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Abstract. In this paper, we propose an extension to Robust Ordinal
Regression allowing it to take into account also preference information
from questions about indifference between real and fictitious alternatives.
In particular, we allow the decision maker to suggest a new alternative that
is different from the existing alternatives, but equally preferable. As shown
by several experiments in psychology of the decisions, choosing between
alternatives is different from matching two alternatives since the two
aspects involve two different reasoning strategies. Consequently,by includ-
ing this type of preference information one can represent more faithfully
the DM’s preferences. Such information about indifference should narrow
down the set of compatible value functions much more quickly than stan-
dard pairwise comparisons, and a first simple example at least indicates
that this intuition seems to be correct.

1 Introduction

Multiple Criteria Decision Aiding (MCDA) (see [8,9]) aims to recommend the
Decision Maker (DM) a decision that best fits her/his preferences when a plu-
rality of criteria has to be taken into consideration. Typically, in MCDA, a set
of alternatives A = {a1, . . . , an} is described in terms of performances with
respect to a coherent family of criteria G = {g1, . . . , gm} [24]. Without loss of
generality, each criterion gj ∈ G can be considered as a real-valued function
gj : A → Ij ⊆ R, such that for any a, b ∈ A, gj(a) ≥ gj(b) means that a is at
least as good as b with respect to criterion gj .

Given two alternatives a, b ∈ A and considering their performances with
respect to the m criteria belonging to G, very often a will be better than b for
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some of the criteria while b will be better than a for the remaining criteria.
For this reason, in order to cope with any multiple criteria decision problem,
we need to aggregate the performances of the alternatives taking into account
the preferences of the DM. The three most well known aggregation models are
the following:

• MAVT - Multi-Attribute Value Theory (see [7,19]) assigning to each alter-
native a ∈ A a real number representative of its desirability ,

• outranking methods (see [10,12,24]) building some outranking preference
relations S on A, such that for any a, b ∈ A, aSb means that a is at least as
good as b,

• decision rule models using a set of “if..., then...” decision rules induced from
the DM’s preference information through Dominance-based Rough Set App-
roach (DRSA, see [14,15,26,27]).

Such MCDA models have recently been integrated into Evolutionary Multi-
objective Optimization (EMO) as a means to interact with the DM and focus
the search to the part of the Pareto front most preferred by the DM [1,3].

In this paper we consider the first model and we take into considera-
tion a value function U :

∏m
j=1 Ij → R such that for any a, b ∈ A, a is

at least as good as b (a � b) if U(g1(a), . . . , gm(a)) ≥ U(g1(b), . . . , gm(b)).
The simplest form of the value function is the additive form, defined as:
U(g1(a), . . . , gm(a)) =

∑m
j=1 uj(gj(a)), where uj(gj(a)) are non-decreasing func-

tions of their arguments. In the following, for simplicity of notation, we shall use
U(a) instead of U(g1(a), . . . , gm(a)) for all a ∈ A.

Application of any decision model requires the definition of its parameters
which can be obtained by asking them directly to the DM or inferring them from
preference information given by the DM. This second approach seems more prac-
tical because the DM can have some difficulty in realizing the exact meaning of
the parameters in the preference model and, moreover, their direct elicitation
requires a strong cognitive effort from the DM. The typical preference informa-
tion considered in this case is the pairwise comparisons between alternatives on
which the DM feels sufficiently confident. In this paper we propose a different
type of preference information expressed in terms of indifference between two
alternatives. More precisely, supposing that the DM declares that an alternative
a is preferred to another alternative b, we ask the DM to indicate another alter-
native b+, obtained by improving b on some criteria, so that alternative b+ is
indifferent to a. Another possible way to get a preference information in terms
of indifference is the following. Supposing again that alternative a is preferred
to alternative b, one can ask the DM to indicate an alternative a−, obtained by
deteriorating a on some criteria, so that a− is indifferent to b. Yet another pos-
sibility is to consider an alternative a+−, obtained from alternative a improving
its performances on some criteria and deteriorating its performances on other
criteria, so that a and a+− are indifferent. The main advantage we expect from
this type of preference information is that it should reduce the space of com-
patible value functions much more than usual information supplied in terms of
preference pairwise comparisons. Indeed, from the mathematical point of view,
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the new preference information should be translated by equality constraints that,
in case of a value function representing perfectly the preference of the DM, dras-
tically will reduce the space of compatible value functions. In the following, to
take into account a certain imprecision in the DM’s preferences, we model the
indifference information by imposing that the difference of the utilities of two
indifferent alternatives, in absolute value, should be no greater than an indiffer-
ence threshold. Anyway, even if we do not use equality constraints, the space of
compatible value function is strongly reduced, especially if the considered indif-
ference threshold is sufficiently small. Moreover, as proved by several experiments
in psychology of the decisions [25,29], choosing between two alternatives is dif-
ferent from matching two alternatives since the two aspects involve two different
reasoning strategies. Consequently, putting together usual preference informa-
tion in terms of pairwise preference of one alternative over another with the
new type of preference information we are introducing, permits to build a util-
ity function representing the DMs preferences in a more faithful way. We think
that this is beneficial also for the elicitation of preference information within the
EMO algorithms, as it should allow a faster convergence of the interactive EMO
algorithm to the part of the Pareto front most preferred by the DM.

