Clustering Based Parallel Many-Objective
Evolutionary Algorithms Using the Shape
of the Objective Vectors

Christian von Liicken! ® | Carlos Brizuela?, and Benjamin Barén'

I Facultad Politécnica, Universidad Nacional de Asuncién, San Lorenzo, Paraguay
clucken@pol.una.py
2 CICESE Research Center, Ensenada, México

Abstract. Multi-objective Evolutionary Algorithms (MOEA) are used
to solve complex multi-objective problems. As the number of objec-
tives increases, Pareto-based MOEAs are unable to maintain the same
effectiveness showed for two or three objectives. Therefore, as a way
to ameliorate this performance degradation several authors proposed
preference-based methods as an alternative to Pareto based approaches.
On the other hand, parallelization has shown to be useful in evolution-
ary optimizations. A central aspect for the parallelization of evolution-
ary algorithms is the population partitioning approach. Thus, this paper
presents a new parallelization approach based on clustering by the shape
of objective vectors to deal with many-objective problems. The proposed
method was compared with random and k-means clustering approaches
using a multi-threading framework in parallelization of the NSGA-IT and
six variants using preference-based relations for fitness assignment. Exe-
cutions were carried-out for the DTLZ problem suite, and the obtained
solutions were compared using the generational distance metric. Exper-
imental results show that the proposed shape-based partition achieves
competitive results when comparing to the sequential and to other par-
titioning approaches.

Keywords: Multi-Objective Evolutionary Algorithms - Many-objective
optimization - Parallel evolutionary algorithms

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are well-suited for solving
several problems requiring simultaneous optimization of two or three conflicting
objectives [3,4]. In general, MOEAs differ in the fitness assignment method, but
some of the most successful of them, such as the NSGA-II [5], use the Pareto
dominance concept as the foundation to guide the search towards the optimal
solution set.

In the last few years, several researchers have pointed out convergence diffi-
culties that Pareto-based MOEAs face when solving many-objective problems,

© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 50-64, 2015.
DOI: 10.1007/978-3-319-15892-1_4

Clustering Based Parallel Many-Objective Evolutionary Algorithms 51

i.e. problems having four or more conflicting objectives [17]. The main source of
these difficulties comes from that the proportion of non-dominated individuals
in an evolutionary population tends to one as the number of objectives increases.
Therefore, for a growing number of objectives, it becomes increasingly difficult to
discriminate among solutions to assign fitness values using only the dominance
relation [4,12]. In order to distinguish among solutions, some authors propose
to replace the Pareto dominance relation by preference relations that use addi-
tional information such as the number of objectives for which one solution is
better than another [9,12], the size of improvement [12,20], or the number of
subspaces in which a given solution remains non-dominated [8].

Even though there are other approaches to deal with many-objective prob-
lems using MOEAs [17], the use of alternative relations have shown to be able to
improve the quality of the obtained Pareto set approximations without requiring
to combine or reduce the number of objectives which, in several cases, may not
be adequate or even possible. Also, alternative relations are relatively easy to
incorporate into existing (Pareto-based) MOEAs with a minimal computational
overhead.

On the other hand, parallelization of existing MOEAs have proven to be
an effective mechanism to improve the quality of the obtained approximations
in multi-objective problems of increasing difficulty [3,21]. However, to the best
of our knowledge, parallelization of methods based on preference relations were
not applied and tested in many-objective problems. Moreover, parallel MOEAs
(PMOEAs) were mainly developed and tested in distributed memory parallel
systems [15]; however, nowadays availability of lower cost shared memory multi-
core platforms requires a review of the parallelization methods in the new existing
environment in order to leverage the computational power that these platforms
may offer.

The island model is the most popular parallelization paradigm for MOEAs,
it consists of a number of subpopulations or islands evolving independently pro-
vided with a mechanism to interchange individuals exploring for global optima.
Using multiple subpopulations has been identified as a simple way to increase
the chance of finding better solutions for a problem [2,3]. In general, in the island
model, the interchange of individuals is carried out by a migration operator that
selects solutions to migrate from one subpopulation to another. The migration
strategy definition includes to specify the elapsed time between migrations, as
well as the selection criterion and the number of elements to migrate.

Alternatively, instead of conceiving a migration strategy, other island-based
methods split the evolutionary population into multiple subpopulations that,
after evolving independently, are combined again into a single population, which
also can evolve in a single process for a number of iterations, then the division
process is repeated [1,13,18,19]. In this work, since division is usually used to
create partitions with similar individuals, these methods are generically called
clustering based parallel MOEA. Population partitions with similar individuals
induce a mating restriction, i.e. recombination of similar individuals, that has
shown to be useful to improve the performance of evolutionary algorithms [4]. As

52 C. von Liicken et al.

it is noted in [2], the main drawback of these pMOEAs based on repeated parti-
tioning of a global population is that the division procedure introduces a strong
dependency among the computing units. However, the expected improvement
provided by working with multiple subpopulations running in different proces-
sors may justify the use of these methods. Most of clustering based pMOEAs
were implemented into distributed parallel systems, thus, requiring additional
data communication to send subpopulations to the process in charge of join
them in a whole population and redistribute it again. However, in nowadays mul-
ticore systems with shared memory systems to gather subpopulations requires a
reduced communication and synchronization time.

This paper studies clustering based parallelization of NSGA-II variants using
preference relations for many-objective problems. In this case, the clustering
methods serves to search into different regions simultaneously using preference
based MOEAs, while, in each subpopulation, the preference relations are used
to improve the rank over similar individuals, which may be useful to improve
the overall search. Moreover, a new clustering method based on the shape of the
objective vectors is proposed (see Section 3).

In order to validate the proposal in the field of many objective optimization,
an empirical comparison of the proposed method against other alternatives for
population division for pMOEAs was produced considering the same parallel
framework. Using this framework, the NSGA-IT and six of its variants based on
preference relations were parallelized with three options to divide the popula-
tion: at random, using the k-means clustering algorithm, and using the proposed
shape-based clustering algorithm. Sequential and parallel implementations were
used to solve the suite of DTLZ problems with 10 objectives and the obtained
results compared regarding the Generational Distance metric [4].

2 Clustering Based Parallelization of MOEAs

2.1 Parallel MOEAs Using Clustering

In general, the island model is used to develop pMOEAs as parallel extensions
of existing mono-objective or multi-objective evolutionary algorithms. Besides
the algorithm considered for parallelization, island based pMOEAs differ in the
mechanism used to interchange information among subpopulations searching for
the global Pareto front. As previously explained, an alternative to exchange
individuals among islands is to iteratively divide a global population into sub-
populations and gather them to repeat the cycle again. In this case, methods
may also alternate between the execution of sequential iterations, considering the
whole population, with parallel iterations. Some methods to divide the global
population into subpopulations considered here as relevant related works are:

— population partitioning based on sorting of a objective function [13,18],
— population partitioning based on the cone separation approach [1],
— population partitioning based on the k-means clustering algorithm [19].

Clustering Based Parallel Many-Objective Evolutionary Algorithms 53

Parallelization approaches based on objective function sorting use the value
of one selected criterion to divide and distribute the population in different
islands. Thus, each island works on a subpopulation with individuals that are
similar regarding the chosen sorting objective. After some evaluations, subpop-
ulations are gathered again and the process is repeated until a stop condition is
met. Examples of these approaches the Divided Range Multi-objective Genetic
Algorithm [13] and the Parallel Single Front Genetic Algorithm [18].

