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Preface

EMO is a biennial international conference series devoted to the theory and practice of
evolutionary multi-criterion optimization.

The first EMO took place in 2001 in Zürich (Switzerland), with later conferences
taking place in Faro (Portugal) in 2003, Guanajuato (Mexico) in 2005, Matsushima-
Sendai (Japan) in 2007, Nantes (France) in 2009, Ouro Preto (Brazil) in 2011, and
Sheffield (UK) in 2013. The proceedings of this series of conferences have been pub-
lished as a volume in Lecture Notes in Computer Science (LNCS), respectively, in
volumes 1993, 2632, 3410, 4403, 5467, 6576, and 7811.

The 8th International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2015) took place in Guimarães, Portugal, from March 29 to April 1, 2015. The
event was organized by the University of Minho. Following the success of the two pre-
vious EMO conferences, a special track was offered aiming to foster further cooperation
between the EMO and the multiple criteria decision making (MCDM). Also, a special
track on real-world applications (RWA) was endorsed.

EMO 2015 received 90 full-length papers, which were submitted to a rigorous
single-blind peer-review process, with a minimum of three referees per paper. Follow-
ing this process, a total of 68 papers were accepted for presentation and publication in
this volume, from which 40 were chosen for oral and 24 for poster presentation. The
selected papers were distributed through the different tracks as follows: 46 main track,
6 MCDM track, and 16 RWA track.

The conference benefitted from the presentations of plenary speakers on research
subjects fundamental to the EMO field: Thomas Stüetzle, from the IRIDIA laboratory
of Université libre de Bruxelles (ULB), Belgium; Murat Köksalan, from the Industrial
Engineering Department of Middle East Technical University, Ankara, Turkey; Luís
Santos, from the University of São Paulo and Embraer, Brazil; Carlos Fonseca, from
the University of Coimbra, Portugal.

From the beginning, this conference provided significant advances in relevant sub-
jects of evolutionary multi-criteria optimization. This event aimed to continue these
type of developments, being the papers presented focused on: theoretical aspects, algo-
rithms development, many-objectives optimization, robustness and optimization under
uncertainty, performance indicators, multiple criteria decision making, and real-world
applications.

Finally, we would express our gratitude to the plenary speakers for accepting our in-
vitation, to all the authors who submitted their work, to the members of the International
Program Committee for their hard work, to the members of the Organizing Committee,
particularly Lino Costa, and to the Track Chairs Kaisa Miettinen, Salvatore Greco, and
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Robin Purshouse. We would like to acknowledge the support of the School of Engineer-
ing of the University of Minho. We would also like to thank Alfred Hofmann and Anna
Kramer at Springer for their support in publishing these proceedings.

March 2015 António Gaspar-Cunha
Carlos Henggeler Antunes

Carlos Coello Coello
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Abstract. In this paper, we propose a new multi-objective evolution-
ary algorithm (MOEA), which transforms a multi-objective optimization
problem into a linear assignment problem using a set of weight vectors
uniformly scattered. Our approach adopts uniform design to obtain the
set of weights and Kuhn-Munkres’ (Hungarian) algorithm to solve the
assignment problem. Differential evolution is used as our search engine,
giving rise to the so-called Hungarian Differential Evolution algorithm
(HDE). Our proposed approach is compared with respect to a MOEA
based on decomposition (MOEA/D) and with respect to an indicator-
based
MOEA (the S metric selection Evolutionary Multi-Objective Algorithm,
SMS- EMOA) using several test problems (taken from the specialized
literature) having from two to ten objective functions. Our prelimi-
nary experimental results indicate that our proposed HDE outperforms
MOEA/D and is competitive with respect to SMS-EMOA, but at a sig-
nificantly lower computational cost.

Keywords: Many-objective optimization · Multi-Objective Evolutioanry
Algorithms · Kuhn-Munkres algorithm

1 Introduction

A large number of problems that arise in academic and industrial areas have
several conflicting objectives that need to be optimized simultaneously [7]; they
are called multi-objective optimization problems (MOPs). The most commonly
adopted notion of optimum in multi-objective optimization is Pareto optimal-
ity, which refers to finding the best possible trade-offs among the objectives
of a multi-objective problem. These trade-off solutions constitute the so-called
Pareto optimal set. The image of the Pareto optimal set is called the Pareto
front. Among the different techniques available to solve MOPs, multi-objective
evolutionary algorithms (MOEAs) have become very popular, mainly because of
their flexibility and ease of use. Modern MOEAs normally aim at producing, in
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a single run, several different solutions, which are as close as possible to the true
Pareto front [7]. For several years, MOEAs adopted a selection mechanism based
on Pareto optimality. However, in recent years, it was found that Pareto-based
MOEAs cannot properly differentiate individuals when dealing with problems
having four or more objectives (the so-called many-objective optimization prob-
lems [13]). This has motivated the development of alternative selection schemes
from which the use of performance indicators has been (until now) the most
popular choice [26]. When using indicator-based selection, the idea is to identify
the solutions that contribute the most to the improvement of the performance
indicator adopted in the selection mechanism.

From the several performance indicators currently available, the hypervolume
[24]hasbecomethemostpopular choice for implementing indicator-basedMOEAs,
mainly because of its good theoretical properties [5]. The hypervolume is the only
unary indicator that is known to be Pareto compliant and it has been proved that
its maximization is equivalent to finding the Pareto optimal set [11]. However, the
main disadvantage of adopting this indicator is that the best algorithms known to
compute the hypervolumehave a computational costwhich grows exponentially on
the number of objectives [4]. Although some researchers have proposed schemes to
approximate the hypervolume contributions at an affordable computational cost
(see for example [1]), the performance of such approaches seems to degrade very
quickly in high dimensionality at the expense of reducing their computational cost.
This has motivated the development of other selection schemes based on different
performance indicators (see for example [6]).

On the other hand, MOEAs based on decomposition have also become pop-
ular in recent years. Perhaps, MOEA/D is the most popular MOEA based on
decomposition. This algorithm decomposes the MOP into N scalar optimization
subproblems and it solves these subproblems simultaneously using an evolution-
ary algorithm. MOEA/D has shown to be a good alternative to solve MOPs
with low or high dimensionality (regarding objetive function space). However,
MOEA/D has two important disadvantages. The first is that it generates a new
solution from a unique neighborhood, i.e., the new solution cannot be gener-
ated from individuals of different neighborhoods. And, the second is that a new
solution with a high fitness can replace several solutions, and then, the popula-
tion can lose diversity, see Figure 1. Li and Zhang proposed in [16] a variant of
MOEA/D and they called it “MOEA/D-DE”. This proposal allows that a new
individual will be generated from individuals of different neighborhoods. Also,
it restricts the number of solutions that can be replaced by the same individual.
However, both proposals MOEA/D and MOEA/D-DE generate a new solution,
and then, they look in which subproblem the new solution is better than the
current solution but they do not consider the case where the solution which was
replaced could improve the solution of another subproblem, i.e, both algorithms
assign the best individual to each subproblem in an independent way, without
considering the best assignment globally. Figure 2 shows the assignment made by
MOEA/D and MOEA/D-DE and Figure 3 shows the global optimal assignment.
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Fig. 1. Disadvantage of MOEA/D when it replaces the solutions. For each weight
vector wi, i = 1, 2, 3, 4, the solution x5 has the highest utility value. Therefore, x5 is
the best solution of the four subproblems.
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Fig. 2. The new solution x5 is assigned to the subproblem w2, therefore, the solution
x2 is replaced by x5. It is important to note that the solution x2 is better than solution
x1 for the subproblem w1. However, MOEA/D and MOEA/D-DE eliminate x2.
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Fig. 3. The new solution x5 is assigned to the subproblem w2 and the solution x2 is
assigned to the subproblem w1. Therefore, the solution x1 is eliminated.

In this paper, we propose the use of an approach that is conceptually closer
to MOEA/D, but that, instead of doing a scalarization, it transforms the original
MOP into an assignment problem. Uniform design is adopted to obtain the set
of weights, and the Kuhn-Munkres (Hungarian) algorithm [15] is used to solve
the resulting assignment problem. The search engine of our proposed approach is
differential evolution [19], which has been found to be a competitive search engine
for single-objective optimization. As we will see later on, our results indicate that
our proposed approach is very promising, particularly for solving many-objective
optimization problems.

The remainder of this paper is organized as follows. The Kuhn-Munkres
algorithm is described in Section 2 and in Section 3 we describe in detail our
proposed approach. The experiments performed and the results obtained are
described and discussed in Section 4. Finally, our conclusions and some possible
paths for future work are briefly discussed in Section 5.

2 Kuhn-Munkres Algorithm

The matching or assignment problem is a fundamental class of combinatorial
optimization problems. In its most general form, an assignment problem can be
stated as follows: a number n of agents and a number m of tasks are given,
possibly with some restrictions on which agents can perform each particular
task. A cost is incurred for each agent performing some task, and the goal is
to perform all tasks in such a way that the total cost of the assignment is
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minimized [15]. The Linear Assignment Problem (LAP) is the simplest of the
assignment problems. In the canonical LAP, the number of agents and tasks is
the same, and any agent can be assigned to perform any task. Formally, LAP
can be formulated as follows.

