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Abstract. A Hidden Markov Model (HMM) is a temporal statistical model
which is widely utilized for various applications such as gene prediction, speech
recognition and localization prediction. HMM represents the state of the process
in a discrete variable, where the values are the possible observations of the
world. For the purpose of process mining for resource allocation, HMM can be
applied to discover a probabilistic workflow model from activities and identify
the observations based on the resources utilized by each activity. In this paper,
we introduce a process discovery method that combines an organizational
perspective with a probabilistic approach to address the resource allocation and
improve the productivity of resource management, maximizing the likelihood of
the model using the Expectation-Maximization procedure.

Keywords: Probabilistic process discovery � Process mining � Resource
allocation � Hidden markov models

1 Introduction

The basic idea of business process modeling is how enterprises can represent actual
processes in the way that those processes can be analyzed and improved. Through this
model, organizations can obtain a graphical representation of the process activities
defining a workflow in order to reach and accomplish intended objectives of business
processes [1].

Currently, existing process models do not consider a probabilistic analysis of
resources. Consequently, this paper examines a probabilistic approach to resource
allocation to represent the relationship between resources and their activities as well as
analyze their transitions to indicate the importance of each resource in the related
activity. Hence, based on the context of process mining and their perspectives [2], this
study will emphasize a control-flow perspective combined with an organizational
perspective to support resource allocation by constructing a stochastic model from an
event log and reveal how the resources interact directly with the activities.

Meanwhile, machine learning and process mining techniques are closely related
[3]. Some machine learning algorithms operate as a “black box” but are helpful
for creating systems that can learn from data through poor control-flow discovery.
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Some machine learning techniques [4] are statistically based on the way that they have
learned from data and are concerned with the collection, analysis, and interpretation of
data, making these techniques the heart of quantitative reasoning which is necessary for
making decisions and recommendations in systems. Hence, HMM is a technique that
can deal precisely with noise, incompleteness and not over-fitting the model unlike
other techniques e.g. decision trees, support vector machines, ANOVA, etc.

In general, HMM can be helpful in a specific form of the transition process and the
process can be considered as a series of time slices. Basically, HMM is modeled after
the process in different states for each activity, and the observations in HMM become
the resources that interact with the activities. As a result, this research evaluates the
possibility of discovering an extended probabilistic process model from a control-flow
process with an organizational perspective by applying HMM for resource allocation,
analyzing the resource attribute of each event and the activities flow, and estimating the
parameters for each activity (state) and resource (observation).

Therefore, this paper investigates the contribution of the applicability of HMM for
process mining based on previous premises by defining a probabilistic model that is
likely to explain the observed behavior that considers the control-flow patterns,
resources, and organization structure.

The remainder of the paper is organized as follows. First, the related work is
discussed in more detail in Sect. 2. Section 3 introduces the event logs and HMM
notations for the proposed model and explains HMM workflow discovery. Section 4
presents the estimation of the probabilities, resource allocation notations and applica-
bility of the HMM Miner. Finally, Sect. 5 provides the conclusions and future work of
the paper.

2 Related Work

There are a few research approaches of HMM in process mining. Rozinat et al. [5]
propose a method that begins with a petri-net in order to construct a HMM for a quality
evaluation of the model, taking into account different metrics like fitness and precision.
Da Silva and Ferreira [6] apply HMM in sequence clustering, where all the elements of
the sequence are related with each state in the model as well as propose five different
topologies for the model. In [7, 8], the intension mining approach is proposed to
identify the reasoning of processes that are behind of the activities.

A number of previous studies have focused on resource and actions or reactions in
the business process execution. Rozinat and van der Aalst [3] propose a decision
mining technique based on case perspective analysis. Song and van der Aalst [10]
present social mining that has an organizational perspective which monitors the orig-
inators and relationships and focuses on how the originators interact between them,
though not directly with the activities. Recently, Kim et al. [11] introduced a performer
recommendation using a decision tree which focuses on time and organizational per-
spective, resulting in the length of the decision tree becoming too large and too difficult
to analyze.

