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Abstract. An Active Robust Optimisation Problem (AROP) aims at
finding robust adaptable solutions, i.e. solutions that actively gain robust-
ness to environmental changes through adaptation. Existing AROP stud-
ies have considered only a single performance objective. This study
extends the Active Robust Optimisation methodology to deal with prob-
lems with more than one objective. Once multiple objectives are consid-
ered, the optimal performance for every uncertain parameter setting is a
set of configurations, offering different trade-offs between the objectives.
To evaluate and compare solutions to this type of problems, we suggest a
robustness indicator that uses a scalarising function combining the main
aims of multi-objective optimisation: proximity, diversity and pertinence.
The Active Robust Multi-objective Optimisation Problem is formulated
in this study, and an evolutionary algorithm that uses the hypervolume
measure as a scalarasing function is suggested in order to solve it. Proof-
of-concept results are demonstrated using a simplified gearbox optimisa-
tion problem for an uncertain load demand.

Keywords: Robust optimisation · Uncertainties · Multi-objective opti-
misation · Adaptation · Gearbox · Design

1 Introduction

When solving real-world optimisation problems, the physical system is repre-
sented by a model to predict the future performance of candidate solutions. As
a result, uncertainties become an inseparable part of the optimisation process,
and solutions need to be robust in addition to having good predicted perfor-
mance. A solution is considered as robust if it is less affected by the negative
effects of uncertainties.

The ability of many products to adapt to environment changes provides them
with active robustness to uncertain operating conditions. The active robust opti-
misation (ARO) methodology was suggested in order to evaluate the added value
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 141–155, 2015.
DOI: 10.1007/978-3-319-15892-1 10



142 S. Salomon et al.

of adaptability [1]. Till date, ARO dealt with improvement of a single perfor-
mance metric through adaptation. Since the majority of real-world optimisation
problems involve several, often conflicting, objectives, this study extends the
ARO methodology to deal with multi-objective optimisation problems (MOPs).

1.1 Robust Multi-objective Optimisation

A MOP can be formulated as:

min
x∈X

f(x,p), (1)

where f is a vector of performance measures, x is a vector of design variables,
X is the feasible domain defined by a set of equality and inequality constraints,
and p is a vector of parameters that cannot be determined by the designer.

Since uncertainties exist in all real-world optimisation problems, they should
be accommodated within the optimisation procedure. Uncertainties might be
epistemic, resulting from discrepancies between the model used for optimisation
and the real system, or aleatory, where the variables within the system inherently
change from unit to unit or time to time.

In their review on robust optimisation, Beyer and Sendhoff [2] classified the
sources of uncertainties as follows:

Type A uncertainties occur when the environmental parameters p are
unknown (epistemic) or may change within an expected range (aleatory).
Type B uncertainties are present when the actual values of design variables
x differ from their nominal values, identified by the optimisation procedure. The
deviation might occur upon production (manufacturing tolerances) or during
operation (deterioration).
Type C uncertainties relate to model inaccuracies in predicting the perfor-
mance f of the candidate design. This may result from an incorrect or simplified
description of the relationship between variables within the model.

If the uncertainties are not addressed during the optimisation, solution iden-
tified as ‘optimal’ may poorly perform when implemented in real life. Over the
past two decades, robust optimisation (RO) has gained increasing popularity,
with many studies aiming at identifying robust solutions rather than optimal
solutions. When formulating a robust optimisation problem, robustness crite-
ria are specified to determine how candidate solutions should be evaluated with
respect to the uncertainties involved.

We use upper case letters to distinguish random variates from deterministic
values. Whenever uncertainties of either Type A-C are concerned, the objective
vector f becomes a random variate F. In a robust optimisation scheme, the aim
is to optimise the robustness criterion I[F], that holds some information about
the distribution of F:

min
x∈X

I[F(X,P)] . (2)
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The most common robustness criteria are the worst-case scenario (e.g.,
[3–5]), and aggregated values such as the mean value or the variance (e.g., [6–9]).
Other criteria also exist, for example, the probability for the objective functions
to be better than some predefined threshold [10], a minimum confidence level
in performance [5], or performing within a predefined neighbourhood of some
nominal performance vector [8].