The paper is organized as follows. In the next section we recall the basic
concepts of ordinal regression and robust ordinal regression. In the third section
we introduce the new type of preference information. In the fourth section we
present a didactic example. Conclusions and perspective for future research are
collected in the last section.

2 Ordinal Regression and Robust Ordinal Regression

2.1 Ordinal Regression

Each decision model requires the specification of some parameters. For exam-
ple, using MAVT, the parameters are related to the formulation of the marginal
value functions uj(gj(a)), j = 1, . . . , m. Since, as explained previously, the indi-
rect preference information is more applied in practice, within MCDA, many
methods have been proposed to determine the parameters characterizing the
considered decision model inducing the values of such parameters from some
holistic preference comparisons of alternatives given by the DM. This indirect
preference elicitation is the base of the ordinal regression paradigm.

The most well-known ordinal regression methodology is the UTA (UTilités
Additives) method proposed by Jacquet-Lagrèze and Siskos [17], which aims at
inferring one or more additive value functions from a given complete ranking
of alternatives belonging to a reference set AR ⊆ A. The method considers a
piecewise additive value function U(g1(a), . . . , gm(a)) =

∑m
j=1 uj(gj(a)) having

marginal value functions uj(·), j = 1, . . . ,m, being piecewise-linear, with a pre-
defined number of linear pieces. UTA uses linear programming to determine
an additive value function compatible with the preference information provided
by the DM. Technically, in order to check if there exists at least one additive
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function compatible with the preferences provided by the DM, one has to solve
the following linear programming problem:

ε∗ = max ε, s.t.
U(a∗) ≥ U(b∗) + ε if a∗ � b∗, with a∗, b∗ ∈ AR,

U(a∗) = U(b∗) if a∗ ∼ b∗, with a∗, b∗ ∈ AR,
m∑

j=1

uj(βj) = 1, uj(αj) = 0, j = 1, . . . , m,

uj(gj(a)) ≥ uj(gj(b)) if gj(a) ≥ gj(b),∀a, b ∈ A, j = 1, . . . , m,

⎫
⎪⎬

⎪⎭
E

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

EAR

where

• βj and αj are the best and the worst considered values of criterion gj , j =
1, . . . ,m,

• � and ∼ are the asymmetric and the symmetric part of the binary relation
� representing the DM’s preference information, i.e., a∗ � b∗ means that a∗

is preferred to b∗ while a∗ ∼ b∗ means that a∗ and b∗ are indifferent,
• here, as always in the following, ε is considered without any constraint on

the sign.

If the set of constraints EAR

is feasible and ε∗ > 0, then there exists at least one
additive value function compatible with the DM’s preferences. If there is no com-
patible value function, i.e., if the preferences of the DM cannot be represented by
an additive value function with pre-defined number of linear pieces, [17] suggests
either to increase the number of linear pieces in some marginal value functions,
or to select the utility function U that gets the sum of deviation errors close to
minimum and minimizes the number of ranking errors in the sense of Kendall
or Spearman distance.

The ordinal regression paradigm has been applied within the two main MCDA
approaches, that is those using a value function as preference model [4,17,18,23,
28], and those using an outranking relation as preference model [21,22].