Definition 1. Given a set of agents A = {a1, ..., an}, a set with the same num-
ber of tasks T = {t1, ..., tn} and the cost function C : A × T → R, and let
Φ : A → T the set of all possible bijections between A and T

minimize
φ∈Φ

∑

a∈A

C(a, φ(a)) (1)

Usually, the cost function is also viewed as a squared real-valued matrix C
with elements Cij = C(ai, tj), and the set Φ of all possible bijections between
A and T as a set of assignment matrices X . The LAP can be expressed as an
integer linear program:

minimize
x∈X

n∑

i=1

n∑

j=1

Cijxij

subject to:
n∑

i=1

xij = 1, ∀j ∈ {1, .., n},

n∑

j=1

xij ≤ 1, ∀i ∈ {1, ..., n},

xij ∈ {0, 1}, ∀i, j ∈ {1, ..., n}

(2)

In 1955, Harold W. Kuhn [15] proposed an algorithm for constructing a max-
imum weight perfect matching in a bipartite graph. His pioneering work in this
area, is a combinatorial optimization algorithm that solves the assignment problem
in polynomial time. Kuhn explained how the works of two Hungarian mathemati-
cians, D. König and E. Egerváry, had contributed to the invention of his algorithm,
which is the reason why he called it the Hungarian Method. James Munkres [17]
reviewedKuhn’swork in 1957 andmade several important contributions to the the-
oretical aspects of the algorithm. Munkres found that the algorithm is (strongly)
polynomial and proposed an improved version of O(n3). The contribution of
Munkres to the development of the Hungarian algorithm has led to the algorithm
which is being referred to as the Kuhn-Munkres algorithm. An extension of this
algorithm for rectangular matrices was introduced by Bourgeois and Lassalle in
1971 [3]. The extension to rectangular matrices allows the algorithm to operate in
assignment problems where the numbers of agents and tasks are unequal.

3 Our Proposed Approach

We propose here an alternative selection mechanism for MOEAs which is not
based on Pareto dominance or on any performance indicator. The main motiva-
tion of this work is to avoid the scalability problems of Pareto-based selection



8 J.A. Molinet Berenguer and C.A. Coello Coello

schemes as well as the excessive computational cost of adopting the hypervolume
contribution for selecting solutions. The algorithm presented here transforms the
selection process into a linear assignment problem, which is solved using Kuhn-
Munkres algorithm. As we will see, the solution of this LAP allows convergence
towards the true Pareto front and, at the same time, a good distribution of solu-
tions along the Pareto front. The proposed MOEA adopts the recombination
operators of differential evolution to create new individuals at each generation
and the Hungarian algorithm in its selection scheme. Because of this, our pro-
posed approach is called Hungarian Differential Evolution (HDE).

At each gth generation of the HDE algorithm we have a parent population
Pg of n individuals and a population P ∗

g of n offspring obtained from Pg. Let
Qg = Pg ∪ P ∗

g be the set of 2n solutions in the gth generation. Then, a linear
assignment problem is created using the k-dimensional objective vectors from Qg

and n weight vectors uniformly spread in objective function space. In the context
of a selection mechanism for MOEAs, a LAP can be understood as follows: we
have 2n individuals and n vectors well-distributed in the (k −1)-dimensional unit
simplex of the objective space. A cost is incurred for each individual representing
some vector in the Pareto Front approximation. The goal is to describe all regions
covered by the n vectors using only n individuals in such a way that the total cost
of the assignment is minimized. The main task is how to construct a cost matrix
such that it minimizes the total cost involved in retaining the solutions which are
a good approximation of the Pareto Front. This procedure is described next.

First, the 2n vectors of objective values in Qg are normalized to reduce the
current objective space to a unit hypercube, so that we can deal with non-
commensurable objective functions. The maximum z max and minimal z min

vectors are calculated for this purpose.

z max = [zmax
1 , ..., zmax

k ]T , zmax
i = max

j=1,...,2n
fi(xj), i = 1, ..., k,

z min = [zmin
1 , ..., zmin

k ]T , zmin
i = min

j=1,...,2n
fi(xj), i = 1, ..., k,

(3)

where fi(xj) is the ith objective value of the jth individual in Qg, and its nor-
malized value fi(xj) is calculated as:

f̃i(xj) =
fi(xj) − zmin

i

zmax
i − zmin

i

, j = 1, ..., 2n, i = 1, ..., k. (4)

Let W be a set of n weight vectors uniformly scattered in objective space.

W ⊂ W = {w | w ∈ [0, 1]k,

k∑

i=1

wi = 1}, |W | = n, (5)

The cost Crj of assigning the individual xj to the weight vector wr is given by:

Crj = max
i=1,...,k

wri × f̃i(xj), r = 1, ..., n, j = 1, ..., 2n. (6)
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Algorithm 1. Hungarian Differential Evolution (HDE)
Input : MOP, population size (n), maximum number of generations (gmax),

parameters Cr and F for DE/rand/1/bin
Output: Pgmax (approximation of the P∗ and PF∗)

1 Generate initial population P1 randomly;
2 Evaluate each individual in P1;
3 W ← Generate n weight vectors using Algorithm 2;
4 for g = 1 to gmax do
5 P ∗

g ← Generate offspring using Pg and DE/rand/1/bin;
6 Evaluate each individual in P ∗

g ;
7 Qg ← Pg ∪ P ∗

g ;

8 Calculate z max and z min by (3) Normalize objectives of each individual in
Qg by (4);

9 Generate the cost matrix C by (6) using Qg and W ;
10 I ← Obtain the best assignment in C using the Hungarian Method;
11 Pg+1 ← {xi | i ∈ I , xi ∈ Qg};

12 end

The matrix C indicates how each individual is suitable to represent each
region of the Pareto Front approximation. The solution to our assignment prob-
lem is found by identifying the combination of values in C resulting in the
smallest sum, subject to certain constraints. These conditions are:

1. Exactly one value must be chosen in each row; this ensures that only one
individual is assigned to each position on the Pareto Front.

2. At most one value can be selected in each column; this ensures that no
individual is assigned to more than one position.

The matrix C and the two above constraints are formally represented by (2)
as a linear programming problem. The solution to this problem is obtained by
the extended Kuhn-Munkres algorithm for rectangular matrices, presented in
Section 2. The matrix that solves (2) represents the individuals assigned to each
weight vector such that it minimizes the total cost of the assignment, allowing to
retain the best n individuals to approximate the Pareto Front. The pseudo-code
of our proposed approach is depicted in Algorithm 1.

3.1 Generation of Weight Vectors Using Uniform Design

There exist several MOEAs [8,18,23] that require a set of weight vectors uni-
formly scattered on the (k − 1)-unit simplex to obtain solutions along the entire
Pareto Front in a k-objective optimization problem. A variety of methods to
obtain an evenly distributed subset of weights in a simplex are available in the
specialized literature [10]. The simplex-lattice design method [20] is the app-
roach that has been the most commonly adopted in MOEAs. However, at least
three problems can be identified in this method [10]. First, the weight vectors
are not very uniformly distributed. Second, there are too many vectors at the
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boundary of the domain. Furthermore, the number of vectors generated increases
nonlinearly with the number of objectives. That is, if H divisions are considered
along each objective, the total number of weight vectors (hence the population
size) in a k-objective problem is given by:

(
H+k−1

k−1

)
. Due to this, some MOEAs

have used other methods to generate an arbitrary number of weight vectors
well-distributed over a simplex. In [18] a hypervolume-based weight vector gen-
eration is proposed. This method produces well-distributed vectors maximizing
the hypervolume covered by them in objective space. A different idea was pro-
posed in [21], where the uniform design (UD) [10] and good lattice point (glp) [14]
methods are combined to set the weight vectors. Nevertheless, both the hyper-
volume and the glp method have a high computational cost when the number of
objectives grows.

Uniform design is a space filling design method that seeks experimental points
to be uniformly scattered on the domain [10]. In uniform design, a set of points
is considered uniformly spread throughout the entire domain if it has a small
discrepancy, where discrepancy is a numerical measure of scatter. Fang and
Wang [10] presented different methods for generating points that can be applied
to the generation of a set of space-filling design points. Among them, we have
the good lattice point (glp) method and Hammersley method [12], both of which
are efficient quasi Monte-Carlo methods.

We propose to generate weight vectors using uniform design combined with
Hammersley method. This algorithm allows a more uniform distribution of the
weight vectors over the space than the simplex-lattice method, and the popula-
tion size neither increases nonlinearly with the number of objectives nor considers
a formulaic setting. Additionally, Hammersley method provides a set of design
points with low discrepancy similar to the glp method, but at a much lower
computational cost [10].