Most of the existing evolutionary algorithms for multi-objective RO consider
Type C uncertainties, represented by added noise to the nominal function val-
ues. The first evolutionary algorithm for robust MOPs were suggested in 2001 by
Teich [6] and Hughes [7]. Teich suggested probabilistic dominance as an alterna-
tive to the dominance relation [6]. Hughes suggested a ranking scheme based on
the sum of probabilities for each solution to be dominated [7]. Since then, sev-
eral evolutionary optimisers were designed to account for Type C uncertainties
[11–15].

Perturbation in design variables (Type B uncertainty) was addressed by
[8,16], where each design was represented by a sampled set of designs within
its neighbourhood. An algorithm aiming for reducing the amount of function
evaluations for this scheme was introduced in [9].

To our knowledge, apart from previous work by the authors [1], there are
no studies that explicitly treat Type A uncertainties with an evolutionary RO
scheme. Instead, uncertain and dynamic environments are considered in the
scope of dynamic optimisation, where the aim is to track a moving optimum, and
remain optimal as the environment changes [17]. In dynamic optimisation the
problem is deterministic, but it has to be re-solved every time the environment
changes.

1.2 Active Robust Optimisation Methodology

The ARO methodology [1], is a special case of robust optimisation, where the
product has some adjustable properties that can be modified by the user after the
optimised design has been realised. These adjustable variables allow the product
to adapt to variations of the uncontrolled parameters, so it can actively suppress
their negative effect. The methodology makes a distinction between three types
of variables: design variables x, adjustable variables y and uncertain parameters
P, which cannot be controlled. A single realised vector of uncertain parameters
from the random variate P is denoted as p.

In a single-objective robust optimisation problem with Type A uncertainties,
each realisation p is associated with a corresponding objective function value
f(x,p), and a solution x is associated with a distribution of objective function
values that correspond to the variate of the uncertain parameters P. We denote
this distribution as F (x,P). In ARO, for every realisation of the uncertain envi-
ronment, the performance also depends on the value of the adjustable variables
y, i.e., f ≡ f(x,y,p). Since the adjustable variables’ values can be selected after
p is realised, the solution can improve its performance by adapting its adjustable
variables to the new conditions. In order to evaluate the solution’s performance
according to the robust optimisation methodology, it is conceivable that the y
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vector that yields the best performance for each realisation of the uncertainties
will be selected. This can be expressed as the optimal configuration y�:

y� = argmin
y∈Y(x)

f(x,y,p), (3)

where Y(x) is the solution’s domain of adjustable variables. it is also termed as
the solution’s adaptability.

Considering the entire environmental uncertainty, a one-to-one mapping
between the scenarios in P and the optimal configurations in Y(x) can be defined
as:

Y� = argmin
y∈Y(x)

F (x,y,P). (4)

Assuming a solution will always adapt to its optimal configuration, its perfor-
mance can be described by the following variate:

F (x,P) ≡ F (x,Y�,P). (5)

Following the above, the Active Robust Opimisation Problem is formulated:

min
x∈X

I[F (x,Y�,P)] , (6a)

where: Y� = argmin
y∈Y(x)

F (x,y,P). (6b)

It is a bi-level optimisation problem. In order to compute the objective func-
tion F in Eq. (6a), the problem in Eq. (6b) has to be solved for every solution
x, with the entire environment universe P. To evaluate F , one may consider one
or more robustness criteria I[F ].

2 Methodology

This study extends the single objective AROP in Eq. (6) to the following multi-
objective formulation:

min
x∈X

I[F(x,Y�,P)] , (7a)

where: Y� = argmin
y∈Y(x)

F(x,y,P), (7b)

where argminF is defined in terms of Pareto optimality, and the underscore
notation is used to distinguish a set from a single point.