The Cone Separation Approach [1] parallelizes MOEAs by dividing the search
space and mapping different search areas to different processors. In this case,
objective values are normalized, then, considering a given reference point, the
search space is divided in regular partitions or regions called cones that can be
assigned to different processors. As the searching process progresses, the search
space partitioning is adapted at regular intervals by normalizations and readjust-
ment of the region assigned to each processor. Region restrictions are applied
to each subpopulation and individuals not meeting constraints in a subpopu-
lation migrate to the one where they do not violate the constraints. Migrated
individuals are added to the receiving population without deletion. This way,
there is not a centralized process that divides the population iteratively but a
decentralized one; however, the method is conceptually equal to the methods
based on repeated division of a global population.

Streichert et al. [19] use the k-Means clustering algorithm to divide the search
space of a given optimization problem in suitable partitions without a priori
knowledge about the search space topology. The k-Means procedure is applied
over the current Pareto Front of the whole population to produce partitions to
be distributed to the available processors or islands. In case the size of Pareto
Front being smaller than the number of processors, next levels of Pareto fronts
are also used for clustering. Each processor runs NSGA-IT until the number of
generations reaches a number of iterations, then, solutions are gathered in a
master procedure where search space is partitioned and distributed again.

2.2 Preference Relations in MOEAs for Many-Objective Problems

The NSGA-II is a well known MOEA that showed an excellent performance in
several multi-objective problems, thus, several researchers considered the NSGA-
IT [5] as the base algorithm to implement and validate their proposed relations
and algorithmic approaches both in multi-objective as well as many-objective
problem domains. The NSGA-II assigns the fitness of solutions based on two
values: its non-dominance ranking and its crowding distance. Variants of the
NSGA-II can be produced by considering alternative methods to calculate fit-
ness. In this paper, the following operators and ranking methods are used to
modify the fitness assignment procedure of the NSGA-II in a minimization con-
text, for space limitation reasons the details are not explained here but we refer
the interested reader to the corresponding references:

1. Favour relation [9]: this relation counts the number of objectives in which
a given solution outperforms another. Given a multi-objective problem min-
imizing a function F(x) = (f1(x),..., fm(x)) with m objectives, and let x

54

C. von Liicken et al.

and x’ be two vectors in the set of feassible solutions Xy, it is said that x is
favoured than x’, denoted as X < fqyour X', if and only if

np(F(x), F(x)) > np(F(x), F(x)) (1)
where:

m(F(x), F(x)) = [{fi(x) st. fi(x) < fi(x)}| (2)

In [9], the favour relation is proposed to be used with the Satisfiability Class
Ordering classification (SCO) procedure [9] to sort solutions.

. e—Preferred Relation [20]: the e—Preferred relation compares solutions

by counting the number of times a solution exceeds user defined limits
for each dimension (¢;) and, in case of a tie, it uses the favour relation.
Given two solutions x and x’ € X, F(x) =y = (y1,...,Ym), F(x') =
v = (Wl,-.-,4,,), it is said that x is e—preferred than x’, denoted as
X '<57prefer7‘ed le iff x ~e—exceed x' Vv (X/ %efemceed X A X "<favou7‘ X,)v
where X <_c¢zceed X' implies that:

iy <wi Ny —vil > e}l > Wiy <y Ayi — wil > €}

As in [9], in [20] the SCO algorithm is used to rank solutions.

Preference Ordering based on order of efficiency (POy) [8]: a solu-
tion x is considered to be efficient of order k if it is Pareto optimal in the
(T) subspaces of the objective space taking into account only k out of m
objectives at a time. The order of efficiency of a solution x, denoted by K (x)
is the minimum k value for which x is efficient.

—e-DOM [16]: the —e-DOM distance replaces the NSGA-II crowding dis-
tance. The —e-DOM distance of a solution x is the smallest value such that
if subtracted from all objectives of F(x’), makes x dominated.

. (1 — k)—dominance relation [12]: this relation counts the objectives in

which a solution is better or equal than another one. Let x and x’ € XY,
F(x) =y, F(x') =y’, it is said that x (1 — k)—dominates x’ iff : n.(y,y’) <
m and ny(y,y’) > “r1°, Where m is the number of objectives, 0 < k& < 1,
ny is as in Eq. (2), and n.(F(x), F(x)) is [{fi(x) s.t. fi(x) = fi(x')}]
Fuzzy (1 — krp)—dominance relation [12]: the fuzzy extension of (1 —
k)—dominance is defined by determining membership functions ,ué , 1t and
i, for each objective function i.

2.3 A Framework for Clustering Based Parallelization of MOEAs

Based on Preference Relations

To study clustering based pMOEAs, Algorithm 1 presents a framework for
pPMOEASs that use iterative partitioning of a global population for multi-threading
systems. Using this framework, by setting the corresponding parameters it is pos-
sible to study different options for pMOEAs based on clustering.

Algorithm 1 starts reading its parameters; the MOEA M to be considered

for evolutions and its parameters, the partition method (PM), the number of

Clustering Based Parallel Many-Objective Evolutionary Algorithms 55

Algorithm 1. A framework for clustering based pMOEAs

Read parameters

Sett =0
Create an initial random global evolutionary population Py
while ¢t < it;, do > ity is the total number of evolutionary steps performed
for it iterations do > its: iterations considering a single population
Evolve P; in Piy; using M > M is the MOEA to be used
t=1t+1
end for
In 7 parallel threads
t'=0
for it, iterations do > ity iterations considering subpopulations in parallel

if ' mod it. = 0 then

Split P; in Ptl, ..., P/ using partition method PM

end if
Evolve Ptjft,’ in Pt,Ift,Url using M
=t +1

end for

End parallel

t=1t+ it

end while
Save non-dominated solutions from Py

islands (7), the total number of evolutionary steps (ity), the number of single
thread iterations (its), the number of parallel iterations (it,) and the number of
iterations before clustering (it.). Next, the global number of iterations ¢ is set to
0, and the global population P; is created at random. After initialization, while
t < itgq , its evolutionary iterations are executed in a single thread considering the
evolutionary population as a whole. Then, 7 threads are created, one for each
island, and parallel execution starts. The next step is to split P(t) using the
procedure PM in 7 subpopulations (P! ..., PJ), this procedure, repeated each
it. iterations, may be implemented in parallel or as a single thread. Each thread
has an identifier Id, thus at each thread Id, evolution of P/¢ occurs during ity
iterations. When iterations in all threads end, the global count of iterations ¢
is updated to ¢ + it, and the cycle continues until the stop condition is met.
Finally, the final set of solutions is saved.

3 Partition Approach Based on the Shape of Solutions

In [10] it is presented a similarity measure over Euclidean spaces for high dimen-
sional vectors. To calculate this measure, a real vector y = (y1,...,ynm) € R™
is divided in a pair (s(y),7(y)), where s(y) is the ordered version (weak) of y
elements, and 7(y) is the permutation of indexes {1,...,m} that produce the
sorting which is called as the shape part. The distance between two vectors y
and y’ is defined in [10] by a combination of the distance between s(y) and s(y’),
and 7(y) and 7w (y’). The shape of a vector can be formally defined as follows:

Definition 1. Shape of a vector in R™: Given a vector'y € R™, a permutation
w(y) =A{m,...,mm}, mi € {1,...,m}, is the shape of y iff:

yﬂ'i S yTK'J7VZ <j

56 C. von Liicken et al.

As an example, let y = [0.1,0.5,0.3] and y’ = [0.3,0.1,0.5], then, their shapes
are 7(y) = [1,3,2] and 7(y’) = [2,1, 3].

