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Abstract. Process mining automatically generates process models from
event logs. In multidimensional process mining, these models can be
analyzed from various viewpoints by clustering event traces according to
their attributes, e.g. age or region of the patient for a healthcare process.
For each cluster, a distinct process model is calculated. Since these mod-
els are supposed to be identical in most parts, differences between them
are hard to spot. Therefore, a tool for emphasizing these differences is
needed. To face the different challenges presented by multidimensional
process mining like the representational bias, such an approach has to
be customizable to support different modeling languages and different
layout and differencing algorithms. This paper presents a generic app-
roach to calculate and visualize differences between process models which
can be used to compare models in multidimensional process mining.
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1 Motivation

Process models are important for analyzing and optimizing business processes.
While traditional process management makes use of manually created process
models, process mining [7] allows for the automatic generation and analysis of
process models based on event logs. Event logs are collections of real process
data collected by process aware information systems (PAIS). Whenever an event
takes place, it is recorded by the PAIS. These records can be summarized into
event logs. Entries in event logs normally contain at least information about the
process and the process instance they belong to, where an instance describes an
actual case (for example the consulting of a particular client). Process mining
consists of three different activities:

Process discovery automatically creates a process model from an event log
that consists of events recorded during the execution of the process. In the event
log, the time-ordered events are grouped by their process instance. While mined
models should be as precise as possible, they should also allow for traces which
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are not in the event log. This is because in general, event logs do not contain all
possible traces of a process, but only example behavior (open-world-assumption).

Process conformance determines the compliance of a given process model by
comparing it to an event log. Usually, this is done by replaying event sequences
on the model.

Process enhancement improves an existing model with information from an
event log to add further perspectives. In the time perspective for example, time-
stamps from the event log are mapped to the model to analyze execution times of
activities and identify bottlenecks in the process. The organizational perspective
focuses on the actors of a process, e.g. to identify social networks while the case
perspective examines a single instance of a process e.g. to identify decision rules.

On the one hand, process mining leads to more realistic models, because
real data is used instead of assumed workflows. On the other hand, calculated
models also tend to be more complex than planned models and can contain a
lot of unnecessary detailed or even wrong information due to noise. In general
this makes automatically generated process models harder to analyze. Because
of that, the decision which modeling language to use and which information to
display in the model are very important in the process mining context.

Multidimensional process mining can be used to analyze a given process in
relation to particular attributes, for example the patient’s age, gender, or region
in the domain of health services research (HSR). Reference [24] proposes to
use OLAP-techniques to cluster event-logs by relevant attributes and to mine a
separate process model for each cluster. When looking at age groups and regions
in HSR for example, this approach allows to mine different process models for
each age group and region as outlined in the left part of Fig. 1. To identify
problems like inappropriate healthcare, an analyst could be interested if there
are deviations in the treatment process for a particular illness between the young
(<50) and the old patients (>69) in the region East. By comparing these models,
as shown in the right part, differences in the healthcare process between these
age groups can be identified, indicating possible problems.

Fig. 1. Difference calculation and visualization in multidimensional process mining.
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Without additional tools however, the differences between these process
models representing variants of the same process can be very difficult to find:
First of all, these models can be very complex and big, depending on the ana-
lyzed process and the mining method. Additionally, when looking at process
variants, the resulting models tend to be very similar in large parts, making it
even harder to find the differences. The goal of difference calculation in multidi-
mensional process mining is to simplify the analysis of differences between two
or more different variants of the same process.

While there are already approaches to compare graphical models, none of
them takes into account the special problems in multidimensional process
mining. For example, the modeling language of the process variants depends on
the used discovery algorithm. Due to this, the difference calculation and visual-
ization should be independent from the modeling language to avoid limitations to
particular process mining algorithms. Most existing approaches however, support
only a particular modeling language. Therefore, we propose a novel approach to
compare model variants in process mining which calculates the differences and
visualizes them accordingly. It is kept as generic as possible to be suitable for
multidimensional process mining, e.g. by using arbitrary difference calculation
algorithms that are independent of a specific modeling language.