The Hammersley method is based on the p-adic representation of natural
numbers: Any positive integer m can be uniquely expressed using a prime base
p ≥ 2 as

m =
r∑

i=0

bi × pi, 0 ≤ bi ≤ p − 1, i = 0, . . . , r, (7)

where pr ≤ m < pr+1. Then, for any integer m ≥ 1 with representation (7), let

yp(m) =
r∑

i=0

bi × p−(i+1), (8)

where yp(m) ∈ (0, 1) and is known as the radical inverse of m base p. Let k ≥ 2
and p1, . . . , pk−1 be k−1 distinct prime numbers, the Hammersley set consisting
of n points uniformly scattered on [0, 1]k is given by

xi =
[
2i − 1

2n
, yp1(i), . . . , ypk−1(i)

]T

, i = 1, . . . , n. (9)

In [22], it was proposed to use uniform design for experiments with mixture
(UDEM) that seek points to be uniformly scattered in the domain W defined
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Algorithm 2. Generation of weight vectors
Input : number of objectives (k), number of weights (n)
Output: W (set of weight vectors with low-discrepancy)

1 p ← array with the first k − 2 prime numbers;
2 U ← ∅;
3 for i = 1 to n do
4 ui1 ← (2i − 1)/2n;
5 for j = 2 to k − 1 do
6 uij ← 0;
7 f ← 1/pj−1;
8 d ← i;
9 while d > 0 do

10 uij ← uij + f × (d mod pj−1);
11 d ← �d/pj−1�;
12 f ← f/pj−1;

13 end

14 end
15 U ← U ∪ {u};

16 end
17 W ← Apply the transformation (10) to U ;

by (5). They employed the transformation method for the construction of such
uniform design. This method requires a set of vectors U = {ui = [ui1, ..., ui(k−1)]T ,

i = 1, ..., n} ⊂ [0, 1]k−1 with small discrepancy. In our proposal, the Hammersley
method is used to obtain U and then to apply the transformation

wti = (1 − u
1

k−i

ti )
i−1∏

j=1

u
1

k−j

tj , i = 1, ..., k − 1,

wtk =
k−1∏

j=1

u
1

k−j

tj , t = 1, ..., n.

(10)

Then {wt = [wti, ..., wtk]T , t = 1, ..., n} is a uniform design on W. The pseudocode
of the algorithm used to generate weight vectors is presented in Algorithm 2.

4 Experimental Results

We validated our proposed HDE comparing its performance with respect to two
MOEAs representative of the state-of-the-art in the area: the multi-objective evo-
lutionary algorithm based on decomposition [23] (MOEA/D) and the S metric
selection Evolutionary Multi-Objective Algorithm [2] (SMS-EMOA). Since the
SMS-EMOA requires a considerably large amount of computational time in prob-
lems with more than five objectives, we also include in this comparative study a
version of this MOEA (called appSMS-EMOA) that uses the algorithm proposed
in [1] to approximate the hypervolume contributions using Monte Carlo sampling.
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In our experiments, we adopted 12 test problems, consisting of five bi-objective
problems taken from the Zitzler-Deb-Thiele (ZDT) test suite [25] and seven test
problems having from two to ten objective functions taken from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [9]. In the problems ZDT1-3 the number of
decision variables is 30; ZDT4 and ZDT6 have 10 variables. In the DTLZ test prob-
lems, the total number of variables is given by n = m+ k − 1, where m = 2, ..., 10
is the number of objectives and k was set to 10 for DTLZ1-6 and 20 for DTLZ7.

In order to assess the performance of each MOEA, we selected the hyper-
volume indicator as a performance measure. The hypervolume is the size of the
space covered by the Pareto optimal solutions, thus capturing both convergence
and diversity in a single value [24]. The hypervolume can differentiate between
degrees of complete outperformance of two sets [5]. To calculate the hypervolume
indicator, we used the reference points yref = [y1, · · · , ym] such that: yi = 1.1
for all the ZDT problems, and for DTLZ1, DTLZ2 and DTLZ4; yi = 3 for
DTLZ3, DTLZ5 and DTLZ6; and yi = 7 for DTLZ7. We also considered the
running time of each algorithm. Running times as a measure of computational
cost are particularly relevant when increasing the number of objectives. In order
to achieve more confident results, each MOEA was executed 30 times for each
problem instance, and we report here their average hypervolume values and their
average running times.

Our proposed HDE uses the variation operators of differential evolution
and, therefore, it uses its same parameters. The parameters adopted in our
experiments were: F = 1.0 and Cr = 0.4. The recombination operators of
MOEA/D, SMS-EMOA and appSMS-EMOA are simulated binary crossover and
polynomial-based mutation. Their corresponding parameters were set as follows:
crossover probability pc = 1.0, mutation probability pm = 1/n, where n is the
number of decision variables; the distribution indexes were set as: ηc = 20 and
ηm = 20. MOEA/D used the Tchebycheff approach with a neighborhood size of
20. The number of samples for the Monte Carlo estimation in appSMS-EMOA
was set to 104. The algorithms HDE, SMS-EMOA and appSMS-EMOA can
use an arbitrary population size, but in MOEA/D the population size increases
nonlinearly with the number of objectives. For this reason, we used different
population sizes. In the ZDT bi-objective problems the population size was set
to 100. For the DTLZ problems with 2, 3, 4 and 8 objectives, the population
size was set to 120. For problems having 5 and 6 objectives, the population size
was set to 126. Finally, for problems having 7, 9 and 10 objectives, the popu-
lation size was set to 210, 165 and 220, respectively. The maximum number of
generations adopted in the ZDT test problems was 200, and we used 300 for the
DTLZ test problems. It is important to note that SMS-EMOA was not applied
to problems with more than 5 objectives due to its high computational cost.

4.1 Discussion of Results

First, we will review our results in the ZDT test problems. Table 1 provides the
average hypervolume of each compared MOEA for each test problem. The best
results are presented inboldface. From these results, we can see that our proposed
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HDE outperformed all the other MOEAs in all the test problems, except for ZDT3,
where SMS-EMOA achieved a slightly higher hypervolume value.

Table 1. Results obtained in the ZDT test problems. We show the average hypervolume
values obtained over 30 independent runs.

Problem HDE MOEA/D appSMS-EMOA SMS-EMOA
ZDT1 0.871748 0.863668 0.868213 0.871514
ZDT2 0.538383 0.517640 0.528167 0.537282
ZDT3 1.327721 1.298709 1.296754 1.328633
ZDT4 0.833392 0.602010 0.804054 0.822489
ZDT6 0.504490 0.496180 0.487527 0.493889
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Fig. 4. Average runtime over 30 independent runs of HDE, MOEA/D, SMS-EMOA
and appSMS-EMOA in the DTLZ test suite.

In Table 2 we present the average hypervolume for the DTLZ test problems.
Figure 4 shows the average runtime for each instance of the DTLZ problems
having from two to ten objective functions. In the DTLZ1 and DTLZ3 problems,
HDE outperforms the other MOEAs for every number of objective functions.
The search space in these two problems contains (11k − 1) and (3k − 1) local
Pareto fronts, respectively (k = 10 in our experiments). This makes difficult to
converge to the true Pareto front. SMS-EMOA and appSMS-EMOA are unable
to converge to the true Pareto front in any instance of the DTLZ3 problem.
Additionally, appSMS-EMOA does not perform well in DTLZ1.
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Table 2. Results obtained in the DTLZ test problems. We show the average hyper-
volume values obtained over 30 independent runs.

No Obj. HDE MOEA/D appSMS-EMOA SMS-EMOA
DTLZ1

2 1.0833e+0 1.0662e+0 1.0286e+0 1.0487e+0
3 1.3022e+0 1.2650e+0 8.6233e–1 1.1704e+0
4 1.4565e+0 1.2713e+0 2.9529e–2 1.4536e+0
5 1.6084e+0 1.3297e+0 0.0000e+0 1.6041e+0
6 1.7605e+0 1.5175e+0 1.1103e–4 -
7 1.9466e+0 1.9416e+0 0.0000e+0 -
8 2.1435e+0 1.9369e+0 0.0000e+0 -
9 2.3579e+0 2.2682e+0 0.0000e+0 -
10 2.5937e+0 2.5592e+0 0.0000e+0 -

DTLZ2
2 4.2060e–1 4.2087e–1 4.2013e–1 4.2161e–1
3 7.3603e–1 7.1504e–1 7.4889e–1 7.6251e–1
4 9.8341e–1 8.8689e–1 1.0195e+0 1.0526e+0
5 1.2229e+0 1.1406e+0 1.2570e+0 1.3090e+0
6 1.4462e+0 1.2123e+0 1.4700e+0 -
7 1.7219e+0 1.2972e+0 1.7339e+0 -
8 1.9028e+0 1.2018e+0 1.8572e+0 -
9 2.1706e+0 1.3226e+0 2.1051e+0 -
10 2.4603e+0 1.4329e+0 2.3859e+0 -

DTLZ3
2 8.2085e+0 8.1148e+0 0.0000e+0 0.0000e+0
3 2.6404e+1 2.6067e+1 0.0000e+0 0.0000e+0
4 8.0515e+1 7.6359e+1 0.0000e+0 0.0000e+0
5 2.4260e+2 2.2909e+2 0.0000e+0 3.9658e–1
6 7.2861e+2 6.8984e+2 0.0000e+0 -
7 2.1854e+3 2.1643e+3 0.0000e+0 -
8 6.5606e+3 6.2456e+3 0.0000e+0 -
9 1.9683e+4 1.9186e+4 0.0000e+0 -
10 5.9049e+4 5.7783e+4 0.0000e+0 -

DTLZ4
2 4.2050e–1 4.2087e–1 4.2026e–1 4.2161e–1
3 7.3349e–1 7.1758e–1 7.4999e–1 7.6254e–1
4 9.8347e–1 8.8985e–1 1.0249e+0 1.0527e+0
5 1.2290e+0 1.1440e+0 1.2660e+0 1.3094e+0
6 1.4518e+0 1.3216e+0 1.4880e+0 -
7 1.7290e+0 1.4835e+0 1.7467e+0 -
8 1.9065e+0 1.3559e+0 1.8973e+0 -
9 2.1773e+0 1.4883e+0 2.1206e+0 -
10 2.4646e+0 1.5820e+0 2.4016e+0 -