This work proposes the shape of a vector to divide the population in groups
of solutions having a similar shape. The number of different shapes grows facto-
rially with the number of objectives, i.e. for three objectives there are 6 different
shapes, but for 5 objectives there are 120 possible shapes. Therefore, it is not
practical for a large number of objectives to split the solutions according to all
possible shapes, but by means of a clustering method considering the similar-
ity between the shapes of objective vectors. There are several measures that
can be used to measure the distance between permutations. In this work, the
Spearman’s rho distance, defined as follows, is considered [11].

Definition 2. Spearman’s rho distance: Given permutations © and 7', and inter-
preting 7; as the position of element i in 7, the Spearman’s rho distance is defined
as:

M
p(m, ') = (Z i — i) /) 3)

Algorithm 2 presents a clustering procedure using the shape of objective
functions. First, a set {C1,Cs,...,C;} of 7 clusters are initialized at empty.
Then, for each element x in the population to be classified P, a normalized
objective value F(x) is calculated with its corresponding shape my = 7(F(x)).
Thereafter, 7 different shapes are randomly selected from the set of shapes of
the normalized objective values into a set S. If eventually there are less than 7
different shapes, S is completed by repeated elements. An index Id corresponding
to each cluster is assigned to each shape in S. Next, for each x in P, a set S,
containing the indexes of the shapes in & having the minimal Spearman’s rho
distance to 7y is created. The set Sy is used to select the index Id of the cluster
in which x will be included. If the cardinality of S is one, the index is the value
of the unique element in SJ; otherwise, one of the indexes in S, is selected at
random. Finally, x is included in the cluster C74. The procedure finishes when
all individuals are assigned to a cluster.

Algorithm 2. Clustering algorithm using the shape of objective functions
Initialize {C1,Cs,...,C;} clusters, s.t. Crqg =0 for Id € [1,...,7]
For each x € P obtain its normalized objective value F(x) and shape myx = 7(F(x))
Randomly select 7 different shapes S = {sh1, shz, ..., sh:} from shapes of x € P
for each x € P do
S"'={1d | shrq € minspesn{p(mx, sh)}}

if(|S’| ==1) then Id is the element of S’
else select Id at random from S’
end if

Set Crg =CrqUx
end for

Clustering Based Parallel Many-Objective Evolutionary Algorithms 57

4 Experimental Comparison

4.1 Experimental Setup and Metrics

The main focus of this work is to compare the shape-based clustering method
to parallelize MOEAs based on preference relations with their sequential coun-
terparts and other population division methods over a set of many-objective
optimization problems. Thus, using the framework presented in Subsection 2.3,
three partition methods were implemented to parallelize the original NSGA-
IT and six variants of it considering the relations explained in Subsection 2.2.
The considered partition methods are: the proposed clustering method based on
the shape of objective vectors (SH), a random (RN) partition and a k-means
based partitioning (KM). The test problems used in this work are the DTLZ1
to DTLZ7 problems with 10 objectives [6]. The programs were implemented in
C language and the OpenMP library.

For each problem 10 runs were executed for sequential and parallel programs
using 2, 4, and 8 threads. The choice of the number of runs was made taking
into account other works such as [8,14], and the available time to execute the
programs and analyse the results (note that there is a total of 4900 executions).
The experimental computational platform was a machine provided with two Intel
Xeon quad-core Processors E5640 (12M Cache, 2.66 GHz, 5.86 GT/s) and 16
GB of main memory running the GNU/Linux operating system. The programs
consider the following common parameters: population size 400, it is 400, binary
coding of 32 bits per variable, one point crossover probability of 0.8, mutation
probability of 0.002. For the e-Preferred relation, the e value is 0.0001; for the
(1 — k)—dominance relation, & is 0.5; and, for the (1 — kr)—dominance relation,
kp is also 0.5 and a fuzzy trapezoidal rule is used (a = —0.001, b = 0, ¢ = 0,
d = 0.001) [12]. The k and kr values were selected taking into account the test
cases in [12], while the values used for e and the fuzzy trapezoidal rule were
selected on experimental basis, however, no fine tuning of the above parameters
was considered. For parallel methods ity = 0, it, is set to 400, it. is 1. The
sequential version is also implemented using the framework, but, in this case,
7 =1 and it, = 0.

The obtained results were evaluated using the Generational Distance (GD)
and Spread (A) metrics. GD measures the average distance between obtained
solutions in objective space and the true Pareto Front of the problem, while
Spread evaluates the extent of the Pareto Front covered by the obtained set of
solutions. Since GD requires a reference PF* to be computed, and equations
to produce PF* are known, a set of 2000 optimal solutions was determined
analytically. Both metrics are expected to be minimized.

4.2 Experimental Results

Table 1 and Table 2 show the average GD and Spread values performing 10
runs of implemented combinations, for each DTLZ problem. In these tables,
for each problem, there are 10 rows corresponding to each execution type: one

58 C. von Liicken et al.

for the sequential execution (Seq) and 3 for each partition method used for
parallelization considering 2, 4, and 8 threads (v value), while each column is
for different MOEAs tested in this work. The values in parenthesis show the
ranking obtained by each execution type of the given MOEA for each problem.
Note that, until the value is represented by using a reduced number of digits,
rankings are calculated using the machine numeric representation. Also, the best
value for each column (execution method) is boldfaced. In order to summarize
the results, the two last columns indicate the average of the rankings of each
row, and regarding the data in this column, the last column labelled ”Final”
shows the overall rank obtained by each execution type for each problem.

The results in Table 1 and Table 2 may be used to determine the combina-
tion of partition method, MOEA and number of threads, performing the best
for each problem and metric. However, in this work, the detailed results are not
analyzed but the general and average behaviour of the studied partition methods
in order to show how clustering may serve as a basis to develop pMOEAs for
many-objective problems. At first glance, Table 1 shows that in almost all cases,
for each MOEA considered, at least one parallel implementation evaluates better
than its corresponding sequential counterparts for the GD metric. Considering
the seven DTLZ problems and seven implemented MOEAs, only in 4 out of
49 results obtained by sequential implementations are not improved by parallel
executions for GD. The result is remarkable since parallel and sequential imple-
mentations were executed using the same number of iterations, and, therefore,
the same number of objective function evaluations. Therefore, the source of the
benefit is provided by the interactions among individuals in subpopulations and
not by executing more evaluations in the same execution time.

Figure 1 and Figure 2 show the final ranking of each combination of partition
method and number of threads by problem using data in Table 1 and Table 2,
respectivelly. The labels indicate the 7 value followed by the partition method,
i.e. 2-KM is for implementations using 2 threads and k-means. As it can be
noted, in Figure 1 the smaller bars are for the SH implementations. In fact, in
5 out of 7 problems, an SH implementation obtains the best rank value for GD,
in one problem a method based on k-means and in another case a method based
on random partitioning. Also, the figure indicates that the best performance is
for 8-SH obtaining the best ranking positions for almost all problems. In fact,
the worst value obtained by the 8-SH is 5, in problem DTLZ6, whereas the other
partitioning options receive in at least one problem an overall ranking greater
than 5. From a visual inspection of Figure 2, it is not possible to determine which
implementation alternative may be considered as the best, however it appears
that sequential implementation obtain the best ranking in three problems, and
that the 8-KM obtains, in general, the worse values.

