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Abstract. Barrier coverage focuses on detecting intruders in an attempt
to cross a specific region, in which limited-power sensors in these scenar-
ios are supposed to be distributed remotely in an indeterminate way. In
this paper, we consider a scenario where sensors with adjustable ranges
and a few sink nodes are deployed to form a virtual sensor barrier for
monitoring a belt-shaped region and gathering incidents data. The prob-
lem takes into account three relevant objectives: minimizing power con-
sumption while meeting the barrier coverage requirement, minimizing the
number of active sensors (reliability) and minimizing the transmission dis-
tances between active sensors and the nearest sink node (efficiency of data
gathering). It is shown that these three objectives are conflicting in some
degree. A Problem Specific MOEA/D with local search methods is pro-
posed for finding optimal tradeoff solutions and compared with a classical
algorithm. Experimental results indicate that knee regions exist, and these
knee regions may provide the best possible tradeoff for decision makers.

1 Introduction

In recent years, there has been increasing development in the field of wireless
sensor networks (WSNs). One of the most important applications in WSNs is
border surveillance and intrusion detection, such as detecting intruders crossing
country borders or boundaries of battlefields. Many recent works have addressed
such surveillance applications by using WSNs to organize the network nodes as
a barrier [1]. For deterministic deployment of sensors, the high performance
can be achieved sufficiently by analysis. However, surveillance tasks may involve
hard-to-reach areas, in which case unmanned mission way is more desirable.
Specifically, limited-power sensors and several sink nodes in these scenarios are
supposed to be distributed remotely, for example, dropped from aircraft; they
wake up, organize themselves as a network, and start sensing the area for intru-
sion. When a sensor detects an intrusion, the event is reported to the sink node
so that an appropriate decision is made.

Power efficient is always a critical issue in wireless barrier coverage. The single
objective optimization problem, minimizing the total power consumption while
the barrier is full covered, is referred to as General Min-Cost Linear Coverage
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problem (GMCLC) [2]. However, there is no efficient way to get exact optimal
solutions since it is proved to be NP-hard [3]. In addition, since sensors are
vulnerable to failure, it is important to minimize the number of active sensors
to improve the reliability while meeting the coverage requirement. Besides, in
general wireless sensor networks, a large number of sensor nodes, which are
generally compact and inexpensive, are distributed in an observation area while
sink nodes with comparatively sufficient power are defined as the data gathering
center. Long transmission distances between sensor nodes and sink nodes cause
low efficiency of data gathering and high energy consumption.

In this paper, we take the considerations above into account simultaneously
and propose an algorithm to achieve the following objectives:

– Objective 1 : Minimizing the total power consumption via activating a subset
of the sensor nodes and adjusting their sensing ranges.

– Objective 2 : Minimizing the number of active sensors to improve the reliability
of coverage.

– Objective 3 : Minimizing the active sensors’ average distance from the nearest
sink node to improve the efficiency of data gathering.

However, these three objectives are conflicting in nature. The sensors are
failure-prone: each sensor fails independently with a certain probability. Under
the condition of fully coverage, the fewer sensors activated, the higher reliabil-
ity achieved. Meanwhile, the power consumption is proportional to the radii of
active sensors. Next, we take a simple instance to illustrate the conflict among
objectives. Fig. 1 shows two feasible solutions for the coverage problem. In the
first solution (the left one), the power consumption is Cost1 = rκ

1 and the num-
ber of active sensors |S1

∗| is one. In the second solution (the right one), the
power consumption is calculated by Cost2 = rκ

2 + rκ
3 , and number of active sen-

sors |S2
∗| is two. Since r1 = r2 + r3 = m

2 , we have Cost1 > Cost2. That is to
say, minimizing the total power consumption may increase the number of active
sensors, and require the active sensors to be distributed evenly along the bar-
rier. In addition, minimizing the active sensors average distance from the nearest
sink node may result in more active sensors close to the sink node. However, to
meet the coverage requirement, either more sensors, if available, are activated to
cover the region far away from the sink node or a larger sensing range is assigned
to the farthest sensors, leading to higher power consumption. Thus, finding the
tradeoff among them is worth exploring.

This problem can be formulated as a Multi-objective Optimization Problem
(MOP). Classical algorithms may not be applicable and few approaches tackle
these objectives simultaneously. It is reasonable to use Multi-Objective Evolu-
tionary Algorithms (MOEAs), which have been proven efficient and effective in
dealing with MOPs in wireless sensor networks [4] [5].