Continued on next page
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Table 2. – Continued from previous page

No Obj. HDE MOEA/D appSMS-EMOA SMS-EMOA
DTLZ5

2 8.2106e+0 8.2108e+0 8.2102e+0 8.2116e+0
3 2.3979e+1 2.3967e+1 2.3985e+1 2.3990e+1
4 7.1549e+1 7.1247e+1 7.1497e+1 7.1856e+1
5 2.1419e+2 2.0875e+2 2.1385e+2 2.1567e+2
6 6.4008e+2 6.1645e+2 6.3956e+2 -
7 1.9271e+3 1.8336e+3 1.9188e+3 -
8 5.6978e+3 5.4432e+3 5.7225e+3 -
9 1.7197e+4 1.6307e+4 1.7171e+4 -
10 5.1725e+4 4.8723e+4 5.1545e+4 -

DTLZ6
2 8.2108e+0 8.0197e+0 1.1719e+0 3.1194e+0
3 2.3982e+1 2.3487e+1 2.1721e+1 2.3745e+1
4 7.1345e+1 6.9232e+1 3.7674e+1 6.7598e+1
5 2.1324e+2 1.9631e+2 3.2082e+1 1.9830e+2
6 6.3859e+2 5.7393e+2 4.7076e+0 -
7 1.9204e+3 1.7051e+3 3.5091e–1 -
8 5.6590e+3 4.9692e+3 1.0260e+0 -
9 1.7070e+4 1.5059e+4 0.0000e+0 -
10 5.1444e+4 4.4826e+4 0.0000e+0 -

DTLZ7
2 3.1881e+1 3.0554e+1 3.1881e+1 3.1884e+1
3 2.0053e+2 1.8413e+2 1.9708e+2 1.9931e+2
4 1.2267e+3 8.8240e+2 1.1081e+3 1.1598e+3
5 7.2516e+3 3.9693e+3 4.5253e+3 6.2818e+3
6 3.9558e+4 1.7243e+4 1.4071e+4 -
7 2.0094e+5 5.0926e+4 5.2148e+4 -
8 7.2712e+5 8.4243e+4 4.6362e+5 -
9 3.1360e+6 2.8190e+5 1.6500e+6 -
10 9.1999e+6 1.2141e+6 4.5446e+6 -

For DTLZ2 and DTLZ4, SMS-EMOA performs better than the other MOEAs
in instances having from two to five objectives, but its runtime is of up to 20 hours
in DTLZ2 with five objectives and it reaches up to four days in DTLZ4. appSMS-
EMOA obtains the best results in the instances with six and seven objectives,
but requires several minutes per run. In DTLZ2 and DTLZ4 with more than
seven objectives, HDE outperforms all the other algorithms and requires only
seconds per run. A similar observation can be made for the problem DTLZ5,
where SMS-EMOA obtains the best results in the instances having from two to
five objectives, whereas for more than five objectives HDE performs better than
the other MOEAs except for eight objectives.

The main feature of DTLZ5 and DTLZ6 is that the Pareto front is a curve (it
loses dimensionality). However, DTLZ6 is considered to be harder to solve than
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DTLZ5, because MOEAs tend to have more difficulties to reach the true Pareto
front with this problem. In DTLZ6, HDE outperforms the other MOEAs for all
the instances having from two to ten objectives, and appSMS-EMOA presented
a poor performance. HDE also obtained the best results in DTLZ7, which has
a disconnected Pareto front. For all instances with three objectives or more,
HDE outperformed the other algorithms; only for two objectives SMS-EMOA
achieved a slightly higher hypervolume value.

5 Conclusions and Future Work

We have proposed a novel selection scheme for MOEAs. Our approach transforms
the selection mechanism of a MOEA into an assignment problem using a set of
well-distributed points on a unit simplex. The obtained assignment problem is
solved with the Kuhn-Munkres algorithm. We have also suggested an algorithm
based on uniform design to generate a set of weight vectors more uniformly
scattered than those obtained by the simplex-lattice method. Our experimental
results indicate that our proposed HDE outperforms MOEA/D in several test
problems, and is competitive (outperforming it in several instances) with respect
to SMS-EMOA, while requiring a significantly lower computational time.

As part of our future work, we intend to study other (computationally inex-
pensive) uniform design methods to generate a set of points more uniformly
distributed. We also plan to analyze other methods for solving assignment prob-
lems at a lower computational cost.
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Abstract. Evolutionary multi- and many-objective optimization (EMO)
methods attempt to find a set of Pareto-optimal solutions, instead of a
single optimal solution. To evaluate these algorithms, performance metrics
either require the knowledge of the true Pareto-optimal solutions or, are
ad-hoc and heuristic based. In this paper, we suggest a KKT proximity
measure (KKTPM) that can provide an estimate of the proximity of a
set of trade-off solutions from the true Pareto-optimal solutions. Besides
theoretical results, the proposed KKT proximity measure is computed for
iteration-wise trade-off solutions obtained from specific EMO algorithms
on two, three, five and 10-objective optimization problems. Results amply
indicate the usefulness of the proposed KKTPM as a termination criterion
for an EMO algorithm.

Keywords: Multi-objective optimization · Evolutionary optimization ·
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1 Introduction

Multi-objective optimization problems give rise to a set of trade-off optimal solu-
tions, known as Pareto-optimal solutions [4,11,14]. In solving these problems, one
popular approach has been to first find a representative set of Pareto-optimal solu-
tions and then use higher-level information involving one or more decision-makers
to choose a preferred solution from the set. Evolutionary multi- (2 or 3-objective)
and many-objective (more than 3 objectives) optimization (EMO) methodolo-
gies follow this principle of solving multi-objective optimization problems [4] and
have received extensive attention for the past two decades. Since multiple solu-
tions are targets for an EMO methodology, it has always been a difficulty to eval-
uate the performance of an EMO algorithm and therefore to develop a termination
criterion for ending a simulation run. In the EMO literature, several performance
c© Springer International Publishing Switzerland 2015
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metrics, such as hypervolume measure [2,17] and inverse generational distance
(IGD) measure [8], are suggested, but they are not appropriate particularly for
the purpose of terminating a simulation run. For the hypervolume measure, there
is no pre-defined target that can be set for an arbitrary problem, thereby making
it difficult to determine an expected hypervolume value for terminating a run. On
the other hand, the IGD measure requires the knowledge of true Pareto-optimal
solutions and their corresponding objective values and hence is not applicable to
an arbitrary problem.

For terminating a simulation run, it is ideal if some knowledge about the
proximity of the current solution(s) from the true optimal solution(s) can be
obtained. For single-objective optimization algorithms, recent studies on approx-
imate Karush-Kuhn-Tucker (A-KKT) points have been suggested [1,10,12,16].
The latter studies have also suggested a KKT proximity measure that monotoni-
cally reduced to zero as the iterates approach a KKT point for a single-objective
constrained optimization problem. In this paper, we extend the definition of
an A-KKT point for multi-objective optimization using achievement scalarizing
function concept proposed in multiple criterion decision making (MCDM) litera-
ture and suggest a KKT proximity measure that can suitably used for evaluating
an EMO’s performance in terms of convergence to the KKT points.

In the remainder of the paper, we present the proposed KKT proximity mea-
sure concept in Section 2 by treating every trade-off solution as an equivalent
achievement scalarizing problem. The concept is then applied on an illustra-
tive problem to test its working. In Section 3, the KKT proximity measure is
computed for the entire objective space on a well-known two-objective ZDT test
problems [19] to illustrate that as solutions approach the efficient front, the KKT
proximity measure reduces to zero. Thereafter, KKT proximity measure is com-
puted for trade-off sets found using specific EMO algorithms, such as NSGA-II
[7] and NSGA-III [8] on two, three, five and 10-objective test problems. Two
engineering design problems are also used for the above purpose. Finally, based
on this extensive study, conclusions are drawn in Section 4.

2 Proposed KKT Proximity Measure for Multi-objective
Optimization

KKT optimality conditions to evaluate the proximity to Pareto-optimal solutions
were first used by authors in 2007 [9] and applied in a power dispatch problem
in 2008 [5]. The idea was also applied elsewhere [13]. These methods used a
straightforward metric measuring the violation of KKT optimality conditions as
a KKT error measure, which we revisit in the next subsection.

However, Dutta et al. [10] criticized the above approach due to the singularity
property of KKT points and relaxed of KKT optimality conditions to define a
KKT proximity measure for any iterate xk for a single-objective optimization
problem of the following type:

Minimize(x) f(x),
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.

(1)
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After a lengthy theoretical calculations, they suggested a procedure of computing
the KKT proximity measure for an iterate (xk) as follows:

Minimize(εk,u) εk

Subject to ‖∇f(xk) +
∑J

j=1 uj∇gj(xk)‖2 ≤ εk,∑J
j=1 ujgj(xk) ≥ −εk,

uj ≥ 0, ∀j,

(2)

In this paper, we extend the KKT proximity metric for multi-objective opti-
mization problems.