The most notable difference between Eq. (6) and Eq. (7) is that the solution
Y� in Eq. (7b) is a variate of Pareto optimal sets, rather than the variate of
a single optimal configuration in Eq. (6b). Instead of a one-to-one mapping
between P and Y�, Eq. (7b) consists of a one-to-many mapping. As a result,
Eq. (7a) minimises the variate of Pareto optimal frontiers F(x,Y�,P).
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The difference between f(x,y�,p) and f
(
x,y�,p

)
is illustrated in Fig. 1. A

candidate solution x is evaluated for two scenarios of the uncertain parameter
space P (Fig. 1(a)). The performance of the solution for every scenario p (star
or triangle) depends on its configuration y (Fig. 1(b)). In Fig. 1(c), f1 is the only
objective. All possible objective values are bounded by the solid and dashed lines
for the star and triangle scenarios, respectively. The black stars and triangles in
Figures 1(b) and 1(c) mark the optimal configuration and objective value for each
scenario (y� and f(x,y�,p), respectively). In Fig. 1(d) an additional objective
is considered. Now all possible objective values are bounded by the solid and
dashed contours, and the optimal configuration for each scenario consists of a
set rather than a single configuration, denoted by the additional white shapes.

p2

p1

(a) Uncertain
parameter space

y2

y1

(b) Configuration
space

f1

(c) One objec-
tive

f2

f1

(d) Two objectives

Fig. 1. Optimal configurations of a candidate solution x for two scenarios of the uncer-
tainties, associated with the environmental parameters

The problem in Eq. (7) is termed here as an Active Robust Multi-objective
Optimisation Problem (ARMOP). It introduces a very challenging question: How
can adaptable products be evaluated and compared according to their variates
of Pareto frontiers F(x,Y�,P)? In Section 2.1 we introduce a first attempt to
address this challenge, and suggest a set-based robustness indicator. In Section 4
we demonstrate how this indicator can be integrated into an evolutionary algo-
rithm in order to solve an ARMOP.

2.1 Evaluating a Variate of Sets

In order to evaluate a candidate solution for an ARMOP, we suggest using a
robustness criterion that quantifies the variate of Pareto frontiers with a single
scalar value. Keeping in mind there is no way to avoid the loss of meaningful
information when using a scalarising function, we strive to extract as much infor-
mation as possible regarding the quality of the trade-off surfaces F(x,Y�,P).
Following the motivation in evolutionary multiobjective optimisation (EMO),
an approximated solution to a MOP is evaluated according to three major qual-
ities [18]: proximity of the approximated front to the true Pareto front (PF),
diversity of the solutions, and pertinence to the preferred region of interest.
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One of the well-known quality indicators for approximation sets is the hyper-
volume (HV), defined as the volume of objective space enclosed by the Pareto
front and a reference point [19]. The HV measure provides an integrated measure
of proximity, diversity and pertinence, although it is sensitive to the choice of a
reference point [20]. Despite this drawback, we use it to demonstrate the concept
of the robustness indicator suggested in this study.

Hypervolume-Based Robustness Indicator. Without loss of generality, we
consider the variate P as a finite set of sampled scenarios p. The HV of solution
x for scenario p is denoted as hv(x,p). It is calculated according to the ideal
vector f∗ and the worst objective vector fw, which are the vectors with minimum
and maximum objective values, respectively, amongst all known solutions and
scenarios. The robustness indicator Ihv is derived as follows:
First, the objectives of f are normalised in a manner that supports DM’s pref-
erences (e.g., setting f∗ to zero and fw to a vector of weights between 0-1).
Next, the hypervolume hv(x,p) is calculated for each scenario p ∈ P, using
the worst objective vector as a reference point. The variate of the hypervolume
measure that corresponds to the variate P is denoted as HV (x,P).
Finally, a robustness criterion is used to evaluate the variate HV (x,P):

Ihv[F(x,P)] = I[HV (x,P)] . (8)

Since the aim is to maximise HV (x,P) and its value is bounded between 0-1,
in a minimisation problem, the complement can be used:

Ihv[F(x,P)] = I[1 − HV (x,P)] . (9)

Fig 2 demonstrates the above procedure for a population of two solutions.
Three scenarios of p are considered, where the Pareto frontiers of the two solu-
tions are depicted in stars and circles. For scenario p3, dashed contours show the
domains in objective space that include the performances of all evaluated con-
figurations. The worst objective vector is calculated according to the objective
vectors of all configurations, including non optimal ones. The variate HV

(
x ,P

)

is shown as the collection of three HVs for x .