This paper presents the challenges for differencing process models in multi-
dimensional process mining and proposes a generic approach to deal with these
challenges. Section 2 explains the specific problems in comparing models of process
variants and Sect. 3 presents how these problems can be solved in a generic way.
Section 4 describes a prototypical implementation of our approach. The appro-
priateness of our approach to the problem is discussed in Sect. 5. Related work is
presented in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Problem Description

In most approaches, calculating differences between graphical models serves as
a method to transform models between different versions, for example in a ver-
sion control system. Enhancing existing methods like textual diff helps software
engineers to keep track of their previous work. In contrast to this, in multidi-
mensional process mining there is typically no need to transform between model
variants, e.g. the treatment of old and young patients. Therefore, different use
cases have to be considered to support the analyst in result interpretation.

Calculating differences could be done either syntactically or semantically. In
syntactic analysis only the structure of the models is compared. In semantic
analysis, the meaning of different models is compared. In the context of process
mining, semantic analysis is normally done by comparing the possible traces
between two models, for example all possible variations of the treatment process
for old patients with all variations for young patients. When two models pro-
duce the same traces, these models represent the same process. Because both
approaches are useful when analyzing a process, a software to compare process
variants in multidimensional process mining should be able to do semantic as
well as syntactic analysis.
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A lot of algorithms used in software engineering assume an implicit parent-
child relation between the different process models and rely on previously recorded
change logs between the different versions. In general, there are no such relation-
ships between process variants, e.g. the treatment processes of old and young
patients are mined independently. Furthermore, there is no version control sys-
tem to record the differences between these variants in multidimensional process
mining, hence these algorithms do not work properly here. As a consequence, a
differencing tool for process variants should be able to compare models without
any model-specific additional information, such as change logs.

In process mining, different modeling languages, for example Petri nets [18],
causal nets [21] and BPMN [25] are applied. Each language has its own set of
structures which cannot be modeled properly due to restrictions of the language’s
syntax. In Petri nets, for example, there is no possibility to model a logical OR,
only XOR is supported [19]. This problem is referred to as representational bias.

In process mining, where algorithms are used to mine the models, most
of these algorithms depend on a specific modeling language. For example the
α-algorithm [22] only generates Petri nets. If Petri nets are not able to represent
the best fitting model, the algorithm cannot find it either. This is why different
languages are used in process mining to represent all types of processes in the
best way possible. Because of this, an approach to calculate differences between
models in process mining needs to be adjustable to different modeling languages.
On the one hand, this means, that the method for calculating differences needs
to be independent of the modeling language, while on the other hand it should
be able to visualize the model in the corresponding modeling language.

In process mining, models are often enriched with additional information
in perspectives, for example how long a patient usually has to wait for an
examination. An approach for comparing models in multidimensional process
mining should be able to display and to compare this additional information to
make process analysis easier, e.g. to find optimization potentials. In the following
section, we will present our approach, which addresses the identified problems.

3 Generic Diff Concept

Figure 2 gives an overview of the general workflow, where ellipses denote cus-
tomizable parts in the process. To be able to deal with different types of process
models, a language specific mapping must be present when loading a model.
With such a mapping, each process model is transformed into an intermediate
model. The mapping itself contains transformation rules between the model-
ing language and the intermediate data model used throughout the application.
Both, the mapping and the models can be provided as XML-files.

Using an intermediate model allows for the comparison of a wide variety of
modeling languages with generic algorithms. Without an intermediate model,
each modeling language would need its own set of algorithms. To make imple-
menting generic algorithms easier, the intermediate model should be as simple
as possible on the one hand. On the other hand, the intermediate model must
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Fig. 2. Overview of differencing workflow and its extensible parts.

not lose any information contained in the original model. Compared models in
a single comparison have to be in the same modeling language. This is due
to semantic and syntactic differences between different modeling languages, for
example events in BPMN which cannot be properly modeled in Petri nets.

The structure of the intermediate model is based upon TGraphs [4]: TGraphs
in general consist only of linked nodes. While there is no distinction between dif-
ferent node types or between nodes and edges, these nodes can contain additional
information, e.g. provided as key-value-pairs.

