(t) and u(t) to maximize J .

11.4.3.1 Model Application

Khouzani et al. studied the proposed SIDR model and damage function under var-
ious parameter settings to gain insights about the malware infection and recovery
processes [25]. From the optimal forms of v(t) and u(t), they discover how malware
should start with a small killing rate that gradually increases over time. This way,
infected devices are given an opportunity to infect others before being killed off.
When the time window is almost over, however, devices should adopt a high killing
rate to take as many down as possible. Furthermore, the malware should not decrease
an infected devices transmission and scanning rates until approximately one third
of the time window has elapsed. If the network can increase the recovery B(t) and
immunization rates (Q(t) and B(t)) of devices, the malware must extend the period
during which its transmission and scanning rates are highest (u(t) = umax).
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The authors also find a relationship between recovery rates and the total damage
imposed by malware. Interestingly, they find that the amount by which damage is
reduced decreases exponentially with the rate of recovery. However, with larger
recover rates comes larger bandwidth and power costs for the devices.

11.5 Novel Applications

Mobile service providers collect a wealth of information about their customers and
their calling behaviors.Hiddenwithin these records are patterns thatmay be exploited
to help the provider offer better service to their customers, or to make discoveries that
may eventually lead to financial gains. For example, a simple analysis may reveal
calling towers that are used very frequently, yet are associated with dropped calls
and degraded service. Such towers should be given a higher priority for maintenance,
before customers within its range decide to change providers as a result of poor
service. As another example, users who receive an extraordinarily large number of
calls may be targeted for a deeper investigation, to see if the number is being used
as a calling center or for some other inappropriate purpose.

Beyond looking for outliers or correlations in a dataset, advanced data analytics are
alsoutilized tofindmore sophisticatedpatterns to answermore challengingquestions.
In this section, we present novel propagation models used in such advanced analytics
that predicts the likelihood that a customer will soon churn, or move to a different
service provider and identifies fraudulent activity in a calling network. Churning is
a significant problem for service providers because, in today’s society where nearly
everyone has a mobile phone, it has become very expensive to attract customers who
do not yet have a phone to join their service. Furthermore, today’s users are more
informed about the kind of devices, the quality of the service, and the perks offered by
the providers. Such providers must thus devote a significant amount of effort towards
customer retention, rather than acquisition. Fraudulent activity in a calling network
relates to voice-related security threats where users may reveal sensitive or private
information through social engineering techniques and by calling international phone
numbers. These calls carry a financial cost to both the subscribers and the service
provider.

11.5.1 Churn Prediction: Sender-Centric Energy Propagation

The decision to drop a service provider is based not only on a user’s own satisfaction
with the service, butmay also be the result of social pressures from friends, family, and
other close contacts who have already decided to churn. Researchers have thus turned
to energy propagation models across the calling network of a mobile phone provider,
where energy refers to information that may persuade another user to churn. In this
model, users marked to have churned during a month is seeded with an amount of
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Fig. 11.6 Generic
illustration of sender-centric
energy propagation E
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energy E. These churners divide this energy into smaller portions and disseminates
it across all of their connections. Users who receives portions of this energy then
replicates it, divides it into even smaller portions, and spreads the energy across its
contacts. This process of accumulating, dividing, and spreading energy repeats until
the fraction of energy received at any user drops below some threshold t. Figure11.6
illustrates this spreading process. The churner (black node) distributes E/c energy to
its three contacts, where c is some positive constant. These three contacts store this
energy and then replicate a fraction E/c2 of it to be sent to each of its own contacts.
The total energy accumulated by a user may thus represent the likelihood that she
will soon churn from the service provider.

Rather than having every user propagate a constant fraction 1/c of its energy
to others, we define a transfer function F(c) that returns what proportion of stored
energy is transferred to each of a user’s contacts. This transfer function is defined
by the sender of the influence, putting them in control of how much energy each
recipient will be exposed to. Because the receivers have no choice but to accept
the energy it receives and pass it along, we refer to this energy propagation model
as being sender-centric. Sender-centric propagation models may differ in the way
senders choose what contacts to receive, and by how F(c) is defined.

Dasgupta et al. proposed the following sender-centric energy propagation model
for churn prediction [11]. Consider a diffusion process where at each time step t there
is a set of active usersX whosemembers x ∈ X have energyE(x, t). At time step t+1,
every active user in X transfers a fraction of its energy to all of their neighbors y. The
fraction of energy sent is a function of two parameters: the spreading factor d and
transfer function F. d is a constant that lets the modeler decide by how far the energy
propagation should spread. Low values d keep the process very local, while high
values of d lets energy spread far away from the churner. F should be designed in a
way that reflects the relative ‘strength’ a connection to one contact is over another, so
that more energy is transferred over stronger connections. For example, information
shared by a good friend who one has strong connections to will be given higher
consideration. If Wxy is the strength of a connection from x to y, F may be defined as:
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F = W (x, y)∑
{(x,s)|s∈N(x)} W (x, s)

(11.44)

The set of active users at time t + 1 is then given by the set of nodes who received
energy. The energy propagation process terminates at time t∗ if no new nodes are
exposed at time t∗ or if the amount of energy any node is exposed to falls below a
threshold value ET .

11.5.1.1 Model Application

Dasgupta et al. use the above sender-centric model to predict churners in a mobile
call graph [11]. They define connection strength as Wxy = 2/(1 + e−cxy) − 1 where
cxy is the total number of calls placed from user x to y. They then select a threshold
energy value Tc, where any user on the network that collects more than Tc energy is
predict to become a churner. They investigate the fraction of all churners correctly
caught as Tc decreases to include a larger fraction of users on the network. They find
that the set of users having the 10% largest amounts of energy contain approximately
45% of all churners in a givenmonth. From the perspective of amobile phone service
provider this is a strong result. For example, the provider can invest in a marketing
campaign that targets just 10% of its subscribers with discounts, in an attempt to
prevent almost half of all potential churners from switching service providers. By
comparison, the 10% most probable churners labeled by a decision-tree classifier
that uses features about the frequency a user utilizes her mobile phone service and
her connectivity contains only approximately 40% of all churners.

11.5.2 Churn Prediction: Receiver-Centric Energy
Propagation

In a sender-centric energy propagation model, the transfer function F(c) is defined as
a function of some features about the sender of information. However, one may hold
the philosophic belief that it is the receiver of information, rather than the sender,
who ultimately decides the degree to which she becomes influenced. This idea gives
rise to an alternative class of energy propagation models that are receiver-centric.
The rules that govern a receiver-centric propagation process may be summarized as
follows [40]:

1. A user who receives energy by a neighbor will decide what proportion should be
retained. This retention should be proportional to the strength of the relationship
between the receiver and the sender.

2. A user only retains energy originating from a churner once.
3. However, users retain energy many times if the energies originate from different

sources.
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4. When a user receives some amount of influence by a neighbor, she chooses the
proportion to be retained. She subsequently replicates and transmits this propor-
tion to every one of her neighbors.

The first rule ensures that the total influence retained by a receiver will be grounded
in the relationship held between the receiver and sender. The second rule captures the
idea that, if a user is exposed to energy from the same source but at different iterations
of the propagation, she will only retain energy from the first exposure. Intuitively,
multiple exposures of energy originating from the same source would contain same
information, which the receiver already considered during her first exposure. The
information or influence contained in energy sent from distinct sources, however, is
unique. Hence, in the third rule, a receiver is allowed to retain energy multiple times
if the source of the energy is distinct. Finally, the receiver will transmit a copy of all
energy she retains to all of her contacts. Her contacts will then independently decide
how much energy they should retain.

Phadke et al. introduce a receiver-centricmodel for predicting churners in amobile
phone network [40]. They define a strength for the relationship between users X and
Y using a vector of calling attributes (x1, . . . , xn). Each attribute xi is normalized

by dividing it by |xi|, where |xi| =
√∑d

k=1 x2ik so that they are of unit length. For a
relationship k, let k = α1 x1+α2 x2+· · ·+αn xn be theweighted sumof its normalized
attributes. The strength of the relationship between X and Y can be defined by any
monotonically increasing function of k; the authors use WXY (k) = 1 − e−k/ε2 . This
exponential function is based on the idea thatwhen a strong relationship is established
between twousers, there is a higher likelihood that the information or influencewithin
the energy passed along that connection will be retained by the receiver. ε is a tunable
parameter that controls the degree to which the strength of a relationship is affected
by the magnitude of it’s attributes.

The model computes the total amount of energy received by a user in an iterative
process. It begins with the passing of E energy from every node that churned in the
previous month to all of its neighbors. Let Ni be the set of neighbors of node i. A
neighbor j of a churner i will choose to retain

Ej = Wij

Wj
Ei (11.45)

whereWj is the sumof the strength of all relationships j is a part of andEi is the energy
contained by churner i. These neighbors will then pass Ej units to its neighbors, and
so forth, until the number of iterations exceeds a threshold value (in their study,
they terminate the process after three iterations). After the process terminates, each
receiver adds together all of the energy it received.
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11.5.2.1 Model Application

Phadke et al. apply the receiver-centric model to a dataset of calls placed between
over half a million users and churners during a two month period. For a single
month of data, the authors compute the strength of each connection using the call
time, number of calls made, and neighborhood overlap as relationship features. They
tuned the weights αi empirically in order to maximize the predictive accuracy of the
propagation model. They then consider a boosted decision tree ensemble classifier
that uses the amount of energy retrained along with features such as whether a
contract has ended, the number of days a user is connected, the number of calls
made to churners, and the charged rate for making phone calls to assign each users
a probability that they will churn in the subsequent month. They find that without
the energy feature, the classifier finds 35% of all future churners among the top
10% most likely users predicted to churn. By adding the energy accumulated, this
percentage rises to approximately 40%. In summary, they find the receiver-centric
energy propagation model to be a viable alternative to a sender-centric model.

11.5.3 Isolating Fraudulent Activity: Markov Clustering
Algorithm

Jiang et al. [19] present a method for identifying fraudulent activity performed over
voice calls in a cellular network by analyzing the structure of a calling network.
Their method is rooted in the following features about fraudulent activity on mobile
phone networks: (i) callers on a phone network seeking to commit fraud tend to
contact a large number of people and will attract more victims to call fraudulent
numbers compared to a typical user of the phone network; and (ii) fraudsters may
utilize many international phone numbers at once to distribute their scheme, which
lets them increase the number of victims that can be reached. This activity may be
represented by observing the same set of domestic users (victims) who all call the
same set of foreign (fraudulent) numbers.

These two features suggest that fraudulent activitymaybe characterized byfinding
community structures containing large numbers of international calls to the same
collection of phone numbers. To find these communities, themethod uses theMarkov
ClusteringAlgorithm (MCL). This algorithmfinds communities by iterating over two
steps: network expansion and inflation. At iteration i, the expansion step takes the
square of the adjacency matrix of the network to simulate the probability of random
walks of length i + 1 that start and terminate at every user in the call graph. In the
inflation step, the elements of the squared adjacency matrix are raised to a power β,
and then the matrix is scaled diagonally so that the resulting adjacency matrix is
Markovian. In essence, the inflation step modifies the probabilities associated with
random walks in a way that favors more probable walks. As the process repeats,
matrix entries corresponding to links in low probability walks will converge to zero,
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so the converged adjacency matrix will only contain connections in high probability
walks. The connected components of this convergedmatrix correspond to community
structures.

To find communities that contain fraudsters, themethod looks for 2-by-2 bi-partite
cliques from domestic to international numbers. These 2-by-2 bi-partite cliques are
the smallest structural unit that corresponds to fraudulent activity, where a set of
victims who do not know each other both call the same two fraudulent numbers. The
method filters out all communities that do not exhibit at least α bi-partite cliques of
any size that have at least γ victims.

11.5.3.1 Model Application

Jiang et al. use the MCL-based method to analyze a dataset of all international voice
calls made within the voice network of a major service provider [19]. They take two
sources of user reports to build a ground truth list of fraudulent calls, referred to as an
international revenue share fraud (IRSF) list: (i) numbers reported by customers to
the provider’s customer care center; and (ii) a list of phone numbers tied to customer
complaints that were posted online in blogs, social media, and forums [1, 50]. They
run theMCLdetection algorithmondifferentmonths of data (Jan–May2011) to study
the expected lag that will occur between when fraudulent activity occurs and when
it will be reported in the IRSF or online list of fraud numbers. They choose α = 5
and γ = 10 after observing that these settings filter out over 98% of the subgraphs
while capturing over 90% of all communities that exhibit fraud. They compare the
numbers in these fraud communities against a list of over 24,000 numbers fraudulent
numbers covered in the IRSF lists. They find that the extracted communities only
contain 11% of the numbers in the list. However, these 11% of numbers attract
phone calls from 85% of all victims, and are the root cause of 78% of all fraudulent
calls in the network. Furthermore, when the authors exclude dormant numbers in the
IRSF list (numbers not yet utilized or advertised by fraudsters), the detection rate
increases from 11 to over 50%.

The authors also evaluate whether the MCL algorithm can be used to identify
fraudsters early, before they are reported or recorded on an IRSF list. For all fraud
numbers contained in the communities extracted, the gap between the month it was
extracted from in the data and the month it was added to the IRSF list is compared.
For more than 80% of the fraud numbers, the detection method precedes the user
reports and in more than 60% of these cases, the fraud numbers are discovered at
least one month sooner than when a report is shared by a user.

11.5.3.2 Summary of Findings

The models presented in this chapter found a number of important characteristics
and newfindings aboutmobile phone communication networks.We summarize these
findings next.
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• Diffusion processes are governed by heavy-tailed distributions. The distribu-
tions of how long information propagates between two users, and the frequency
of these propagations, are characterized by mixtures of Lognormal distributions.

• Physical co-location is strongly correlated with the formation of future con-
nections Users that propagate information between each other are likely to be
co-located for brief periods of time. Whether or not two users exist in the same
location strongly predicts whether they will form new connections in the future.

• Short-lived information over calling networks does not diffuse widely.
The total number of others that receive short-lived information is strongly cor-
related with the in- and out-degree distribution of the users participating in the
diffusion process. Propagations of short-lived information are generally limited to
a very local level and do not spread far and wide across a calling network.

• Epidemiological models are a flexible tool to understand local-level interac-
tions and the spreading of malware. Epidemiological models have been used to
successfully model the dynamics of malware that spreads at local levels. Different
kinds of models can incorporate specific properties of mobile devices, including
the range of their transmissions and energy constraints. SIP-based models become
less accurate if transmissions can only be performed devices are within very close
proximity. SIS-based models may be used in scenarios where devices can never
become immunized. SIDR-based models work under scenarios where devices can
be killed or disabled by malware. To maximize damage, malware should wait
for infections to spread before killing devices. As the recovery rates of devices
increase, the total damage of a malware outbreak drops exponentially.

• Energy propagation models can help identify future churners. Irrespective of
whether a modeler uses a sender-centric or receiver-centric propagation model, we
can identify a large proportion of future churners by the total energy or influence
they accumulate frompast churners. Both sender- and receiver- centric propagation
models offer promising results.

• Finding user communities with bi-partite cliques can identify fraudulent
activity. Bi-partite cliques may correspond to users who send calls to the same
subset of fraudulent phone numbers on the network. 80% of the communities
found through a Markov clustering algorithm containing such bi-partite cliques
include fraudulent numbers not yet been reported by users.

11.6 Future Research Directions

The state-of-the-art propagationmodels presented in this chapter represent significant
advances inmobile phone data analytics. However, many opportunities remainwhere
researchers may build off of, extend, and use the discoveries made by these methods
to propose new kinds of models.We next present a small sampling of these research
opportunities.

1. Marry structure and decisions in the diffusion of information. The propa-
gation models reviewed in this chapter concentrate on either the structure of a
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diffusion process or on how individuals decide what information should be saved.
For example, causality tree models only reason about the probability that certain
subsets of a user’s connections will be transmitted information within a given
time period. Epidemiological models also rely on the structure of the network as
users’ devices form connections by their spatiotemporal dynamics within a local
area. Sender- and receiver-centric energy propagation models, however, simply
assume that information spreads widely across all connections. They then con-
centrate onmodeling the process of deciding to retain information, including who
makes the decision (sender or receiver) and how that decision is made.
More faithful models of information diffusion should simultaneously consider
both structure and decision-making. For example, one should not assume that
churners will decide to submit all of their contacts to peer influence. Further-
more, a receiver of short-term information spreading through a causality tree
may decide to not propagate the news further if she is disinterested in the infor-
mation, if her social relationship with the sender is weak, or if she does not believe
that her set of contacts would be interested in the information.

2. Explore the tradeoffs between sender- and receiver-centric propagation. For
the churn prediction problem, both sender- and receiver-centric models have been
demonstrated to be similarly successful. Yet these two model types are under-
pinned by two very different philosophies: one asserts that the person who sends
information controls howmuch the receiver absorbs, while the other believes that
the receiver of information individually decides how much they will accept. One
kind of model may be more applicable than the other depending on the setting.
For example, marketing studies have demonstrated the persuasive effect that a
strong advertisement [46] or speaker [44] can have on the amount of information
retrained by others. On the other hand, peoples’ experiences and knowledge also
modulate the amount of information they choose to retain [16]. The settings under
which either a sender- or receiver-centric propagation model is more appropriate
remains an open question. Hybrid models that integrate both sender and receiver
effects may be an effective development.