2.2 Robust Ordinal Regression

Usually, from among many sets of parameters of a preference model representing
the preference information given by the DM, only one specific set is selected and
used to work out a recommendation.

Since the selection of one of these sets of parameters compatible with the pref-
erence information given by the DM is rather arbitrary, Robust Ordinal Regres-
sion (ROR; [5,6,16]) proposes to take into account simultaneously all of them,
in order to obtain a recommendation in terms of necessary and possible conse-
quences of applying all the compatible preference models on the considered set
of alternatives; the necessary weak preference relation holds for any two alterna-
tives a, b ∈ A (a �N b) if and only if a is at least as good as b for all compatible
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preference models, while the possible weak preference relation holds for this pair
(a �P b) if and only if a is at least as good as b for at least one compatible
preference model.

Although UTAGMS [16] is the first method applying the ROR concepts, in the
following, we shall describe the GRIP method [11] being its generalization. Then,
we shall mention the other applications of the ROR that have been published
later in several papers.

2.3 GRIP

In the UTAGMS method [16], which initiated the stream of further developments
in ROR, the ranking of reference alternatives does not need to be complete
as in the original UTA method [17]. Instead, the DM may provide pairwise
comparisons just for those reference alternatives (s)he really wants to compare.
Precisely, the DM is expected to provide a partial preorder � on AR. Obviously,
one may also refer to the relations of strict preference � or indifference ∼.

The transition from a reference preorder to a value function is done in the
following way: for a∗, b∗ ∈ AR,

U(a∗) ≥ U(b∗) + ε, if a∗ � b∗,

U(a∗) = U(b∗), if a∗ ∼ b∗,

}

E1

where ε is a (generally small) positive value.
Observe that a∗ ∼ b∗ can be represented as follows:

|U(a∗) − U(b∗)| ≤ δ, (1)

i.e.
U(a∗) − U(b∗) ≤ δ,

U(b∗) − U(a∗) ≤ δ,

}

(2)

where δ is a non-negative indifference threshold considered to take into account
imprecision in the preference information.

Observe that the case δ = 0 collapses to the constraints expressed as equality,
i.e. U(a∗) = U(b∗). It is apparent that if the indifference constraints are expressed
in terms of equality, one can get a more precise inference of the utility function
U (e.g. in case U is expressed as weighted sum and there are only two criteria,
then a single indifference comparison formulated in terms of equality is enough
to determine univocally the utility function). However, observe that this greater
precision can be misleading because a certain imprecision is always implicit in
the preference information given by the DM.

In some decision making situations, the DM is willing to provide more infor-
mation than a partial preorder on a set of reference alternatives, such as “a∗ is
preferred to b∗ at least as much as c∗ is preferred to d∗”. The information related
to the intensity of preference is also accounted for by the GRIP method [11].
It may refer to the comprehensive comparison of pairs of reference alternatives
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on all criteria or on a particular criterion only. Precisely, in the holistic case,
the DM may provide a partial preorder �∗ on AR × AR, whose meaning is: for
a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) �∗ (c∗, d∗) ⇔ a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗.

When referring to a particular criterion gj ∈ G, rather than to all criteria jointly,
the meaning of the expected partial preorder �∗

j on AR × AR is the following:
for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) �∗
j (c∗, d∗) ⇔ a∗ is preferred to b∗ at least as much as

c∗ is preferred to d∗ on criterion gj .

In both cases, the DM is allowed to refer to the strict preference and indifference
relations rather than to weak preference only. The transition from the partial
preorder expressing intensity of preference to a value function is the following:
for a∗, b∗, c∗, d∗ ∈ AR,

U(a∗) − U(b∗) ≥ U(c∗) − U(d∗) + ε, if (a∗, b∗) � (c∗, d∗),

U(a∗) − U(b∗) = U(c∗) − U(d∗), if (a∗, b∗) ∼ (c∗, d∗),

uj(a∗) − uj(b∗) ≥ uj(c∗) − uj(d∗) + ε, if (a∗, b∗) �j (c∗, d∗) for gj ∈ G,

uj(a∗) − uj(b∗) = uj(c∗) − uj(d∗), if (a∗, b∗) ∼j (c∗, d∗) for gj ∈ G.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

E2

In order to check if there exists at least one model compatible with the prefer-
ences of the DM we solve the following linear programming problem:

ε∗ = max ε s.t.
E ∪ E1 ∪ E2 = EDM (3)

If the set of constraints EDM is feasible and ε∗ > 0, then there exists at least
one additive value function compatible with the preference information pro-
vided by the DM, otherwise no additive value function is compatible with the
provided information. In this case, the analyst can decide to check for the cause
of the incompatibility [20] or can continue the decision aiding process accepting
the incompatibility.

