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Abstract. Lipschitz global methods for single-objective optimization
can represent the optimal solutions with desired accuracy. In this paper,
we highlight some directions on how the Lipschitz global methods can be
extended as faithfully as possible to multiobjective optimization prob-
lems. In particular, we present a multiobjective version of the Pijavskǐı-
Schubert algorithm.
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1 Introduction

Exact global search methods are a well known class of algorithms belonging to
the single-objective optimization literature.1 These methods usually demonstrate
appreciable speed of convergence and furthermore guarantee that the global
optimum of the function under exam is approximated with arbitrary precision
in a finite time, providing some constraints on the functions at hand. A well
known example of these methods is the Pijavskǐı-Schubert algorithm [18,19],
which is quickly reviewed in Section 2.

Unfortunately, it appears that in the available multiobjective literature there
has not been so much attention dedicated to the complete or deterministic meth-
ods for global search. Nevertheless, at least in the single objective case and when
limited computational resources are available, global deterministic methods have
proven their effectiveness and are known and widely employed. Now and then we
have witnessed the attempt of producing adaptations of some of these methods
for the multiobjective case. However, at least to the knowledge of the authors,
most of those adaptations follow one of the following schemes:

1. the method uses a scalarization of the multiobjective problem to a single
objective optimization problem and then applies the global algorithm to the
scalarization, or

1 These methods are referred to also as complete or deterministic, possibly referring
to more specific features [16].
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2. the method translates the underlying idea of the global method in the mul-
tiobjective format, but then applies a non deterministic method to produce
the Pareto set.

In both cases, we encounter the following problems contrasting with the global
and exact character desired:

1. the method cannot guarantee a systematic covering of the Pareto set, or
2. the method operates at some point some non deterministic choice.

Well-known and widely used methods belonging to the latter class are the evo-
lutionary multiobjective optimization methods. To partially overcome the first
problem some method try to realize a systematic covering of the space of para-
meters. However, this could not lead to a correspondingly systematic covering of
the Pareto set, especially in non convex cases. Therefore we do not consider this
approach as genuinely multiobjective and we would prefer to tackle the multi-
objective nature of the problem directly. We believe that the best strategy for
approximating the Pareto set is adopting a set-wise approach. That is, instead of
having a single point converging to a Pareto optimum at a time and then repeat-
ing this for a number of points, it is better to make converge multiple points at
the same time towards the whole Pareto set. This set-wise concept of conver-
gence is already adopted by evolutionary multiobjective optimization methods,
and it is in contrast to point-wise convergence followed by most scalarization
methods.

We restate our claim about the nonexistence of exact global methods in a
more positive sense, by presenting a pair of methods both attempting to adhere
to the most possible extent to deterministic methods and to guarantee a complete
representation of the Pareto set, at least requesting some regularity conditions
on the functions at hand. The first method [4] uses the Karush-Kuhn-Tucker
conditions to write a non negative auxiliary function whose zero set contains
the set of Pareto optima. The zero set of such a function is approximated by
using an associated ordinary differential equation and suitable iteration schemes
obtained from a discretization of it. Set-wise convergence with respect to the
Hausdorff distance is obtained if suitable regularity conditions are met. The set
obtained is the set of subcritical points, which strictly contains the set of Pareto
optima. The approximation obtained consists in a collection of hypercubes which
covers the subcritical set. The second method [12] uses a qualitatively similar
approach obtained from the Smale’s first and second order conditions [20,21].
For the special case of two functions in two variables, it is possible to write a
multiobjective extension of the Pijavskĭı-Shubert algorithm, i.e., it is possible to
guarantee the convergence to the Pareto set in global sense with respect to the
Hausdorff distance.

In both cases, the set obtained is a strict superset of the set of Pareto optima,
corresponding to first order conditions of optimality, i.e., extensions of the notion
of critical point for a single function, and furthermore, the application is limited
to low dimensional examples. Therefore effective and straightforward approx-
imation methods for the Pareto set are still missing, at least in the authors’
knowledge.
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In this paper, our main scope is to present a Lipschitz global optimization
algorithm for multiple objectives, namely an extension of the Pijavskĭı-Shubert
method which does not make use of auxiliary functions and that approximates
the set of global Pareto optima within a desired tolerance measured according
to the Hausdorff distance (see Section 2 for details). This method is a first step
in the direction proposed in [12] where the possibility of defining exact and
global strategies was outlined. This method produces an approximation of the
Pareto set consisting in a covering composed by arbitrarily small hypercubes.
In perspective, the method can be combined with surface tracing methods to
generate a faithful geometric surrogate of the Pareto set, as in the methods
[5–7,11].