Each element of the original model is mapped to a node in the TGraph,
nodes like transitions and places of a Petri net as well as edges like the arcs of
a Petri net. The original model’s structure is retained by linking these nodes
accordingly. In doing so, each process model can be transformed into a simple
structured intermediate model, regardless of the original model’s language. The
usage of TGraph simplifies the difference calculation, as the algorithms only have
to consider nodes for comparison.

Since language or model specific information is not contained in the interme-
diate model’s structure, this information should be annotated in the according
node by providing appropriate key-value-pairs. For example, a node can be
marked as a transition by saving the value “transition” for the key “type”.

Differencing algorithms can now compare intermediate models, resulting in a
difference model. By making these algorithms interchangeable, generic algorithms,
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Fig. 3. Logical block model.

as well as specialized algorithms for a certain modeling language can be used.
The resulting difference model is generated as an intermediate model itself where
the nodes are marked, e.g. as unchanged, added, deleted or changed. Depending
on the analysis’ goals, additional semantic and syntactic differencing algorithms
can also be implemented. Some semantic algorithms, e.g. [14], however need
information about the logical structure of the process model instead of the syn-
tactical structure. One way to provide this information is a logical block model
as shown in Fig. 3: The process model (e.g. a Petri net) is interpreted as a set of
nested logical blocks, e.g. XOR-blocks, LOOP-blocks or AND-blocks.

Our approach allows to define simple logical patterns, for example XOR-
splits and XOR-joins, in a modeling language’s mapping. These patterns are
described in the corresponding modeling language to avoid a representational
bias between the model and the patterns. Logical blocks in a process model can
be identified by searching for these patterns and deriving the block model.

After calculating a difference model, this model is visualized. To maintain
an individual look for each modeling language, a view model is generated from
the difference model. The view model’s structure is analogous to the difference
model but instead of similar nodes, the view model contains different kinds of
representation nodes. These depend on the respective modeling language and
are defined in the mapping. To differentiate between different node types, e.g.
transitions, places and arcs in a Petri net, each node in the intermediate model
contains the representation type used for drawing this node. Depending on the
situation and goals of an analysis, representations can be changed (e.g., using
different colors or changing the size of labels in the Visualisation). By customiz-
ing the representation, additional information stored in the internal model can
also be displayed. For example, this allows to add the time perspective by storing
timestamps in the intermediate model and changing the appearance of a node
dependent on these timestamps. Before drawing the model, the view model is
laid out. Layout algorithms are interchangeable to allow for generic as well as
specialized algorithms.
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Sometimes it is desirable to consider more than two models in comparison,
e.g. an analyst wants to find the differences of all age groups (indicated in Fig. 1)
in relation to the young patients. Our approach allows to compare more than
two models by relating them to a selected model serving as a reference. All
changes are marked in relation to this reference model. While the comparison of
more than three process models is possible, the results are harder to visualize
with each additional model, due to the exponential growth of possible states a
single node can have. A node could have been added to the second model and
been deleted in the third, for example. When trying to highlight these different
states by coloring them, the visualization’s complexity increases. Hence, to our
experience, visualizing differences between more than three models is not useful.

4 Implementation

We implemented our approach as described in Sect. 3 in a prototype. As a proof-
of-concept, three modeling languages have been implemented in the prototype:
Petri nets, causal nets and process trees [12]. They represent different types of
process visualization and are widely used in process mining. Moreover, a tool
processing Petri nets should also be able to process similar structured languages,
like BPMN with little additional effort.

For difference calculation, three different approaches were implemented:
A simple snapshot-diff algorithm [11] provides a way to compare the structure of
two process models without considering the models’ semantics. This algorithm
can be used for additional modeling languages without adapting it or the models
in any way as long as both models contain corresponding unique identifiers for
each model element in both models. An extended snapshot-diff algorithm distin-
guishes between edges and nodes. While nodes are compared by their identifier
as in the first algorithm, edges are considered equal when the identifiers of their
previous and following nodes match. By doing so, only node identifiers need to be
equal, but edge identifiers can differ between the two models. This is important
for multidimensional process mining where edge ids are typically automatically
generated and do not match between different models. The block-structured
algorithm explained in [14] has also been implemented in combination with the
algorithm in [13], to allow for a semantic analysis. As these algorithms need a
process model to be structured as logical blocks, pattern templates for different
logical splits and joins were defined for petri-nets.