In this paper, we refine the barrier coverage problem to an MOP with three
objectives, which is referred to as Tradeoff on Barrier Coverage with Adjustable
Sensing Radius Problem (TBCAP). Solutions are obtained through a problem spe-
cific MOEA, which adopts the framework of decomposition-based multiobjective
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Fig. 1. Illustration of conflict among the objectives

evolutionary algorithm (MOEA/D) [6] as the baseline algorithm. We call it PS-
MOEA/D. The PS-MOEA/D employs the problem-specific operators and local
search methods. Besides, in order to improve the search, we incorporate a dynamic
strategy of computational resource assignment. Moreover, a perturbation is
involved to search for the global optimal solution.

The remainder of this paper is organized as follows. The related works is
presented in Section 2. In Section 3, we define and formulate the problem, and
give a naive algorithm for finding the tradeoff. Section 4 presents the details of
the problem specific MOEA/D. Section 5 shows the experimental results and
analysis. Finally, Section 6 outlines the conclusions and future directions.

2 Related Works

A heterogeneous WSN consists of several types of nodes with different capability,
in which a large number of sensor nodes with the capabilities of sensing data,
while fewer sink nodes may have larger battery and more powerful processing
resource [7]. They are widely used in surveillance [8] [9]. Among them, barrier
coverage problem deals with how to deploy sensor nodes to form barrier coverage
for detecting intruders crossing a belt-shaped area of interest [10] [11] [12].

Optimizing the efficiency of data gathering and transmission quality between
sensors and sinks have been widely studied [7] [13]. Mhatre et al. [7] studies a
heterogeneous sensor network in which nodes are to be deployed over a unit area
for the purpose of surveillance. They determined the optimum sensor nodes and
sink nodes intensities (λ0, λ1).

Power consumption is always a critical issue in wireless barrier coverage. It
helps to prolong the network lifetime by turning off some sensors while meet-
ing given coverage requirements. Since it is proved to be NP-hard [3], several
approximation algorithms have been proposed in recent years [2] [3] [14] .

Moreover, network failure, partial or whole, may not only be due to power
exhaustion of the sensor nodes. Some sensors may stop functioning due to mechan-
ical problems when they are working. This may result in unexpected consequences.
Very few researchers focus on the reliability of the sensor networks for coverage.
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To improve the reliability of coverage requirement, Sanjay et al. [15] consider an
unreliable wireless sensor grid network for coverage with sensors placed in a square
of unit area. In this model, all sensors are failure-prone, i.e., each node fails inde-
pendently with a certain probability.

Proposing a scheme for wireless coverage considering so many aspects
together is a challenging problem. To this end, MOEAs may provide a desirable
model for solving such sensor network design problems. While both coverage and
power consumption have been extensively studied in the past [16], few attempts
however, have been made on tackling the coverage, power consumption, reliabil-
ity and efficiency of data gathering simultaneously or explicitly. Martins et al. [17]
presented multiobjective hybrid optimization algorithms for minimizing the power
consumption and maximizing the coverage in flat WSNs subject to node failures.
In [16], the problem objectives are stated as maximizing the coverage and minimiz-
ing energy consumption for maximizing the network lifetime. A sleep scheduling
method is incorporated into a multiobjective optimization framework. Recently,
Lanza-Gutierrez et al. [18] use MOEAs to optimize a WSN composed of a set of
sensors, a sink node and relay nodes, analyzing the performance of algorithms by
objectives of the average energy consumption suffered by the sensors and the aver-
age coverage provided by the network.

3 Preliminaries

3.1 Multiobjective Problem and MOEA/D

An MOP is generally formulated as follows.

minimize F (x) = (f1(x), . . . , fm(x))
subject to x ∈ Ω

(1)

where Ω is the decision space and x ∈ Ω is a decision variable. Rm consists of
m objective functions f1, . . . , fm: Rm is the objective space. The objectives in
problem (1) often conflict with each other and an improvement on one objective
may lead to the deterioration of another. A Pareto optimal solution is an optimal
tradeoff candidates among all objectives. The Pareto optimum terminology is
described in [19], in which Pareto dominance, Pareto optimal, Pareto Set (PS)
and Pareto Front (PF) are defined formally. The decision makers require an
approximation to the PF for a good insight to the problem and make the decision.