3. Build new epidemiological models that operate on other network levels. Epi-
demiological models have mostly been applied to local level networks. Although
the analogy between the exchange of information among devices that are physi-
cally close and the exchange of diseases between people makes applications at the
local level intuitive, the spread of information and data need not be restricted by
the proximity of devices. For example, there now exist compromised applications
that may submit spam messages and fraudulent links to other contacts in a per-
son’s address book [2]. Epidemiological models that operate at the contact level
may suitably represent the spread of such SMS spam. Furthermore, the spread of
rumors and lies across a calling networkmay be thought of as a systemic spread of
mis-information that convinces or (infects) gullible (susceptible) individuals on
the network. Thus, an epidemiological model operating at the calling level may
characterize the spread of mis-information by accounting for a user’s propensity
for believing and spreading false information.
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4. Recognize the differences between devices. Mobile phone devices are built
with hardware that supports a variety of technological features. For example, as
of 2014, only Android handsets with NFC chips built in are capable of spread-
ing malware to other devices over this medium. Furthermore, devices that either
have SMS messaging disabled or cannot support receiving them will not be able
to receive information that spreads across this medium. It is thus necessary to
consider the heterogeneous mix of devices with varying capabilities within prop-
agation models over mobile phones. Furthermore, differences between devices
are not only associated with hardware configurations, but also by their brand. For
example, recent intriguing results have found Apple iPhone users to have more
connections to others on average, and are more likely to be connected with an
iPhone than an Android user [6]. Thus, at the contact level, there may be a higher
propensity for information to propagate from one device to another.

5. Integrate social features. Ultimately, contact and calling level networks formed
out of mobile phone data are social networks where the ties users have with many
others correspond to offline relationships. Numerous methods in the literature
exist to extract the social qualities of such relationships. For example, analysis of
ego-network structures can identify users exhibiting egocentric or selfish tenden-
cies [12] as well as those who sport different kinds of social roles [17]. Depending
on these roles and tendencies, a user may exhibit different behaviors in a propa-
gation model. For example, egocentric individuals who will speak with everyone
simply to be noticed may send new information to all of their contacts, irrespec-
tive of whether that information is fact or fiction. Or perhaps users that lie on the
periphery of two communities may decide to not let information move from one
to another, out of consideration that the other community may be disinterested.
We should also consider social features as we assign weights corresponding to the
strength, and hence amount of information that propagates, across connections.
For example, we know that exceptionally strong and weak social connections
prevent a network of mobile phone calls from fragmenting into a large number
of disconnected components [13], and are thus critical avenues for information
to diffuse widely across the network.

11.7 Concluding Remarks

This chapter presented a collectionof recently developedpropagationmodels used for
mobile phone data analytics. This collection of models revealed important statistical
qualities of information propagation processes over mobile phone networks, were
used to model unique propagation phenomena, and utilized in a number of novel
applications. Based on the qualities of the models, it identified a number of open
opportunities for researchers to develop ever more sophisticated and realistic models
of propagation phenomenon within mobile phone networks.
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Chapter 12
Information Propagation in Social Networks
During Crises: A Structural Framework

Daniela Pohl and Abdelhamid Bouchachia

Abstract In crisis situations like riots, earthquakes, storms, etc. information plays
a central role in the process of organizing interventions and decision making. Due to
their increasing use during crises, social media (SM) represents a valuable source of
information that could help obtain a full picture of people needs and concerns. In this
chapter, we highlight the importance of SM networks in crisis management (CM) to
show how information is propagated through. The chapter also summarizes the cur-
rent state of research related to informationpropagation inSMnetworks during crises.
In particular three classes of information propagation research categories are iden-
tified: network analysis and community detection, role and topic-oriented informa-
tion propagation, and infrastructure-oriented information propagation. The chapter
describes an analysis framework that deals with structural information propagation
for crisismanagement purposes. Structural propagation is about broadcasting specific
information obtained from social media networks to targeted sinks/receivers/hubs
like emergency agencies, police department, fire department, etc. Specifically, the
framework aims to identify the discussion topics, known as sub-events, related to
a crisis (event) from SM contents. A brief description of techniques used to detect
topics and the way those topics can be used in structural information propagation are
presented.

12.1 Introduction

The last decades brought several technical innovations which changed peoples’ com-
munication behavior due to light-weight, powerful mobile phones, mobile Inter-
net, and mobile applications. With these innovations in recent years, social media
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networks (e.g., Twitter, Flickr, YouTube, Facebook etc.) form new communication
and news channels. People have now the possibility to document every situation they
are involved in. They can propagate updates, requests, opinions, and information of
general public interest.

In other terms, social media users are actually producer, repeater and consumer
of information—all at the same time. SM networks facilitate the dissemination of
information along social links connecting communities formed in these networks.
These connections are of two types: strong ties which are usually formed by frequent
contact (family and friends) and weak ties which are formed by infrequent contact.

Over the past SM networks have been studied by different communities focussing
on various aspects related to the identification of communities, the propagation of
information through the network, modeling the relationship between information
producer and information consumer, analysis of sentiment, and topic detection. Due
to these advances, SM have emerged as research avenue in the area of crisis manage-
ment studies. As stated in Sect. 12.2 below, several studies highlight the importance
of social media in crisis management. People tend to use SM particularly when
communicating with emergency services is difficult due to overload or emergency
services could not be on site sufficiently early when the crisis happened.

SM networks can be analyzed to uncover topics discussed during a crisis, to
identify the people needs, and to discover rumor so that it can systematically be
countered. Therefore, efficient methods for analyzing SM need to be developed in
order to:

• detect the important information related to people needs, human casualties and
infrastructure damages from SM contents,

• understand the community and network structure, and
• find communication hubs to propagate useful information that can efficiently be
exploited to stabilize the situation, give hints, publish shelter information, and
counter against rumors.

This chapter summarizes the research on information propagation in SMnetworks
for crisis management. A framework for dealing with structural information propa-
gation is described. Methods for analysis of SM content, developed by the authors,1

are discussed to show how structural information propagation can be used in crisis
management.

The rest of the chapter is organized as follows. Section12.2 highlights the rela-
tionship between social media and crisis management by showing illustrative recent
studies. Section12.3 summarizes research that focuses on information propagation
in social media during a crisis. Section12.4 proposes an analysis framework for dis-
seminating and propagating valuable information to be used by targeted people, like
first responders, in order to organize their intervention. In particular, the framework
describes how topics discussed in SMnetworks during crises are detected and tracked
to be propagated later on to targeted people. Section12.5 concludes the chapter.

1 We don’t claim to provide any original results in this chapter. We simply summarize the
different research studies relevant to information propagation in the context of social media and
crisis management.
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12.2 Crisis Management and Social Media

Crisis Management (CM) referring to disaster, emergency or catastrophe manage-
ment indicate all actions taken before, during, and after a disaster [14]. In general,
CM tasks are divided into four phases [14]: mitigation, preparedness, response and
recovery.

• Mitigation deals with challenges regarding risk assessment and crisis prevention
to minimize the possibility of disaster occurrence.

• Preparedness includes all steps to increase readiness in case of disaster
(e.g., training, public awareness, etc.).

• Response covers actions to reduce causalities and to stabilize the situation during
the disaster.

• Recovery focuses on re-establishing the damaged infrastructure and facilitating
normal course of life.

In all these phases, information about the situation at hand is important for situa-
tional awareness, planning, and decision making.

Research shows that SM networks are increasingly used during crisis situations,
e.g., to publish information on the current situation. There are several SM stud-
ies highlighting the importance of different SM networks. For instance, Palen [25]
described the usage of SMplatforms during theVirginia Tech shooting and the south-
ern California wildfire. Vieweg et al. [47] showed how Twitter was used during two
emergencies: Red river floods and the Oklahoma grassfire in 2009. They analyzed
tweets and identified different categories of tweets (i.e., warning, information on
impact, weather, evacuation, etc.). Choudhary et al. [9] studied tweets obtained dur-
ing the Egyptian uprising. In particular, they analyzed the sentiment and the topics
discussed during the event. Reuters et al. [39] analyzed SM in the context of emergent
groups during a disaster. They identified several roles of users in such groups, e.g.,
reporters who generate contents, retweeter who forward and propagate the informa-
tion, etc. They also studied SM in the context of European incidents, e.g., the eruption
of Eyjafjallajkull and the mass-panic during Love parade in Duisburg [40]. Terpstra
et al. [45] analyzed the data collected during a festival in Belgium (Pukkelpop) which
was hit by a heavy storm. They used keyword-based filters to identify tweets with
specific content, like damages or causalities. Their analysis showed that tweets can be
seen as realtime information sources for situational awareness in crisis management.
Perng et al. [26] analyzed Twitter in the context of the Norway attacks in 2011.

Beside Twitter and Facebook, photo sharing tools, like Flickr, have been used to
exchange information about different events/incidents. Liu et al. [20] described the
importance of photo sharing via SM during emergency cases. The work depicted
the usage of Flickr through six different crisis between 2004 and 2007, e.g., Indian
Ocean earthquake,HurricaneKatrina,Minneapolis bridge collapse, etc. They showed
that there were eyewitness photos which can be used for a formal emergency
response [20]. Flickr was analyzed by Fontugne et al. [13] in the context of the
Japan Tsunami. The study showed that it is possible to identify crisis situations
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and their impact using the content of Flickr, in particular the metadata of the crisis
pictures. Dashti et al. [10] studied Twitter data for disaster recovery and reconnais-
sance. They argued that the most important messages are those including pictures
and location information. Yates and Paquette [50] described the use of SM during
Haiti earthquake. They highlighted the importance of SM for communication and
collaboration between aid units to share information in an easy and efficient way.
Likewise, Dugdale et al. [12] analyzed the use of SM during Haiti earthquake. The
results show that SM is important for situational awareness stating the positive atti-
tude of first responders to use social networks. Hughes et al. [16] collected data
related to Hurricane Sandy from Twitter, Facebook, agencies websites and Nixle
which is a notification service. They studied online communication of local fire and
police services. The study showed that efficient browsing techniques for analysis of
SM data are important.

Agencies make use of social networks to monitor the reaction of the public on
different events and to communicate with the public during such events. For example,
Denef et al. [11] analyzed the tweeting behavior of two major police forces in UK
during the 2011 riots. They highlighted the different strategies of the police forces
in communicating with the public. They also presented the different pro and cons of
these strategies. Although, relief units use SM in CM and daily work, development
of new practice and supporting technologies (e.g., identify active users, understand
the current information propagation trend, detect topics and events, etc.) are needed
to connect both communities, the public and emergency services [7].

12.3 Information Propagation in Crisis Situations

SM networks offer simple communication channels to propagate information in a
short time. Many research studies illustrate how information can be disseminated
in realtime which enable just-in-time analysis of SM data upon the occurrence of
events. For example, Stollberg and de Groeve [43] showed that it is possible to detect
events by monitoring tweets that contain specific keywords (e.g., earthquake).

In the following we address important research topics in relation to SM and CM:

• Network analysis and community detection: This is about the analysis of SM
networks in static or dynamic fashion such as topology and changes of the network.
The aim is to detect communities and uncover the communication channels for
information spreading. It facilitates the analysis of ties within the communities.
Details follow in Sect. 12.3.1.

• Role and topic-oriented information propagation: Analysis of which kind of infor-
mation is propagated through SM networks and which users will receive informa-
tion. The question about which information to trust is another area that falls into
this category. Details follow in Sect. 12.3.2.
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• Infrastructure-oriented information propagation: It is about structural forwarding
of information to responsible persons or facilitating an infrastructure to forward
information. Details follow in Sect. 12.3.3.

• Prediction and forecasting: This is related to forecasting of several aspects like
evolution, impact, behavior of users, etc. Usually the reliability of forecasting
depends on the characteristics of the propagation itself [8]. The present chapter
will not further discuss this topic as it is out of the intended scope.

The first two points are related to each other, because if the structure of the network
is known, the mechanisms/ways the information propagates can also be modeled.

Information published on SM networks can emanate from two sources:

• General public: un-structural information can take different forms: text, images,
videos.

• Crisis management: structural information exchange and propagation within CM
services.

Most of the research studies investigate data emanating from the public in order to
enhance situation awareness, decision making, and resource management.

12.3.1 Network Analysis and Community-Detection

Tyshchuk et al. [46] examined Twitter data related to Japan tsunami in 2011 by
considering social network analysis and natural language processing to understand
and uncover communication patterns. The social network analysis was used to find
and analyze communities using a randomwalk algorithm on time slices. Twitter texts
were investigated to understand the role of community members [46].

Ren et al. [38] described a visual analytic tool called WeiboEvents.2 It comprises
two parts: (1) a web-based analysis tool and (2) an expert analytic system. The tools
are used to analyze and explore a retweet tree and to identify clusters of users. To
get rid of the huge amount of data in SM networks, the web-based tool is used as
crowd-sourcing tool, where the user can solve mini-tasks asked by the system (i.e.,
annotating tweets or the importance of users). The results are stored and shared with
other users, allowing also an expert in front of the expert analytic system (in case of an
emergency) to reuse already examined data. The system is used in China since 2012.

Kumar et al. [19] and Morstatter et al. [22] described TweetXplorer, a tool to
identify: who is important, where do relevant tweets originate from, and when do
different trends occur. The number of retweets is used to identify important users and
tweets. Additionally, time and location are used in visual analytics. TweetXplorer
visualizes the obtained retweet-network in a graph, map and keyword-cloud repre-
sentation. The graph represents the retweet network, the map shows the heat-map of
tweets and the most important keywords of a time period are visualized in a word
cloud. They evaluated their tool using data about Hurricane Sandy. The experiments

2 Weibo is a very popular Chinese microblogging platform.
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showed that clusters of users discussing specific topics (e.g., power outage, hospital)
can be identified [22].

Sutton et al. [44] examined the amplification of tweets during Boston bombing in
2013. They collected data originating from organizations responsible for emergency
management during the incident from Twitter. The data was used to identify users or
other organization (i.e., user profiles) in the network which amplify information by
retweeting the original tweet [44]. These amplifying user profiles must be considered
in a standardized communication process (helping to support data propagation).
To identify such users, they analyzed the tweets through creating a retweet-network,
where the nodes represent the different organizations and the edges show interaction
(i.e., if one node retweets messages from the other node) [44]. The influence of a
node is given by the amount of retweets the node performed. It shows that local
organization has the most influence in creating new tweets/information and non-
local organization acts as supporter for the propagation of the information through
retweeting.

Klein et al. [18] suggested a framework based on graph analytic to analyze the
Twitter network during an incident in real-time. They tested a framework based on
tweets gathered fromTwitter with keywords related to emergencies (e.g., earthquake,
flood, etc.). It tracks the communication network behind the tweets to identify the
leading members in the network. In addition, the content of tweets itself is also
analyzed through lexical analysis.

Most of the works focus on Twitter, due to the easy access and the fact that
Twitter is a platform with real-time characteristic during a crisis [41]. The presented
research work above showed the identification and analysis of the networks based
on activities/retweets between users.

Network analysis and community detection are important for CM, especially in
the phases preparedness and response, because they help (1) to understand how
information is propagated, (2) to identify sources of rumors and (3) to create more
efficient communication plans.

12.3.2 Role and Topic-Oriented Information Propagation

Starbird and Palen [42] analyzed the spread of information, especially, the retweet
behavior during the Egyptian uprising. They collected a huge number of tweets,
approximately 2.2 million tweets. 956 most tweeting user accounts where analyzed
and labeled manually using the following coding: in Cairo, in Egypt but not in
Cairo, and not in Egypt. Tweets that are propagated are related to solidarity, detained
friends/relatives and violence. The most retweeted information was sent from local
accounts in Cairo, for example, from journalists and bloggers. The authors also stated
that the retweeting behavior of other users served as “crowd-based approval” of the
content propagated.

Purohit et al. [36] showed that it is possible to identify influential users (i.e., virtual
responders). These users can be regarded as disseminators to communicate
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information to the general public. The identification of influential users is based on
a graph built from tweets lying in a specific time window. Nodes represent users and
directed edges represent the interaction between users. Additionally, the profession
of users can be identified by comparing the user profile with a lexicon representing
the most important roles (i.e., journalism, police, etc.) during an emergency. Visual-
ization was used to browse through the graph and identify propagation paths of false
information.

Mendoza et al. [21] analyzed tweets from the Chilean earthquake in 2010. They
examined the correlation between followers and number of tweets. The correlation
showed that themost active users have a high amount of followers in the network. The
topology of the network also uncovers related communities. The authors examined
the propagation of tweets containing the word “earthquake”. They found different
patterns of propagation (i.e., tree-based and cyclic). Tree-based patterns produce
direct information propagation, while cyclic patterns represent comments or replies.
Very interesting was the difference in propagation of rumors and true information.
Rumors tended to causemore questions by other persons in the network and therefore
it is possible to detect rumors easily.