3 Case Study – Gearbox Optimisation Problem

We demonstrate our approach with a gearbox optimisation task for an uncertain
load demand. A load with inertia JL needs to be rotated at speed ωL with a
torque τL. All of the load parameters above may vary within known intervals.
The torque is transmitted to the load from a geared motor system consisting of
a DC motor and a two staged transmission with five gears. The gearbox optimi-
sation problem, formulated as an ARMOP, searches for the number of teeth in
each gear to minimise energy consumption and acceleration time. The system is
evaluated at both steady state, i.e., operating at the load-speed scenarios (which
are uncertain), and during transient conditions when accelerating from rest to
each scenario. Three objectives are considered: power consumption in steady
state (P ), energy required to accelerate to steady state speed (E), and time to
accelerate to steady state speed (T ).
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Fig. 2. Pareto frontiers F(x,Y�,P) of two solutions (x and x◦) for three scenarios.
The ideal vector is marked with a black triangle and the worst objective vector with a
white triangle. The hypervolumes hv

(
x ,p1

)
, hv
(
x ,p2

)
and hv

(
x ,p3

)
are shown

in the figure.

3.1 Mathematical Model

The variables and parameters of the motor and gear system are described in
Table 1. The values are based on the Maxon A-max 32 DC motor specifications.

At steady state, the power consumption of a geared DC motor is [21]:

P = V ∗ I, (10a)

where: I =

(
JL + Jg + n2

2Jl + n2Jm

)
ω̇ +

(
νg + n2νm

)
ω + τ

nkt
, (10b)

V = RI + nkvω. (10c)

When the load is accelerated from rest, it is possible to calculate the speed
trajectory, for given trajectories of input voltage and speed reduction, by solving
the following differential equation:

ω̇(t) =
n(t)ktV (t) − n(t)2kvktω(t)

(
JL + Jg + n2(t)

2
Jl + n(t)2Jm

)
R

−

(
νg + n(t)2νm

)
ω(t) + τ

JL + Jg + n2(t)
2
Jl + n(t)2Jm

,

(11)

where ω(0) = 0 is used as a starting condition.
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Table 1. Variables and parameters for the gearbox ARMOP

Type Variable/ Symbol Units Lower Upper
Parameter limit limit

x no. of teeth zg 19 61

y gear no. i 1 5
input voltage V V 0 12

p load speed ω s−1 16.5 295
load torque τ Nm·10−3 10 260
load inertia JL Kg·m2 · 10−3 5 10
velocity constant kv V·s·10−3 24.3
torque constant kt Nm·A−1 · 10−3 24.3
armature resistance R Ω 2.23
motor damping coefficient νm Nm·s·10−6 3.16
motor inertia Jm Kg·m2 · 10−6 4.17
max nominal current Inom A 1.8
gear damping coefficient νg Nm·s·10−6 30
first reduction ratio n1 3.21
transmission no. of teeth Nt 80
maximum acceleration time tmax s 20

derived armature current I A 0 5.39
second reduction ratio n2 0.311 3.21
total reduction ratio n 1 10.3
layshaft inertia Jl Kg·m2 · 10−6 15.9 64.5
load shaft inertia Jg Kg·m2 · 10−6 5.21 53.7

The total energy required for acceleration E can be derived from Eq. (10):

E =
∫ T

0

V (t)
(
V (t) − n(t)kvω(t)

)

R
dt, (12)

where T is the time ω reaches the required speed.

3.2 Problem Formulation

According to the ARO methodology, introduced in Section 1.2, the problem
variables are sorted in Table 1 to three types: x, y and p. Most of the parameters
in this problem are considered as having deterministic values, but some (ω, τ and
JL) possess uncertain values. The random variates of ω, τ and JL are denoted
as Ω, T and JL, respectively. The resulting variate of p is denoted as P.