Tchebycheff approach [20] is employed to decompose the MOP into a num-
ber of sub-problems. Let λ1, λ2, . . . , λn, be a set of uniformly spread weighted
vectors and z∗ be an ideal point. The problem can be decomposed into scalar
optimization sub-problems as follows.

minimize gte(x|λj , z∗) = max1≤i≤m{λi
j |fi(x) − z∗|} (2)

Therefore, one is able to obtain different Pareto optimal solutions by solving a
set of single objective optimization problems defined by the Tchebycheff approach
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with different weight vectors. MOEA/D minimizes all these m objective functions
simultaneously in a single run. Neighborhood relations among these single objec-
tive sub-problems are defined based on the distances among their weight vectors.
Each sub-problem is optimized by using information mainly from its neighboring
sub-problems. The details of MOEA/D can be found in [6].

3.2 Problem Formulation

Barrier Model. Consider a WSN consisting of a set of sensor nodes and several
sink nodes, in which sensor nodes form a virtual sensor barrier for monitoring a
belt-shaped region to detect and send intruding events to one of the sink nodes.
Fig. 2 shows an illustration of the barrier model. Intrusion is assumed to occur
from top to bottom. The assumptions are as follows.

– The sensor nodes and sink nodes are assumed to be randomly deployed and
static once deployed with known positions.

– Assume that each sensor has an adjustable disk sensing range r and is
equipped with limited power.

– The sink nodes with sufficient energy (comparing to sensor nodes) are not
failure-prone.

Mathematical Model. We define the following notations formally, which are
used in the analysis in the mathematical model:

– S: a set S of N sensors {μ1, μ2, ..., μN} are randomly distributed on a belt
region which needs to be monitored.

– ri: each sensor μi has an adjustable sensing range ri. The power consumption
of each active sensor is proportional to rκ

i for some positive constant κ ≥ 2.
– Π: a set Π of π sink nodes {s1, s2, ..., sπ} are distributed on a belt region,

in which π << N .
– (xi, yi): each sensor μi has a coordinate to denote the location.
– (xs

j , y
s
j ): each sink node sj has a coordinate to denote the location.

– dj
i: the distance between each sensor μi ∈ S∗ to its closest sink node

sj ∈ Π. The distance from the sensor μi to the sink node sj is dj
i =√

(xs
j − xi)2 + (ys

j − yi)2.

intruder

sink

sensor

sink

Fig. 2. Wireless barrier coverage model
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– S∗: a subset S∗ ⊆ S of sensors are activated and assigned ranges to formulate
a two-layer decision variable Ω = {(u1, r1), (u2, r2), ..., (ui, ri), ..., (uN , rN )},
ui ∈ {0, 1}.

In this way, TBCAP can be stated as an MOP, where we minimize the power
consumption (f1), the number of active sensors (f2), and the active sensors’
average distance from the closest sink node (f3).

f1 =
∑

μi∈S∗
ri

κ

f2 = |S∗|

f3 =

∑
μi∈S∗ dj

i

|S∗|

(3)

3.3 Weighted-Sum Algorithm

Weighted-Sum Algorithm (WSA) as the most widely used classical method for
MOP is used for comparing performance with our proposed PS-MOEA/D. It is
the simplest yet efficient approach to find solutions on the entire Pareto-optimal
set. The WSA in this paper is based on a genetic algorithm, which has the
following procedures.

Solution Encoding. The solution is represented by a two-layer coding struc-
ture C = {(u1,r1),(u2,r2),...,(ui,ri),...,(uN ,rN )}. The boolean ui describes the
working status of the sensor node and ri indicates the value of its radii.

Repairing Initial Solutions. An approximation algorithm is necessary to
guarantee the barrier coverage requirement, which can be found in [3].

Steady State Evolution. The Steady State Genetic Algorithm(SSGA) [21]
based operators are adopted in WSA, which benefit from selecting two individ-
uals and combining them to obtain two offsprings by crossover and mutation
operators. Then, if these two new individuals are more adapted than the worst
two individuals of the population, the former are included in the population by
replacing the latter.

Shrink Process. After performing initialization, there could be several overlaps
between sensors. If so, the radii of those sensors can be shrunk and repaired
immediately after operations.

Evaluation. In each generation, the fitness is calculated byweighted-summethod
after normalization. Specifically, fitness = ω1 × ∑

μi∈S∗ ri
κ + ω2 × |S∗| + ω3 ×

∑
µi∈S∗ dj

i

|S∗| , where ω1, ω2 and ω3 are weights varying between zero and one and ω1+
ω2 + ω3 = 1.
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4 Problem-Specific MOEA/D

In general, encoding representation, repair process and shrink process are identi-
cal to the WSA in Section 3.3. In order to improve the search ability of MOEA/D
for TBCAP, some modification and improvement have been introduced. In the
following part, we explain the procedure of Algorithm 1 in detail. The following
sections are related to the main steps of the PS-MOEA/D.