Figure 3 presents the ranking distribution for GD metric considering the 49
implementations of each sequential and parallel MOEAs with different number of
threads (7 MOEAs times 7 DTLZ problems). According to this figure the results
of shape-based implementations concentrates in the first ranks while they have
the fewer number of implementations in position 10. Thus, using the Figure 3 as

Clustering Based Parallel Many-Objective Evolutionary Algorithms

Table 1. Average values for GD metric with 10 objectives

Ranking
Test 7 Part ¢—DOM e—Pref (1—k) (1—kp) Favour NSGAII POy Avg. Final
T 0 1.05B-1(6) 1.286+0(10) 2.11B-1(4) 1.99B-1(10) 2.50B-1(2) 3.40B+0(6) 8.77E-2(1) 557 5
KM 1.53E-1(10) 2.14B-1(3) 2.31E-1(7) 195E-1(9) 3.88E-1(6) 2.85E+0(5) 1.27E-1(6) 6.57 10

2 RN 9.24E-2(3) 3.87E-1(6) 2.33E-1(8) 147E-1(5) 2.39E-1(1) 5.31E4+0(8) L.21E-1(4) 5 4
. SH 824E-2(2) 6.3E-1(9) 2.00E-1(3) L54E-1(6) 2.65E-1(3) 3.75E+0(7) 1.69E-1(10) 5.71 6
N TRM 026E2(1) L7BE-1(2) 321E-1(10) I3E-I(d) 412E-1(7) LIE+0(2) LIOE-1(3) 457 2
£ 4 RN 934E-2(5) 340E-1(5) 2.34E-1(9) L60E-1(7) 3.07E-1(5) 547E+0(9) 1.25E-1(5) 6.43 9
S SH 1LME-1(7) 462E-1(8) 215E-1(5) 119E-1(3) 4.88E-1(8) 2.58E+0(4) 1.62E-1(9) 620 8
KM 127E-1(9) 4.226-1(7) L56E-1(2) LO2E-1(2) 5.11E-1(9) L.O9E+FO0(1) LOSE-1(2) 457 3

8 RN 5.35E-2(1) 2.36E-1(4) 2.28E-1(6) 1.67E-1(8) 2.75E-1(4) L11E+1(10) 1.61E-1(8) 5.86 7
SH 1.22E-1(8) 1.35E-1(1) 1.46E-1(1) 9.89E-2(1) 6.98E-1(10) 1.I5E+0(3) 1.47E-1(7) 4.43 1

T 0 6.6363(9) 6.18E-5(7) 2.026-3(10) 138E-3(3) 2.90E-5(7) 4.92E-2(3) 5.836-3(10) 8.43 10
KM 590E-3(7) 3.21E-4(8) 6.426-4(3) 1.33E-3(d) 4.89F-5(3) 4.506-2(6) 228E-3(8) 7 8

2 RN 6.84E-3(10) 3.62E-5(6) 1.47E-5(5) 1.96E-3(10) 1.97E-5(5) 4.88E-2(7) 4.86E-3(9) 7.43 9

o _ SH 5.2E-3(4) 255E-5(5) 1.83E-5(6) 138E-3(7) 1.66E-5(4) 4.58E-2(5) 2.02E-3(6) 5.20 4
N T KM 507E-3(3) 1.08E-3(9) LI5E-3(9) 1.33E-3(3) 6.76E-4(9) A10E2(3) B5ATEA(3) 557 7
£ 4 RN 6.00E-3(8) L92E-5(4) 1.32E-5(1) L36E-3(6) 1.54E-5(2) 4.97E-2(9) 2.22E-3(7) 529 5
2 SH 4.60E-3(1) 1.86E-5(3) 1.38E-5(3) 1.73E-3(9) 1.98E-5(6) 4.33E-2(4) 8.21E-4(5) 4.43 2
KM 5.08E-3(6) 1.6AE-3(10) 4.426-4(7) 1.25B-3(1) 151E-3(10) 3.47B-2(1) 3.556-4(2) 529 6

8 RN 5.37E-3(5) 1.65E-5(2) LAIE-5(4) 1.36E-3(5) 165E-5(3) 5.12E-2(10) 7.92E-4(4) 471 3
SH 4.73E-3(2) 1.54E-5(1) 1.38E-5(2) 132E-3(2) 1.42E-5(1) 3.85E-2(2) 3.32E-4(1) 1.57 1

T 0 6.826-1(2) 6.01B+0(9) 5.57E+0(10) 1.14E+0(10) 2.70E+0(5) 2.84E+0(6) 6.41E-1(3) 6.43 7
KM 7.14E-1(4) 6.90E+0(10) 3.22E10(9) LO9E+0(7) 3.53E10(7) B3.06E+0(7) 6.64E-1(4) 6.86 9

2 RN 7.70E-1(8) 3.97E+0(4) 2.42E+0(6) 1.0SE+0(6) 3.75E+0(9) 4.02E+0(8) 7.02E-1(5) 6.57 8

. _ SH T795E-1(9) 4.60E+0(7) 2.79E+0(8) 9.53E-1(5) B3.70E+0(8) 2.50E+0(5) 7.84E-1(7) 7 10
N T KM 735E-1(5) 4.75E+0(8) 2.02E+0(5) 0.20E-1(3) 389E+0(10) 130E+0(2) SB5IE-1(0) 6 5
£ 4 RN 6.95E-1(3) 4.39E+0(6) 1.82E4+0(3) 1.13E+0(8) 2.63E4+0(4) 5.34E+0(9) 7.41E-1(6) 557 4
S SH 754F-1(6) 4.16E+0(5) 272E+0(7) 9.44E-1(4) 2.01E+0(1) 1.92E+0(4) 8.90E-1(10) 520 3
KM 6.16E-1(1) 2.51E+0(1) 1.84E10(4) 7.12E-1(1) 3.526+0(6) 1.14E+40(1) 5.50E-1(1) 2.14 1

8 RN 9.96E-1(10) 3.00E+0(3) 1.40E+0(1) 1.14E+0(9) 2.12E+0(2) 1.87E+1(10) 8.07E-1(8) 6.14 6
SH 7.68E-1(7) 290E+0(2) 1.77E+0(2) T7.77E-1(2) 2.59E+0(3) 1.85E+0(3) 6.27E-1(2) 3 2

T 0 6.74E-3(9) 255E-2(10) 4.62E-2(10) 1.836-3(3) 4.16E-3(6) 6.79E-2(7) 1L.136-2(4) 7 10
KM 3.31E-3(1) 3.586-3(3) 9.01E-3(8) 3.146-3(6) 7.026-3(10) 6.77B-2(6) 1.81F-2(9) 6.14 7

2 RN 6.99E-3(10) 6.32E-3(8) T7.61E-3(7) 1.22E-3(1) 4.27E-3(7) T7.01E-2(8) 1.39E-2(7) 6.86 9

- _ SH 5.3E-3(5) 3.70E-3(4) 2.94E-3(4) 236E-3(4) 2.64E-3(2) 6.73E-2(5) 127E-2(6) 4.29 2
N T KM 378E-3(2) 3.04E-3(2) 1.38E-2(9) B.50E-3(7) 3.39E-3(5) 6.30E-2(3) 211B5-2(10) 543 5
E 4 RN 585E-3(T) 478E-3(7) 151E-3(1) 281E-3(5) 5.28E-3(9) 7.21E-2(9) 1.24E-2(5) 6.14 8
2 SH 440E-3(4) 264E-3(1) 3.68E-3(5) 4.53E-3(9) 2.28E-3(1) 6.57E-2(4) 1.08E-2(3) 3.86 1
KM 5.61E-3(6) 3.936-3(5) 4.29E-3(6) 7.66B-3(10) 2.88E-3(3) 5.87B-2(1) 1.49E-2(8) 557 6