Denoting by UAR the set of value functions compatible with the preference
information provided by the DM, in the GRIP method three necessary and three
possible preference relations can be defined:

• a �N b iff U(a) ≥ U(b) for all U ∈ UAR , with a, b ∈ A,
• a �P b iff U(a) ≥ U(b) for at least one U ∈ UAR , with a, b ∈ A,
• (a, b) �∗N (c, d) iff U(a) − U(b) ≥ U(c) − U(d) for all U ∈ UAR , with

a, b, c, d ∈ A,
• (a, b) �∗P (c, d) iff U(a) − U(b) ≥ U(c) − U(d) for at least one U ∈ UAR ,

with a, b ∈ A,
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• (a, b) �∗N
j (c, d) iff uj(a) − uj(b) ≥ uj(c) − uj(d) for all U ∈ UAR , with

a, b, c, d ∈ A, gj ∈ G,
• (a, b) �∗P

j (c, d) iff uj(a) − uj(b) ≥ uj(c) − uj(d) for at least one U ∈ UAR ,
with a, b ∈ A, gj ∈ G.

Given alternatives a, b, c, d ∈ A, and the sets of constraints

U(b) ≥ U(a) + ε

EDM

}

EN (a, b),
U(a) ≥ U(b)
EDM

}

EP (a, b),

U(c) − U(d) ≥ U(a) − U(b) + ε

EDM

}

EN (a, b, c, d),

U(a) − U(b) ≥ U(c) − U(d)
EDM

}

EP (a, b, c, d),

uj(c) − uj(d) ≥ uj(a) − uj(b) + ε

EDM

}

EN
j (a, b, c, d),

uj(a) − uj(b) ≥ uj(c) − uj(d)
EDM

}

EP
j (a, b, c, d),

we get that:

• a �N b iff EN (a, b) is infeasible or if EN (a, b) is feasible and εN (a, b) ≤ 0,
where εN (a, b) = max ε, s.t. EN (a, b);

• a �P b iff EP (a, b) is feasible and εP (a, b) > 0, where εP (a, b) = max ε, s.t.
EP (a, b);

• (a, b) �∗N

(c, d) iff EN (a, b, c, d) is infeasible or if EN (a, b, c, d) is feasible
and εN (a, b, c, d) ≤ 0, where εN (a, b, c, d) = max ε, s.t. EN (a, b, c, d);

• (a, b) �∗P

(c, d) iff EP (a, b, c, d) is feasible and εP (a, b, c, d) > 0, where
εP (a, b, c, d) = max ε, s.t. EP (a, b, c, d);

• (a, b) �∗N

j (c, d) iff EN
j (a, b, c, d) is infeasible or if EN

j (a, b, c, d) is feasible
and εNj (a, b, c, d) ≤ 0, where εNj (a, b, c, d) = max ε, s.t. EN

j (a, b, c, d);
• (a, b) �∗P

j (c, d) iff EP
j (a, b, c, d) is feasible and εPj (a, b, c, d) > 0, where

εPj (a, b, c, d) = max ε, s.t. EP
j (a, b, c, d);

As to properties of �N and �P on A, let us remind after [16] that:

• �N is a partial preorder on A,
• �N⊆�P ,
• a �N b and b �P c ⇒ a �P c, ∀a, b, c ∈ A,
• a �P b and b �N c ⇒ a �P c, ∀a, b, c ∈ A,
• a �N b or b �P a, ∀a, b ∈ A.

The above properties are the minimal ones characterizing �N and �P [13]. Other
interesting properties of �N and �P are the following [16]:

• �P is strongly complete and negatively transitive,
• �P is complete, irreflexive and transitive.