Algorithm 1. PS-MOEA/D Framework for TBCAP
Input:

NP : Population size and number of sub-problems
NN : Size of neighborhood
ME : Maximum number of evaluations

Output:
P : Final solutions
Step 1-Initialization: randomly generate an initial population and set parameters

Step 2-Repairing: repair the solutions to meet problem requirement
Step 3-Decomposition: decompose the TBCAP to NP sub-problems
Step 4-Evaluation
While e < ME

Step 4.1-Selection: selection of sub-problems by using tournament selection
based on μi as SelP or PerP

For i = 1 : |SelP |
Step 4.2-Mutation: generate a new solution by mutation operator
Step 4.3-Local Search: use of forward-LS and backward-LS
Step 4.4-Update: update of current and neighboring solutions

End-for
Step 4.5-Perturbation: perturbation operator on PerP
e ← e + 1
Step 4.6-Update Utility: calculate and update the utility

End-while
return P
End

4.1 Problem Decomposition

let Λ = λ1, λ2, . . . , λn, be a set of uniformly spread weighted vectors, z∗ be the
ideal point and values of fj(x) in problem (3) have been normalized. Thus, the
objective function of i-th sub-problem can be referred to problem (2). TBCAP
is decomposed into scalar optimization sub-problems. A neighborhood of weight
vector λi is defined as a set of its several weight vectors in Λ. The neighborhood
of i-th sub-problem consists of all the sub-problems with the weight vectors
from the neighborhood of λi. MOEA/D provides an easy yet efficient way to
take the advantage of scalarization method and solve all subproblems simulta-
neously with different objective preference in a single run. In this paper, Λ is
used to guide the problem specific operators for adjusting the degree of power
consumption, reliability and efficiency of data gathering and therefor obtaining
different preference barrier coverage.
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Algorithm 2. Local Search Strategies
Input:

χk (one individual of k-th sub-problem)
Nk

N (neighborhood size of the sub-problem)
Output:

χk (updated individual of k-th sub-problem)
1: Randomly choose a neighborhood j of χk

2: If j < k
3: For i = 1 : k − j

Forward-LS(χk,χj)
End-for

4: else
5: For i = 1 : j − k

Backward-LS(χk,χj)
End-for

6: return χk

7: End

4.2 Genetic Operators

Selection operators choose the most suitable solutions to produce offspring. In
this paper, we have adopted a tournament selection operator based on utility for
each sub-problem, which has been tested to be fast and effective [22]. Mutation
operator randomly selects two genes within a specific range (a relatively small
interval), in order to be further improved by fine-tuning the solution.

4.3 Local Search: Forward-LS and Backward-LS

Two original problem-specific local search strategies, as shown in Algorithm 2,
have been developed. There are two search directions, i.e., Forward-LS (Fig.
3(a)) and Backward-LS (Fig. 3(b)).

The idea of problem-specific local search strategies is inspired by workload
balancing, which is to construct two possible search directions for an offspring
whose performance is better. The search procedure is from starting point to end-
ing point. We set the search direction based on the number of active sensors of
starting point and ending point. The starting point can be randomly selected,
and the ending point is the best individual of the neighborhood. When an off-
spring shows improvement in terms of the objective function, it is adopted as
the solution of this subproblem. The details are given in Algorithm 3 and 4.

For example, consider the Forward-LS in Fig. 3(a), the active sensor j with
a large sensing radius to cover a specific region B of the barrier. Then, search
from the nearby sleeping sensors to check if there exists two sleeping sensors i
and k, which can be assigned sensing ranges to cover B. If exists, we set sensor
i from the status active to sleep, and sensor i and k from sleep to active with
corresponding radii.
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sensor j: active sleep
sensor i and k: sleep active

i
j k

… ... … ...

(a) Forward local search

sensor i and k: active sleep
sensor j: sleep active

… ... i
k

… ...i
kj

(b) Backward local search

Fig. 3. Local search procedures description

Algorithm 3. Forward-LS
Input: χk, χj

Output:
χk

1: Find the gene g with maximum radii rg
2: Find the two nearest genes g1 and g2 with radii zero around gene g
3: Assign the radius to genes g1 and g2 to replace the gene g, produce χ′

k

4: If χ′
k is better than χk

χk ← χ′
k

End-if
5: return P
6: End

4.4 Dynamical Resource Allocation

The sub-problems may have different computational difficulties, which makes it
reasonable to assign different amounts of computational effort to different prob-
lems [22]. As we can see, for the TBCAP, the complexity fits binomial distribu-
tion with the number of active sensors. Thereby, more computational resource
based on utility will be assigned to the sub-problems with higher complexity.