8 RN 6.55E-3(8) 9.10E-3(9) L5IE-3(2) 1.76E-3(2) 3.12E-3(4) 7.35E-2(10) 9.02E-3(2) 529 4
SH 4.17E-3(3) 4.52E-3(6) 2.20E-3(3) 3.65E-3(8) 4.54E-3(8) 6.00E-2(2) 8.36E-3(1) 443 3

T 0 3855202 13465(4) 1.256-1(7) 1.30B-5(1) 1.38E-1(10) L20E-1(9) 1.14BE-1(1) 486 2
KM 4.02E-2(9) 1.95E-5(9) L27E-1(3) 1.38E-5(5) 129E-1(9) LI7E-1(5) L.20E-1(3) 6.86 10

2 RN 3.95E-2(7) 1.26E-5(1) 1.25E-1(5) 1.32E-5(3) 1.28E-1(4) 1.I8E-1(7) 1.25E-1(4) 4.43 1

» _ SH 385E-2(3) 128E-5(3) 1.25E-1(6) L56E-5(7) 1.28E-1(7) 1.18E-1(6) 1.25E-1(5) 5.29 4
N T KM 380E-2(1) 1.46E-5(7) 1.28E-1(9) 1.58E-5(0) 128E-1(6) 1IAE-1(3) LI7E-1(2) 571 7
E 4 RN 4.04E-2(10) 1.27E-5(2) 1.25B-1(4) 1.32E-5(2) 1.28E-1(5) LISE-1(8) 1.25E-1(6) 529 5
2 SH 391F-2(6) 142E-5(6) 1.25B-1(2) 156E-5(8) 1.28E-1(8) 1.14E-1(4) 1.25E-1(7) 5.86 8
KM 3.81E-2(1) 2.04E-5(10) 1.32E-1(10) 3.24E-3(10) 1.27E-1(2) 1.02B-1(1) 1.29E-1(10) 6.29 9

8 RN 4.01E-2(8) 1.40E-5(5) 1.25E-1(1) 1.36E-5(4) 1.25E-1(1) 1.28E-1(10) 1.25E-1(8) 529 6
SH 3.90E-2(5) 18IE-5(8) 1.25E-1(3) 152E-5(6) 1.27E-1(3) L1IE-1(2) 1.25E-1(9) 514 3

T 0 1.75E-1(7) 2.98E10(7) 6.36E-4(1) 2.69E10(5) 2.73E-3(7) 4.57E-1(5) 4.19E-3(7) 557 1
KM 1.75E-1(3) 2.63E+0(3) 1.03E-2(10) 3.13E+0(10) 1.23F-2(10) 4.536-1(2) 5.95E-3(8) 7.20 10

2 RN 1.64E-1(3) 2.76E40(5) T7.55E-4(5) 2.77E+0(7) 3.48E-4(6) 4.65E-1(6) 4.14E-3(6) 543 6

o _ SH 1.66E-1(4) 3.00E+0(8) 6.51E-4(2) 2.93E+0(3) 3.35E-4(5) 4.53E-1(1) 2.94E-3(3) 4.43 1
N T KM 187E-1(9) 2A0E+0(2) 132E-2(9) 2.75B+0(6) 925E-3(8) A50E-1(3) LOSE2(9) 6.57 8
S 4 RN 1.58E-1(2) 3.08E4+0(9) 8.53E-4(6) 2.20E+0(2) 2.39E-4(1) 4.69E-1(8) 3.79E-3(5) 4.71 4
B SH 170E-1(5) 2.72B+0(4) 6.79F-4(4) 2.98B+0(9) 2.48E-4(4) A57E-1(4) 255E-3(2) 457 3
KM 1.88E-1(10) 1.88B+40(1) 1.27E-2(8) 2.24E+0(3) 90.49E-3(9) 4.67E-1(7) 1.24E-2(10) 6.86 9

8 RN 1.52E-1(1) 2.90E4+0(6) 15IE-3(7) 2.11E+0(1) 244E-4(3) 4.75E-1(9) 3.40E-3(4) 4.43 2
SH 1.71E-1(6) 3.14E4+0(10) 6.69E-4(3) 2.35E+0(4) 2.40E-4(2) 4.75E-1(10) 1.55E-3(1) 5.14 5

T 0 B844E-3(10) 9.11E-5(8) 6.28E-3(10) 1.34E-3(7) 2.93B-4(7) 4.67E-2(8) 7.10E-3(10) 8.57 10
KM 6.32E-3(6) 5.350-5(7) 2.14E-3(9) 1.34E-3(5) 3.08E-4(3) 4.326-2(6) 3.15E-3(6) 6.71 9

2 RN 7.93E-3(9) 4.53E-5(6) 2.70E-5(6) 1.31E-3(4) 2.37E-5(3) 4.67E-2(7) 5.43E-3(9) 629 7

. _ SH 440E-3(2) 439E-5(5) 2.67E-5(5) 134E-3(6) 2.51E-5(4) 4.30E-2(5) 3.86E-3(7) 4.86 3
N T KM 4.75E-3(1) 143E-3(9) 1.07E-3(7) 1.25E-3(2) 8.48B-4(9) 3.70E-2(3) S80E-4(3) 520 5
S 4 RN 7.68E-3(8) 3.27E-5(3) 246E-5(2) 1.62E-3(9) 2.56E-5(5) 4.97E-2(10) 4.12E-3(8) 6.43 8
2 SH 465B-3(3) B3.64E-5(4) 2.44E-5(1) 1358-3(8) 2.79E-5(6) 3.97E-2(4) 144E-3(4) 4.29 2
KM 4.80E-3(5) 2.03E-3(10) 1.66E-3(3) 1.23BE-3(1) 1.28E-3(10) 3.15B-2(1) 6.09E-4(1) 5.14 4

8 RN 6.92E-3(7) 293E-5(2) 2.56E-5(3) 1.88E-3(10) 1.98E-5(1) 4.94E-2(9) 1.60E-3(5) 529 6
SH 4.22E-3(1) 2.67E-5(1) 2.57E-5(4) 1.30E-3(3) 2.12E-5(2) 3.60E-2(2) 6.60E-4(2) 2.14 1

59

60 C. von Liicken et al.

Table 2. Average values for Spread metric with 10 objectives

Ranking
Test 7 Part ¢-~DOM e—Pref (1-k) (1—kr) Favour NSGAIT PO Avg. Final

T 0 5.95E-1(3) 1.07E+0(6) 1.02B+0(1) 9.08E-1(8) 1.06E+0(5) 547E-1(7) 5.81E-1(1) 443 4
=

KM 6.076-1(5) L.OGE+0(5) L.09E+0(6) B835E-1(2) 1.0AE+0(2) 531E-1(6) 7.286-1(2) 4.00 2

2 RN 5.75E-1(2) 1.09E+0(8) 1.04E+0(2) 8.33E-1(1) 1.05E+0(4) 4.96E-1(4) 8.30E-1(4) 357 1

. SH 5.59E-1(1) 1.00E40(1) 1.I1E+0(9) 9.11E-1(9) 1.03E40(1) 4.66E-1(2) 1.06E+0(7) 4.29 3
N TKM 642E-1(7) LOSE+0(7) LOGE+0(4) 9.75E-1(10) L.0SE+0(3) 6.53E-1(9) 7.47E-1(3) 6.14 8
5 4RND 6.78E-1(8) 1.02E+0(2) 1.06E+0(3) 8.78E-1(6) 1.09E+0(8) 4.79E-1(3) 9.28E-1(5) 5.00 5
2 SH 6.03E-1(4) 1.06B+0(4) 1.06E+0(5 8.40E-1(3) 1.11E+0(9) 5.04E-1(5) 1.11E+0(S) 543 6
KM 7.18E-1(9) 1.I6E+0(10) L.0O9E+0(7) B8.87E-1(7) 1.08BE+0(7) G6.70E-1(10) 9.88E-1(6) 8.00 9