212 J. Branke et al.

3 Preference Information in Terms of Pairwise
Indifference Comparisons

In this section we introduce a new type of preference information expressed in
terms of indifference between alternatives. Of course, this new type of preference
information is supposed to be added to the type of preference information already
considered within GRIP and, more in general, within the ROR methods. Even
more, as explained in the following, the new type of preference information is
very often based on some preference information expressed in terms of strict
preference already considered within ROR.

We shall present three typical types of preference information expressed in
terms of indifference pairwise comparisons:

• suppose that the DM has already declared that a∗ is preferred to b∗. In
this case one can ask the DM to indicate a new alternative b∗+

H obtained
from b∗ improving the performances on criteria from H ⊆ G such that a∗ is
indifferent to b∗+

H . This preference information will be represented as follows:

|U(a∗) − U(b∗+
H )| ≤ δ, (4)

i.e.
U(a∗) − U(b∗+

H ) ≤ δ,

U(b∗+
H ) − U(a∗) ≤ δ

}

E(a∗, b∗+
H )

where δ is a non-negative indifference threshold considered to take into
account imprecision in the preference information;

• suppose again that the DM has already declared that a∗ is preferred to b∗

and let us ask the DM to indicate a new alternative a∗−
K obtained from

a∗ deteriorating the performances on criteria from K ⊆ G such that a∗−
K is

indifferent with b∗. This preference information will be represented as follows:

|U(a∗−
K ) − U(b∗)| ≤ δ, (5)

i.e.
U(a∗−

K ) − U(b∗) ≤ δ,

U(b∗) − U(a∗−
K ) ≤ δ

}

E(a∗−
K , b∗);

• let us consider a reference alternative a∗ and let us ask the DM to indicate
a new alternative a∗+−

H,K obtained from a∗ by improving the performances on
criteria from H and deteriorating the performances on criteria from K with
H,K ⊆ G,H ∩ K = ∅ such that a∗+−

H,K is indifferent to a∗. This preference
information will be represented as follows:

|U(a∗+−
H,K ) − U(a∗)| ≤ δ, (6)

i.e.
U(a∗+−

H,K ) − U(a∗) ≤ δ,

U(a∗) − U(a∗+−
H,K ) ≤ δ

}

E(a∗, a∗+−
H,K ).
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Besides the above three typical types, other preference information expressed
in terms of indifference pairwise comparisons can be the following: supposing
again that a∗ is preferred to b∗,

• a∗+−
H,K is indifferent with b∗, with the related constraint denoted by

E(a∗+−
H,K , b∗),

• a∗ is indifferent with b∗+−
R,S , with the related constraint denoted by

E(a∗, b∗+−
R,S ),

• a∗+−
H,K is indifferent with b∗+−

R,S , with the related constraint denoted by
E(a∗+−

H,K , b∗+−
R,S ),

with H,K,R, S ⊆ G,H ∩ K = ∅, R ∩ S = ∅.
ROR methodology proceeds as explained before, simply adding constraints

E(a∗, b∗+
H ), E(a∗−

K , b∗),E(a∗, a∗+−
H,K ), E(a∗+−

H,K , b∗), E(a∗, b∗+−
R,S ) and E(a∗+−

H,K , b∗+−
R,S )

to set of constraints EDM .
Let us observe that the new type of preference information is translated by

inequalities such as the classical preference information as introduced in all ROR
methods and, therefore, the recommendations obtained by the new model can be
considered appropriate and consistent for the decision problem at hand. More-
over, as already observed in [25,29], choosing between two alternatives is different
from matching two alternatives since the two aspects involve two different rea-
soning strategies. Consequently, we think that putting together these types of
preference information can represent more faithfully the DM’s preferences.

4 Didactic Example

In order to illustrate the proposed methodology, in this section we shall provide
a didactic example. Let us suppose that 8 alternatives are evaluated on 4 criteria
that should be maximized. The evaluations of the alternatives on the considered
criteria are shown in Table 1 and, for the sake of simplicity, we shall suppose
that the evaluation criteria can assume 5 discrete values only (1, . . . , 5).