Ireson et al. [17] analyzed local communities in the case of Sheffield flooding in
2007. They used local forums and blog posts to analyze the frequency of posts from
individuals. They analyzed groups related to topics. It turned out that users with high-
frequency posts provided important information to the situation at hand. Reuter et
al. [39, 40] analyzed incidents in Europe and the USA. They distinguished between
virtual and real emergent groups. They identified several user groups by roles [39]:
helper, repeater, retweeter, and reporter. Hughes and Palen [15] identified Twitter
as a major broadcast medium for information dissemination. They showed that some
users act as “disseminators” in collecting and disseminating information. In [16],
Hughes et al. also analyzed SM from another perspective: how is SM used by police
&fire services to propagate information to the public. They examined data collected
from Facebook, Twitter, Nixle and the website of the police/firefighters department
related to the Hurricane Sandy in 2012. The results showed that the most important
communication channel was Facebook followed by Twitter. They can be used to
communicate closure of transportation or areas and to publish information from
third parties like weather conditions.

The identification of roles allows to refine communication plans for disseminating
information in a fast way, for example during response.

12.3.3 Infrastructure-Oriented Information Propagation

Propagation of information is not always straightforward, especially when the com-
munication infrastructure has (partially) been destroyed. This is very important
before or during recovery phase of CM. Therefore, research focuses on ad-hoc
networks for forwarding messages (i.e., tweets). Al-Akkad et al. [1] discussed
the physical perspective of information spreading focusing on a store-and-forward
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mechanism to overcome the limitation of the damaged infrastructure. They
developed an application for Android mobile phones which takes care of the publica-
tion of tweets. It usesWiFi technology to join and leave “islands of connectivity” [40].
If amobile device reaches an islandwith Internet access (i.e., anothermobile phone in
the ad-hoc network with Internet connection), messages stored on the mobile phone
get published. Similar systems can be found in [1]. Moreover, there are also different
routing algorithms to transmit information within ad-hoc networks in an efficient
way. Raffelsberger and Hellwagner [37] described a comparison of routing algo-
rithms in context of emergency response. Zhou et al. [51] collected microblogs from
Weibo to build a Naïve Bayes classifier that allows routing information to emergency
departments (e.g., police, fire department, ambulances, etc.).

Routing of information was also examined in the context of first responders
(i.e., not only for social media data). In Netten et al. [23, 24], for example, important
information is forwarded to people also interested in that information or topic due to
their role. They recorded conversion between relief units which was then processed
to detect conversation topics.

Wei et al. [48] discussed the difference in disseminating information through
strong and weak ties during disaster situations. They created and ran a simulation
environment emulating these strong and weak ties. The results showed that weak
ties have a high influence in propagating information, as they often have a bridging
function between communities with strong ties. This has also been shown by Bakshy
et al. [3].

Infrastructure-oriented propagation is important particularly during the response
and recovery phases when the infrastructure is not completely restored. Efficient
and intelligent routing mechanism of information helps propagating important facts
about the crisis.

12.4 From SM to Structural Information Propagation

In crisismanagement informationmust be first uncovered, analyzed and then directed
to people in particular structures such as emergency serviceswhowill make decision.
In the following we describe a framework for structural information propagation
during emergency management. Figure12.1 sketches the general processing chain
for analyzing SM in CM. First, in the information propagation step, the people
(e.g., including victims, involved people, bystanders, etc.) propagate information
about the current situation.

Information 
Propagation 

Information 
Retrieval & 

Network analysis 

Structural 
Propagation 

Fig. 12.1 General processing chain
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Social Media Data from Twitter, Flickr, YouTube etc .
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The public
Specific agencies 
and responders

Decision 
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Analysis

Structural 
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Fig. 12.2 Information processing and propagation: detailed framework

The information is analyzed using various techniques stemming from Information
Retrieval and Network Analysis by examining the network structure, role and discus-
sion topics. In [30], we investigated social media analysis approach to detect topics
related to a crisis. The outcome of the investigations are then used for structural
propagation, by redirecting the topics to the crisis services.

Figure12.2 provides details of the last two steps. Relying on specific interfaces
such as the Twitter Streaming API, relevant data is obtained. Results of the analysis
are then used for decision making. Information can also be published for the pub-
lic and redirected to the first responders or other agencies such as police and fire
departments.

Information propagated through the networkmay call for some correcting actions.
The reason for corrective actions could be rumors or false information, but also addi-
tional information for prevention. Social media can be used to convey information
to the public. Results of the network analysis can be used to propagate information
in a focused and efficient way.

To track structural information, it is important to understand which topic is cur-
rently being discussed on social networks, to interpret that topic, and to develop the
appropriate action strategy based on what is currently discussed and propagated.

We have developed several topic detection algorithms for social media.
Topics can be hotspots or incidents like flooding, collapsing of bridges, etc. in a
specific area. These topics are called sub-events which can be identified by accu-
mulating/aggregating all messages posted in relation to the same topic. Retweets/
re-posts amplify the importance of topics as the amount of messages discussing the
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Fig. 12.3 Topic detection
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structural propagation
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topic increases. The advantages of the framework are (1) to uncover the important
sub-events during a crisis, and (2) to propagate the analysis results to agencies or other
involved parties. Our work on detecting sub-events from SM data is summarized in
the following section.

12.4.1 Topic Detection

To uncover the discussion topics in SM during a crisis, we developed clustering
approaches. Two strategies were investigated: offline where a corpus is readily avail-
able and online where data is obtained and sequentially processed in realtime.

Offline clustering methods were used to detect sub-events which help understand
how and what people communicated about an event. Moreover, the offline strategy
is used aftermath and for training purposes by the agencies. In parallel we developed
an online method which was integrated into a system tested during an exercise in the
BRIDGE project.3

The different processing steps for the offline and online approaches are sum-
marized in Fig. 12.3. First, data is gathered via standardized APIs from the SM
networks. Data is then geo-tagged before text analysis is performed. Important
terms/words are selected through appropriate features selection methods. After-
wards, the offline or online (topic) sub-event detection processes are executed

3 http://www.bridgeproject.eu/en/news/BRIDGE-Conducts-Its-Third-Successful-Demonstration-
in-Stavanger--Norway_126, (Accessed: July 2014).

http://www.bridgeproject.eu/en/news/BRIDGE-Conducts-Its-Third-Successful-Demonstration-in-Stavanger--Norway_126
http://www.bridgeproject.eu/en/news/BRIDGE-Conducts-Its-Third-Successful-Demonstration-in-Stavanger--Norway_126
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(see Sects. 12.4.3 and 12.4.4). The resulting topics are summarized, labeled with
human-readable keywords and visualized in a user-friendly interface.

Using the visualization tool, a person (or team) decides what to do. The following
scenarios can be envisaged:

• They could be ignored if the identified issues are alreadyhandledbyfirst responders
or are out-dated.

• The outcome is transmitted to specific persons on-site to take actions (response,
rescue).

• Steps must be taken to overcome rumors or clarify the situation in the public.

The propagation could be supported by results of network analysis to find infor-
mation hubs to disseminate and spread information in a more efficient way.

12.4.2 Datasets

In our studies we used different datasets as shown in Table12.1. The datasets were
collected from several social media networks (i.e., YouTube, Flickr and Twitter)
based on indicators related to the emergency situation at hand. Search indicators are
usually keywords that reflect on the targeted situation. The datasets are related to
crises of different magnitudes. For example, the Mississippi Flood crisis consist of
many sub-events describing flood in cities, like Vicksburg and New Orleans. The
same is true for the Hurricane Irene which affected South Carolina, Virginia and
New York. As to UK riots, different cities are affected like London, Manchester and
Birmingham.

The first four datasets in Table12.1 were used in studies for offline clustering. For
the evaluation, the UK riots dataset was labeled based on the sub-events that could
be identified by human using textual features and metadata [31]. Labeling requires
the location, time and content to identify sub-events (see Sect. 12.4.3).

Hurricane Sandy was used to analyze the online clustering strategy (see
Table12.1). A large amount of media items for a shorter time period has been used to
track the dynamics of social media networks. We used Twitter as real-time broadcast
medium to collect relevant messages.

In the following sections, we present a summary of examined offline and online
approaches.

Table 12.1 Datasets related to different disasters [33]

Dataset name Duration #Pictures #Videos #Tweets � items

Mississippi flood (MF) 04–19 May 2011 2,039 442 0 2,481

Oslo bombing (OB) 22 July 2011 31 222 0 253

UK riots (UK) 06–10 Aug 2011 178 274 0 452

Hurricane Irene (HI) 23–29 Aug 2011 455 700 0 1,155

Hurricane Sandy (HS) 29–30 October 2012 286 167 1,003 1,456
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12.4.3 Offline Approaches

In the offline clustering study, we have proposed several methods for sub-event
detection:

• Self-organizing maps (SOM) in [28] We used the MF, OB, UK, and HI datasets
shown inTable12.1.Wecompared our resultswith the ground truth (i.e., describing
the timeline of the different incidents: MF: [34], OB: [5], UK: [4], and HI: [2, 35]).

• Agglomerative clustering (AC) in [29] Agglomerative clustering is a clustering
approach which allows to visualize intermediate result-steps for the user in an
intuitive representation, called dendrogram. We introduced a weighting mecha-
nism for keywords/features based on the location of their appearance (title, body,
tags). We also used the MF, OB, UK, and HI datasets and compared them to the
ground truth.

• 2 Phase-Geo (2PG) in [27] We also introduced a 2 Phase-Geo (2PG) clustering
approach based on self-organizing maps. It allows to take the (often) sparse geo-
information into account when performing the clustering.

• 2 Phase-Geo-Time (2PGT ) in [27] In another variation of the 2PG algorithm,
we additionally considered the time-information of media items published. We
evaluated both algorithms, 2PG and 2PGT, using MF, OB, UK and HI datasets to
show the impact of geo-information.

Figure12.3 summarizes the steps performed during the analysis. The geo-tagging
step is used only for approaches which need that tag in order to run the detection
procedure.

In [31] we compared the SOM, AC, 2PG, and 2PGT algorithms using different
criteria: scalability, metadata quality, ground truth and clustering quality. Scalabil-
ity compares the runtime complexity, the needed parameters and the visualization
of the clustering results for their clarity. Metadata quality examines the sensitivity of
the clustering approaches regarding the completeness of the metadata. We compared
the clustering results against the corresponding ground truth.

The clustering quality is measured based on the topic and item level. For the topic
level we check if the different approaches were able to identify the topics. We made
use of clustering quality metrics (Dunn, Davies-Bouldin and Silhouette Index [31])
and the Normalized Mutual Information (NMI) to compare the similarity between
the clustering results [31]. 2PG and 2PGT show an intuitive interface to visualize
the data (i.e., map-based representation) compared to the other algorithms focusing
on text-based visualization.

In addition, we compared different clustering approaches based on item-level. We
labeled UK riots dataset with different granularity. First, labeling was performed
with the focus on the City-District-Incident-Date (CDID) format. This means, items
in the dataset with the same city, district, and describing the same incident (on the
same date) are labeled similarly. We considered also a City-District (i.e., topics from
the same city and district are summarized) and City level (i.e., topics related to the
same city are combined). For comparison purposes, we used the purity metric to
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Table 12.2 Short summary of the evaluation, (n=̂ number of media items) [31]

SOM AC 2PG 2PGT

Performance O(n2) O(n3) O(n2)

Parameter Number of clusters and terms used in the aggregation

Representation Table-representation with Map-based

text rows representation

Metadata Text Text+Geo Text+Geo

+Time

Ground truth Identifies most important sub-events

(topic-level) 2PG and 2PGT easier to read

Cluster quality Similar in assigning data items Future extension

(topic-level) with streaming

Cluster quality AC and 2PGT performs best on item level evaluation

(item-level)

identify the best algorithm and we showed that AC and the 2PGT perform best for
the different granularity levels.

The results are summarized inTable12.2 based on the different criteria. For further
details please refer to [31] and [33].

It is easy to communicate those sub-events that are the focus of discussion in
SM networks to the interested parties (i.e., relief units, incident commander, etc.).
In an aftermath analysis, the obtained insights can be used to simulate or model the
propagation of information for an exercise.

12.4.4 Online Approaches

Based on the findings of the offline approaches, we developed an online approach
to detect and track sub-events in real-time during a crisis. We developed an online
feature selection mechanism combined with an online clustering algorithm [30]. The
feature selection approach extends the term-frequency-inverse document frequency
(tf-idf) by introducing an additional weighting mechanism for trending keywords.
This means, keywords with a high peak in incoming messages are highly weighted
than keywords with less frequency. So, the most important features are identified for
further consideration in the clustering stage.

Growing Gaussian Mixture Models [6] have been used to cluster the items with
the feature sets resulting form the processing steps. Each cluster is represented as
a multivariate Gaussian. The algorithm allows to split and merge existing clusters,
to optimize the number of clusters. In the best case, each cluster represents one
sub-event (topic). Outdated features are removed from the clusters by deleting the
corresponding entries from the multivariate Gaussian’ center and covariance matrix.
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We evaluated the clustering algorithm using the Hurricane Sandy (HS) data [30]
(see Table12.1). Compared to the ground truth (HS:[49]), the algorithm identifies
topics related to flood, power outage and different damages. Additionally, we com-
pared the algorithm against a baseline offline algorithm, which calculates the features
in advance from the entire dataset. Using NormalizedMutual Information (NMI) the
online clustering showed a similar behavior as the baseline algorithm, although fea-
tures are dynamically examined. We used the Silhouette metric to judge the quality
of the clusterings: high Silhouette values indicate well separated clusters. The values
for the online and offline approach are very similar (e.g., in average a difference of
0.16) [30].

We incorporated the developed online features selection and clustering approach
in an real-time SM analysis tool called “Information Aggregator”4 for supporting
crisis management. The tool allows the transmission of important outcome to first
responders on-site of the incident [33] as a typical case of structural information
propagation. That is, identified sub-events are used during crisis management as
additional source for decision making and for defining new communication strate-
gies. First responders see a benefit of using knowledge gained from SM to execute
management tasks [32].

12.5 Conclusion and Future Work

This chapter highlights the importance of social media in crisis management.
It describes research on how information is propagated through social networks
during crises. We categorized information propagation into three classes: network
analysis and community detection, role and topic-oriented information propaga-
tion, infrastructure-oriented information propagation. We suggested a framework for
structural information propagation, that is about how hot topics discussed by people
can be detected and forwarded to first responders or used to communicate informa-
tion to the public. We briefly summarized our work in relation to topic detection
using various offline and online algorithms.

In future, we plan to extend the topic detection framework by considering active
learning to enhance the quality and efficiency of topic detection. We also plan to use
the network structure to enable efficient information propagation.

Acknowledgments The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 261817 and
was partly performed in the Lakeside Labs research cluster at Alpen-Adria-Universität Klagenfurt.
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Chapter 13
Simulations of Financial Contagion
in Interbank Networks: Some
Methodological Issues

Mario Eboli

Abstract This contribution focuses on the methodology applied in papers that
investigate the dynamics of contagion in financial networks using numerical sim-
ulations. In these papers, a propagation of losses and defaults in a financial sys-
tem is modeled as a direct balance-sheet contagion (a.k.a. counterparty contagion),
that is the direct transmission of losses from financially distressed debtors to their
creditors. The researchers in this field perform their simulations with three differ-
ent methods: (i) basic linear threshold algorithms, (ii) the graph-theoretic approach,
where contagion ismodeled as a propagationprocess in directed andweightedgraphs,
(iii) the lattice-theoretic approach, where contagion is modeled as a ‘fictitious default
algorithm’, that computes the vector of payments that clears a net of financial oblig-
ations. Some of the results obtained by this stream of literature raised doubts about
the assumptions used in such simulations. We discuss this issue and present some
methodological recommendations that may improve the realism and the generality
achievable in numerical investigations of financial contagion.

13.1 Introduction

Even before the financial turmoil that started in 2008, the concern for the risk of finan-
cial contagion prompted a growing number of economists to investigate the propaga-
tion of losses and defaults in networks of financially connected agents. Financial and
banking networks arise from several contexts, such as the interbank liquidity market,
where banks cross-hold short term liabilities in order to share liquidity risk; payment
systems; over-the-counter markets for derivatives; the sharing of credit risks through
syndicated loans, etc. In all these cases, there are sets of financial operators whose
balance sheets are directly and indirectly connected to one another by financial oblig-
ations: an assets in the balance sheets of an agent is a liability in the balance sheet
of another agent. In such financial networks contagion can occur through different
and non alternative channels. First, and most important with respect to the focus of
this chapter, default contagion can occur through the direct transmission of losses
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from the liability side of the balance sheet of a defaulting debtor to the asset side
of the balance sheets of its creditors. Starting from an initial set of defaults, the pri-
mary defaults, this transmission of losses can cause further, secondary defaults, if
the losses received by an agent are larger that its absorbing capacity, i.e. its equity.
This direct balance sheet process of default contagion, also known as domino effect,
is the form of financial contagion that has been most investigated by economists,
with both analytic and numerical methods. A second form of direct balance sheet
contagion is the transmission of liquidity shortages. A lender that faces a liquidity
deficit reduces the loans granted to its borrowers who, in turn, reduce their own
exposures towards other agents, and so on. This illiquidity contagion is transmitted
from the asset side of the balance sheet of a lender to the liability side of the balance
sheets of its borrowers. Both these two forms of direct contagion unfold along the
directed paths composed of the financial obligations that form the networks at hand;
thus both have been modeled, and simulated, as network phenomena. Besides such
direct, agent-to-agent transmissions of losses or illiquidity, contagion among agents
that belong to a financial networks also occurs through the common depreciation
of their assets, depreciations due to common or correlated exposures or due to the
untimely sales of illiquid assets in scarcely liquid markets.1

In this contribution, we focus on papers that investigate direct balance-sheet
default contagion bymeans of numerical simulations. This stream of literature can be
divided in three parts. A number of economists,most ofwhichwork for central banks,
have run simulations on national interbank networks in order to test their resiliency
to possible shocks caused by the failure of one or more banks. These authors use
datasets usually collected by the central banks (in their quality of monetary author-
ities), thus they work on real networks in a strict sense. A second group of authors,
who study financial contagion with analytic methods, have run numerical simula-
tions on randomly generated networks in order to complement and validate their
arguments. Finally, another set of contributions characterise, mostly with mean-field
approximation methods, the probability of the occurrence of cascades of defaults in
financial networks, and use numerical simulations on randomly generated networks
to validate the approximate results obtained with their approach. These second and
third groups of contributions use simulations on stochastically generated networks,
which are designed to capture some essential features of the observed interbank
networks. Thus such networks are not real, in a strict sense, but realistic (plausible)
representations of real networks. This literature is briefly reviewed in the next section.
The rest of the chapter is organised as follows. In Sect. 13.3, we present a model of a
financial network, based on balance sheet data, and the three procedures used to sim-
ulate default contagion in such a network. In Sect. 13.4, we voice our concerns about
some methodological choices made in the existing numerical simulation of financial
contagion and make some recommendations. Conclusions are drawn in Sect. 13.5.