The proposed approach based on the probabilistic method differs from the existing
studies from two perspectives: the control-flow perspective proposing a model based on
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the order of activities, and organizational perspective analyzing and proposing the best
interaction between the activities and resources.

3 HMM-Based Process Mining

3.1 Resource-Oriented Event Log

An event log is used as input of process mining to construct models that explain and
interpret some aspect of the behavior stored. The event log contains traces referring to
the number of cases, activities and resources, as shown in Table 1. It should be noted
that this study has not taken into account time stamps or other types of data. Instead, the
formal models presented by van der Aalst [12] are extended for HMM miner which
adds a limitation based on an event log and a footprint matrix, and it is defined as a
resource-oriented event log which follows:

Definition 1. (Resource-Oriented Event Log) Let L be an event log. L is a tuple < C, S,
V > , where C is the set of all possible cases, S of length N is the finite set of event
labels fs1; . . .; sNg that has been performed over L, and V 2 L� of length M is a set of
originators fv1; . . .; vMg that specify the resource associated with the task.

The construction of HMM workflow is explained in Sects. 3.2 and 3.3. To calculate
the initial parameters, the event log is needed to mine the frequency of the occurrence
of the activities and resources. This is explained more in Sect. 4. Section 5 discusses
how to find the maximum-likelihood estimation (MLE).

3.2 HMM Miner Algorithm

To accommodate the event log, process mining, and HMM in terms of resource
allocation, the concepts of HMM workflow is introduced. The formal notation for the
HMM workflow is as follows:

Definition 2. (HMM Workflow) Let L be a resource-oriented event log. A HMM
workflow h Lð Þ ¼ ðs;V ;Fs;FvÞ is represented by:

• s ¼ fs1; . . .; sN ; eNþ1g 2 L where fs1; . . .; sNg are the states or activities of L and
feNþ1g a dummy end state.

Table 1. Example of process log.

Case ID Activity

1 aPete; bSue; cSean; dMike

2 aEllen; bSean; cSue; dPete
3 aMike; bSue; cSue; dMike

4 aPete; cSean; bSue; dMike

5 aPete; cSean; bSue; dEllen
6 aEllen; eSue; dPete
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• V ¼ fv1; . . .; vM ; eMþ1g 2 L where fv1. . .vMg are the observations of resources and
feMþ1g a dummy observation of the dummy end state feNþ1g.

• Fs is an NxN matrix with footprint sequence and frequency of occurrence for
transitions si to sj.

• Fv is an NxM matrix with the frequency of occurrence for resources V in state si.

The procedure for constructing the HMM workflow is presented in Fig. 1. The
HMM miner algorithm first investigates the control-flow perspective of a process
model from an event log, and considers the order of the events within a case. The
attributes such as case id, activity, and resource are utilized in the mining process.

3.3 Mining Markovian States

HMM workflow learns from the event log which is fully observed data where the states
of the HMM can be represented based on the activities. It takes the notation of event
logs to describe the example log in Table 1 where it observes the event sequences
L = < abcd, abcd, abcd, acbd, acbd, aed > .

In order to discover a process model, the event log has to be analyzed while it is
mining the causal dependencies by using the footprint notation for HMM Miner, and,
when analyzed, different patterns of the states evaluate the precedence of each activity,
and the frequency of the observed sequences. In order to satisfy these requirements the
footprint matrix is introduced in Definition 3.

Fig. 1. HMM miner algorithm.
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In process mining, α-algorithm [9] is considered one of the baseline techniques for
analysis of patterns in event logs. In our approach, a footprint matrix is required to
construct the state transitions of a HMM model analyzing the relations of a pair of
activities. The footprint matrix is focused on a process perspective especially in analysis
and differentiation of activities sequences. It can measure the frequency of activities and
the sequences, helping to real situations where the data is not complete or has noise.