2 Pijavskĭı-Shubert

The Pijavskĭı-Shubert algorithm [18,19] (from now on noted as the P-S algo-
rithm) is a 1-dimensional globally convergent method assuming that a global
Lipschitz constant is known in the domain of the search process. At each step of
the process, there is a finite number of points in the domain where the function
has been evaluated. Those points are taken as the extrema of a collection of
subintervals. For every subinterval a lower bound of the unknown function is
determined on the basis of the Lipschitz constant, on the subinterval width and
the values of the function at the extrema. The subinterval with the lowest esti-
mate is chosen for further sampling and subdivision, by taking the point where
the lower bound is predicted to be located.

l u l x1 u l x1x2 u

Fig. 1. Workings of the Pijavsk̆ı-Shubert algorithm. The domain is divided in subin-
tervals and for each subinterval a lower bound is computed on the basis of the global
Lipschitz constant for the function in study. The interval with the lowest lower bound
is then divided exactly at the position of the lower bound.

This method allows for detecting subintervals where the global minimum
cannot be located, discarding them from further analysis. Indeed if the lower
bound corresponding to a subinterval is higher than one of the already computed
values, it is impossible that the global optimum would be contained into the
interval.
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This method can be extended to higher dimensions although the compu-
tational complexity rises exponentially [15]. Nevertheless the method has been
the starting point for several efficient global algorithms, such as direct [8] and
Lipschitz Global Optimization (LGO) [17] and many more [9,10]2.

3 Extending P-S Algorithm to Multiple Objectives

In [12], tessellation of the 2D domain by means of equilateral triangles and
an auxiliary scalar function was used for deciding if a triangle could contain
a portion of the Pareto set or not. However in the method presented here, we
will try to define an approach valid for higher dimensions and we will avoid
any scalarization or auxiliary function. In particular we will estimate a vector
lower bound for every hyper interval, i.e., for each one of the available objective
function. This estimate will be on the lines of the scalar method, i.e., based on
the Lipschitz constant and on the hyper interval diameter. Then we will not
combine the single objective lower bounds in a unique scalar indicator but we
will keep the vector as it is and compare and rank different intervals on the basis
of Pareto dominance. More precisely, we will partition the set of hyper intervals
in two classes, the discarded and the candidates for further division. To decide if
an hyper interval should be discarded we will check if the estimated lower bound
dominates one of the already computed points. In that case there cannot exist a
point inside the hyper interval belonging to the Pareto set, so we are warranted
to discard it. All other hyper intervals will be selected for further division in the
subsequent iterations.

This will produce several candidate intervals for each iteration, but this does
not constitute a problem, because it is typical for multiobjective methods and
it occurs also for some scalar global optimization methods like [8]. A detailed
formal description of the algorithm proposed is given in Algorithm 1.

4 Global Convergence of Deterministic Algorithms

We recall some definitions from [12] about global convergence of multiobjective
algorithms, starting from the standard scalar case m = 1.

4.1 Algorithms and Global Convergence in Scalar Optimization

Let f : D → R be a Lipschitz continuous function, where W can be the n-
hypercube [0, 1]n for simplicity or a smooth n-dimensional compact manifold.

2 In a more general view, we notice that a Lipschitz constant represent a proxy for
the complexity of a function. As a result they can be used for optimization as well
as for other purposes, e.g., for function approximation (see [14]).
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Algorithm 1. multi-Pijavsk̆ı-Shubert (mPS) method
1: Let the domain (decision space) be a hyper-rectangle D := [0, 1]n, possibly after a

suitable normalization
2: Let the unknown function f : D → R

m be globally Lipschitz continuos with con-
stants different for every component L1, . . . , Lm.

3: Evaluate f on the corners of D

4: Initialize the set of evaluated points as E :=
{

(q, v)
∣∣∣ q ∈ {corners of D} , v = f(q)

}

5: Initialize the set of active subintervals as S := D
6: Set nIter ∈ N as the maximum number of iterations
7: for i = 1 to nIter do
8: for all I ∈ S do
9: Divide the hyper interval I in the 2n subintervals obtained by halving all

dimensions of the original hyper interval. Remove the hyper interval I from
the list S and add the subintervals to the list.