1 A sharp increase in the sales of an illiquid asset (e.g., a share or a long term bond)may push its price
below the fundamental (true) value of the asset. This phenomenon is known as ‘liquidity pricing’.
During a crisis, financial intermediaries can be forced to sell assets in response to liquidity shortages
and/or excessive leverage (the so called ‘fire sales’), facing losses due to such liquidity pricing.
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13.2 Analytic and Numerical Studies of Financial Contagion

Starting from the mid 90s, scholars of economic theory studied the risk of financial
contagion, i.e. the risk that the financial distress of a bank can be transmitted to other
banks through the network of financial obligations that connects them. Seminal early
theoretical contributions, due to authors such as [4, 18, 31], analyse simple stylised
interbank deposit networks to evaluate the effect that the shape of a network has on
its resiliency to external shocks and to bank runs. [18, 31] analyzed the possibility
of bank runs caused by changes of depositors’ expectations about the solvency of a
bank. Other papers, such as [4], present models in which financial crises arise as a
consequence of downturns in the economic cycle.2 In general, in this class of models,
if the total available liquidity is sufficient to satisfy the liquidity need caused by an
informational shock or a solvency shock, then interbank loans are an effective way to
redistribute liquidity among banks and to share the liquidity risk. Conversely, in the
opposite case of an aggregate shortage of liquidity, the existence of a net of financial
obligations among banks creates the grounds for the diffusion of financial distress
and for the occurrence of systemic crises.

This early analytic literature focused on stylised interbank networks usually com-
posed of four banks and arranged in four shapes: complete networks, where each
agent has obligations towards all other agents; partially connected networks; star
shaped networks, also known as money centers, where there is a central node con-
nected with all other (peripheral) nodes, which in turn are connected only with the
center; and circle shaped networks. The formal analysis of systemic risk inmore real-
istic financial networks proved to be difficult and, as a consequence, many authors
turned to numerical simulations to investigate financial contagion in actual, realworld
interbank networks. Authors such as [13, 17, 20, 29, 34, 36],3 who are mostly cen-
tral bankers, have studied national interbank networks—constructed on the basis of
banks’ balance sheet data collected by national authorities—with the aim of evalu-
ating their exposure to the risk of contagion. These authors stress test such interbank
networks with counterfactual simulations, generally performedmaking one bank fail
because of exogenous causes. All these studies indicate that, in such national banking
systems, the risk of default contagion due to interbank exposures is very low.

Other authors—e.g. [30] and [32]—investigate financial contagion by running
similar numerical simulations on randomly generated financial networks, rather than
empirically observed networks. Theoretical contributions, such as [1], also present
numerical simulations of financial contagion in stochastically generated networks,
used by the authors to illustrate and support their analytic results.

Finally, another group of authors—namely [5, 6, 11, 21, 22, 25, 28]—run numer-
ical simulations of financial contagion to validate the approximate results, based on

2 Recessions can cause losses in the value of the assets held by banks, losses capable of rendering
them insolvent. If depositors foresee the recession, they will protect themselves from possible bank
defaults by withdrawing their deposits and, in so doing, they create the conditions for the occurrence
of a widespread crisis.
3 See the review by Upper [34] and the papers cited therein.
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applications of mean-field theory, that they obtain in assessing the probability of
default cascades in financial networks.

13.3 Direct Balance-Sheet Contagion in Financial Networks

In what follows, we focus on a simple version of a financial network, where the assets
held by the financial intermediaries are grouped in two broad categories: external and
intra-network assets; similarly, agents’ liabilities are sorted in two classes, external
debts and intra-network debts, which are assumed to have the same seniority in
liquidation procedures.4

Let � be a set of n financial operators indexed by i = 1...n, and let di j ∈ R+,

be the amount of debt, if any, that agent i owes agent j, for i, j = 1...n and i �= j .
Each agent in � is characterized by its own balance sheet:

Assets Liabilities
ci = ∑

j ci j di = ∑
j di j

ai hi
ei

where, on the assets side, ai ∈ R+ is the value of the external assets owned by
i—i.e., claims on agents that do not belong to �, and ci ∈ R+ is the sum of the
claims that i holds against other agents in �, i.e., ci = ∑

j ci j . On the liability side
of the balance sheet, the intra-network debt of the i-th agent, di ∈ R+, is the sum of
the liabilities issued by i and held by other agents in �, i.e., di = ∑

j di j ; hi ∈ R+
is the amount of obligations that i has towards external financiers (in the form of
bonds, deposits, etc.); and ei ≡ ai + ci − di − hi is the net worth (equity) of the i-th
agent. Finally, let A = {ak}, k = 1...m, be a set of external assets such that each ak

in A appears in the balance sheet of at least one operator in �, and let ak
i ∈ R+ be

the amount of asset k held by agent i , if any. Note that the network structure of this
financial system is embedded in its adjacency matrix [di j ]n,n .

13.3.1 The Linear Threshold Algorithm

In many real world networks of socially interconnected agents, the behaviour of
an agent is influenced by the behaviour of her ‘neighbours’, i.e. the set of agents
directly connected to her. The sociologist Mark Granovetter put forward a linear
threshold model of diffusion of innovative behaviours that captures this mechanism.
In his seminal work [23], Granovetter postulates that an agent is induced to adopt an

4 This networkmodel can be easily generalised by adding different liabilitieswith different seniority,
as it is done in [1].
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innovation when she observes, in her neighbourhood, a number of adoptions larger
than a given threshold value. The linear threshold algorithms, based on this model,
iteratedly compute the adoptions (i.e., the change of state of nodes in the network)
induced by an initial set of early adopters. Starting with [20], several economists5

have applied this type of algorithms in simulations of defaults contagion in national
banking systems.

To present this approach, we need somemore notation. Let z be a vector composed
of n variables zi , i = 1, ..., n,where zi takes on value 0 if the i-th bank is solvent,
while it takes on value 1 if the i-th bank is insolvent. Let b ∈ (0, 1] be a parameter,
exogenous and fixed, that measures the loss-given-default suffered by the debtors of
a defaulting bank, i.e. the quota of the claims of the creditors which is not recovered
through the liquidation of the bank. Finally, let λ = [λi |i = 1, ..., n] be the vector
composed of the lossesλi received by the banks in�. A bank is brought to bankruptcy
if it receives losses larger than its own net worth ei .

The linear threshold algorithm applied to financial contagion, also known as
sequential default algorithm, consists of the following procedure:

1. For a given initial set of defaulting banks �, i.e. for a given initial vector z,
compute λ =bz[d ji ]n,n .

2. If λi < ei for all banks in �\�, then stop. If λi > ei for one or more banks in
�\�, then update � and start again from step 1.

This procedure is the one adopted by almost all the above cited papers that stress
test national interbank systems. This is surprising, considering that this approach
suffers some limits that stem from the fact that it does not make full use of the
information embedded in the above described representation of a financial network.
These limits are discussed below in Sect. 13.4.2.

13.3.2 The Graph-Theoretic Approach

The natural candidate for a formal representation of the above described financial
system is a directed and weighted graph N = (�, D), where the agents in � are
represented as nodes and the obligations that connect them are represented as a set
of weighted and directed links D = {di j |i �= j and i, j = 1, ..., n}.

In a network N , a propagation of losses is generated by an exogenous shock, as
a drop in the value of some assets in A, defined as follows. Let bk ∈ [0, 1] be a
parameter that measures the fraction of the value of the asset ak which is lost, and let
[bk], k = 1...m, be the vector composed of such parameters. An exogenous shock is
an assignment of value to this vector where at least one of its components assumes a
strictly positive value. The loss received by a node i , which owns a positive amount
of asset ak , is bkak

i and the total value of the external shock is σ = ∑
A bkak .

5 See [34].
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The propagation of losses through the network is governed by the rules of limited
liability, debt priority and pro rata reimbursement. Limited liability and debt priority
imply that when a node suffers a loss, this loss is first absorbed by the net worth of
the node, i.e. by the equity held by the shareholders of the bank. Only the residual
loss, if any, is passed over to other nodes in �. For each node i in �, let

βi (λi ) = min

(
λi

ei
, 1

)
(13.1)

be an absorption function, where λi is the total loss born by the i-th node, as defined
below, and the variable βi ∈ [0, 1] measures the share of net worth lost by the
shareholders, who suffer an amount of losses equal to βi ei .

If the losses suffered by i are larger than its initial net worth, then this node
is insolvent and sends the residual loss, λi − ei , to its creditors, i.e., to its direct
descendants in �: j ∈ � such that li j ∈ L , also said children nodes of i . For each
node i in �, let

bi (λi ) = max

(
0,

λi − ei

di + hi

)
(13.2)

be a loss-given-default function. The variable bi ∈ [0, 1] assumes a value of zero if
the i-th operator is solvent, while it assumes a strictly positive value if the operator
defaults. In the latter case, the assets of the insolvent node are liquidated and its
creditors get a pro rata refund.6 Thus bi measures the fraction of the i-th agent’s
debt that can not be recovered through liquidation. When the i-th agent becomes
insolvent, a node j which is a creditor of node i receives from the latter a loss equal
to bi ci j . The total loss born by an agent in �, if any, is the sum of the loss of
value of its external assets plus the losses received from its defaulting parent nodes:
λi = ∑

k bkak
i + ∑

j b j c ji .
With this setting, the value of a propagation of losses and defaults in a financial

network N is computed through the iterated application—node by node, along the
directed paths and cycles of N—of the absorption and loss-given-default functions
defined above. For a given exogenous shock, this procedure yields a sequence of
passing of financial losses starting from the initial set of defaults. When the initial
exogenous shock has been completely absorbed by the portfolios of shareholders
and external financiers, no further default can occur, the computation stops and the
algorithm delivers the pair of n dimensional vectors

{[βi ], [bi ]
}
which identify the

propagation at hand. In this way the procedure characterises the losses born by
each node and the final set of defaulting agents, for any given value of the shock
vector [bk].

6 Some authors assume that this is done without incurring bankruptcy costs, while other consider
the presence of fixed or porportional liquidation costs and, finally, several authors simplify their
analysis assuming that for each failing agent bi = 1, i.e. assume that creditors get no refund at all.
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Let us add a superscript t = 1, 2, 3, ... to the variables involved in the
computation—namely λt

i , bt
i , β

t
i—to indicate the value taken on by these variables

at each iteration of the algorithm. Recall that λi = ∑
k bkak

i + ∑
j b j c ji and let

[λi ]1×n = [bk]1×m

[
ak

i

]

m×n
+ [

b j
]
1×n

[
d ji

]
n×n (13.3)

be the vector of the losses born by the agents in �. Further, let � = {i ∈ �|bi > 0}
be the set of insolvent agents. The algorithm is the following:

1. For the given value assignment of the vector [bk], compute [λt
i ] = [bk]

[
ak

i

] +[
bt−1

j

] [
d ji

]
, starting with t = 1 and setting [b0j ] = [0].

2. Compute [βt
i ] = [βi (λ

t
i )] and [bt−1

i ] = [bi (λ
t
i )] according to 13.1 and 13.2.

3. If
∑

� βt
i ei + ∑

� bt
i hi = ∑

A bkak , then stop. If
∑

� βt
i ei + ∑

� bt
i hi <∑

A bkak , then start again from step 1.7

The values of the vectors [λt
i ], [βt

i ], [bt
i ] are strictly increasing in t as long as

there are nodes in � with strictly positive divergence (incoming losses larger than
outgoing losses), i.e., as long as there exists at least one i ∈ � s.t. λt

i > βt−1
i ei

+ bt−1
i di , which, in turn, implies

∑
� βt

i ei + ∑
� bt

i hi <
∑

A bkak . Conversely,
the repeated iteration of the algorithm yields stationary values of the vectors at hand
once

∑
� βt

i ei + ∑
� bt

i hi = ∑
A bkak . This condition is eventually achieved, then

the divergence of all nodes in � is null and neither the losses arriving at a node nor
the losses departing from a node can grow anymore.

Each iteration of this algorithm computes the passing of losses from a set of nodes
in N to their children nodes, i.e., to their direct descendants. In absence of cycles,
the length of the longest possible path in N is equal to n and so is the largest possible
number of iterations in the algorithm. Conversely, in presence of cycles of defaulting
nodes, the algorithm converges asymptotically to the solution values by computing
progressively smaller augmentations of the losses passed along the cycle. Since the
values at hand are sums ofmoney, this problemcan be easily overcomeby discretising
the variables involved. In this case the algorithm stops in a finite number of iterations.

This procedure for the computation of a contagion process has been applied in
different contexts. [30]8 uses this approach, and the above algorithm, in simulations
run on randomly generated financial networks which are parameterised with respect
to four features of a banking sector: the capacity of banks to absorb shocks (i.e., their
capital), the size of interbank exposures, the degree of connectivity, and the degree of
concentration. They run simulations to evaluate the effects that these characteristics
of a banking sector have on its resiliency to external shocks. [27] uses a very similar

7 This terminal condition can also be expressed in terms of defaulting nodes, as it is done in the
linear threshold algorithm depicted above, because the condition

∑
� βt

i ei +∑
� bt

i hi = ∑
A bkak

implies that no more nodes default, and vice versa.
8 These authors build their model on an early version of [14], presented at the bank of England in
May 2004. See [30],p. 2038.
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algorithm to simulate the propagations of systemic liquidity shortages in differently
shaped interbank networks. The above procedure is also used in the numerical sim-
ulations performed by most of the authors of the default cascade models discussed
below in section.

[15] develops the graph theoretic model described so far, transforming it into a
flow network. In this paper, the above financial system is represented as a multi-
source flow network, i.e., a directed and connected graph, with some sources and
some sinks, whose links are endowed with non-negative capacities.9 This is done by
adding to the above graph N = (�, L) a set A = {ak} ofm source nodes—i.e., nodes
with no incoming links and with outgoing links ending in the nodes in �—that rep-
resent the above defined external assets, and two sinks—i.e., terminal nodes with no
outgoing links and with incoming links starting from the nodes in �—that represent
the portfolios of the final claimants of the financial system, divided in two groups:
shareholders and debtholders. This transformation enabled us to model a contagion
process as a flow of losses that crosses a flow network, starting from the source nodes
in A and ending in the sink nodes. In [15] we use the properties of such flows to asses
and compare the exposure to contagion of complete, star-shaped, circular and regu-
lar incomplete networks; and to establish some properties of contagion processes in
generic networks. This flow-network approach is also applied by [9], who study the
dynamics of liquidity flows in interbank networks in order to identify the network
shape that provides coverage from liquidity risk with the smallest possible exposure
to contagion risk.

13.3.3 The Lattice-Theoretic Approach

Payment systems form networks of obligations that are a potential channel of default
contagion among the participants to the system. In their seminal work, Eisenberg
and Noe [16] introduce a lattice-theoretic10 model of a payment system where (i)
the participants are connected among themselves by a net of nominal liabilities
(promised payments), and (ii) each participant receives a positive operating cash
flow. In compliance with the rules of limited liability and pro-rata reimbursements of
creditors, an agent that receives a cash inflow (which is the sum of her own operating
cash flows plus the payments received by other agents in the system) smaller that
her payment obligations, defaults on her creditors who, in turn, receive a pro-rata
quota of the cash inflow of the defaulting agent. Eisenberg and Noe show that for a
given payment system, composed of a vector of operating cash flows and a matrix
of nominal liabilities, there always exists a vector of payments that clears the net of

9 See [3], for the definition of a multisource flow network and for its properties.
10 A lattice is a system 〈X,≤〉 composed of a non-empty set X and a binary relation ≤, where the
latter induces a partial ordering on the elements of X and, for any two elements x, y ∈ X, there
exists a least upper bound (a.k.a. join or supremum) x ∨ y and a greatest lower bound (a.k.a. meet
or infimum) x ∧ y.
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obligations. They also show that, under a mildly restrictive condition, such a vector is
unique. In order to identify a clearing payments vector, Eisenberg and Noe present an
algorithm, the fictitious default algorithm, that iteratively computes the propagation
of defaults (if any) for a given value assignment to the exogenous earnings of the
agents. Thismodel of systemic risk based on clearing payment flows, and its fictitious
default algorithm, are directly applicable to the above balance-sheet representation
of a financial system.11

Keeping the above notation, let xi = ∑
j di j + hi be the nominal obligations

of a node i in �, let � = [πi j ]n,n be the relative liability matrix of N , where
πi j = di j/xi , and let xi be the sum of the payments made by agent i. Thus the
payment of agent i to agent j is equal to xi πi j and the total payments that i receives
from other agents in � are

∑
j π j i d ji . If agent i is solvent, she pays in full her

obligations and her creditor j receives xi πi j . If, conversely, agent i is insolvent, i.e.

xi < ai + ∑
j π j i d ji , she pays out πi j

(
ai + ∑

j π j i d ji

)
to her creditor j in �.