Definition 3. (Footprint Matrix for HMMMiner) Let L be an event log. Let x1, x2 2 L:

• x1 > L x2 if and only if there is a trace σ = < t1, t2, t3,…, tn > and i 2 {1,…, n-1} such
that σ 2 L and ti = x1 and ti+1 = x2 (Contains all pairs of activities in a “directly
follows”). If is a directly follow, fs =

P
r2L

LðrÞ
• x1 → L x2 if and only if x1 > L x2 and x2 > L x1 (Contains all pairs of activities in a

“causality” relation
• x1 #L x2 if and only if x1 > L x2 and x2 > L x1
• x1 ||L x2 of and only if x1 > L x2 and x2 > L x1

For our implementation activities x1, x2 … xn, are the states for the HMM, e.g.
a, b, …, e. After constructing the footprint matrix, the next step is to start with the
construction of a Markov chain that simulates a dependency graph based on the states
of HMM. The HMM diagram has states expressed by “oval shape and activity name,”
and transitions are represented by two different “arcs,” one for transition activities and
other for the resource relationships. The first one represents the successor states and in
terms of resource mining, the relationship between the activities, and the second, the
observations (resources) that correspond to that activity, e.g. activity a has a causality
relation with activities b, c and e; so, it is creates a transition denoted by an “arc” from
a to these activities. The initial states of the HMM workflow are denoted graphically by
a double oval, and the probabilities of each initial state are assigned in the initial state
distribution π. Figure 2 shows that all observations were represented with a “square
shape and resource name” and assigned directly to each state, and, in turn, the resources
are mined from the event log and related to specific activity.

To model the end of the process dummy state ε is added, which receives its input
from the last activity in each sequence and from which no other state is reachable.
Consequently, the transition probability from this state to itself should equal 1. Figure 2
describes a constructed HMM workflow and the interaction of the activities with the
different resources show how after the state d is fired and reaches the state ε.

Table 2. Footprint matrix Fs for event log in Table 1.

a b c d e

a # →, 3 →, 2 # →, 1
b ← # ||, 3 →, 2 #
c ← ||, 2 # →, 3 #
d # ← ← # ←
e ← # # →, 1 #
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The next section describes how to estimate the probabilities in the mode which first,
calculates the initial values for the state transition probability distribution A and for the
observation symbol probability distribution B. After several steps, it is determined that
the expectation maximization for these probabilities obtains the estimated A* and B*.

4 Resource Allocation with HMM Miner

4.1 Relating Resources to HMM

After obtaining the mined structure of HMM, including the number of states (activities)
N, name of the different states s, count of observations (resources) M, label of each
observation V and the initial states defined in π, the next step is to determine the initial
state transition probability distribution A and the observation symbol probability dis-
tribution B. To begin analyzing both probability distributions, the frequency f of each
activity and resource, is needed and with them, the weight of the arcs can be calculated,
and it is possible to decide which elements should be kept for analysis, and which
elements can be discarded to reduce the noise of the mined event log. Starting with the
transition probabilities, the footprint matrix is needed to obtain the frequencies.

In order to start the analysis to get the probabilities for the HMM workflow the
assumption is made that the data is from an event log L = < C, S, V > ; and each event
in L is given by a tuple (s, v) and the total events in L is K. Then (sk, vk) = (s1; v1),…,
(sN ; vM) the probabilities can be computed and collected :

Y

k

P sK ; vKð Þ: ð1Þ

P s; vð Þ ¼
Y

i

pf ðiÞi :
Y

i;j

af ði;jÞi;j :
Y

i;o

biðvkÞf ðvkÞ: ð2Þ

Note in this equation, it is taken in account the frequency where f(i) is the number
of times i is the initial state in (s,v). In f(i,j) the number of times j follows i in (s,v) this
frequency is in the footprint matrix Fs and f(vk) the number of times i is paired with
observation v is in matrix Fv.

Fig. 2. HMM workflow constructed from the footprint matrix without probabilities of Table 2.