8 RND 7.32E-1(10) 1.05E+0(3) 1.11E+0(8) 8.72E-1(5) LOTE+0(6) 4.12E-1(1) 1.23E40(9) 6.00 7
SH 6.12E-1(6) 1.14E+0(9) 1.18E40(10) 8.48E-1(4) 1.21E+0(10) 5.85E-1(8) 1.52E+0(10) 8.14 10

1T 0 4.82E-1(3) 1.00B+0(1) 1.04E+0(2) 7.34E-1(3) 1.00E+0(1) 2.77E-1(10) 6.92E-1(1) 3.00 1
KM 4.86E-1(4) 1.03E+0(3) 1.22E+0(4) 7.31E-1(2) 1.03E+0(2) 2.44E-1(4) 858E-1(3) 3.4 2

2 RN 545E-1(7) 1.00E+0(2) 1.00E+0(1) 7.51E-1(7) 1.00E+0(1) 2.73E-1(9) 7.58E-1(2) 4.14 6

o~ _ SH 48IE-1(2) 100E+0(2) 1.00E40(1) 7.61E-1(9) 1.00E40(1) 251E-1(7) 1.09E+0(4) 3.71 3
N TRM 538E1(6) I1.10E+0(4) 1.34E+0(5) 751B-1(6) LI4E+0(3) 235E-1(2) 120B+0(6) 457 8
5 4RND 5.77E-1(9) 1.00E+0(2) 1.00E40(1) 7.52E-1(8) 1.00E+0(1) 2.53E-1(8) LI7TE+0(5) 4.86 10
2 SH 4.78E-1(1) 1.00E+0(2) 1.00E+0(1) 7.82E-1(10) 1.00E+0(1) 2.47E-1(5) 1.45E+0(8) 4.00 5
KM 5.726-1(8) 131E+0(5) LITE+0(3) 7496-1(5) 1.23E+0(d) 2.33E-1(1) 1.32B+0(7) 471 9

8 RND 6.54E-1(10) 1.00E+0(2) 1.00E+0(1) 7.30E-1(1) 1.00E+0(1) 249E-1(6) 1.56E+0(9) 4.29 7
SH 4.92E-1(5) 1.00E+0(2) 1.00E+0(1) 7.38E-1(4) 1.00E+40(1) 2.39E-1(3) 1.63E40(10) 3.71 4

T 0 584E-1(5) 1.00E+0(2) 1.00B+0(1) 7.376-1(5) 1.00B+0(1) 4.836-1(8) 5.76E-1(1) 3.20 1
KM 5.92E-1(6) 1.00E+0(4) 1.0IE+0(3) 7.48E-1(7) 1.0IE+0(5) 5.11B-1(9) T7AIE-1(3) 520 &

2 RN 6.40E-1(7) 1.00E+0(5) 1.01E4+0(4) 7.71E-1(9) 1.03E+0(6) 4.61E-1(6) 6.20E-1(2) 557 9

~ _ SH 5.47E-1(1) 1.00E+0(3) 1LOIE+0(6) T7.12E-1(2) LOOE+0(4) 4.69E-1(7) 9.17E-1(5) 4.00 3
N TKM 5.74E1(3) LO03E+0(6) LOSE+0(7) 7.16E-1(3) LO5E+0(7) 4.24E-1(4) LOIE+0(6) 514 6
5 4RND 6.95E-1(8) 1.00E+0(1) 1.00E+0(2) 7.44E-1(6) 1.00E+0(2) 4.28E-1(5) 8.98E-1(4) 4.00 4
2 SH 583E-1(4) 1.00E+0(1) 1.00E+0(2) 7.25E-1(4) 1.00E+0(2) 3.87E-1(3) 1.28E+0(8) 343 2
KM 7.916-1(9) LI3E+0(7) L.IGE+0(8) 6.93E-1(1) 1.22E+0(8) 5.66E-1(10) LI3BE+0(7) 7.14 10

8 RND 9.72E-1(10) 1.00E40(1) 1.00E+0(2) 8.09E-1(10) 1.00E+0(2) 3.67E-1(2) 1.28E40(9) 5.14 7
SH 5.63E-1(2) 1.00E40(1) 1.01E4+0(5) 7.70E-1(8) 1.00E+0(3) 3.66E-1(1) 1.56E+0(10) 4.29 5

1T 0 165E40(8) L21E+0(6) 1.29E+0(6) 1.29E+0(4) 1.00E+0(2) 2.49E-1(10) 1.17E+0(4) 5.71 6
KM 1.67E+0(10) 1.40E+0(8) 1.46E+0(8) 1.54E+0(7) L.I9E+0(7) 2.24B-1(2) 947E-1(2) 629 7

2 RN 159E+0(3) 1.05E+0(2) 1.22E+0(4) 1.23E40(1) 1.09E+0(3) 2.40E-1(9) 1.22E40(6) 4.00 2

~ _ SH 164E+0(5) 1.16E+0(5) 1.02E40(1) 1.26E+0(3) 1.00E40(1) 2.28E-1(5) 1.20E+0(5) 3.57 1
N T KM LG65E+0(7) L44E+0(9) 1.53E+0(10) L67E+0(10) 1.29E+0(9) 2.22B-1(1) 9.46E-1(1) 6.71 8
£ 4 RND 1.50E40(1) 1.09E+0(3) 1.25E+0(5) 1.36E+0(5) 1.15E+0(5) 2.33E-1(8) 1.24E+0(7) 4.86 4
2 SH 161E+0(4) 1.03E+0(1) 1L.13E+0(3) 150E+0(6) 1.16E+0(6) 2.27E-1(4) 1.32E+0(8) 4.57 3
KM 1.66E+0(9) 1.61E+0(10) 1.52E+0(9) 1.66E+0(9) 1.57E+0(10) 2.24E-1(3) L.I14E+0(3) 7.57 10

8 RND 1.56E+0(2) 1.09E+0(4) 1.30E+0(7) 1.25E+0(2) 1.14E+0(4) 2.30E-1(6) 1.36E+0(9) 4.86 5
SH 1.64E+0(6) 1.24E+0(7) 1.04E4+0(2) 157E+0(8) 1.23E+0(8) 2.30E-1(7) 1.44E+0(10) 6.86 9

T 0 4.60E-1(8) L.00E+0(2) L.02E+0(5) 1.00B+0(1) LOIE+0(7) 8.946-1(9) 1.0GE+0(7) 557 8
KM 4.91E-1(10) 1.00E+0(5) 1.14E+0(3) 1.00B+0(2) 1.198+0(8) 3.12E-1(4) 1.10E+0(3) 6.43 9