Hence the total payment of agent i to the other agents in the network is

xi = min

⎛

⎝xi , ai +
∑

j

π j i d ji

⎞

⎠

This holds for all i ∈ � and can be written as

x = x ∧
(

a + �T x
)

(13.4)

where: �T is the transpose of �; x = [xi ], x = [xi ] and a = [ai ] are, respectively,
the vector of payments, the vector of nominal obligations and a value assignment to
the vector of external assets. The vector of payments x that clears the system is the
solution of the mapping H(·|a, x,�) : [0, x] → [0, x] defined as

H(x|a, x,�) ≡ x ∧
(

a + �T x
)

Using Tarski’s fixed point theorem, Eisenberg and Noe demonstrate that this increas-
ing and bounded map has a solution and that such a solution is unique under a mildly
restrictive assumption. To characterise this clearing payment vector, the authors use
what they called the fictitious default algorithm, that consists of the following proce-
dure. For a given vector of external assets values—i.e., for a given exogenous shock
that induces an initial set of defaults:

1. Compute x = x∧(
a + �T x

)
assuming that all non-defaulting banks honour their

obligations in full.
2. Stop if no further bank defaults. If there are new defaults, start again from step 1.

11 The following description of the lattice-theoretic approach is inspired to [10], which is one of
the papers that applies the Eisenberg and Noe model.
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In a system composed of n banks, this procedure stops in at most n iterations and
delivers both the clearing payment vector and the sequence of defaults induced by
the exogenous shock.

This algorithm has been applied in numerical simulations of contagion in national
banking systems only by [16].12 Conversely, several theoretical papers on financial
contagion—such as [1, 2, 10, 32]—are built on the basis of the Eisenberg Noe
model. [1], inter alia, use the fictitious default algorithm in simulations of contagion
in randomly generated networks.

13.4 Some Methodological Issues

As Upper points out [34], the results obtained by the above cited simulations of
contagion in national interbank networks are strongly affected by the “potential bias
caused by the very strong assumptions underlying the simulations.”Upper indicates a
list of nine assumptions that need to be carefully evaluated, in particular with respect
to their degree of realism, when applied to simulations of financial contagion. The
most relevant of these suggestions, in our opinion, are the ones that concern two
assumptions, namely the assumption that non-interbank liabilities are senior with
respect to interbank liabilities and the assumption that external (non liquid) assets
can be sold at their book value.

The rules that allocate the losses among the creditors of an insolvent agent play a
crucial role in a default contagion process. Assuming that the claims held by agents
who do not belong to the network, i.e. the external financiers, are senior, in liquidation
procedures, with respect to interbank claims, amplifies both the possibility and the
scope of default contagion.13 This is due to the fact that this restriction increases
the share of losses that circulate within the financial intermediaries and reduces the
amount of losses absorbed by the external financiers. Moreover, there is no clear
evidence in support of the realism of this assumption.14

The assumption that long-term assets can be liquidated at book value rules out
an important channel of contagion: the price effects of ‘fire sales’ of illiquid assets
sold in scarcely liquid markets. This simplifying restriction leads to underestimate
the possibility and the magnitude of contagion during a crisis, since the liquidations
of assets forced by bankruptcies and by the de-leveraging undertaken by banks are
typical phenomena of periods of financial turmoil.

We share the concerns raised by Upper and, in what follows, we add to them our
reflections on the implications of twomethodological choicesmade in the simulations
of financial contagion: the choice of the algorithm used to run the simulations and
the assumptions made about the size and the distribution of the exogenous shocks

12 See [34].
13 For instance [30], assume that customer deposits are senior to interbank liabilities, while there
is no evidence in support of such a restriction.
14 See [34].
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used in the simulations. Moreover, we discuss the implications of the results of the
contributions that run simulations to validate the approximate analytic methods used
to evaluate the probability of the occurrence of default cascades.

13.4.1 The Choice of the Algorithm

As pointed out by Upper [34], most of the authors that performed numerical simula-
tions of contagion in national banking systems choose to use the sequential default
algorithm. This choice is questionable because this algorithm has two main draw-
backs, while we see no specific gains from its usage. First, this approach has no
room for an accounting of the changes of value of the claims that banks hold against
non financial agents, i.e. the exposures of the banking system towards the rest of
the economy: the external assets a. Since external assets are not explicitly present
in the model, exogenous shocks can be modelled only as the default of one or more
banks15 with a given and fixed loss-given-default rate. Moreover, this feature also
prevents the analyser from expanding the model to encompass other forms of con-
tagion, such as the presence of common exposures (e.g., a sovereign debt, such as
greek bonds, held by many European banks), the occurrence of ‘fire sales’ and of
their feedback effects on the value of the assets which are ‘marked-to-market’16 in
the balance sheets of banks. Second, the sequential default algorithm uses an exoge-
nous and fixed loss-given-default for each defaulting bank. This simplification erases,
from the performed simulations, the second order effects of the contagion process:
Whenever a default propagation entails a directed cycle of defaulting agents, there
is a feedback effect on the losses that are transmitted along the cycle, increasing
the loss-given-default of the involved banks.17 In other words, the intercyclicity of
obligations, that generally exists in financial networks, magnifies the flows of losses
passed along cycles of defaulting agents. This mechanism also introduces a simul-
taneity of the solution values of the loss-given-default of the banks that belong to
cycles, a simultaneity that is not modeled by the sequential default algorithm. It may
be argued that the magnitude of such second order effects can be, in reality, negligi-
ble.18 It can also be argued that the time required for the liquidation of a bankrupt
bank is long and that, therefore, the assumption of a loss-given-default equal or close
to unity is a good approximation—in the time span of a contagion—of the impact
of a defaulting bank on its creditors. Nonetheless, we see no reason why the loss-
given-default rates of the banks should not be treated as endogenous to the model, as
they indeed are, given that there are no technical difficulties in so doing. In fact, the
graph-theoretic and the lattice-theoretic approaches described above do not face any

15 Most of the above cited authors perform numerical simulations of the effects of the default of a
single bank. Again, see [34].
16 As opposed to historical value.
17 More precisely, feedbacks of losses, in a default contagion process, take place in strongly con-
nected components of a graph N = (�, D) defined below, if all member of the component default.
18 See below Sect. 13.4.3.
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of these limitations. Therefore we recommend the use of one of them in numerical
simulations of financial contagion.

13.4.2 The Assumptions Made About the Exogenous Shocks

Asmentioned above,most of the authors that stress test national banking systems use,
as external shocks, the failure of single banks. According to [34], only [17] and [19]
model the possibility of multiple failures due to common shocks, with methods that
aim to estimate the joint probability distribution of the value of the exposures of the
banks (the external assets in A). [34] notes this scarce attention to common shocks
and says that “the focus on idiosyncratic failures reveals a worrisome lack of thinking
about the scenarios underlying the simulations” [34]. We share this view and believe
that the fact that financial networks can be “robust-yet-fragile” renders essential to
consider, in simulations of financial contagion, the possibility of scenarios that imply
multiple failures accompanied by a general weakening of the system.

The “robust-yet-fragile” nature of financial systems was first conjectured by [24],
who argued that densely connected financial networks may “exhibit a knife-edge or
tipping point property”, in the sense that “within a certain range, connections serve
as shock-absorbers [and] connectivity engenders robustness.” While, if the system
is perturbed by sufficiently large shocks, high connectivity becomes the channel that
enables a pervasive diffusion of defaults. Using analytic methods, [1] and [14] estab-
lished that complete networks display a phase transition behaviour in the response
to shocks of different magnitude: up to a certain threshold, these networks are com-
pletely resilient to shocks, in the sense that no secondary defaults occur; beyond such
threshold, the entire network defaults. The rationale for this result lies in the fact that,
in complete networks, the losses (and/or the illiquidity) are evenly transmitted by
the financially distressed nodes to all other nodes, making the most of the absorbing
capacity of the system as a whole. For the same reason, shocks which are larger than
the absorbing capacity of the network cause its complete collapse. [15] shows that
star-shaped networks have the same property, because if the central node defaults,
the losses are equally born by all peripheral nodes.

In the light of these analytic results, it is not surprising that all the above cited
works, that stress tested national systems with respect the initial default of a single
bank, concluded that national systems are exposed to little risk of direct contagion.
It is plausible that the “robust-yet-fragile” property belongs also to the empirically
observed interbank networks, in asmuch as they appear as a combination of complete
and star-shaped networks. National interbank networks often display a two-tiered,
core-periphery disassortative structure, with heavy tails in the degree distributions.19

19 Several studies agree on the observation of actual interbank lending networks formed by banks
that consist of a core of highly connected banks, while the remaining peripheral banks are connect
only to the core banks. [33] and [7] note this feature for the US commercial banks network.
[8, 12, 26], respectively, find similar structures in banking networks of the UK, Canada, Japan,
Germany and Austria.
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In other words, they tend to appear as multi-star networks, where the money center
nodes tend to be large and highly connected among themselves, forming the core to
which the peripheral nodes are preferentially connected.

For these reasons, we think that the modeling of shock scenarios (possibly based
on estimates of the future value of the external assets) that may embrace entire
sections of a financial system is a crucial requisite to achieve plausible simulations
of financial contagion. Moreover, it is advisable that numerical exercises take also
into account the above described effects of fire sales in order not to underestimate
the actual threat posed by ‘low probability—high impact’ scenarios, that may be not
so unlikely during a financial crisis.20

13.4.3 Existence of the Simulated Functions
and the Scope for Approximations

The existence of the propagation processes described above in Sect. 13.3 is guaran-
teed under general conditions. As mentioned above, [16] demonstrate the existence
of a clearing payment vector applyingTarski’s fixed point theorem to the function that
maps the vector of intra-network payments onto itself. In a flow network setting, [14]
proves the existence of the above defined propagation flow, for any realization of the
external shock, applying the known minimum cut–maximum flow theorem by Ford
and Fulkerson. The fact that a propagation function, as well as a clearing payment
vector, always exists in a financial network stems from the budget identities which,
in turn, ensure that the Kirchoff’s law (the inflow of a node must equal its outflow)
is always respected in a financial network N = (�, D).

While the existence of the functions used to model the propagation process in a
deterministic fashion is not an issue, the same cannot be said for models that aim
to evaluate the probability of default contagion and of the occurrence of cascades
of defaults, i.e. large systemic crisis triggered by an initial small shock. Several
contributions present analytic solutions to the problem of expressing these proba-
bilities as a function of some parameters of the financial networks, parameters such
as degree of connectivity (density) and of concentration, assortativity, capitalization
and leverage of the banks, etc. These papers derive probability generating func-
tions, that characterise the probability of default of nodes or of clusters of nodes in
a financial network, with different but strictly related methods. [21, 22, 25] apply
and extend the known cascade model by [35], which is based on mean-field approx-
imations. [6, 28] use variational approximation methods, also based on mean-field
theory. [5, 11, 25] apply the asymptotic properties of large, homogeneously sparse
and locally ‘tree-like’ networks.

The need to resort to these approximation procedures can be explained as fol-
lows. In a financial network, for example, the probability of default of a node is

20 See [32] for a model where fire sales and ‘marking-to-market’ of assets amplify the effects of
contagion.
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determined by the probability of default of its parent nodes,21 i.e. its debtors, which,
in turn, depends on the probability of default of their parent nodes, and so forth. In
order to derive a closed-form, analytic function that captures the net of probabilistic
dependences and independencies in a network, it is necessary that the probability of
default of a node is suitable to be factorised in terms of the probabilities of default of
its parent nodes: p(xi ) = �i p(xi |x j , j ∈ Vi ), where xi , x j ∈ N and V is the set of
parent nodes (or of neighbours) of xi .22 In turn, such a factorisation is possible only
if the probabilities of default of the parent nodes are independent on one another.
This requirement becomes slightly less restrictive if the information embedded in
the structure of N , i.e. in its adjacency matrix, is used to exploit the conditional
independencies present in it.23,24

Infinite graphs, the conditional independence condition is satisfiedonly in directed
acyclic graphs, while the independence condition is satisfied only in trees, which
are minimally connected directed acyclic graphs, where each node has just one
parent node. In infinite graphs, the independence condition is asymptotically satisfied
in large, homogeneously sparse and locally ‘tree-like’ graphs.25 The probability
generating functions derived in the cascade models at hand have an exact solution
only when applied to these types of graphs.When these analytic measurements of the
probability of contagion are applied to networks that entail cycles, then the results
that they produce can only be taken as approximations that converge asymptotically
to the true properties of such networks.

With the notable exception of [6], all the above cited authors explicitly discuss the
approximate nature of the results obtained by applying their probability generating
functions to finite networks which are not acyclic, and perform numerical simula-
tions of contagion to test the reliability of their results. These simulations show that
the analytic approximations work surprisingly well, in some cases too well.26 It is
reassuring, but not surprising, that such approximations yield reliable results for large

21 Or of its neighbours, if the network is undirected.
22 More precisely, the factorisation of the probability of the states of a node enables the analytic
treatment of probabilities in networks, as it is done with Bayesian networks. To derive closed form
solutions for such probabilities, it is necessary to impose further restrictions. In most of the above
cited papers, the probability of default of a node depends solely on the number of defaulted debtors.
In these cases the probability of default of the parent nodes can modeled as a binomial and, with
this restriction, the probability of cascades is characterised in closed form. See, inter alia [6].
23 For example, if the states of node x and node y are not independent of one another because
they share a common ancestor, node z, then x and y are conditionally independent on one another
given the state of node z. If, conversely, two or more of the parent nodes in Vi belong to a directed
cycle (or, more generally, to a strongly connected component of N ), then the required independence
condition cannot be satisfied, not even conditionally to the state of common ancestors.
24 [25] exploit this property in their double (illiquidity and insolvency) cascade model.
25 See [11, 25], for rigorous and detailed discussions of the role played by the independence
conditions in the present context.
26 Even the authors themselves appear surprised by their own results: “...numerical studies are in
reassuring, somemight say surprising, agreementwith the results obtained from the analytic approx-
imations...” [28]; “Extensive cross testing with Monte Carlo estimates shows that this approximate
analysis performs surprisingly well.” [22].
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and sparse networks.27 This is the case for a number of the tests performed by the
above cited papers (e.g., [25] set n = 20,000 in some of their tests). What is amazing
is that these analytic approximations seem to generate acceptable results even in the
cases of small and dense networks. For instance [25], run a test on a dataset com-
posed of 90 European banks and one on randomly generated networks with n = 25
and average degree equal to five—which are very small networks plenty of cycles.
In both cases the authors obtain a surprising accordance between the results of the
Monte Carlo simulations and the analytic approximations.

The point that we raise here is that this set of results can be seen as a test on
the actual relevance of second order, cycle effects in contagion processes. In the
light of the above discussion, we believe that these results should be tested under
more general conditions, with two possible outcomes. Further testing may show
that there is a bias in these exercises (we would expect to find an underestimation
of local contagion phenomena, due to the negligence of the reinforcing effects of
cycles) and hopefully help to clarify the scope and the limits of such approximations,
identifying the types of networks more suitable for these exercises. If, conversely,
further testing confirms the high reliability of these approximation procedures even
for small and dense networks, then we can feel authorised to neglect the existence
of cycles in financial networks without causing excessive harm to the analysis of
financial contagion. This outcome would open the doors to possible applications, in
this field, of known models of inference in directed acyclic graphs, such as Bayesian
networks and other graph-theoretic representations of Markov fields.