A gearbox is required to perform well both in steady state and during
acceleration. These two requirements can be considered as different operation
modes, with different configuration spaces. The configuration space in steady
state includes the choice of the gear i and the input voltage V . During accelera-
tion, it consists of trajectories in time of i(t) and V (t). Therefore, the search for
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the optimal configuration can be separated to y�
ss that minimises P , and to y�

t

that minimises E and T . Since the latter is a solution to a MOP, it is expected
to be a set. The variates of y�

ss and y�
t that correspond to the variate P, are

denoted as Y�
ss and Y�

t , respectively.
Following the above, the AROP is formulated:

min
x∈X

[
P (x,Y�

ss,P), E
(
x,Y�

t ,P
)
, T

(
x,Y�

t ,P
)]

, (13a)

where : Y�
ss = argmin

y∈Y(x)

P (y,P), (13b)

Y�
t = argmin

y∈Y(x)

[E(y,P), T (y,P)] , (13c)

x = [zi] , i = 1, . . . , 5, (13d)
y = [i, V ] , (13e)
P = [Ω, T ,JL, kv, kt, R, νm, Inom, νg, n1, Nt, Jm, Jl, JG, tmax] , (13f)

s.t. : zg,i + zl,i = Nt, i = 1, . . . , 5, (13g)
Iss ≤ Inom, (13h)
T ≤ tmax. (13i)

The steady state current constraint is evaluated according to Eq. (10b), and the
objectives according to Equations (10a), (11) and (12).

Since the ARMOP consists of separable configuration spaces, it can be decou-
pled into two subproblems, one that searches for Y�

ss and P (x,Y�
ss,P), and

another that searches for Y�
t and

[
E

(
x,Y�

t ,P
)
, T

(
x,Y�

t ,P
)]

. The former prob-
lem is a single-objective AROP, and the latter is an ARMOP. Using robustness
indicators, Eq. (13a) can be converted to the following bi-objective problem that
simultaneously minimises the steady-state AROP and the transient ARMOP:

min
x∈X

[

I
[
P (x,Y�

ss,P)
]
, Ihv

[
E

(
x,Y�

t ,P
)
, T

(
x,Y�

t ,P
)]

]

. (14)

4 Optimiser Design

The problem was solved by a bi-level EMOA whose structure is described in
Algorithm 1.

First, the uncertain domain is sampled Np times. These samples serve as the
same representation of uncertainties to evaluate all solutions.

Next, Eq. (13b) is solved for the entire design space, and Y�
ss and P (x,Y�

ss,P)
are stored in an archive for every feasible solution. It is possible to find the opti-
mal steady-state configuration of every solution for all sampled load scenarios
because the design space is discrete and the objective and constraints are simple
expressions. The search space consists of 962,598 different combinations of gears
(choice of 5 gears from 43 possibilities). The constraints and objective functions
depend on the number of teeth z, so they only have to be evaluated 43 times
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for each of the sampled scenarios. A feasible solution is a gearbox that has at
least one gear that does not violate the constraints for each of the scenarios (i.e.,
I ≤ Inom and V ≤ Vmax).

Next, a multi-objective search is conducted amongst the feasible solutions
to solve Eq. (14). The solutions to Eq. (13c) for every sampled scenario are
obtained by the evolutionary algorithm described in Section 4.1. The solutions
to Eq. (13b) are already stored in an archive.

Algorithm 1.. Pseudo algorithm for solving the ARMOP
sample the uncertain domain
evaluate all possible solutions for steady state (s.s)
initialise nadir and ideal points for transient objectives (limits)
generate an initial population
while stopping criterion not satisfied do

for every scenario do
for every new solution do

optimise for time–energy and store PF
end for

end for
if limits have changed then

update limits
calculate HV of entire population

else
calculate HV of new feasible solutions

end if
assign scalar indicator values for s.s and transient
evolve new population (selection, cross-over and mutation)
re-mutate solutions that were already evaluated / infeasible for s.s

end while

4.1 EMOA for Identifying Optimal Gearing Sequences

For every load scenario, a multi-objective optimisation is conducted for each
candidate solution to identify the optimal shift sequence that minimises energy
and acceleration time. Early experiments revealed that maximum voltage results
in better values for both objectives, regardless of the candidate solution or the
load scenario. Therefore, the input voltage was considered as constant Vmax, and
the only search variable is i(t), the selected gear at time t. A certain trajectory
i(t) results in a gearing ratio trajectory n(t) that depends on the gearbox x that
is being evaluated.