482 B. Carrera and J.-Y. Jung



According to these HMM parameters, the log probability can be easily calculated:

L kð Þ ¼
Xk

l¼1

logP sl; vlð Þ: ð3Þ

Log kð Þ ¼
Xk

l¼1

X

i

f ið ÞlogðpiÞ þ
X

i;j

f i; jð Þlogðai;jÞ

þ
X

i;vk

f ðvkÞlogðbiðvkÞÞ:
ð4Þ

In order to find λ that give us a maximum value for L(λ) The following formula is
needed: d LðkÞ=dk ¼ 0

pi ¼
P

i f ið ÞP
i

P
h f hð Þ : ð5Þ

ai;j ¼
P

i f i; jð ÞP
i

P
h f i; hð Þ : ð6Þ

biðvkÞ ¼
P

i f ið ÞP
i

P
v0k2V f i; v0k

� � ð7Þ

Basically, a supervised learning from all mined activities and resources is taken,
allowing for the calculation of the probability of each element independently.

4.2 Maximum Likelihood Estimation

Knowing the initial values λ = (N, M, A, B, π); it would be possible to estimate the
maximum likelihood in selecting the best values for the model parameters that make
the observed data the most probable and obtain λ* = (N, M, A*, B*, π*). As described
in Fig. 3, EM procedure essentially calculates their values in 2 steps E and M can be
calculated using forward and backward algorithms [4] for HMM.

In order to improve λ, the EM procedure uses ai from the forward algorithm and bi
from the backward algorithm, which utilizes the variables c and ξ as temporal variables
[4] in order to estimate the values of A*, B*, and π*.

ciðtÞ ¼
ai tð Þ � biðtÞPN
j¼1 aj tð Þ � bjðtÞ

: ð8Þ

nijðtÞ ¼
ai tð Þ � aij � bj t þ 1ð Þ � bjðvtþ1ÞPN

p¼1

PN
q¼1 ap tð Þ � apq � bq t þ 1ð Þ � bqðvtþ1Þ

: ð9Þ
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Given an observation sequence, ciðtÞ is the probability of being in state i at time
t and nijðtÞ is the probability of being in state i at time t and being in state j at time t + 1.
These temporal variables are useful in order to determine the maximum likelihood of
the parameters, ciðtÞ can be interpreted like the possibility to be in a specific activity on
a determined time of the process and nijðtÞ the probability of the following activities in
a specified time.

p�i ¼ c1: ð10Þ

where p�i is the expected initial state distribution at time 1 in state i. In other words, the
expected probability is to begin the process in a specific activity.

a�ij ¼
PT�1

t¼1 nij tð ÞPT�1
t¼1 ci tð Þ

: ð11Þ

where a�ij is the expected state transition probability distribution, and is the number of
times that the transition i occurs in sequence from t = 1 to T − 1. Then, a�ij is the
expected probability from being in activity i to j.

b�j vkð Þ ¼
PT�1

t¼1;vt¼vk cjðtÞPT�1
t¼1 cjðtÞ

: ð12Þ

b�j vkð Þ is the expected observation symbol probability distribution, where is the
expected number of times in state j and observing symbol vk , divided by the expected
number of times in j. In terms of this study, it is the predicted parameters of the
resources assigned to a specified activity.

4.3 Example

The example is based on the event log from Table 1. It is used for the mining algorithm
in Fig. 1 in order to construct the HMM workflow. In Table 2, a footprint matrix is

Fig. 3. Expectation-Maximization procedure.
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created and Fig. 2 shows the mined HMM workflow without the frequencies. From this
point, the next step is calculate the frequency matrix Fv for the analysis of resources,
and calculates the initial parameters explained in Sect. 4.1, and the values for the
maximum likelihood explained in Sect. 4.2.

First, the mined event log produces three different activity sequences and the
algorithm estimate a percentage for < abcdε > with 0.5 %, < acbdε > with 0.33 %
and < aedε > with 0.16 %, the number of states that identifies each activity are N = 6
with s = {a, b, c, d, e, ε} and the number of resources that will be the observations
M = 6 with V = {Pete, Mike, Ellen, Sue, Sean, ε}.

Table 3 shows the frequency of resources si based on activities vj and is used to
create the observation symbol probability distribution B ¼ fbiðvkÞg. The initial state
distribution is pi ¼ ½1; 0; 0; 0; 0; 0�T , where activity {a} is the only one that starts all the
process sequence.