13.5 Concluding Remarks

Numerical simulations proved to be a rather useful tool in investigating the properties
of systems which are too complex to be studied with analytic methods. But, while an
analytic result holds under conditions which are clearly stated, the same cannot be
said for numerical exercises. As is known, analysers who run numerical simulations
also run the risk of obtaining “simulation based” results, i.e. results that lack gener-
ality because they strongly depend on the assumptions and restrictions applied in the
settings of the simulations. Numerical simulations of financial contagion processes
do not escape this limit. Concerns have already been raised about the assumptions
adopted in numerical simulations run on interbank networks. We join these method-
ological perplexities and add our recommendations about the algorithm used in these
numerical exercises and about the assumptions made with respect to the shock sce-
narios. Finally, we notice the surprising performance of some analytic, closed form
measures of the probability of default cascades, derived in the recent years by several
authors on the basis of mean-field approximations. These analytic methods appear
to deliver extremely reliable approximations—according to the authors, who tested

27 As argued by [35], numerical results in random graph models approximate analytical solutions
as n gets close to 10,000.
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their own results with vis-à-vis comparisons with numerical simulations run on the
same networks and with the same shocks. This interesting phenomenon is a call for
further numerical investigations aimed to test the reliability of these methods when
they are applied to financial contagion processes. A confirmation of the apparent
high reliability of these methods would open new direction of research, in as much
as it would authorise the use of other methodologies, based on the graph-theoretic
representations of stochastic domains (e.g. Bayesian networks), for the assessment
of default and cascade probabilities in financial networks.
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Chapter 14
Maximizing Social Influence in Real-World
Networks—The State of the Art and Current
Challenges

Radosław Michalski and Przemysław Kazienko

Abstract The following chapter aims to present the current research in the area
of modelling and maximizing social influence in networks. Apart from describing
the most popular models for this process, it focuses on presenting the advances in
maximizing the spread of influence in social networks. Since most of the research
was suited for static networks case, nowadays it is necessary to move it toward the
networks that are everywhere around us—the dynamic ones. As is widely agreed in
the scientific community, static networks are unacceptable simplification of the real
world processes, so current research is moving toward the temporal networks. It is
especially important when modelling propagation phenomena, such as the spread of
influence, epidemics or diffusion of innovations. In this chapter it is presented how
the research on maximizing the spread of influence is starting to explore real-world
cases and how the early attempts of solving this problem for temporal networks look
like. Moreover, it is shown how to benefit from the temporal properties of the social
network in order to achieve better results for spread of influence compared to the
static approach.

14.1 Introduction

Social networks are built by humans. And despite the fact that we are predictable to
some extent, the social networks we build are in fact dynamic. The factors behind
the dynamics may be of different nature, such as meeting new people, changing
attitude towards others, switching the job, moving from one place to another and
so on. Moreover, the intensity of contacts is also varying in time. In fact, the most
accurate method of representing humans communication is the precise information
about who contacted whom at which time. By having that it is possible to trace
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the information or influence flow in social networks. Yet, without knowing about
the content or the essence of the communication, only some assumptions about
potential paths of information diffusion may be made. Moreover, as a single contact
entry most often contains just two entities: sender and recipient (directed case) or
contacting parties (undirected case), by using this level of granularity it is impossible
to benefit from themature apparatus of social network analysis (SNA), since no graph
exists yet. It also requires a lot of storage comparing to another method—building
a time-aggregated social network from the contact logs. In this case the information
about communication gets aggregated and the intensity of contacts is most typically
expressed as weights over edges (contacts) between nodes (individuals), as presented
in [6]. This approach allows to obtain a broader view of interconnections in networks,
distinguish groups, hubs, nodes on boundaries of the network and lets to perform
other analyses that are offered bySNA techniques [13].Unfortunately,while the time-
aggregated view of the network is used, from an information or influence propagation
point of view [43, 44], the most important aspect is missing: the order of contacts
that is crucial in analysing the flow of information. As it was stated in [62], in
these networks one assumes transitive paths, and this assumption does not hold
in temporal or most granular representations of social networks. Moreover, as the
contacts within social networks are often bursty [4], the static representation of
networks will also ignore this fact leading to wrong conclusions about the dynamic
processes taking place there. This is especially crucial when modelling the spread
of epidemics, since the accuracy of predictions may strongly influence the potential
actions in healthcare [53]. To not to loose the temporal information, researchers
more and more often use temporal representation of networks and a comprehensive
overview of methods of building temporal networks may be found in [34]. In this
work the authors state that the literature on static graphs is many times larger than
on temporal graphs and this is for a natural reason: it is much easier to analyse static
graphs, especially analytically. Naturally, it is not a reason to avoid this direction,
since as the research reveals, only temporal networks are representing the surrounding
world accurately—the static approach is considered as leading to wrong conclusions
about dynamical processes.

Looking from the perspective of social influence, this process has enough psycho-
logical and sociological complexity itself and because of that it shouldn’t be analysed
by using simplified underlying layer. It is modelled upon sociological assumptions
about how people become influenced [32] and using time-aggregated networks to
model humans’ interactions definitely does not help in understanding the speed and
directions of spread of influence. As it will be presented later in this chapter, most
of traditional methods for analysing the influence processes in social networks base
on a static representation, especially in the area of maximizing the spread of influ-
ence [39]. Since in this work the problem of influence maximization has been proven
to be NP-hard, many heuristics were proposed, but mostly for time-aggregated net-
works. Nowadays the direction of research on modelling dynamic processes in net-
works should consider dynamic networks as a base, since by simplifying the reality
the obtained results and drawn conclusions may be wrong.
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The goal of this work is to present the state of the art in the area of maximizing
the spread of influence in social networks, the limitations of it in the static networks
and recent trends in using the dynamics of networks or past propagations to obtain
better results. To achieve this, most common models of the social influence are
presented in Sect. 14.2. Section14.3 shows what are the variants of the challenges
in social influence in networks, since the influence maximization is not the only
one. Next, methods for maximizing the influence in static networks are introduced
in Sect. 14.4. Then the concept of Temporal Social Networks is introduced and most
typical representations of them are presented in Sect. 14.5. Having these introduced,
Sect. 14.6 reveals the experimental study results showing that the temporal approach
may outperform the static one for simple heuristics when considering the temporal
underlying layer for the spread of influence. Section14.7 comes back to presenting
the state of the art, but presents how researchers try to take the advantage from the
network dynamics or history to obtain better results in the challenge of maximizing
the spread of influence.

14.2 Modelling the Spread of Influence

Before presenting the most popular models of social influence, it is worth to quote
one sentence from [32] by Watts and Dodds:

(...) it is still the case that formal models of social influence suffer from a dearth of realistic
psychological assumptions.

The problem of fitting the real-world data tomodels and trying to answer the question
whether particular influence processes may be modelled with a chosen approach is
still challenging. It lies in the complexity of human behaviour and the impossibility
of separating social processes that are occurring simultaneously. Still, many results
achieved in this area tend to contradict this pessimistic point of view of Watts and
Dodds and continuous development of models or models’ variations suggests that
models will fit the reality even better in next few years [2]. On the other hand, there
still remains the gap between formal models and psychological explanation that
requires to be intensively studied to find the psychological rationale of particular
behaviour expressed in these models.

Since the strength of social influence depends onmany factors such as the intensity
of relationships between people in the networks, the network distance between users,
temporal effects, characteristics of networks and individuals in the network [69], it is
relatively hard to model all these factors combined. However, vast of research shows
that under some assumptions there exist models that fit the reality well. Below the
most important models that are most commonly used in this area are presented: the
Linear Threshold model, the Independent Cascade model, the Voter Model, and the
Naming Game. Each of them incorporates the sociological background of the influ-
ence process, but as was previously stated, sometimes it is just a loose interpretation
of humans’ behaviour, that, luckily, still fits the reality well for some cases. For these
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models their recent variants which are suitable for real-world scenarios are described
as well.

From the historical perspective, studying the social influence in terms of analytical
process was the case of trying to model how the influence spreads in time. Starting
from a set of influenced nodes in time t0 which are in this work denoted as �(0),
as time unfolds, more and more of neighbours of �(0) become influenced if they
fulfil the model criteria. Most typically, these processes are modelled in directed
graphs and focus on a progressive case, where nodes may become influenced from
uninfluenced state, not the other way round [39]. Since this is a network approach, the
influence process occurs through edges in graph and most typically no other external
factors of influence are considered, such as out-of-network sources.

14.2.1 The Linear Threshold Model

The most recognizable model for social influence is Granovetter’s Linear Threshold
model [31]—LT, but similar approach was also proposed in [66]. In this model, a
node v is under influence of its influenced neighbours w denoted as N in f

v according
to a weight bv,w, such that

∑
w∈Nin f

v
bv,w ≤ 1. Each node v has a threshold θv from

the interval [0, 1] and this threshold represents the level that has to be met by the
aggregated sum of v’s neighbours influence weights in order to influence the node v.
So the formal condition of influencing the node v is as follows:

∑

w∈Nin f
v

bv,w ≥ θv. (14.1)

The influence process ends where more nodes cannot be influenced—this is the
formal stop condition for the static case. The way how this model works is presented
in Fig. 14.1, while formally it is presented asAlgorithm 14.1 for the case of uniformly
assigned threshold values θv (based on [76]).

Here, the value of θv represents the individual’s chances of becoming influenced
when its neighbours are influenced. So all the psychological factors are included
in this parameter and it should be also underlined that this approach represents the
individual’s perspective rather than the influencer perspective. Granovetter illustrated
the model with the hypothetical case of a riot. Since individuals were unsure what
are the costs and benefits of joining it, they observed their peers and considered
joining only when sufficiently many of their neighbours joined the riot, otherwise
they refrained.

Of course, the biggest question is how to assign particular values of θ to indi-
vidual nodes and there are two most typical approaches: draw them from a proba-
bility distribution f (θ) as introduced in [31] or hard-wiring them at a fixed value
[7, 61]. The most interesting and realistic scenario is the former one, i.e. drawing
θv from a distribution, since the distribution represents both the average tendencies
and also the heterogeneity present in the population. Lowering or raising the mean
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Algorithm 14.1 Linear Threshold model
Require: Graph G(V, E), set of initially influenced nodes �(t0)
1: return Final set of influenced nodes �(K )

2: k = 0;
3: Uniformly assign random thresholds θv from the interval [0, 1];
4: while k = 0 or �(tk−1) �= �(tk) do
5: �(tk+1) = �(tk);
6: unin f luenced = V \ �(tk);
7: for all v ∈ unin f luenced do
8: if

∑
w influenced neighbour of v

bv,w ≥ θv then

9: influence v;
10: �(tk+1) = �(tk+1) ∪ {v};
11: end if
12: end for
13: k = k + 1;
14: end while
15: �(K ) = �(k);
16: Return �(K );

Fig. 14.1 The illustration showing how the LT model works

of f (θ) would modify the general susceptibility of the population, while increasing
or decreasing the variance would correspond to an increase or decrease in variability
in susceptibility across individuals [32]. Still, hard-wired thresholds are also often
considered in the research. An exemplary spread of influence process following the
LT model is presented in Fig. 14.2.

It should be underlined that this process is time-independent, since it considers
iterations rather than time. However, in most research works in this area an iteration
represents a single time step, this is why the notation of t0, . . . , tK is often used
instead of iterations i0, . . . , iK .
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Fig. 14.2 An exemplary social influence process following the linear threshold model in graph G.
The threshold value is fixed for all nodes, θv = 0.33. At the beginning �(0) = {v3, v8}, at the end
of the process�(t3) = V (G)\{v1}, since v1 cannot be influenced for this model parameters. Nodes
in bold were influenced at this particular process step

The following theorem and proof are excerpted from [39] and show the NP-
hardness of influence maximization problem for the LT model. In the same work the
proof for NP-hardness of the same problem for IC model is shown.

Theorem 14.1 The influence maximization problem is NP-hard for the Linear
Threshold model.

Proof Consider an instance of the NP-complete Vertex Cover problem defined by an
undirected n-node graph G = (V, E) and an integer k; it is expected to find a set S
of k nodes in G so that every edge has at least one endpoint in S. It is shown that this
can be viewed as a special case of the influence maximization problem. Given an
instance of the Vertex Cover problem involving a graph G, a corresponding instance
of the influence maximization problem by directing all edges of G in both directions
is defined. If there is a vertex cover S of size k in G, then one can deterministically
make σ(A) = n by targeting the nodes in the set A = S; conversely, this is the only
way to get a set A with σ(A) = n. �
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The LT model became a core of many modifications or extensions. For instance,
[26] extends this model by introducing temporal decay, as well as factors such as the
influence-ability of a specific user, and influence-proneness of a certain action. On
the other hand, [5] proposes topic-aware extensions of LT model. In [60] the authors
consider multiple cascades of LT model and they allow nodes to switch between
them, whereas [10] introduces a number of modifications to the competing model
variant: the authors force nodes to draw one cascade they join at the end of the process
or consider the mutual influence of cascades on each other.

14.2.2 The Independent Cascade Model

The next model has its roots in interacting particle systems [23, 49] and is called
the Independent Cascade model—IC [25, 39]. Again, the process starts with a set
of influenced nodes �(0), but each node v in the network has a probability pv,w

assigned. According to this probability, the node v gets a single chance to influence
its neighbour w and when it fails, it will have no other chance. If it succeeds, w will
become influenced in the next time step. Similarly to the LT model, the process runs
until no more influences are possible.

Frompsychological perspective, in thismodel the influencer becomesmore impor-
tant, since he or she holds the probability pv,w. This is one of the major differences
between IC and LT models. In the LT model, the influence process parameter was
assigned to the uninfluenced node and in the IC model it is hold by the potential
influencer. Just as in the previous model, the probability may be fixed or drawn from
a distribution f (p). The Independent Cascade model is presented in Algorithm 14.2
(based on [76]).

Algorithm 14.2 Independent Cascade model
Require: Graph G(V, E), set of initially influenced nodes �(t0), activation probabilities pv,w
1: return Final set of influenced nodes �(K )

2: k = 0;
3: while �(tk) �= {} do
4: k = k + 1;
5: �(tk) = {}
6: for all v ∈ �(tk−1) do
7: for all w neighbour of v, w /∈ ∪k

j=0�(t j ) do
8: rand = generate a random number in [0, 1];
9: if rand < pv,w then
10: influence w;
11: �(tk) = �(tk) ∪ {w};
12: end if
13: end for
14: end for
15: end while
16: �(K ) = ∪k

j=0�(t j );
17: Return �(K );
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Again, there are many variants of the IC model. Already mentioned work of [5]
introduces the topic-aware approach also for thismodel, while [40] study the decreas-
ing cascade model. One of the problems with the base LT and IC models is that they
do not provide the influence probabilities and there are works that try to obtain them
from past propagations. It may not be considered as a extension of a base model,
but a way to make the probabilities or threshold more realistic. One of the works in
this area is [65], but this topic will be covered in Sect. 14.7.1. There also exists the
approach to model multiple independent cascades in the network [8].

14.2.3 The Voter Model and the Naming Game

An interesting case of influence in networks is the situation where two separate opin-
ions or influences are competing in the society. This phenomenon may be observed
in many situations and it has its roots in studying the consensus processes [51] or the
language dynamics [20]. Below there are two variants of the process presented: the
Voter Model (VM) and the Naming Game (NG).

TheVoterModel introduced in [19] and extensively analysed later in [33] assumes
that each node in the network can hold one of two opinions and by interacting with
others it may switch the opinion to the opinion of the peer. This model introduces
also the degree of conformity which defines whether a node will follow the majority
(conformist) or minority (non-conformist), see [37].

On the other hand, the Naming Game, also referred to as binary-agreement
model [74], introduces another variant of forming the opinion or spreading the influ-
ence. At any time a nodemay possess one of two competing opinions or two opinions
simultaneously. In a given time step, we choose a node randomly, designate it as a
speaker and choose one of its neighbours randomly and it is a listener. The speaker
proceeds to convey its opinion to the listener (chosen randomly if it possesses two)
to the listener. If the listener possesses this opinion already, both speaker and listener
retain it while eliminating all other opinions; otherwise, the listener adds the opinion
to his list [73].

Both of these models are useful in studying common phenomena occurring in
social networks that involve binary options, such as reaching the consensus on con-
tradictory opinions or observing which of competing parties will win the election.
The current research trends suggest that these models will be actively studied and
extended in the future [48, 52, 58, 64, 77].

14.2.4 Summary

The above presented models are just a selection of models that allow to analytically
study the influence processes in social networks. As it was presented, they differ
by the perspective (LT vs. IC), by the number of competing influences (VS and NG
vs. others), but all of them are linked to the same process—spread of influence.
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Sometimes their applicability is limited, but as far the empirical research shows,
they model the human behaviour accurately in some cases, even if the psychological
background of an individual is more complex than just a single parameter.

14.3 Social Influence Challenges

The work of Goyal et al. [28] brings some insights into the problem of influence in
social networks. Sincemost often only the case ofmaximizing the spread of influence
with a given budget k was considered, there are some other research questions in this
area. One should ask about minimizing the time of influence (number of iterations
to influence a given number of nodes by having the budget k) or about minimizing
the budget k to influence a given set of nodes. The generalization of the challenges
in this area may be considered as a constrained optimization problem, as presented
in Fig. 14.3. The dimensions that can be optimized are the budget, the time and the
number of influenced. Here, only one or two dimensions may be constrained and the
third is optimized. Below, each of the dimensions is briefly described to show how
they are understood by most of the researchers.