For an M -objective optimization problem with inequality constraints, the
Karush-Kuhn-Tucker (KKT) optimality conditions are given as follows [3,14]:

M∑

k=1

λk∇fk(xk) +
m∑

j=1

uj∇gj(xk) = 0, (3)

gj(xk) ≤ 0, j = 1, 2, . . . , J, (4)
ujgj(xk) = 0, j = 1, 2, . . . , J, (5)

uj ≥ 0, j = 1, 2, . . . , J, (6)
λk ≥ 0, k = 1, 2, . . . ,M, and λ �= 0. (7)

Multipliers λk are non-negative, but at least one of them must be non-zero. The
parameter uj is called the Lagrange multiplier for the j-th constraint and it is
also non-negative. Any solution xk that satisfies all the above conditions is called
a KKT point [15]. Equation (3) is called the equilibrium equation. Equation (5)
for every constraint is called the complimentary slackness equation. Note that
(4) ensures feasibility for xk while the (6) arises due to the minimization nature
of the problem given in (1).

2.1 A Naive Measure from KKT Optimality Conditions

The above KKT conditions can be used to naively define a KKT error measure,
which was also used elsewhere [9]. For a given iterate xk, the parameters λ-vector
and u-vector are unknown. A method was proposed to identify suitable λ and
u-vectors so that the all inequality constraints (conditions 4, 5, 6 and 7) are
satisfied and the equilibrium condition (3) is violated the least:

Minimize(λ,u) ‖∑M
k=1 λk∇fk(xk) +

∑m
j=1 uj∇gj(xk)‖,

Subject to gj(xk) ≤ 0, j = 1, 2, . . . , J,
ujgj(xk) = 0, j = 1, 2, . . . , J,
uj ≥ 0, j = 1, 2, . . . , J,
λk ≥ 0, k = 1, 2, . . . ,M, and λ �= 0.

(8)

The operator ‖ · ‖ is the l2-norm. It is clear that if xk is a KKT point, the norm
would be zero for associated and feasible (λ,u)-vectors. For a non-KKT but
feasible xk point, the norm need not be zero, but the above procedure should
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Fig. 1. KKT Error measure for Problem P1
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give us a suitable (λ,u)-vector that will minimize the norm. This minimum norm
value can remain as an indicator to the extent of violation of the KKT optimality
conditions. Hence, a KKT Error for a feasible iterate xk can be calculated by
solving the above problem using an optimization algorithm and computing the
following error value:

KKT Error(xk) = ‖
M∑

k=1

λ∗
k∇fk(xk) +

m∑

j=1

u∗
j∇gj(xk)‖, (9)

where λ∗
k and u∗

j are optimal values of the problem given in (8).
In order to investigate whether the above KKT error can be used as a metric

for evaluating closeness of an iterate xk to a Pareto-optimal solution, we consider
a simple two-variable, bi-objective optimization problem, given as follows:

P1 :
{

Minimize(x,y) {x, 1+y
1−(x−0.5)2 },

Subject to 0 ≤ (x, y) ≤ 1.
(10)

Pareto-optimal solutions correspond to y∗ = 0 and x∗ ∈ [0, 0.5] and the
efficient frontier can be represented as f∗

2 = 1/(1 − (f∗
1 − 0.5)2)). We compute

the KKT error for a given point xk = (xk, yk)T by solving (8) using Matlab’s
fmincon() procedure and the resulting error plot is shown in Figure 1. It is
clear that the KKT error is zero for all Pareto-optimal solutions (y = 0), but it
increases (contradictory to a desired decreasing trend) as the points get closer
to the Pareto-optimal solution, as shown in Figure 2. This figure is plotted for
a fixed value of x = 0.2. The KKT error at the point Pareto-optimal solution
(0.2, 0)T is zero, but it jumps to a high value in its vicinity. Ironically, the figure
depicts that as points move away from this Pareto-optimal point, the KKT error
gets smaller. The above phenomenon suggests that KKT optimality condition
is a singular set of conditions valid only at KKT points. A minimal violation of



22 K. Deb et al.

equilibrium KKT condition cannot provide any information about how close a
solution is to a KKT point.

To investigate the suitability of the above KKT Error metric as a poten-
tial termination condition or as a measure for judging closeness of obtained
non-dominated solutions to the true Pareto-optimal solutions, we consider the
problem stated in (10) and solve using NSGA-II algorithm [7]. NSGA-II is used
with standard parameter settings: population size 20, SBX operator with prob-
ability 0.9 and distribution index of 20 and polynomial mutation operator with
probability 0.5 and index 50.

 0.4

 0.2

 0.6

 0.8

 1

 0  20  40  60  80  100

K
K

T
 E

rr
or

Generation Number

Smallest
Average
Median
Largest

 0

Fig. 3. KKT Error variation for
NSGA-II solutions for Problem P1

The resulting KKT Error (ε∗) for each
non-dominated solution is recorded and
the minimum, mean, median, and max-
imum KKT Error value is plotted in
Figure 3 at every generation. It is inter-
esting to observe that although the small-
est KKT Error value reduces in the first
few generations, the variation of the KKT
Error value is too large even up to genera-
tion 100 for it to be considered as any sta-
ble performance metric. This behavior of
the KKT Error measure does not allow us
to use it to either as a performance metric
or as a termination condition. However,
the modifications suggested in an earlier study [10] allowed a stable closeness
information for single-objective optimization problems. In the following section,
we extend the idea and develop a KKT proximity measure for multi-objective
optimization problems.

2.2 Proposed KKT Proximity Measure

To this effect, we consider a popular multi-criterion decision-making (MCDM)
concept often used to find a Pareto-optimal solution using a scalarized method. In
this approach, a parameterized achievement scalarization function (ASF) opti-
mization problem (similar to L∞ Tchebyshev scalarization problem [14]) is for-
mulated and solved repeatedly for different parameter values [18]. For a specified
reference point z and a weight vector w (parameters of the ASF problem), the
ASF problem is given as follows:

Minimize(x) ASF(x, z,w) = maxM
i=1

(
fi(x)−zi

wi

)
,

Subject to gj(x) ≤ 0, j = 1, 2, . . . , J.
(11)

The reference point z ∈ RM is any point in the M -dimensional objective
space and the weight vector w ∈ RM is an M -dimensional unit vector for which
every wi ≥ 0 and ‖w‖ = 1. Figure 4 illustrates the ASF procedure of arriving
at a weak or a strict Pareto-optimal solution. Reference vector z (marked in
the figure) and weight vector w (marked as w in the figure) are chosen. For
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any point x, the objective vector f is computed (shown as F). Larger of two
quantities ((f1 − z1)/w1 and (f2 − z2)/w2) is then chosen as the ASF value of
the point x. Thus, all points along line HG and GK will have the same ASF
value as that at point G. A little thought will reveal that a minimization of ASF
function will produce point O as the final solution. By keeping the reference
point z fixed and by changing the weight vector w (treating it like a parameter
of the scalarization process), different points on the efficient front can be found
by the above ASF minimization process.

w

z

B

Obj1

A Iso−ASF
line for B

(f1−z1)
D

=(z1,z2)

=(w1,w2)

G

F=(f1,f2)

(f
2−

z2
)

K

H
1/w1

1/w2

O

Obj2

Fig. 4. ASF procedure of finding a Pareto-
optimal solution

For our purpose of estimating a
KKT proximity measure for multi-
objective optimization, we fix the ref-
erence point z to an utopian point:
zi = zideali − εi for all i, where
zideali is the ideal point. We are now
left with a systematic procedure for
setting the weight vector w. For this
purpose, we compute the direction
vector from z to the objective vector
f = (f1(x), f2(x), . . . , fM (x))T com-
puted at the current point x for which
the KKT proximity measure needs to
be computed. The weight value for the
i-th objective function is computed as
follows:

wi =
fi(x) − zi√∑M

j=1(fj(x) − zj)2
. (12)

In the subsequent analysis, we treat the above w-vector fixed for a given solution
xk and set wk = w. To formulate the KKT proximity measure, first, we use a
reformulation of optimization problem stated in (11) into a smooth problem [14]:

Minimize(x,xn+1) F (x, xn+1) = xn+1

Subject to
(

fi(x)−zi

wk
i

)
− xn+1 ≤ 0, i = 1, 2, . . . ,M,

gj(x) ≤ 0, j = 1, 2, . . . , J.

(13)

A new variable xn+1 is added along with M additional inequality constraints to
make the problem smooth [14]. Thus, to find the corresponding Pareto-optimal
solution, the above optimization problem has (n + 1) variables: y = (x;xn+1).

Since the above optimization problem is a single-objective problem, we can
use the KKT proximity metric discussed in the previous section to estimate a
proximity measure for any point x. Note that above problem has M+J inequality
constraints:

Gj(y) =

(
fj(x) − zj

wk
j

)
− xn+1 ≤ 0, j = 1, 2, . . . ,M, (14)

GM+j(y) = gj(x) ≤ 0, j = 1, 2, . . . , J. (15)
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The KKT proximity measure can now be computed for a given feasible xk as
follows. It is recognized that the variable xn+1 is unknown. We construct the
(n + 1)-dimensional vector y = (x;xn+1) and formulate the following optimiza-
tion problem using (13) to compute the KKT proximity measure:

Minimize(εk,xn+1,u) εk +
∑J

j=1

(
uM+jgj(xk)

)2
,

Subject to ‖∇F (y|xk) +
∑M+J

j=1 uj∇Gj(y|xk)‖2 ≤ εk,∑M+J
j=1 ujGj(y|xk) ≥ −εk,

fj(x
k)−zj

wk
j

− xn+1 ≤ 0, ∀ j = 1, 2 . . . , M,

uj ≥ 0, j = 1, 2, . . . , (M + J).