4.5 Utilities Update

We define and compute a utility for each sub-problem. Computational efforts
are distributed to these sub-problems based on their utilities. If evaluation times
is a multiplication of a certain number, then we compute the relative decrease
of the objective for each sub-problem i, Δi. The utility of the sub-problem can
be calculated as follows.

μi =

{
1.00 if Δi > 0.001
(0.99 + 0.01 Δi

0.001 ) otherwise

4.6 Perturbation

Perturbation improves the quality of solutions found by PS-MOEA/D, thereby
speeding up the search for global optimal solution. Let χk be the current solution
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Algorithm 4. Backward-LS
Input: χk, χj

Output:
χk

1: Find two disjoint genes g1 and g2 with the minimum radius
2: Find the nearest gene g0 with radii 0 to g1 and g2
3: Assign the radii to g0 to replace the gene g1 and g2, produce χ′

k

4: If χ′
k is better than χk

χk ← χ′
k

End-if
5: return P
6: End

to the k-th sub-problem, we apply a random interchange move on χk to produce
χ′

k. It randomly selects a number of genes within a specific range (a relatively
large interval), in order to jump out of local optimum.

5 Experiments and Discussions

5.1 Experimentation

This section presents the setup of the experimentation, with the purpose of vali-
dating the performance of the implemented PS-MOEA/D. The experiments are
conducted on a 3.4GHz Intel PC with 4GB RAM. The programming language
is MATLAB(R2013a). The proposed algorithm runs with the following parame-
ter values: the maximum number of evaluations ME = 1,000, neighborhood size
niche = 20, mutation rate Pm = 1.0 and the experiments for each instance are
replicated for 10 independent trials. Since an analysis of the parameter sensitiv-
ity is not a major concern of this study, we have not performed any previous
analysis to fix these values.

Depending on the deployment method, the coordinates of the sensor positions
may follow a particular distribution. For instance, if sensors are thrown off an
aircraft that flies over the middle of a field, most sensors are expected to fall
somewhere close to the central line, and several sensors are likely to end up
further out. One could then argue that the sensor distribution is uniform along
the axis of route. Thus, the experiments fall into two major parts, i.e., Uniform
distribution and Gaussian distribution. In the experiments, the length of barrier
and the default number of sink node is set as 1000 units and one, respectively.
The offsets of the sensors are assumed to be 0.

5.2 Performance Comparison

In this section, we study the effectiveness of the proposed PS-MOEA/D on
TBCAP. To do so, we compare the proposed method with the WSA.
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Performance Measure The quality of the obtained non-dominated solutions
is usually evaluated from three perspectives: (i) the closeness to the true PF,
(ii) diversity and (iii) uniformity. No single metric can reflect all these aspects
and often a number of metrics are used. In this study, we use the Set Coverage
C(X,Y ) (X � Y ) [23] and distance to reference set Dref (X,R) [24] metrics.

C(X,Y ) =
|y ∈ Y |∃x ∈ X : x ≺ y|

|Y | (4)

The C(X,Y ) metric compute the percentage of solutions in Y dominated by
solutions in X, divided by the total number of solutions in Y. The higher the value
of C(X,Y ) obtained, more diversely and uniformly the solution set X distributed.

Dref (X,R) =
∑

r∈R{minx∈X{dis(x, r)}}
|R| (5)

The distance from reference set calculates the average distance from a solu-
tion in the reference set R to the closest solution in X. The smaller the value
of Dref (X,R), the closer the set X is to R. In the absence of the real reference
set (i.e., true PF), we calculate the average distance of each single point to the
nadir point since we consider minimization objectives.

Comparison with the WSA. We validate the performance of PS-MOEA/D
by conducting comparison experiments in different scale (the number of randomly
deployed sensors) TBCAP. Fig. 4 shows that the PS-MOEA/D outperforms the
WSA in terms of set coverage and distance to reference set on Uniform instances,
where the horizontal axis represents the number of randomly deployed sensors and
the vertical axis represents the mean values of set coverage and distance to refer-
ence set. Similar results on Gaussian instances can be found in Fig. 5. From the
experimental results, it is observed that PS-MOEA/D obtains better PFs than the
WSA. Specifically, in both figures, the PS-MOEA/D obtains a percentage of dom-
inance 30% to 60%; if we check the inverse coverage relation, the fraction of non-
dominated solutions achieved by the WSA that dominates the Pareto sets obtained
by PS-MOEA/D, in all cases, this fraction is close to 0%. Besides, PS-MOEA/D
performs better on average than WSA in terms of distance to reference set. In addi-
tion, it can be noticed that PS-MOEA/D shows better stability of results as the
instance scale increases. Summarizing that, the PS-MOEA/D has obtained more
evenly distributed PFs providing a better approximation towards the nadir point
than the WSA.