To be able to easily identify differences between two models, a proper layout
and visualization is needed. To layout a model, the layered layout algorithm by
Sugiyama et al. [17] is used. This algorithm lays out the model’s nodes in layers
and then tries to minimize crossing edges by reordering these layers. To minimize
crossings, nodes in each layer are positioned as close as possible to the median
of their previous nodes’ positions. By doing so, the node placement is fast and
deterministic. This is necessary because similar process models should be drawn
as similar as possible to avoid confusion. Furthermore, the drawing needs to be
as fast as possible to be suitable for large models.
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To visualize the differences between two models, their difference model is visu-
alized using different colors by default. Elements marked as deleted are drawn
in red, elements marked as added are drawn in green and changes are drawn in
yellow. However, the view model can be easily adapted to alternative visual-
ization concepts (e.g. dashed lines, symbols etc.). Figure 4 shows the difference
model of two process trees from the healthcare domain. The differences are
highlighted using color coding and dashed lines. By coloring different parts of
an element instead of the same part, the complexity of comparing more than
two process models can be slightly reduced. Which part of the according model
element (e.g. the background or the border) is colored depends on the definition
of the element’s representation and can be customized as needed.

Fig. 4. Visualization of the differences between two process models.

5 Discussion

In the following, we discuss our approach and show how it addresses the chal-
lenges in multidimensional process mining. As pointed out in Sect. 2, differ-
ence calculation in multidimensional process mining must not require additional,
model-specific information, such as change logs. While our approach requires a
language-specific mapping, it does not need any additional information besides
the compared models.

To deal with the problem of representational bias, the approach supports
different modeling languages by transforming these languages into an interme-
diate model. Thus the user can deal with representational bias (as long as the
compared models are in the same language) by properly configuring the model-
ing language. Differencing algorithms are interchangeable, thus specialized algo-
rithms, as well as generic algorithms are possible. To allow for semantic analysis,
patterns can be defined which help identifying logical blocks in the model which
can be utilized by semantic algorithms. Hence, syntactical and semantic analysis
are supported.
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Once compared, differences are marked according to the kind of difference,
e.g. addition, deletion or change. In doing so, common structures in the com-
pared models are unobtrusive, whereas differences between these models are
emphasized. To maintain a specific appearance for each modeling language, each
language’s representation can be customized as needed and it is possible to rep-
resent additional information (e.g. perspectives) in the model. To ensure a clear
visualization, the layout algorithm can be exchanged, e.g. to minimize crossings
at the cost of run-time performance.

6 Related Work

Process mining in general is summarized in [7] and explained in detail in [20].
While calculating differences between process models is not often necessary

in normal process mining, it is very useful in multidimensional process mining.
Reference [24] explicitly motivates the use of difference models to emphasize
differences between model variants. This work also suggests different kinds of
visualizations for these differences, including the one used in this approach.

In software engineering, a lot of research has already been done about
comparing graphical models in the context of software evolution, for example
in [5,8,26]. However, these approaches focus on differences between different
versions of one model. Furthermore, they mostly rely on previously recorded
change logs which are not available when comparing models mined from event
data.

A simple method to compare the structure of two models is a Snapshot
differential analysis, shown for example in [11]. Although this method is nor-
mally used to calculate differences in data warehousing, it can also be applied
for comparison of process models. Model elements are matched by their iden-
tifiers and differences are annotated. This algorithm is easy to implement and
only requires model element identifiers to be equal in both models. The com-
parison itself however is not very powerful and thus not suitable for advanced
(e.g. semantic) analysis. Furthermore, unique identifiers cannot be guaranteed in
multidimensional process mining. Apart from that, some specialized algorithms
for comparing process models in a non-software-engineering context exist:

References [2,3,23] provide and evaluate different metrics and algorithms to
determine the degree of similarity between two process models (e.g., to search
for a model in a repository). In contrast to this, we focus on identifying and
highlighting the differences between process models.