2 RN 441E-1(5) 1.00E40(3) 1.02E+0(3) 1.00E+0(1) L.OOE+0(6) 3.56E-1(7) 1.03E4+0(4) 4.14 6

» _ SH 450E-1(7) 1.00E+0(2) 1.02E+0(4) 1.00E+0(1) 1.00E+0(5) 3.12E-1(5) 1.01E+0(3) 3.86 5
N T KM 438E-1(3) 1.00E+0(1) 1.14E+0(9) 1.00E+0(1) 1.21E+0(10) 3.07E-1(3) 121E+0(10) 529 7
£ 4RND 4.34E-1(2) 1.00E+0(3) 1.02E+0(2) 1.00E40(1) 1.00E+0(2) 3.43E-1(6) 1.03E+0(5) 3.00 1
2 SH 447E1(6) 1.00E+0(6) 1.05E+0(7) 1.00E+0(1) 1.00E+0(1) 2.85E-1(2) 1.01E+0(2) 357 3
KM 4.71E-1(9) 1.00E+0(4) 1.16E+0(10) 1.04E+0(3) 1.20E+0(9) 4.40E-1(10) 1L.14BE+0(9) 7.71 10

8 RND 4.38E-1(4) 1.00E+0(4) 1.01E+0(1) 1.00E+0(1) 1.00E+0(3) 3.68E-1(8) 1.00E+0(1) 3.14 2
SH 4.31E-1(1) 1.00E40(7) 1.04E40(6) 1.00E+0(1) 1.00E+0(4) 2.80E-1(1) 1.03E+0(6) 3.71 4

T 0 6.57E-1(5) 9.95B-1(1) 1.02E+0(7) 1L.0IE+0(8) 1L.0IE+0(7) 4.00E-1(10) LO2E+0(7) 643 7
KM 6.50F-1(4) 1.01E+0(8) 1.37E+0(10) 9.97B-1(2) 1.29E+0(10) 3.13B-1(5) 1.05E+0(8) 6.71 8

2 RN 7.05E-1(8) 9.99E-1(4) 1.01E+0(2) 1.00E+0(5) L.OOE+0(6) 3.69E-1(9) 1.01E+0(4) 543 6

o _ SH 6.72E-1(6) 9.96E-1(2) 1.01E+0(5) 1.00E+0(6) 1.00E+0(5) 3.20E-1(7) 1.00E+0(2) 4.71 3
N T KM G46E-1(2) 1.03E+0(9) 1.25E+0(9) 1.OAE+0(10) 1.27E+0(9) 275E-1(2) L10B+0(9) 7.14 10
£ 4RND 7.66E-1(9) 1.00E+0(7) 1.00E40(1) 9.97E-1(1) 1.00E+0(3) 3.21E-1(8) 1.01E+0(6) 5.00 5
2 SH 649E-1(3) 1.00E+0(5) 1.0IE+0(6) 9.98E-1(3) 1.00E+0(4) 2.82E-1(3) 9.94E-1(1) 357 1
KM 6.34E-1(1) 1.08E+0(10) 1.25E+0(3) 1.04E+0(9) 1.27E+0(8) 2.57B-1(1) L.1I9E+0(10) 6.71 9

8 RND 8.10E-1(10) 9.99E-1(3) 1.01E+0(3) 1.00E+0(4) 1.00E+0(2) 3.15E-1(6) 1.01E+0(5) 4.71 4
SH 6.76E-1(7) 1.00E+0(6) 1.01E4+0(4) 1.01E+0(7) 1.00E+40(1) 2.85E-1(4) 1.00E+0(3) 4.57 2

1 0 5026-1(3) 1.00E+0(1) L.05E+0(4) 7.22E-1(5) 1.00E+0(1) 2.79E-1(10) 5.99E-1(1) 3.57 1
KM 4.86E-1(1) 1.00E+0(3) 1.27E+0(5) 7.14B-1(4) 1.02E+0(d) 2.536-1(7) 7.87E-1(3) 3.86 3

2 RN 5.78E-1(8) 1.00E+0(4) 1.00E4+0(1) 7.08E-1(3) LOOE+0(2) 2.57E-1(8) 6.87E-1(2) 4.00 4

« __SH 511E-1(5) 1.00E+0(2) 1.00E+0(1) 7.28E-1(7) 1.00E+0(2) 2.46E-1(5) B8.24E-1(4) 3.71 2
N T KM 536E-1(6) 1.07E+0(S) 1.29E+0(6) 6.95E-1(1) 1.23E+0(6) 235E-1(2) S8.58E-1(5) 4.86 5
£ 4RND 5.66E-1(7) 1.00E+0(5) 1.00E+0(3) 7.25E-1(6) 1.00E+0(2) 2.59E-1(9) 8.61E-1(6) 543 8
2 SH 489E1(2) 1.00E+0(7) LOOE+0(1) T7.32E-1(9) 1.00E+0(3) 2.40E-1(4) 1.13E+0(8) 4.86 6
KM 6.03E-1(10) 1.26E+0(9) 1.35B+0(7) 6.98E-1(2) 1.22E+0(5) 2.35B-1(1) L.04E+0(7) 586 9

8 RND 6.01E-1(9) 1.00E+0(6) 1.00E-0(1) 7.30E-1(8) 1.00E+0(2) 249E-1(6) 1.36E+0(9) 5.86 10
SH 5.06E-1(4) 1.00E+0(6) 1.00E4+0(2) 7.32E-1(10) 1L.0OE+0(2) 2.39E-1(3) 1.53E+0(10) 529 7

Clustering Based Parallel Many-Objective Evolutionary Algorithms 61

a complement to the average ranking values in the last two columns of Table 1,
we can state that parallelization using shape-based clustering can be considered
in general as the best parallelization option for GD improvement for the set of
problems and MOEAs considered.

To statistically support the claims about the convenience of parallelization
using shape-based clustering, Table 3 presents the number of wins among the
implementations indicated in each column regarding implementations in each
row for the Sign test pairwise comparisons [7] the obtained ranking using the GD
and Spread metrics. In case that detected differences exists these are indicated
in parenthesis, and the data is boldfaced. The values 32, 34, 36, and 37 are
considered as the critical number of wins needed to achieve levels of significance
of 0.1, 0.05, 0.02, and 0.01, respectively. In case of ties, the count is split evenly
between the pair of compared algorithms. This table shows that the 8-SH has a
significant improvement over the parallelization options using less than 8 threads.
Also, as it is indicated, parallel approaches based on shape clustering clearly
improve the results of the sequential implementations. For the A metric, there is
a similar number of wins among sequential and paralelization approaches based
on random and shape based partitioning, thus it can not be stated that one
algorithm performs better than another considering this metric. However, for
the A metric, all alternatives are better than the k-means parallelization using
8 threads.

Finally, Figure 3 also shows that considering the number of threads, the exe-
cution using 8 threads (clusters) clearly obtains a large number of GD rankings
one and two than the other alternatives. The results suggest that using a large
number of clusters may aid to improve the GD results of parallel executions
using clustering based pMOEAs.