(16)

Here, y|xk = (xk;xn+1). The added term in the objective function allows a
penalty associated with the violation of complementary slackness condition. If
the iterate xk is Pareto-optimal or a KKT point, the complementary slackness
condition will make either gj(xk) = 0 or uM+j = 0 (for j ∈ [1, J ]) and hence
the above optimization should drive towards smallest value of εk. Since such an
iterate satisfies all KKT optimality conditions, the left side expressions of first
two constraints in (16) are zero thereby forcing εk = 0. For non-Pareto-optimal
solutions, at least the left side expression of the first constraint is a positive
quantity, thereby forcing εk to take positive value. The third constraint set is
added to make sure a positive ASF value (xn+1) is assigned to every feasible
point for an ideal or utopian reference point z. The optimal objective value (ε∗

k)
to the above problem will correspond to the proposed KKT proximity measure.
The variables for this problem are εk, xn+1, and the Lagrange multiplier vector
uj ∈ RM+J . The first constraint requires gradient of F and G functions:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞

⎟⎟⎟⎟⎟⎠
+

M∑

i=1

ui

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
wk

i

∂fi(x
k)

∂x1

1
wk

i

∂fi(x
k)

∂x2

...
1

wk
i

∂fi(x
k)

∂xn

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
J∑

j=1

uM+j

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂gj(x
k)

∂x1
∂gj(x

k)
∂x2
...

∂gj(x
k)

∂xn

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ √
εk. (17)

Here, the quantity ∂fi(x
k)

∂xj
is the partial derivative of objective function fi(x)

with respect to variable xj evaluated at the given point xk. A similar meaning
is associated with the partial derivative of the constraint gj above.

For infeasible iterates, we simply compute the constraint violation as the
KKT proximity measure. It is observed that for feasible xk, ε∗

k is bounded in
[0,1]; hence, the KKT proximity measure is calculated as follows:

KKT Proximity Measure(xk) =

{
ε∗
k, if xk is feasible,

1 +
∑J

j=1

〈
gj(xk)

〉2
, otherwise.

(18)

where 〈α〉 = α if α > 0; zero, otherwise.
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We now illustrate the working of the above KKT proximity measure on
Problem P1. The ideal point for this problem is zideal = (0, 1)T . The variable
bounds are converted into four inequality constraints and the optimization prob-
lem stated in (16) is solved for 10,000 grid points in the variable space. Each
optimization problem is solved using Matlab’s fmincon() optimization routine.
Figure 5 shows the KKT proximity surface and its contour plot on the objective
space. The efficient frontier can be clearly seen from the contour plot. Moreover,
it is interesting to note how the contour lines become almost parallel to the
efficient frontier, thereby indicating that when a set of non-dominated solutions
close to the efficient frontier is found, their KKT proximity measure values will
be more or less equal to each other. Also, unlike in the naive approach (shown
in Figure 1), a monotonic reduction of the KKT proximity measure towards the
efficient frontier is evident from this figure and also from Figure 6 plotted for a
fixed value of x = 0.2 and spanning y in its range [0,1]. The KKT proximity mea-
sure monotonically reduces to zero at the corresponding Pareto-optimal point.
A comparison of this figure with 2 clearly indicates that the proposed KKT
proximity measure is a better and stable metric to assess closeness of points to
Pareto-optimal points and also to use it to terminate an EMO simulation run
reliably.

3 Results

In this section, we consider two and three-objective test problems to demonstrate
the working of the proposed KKT proximity measure with an EMO algorithm.

3.1 Two-Objective ZDT Problems

First, we consider three commonly used two-objective ZDT problems. Problems
ZDT1, ZDT2 and ZDT4 each has 30 variables. Efficient solutions occur for xi = 0
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for i = 2, 3, . . . , 30. Before we evaluate the performance of NSGA-II [7] on these
problems, we first consider ZDT1 problem, but all 30 variables are replaced with
two parameters: x = x1 and y = x2 = x3 = . . . = x30 for an easy understanding.
We then calculate the proposed KKT proximity measure for two parameters x
and y in the range [0, 1]. 10,000 equi-spaced points are chosen i x-y plane to make
the plot. Since at x1 = 0, the derivative of f2 does not exist, we do not compute
the KKT proximity measure for these solutions. Figure 7 clearly indicates the
following two aspects:

1. The KKT proximity measure reduces to zero at the efficient frontier.
2. The KKT proximity measure increases almost parallely to the efficient fron-

tier in the local vicinity of the efficient frontier.
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Fig. 7. KKTPM for Problem ZDT1
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We now apply the KKT proximity measure procedure with ASF formulation
to non-dominated solutions obtained by NSGA-II at every generation, having
standard parameter values [7] and with 40 population members running for 200
generations. The variation of average g() function value plotted in Figure 8
shows that non-dominated points gets closer to the true Pareto-optimal front
with increasing generations. The smallest, first quartile, median, third quartile,
and largest KKT proximity measure values for all non-dominated solutions at
each generation are also plotted. The figure shows that KKTPM value reduces
exponentially with generations. The first population member to reach a KKTPM
value of 0.01 takes 98 generations and the median KKTPM value of 0.01 is
achieved at generation 117. The third quartile of population members takes
another nine generations to get to the same KKTPM value, however the last
member to get close to the Pareto-optimal front takes 135 generations. Thus,
instead of running an EMO algorithm for an arbitrary 200 generations, a track
of KKTPM value indicates a theoretical way of terminating an EMO run. Inter-
estingly, EMO algorithms work without any derivative information or without
using any KKT optimality conditions in its operations.

Next, we consider 30-variable ZDT2 problem. Considering x = x1 and
y = x2 = x3 = . . . = x30, we compute KKTPM for 10,000 points in the x-y
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Fig. 9. KKTPM for Problem ZDT2

K
K

T
PM

 M
ea

su
re

 0.0001

 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100 120 140 160 180 200
 0.0001

 0.001

 0.01

 0.1

 1

 10

Generation Number

Avg. g()

Smallest
1st Quartile

Median
3rd Quartile

Largest

A
ve

ra
ge

 g
()

 1e−05

Fig. 10. Generation-wise KKTPM for
NSGA-II populations on ZDT2

space and resulting measure values are plotted on the ZDT2 objective space in
Figure 9. ZDT2 has a non-convex efficient front, as shown in the figure. Notice,
how the KKTPM with AASF formulation monotonically reduces to zero at the
efficient frontier. The contour plots indicate the almost parallel contour lines to
the efficient frontier, as the points move away from the efficient frontier. Next,
we demonstrate how the non-dominated sets of points obtained from NSGA-II
(with identical parameter values) are evaluated by the KKT proximity measure
in Figure 10. Once again, a monotonic decrease in the KKTPM indicates its
suitability as a termination condition for an EMO algorithm.
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Fig. 11. Generation-wise KKTPM for
NSGA-II populations in Problem ZDT4

The ZDT4 problem is multi-modal
and has a number of local efficient
fronts and is more difficult to solve than
ZDT1 and ZDT2. Using identical NSGA-
II parameter values, Figure 11 shows how
generation-wise KKTPM with AASF for-
mulation varies for the non-dominated
population members of a typical NSGA-
II run. Due its complex nature, NSGA-II
takes about 225 generations to have all
non-dominated close to the true Pareto-
optimal front. Once again, a generic
decrease in the KKTPM indicates its
suitability as a termination condition for
an EMO algorithm.

3.2 Three-Objective DTLZ Problems

DTLZ1 problem has a number of locally efficient fronts on which some points
can get stuck, hence it is relatively difficult problem to solve to global optimal-
ity. Recently proposed NSGA-III procedure [8] is applied to DTLZ1 problems
with 92 population members. Figure 12 shows the variation of KKT proximity
measure values with AASF formulation versus the generation counter. Although
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NSGA-III populations in 3-objective
DTLZ2

the first Pareto-optimal solution is found early (at generation 110), half of the
non-dominated set did not find a KKTPM value of 0.01 in 1,000 generations.
A variation of g() value indicates a steady progress of points towards the true
Pareto-optimal front.

Next, we apply NSGA-III (with 92 population members) to three-objective
DTLZ2 problem, which has a concave efficient front. Figure 13 shows the KKTPM
values. Interestingly, the convergence is faster than DTLZ1 and the median point
took 103 generations to have a KKTPM value of 0.01 and all points took 363 gen-
erations.
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DTLZ5

DTLZ5 problem has a degenerate effi-
cient front having a two-dimensional effi-
cient front. Figure 14 shows the KKT
proximity measure values versus genera-
tion counter. Despite a degenerate nature
of the front, a number of ‘redundant’
solutions remain as non-dominated with
Pareto-optimal solutions and these solu-
tions cause a challenge to an EMO algo-
rithm to converge to the true Pareto-
optimal front. The figure shows that
although the worst performance fluctu-
ates, the third quartile of points took only
61 generations to have a KKTPM value of
0.01 and 225 generations to have KKTPM value of 0.001.