5.3 Existence of Knee Regions

Knee points are made up of Pareto-optimal solutions, which provide the best
possible tradeoff among the three conflicting objectives, in other words, any
improvement in one objective must outweigh the aggregated deterioration of
other objectives. These are probably the most interesting solutions in many
real-world problems. Faced with multiple methods for finding knee points [25]
[26] [27], since it is a challenging topic to find the true extreme Pareto optimal
solutions for the TBCAP, we propose to find the knee points based on a trade-off
metric designed by Rachmawati and Srinivasan [26].
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Fig. 4. Comparison between PS-MOEA/D and WSA on Uniform instance
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Fig. 5. Comparison between PS-MOEA/D and WSA on Gaussian instance

Following this metric, we define a notation ρ(Xi, S) to represent the least
amount of improvement per unit deterioration by substituting any alternative
solution from non-dominated solution set S with Xi. Solutions residing in con-
vex knee regions have the highest values in terms of ρ(Xi, S). It allows us to
define the strong degree of knee points by setting a threshold value θ. It can be
mathematically defined as follow.

ρ(Xi, S) = minXj∈S;i�=j

∑
1≤m≤M max(0, fm(Xj) − fm(Xi))∑
1≤m≤M max(0, fm(Xi) − fm(Xj))

(6)

Sθ
knee = {Xi|ρ(Xi, S) ≥ θ,Xi ∈ S} (7)
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Xj corresponds to a member of the non-dominated solutions S that are non-
dominated with respect to Xi; fm(Xi) corresponds to the m-th objective value
of solution Xi, Sθ

knee denotes the set of knee points with the threshold value θ.
To demonstrate the existence of a knee region for this problem, two sets of

experiments have been conducted with different θ values, namely 0.5 and 0.25.
In Fig. 6, it shows that the obtained knee points obtained on the 500 sensors
Uniform and Gaussian deployment. Note that in this part of simulation, we
assume there is only one sink node, which is located in the middle of the barrier.
It can be noticed that the fronts have clear knee points in which it is more
reasonable to take a final decision about which solution should be adopted.

Besides, comparing with the Uniform deployment method, more knee points
have been found by the Gaussian deployment method. The PF obtained by
the Uniform deployments spreads more evenly than the Gaussian deployment.
Except for the reason of sensors’ positions, the biggest reason is the location of
the sink node. Since in this part of simulation, the sink node is assumed to be
located in the middle of the barrier. Following the Gaussian deployment, a large
number of sensors are deployed closely to the middle of the barrier. Thus, in this
case, the solutions tend to be high quality for the objective of average distance.

5.4 Effect of the Number of Sink Nodes

Intuitively, when more sink nodes are deployed, the estimated average distance
from sensor nodes to the nearest sink node should be shorter and influence other
objectives. The number of sink nodes is one of the factors that may influence
the obtained PFs. We compare the obtained PFs by PS-MOEA/D with the
number of sink nodes from 1 to 5. Assume that the sink nodes are uniformly
located along the barrier, then we run the experiments to validate the effect of
the number of sink nodes. As expected, from the results of Fig. 7, we can observe
an important property that more sink nodes are uniformly deployed, better PFs
can be obtained. The major reason is that the active sensors may have more
sink nodes to be chosen as the nearest sink.
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Fig. 6. Knee region of instance with 500 sensors
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Fig. 7. Dref values found by varying number of sinks on different scale instances

6 Conclusion

This paper has made several contributions. Firstly, TBCAP is defined and for-
mulated. Secondly, a PS-MOEA/D has been proposed for finding optimal trade-
off solutions. Thirdly, an experimental investigation has been presented, which
explores the tradeoff among reliability, power consumption and average distance.
A comparative study is conducted to evaluate the proposed approach. Addition-
ally, the effect of the number of sink nodes to the PF have also been studied.
Our future work will enrich the model to make it closer to reality and further
improve the performance of the PS-MOEA/D.
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