10: Evaluate f on all the midpoints p of the k-faces of the hyper interval I, for all
1 � k � n, i.e., all the corners of the subintervals. Add (p, f(p)) to the list E.

11: end for
12: Associate to each interval I in S the vectors vI,ι = (fj(qι) + LjdiamI)ι,j , where

qι is a corner of I and j = 1, . . . , m.
13: for all I ∈ S do
14: if all the upper bounds in the corners (fj(qι) + LjdiamI)j are dominated by

some vector of values v in E then
15: discard the interval I from S
16: end if
17: end for
18: end for

– Let us denote by f� the absolute, or global, maximum value of the function
f , x� being a point in W realizing the maximum. In other words, x� is an
optimum, while X�

f is the set of all optima:

f� = max
x∈W

f(x), X�
f :=

{
x� ∈ W

∣∣∣ f(x�) = f�
}

. (1)

– An algorithm is a finite sequence of well–defined instructions, which, when
running on a function f , produces the sample sequence

Xf := {x1, . . . , xk, . . . } ⊆ W.

In particular the function f is assumed to be actually computed in the point
xk at the kth step of the algorithm.

– We denote by Xf the full infinite sequence produced by an algorithm when
given a function f , by Xf,k or Xk the partial k–sequence. Xf is the closure
of Xf while X ′

f = Xf \ Xf , is the set of limit points of Xf .

Assume we are not in the trivial case X�
f ∩ Xk �= ∅ for any finite k.

– An algorithm sees the global minimum of the function f if X�
f ∩ X ′

f �= ∅.
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– An algorithm localizes the global minimum if X ′
f = X�

f (or weakly localizes
if X ′

f ⊆ X�
f ).

It seems useful to give further precise description of a class of algorithms for
detecting structured subsets rather than scatters of points.

– A set–wise sequential algorithm is a deterministic algorithm which, besides
the sample sequence Xf = {x1, x2, . . . } where actually the function f has
to be evaluated, generates a sequence of subsets {S1, . . . , Sk, . . . }, Sk ⊆ W ,
intended to give an approximation of the Pareto set.

– Notice that more or less explicitly, any multiobjective optimization strategy
is a set-wise sequential algorithm. If not specified in a different way, the
sequence of sets approximating the Pareto set is given by the non dominated
sets of the partial sequences:

Sk := nd({x1, . . . , xk}).

– It is a common belief that in typical cases the Pareto set is a finite collection
of smooth manifolds with edges and corners. Such objects have interesting
properties and are called stratified sets (see [13] for a discussion with the
point of view of multiobjective optimization). Simplicial methods like [1,6,7,
11,12] at each new iteration produce a simplicial complex as approximation
of the Pareto optimal set. These methods have the fundamental property
of offering a parametric representation of the Pareto set, which appears as
a very useful tool for exploring the available solutions during the decision
process.

4.2 Convergence in Multiobjective Optimization

To be convergent, an algorithm should produce a sequence S1, S2, . . . , converging
in some sense to the set of optima θop. Expressing a crude translation of the
concepts of seeing and localizing the optima is poorly useful, because apart from
degenerate cases, the set of Pareto optimal values does not consist in a single
(vector) value f� ∈ R

m. In the generic case, the set of Pareto optimal values
is infinite, as well as, of course, the set of Pareto optima θop. Limits have to
be considered in a set–wise sense, and therefore we need a concept of distance
between sets.

– Let A,B ⊆ W . The Hausdorff distance between A and B is defined as

dH(A,B) := max
{

max
x∈A

min
y∈B

d(x, y),max
y∈B

min
x∈A

d(x, y)
}

. (2)

– We say that a set-wise sequential algorithm A sees the set of global Pareto
optima θop if

lim
k→∞

min
x∈Sk,y∈θop

d(x, y) = 0. (A sees θop) (3)

(In a sense the limit set limk Sk ∩ θop �= ∅, i.e., at least the Pareto set
generated by the algorithm touches a portion of the global Pareto set, i.e.,
it generalizes the statement X ′

f ∩ X�
f �= ∅.)
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– We say that A weakly localizes the set of global Pareto optima θop if

lim
k→∞

max
t∈θop

d(t, Sk) = 0. (A weakly localizes θop) (4)

(In a sense the limit set will contain all portions of the global Pareto set
θop ⊆ limk Sk. The limit set is possibly larger than the Pareto set.)