3.3 Many-Objective Optimization Problems

As the number of objectives increase, DTLZ1 and DTLZ2 problems get more
difficult to optimize as evident from Figures 15 and 16. NSGA-III with 212
and 276 population members [8] are run and KKTPM values are plotted. The
continual reduction of average g() value indicates the progressive convergence
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Fig. 16. Generation-wise KKTPM for
NSGA-III populations in 10-objective
DTLZ1

of non-dominated points towards the true Pareto-optimal front. While the five-
objective DTLZ1 problem takes about 337 generations to have half of all non-
dominated solutions to have a KKTPM value of 0.01, the 10-objective problems
takes 925 generations. Large value of these generation numbers indicate that
DTLZ1 problem gets harder to solve with increasing number of objectives.

Since DTLZ2 problem is relatively easier to solve to Pareto-optimality,
KKTPM values for five and 10-objective DTLZ2 problems are found to be have
converged faster (302 generations for 5-obj), as evident from Figures 17 and 18,
respectively. The above results amply demonstrate the scalability of the proposed
KKT proximity metric to many-objective optimization problems as well.

3.4 Constrained Test Problems

We now consider two constrained test problems from the literature. First, we
consider the problem TNK, which has two constraints, two variables and two
objectives [4]. NSGA-II is run with 12 population members. For the specific run,
the initial population has only 2 feasible solutions, but since they were away
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Fig. 22. Generation-wise KKTPM for
NSGA-III populations in car side impact
problem

from the Pareto-optimal region, their KKTPM value was large. Thereafter, with
iterations more and more solutions became feasible and importantly, as shown
in Figure 19, the non-dominated solutions start to approach the Pareto-optimal
front and all 12 points converge within 0.01 KKTPM value at 160-th generation.

Next, we consider problem SRN which has two variables and two constraints
[4]. NSGA-III is run with 200 population members. Figure 20 shows the variation
of KKTPM with generation for problem SRN. Although one solution comes
close to the efficient front (within 0.01 KKTPM) at the third generation, 50%
of the non-dominated solutions take around 189 generations to come close. The
NSGA-II points are unable to improve the KKTPM value with generations.
This indicates the use of a more focused local search method at around 200
generations to cause a faster convergence of points.



KKT Proximity Measure for EMO 31

3.5 Engineering Design Problems

Next, we consider two multi-objective optimization problems from practice.
The welded beam design problem has two objectives and a few non-linear

constraints [4]. This problem is solved using NSGA-II having 60 population
members, initially created at random. Figure 21 shows the variation of KKT
proximity measure values of the population with generation counter. 50% of the
population comes close (within 0.01 KKTPM value) to the Pareto-optimal front
by 265 generations. More results are available elsewhere [6].

Finally, we solve a three-objective car side impact design problem [8] using
NSGA-III with 92 population members. Figure 22 shows the variation of KKT
proximity measure with generations. The convergence of 25% population within
0.01 KKTPM took 480 generations, while 50% members did not come close even
after 500 generations. Compared to the test problems, the rate of convergence of
NSGA-II non-dominated points is slow in these two real-world problems. These
results indicate that a use of a better constrained handling procedure or a more
focused local search may be necessary for making an overall faster approach.

4 Conclusions and Extensions

This paper has extended the concept of approximate KKT point definition pro-
posed in an earlier study for single-objective optimization problem to multi-
objective optimization. For each point, an equivalent achievement scalarizing
function is developed and a KKT proximity metric is defined, for the first time,
to estimate the proximity of a solution from a respective Pareto-optimal solution,
without using any knowledge of the Pareto-optimal solution directly. The idea
is novel and has been demonstrated to have a reducing proximity measure value
as solutions get closer to the true Pareto-optimal front on many test problems
and a couple of engineering design problems, providing an idea of dynamics of
an EMO algorithm.

The study is also interesting from the following reasons. First, the continual
reduction of KKTPM values gives us confidence in its use as a termination condi-
tion for an EMO algorithm. Second, solutions having relatively higher KKTPM
value at any generation can be improved by using a local search procedure for a
faster overall algorithm. Third, the relative convergence pattern of KKT proxim-
ity measure values can provide a clear picture about the difficulty in converging
to different parts of the search space, an information which could be used in sub-
sequent decision-making tasks. Fourth, the KKTPM can be applied to classical
multi-objective optimization algorithms equally well.

The computation of the metric requires gradients of the objective and con-
straint functions at each point, hence the metric is computable only for differen-
tiable problems. The method also requires to solve an optimization problem to
find KKTPM. To reduce the overall computational complexity, we recommend to
compute the KKT proximity metric after every five or 10 generations. However,
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despite these limitations, the convergence of EMO-obtained solutions to theo-
retical KKT points in multi-objective problems remains as a hallmark achieve-
ment of this paper. Although gradients are not used in an EMO algorithm for
updating one population, the fact that the overall search process directs the pop-
ulation towards theoretical Pareto-optimal points is interesting and intriguing.
Certainly, such studies help close the gap between theoretical and computational
optimization studies and should bring EMO’s due recognition from classical and
mathematical multi-objective optimization fields.
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Abstract. Evolutionary algorithms (EAs) have been systematically
developed to solve mono-objective, multi-objective and many-objective
problems, respectively, over the past few decades. Despite some efforts in
unifying different types of mono-objective evolutionary and non-
evolutionary algorithms, there does not exist too many studies to unify
all three types of optimization problems together. In this study, we pro-
pose an unified evolutionary optimization algorithm U-NSGA-III, based
on recently-proposed NSGA-III procedure for solving all three classes
of problems. The U-NSGA-III algorithm degenerates to an equivalent
and efficient population-based optimization procedure for each class, just
from the description of the number of specified objectives of a problem.
The algorithm works with usual EA parameters and no additional tun-
able parameters are needed. The performance of U-NSGA-III is com-
pared with a real-coded genetic algorithm for mono-objective problems,
with NSGA-II for two-objective problems, and with NSGA-III for three
or more objective problems. Results amply demonstrate the merit of our
proposed unified approach, encourage its further application, and moti-
vate similar studies for a richer understanding of the development of
optimization algorithms.

Keywords: Mono-objective optimization ·Multi-objective optimization ·
Many-objective optimization · NSGA-II · NSGA-III · Unified algorithms

1 Introduction

During the past two decades, evolutionary multi-objective optimization (EMO)
researchers have demonstrated their usefulness in solving optimization problems
having two and more objectives. Initial studies concentrated in solving two and
three-objective problems and efficient multi-objective optimization algorithms
were developed to adaptively distribute its population members along the entire
efficient front [4,8,14,16]. Recent many-objective optimization studies have con-
centrated in solving four or more objectives mostly using an external guidance
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mechanism to help algorithms distribute its population along higher-dimensional
efficient front [3,10,12,15]. The multi-objective optimization algorithms do not
extend to handle many objectives, mainly due to exponential growth of non-
dominated solutions in a population with an increase in number of objectives
[6]. Thus, in principle, evolutionary multi-objective and many-objective opti-
mization algorithms are different from each other.

Although certain evolutionary multi-objective optimization methodologies
such as NSGA-II [8] does not scale up to solve many-objective optimization
problems efficiently, they are found to work well in solving mono-objective opti-
mization problems. Based on NSGA-II framework, an omni-optimizer algorithm
[11] was suggested to mono- and multi-objective optimization problems. This
is because the domination operator used in NSGA-II’s selection mechanism
becomes an ordinal comparison operator, which is an essential operation for
progressing towards the optimum solution for a mono-objective optimization
problem. Thus, these multi-objective optimization methods can be considered
as unified methods for solving mono- and multi-objective optimization problems.

However, existing many-objective optimization methods are tested for three
and more objective problems and have not been adequately evaluated for their
performance in solving mono- and bi-objective optimization problems. One appar-
ent difficulty of their scaling down to solve mono-objective problems is that the
objective space becomes one-dimensional and the inherent guidance mechanism
which ensures diversity of population members in the objective space becomes
defunct. Thus, although these algorithms are efficient in handling many objec-
tives, their working in mono- and bi-objective problems becomes questionable.

In this paper, we make an effort to develop a single unified evolutionary
optimization procedure that will solve mono-, multi- and many-objective opti-
mization problems efficiently. Such an algorithm not only will require an user to
solve different types of problems, but also an understanding of algorithmic fea-
tures needed in such an efficient unified approach would be beneficial for EMO
researchers. The successful development of an unified approach for handling one
to many objectives will also provide a triumph of generic computing concept
in the optimization problem solving. The philosophy of computing through a
computerized software is to implement an algorithm that is most generic capa-
ble of working with multiple and arbitrary number of input data. But when the
software is applied to a lower-dimensional data or even to a single data, the soft-
ware is expected work as a specialized lower-dimensional or single-dimensional
algorithm would perform. Unfortunately, optimization literature has tradition-
ally followed an opposite philosophy. A lot of stress has been put in develop-
ing mono-objective optimization algorithms and often multi- or many-objective
optimization problems are suitably converted to a mono-objective optimization
problem so as to use mono-objective optimization algorithms. Our motivation
in this paper is to explore the possibility of developing an unified optimization
approach that naturally solves many-objective problems having four or more
objectives and degenerates to solve one, two or three-objective problems, as effi-
ciently as to other competing lower-objective optimization algorithms.
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Since such an unified approach would be generic to solving many-objective
optimization problems, we base our algorithm using one of the recently proposed
decomposition-based many-objective optimization algorithm – NSGA-III [10].
In the remainder of this paper, we provide a brief description of NSGA-III in
Section 2. Thereafter, we present our proposed unified approach U-NSGA-III
in Section 3 and explain how the method degenerates to efficient mono- and
multi-objective optimization algorithms. Simulation results on a variety of mono,
multi- and many-objective test problems are presented using U-NSGA-III and
compared with a real-parameter genetic algorithm, NSGA-II and NSGA-III in
Section 4. Finally, conclusions are drawn in Section 5.