14.3.1 Budget

The budget in the spread of influence problem in social networks is considered
as an amount of the resource that can be spent on influencing nodes (please note
that some literature prefers the more general term activating, e.g. see [39]). This
resource is most often expressed as a budget k of different nature such as money,
gifts, conversations. However, each successful influence of a node in the network
reduces the budget. Typically, it is assumed that the amount of a budget taken for
influencing a node is equal for all of the nodes in network. Sometimes it may be

Fig. 14.3 The optimization
problem for the influence in
social networks
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true, e.g. if in a marketing campaign the same product is being sent to different
customers the cost of distributing the product among them is considered to be equal.
On the other hand, as the influence process is a subjective one, even by spending
some amount of the budget on a user, he or she may not become influenced and
this susceptibility may differ from user to user. As it was already presented, those
psychological aspects are included in the spread of influence model properties (such
as θ for the LT model or pv,w for the IC model), but these models do not consider
the varying cost of influencing individuals in the set of seeds �(0). However, for the
problem stated in this chapter, as well as in the research in this area, it is assumed
that the cost of initial influencing a node is equal for all the nodes.

14.3.2 Time

The time constraint expressed here means that we want to influence nodes in a
given time and to evaluate the results of different methods this particular time is
considered as a stop condition. Typically, the models work until no more nodes could
be influenced. This is a natural stop condition and it is reasonable for static networks
and described models. Of course, when the time constraint appears, the process may
be evaluated sooner. But when considering the temporal social networks, the use
of this hard stop condition may become more complicated, since if the network
changes, the influence process may be infinite, e.g. if with every iteration new nodes
join the network it could be hard to say at which moment the algorithms should stop.
This is why the time constraint may be crucial for temporal social networks, since it
introduces a moment which allows to compare methods.

From the marketers perspective, if they spent some budget on influencing nodes,
they want to get the return from this investment in a given time, e.g. they want to have
people interested in buying the product when it is offered and not discontinued [16].
On the other hand, other examples may be not so focused on the time dimension.
For instance, spreading good manners among the society is one of the examples.
Naturally, the sooner the habits will improve the better, but the time aspect is not
so important here compared to the whole success of the campaign. This is why the
use of time constraint is sometimes desired, but sometimes this dimension is being
left unconstrained. However, reader should have in mind that for temporal social
networks the use of time constraint is somehow natural, since the stop condition that
no new nodes will become influenced may be wrong.

14.3.3 Number of Influenced

The last, but most often considered dimension is the number of influenced. The num-
ber of influenced means howmany nodes were influenced or activated in the process.
From the historical perspective, this dimensionwas the one thatwasmaximizedwhile
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the other two left constrained or unconstrained, but [28] started to consider someother
variations of the problem, e.g. by trying to minimize the time of influencing a given
number of nodes.

However,when analysing advancements in research, the problemofmaximization
the influence is the most popular one among researchers.

14.4 Maximizing the Spread of Influence

The problem of finding most influential seeds in a social network was originally
stated in [22]. The authors posed a question on how to pick nodes and influence
them with some idea to maximize the overall spread of this idea across network.
In this work the example of a marketing campaign was used and the researchers
considered the network value of a customer, i.e. the benefits for the company if this
customer will influence its neighbours. In fact, nowadays selling techniques often
base on viral marketing, so it seems that the business strongly believes in a potential
of such an approach. The influence of nodes on each other was modelled as aMarkov
random field [41] and obtained results revealed that this approach may be promising.
In the next work on this topic the authors used a linear model where the solution for
influence maximization based on solving linear equations [63]. However, what this
model lacked for, was the iterativeness, since it reflected the joint distribution over
all nodes. Compared with the psychological research on social influence or diffusion
of innovation, the process is rather iterative, so the models representing it are most
often of this kind.

14.4.1 The Greedy Algorithm

The work that showed different approach to the one presented by Domingos and
Richardson was [39]. The authors started by assuming that the influence is more an
iterative process, so they analysed two models of this kind, namely LT and IC. By
basing on these, firstly they considered the hardness of the influence maximization
problem and in both cases it was proved to be NP-hard, see Theorem 14.1 with the
corresponding proof forLTmodel and [39] for the proof for ICmodel. Then, by taking
the advantage of the properties of submodularity [67] and the research on greedy
hill-climbing algorithm they show that the greedy method may outperform classic
approaches based on networkmeasures, such as top degree or top betweenness. In fact
the authors show that the outcomes of this approachmay be notworst than 63%of the
optimal solution. The greedy method pseudo-code is presented as Algorithm 14.3
(based on [18]). Here, given a social network G = (V, E) consisting of sets of
vertices and edges, an initial seed set of k nodes is being chosen iteratively which
maximizes the influence. In each step of the algorithm a single vertex is chosen,
such that the influence of the set � and this vertex is the greatest. Unfortunately, this
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algorithm has few drawbacks. One is the efficiency, since the influence is estimated
with R simulation steps [18]. The other is that the algorithm is trying to pick nodes
that maximize the influence in each iteration.When comparing it to the chess game, it
always chooses the move that is giving the best position at the moment, not thinking
about the next move. Sometimes it may be better to look at a combination of moves
or nodes rather than a single next move to maximize the overall result and the greedy
algorithm avoids it by its nature, since it finds the local optimum. However it still
provides acceptable results comparing to the optimal solution, but sacrificing the
efficiency.

Algorithm 14.3 Greedy algorithm for maximizing the influence
1: initialize �(0) = ∅ and R = 10000
2: for i = 1 to k do
3: for each vertex v ∈ V \ �(0) do
4: sv = 0
5: for i = 1 to R do
6: sv = |I n f (�(0) ∪ {v})|
7: end for
8: sv = sv/R
9: end for
10: �(0) = �(0) ∪ {argmaxv∈V \�(0){sv}}
11: end for
12: output S

To overcome the drawbacksmentioned above, the research splits in two directions.
Firstly, a number of techniques were proposed to optimize the greedy algorithm.
Secondly, researchers started to search for new ways of maximizing the spread of
influence. Below it is presented how the greedy algorithm was improved and later
on new ideas on maximizing the influence in social networks are introduced.

14.4.2 Greedy Algorithm Optimization

In the work of Leskovec et al. [46] there is also one more drawback of the greedy
algorithm shown. As for now it was assumed that the cost of acquiring a single node
is equal to others, but in social networks it may not be the case. For instance, for an
ongoing marketing campaign its designers like to give to influential social network
users some incentives to end upwith higher spread of influence, their expectations for
value of incentive may vary from one to another. On the other hand, there are some
scenarios where the same products are being sent to different users assuming that
they become influenced, so the potential cost is equal. However, since the influence
process is a subjective rather than an objective one, the same gift may not result with
the same satisfaction of users from the product. In contrast, there are some cases
of social networks where the equal cost is possible. For instance, in epidemiology
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it is often assumed that cost or probability of infecting a person is the same for all
the population, but this is not the case of influence. In sensor or computer networks
also dealing with devices may introduce the same cost for each of them, but the
assumption of the same cost for different users seems to be limited.

The mentioned work [46] analysed the case of different cost for influencing each
node and proved that with this assumption the greedy algorithm performs badly.
To overcome this limitation the authors introduce a novel approach, Cost-Effective
Forward selection (CEF) that uses the greedy algorithmand the cost-sensitivemethod
in parallel and the results of these methods are compared later to find the better one
that will be used. Moreover, again by using the submodular properties of the cost
function, the researchers are able to reduce the number of possible runs of evaluation
of the quality of selected node (I n f (�∪ {v})), because they base on the fact that the
marginal increase of benefits with each added node does not increase more than in
previous evaluation. This approach is called by them Cost-Effective Lazy Forward
selection (CELF) and comparing to the greedy algorithm is up to 700 times faster
with still acceptable results of at least 12 (1− 1

e ) of optimal solution. Comparing it with
the greedy algorithm, which proposes (1 − 1

e − ε), makes CELF a very good rival.
However, at least for the IC model, there was still space for improvement, as

shown in [18]. Here, the authors decided to base on random graphs in order to reduce
the number of runs R (see Algorithm 14.3). Their approach assumes that for IC
model it is possible to reduce the graph of influences to only these edges that are
potentially reachable from the set � at ith iteration. This change allows to gain
additional 15–34% improvement in running efficiency by keeping the same level of
quality. More interestingly, in the same work the researchers propose new heuristic
that significantly improves the influence spreadwhile runningmore than six orders of
magnitude faster than all greedy algorithms—DegreeDiscountIC. This approach is
basing on a degree heuristic, but discounts the degree of a considered as a seed node
v by the value of already influenced neighbours of v, since there exists a non-zero
probability that this node will become influenced by one of its influenced neighbours
and it makes it less attractive as a seed.

Goyal et al. shown that further exploitation of submodularity may lead to even
better results for greedy algorithms. In [29] there is an extension of CELF algorithm
that leads to at least 35% gain in performance. The idea is to store a heap for all
non-selected nodes that contains the information not only about a marginal gain of
particular node, but also the marginal gain of the best node from these evaluated
before this node. Due to this trick there is no need to recalculate marginal gain of a
node if this node was not selected resulting in less iterations of an algorithm.

14.4.3 Avoiding Greedy Search

One of the approaches was already mentioned, it was the DegreeDiscountIC algo-
rithm [18]. The same authors proposed another method [17], Maximum Influence
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Arborescence (MIA), which also exploits the submodularity. However, in this case
for the IC model, for each pair of nodes maximum influence paths are calculated.
Then paths below a specified threshold of influence are discarded, focusing only on
local regions of influence. Afterwards, these paths creating tree structures which do
need to be updated often are joined and the calculation of the influence spread may
be done recursively. This leads to significant gains in effectiveness of the algorithms
comparing to others and introduces no loss in terms of quality. Moreover, the thresh-
old parameter may be interpreted as a way of controlling the time of influence and
the overall spread.

Another work [38] also avoids the greedy approach while outperforming it in
terms of speed (2 to 3 orders of magnitude) and bringing similar results in accuracy.
Authors claim that this is the first approach that uses simulated annealing [55] in
solving the problem. In the case of influence maximization this approach starts with
random seeds and then tries to move in the space of possible solutions (initial seeds)
towards the local minimum by swapping at most one node in the seed set until the
stop condition will be applied.

An interesting insight into the problem was given by Shakarian and Paulo in [68]
where the authors propose an algorithm that guarantees to activate (influence) the
whole network. The solution does not find the minimal set of seeds, but its outcomes
may be compared to the budget k—if the seed set is less or equal k, the algorithm
will fulfil the requirements and, moreover, the whole network will be influenced.
The approach base on removing edges in the graph (by basing on the idea of shell
decomposition [12]), but it also guarantees to influence the whole network.

The last mentioned algorithm in this section is Simpath that is intended to max-
imize the influence for the LT model [30]. This algorithm is operating on paths of
influence in the social network by assuming thatmost of the influence is local. Results
reveal that the algorithm outperformed the MIA method, considered as the state of
the art in the task of influence maximization for static networks [17].

14.4.4 Summary

All the above presented techniques may be considered as purely structural ones. In
here, researchers do not use any kind of attributes of nodes other than their structural
properties, such as location in the network or interconnectivity with other influenced
nodes. The only parameter that may differentiate the nodes is the cost of influence,
but in most cases it was assumed to be uniformly distributed. This approach of basing
just on network structural properties makes the proposed algorithms universal, since
they do not base on any network-specific attributes. As it will be shown later, there
is also another emerging direction in this research that is basing on the data, so the
merit of the social network communication. Moreover, it is worth emphasizing how
many of the presented approaches took the advantage of the submodularity property.

However, all algorithms presented in this section suffer from one drawback which
makes them just a rough simplifications of reality. Here, the network dynamics is not
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considered, and as it was already stated in Sect. 14.1, the ignorance of this fact may
lead to wrong conclusions about the outcomes of the process. Before taking the
reader in the area of research which tries to benefit from the dynamics of the network
to maximize the influence, in the next section theoretical framework for representing
dynamic networks is presented. Then a small empirical study in Sect. 14.6 shows that
it is worth to make use from network dynamics, and following this direction current
advancements in the topic of maximizing the spread of influence in the dynamic
configuration are presented.

14.5 Temporal Social Networks

As it was alreadymentioned, real world social networks are rarely static. Our interac-
tions occur in an ordered way, sometimes they are bursty, sometimes these contacts
are suspended, but nevertheless there is a dynamics embedded. Until the era of IT
the problem of gathering the data about interactions was definitely harder than nowa-
days, so it was another reason (but not the only one) why researchers basedmostly on
static networks. But when the era of electronic communication begun, it is relatively
easy to track human communication, at least for some communication channels, such
as e-mails, phone calls, instant messengers or social networking sites interactions.
Moreover, there exist projects that try to obtain the data of real-world interactions,
e.g. hospital ward contacts [71], conferences’ participants [14] or students’ behav-
iour [24]. Now the real research question is how to benefit from this time-annotated
data to extend the knowledge on the social influence.

Before trying to find the answer on it, it is worth to discuss how these kind of
data should be represented to not to loose the temporal information. One of the most
extensive survey work on Temporal Social Networks TSN [34] depicts two major
approaches in representing the temporal information in social networks, depending
on the contacts type. These are enumerated and briefly described below.

14.5.1 Contact Sequences

A contact sequence is obtained mostly from communication data where single con-
tact between individuals is timestamped. As a relatively straightforward migration
from event logs, it represents actors as nodes and edges between them have the tem-
poral information, i.e. at which time a communication occurred. This approach is
especially suitable when the duration of interactions is negligible, so it is preferred
when representing asynchronous communication, such as e-mails, text messages
and, to some extent, phone calls. The most typical formulation of contact sequences
is as follows: for a set of vertices V a contact sequence is a set of triples (vi , v j , t)
representing contacts between nodes vi and v j ∈ V at time t—see Fig. 14.4.
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Fig. 14.4 The
representation of contact
sequences. Here, for
instance, node v1 contacted
v2 in time 1, 4, 7 whereas the
reverse communication
occured in 9, 12

Very often this contact sequence is transformed into graphs where contacts in the
same timeframe are grouped, making them a sequence of time-ordered static social
networks [11], as presented below:

TSNm = 〈T1, T2, . . . , Tm〉, m ∈ N

Tt = SNt (Vt , Et ), t = 1, 2, . . . , m
Et = 〈vi , v j 〉 : vi , v j ∈ Vt , t = 1, 2, . . . , m.

(14.2)

In this formulation TSN represents the sequence of static networks SNt aggregat-
ing contacts in timeframe t making itmore a evolving static social structure.However,
the authors of [34] argue that this representation may miss many important points
of temporal activity, what indeed is true, since some simplifications in the contact
orders arise. On the other hand this simplification may be helpful in applying most
popular models of social influence. The highest level of aggregation which results
with a single static social network is often called a time-aggregated graph.

14.5.2 Interval Graphs

Another form of temporal networks are interval graphs. Here, in opposite to contact
sequences, the edge is active in a period of time, rather than it appears at specific
time. This kind of temporal networks is more suited for respecting the duration of
contacts, so its application is also different than in the former approach. One of the
examples might be tracking the duration of interpersonal contacts as the exposure on
infection—the longer the exposure, the higher the probability of becoming infected.
Here the edges are not active over a set of times but rather over a set of intervals
Te = {(t1, t ′1), . . . , (tn, t ′n)}, where the parentheses mark the periods of activity.
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The above representations of temporal networks offer the highest granularity
which makes them perfect to track precise interactions between nodes. Naturally,
depending on the research goal, some simplifications may be used, but it is worth to
remember what consequences particular simplifications introduce. In the next sub-
section problem of transitivity in temporal networks is presented, since it is important
in understanding the limitations of time-aggregated approach in analysing the diffu-
sion or influence processes.

14.5.3 Limitations of the Time-Aggregated Approach

Consider the following graphs: SNAGG which consists of 4 nodes, namely VAGG =
{v1, v2, v3, v4}. This is a time-aggregated version of obtained contact sequences.
Contact sequences were presented as graphs SN1, SN2, SN3, named so, because
contacts occurred in times 1, 2, 3, respectively. For an illustration, see Fig. 14.5,
where (a) denotes the time-aggregated graph and (b) contact sequences unfolded to
three social networks.

Assuming that in the network a linear threshold process takes place with the
threshold set uniformly for all nodes θ = 0.5 and initially only node v4 is influenced,
the process will behave differently for both networks. For the time-aggregated graph
after two iterations all nodes will become influenced. For the temporal network in
t = 1 no new nodes will activate, the same in t = 2. In time t = 3 the node v4 will
be able to influence its neighbours and still v2 will be not influenced. This simple
example shows that the influence process is prone to the network dynamics and
having this in mind the next section presents a simple experimental study showing
that it is possible to benefit from it to obtain better influence maximization results.

Fig. 14.5 The LT influence process for time-aggregated graph and a temporal network
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14.6 Spread of Influence—Temporal Approach

In the research which was presented in [56] it was decided to evaluate how the
most typical heuristics based on the network structure perform on temporal and
static networks. A special attention has been turned to observation of dynamics of
the influence that spreads over temporal network after choosing initial seed sets. The
basic heuristics basing on structural networkmeasures were evaluated to see whether
time-enhanced versions of these measures will perform better. Since the goal of this
chapter is to present the current advancements in the research on maximizing the
social influence, the experiments are briefly described here just to show that indeed
moving with the spread of influence towards dynamic networks may be beneficial in
solving the problem and it places it in real-world setup rather than in an abstract one.