– We say that A strictly localizes the global Pareto optima θop if

lim
k→∞

dH(Sk, θop) = 0, (A strictly localizes θop) (5)

i.e., the Pareto set generated by the algorithm coincides with the true Pareto
set.

– Dealing with algorithms which merely see the global optimum, or that local-
ize non strictly the set of Pareto optima seems not completely satisfactory
from the global multiobjective optimization point of view. For instance, an
algorithm optimizing only to one component of the vector function f would
give a non dominated point, and it would see the Pareto optimum.

4.3 Convergence for mPS

The convergence proof for the mPS algorithm 1 is twofold. Let us consider a
point x that it is not in the sequence of sampled points. Clearly this sequence
could be a dense subset of W in principle, but it has zero Lebesgue measure.

Proposition 1. prop:conv1 Let x ∈ W be a Pareto optimal point. Then

1. for every iteration step k ∈ N there exists a cell Ck in Sk containing x,
2. limk→∞ diamCk = 0.

Proof. et us assume that x is Pareto optimal and that at the step k + 1 > 0
there is no cell in Sk containing x. Assume that at step k there was a cell
Ck containing x, thus that cell must have been discarded at the k + 1 step. So
there must exist a point pt in the sequence of evaluated points such that fj(pt) >
fj(qr)+Ljdiam(Ck) for all j and all vertices qr in the cell Ck. But because of the
Lipschitz property, fj(x) < fj(qr)+Lj ‖x − qr‖ < maxqr fj(qr)+Ljdiam(Ck) <
fj(pt), so x is dominated and not a Pareto optimum. A contradiction. 	

Proposition 2. prop:conv2 Let x ∈ W be not Pareto optimal point. Then there
exists k ∈ N such that for every k′ � k there is no cell C in Sk′ containing x.

Proof. f x is not Pareto, let d the minimum distance from a Pareto optimum
p dominating x and let � = minj=1,...,m fj(p) − fj(x) > 0. Let L̄ = maxj Lj .
Assume that there exists for every k ∈ N a cell Ck in Sk that contains x. As
k → ∞ the cell size diamCk → 0, so let k̃ such that diamCk̃ < �

2maxj=1,...,m Lj

and consider any of the vertices y of Ck̃ and any of the vertices q of the cell Vk̃

containing p. Note that such a cell exists for every k because of the preceding
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Proposition, and that at the same iteration the cells in Sk have all the same size,
and let d = diamCk̃ = diamVk̃. We have

fj(q)−fj(y) > fj(p)−Ljd−(fj(x)+Ljd) = fj(p)−fj(x)−2Ljd > �−2 (max Lj) d, (6)

so, if

diamCk̃ <
�

2max Lj
, (7)

all the vertices of Vk̃ dominate the vertices of Ck̃, so the cell Ck̃ will be discarded
at the k̃ + 1 step, leading to a contradiction. 	


From the above propositions the convergence of Algorithm 1 follows straight-
forwardly.

Theorem 1. teo:naiveconv Let f : D → R
m globally Lipschitz continuous, with

Lipschitz constants L1, . . . , Lm and consider the application of Algorithm 1 to
f . Consider the sequence of families of sets Sk, where Sk is the active set of
intervals at the k-th step. Then Algorithm 1 strictly localizes the Pareto set of f .

5 Benchmarks

For testing our method, we consider a set of three non degenerate following
functions, so the Pareto sets are m− 1 dimensional objects, both in the decision
and in the objectives spaces, as it is expected for typical cases [13].

5.1 DTLZ2 with Three Decision Variables and 2 Objectives

This function is part of a collection of test functions largely known and used in
literature [3]. The function is scalable to any number of decision variables and
objectives, but we have used here the the version with three decision variables
and two objectives. We have performed two runs of the algorithm which are
documented in Figure 2. In panel (a) we report the outcome of three iterations
of Algorithm 1, corresponding to a total of 305 function evaluation while in panel
(b) we represent the outcome of four iterations (1205 function evaluations). In
both panels, the left figure represents the design space, while the right figure
is the objective space. Transparent cubes in design space represent the active
cells of the algorithm, i.e., the cells which are candidate for further splitting in
the subsequent iterations. The same active cells are mapped to the objectives
space into generic polygons (light blue regions in the right parts of the panels).
This region surrounds the non dominated points and can be considered as an
approximation of the Pareto front.
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Fig. 2. Test function DTLZ2 with m = 2 objectives and n = 3 dimensions for the
design space. See text for the details.
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For comparison with a well known evolutionary strategy we report in panel
(c) the outcome of the MOEA/D method [22] with three generations (where the
first one is a random sample) corresponding to a total of 303 function evaluations,
since the population size is 101. The green crosses correspond to the Pareto non
dominated values of the points produced by the algorithm. In the same panel
we also represent the outcome of our method applied for three iterations (i.e.,
305 function evaluations), marked with red dots.