Let us observe that the dominance relation on the set of alternatives A is
empty because no alternative dominates another alternative.
In a first moment, let us suppose that the DM provides the following preference
information:

a � f, c � h, b � e, c � d, d � f, e � h

Using this preference information, we get the following necessary preference
relation:

�N= {(a, f), (b, e), (b, h), (c, d), (c, f), (c, h), (d, f), (e, h)} ∪ {(x, x) : x ∈ A}.
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Table 1. Alternatives’ evaluations

Alternative / Criterion g1 g2 g3 g4
a 5 5 1 5
b 5 3 5 1
c 4 1 5 5
d 4 4 4 2
e 4 4 2 4
f 5 2 3 2
h 4 2 3 4
l 5 5 3 1

Let us suppose now that dealing with the same decision problem the DM provides
the following preference information:

• a � f, c � h, b � e,
• a ∼ f+

{2,4},
• c−

{1,3} ∼ h,
• e ∼ e+−

{3},{4},

where f+
{2,4} = (5, 4, 3, 4), c−

{1,3} = (3, 1, 4, 5) and e+−
{3},{4} = (4, 4, 4, 2) = d.

After considering the new set of constraints

U(a) ≥ U(f) + ε,

U(c) ≥ U(h) + ε,

U(b) ≥ U(e) + ε,

U(a) − U(f+
{2,4}) ≤ δ,

U(f+
{2,4}) − U(a) ≤ δ,

U(c−
{1,3}) − U(h) ≤ δ,

U(h) − U(c−
{1,3}) ≤ δ,

U(e+−
{3},{4}) − U(e) ≤ δ,

U(e) − U(e+−
{3},{4}) ≤ δ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EDM
∗

translating the preference information provided by the DM where δ = 10−4, we
solve the linear programming problems shown in Section 3, getting the following
necessary preference information:

�N= {(a, e), (a, f), (a, h), (b, d), (b, e), (c, h), (d, f), (d, b), (d, e)}∪{(x, x) :x ∈ A}.
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For example, by solving the optimization problem

ε∗ = max ε, s.t.

U(e) ≥ U(a) + ε,

EDM
∗ ∪ E

}

where E is the set of normalization and monotonicity constraints defined in
Section 2, we get ε∗ = 0 and, consequently, a �N e.

Observe that in this second case we get a slightly richer preference relation
in terms of pairs of alternatives from A for which necessary preference holds
(9 non-trivial pairs in this second case vs 8 non-trivial pairs in the first case),
with a smaller cognitive effort in terms of number of alternatives from A con-
sidered in the preference information (6 - a, b, c, e, f, h - in the second case vs
7 - a, b, c, d, e, f, h - in the first case).

5 Conclusions

In this paper we introduced new types of preference information in Robust Ordi-
nal Regression. More precisely we considered pairwise indifference comparisons
between real or fictitious alternatives. We believe that this new type of prefer-
ence information could permit to get a more precise induction of the DM value
function with a smaller cognitive effort. Moreover, the introduction of the new
type of preference information makes the obtained value function more faithful
because, according to the evidence of a certain number of experiments in Psy-
chology of the decision, choosing between two alternatives (corresponding to the
usual preference information) is different from matching two alternatives (corre-
sponding to the new type of preference information) since the two aspects involve
two different reasoning strategies. The results of a very first didactic example
presented in this paper seem promising, but a lot of work remains to be done.
In particular we envisage the following perspectives for the future research:

• we have to measure the advantages in terms of smaller cognitive effort and
better results of the MCDA procedure offered by the new type of preference
information;

• we have to discuss how to manage the selection of criteria to be modified
in order to get indifference in the considered pairwise comparisons between
alternatives;

• we have to verify how beneficial can be the use of the new type of prefer-
ence information in EMO procedures based on preferences, especially those
procedures based on ROR (e.g. [1–3].
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14. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multicriteria decision
analysis. European Journal of Operational Research 129(1), 1–47 (2001)
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18. Jacquet-Lagrèze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA expe-
rience. European Journal of Operational Research 130(2), 233–245 (2001)



Using Indifference Information in Robust Ordinal Regression 217

19. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value
tradeoffs. J. Wiley, New York (1993)

20. Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., Climaco, J.: Resolving
inconsistencies among constraints on the parameters of an MCDA model. European
Journal of Operational Research 147(1), 72–93 (2003)
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