The trajectory i(t) is coded as a vector of time intervals dt = [dt1, . . . ,dtN ]
defining the duration of each gear in the sequence from first gear to the N th,
with N being the optimal gear at steady state for the load scenario under
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consideration. The sum of all time intervals is equal to tmax, and this relation is
enforced whenever a new solution is created by setting:

dt ← dt
‖dt‖1

tmax. (15)

Plugging n(t) into Eq. (11) results in a trajectory ω(t), which can be used to
calculate E, T or whether the gearbox failed to reach the desired speed before
tmax. A multi-objective evolutionary algorithm was used to estimate:

y�
t = argmin

n(t)

[E(x, n(t),p), T (x, n(t),p)] , (16)

where both x and p are fixed during the entire optimisation run.
Solving the differential equation (11) repeatedly to obtain y�

t is the most
expensive part of the algorithm in terms of computational resources. Therefore,
all of the solutions to (16) are stored in an archive to avoid repeated computa-
tions.

4.2 Calculating the Set-Based Robustness Indicator

The ARMOP’s indicator Ihv uses a dynamic reference point. At every genera-
tion, after the approximated Pareto frontiers F(x,Y�,P) are identified for all
evaluated solutions, the ideal and worst objective vectors are re-evaluated to
include the objective vectors of the new solutions. If neither the ideal nor the
worst objective vectors have changed, Ihv is calculated only for the recently eval-
uated solutions according to the procedure described in Section 2.1. Otherwise,
the indicator values of the entire current population are recalculated as well, in
order to allow for fair comparisons between new and old candidate solutions.
No preferences were considered in this case study, hence, the objectives were
normalised by setting fw to one.

5 Simulation Results

5.1 Parameter Setting

The ARMOP described in Section 3 was solved with the proposed evolutionary
algorithm. Two robustness criteria were considered: Iw considers the worst case
scenario, meaning the upper limits of the uncertain load parameters, as given
in Table 1. Im considers the mean value over a set of sampled load scenarios.
For both cases the same criterion was used for the steady state and transient
indicators of Eq. 14, i.e., either Iw and Iw

hv or Im and Im
hv.

A standard elitist MOEA [22] with a fixed number of generations was used
for both stages of the problem (referred to as outer and inner).
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Parameter setting of the outer algorithm: population size N = 100, 50 genera-
tions, integer coded, One-point crossover with crossover rate pc = 1, polynomial
mutation with mutation rate pm = 1/nx = 0.2 and distribution index ηm = 20.
Parameter setting of the inner algorithm: population size N = 50, 30 gener-
ations, real coded, SBX crossover with crossover rate pc = 1 and distribution
index ηc = 15, polynomial mutation with mutation rate pm = 1/ny = 0.2 and
distribution index ηm = 20.

Both stages used sequential tournament selection, considering constraint vio-
lation, non-dominance rank and niche count, and had an elite population size
of NE = 0.4N . The uncertain load domain was sampled 25 times using Latin
hypercube sampling.

5.2 Results

The approximated Pareto frontiers for both worst-case and mean-value criteria
are depicted in Fig. 3. For the worst-case criterion, the PS consists of only two,
almost identical, solutions. In a close-up view on the approximated PF for mean
performance, the extreme solutions are marked as A and B. Mean performances
of the approximated Pareto set for the worst-case problem are also shown.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14

Imhv [T, E]

I
m
[P

]
[W

]

mean
worst−case

0.3 0.35

5.58

5.63

5.68
A

B

Fig. 3. Approximated Pareto frontiers for the worst-case and mean-value criteria. A
close-up of the robust mean Pareto front is shown with the extreme solutions marked
as A and B, and the mean performance of the approximated set according to Iw.

Details on the solutions for both robustness criteria are summarised in Table 2.
Note the similarity in both design and objective spaces between the two solu-
tions of the worst-case problem, and the difference between Solutions A and B.
Also note that the best solutions found for a certain robustness criterion, are
dominated for another. Solution B performs well in most steady state scenarios,
since it has a large variety of high gears (small reduction ratio), but its ability
to efficiently accelerate the load is limited from the same reason. Solution B
becomes infeasible when the worst-case is considered. This was not detected
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Table 2. Optimisation Results

Goal Solu- Reduction Ratios Im [P ] Im

hv [T,E] Iw [P ] Iw

hv [T,E]

tion 1st 2nd 3rd 4th 5th

Im A 9.02 4.34 2.62 1.93 1.30 5.672 0.2857 13.10 0.9631
B 2.76 2.25 1.92 1.73 1.64 5.577 0.3481 infeasible