Reference [1] introduces a method to compare process models in scientific
workflows. First, these workflows are transformed into series-parallel graphs.
Then basic operations, such as path insertion and path deletion are used to
calculate the minimal edit distance between these graphs and a specification
containing all possible workflows. This algorithm can be used to find differ-
ences between process variants by assuming the overall process model as process
specification. However, it only identifies structural differences and lacks sup-
port of semantic analysis. Besides, it implies that a complete specification of the
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analyzed process exists which contradicts the open world assumption. This could
be a problem in the context of multidimensional process mining.

Reference [14] is a semantic approach, where different process models are
compared by the traces they allow. This is done by creating an order matrix
(as explained in [13]) for the intersection of each model and comparing these
matrices. Their differences are minimized, resulting in a minimal set of changes
between the models. This method however needs a model to consist of semantic
structures like logical splits and joins to create the order matrix. In most cases,
mined process models do not provide these structures by themselves.

References [15,16] demonstrate a method to mine the changes between dif-
ferent process variants directly from the event log and treat these variants as
differences to a calculated reference model. This reference model and the differ-
ences change dynamically with each new trace added to the model. However,
this method cannot always be applied to other multidimensional process mining
approaches, for example [24], since it relies on the output of the presented mining
algorithm.

Reference [10] introduces a method to merge different process models into
a configurable workflow model [6]. A configurable workflow model is a process
model, where paths can be enabled and disabled as needed. This allows to merge
two models while keeping the original models’ information. However, this work
focuses on the merging algorithm itself. Hence, no advice on visualizing differ-
ences and commonalities in a generic way is given.

Reference [9] presents a visualization concept for displaying differences bet-
ween process models which supports different modeling languages. Compared
models are merged and differences colored accordingly. By showing instance traf-
fic in the difference model, this method intends to find optimization potentials
in a process. As opposed to this, the approach presented in this paper focuses on
identifying the differences between process models in multidimensional process
mining. Therefore, we chose a more generic approach to be adaptable to differ-
ent circumstances, e.g. to allow for semantic and syntactic analysis of a process.
Furthermore, our approach is extendable to allow for comparing and visualiz-
ing different process mining perspectives, while [9] focuses on the control-flow
perspective.

7 Conclusion

In process mining, process models are automatically mined from event logs.
While these models are normally more realistic than manually designed models,
they also tend to be much more complex. In multidimensional process mining,
multiple process models are mined from clustered sets of traces. Differences
between these models can help to identify problems in the process. In addition
to their complexity, they are supposed to be identical in most parts which makes
finding differences between them very difficult. Thus, a tool to compare these
models and emphasize their differences can significantly ease the analysis.

In this paper, we presented a generic approach for calculating and visualizing
differences between process model variants in the context of multidimensional
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process mining. As the application implies several challenges like the representa-
tional bias, our approach supports arbitrary modeling languages by mapping the
original language to an intermediate representation based on TGraphs. Apart
from the modeling language’s mapping, no additional model-specific information
(such as change logs) is required. This allows the comparison of not hierarchically
related models as required in multidimensional process mining. Furthermore, the
concept also allows for syntactic and semantic differentiation between models and
additional, specialized algorithms can be added as needed.

By using a layered layout, models are neatly arranged and colors are used to
emphasize differences. To be suitable for different analytical purposes, the visual
representation of each model element can be changed and additional layout algo-
rithms can be provided. Additional perspectives can be visualized, too. Hence,
by using a suitable configuration, the complexity of difference analysis in mul-
tidimensional process mining can be reduced significantly. Thus, the presented
approach provides a highly customizable method for comparing different process
models in the context of multidimensional process mining.

To further improve our approach, a method to visualize differences between
multiple models in a more user friendly way would be useful. This would allow for
the comparison of even all mined process model variants at once. Furthermore,
our approach should be evaluated in a user case study.
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