Table 4 shows the probabilities for HMM workflow from Eq. 6 where it analyzes
the transition from the state i corresponding to the current transition to all states j. For
example to assign value probability from activity {a} to {b}, after {a} is fired {b, c, e}
can be the next state, the total frequency of sequences {ab}, {ac} and {ae} are 6, and
evaluating just {ab} the frequency is 3 showed in Table 2, the probability is 3/6. In the
case of resources probabilities, Table 5 shows the observation probability distribution
where it is analyzes the resources that interact with a specific activity. For example, in
activity {a} the resources used are {Pete, Mike, Ellen} the total frequency is 6 and
frequency observed for {Mike} is 1 showed in Table 3, then applying Eq. 7 the
probability is 1/6.

Table 3. Frequency matrix Fv for event log in Table 1.

Pete Mike Ellen Sue Sean ε

a 3 1 2 0 0 0
b 0 0 0 4 1 0
c 0 0 0 2 3 0
d 2 3 1 0 0 0
e 0 0 0 1 0 0
ε 0 0 0 0 0 1

Table 4. State transition probability distribution A = {ai;j}

a b c d e ε

a 0 3/6 2/6 0 1/6 0
b 0 0 3/5 2/5 0 0
c 0 2/5 0 3/5 0 0
d 0 0 0 0 0 1
e 0 0 0 1.0 0 0
ε 0 0 0 0 0 1.0

Constructing Probabilistic Process Models Based on Hidden Markov Models 485



With the initial values for the HMM workflow, the EM procedure is utilized to
estimate the expected values for transition A* and observation B* distribution. Tables 6
and 7 are shown in graphical form in Fig. 3.

It should be noted that this study has been primarily concerned with the estimation
of control flow probabilities and the analysis of work distributions between resources
and activities. Our approach is helpful to answer related questions in resource allo-
cation, such as: “How to determine the experience of resources in a specific activity?,”
“How to promote a resource effectively based on their experience?” and “What activity
has to be scheduled and the resources required?.”

We plan to conduct related experiments in the near future in order to compare and
evaluate the proposed method using real-life event logs and implement it in a ProM
framework (Fig. 4).

Table 5. Observation symbol probability distribution B = {biðvkÞ}
Pete Mike Ellen Sue Sean ε

a 3/6 1/6 2/6 0 0 0
b 0 0 0 4/5 1/5 0
c 0 0 0 2/5 3/5 0
d 2/6 3/6 1/6 0 0 0
e 0 0 0 1.0 0 0
ε 0 0 0 0 0 1.0

Table 6. Expected state transition probability distribution A* = {a�ij}

a b c d e ε

a 0 0.53298 0.3987 0 0.6832 0
b 0 0 0.51998 0.48002 0 0
c 0 0.42249 0 0.57751 0 0
d 0 0 0 0 0 1.0
e 0 0 0 1.0 0 0
ε 0 0 0 0 0 1.0

Table 7. Expected observation symbol probability distribution B* = {b�j vkð Þ}
Pete Mike Ellen Sue Sean ε

a 0.5 0.16667 0.33333 0 0 0
b 0 0 0 0.79102 0.20898 0
c 0 0 0 0.44717 0.55283 0
d 0.33333 0.5 0.16667 0 0 0
e 0 0 0 1.0 0 0
ε 0 0 0 0 0 1.0

486 B. Carrera and J.-Y. Jung



5 Conclusions

This study presented designs a probabilistic discovery process from event log using
HMM to support resource allocation. Specifically, the expectation maximization
approach was adopted for estimating the model parameters. The proposed method is
useful in real-world scenarios for managing standard errors and noise in real case event
logs. Since determining the number of hidden states is very difficult, the following
model was based on activities and resources in such a way that the comprehension of
the model is enhanced. Also, the proposed technique is helpful to compare the per-
formance of resources for activity executions. Future work includes the consideration
of the time perspective to analyze if a resource is busy and the extension of the
technique to other scenarios.
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