Iw 7.06 3.38 2.14 1.55 1.14 5.649 0.2896 12.30 0.9511
7.49 3.38 2.03 1.46 1.14 5.660 0.2899 12.52 0.9510

0 5 10 15 20
0

200

400

600

T [s]

E
[J
]

A
B

Fig. 4. Approximated Pareto frontiers F(x,Y�,P) of two solutions (A and B) for three
scenarios (of 25). Solution A dominates Solution B in all evaluated scenarios.

while optimising for the mean value since the worst-case scenario was not sam-
pled. This result highlights the impact of the choice of robustness criterion, and
the challenge in optimising for the worst-case (see [3]).

The dynamic performances of Solutions A and B for three load scenarios are
depicted in Fig 4. Solution A’s superiority for both dynamic objectives is well
captured by the Ihv indicator values.

6 Discussion and Future Work

This study introduced a new optimisation problem, the Active Robust Multi-
objective Optimisation Problem. It enables a designer to examine the effective-
ness of design adaptability to improve performance in an uncertain environment.
The ARMOP introduces several challenges, some of which were addressed in this
study, and others which need to be further explored.

The approach taken in this study to solve an ARMOP is to use a scalarising
function to represent the variate of Pareto frontiers of every candidate solution.
This approach was found useful for the gearbox case study – solutions with better
Pareto frontiers were assigned with a better indicator value. However, whenever
a set is represented by a scalar value, some of its information must be lost. As
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a result, setting a robustness criterion for the utility indicator value does not
automatically imply that the individual objectives will also be robust.

Being a bi-level optimisation problem, an AROP requires many function eval-
uations. An ARMOP is even harder to solve, because the inner problem is a MOP.
The strategy for obtaining robust solutions taken in this study was based on Monte
Carlo simulations to represent theuncertain variables.This representation requires
a large set of samples to adequately capture the nature of the uncertainties involve,
and to gain confidence in the robustness of the obtained solutions. Due to limited
computational resources, the approachwasdemonstrated in this studywith a small
set of sampled scenarios, only to provide a proof of concept. Even for these mini-
mal optimiser settings, almost 70 million function evaluations were conducted. It
took approximately three days to compute on a 3.40GHz Intel� CoreTM i7-4930K
CPU, running Matlab� on 12 cores.

Future research should explore other representations of the uncertainties that
involve more efficient sampling approaches and use of a-priori knowledge; as well as
optimisation algorithms for expensive function evaluations.Alternative scalarising
functions, and their effects on the optimisation results, should also be explored.
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17. Cruz, C., González, J.R., Pelta, D.A.: Optimization in Dynamic Environments: A
Survey on Problems, Methods and Measures. Soft Computing 15(7), 1427–1448
(2011)

18. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engi-
neering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler,
E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)

19. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. Phd dissertation, Swiss Federal Institute of Technology Zurich
(1999)

20. Knowles, J.,Corne,D.:Onmetrics for comparingnondominated sets. In:Proceedings
of the 2002 Congress on Evolutionary Computation, CEC 2002, pp. 711–716. IEEE
(2002)

21. Krishnan, R.: Electric Motor Drives - Modeling, Analysis, And Control. Prentice
Hall (2001)

22. Salomon, S., Avigad, G., Goldvard, A., Schütze, O.: PSA – a new scalable space
partition based selection algorithm for MOEAs. In: Schütze, O., Coello Coello,
C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.)
EVOLVE - A Bridge between Probability. AISC, vol. 175, pp. 137–151. Springer,
Heidelberg (2012)


	An Evolutionary Approach to Active Robust Multiobjective Optimisation
	1 Introduction
	1.1 Robust Multi-objective Optimisation
	1.2 Active Robust Optimisation Methodology

	2 Methodology
	2.1 Evaluating a Variate of Sets

	3 Case Study -- Gearbox Optimisation Problem
	3.1 Mathematical Model
	3.2 Problem Formulation

	4 Optimiser Design
	4.1 EMOA for Identifying Optimal Gearing Sequences
	4.2 Calculating the Set-Based Robustness Indicator

	5 Simulation Results
	5.1 Parameter Setting
	5.2 Results

	6 Discussion and Future Work
	References