1 iter 2 iter

3 iter 4 iter

5 iter

Fig. 3. Test function L&H2x2. The iterations from 1 to 5 of the method are reported,
the decision space on the left and the objectives space on the right for each panel.
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Just for attempting to compare the outcomes of the two methods, we observe
that MOEA/D seems to span more densely the range of Pareto front, although
none of those points dominates a point produced by mPS. On the other side,
the Pareto set obtained with mPS dominates 14 out of the 44 points in the front
corresponding to MOEA/D, i.e., the 31% of the points composing the front,
attesting the higher accuracy of the new method.

5.2 L&H2x2

The L&H2x2 is an example proposed in [11] and used as a test function also
in [2,7,12]. The example is paradigmatic for the non convex case, because the
Pareto set is composed by two local fronts superimposing one another in the
objectives space. The corresponding global Pareto set is composed by three
separate branches, although we observe a unique connected Pareto front in
the objectives space. We test our method and plot the outcomes in Figure 3,
going from 1 to 5 iterations, corresponding to 25, 81, 201, 445, 920 functions
evaluations.
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Fig. 4. Outcome of the SiCon method on the test function L&H2x2. Left panel: decision
space. Right panel: objectives space. The Pareto set. Orange lines represent the local
Pareto set while the red line is the part of the Pareto critical set which is not locally
optimal.
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For comparison purposes, the local Pareto set as obtained from the SiCon
method [11] is reported in Figure 4. SiCon is a continuation method, which
produces an approximation of the Pareto set as a simplicial complex. SiCon
produces an accurate representation but cannot distinguish among local and
global optima, and its outcome cannot be refined as easily as with mPS. As a
result, the Pareto set obtained with this method (the orange lines in figure) is
composed by two connected components while actually the set of global optima
has three separate components.

5.3 L&H3x3

This function is a three dimensional version of the previous example, for the
function definition see [11]. Also in this case there are two superimposing local
fronts, although, because of the higher dimensionality of the decision space,
the Pareto set results composed by two connected components. In Figure 3 we
have reported the outcomes of 1, 2 and 3 iterations of the mPS method on
this function, corresponding to 125, 633 and 6156 function evaluations. The
left panels represent the points evaluated and the active cells while on the right
panels we have the function values and the images of the active cells. The bump in
the center of the surface corresponds to the smaller component of the Pareto set.

6 Conclusions and Perspectives

We have proposed a multiobjective translation of the Pijavsǩı-Shubert method
for global optimization, assuming that a global Lipschitz constant for the func-
tions at hand is known.

As far as the authors know, this is the first fully deterministic method prov-
ably generating convergent approximations to Pareto sets. The convergence is
defined in terms of Hausdorff distance between sets, i.e., the exact Pareto set of a
sufficiently regular function can be approximated with arbitrary precision (small
Hausdorff distance) in a finite number of steps. We have called the convergence
of the algorithm intended in this sense strict localization of the set of Pareto
optima. We have mentioned several methods inspired by the same ideas in the
global optimization literature, and we have observed that either they fall in the
set of local methods, because they focus on searching for single optimal points
or even only critical points, or either they make use of some random choice at
some point, missing in some sense an exact localization of the whole Pareto set.

The approximation found by means of the proposed method is sharp, in the
sense that only globally optimal points are approximated, and Pareto critical
points or local optima are sooner or later discarded by the method. This differs
from a previous method which strictly localized the singular set or the Pareto
critical set [12].

We have tested the method on three non convex examples and compared
the results for one of the cases with a well known evolutionary method, obtain-
ing positive results on the side of the accuracy of the representation. Actually
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the strategy is a very conservative one, therefore densely distributed represen-
tations of the Pareto set can be obtained with a large number of function eval-
uations. Nevertheless, as there are many efficient generalizations and extensions
of the Pijavsǩı-Shubert method, we figure that some of these variants can give
valid inspirations for writing new algorithms less computationally demanding
and also accessible for higher dimensional problems. We expect that such exten-
sions should be very attractive for experts and practitioners in multiple criteria
decision making community.
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