14.6.1 Introduction

The general problem considered in that context is what kind of networks should be
used to performbetter in seeding andfinally in the spread outcome.Twomain network
kinds have been further studied: static one that aggregates equally all knowledge from
the past (TSN1 in Fig. 14.6) and temporal one that splits the past period into more
or less time intervals: TSN10 with 10 equal time windows and TSN5 with 5 time
frames. The temporal approach corresponds to dynamic context of seeding, whereas
an aggregated social network reflects typical static seeding circumstances. The goal
of the experiment was not to focus on seeding strategies itself, but to analyse the
process under different assumptions for the aggregation level.

14.6.2 Experimental Setup

14.6.2.1 Time-Dependent Measures

Firstly, three simple aggregations were introduced, which allow to order users based
on structural measures (total degree, in-degree, out-degree, betweenness, closeness)
respecting all periods in the temporal social network in the accumulated way—
maximum, minimum and sum. These aggregations, however, do not make use of
sequential nature of time and general phenomena that recent social relationships are
likely to be more influential than old ones. Hence, the nine new aggregations that
take into account also the “forgetting” aspect of time are introduced. Here, the value
of a given structural measure in the most recent time window is the most important,
while themeasures value in the oldest period is the least valuable. The purpose of this
was not only to capture the dynamics of user behaviour but also to emphasize users
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Fig. 14.6 Seeding is performed at present based on the knowledge about past dynamics of the
social network (in time TP ). The seed—set �(0) of initially influenced nodes is used to spread of
influence in the dynamic social network in the future (in time TF ). Three kinds of ‘learning’ social
networks used in the experiments on seed selection are depicted one below another: TSN10 with 10
time windows, TSN5 with 5 time frames, TSN1—aggregated-static (one time window)

latest activities. So the new aggregations were applying different kinds of forgetting,
e.g. linear, hyperbolic or exponential forgetting.

14.6.2.2 Aggregation Levels and Influence Model

All the aggregations combined with all typical node structural measures (in-degree,
out-degree, total degree, betweenness and closeness) where used to create node rank-
ings and select the seed set for spreading the influence. In other words, nodes in the
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temporal social network from the past were ranked according to the time-aggregated
values of their structural measures and this aggregationwas performed for all compo-
nent networks used for seeding, see the left part of Fig. 14.6. Next, 5% of top ranked
nodes were used for seeding, see the middle part of Fig. 14.6. It means that these top
nodes form the initial set�(0) of already influenced nodes that may influence others
in the following periods, see the right part of Fig. 14.6. In each case, the second part
of the dataset was split into ten windows of equal duration, to reflect the dynamic
behaviour of the network. As a model of influence, the linear threshold was used and
three levels of θ were evaluated—0.33, 0.50, 0.75 assigned uniformly for all nodes.

14.6.2.3 Datasets

The experiments were conducted using five real-world social networks repre-
senting the communication between company employees or social services users
(Table14.1). All of them were extracted from communication datasets downloaded
from the Koblenz Network Collection (KONECT)1 repository. Each social network
has timestamped edges, so it allowed to perform temporal analysis. The properties
of the datasets are presented in Table14.1.

Table 14.1 Descriptions and basic properties of used datasets

Dataset ID Network description No. of nodes No. of
timestamped
edges

Period of
communication

1 E-mail communication
between employees of
manufacturing
company [57]

167 82,927 2010-01-02 ...
2010-09-30

2 The Enron email
network [42]

87,101 1,147,126 1998-11-02 ...
2002-07-12

3 Messages sent between
the users of an online
community of students
from the University of
California, Irvine [59]

1,899 59,835 2004-04-15 ...
2004-10-26

4 Facebook user to user
wall posts [72]

46,952 876,993 2004-09-14 ...
2009-01-22

5 The reply network of the
social news website
Digg [21]

30,398 87,627 2008-10-28 ...
2008-11-13

1 http://konect.uni-koblenz.de.

http://konect.uni-koblenz.de
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(a) (b)

Manufacturing company Enron

University of California

(c) (d)

(e)

Facebook

Digg

Fig. 14.7 The total number of influenced nodes for all networks and structural measures used for
seeding as well as for different datasets, the threshold level θ = 0.75. a Manufacturing company.
b Enron c University of California d Facebook e Digg

14.6.3 Results

Results revealed that indeed for the aggregated (static) network, i.e. TSN1, the total
number of the influenced nodes is the lowest (the right group of bars in Fig. 14.7)
and the best performing network type is the one with the biggest number of time
windows, i.e. TSN10—the left hand side group of bars, Fig. 14.7. Overall, the final
number of influenced nodes for the 10-windows networks (TSN10) was about double
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as much as for a single network TSN1, see Fig. 14.7. In this figure the first part of the
heuristics name is the measure type, i.e. In—in-degree, Out—out-degree, Tot—total
degree, Bet—betweenness, Clo—closeness. The second part of the name represents
the type of forgetting—exponential (Exp), logarithmic (Log), hyperbolic (Hyp) or
power (Pow), for details see [56].

It confirms the initial hypothesis that using dynamic network it is possible to better
utilize the information in original data and finally select better seeds. When about
introduced measures, the ones based on forgetting properties outperformed others.

What is more, the greater granularity, the better chance to choose the proper seeds,
especially if taking time into consideration by means of time-dependent measures,
such as based on linear forgetting. When trying to explain this phenomenon, once
again the intuition is suggesting that the increasing granularity is helpful in terms of
better representation of the network dynamics, so the sensitivity of the introduced
measures increases—they reflect dynamics to a greater extent.

14.6.4 Summary

The above presented experiment shows that indeed the temporal aspects of net-
works are helpful in building seed strategies and that this direction should be further
exploited to verify the initially confirmed assumption that the network dynamics
helps in maximizing the spread of influence. In the next section it is shown how
researchers try to make use of this direction by presenting recent advancements. As
the literature overview shows, the problem here is being solved in different ways, not
only as in the presented experiment, but all of these have something in common—they
look at the history to maximize the spread.

14.7 Maximizing the Spread of Influence in Dynamic
Networks

This section is devoted to presenting recent advancements in maximizing the spread
of influence in dynamic networks which are definitely closer to real-world set-
ting. Since most of the research presented here makes the approaches more data-
dependent, reader has to have in mind that in contrast to purely structural algorithms
described in Sect. 14.4, the application of the approaches introduced below may be
limited, since not always the researchers have the full information about a social
networks (e.g. communication content). Of course it is not an argument to avoid this
direction, but just a loose remark.
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14.7.1 Learning Influence Probabilities

Before thinking about maximizing the spread in real-world dynamic networks, there
should be at least one limitation overcome, which is how to assign the influence prob-
abilities making them more aligned to the reality. As it was presented in Sect. 14.2,
the influence is often drawn from a distribution or hard-wired. When thinking of
real-world scenarios, this assumption makes the results of modelling spread of influ-
ence questionable. In this area there are just few papers which try to deal with this
problem.

The research on this topic started with the work of Tang et al. [70]. Here, the
researchers try to avoid learning influence probabilities from the network position of a
node, since they assume that different peers of a nodemay have different influence on
it. For instance, our friends may be more influential in the area of private live (trends,
friends etc.), while relatives from work may have stronger influence in company-
related topics. To take this into account, the authors decided to analyse the content
of the communication to build a model of Topical Affinity Propagation (TAP). This
approach tries to assign influence values over edges between nodes which are topic-
specific. So in this case a node may have multiple edges with its neighbour and each
of them represents different topic altogether with different influence weights. The
authors base on a concept of factor graphs [45], in which the observation data are
cohesive on both local attributes and relationships. Moreover, to make the approach
scalable, they do the following: define a Topical Factor Graph (TFG), then they
introduce Topical Affinity Propagation and finally they try to make the approach
scalable for large networks, either by using Map-Reduce approach or a parallel
update rule. Their main goal of the proposed idea is expert identification, but this
approach suits well for just learning real influence probabilities, as the real-datasets
experiments show.

Another approach in this area was proposed by Saito et al. in [65]. Here, the
authors focus on the IC model and they base on a likelihood of so-called episodes,
which are in fact nodes that became influenced in consecutive time-windows. Then
they compare neighbouring episodes—the one in time t , which is D(t) in authors’
notation, and the next one in t+1 (defined as D(t+1)) to seewhether the neighbouring
nodes were in D(t) and D(t + 1). If so, it is probable that the newly influenced node
vz from D(t +1)was influenced by vy from D(t) in time t +1. It is possible, because
the IC model gives just a single chance to a node to influence its neighbours, so the
influence may happen only shortly after the node itself becomes influenced. Then
the researchers use the expectation maximization technique to obtain the values of
likelihood functions of θ. Experiments conducted on a blogging platform confirm
that this approach may be right in terms of obtaining the influence probabilities by
learning from past data.

The last work presented here is the work of Goyal et al. [26]. In contrast to the pre-
vious work the authors generalize their approach to every influence model following
the submodularity property, whichmakes it more universal (e.g. covering LT and IC).
As the reader may remember, the submodularity was the property which allowed to
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introduce many improvements in the area of maximizing the spread of influence, see
Sect. 14.4. In this work the researchers base on two sources: the temporal network
and an action log which represents the activity of users. In detail, the action log is
defined as a relation containing tuples (u, a, tu), where u represents a node ∈ V ,
a—an action from the universe of actions and tu the time when the user u performed
the action a. By proposing models for capturing static and dynamic influence the
authors are able to compute the probabilities of influence and they reduce the number
of scans of typically-huge action log. Moreover, they are able to predict at which
time a user will take an action.

14.7.2 Real-World Datasets Evaluation

An important set of hints of how to seek for influential individuals is obtained from the
analysis of real-world datasets. In here the case is not to learn influence probabilities
to be applied for artificial models, but to get the understanding of what really matters
by analysing the influence paths. This information is helpful in building real-world
strategies and supplements the mathematical approaches by the knowledge on how
influence works in variety of social networks. The only drawback of such analysis is
that it is mostly data-dependent, since it emphasizes attributes of users or networks
which cannot be generalized easily.

One of the most interesting works in this area is [15]. Authors analyse Twitter
social network in order to find the most important factors of individuals that have the
greatest influence. Results revealed that the in-degreemeasure is not a good influence
indicator, at least for Twitter. Users with high in-degree not necessarily are the ones
that also have the significant influence on others. Moreover an interesting conclusion
is drawn that individuals are influential across many topics, i.e. the influence is rarely
topic-dependent, but node-dependent. Lastly it was shown that nodes cannot build
their influence instantly, it is rather a long-lasting process of becoming important in
the neighbourhood. This conclusion suggests that it is barely impossible to insert into
the network individuals that become influential fast. Instead the marketing strategies
should focus on finding influential nodes and convincing them to opt for a product or
service. Some other research on looking for influential nodes on Twitter is presented
in [3, 75].

The next study uses Epinions.com portal dataset to find out who is responsible for
the most influential reviews of products. By using text-mining techniques the influ-
ential power of real online users through their reviews was calculated and combined
with the RFM solution which tracks users past behaviour [35]. It was observed that
users contributing the most are not necessarily perceived as influential ones, i.e. the
experience based on the number of written reviews is not the most important. Sec-
ondly, the most important reviewers wrote the reviews in a very emotional manner,
i.e. they put a lot of effort to make them sound very subjective instead of objective.
It means that neutral reviews are not considered as valuable by others.
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It is observed that the approach of finding influential nodes corresponds well to
obtaining the influence probabilities, since in the former strategy it is possible to
adjust close-to-real influence probabilities, while the latter shows which factors may
be additionally used as the ones for choosing the seed set.

14.7.3 Social Influence Maximization

The approach which combines the action log and a social graph presented by Goyal
et al. in [26] was later extended to maximize the spread of influence in [27]. Firstly,
the authors show that basing on real-world data (action logs or history of past propa-
gations) is crucial, since only by knowing real influence probabilities any algorithm
for influence maximization may be accurate. So the initial assumption is that these
probabilities have to be computed by real-world data. Then they propose so-called
Credit Distribution model (CD) which bases on different assumptions than LT and
IC models, since it considers actions as a source of influence in network. Authors
introduce propagation graphs which include nodes that were neighbours in graph
E and performed the same action but in different time. Here, a node performing an
action earlier may be considered as a potential influencer of its neighbours taking
this action later. So, in fact, the initial graph is static, but the actions introduce the
dynamics here. Under the credit model for each action performed by a node, all
nodes that took this action earlier and are neighboured to this node receive credits
for being potential influencers, and this is a recursive operation. Then the nodes
that maximize the influence in the whole network under so-defined model offering
(1− 1

e )—approximation comparing to the optimal solution are being found keeping
the scalability as well. The biggest achievement here is the lack of need to perform
costly Monte Carlo simulations, but it is because of different model definition. How-
ever, the results show that the CD model and the method to choose seeds allow to
outperform common approaches for LT and IC influence maximization offering also
speed improvement. It is worth to study this paper also because the authors compare
the seed sets provided by different models.

In a work of Mathioudakis et al. [54] the researchers use past propagation log
and a social graph to find k most influential links, i.e. links that will maximize the
propagation. However, what they do is making significant reduction in the search
space by benefiting from sparsification. They apply their approach to IC model
and propose a Spine, dynamic programming algorithm which propose a significant
improvement in speed offering accuracy close to optimal. Spine is structured in two
phases. During the first phase it selects a set of arcs D0 that yields a log-likelihood
larger than −∞. This is done by means of a greedy approximation algorithm for the
Hitting Set NP-hard problem. During the second phase, it greedily seeks a solution
of maximum log-likelihood, i.e. at each step the arc that offers the largest increase
in log-likelihood is added to the solution set [9].

An interesting approach of considering time-varying influences is proposed in [50]
where authors consider the delayed influence process, i.e. the influence of a node
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to its neighbours may vary in time. It places the problem closer to reality, where
people take more care to recent incidents rather than to the older ones. The authors
propose Influence Spreading Paths as a method of measuring the influence of a node,
i.e. ISP(u, S) represents all spreading paths that end with user u. By using them the
authors compute the activation probability of a user u and thanks to that they are able
to find seeds faster than by using greedy algorithm. So the time factor incorporated
here is not the time reflecting the dynamics of the network but the changes in influence
probabilities. However, the researchers of this chapter indicate that this is another
way of representing the network dynamics and as such it can be used for solving the
problem in a dynamic environment.

The problem of influence maximization in dynamic social networks was just
recently explicitly stated in [1]. As the authors claim, to their knowledge they propose
the first set for time-sensitive methods for influence maximization. In this work
researchers use the transmissionmatrix which contains the time-dependent functions
for influence spread to find solution for two separate problems. Firstly, they would
like to pick k nodes at time t1 to maximize the influence at time t2—this problem
lies closer to classic influence maximization problem, but it incorporates the time
factor. Secondly, when observing the influence spread at time t2 they would like to
know which nodes most probably were responsible for the influence spread at time
t1. To deal with these problems, they introduce Backward and Forward Influence
Algorithms. When looking at influence maximization problem, authors try to solve it
similarly to the greedy algorithm, but now each iteration means another time-step. In
conducted experiments it is shown that the time-dependent solutions outperformed
the static ones showing that this direction should be further exploited.

To two more works in this area which tackle the problem differently are worth
referring. In [47] researchers try to find successor nodes for removed seeds. It is a rel-
atively different research question than in a typical influence maximization problem,
since now the budget k will increase, but this approach incorporates the dynamics
of networks showing that considering it is crucial. In [36] authors try to take into
account the availability factor of nodes, which indeed is the embedded dynamics of
the network, trying to improve the overall influence spread in networks. Again, exper-
iments’ results confirm that this direction helps the seeding strategies in obtaining
better results.

The idea of maximizing spread of influence in dynamic networks is a relatively
new one, but as the above literature review shows, it seems that considering the
dynamics of networks in the influence process is important and already some solu-
tions are being proposed. However, thework in this area has just begun andwe should
expect some improvements shortly. One of the reasons is that the dynamics in social
networks is something natural rather than unusual and it is already agreed that the
influence maximization problem should be considered in this real-world setup.
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14.8 Summary

In this work the problem of influencemaximization in social networkswas presented.
By starting with the most typical models of social influence, namely the Linear
Threshold, Independent Cascade, Voter Model and the Naming Game the influence
maximization for social networks was defined. After that it was shown how the
solutions for it developed for the static case. However, as the static case barely fits
the complex reality of dynamic social networks which are definitely more often
found in real-world, a short introduction to temporal networks was presented just
after. To confirm that the temporal solutions may be helpful in seeding strategies, a
short experimental study was quoted and discussed. In the last part of this chapter the
recent developments in the area of maximizing the spread of influence in dynamic
networks were shown.

However, the problem lies in how to put all the information provided here into
a synthetic form to conduct a successful marketing campaign. It seems that apart
from theoretical approaches a great deal of real-world dataset evaluation suggestions
has to be included in order to find out who is considered as an influential person
in particular social network. If there is only a pure network structure available,
designers of campaignhave noother option thenuse purely structural approaches.But
when attributes of individuals or time-sensitive data are obtained, the seed selection
process should use dataset-dependent information. An interesting case would be
a comparison of how data-dependent seeding strategies perform against structural
ones. Yet it seems that ignoring the temporal information may be one of the worst
strategies.

The idea of this work was to show how the problem developed and was solved
in a chronological order and what are the current challenges in this area. Since the
apparatus for temporal networks is already established [34] and the problem for the
dynamic case is clearly stated [1], nothing should stop other researchers in this area
from developing new algorithms for the real-world scenarios.
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