10 [
- W DTLZ1
8 W DTLZ2
[DTLZ3
6 []DTLZ4
[DTLZ5
4 W DTLZ6
[]DTLZ7
2
0

Seq 2-KM 4-KM 8-KM 2-RN 4-RN 8-RN 2-SH 4-SH 8-SH

Fig. 1. Final GD ranking of each implementation option by problem

62 C. von Liicken et al.

10

H DTLZ1
8 M DTLZ2

I DTLZ3
6] DTLZ4

I DTLZ5
4 M DTLZ6
5 1 DTLZ7
0

.
Seq 2-KM 4-KM 8-KM 2-RN 4-RN 8-RN 2-SH 4-SH 8-SH
Fig. 2. Final A ranking of each implementation option by problem

Table 3. Number of wins and detected differences for Sing test for pairwise distribution
of each implementation approach considering ranking values in Table 1 and Table 2

Generational distance(GD)

Seq 2-KM 2-RN 2-SH 4-KM 4-RN 4-SH 8-KM 8-RN 8-SH
Seq 24.5 24 30 35(0.05) 27 29 34(0.05) 30 31 36(0.02)
2-KM 25 24.5 28 34(0.05) 30 28 36(0.02) 33(0.1) 30 39(0.01)
2-RN 19 21 24.5 29 26 24 32(0.1) 29 27 38(0.01)
2-SH 14 15 20 24.5 23 22 29 24 25 37(0.01)
4-KM 22 19 23 26 24.5 25 23 28 26 33(0.1)
4-RN 20 21 25 27 24 24.5 28 26 26 33(0.1)
4-SH 15 13 17 20 26 21 24.5 23 23 35(0.05)
8-KM 19 16 20 25 21 23 26 24.5 25 27
8-RN 18 19 22 24 23 23 26 24 24.5 31
8-SH 13 10 11 12 16 16 14 22 18 24.5
Spread (A)
Seq 2-KM 2-RN 2-SH 4-KM 4-RN 4-SH 8-KM 8-RN 8-SH
Seq 24.5 15 26 29.5 15.5 24 28 9 25 21
2-KM| 34(0.05) 24.5 29 32(0.1) 18 29 34(0.05) 12 28 25
2-RN 23 20 24.5 29 19.5 22 24.5 9 22 21.5
2-SH 19.5 17 20 24.5 14.5 20.5 24.5 12 23 17.5
4-KM 33.5(0.1) 31 29.5 34.5(0.05) 24.5 29.5 30.5 16 27.5 32.5(0.1)
4-RN 25 20 27 28.5 19.5 24.5 23.5 11 21 22
4-SH 21 15 24.5 24.5 18.5 25.5 24.5 15 22 15.5
8-KM| 40(0.01) 37(0.01) 40(0.01) 37(0.01) 33(0.1) 38(0.01) 34(0.05) 24.5 32.5(0.1) 34(0.05)
8-RN 24 21 27 26 21.5 28 27 16.5 24.5 19.5
8-SH 28 24 27.5 31.5 16.5 27 33.5(0.1) 15 29.5 24.5
2 15 st
2 M 2nd
£ 12
< [3th
£ 9 [sth
- [] 4th
Es M st
g M 7t
3 3 I sth
S - 9th
z 0

Seq 2-KM 4-KM 8-KM 2-RN 4-RN 8-RN 2-SH 4-SH 8-SH B 1oth

Fig. 3. Ranking distribution of GD by partition method and number of threads

Clustering Based Parallel Many-Objective Evolutionary Algorithms 63

5 Conclusions and Future Work

In evolutionary algorithms dealing with the simultaneous optimization of more
than 4 objectives, the use of parallelization may be useful to improve their per-
formances. One key aspect of this parallelization is the correct partitioning of
the population into subpopulations that are to be distributed among processors.
In this paper, we have proposed a method to do such partitioning based on what
is known as the shape of the objective vector. We present an experimental com-
parison of the performance of the resulting parallel MOEAs and their sequential
counterpart as well as a comparison of different partition methods.

The obtained results have shown that, in most of the studied cases, at least
one parallel MOEAs outperform their sequential counterparts (45 out of 49
cases). Comparison results have also shown that, for the considered experimen-
tal setting and metrics, the parallel implementations based on the clustering of
solutions using the shape of objective vectors obtains the best average rank in
almost all considered problems (5 out of 7 cases).

Future work is aimed at extending the evaluation considering the hypervol-
ume metric and increasing the number of objectives.

References

1. Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing multi-objective evolu-
tionary algorithms: cone separation. In: 2004 Congress on Evol. Comput., vol. 2,
pp. 1952-1957. IEEE, Portland (2004)

2. Cheshmehgaz, H.R., Haron, H., Sharifi, A.: The review of multiple evolution-
ary searches and multi-objective evolutionary algorithms. Artificial Intelligence
Review, 1-33 (2013)

3. Coello Coello, C.A., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). ISBN:
978-0-387-33254-3

4. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comput. (2002)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proc. of the 2002 Congr. on Evol. Comput. (2002)

7. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3-18
(2011)

8. di Pierro, F., Khu, S., Savi¢, D.: An investigation on Preference Order ranking
scheme for multiobjective evolutionary optimization. IEEE Trans. on Evol. Com-
put. (2007)

9. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on
relation favour. In: First Int. Conf. on Evol. Multi-Criterion Optim. Springer (2001)

10. Egecioglu, O.: Parametric approximation algorithms for high-dimensional euclid-
ean similarity. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol.
2168, pp. 79-90. Springer, Heidelberg (2001)

64

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. von Liicken et al.

Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proc. of the 14th
Annual ACM-SIAM Symp. on Discrete Algorithms. p. 36. STAM (2003)

Farina, M., Amato, P.: On the Optimal Solution Definition for Many-criteria Opti-
mization Problems. In: Proc. of the NAFIPS-FLINT Int. Conf. 2002, pp. 233-238.
IEEE Service Center (2002)

Hiroyasu, T., Miki, M., Watanabe, S.: The new model of parallel genetic algo-
rithm in multi-objective optimization problems: divided range multi-objective
genetic algorithm. In: 2000 Congress on Evol. Comput., vol. 1, pp. 333-340. IEEE,
New Jersey (2000)

Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: 2008 IEEE Congr. on Evol. Comput. (2008)

Jaimes, A.L., Coello Coello, C.A.: Applications of parallel platforms and models in
evolutionary multi-objective optimization. In: Lewis, A., Mostaghim, S., Randall,
M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 23-49.
Springer, Heidelberg (2009)

Koppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for han-
dling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni,
C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727-741.
Springer, Heidelberg (2007)

von Liicken, C., Bardn, B., Brizuela, C.: A survey on multi-objective evolutionary
algorithms for many-objective problems. Comput. Optim. and Appl. 1(1), 1-50
(2014)

Negro, F.D.T., Ortega, J., Ros, E., Mota, S., Paechter, B., Martin, J.M.: PSFGA:
parallel processing and evolutionary comput. for multiobjective optim. Parallel
Comput. (2004)

Streichert, F., Ulmer, H., Zell, A.: Parallelization of multi-objective evolutionary
algorithms using clustering algorithms. In: Coello Coello, C.A., Herndndez Aguirre,
A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92-107. Springer, Heidelberg
(2005)

Siilflow, A., Drechsler, N., Drechsler, R.: Robust multi-objective optimization in
high dimensional spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T.,
Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 715-726. Springer, Heidelberg
(2007)

Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello,
C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K.,
Miettinen, K., Stowinski, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252,
pp. 349-372. Springer, Heidelberg (2008)

	Clustering Based Parallel Many-Objective Evolutionary Algorithms Using the Shape of the Objective Vectors
	1 Introduction
	2 Clustering Based Parallelization of MOEAs
	2.1 Parallel MOEAs Using Clustering
	2.2 Preference Relations in MOEAs for Many-Objective Problems
	2.3 A Framework for Clustering Based Parallelization of MOEAs Based on Preference Relations

	3 Partition Approach Based on the Shape of Solutions
	4 Experimental Comparison
	4.1 Experimental Setup and Metrics
	4.2 Experimental Results

	5 Conclusions and Future Work
	References