2 A Brief Introduction to NSGA-III

The proposed U-NSGA-III algorithm is based on the structure of NSGA-III,
hence we first give a description of NSGA-III here. NSGA-III starts with a ran-
dom population of size N and a set of widely-distributed pre-specified reference
points H on a unit hyper-plane having a normal vector of ones. The hyper-plane
is placed in a manner so that it intersects each objective axis at one. Das and
Dennis’s technique [5] is used to place H =

(
M+p−1

p

)
reference points on the

hyper-plane having (p + 1) points along each boundary. The population size N
is chosen to be the smallest multiple of four greater than H, with the idea that
for every reference point, one population member is expected to be found.

At a generation t, the following operations are performed. First, the whole
population Pt is classified into different non-domination levels, as it is done in
NSGA-II as well, following the principle of non-dominated sorting. An offspring
population Qt is created from Pt using recombination and mutation operators.
Since only one population member is expected to be found for each reference
point, there is no need for any selection operation in NSGA-III. A combined
population Rt = Pt ∪ Qt is then formed. Thereafter, points starting from the
first non-dominated front is selected for Pt+1 one at a time until all solutions
from a complete front cannot be included. This procedure is also identical to
that in NSGA-II. Let us denote the final front that could not be completely
selected as FL. In general, only a few solutions from Fl needs to be selected for
Pt+1. We describe the niche-preserving operation next. First, each population
member of Pt+1 and FL is normalized by using the current population spread so
that all objective values have commensurate values. Thereafter, each member of
Pt+1 and FL is associated with a supplied reference point by using the shortest
perpendicular distance of each population member with a reference line created
by joining the origin with a supplied reference point. Then, a careful niching
strategy is employed to choose those FL members that are associated with the
least represented reference points in Pt+1. The niching strategy puts an emphasis
to select a population member for as many supplied reference points as possible.
A population member associated with a under-represented or un-represented
reference point is immediately preferred. With a continuous stress for emphasiz-
ing non-dominated individuals, the whole process is then expected to find one
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population member corresponding to each supplied reference point close to the
Pareto-optimal front, provided the genetic variation operators (recombination
and mutation) are capable of producing respective solutions.

The original NSGA-III study [10] have demonstrated to work well from three
to 15-objective DTLZ and other problems. A nice aspect of NSGA-III is that
it does not require any additional parameter. The method was also extended to
handle constraints without introducing any new parameter. This study has also
introduced a computationally fast approach by which the reference point set is
adaptively updated on the fly based on the association status of each reference
point over a number of generations.

2.1 NSGA-III for Mono- and Multi-objective Problems
NSGA-III was proposed to solve many-objective optimization problems having
more than three objectives exclusively, although NSGA-III was demonstrated to
work well on three-objective optimization problems. Authors of NSGA-III did
not consider any bi-objective or mono-objective problems in the original study.
Here, we discuss how NSGA-III would perform in two-objective problems and
then highlight its possible working on mono-objective problems.

Here are the differences in working principles of NSGA-II and NSGA-III for
their working on two-objective problems.

1. NSGA-III does not use any explicit selection operator in Pt in the process
of creating Qt. On the other hand NSGA-II’s selection operator uses non-
dominated rank and a crowding distance value to choose a winner between
two feasible individuals from Pt.

2. NSGA-III uses a set of reference directions to maintain diversity, while
NSGA-II uses the crowding distance value for the same purpose, as illus-
trated in Figure 1.

(a) NSGA-II (b) NSGA-III

Fig. 1. NSGA-II and NSGA-III working principles

If NSGA-III having a population size almost identical to number of chosen refer-
ence directions is compared with NSGA-II having an identical population size as in
NSGA-III, the former will introduce a milder selection pressure. This is because
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on an average each population member in NSGA-III becomes associated with a
different reference direction and is an important individual to be compared with
another individual. The only selection pressure comes from their domination lev-
els. However, the second difference mentioned above may produce a significant dif-
ference in their performances. NSGA-III uses a pre-defined guidance mechanism to
choose diverse solutions in the population, whereas NSGA-II uses no pre-defined
guidance and emphasizes relatively diverse solutions on the fly. Thus, if the first
aspect is taken care of somehow and more selection pressure can be introduced,
NSGA-III may become an equivalent or even a better algorithm than NSGA-II for
solving two-objective optimization problems.

Let us now discuss how NSGA-III works if applied to a mono-objective
optimization problem. In mono-objective optimization, the domination concept
degenerates to fitness superiority – a domination check between two solutions
chooses the one having better objective value. At every generation, usually there
is one solution in each non-dominated front in a mono-objective problem and
it is expected to have N fronts in a population of size N . This characteris-
tics of mono-objective problems affect the working of NSGA-III in the following
manner:

1. First, in NSGA-III, there will be only one reference direction (the real line)
to which all the individuals will be associated. Since the recommended pop-
ulation size is the smallest multiple of 4 greater than the number of reference
directions, for all mono-objective optimization problems, NSGA-III will use
a population of size four, which from all practical purposes too small for
NSGA-III’s recombination operator to find useful offspring solutions. This
is a major issue in developing an unified algorithm that will seamlessly work
for many to mono-objective problems.

2. Moreover, since no explicit selection operator is used, the algorithm will pick
a random solution for its recombination and mutation operators. The only
selection effect comes from the elite-preserving operation for choosing Pt+1

from a combination of Pt and Qt. This is another major issue, which needs
to be addressed while developing an unified approach.

3. Note also that the niching operation of NSGA-III is defunct for mono-
objective problems, as there is no concept of perpendicular distance of a
function value from the reference direction. Every function value falls on the
real line, providing an identical perpendicular distance of zero.

4. NSGA-III’s normalization also becomes a defunct operation for the same
above reason.

A unified approach may still have niching and normalization operators for it
to be efficient for multi and many-objective optimization problems, but they
should be implemented in such a manner that automatically becomes defunct
for the mono-objective case without producing any unwanted effects. However
the first two points mentioned above present a challenge. It is now clear that a
straight application of original NSGA-III to mono-objective optimization prob-
lems will result in an extremely small population size and a random selection
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process, neither of which is recommended for a successful evolutionary optimiza-
tion algorithm.

3 Proposed Unified Approach: U-NSGA-III

The above discussions suggest that the proposed U-NSGA-III method can retain
the features of the original NSGA-III algorithm, as NSGA-III was shown to work
well on three or more objectives well. However, the difficulties in scaling down
to two and mono-objective problems mentioned above require certain changes in
NSGA-III algorithm, but we should be modifying NSGA-III in such a manner
that the changes do not affect its working on three and more objective problems.

The difficulty for solving two-objective optimization problems seems to lie
in the mild selection pressure that NSGA-III introduces to non-dominated solu-
tions of a population and the difficulty for solving mono-objective problems are
small population size and a random selection process. One way to alleviate these
difficulties is to a population size N which is larger than the number of refer-
ence points (H) and introduce a selection operator. Thus, unlike in NSGA-III,
N and H will now be different parameters with a condition that N ≥ H and
N is a multiple of four. Although this seems to introduce an additional para-
meter to our proposed U-NSGA-III, but H is the desired number of optimal
solutions expected at the end of a simulation run, and hence is not a parame-
ter that needs to be tuned for U-NSGA-III to work well on different problems.
We shall soon investigate the effect of this change for different problem sizes,
but for mono-objective problems H is always one and N becomes simply the
population size which is a generic principle in all mono-objective evolutionary
algorithms. For two-objective problems, H can be a handful of solutions (such as
10 or 20) for the decision-makers to consider, while the population size N can be
much larger, such as 100 or 200. The population size consideration mainly comes
from the complexity of the problem and an adequate sample size needed for the
genetic operators to work well. In this case, although N different Pareto-optimal
solutions could be present in the final population, the H specific Pareto-optimal
solutions, each closest to a different reference direction will be the outcome of the
U-NSGA-III algorithm and will be presented to the decision-maker for choos-
ing a single preferred solution. For three or more objective problems, since the
number of specified reference directions (H) can already be quite high (due to
the increase in H with M according to Das and Dennis’s approach [5]), N can
be made almost equal to H with the divisibility by four restriction.

Let us now discuss the algorithmic implication of introducing more popula-
tion members than H for solving mono- and two-objective optimization prob-
lems. It is now expected that for each reference direction, there will be more than
one population member associated. This then allows to introduce a selection
operator to have an adequate selection pressure for good population members.
We add a niching-based tournament selection operator as follows. If the two solu-
tions being compared come from two different associated reference directions, one
of them chosen at random, thereby introducing preservation of multiple niches
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in the population. Otherwise, the solution coming from a better non-dominated
rank is chosen. In this case, if both solutions belong to the same niche and same
non-dominated front, the one closer to the associated reference direction is cho-
sen. Algorithm in Figure 2 presents the niched tournament selection procedure
in a pseudo code. As discussed elsewhere [13], the complexity of U-NSGA-III is
O(MN2) which is similar to NSGA-II and NSGA-III procedures.

Input: Two parents: p1 and p2
Output: Selected individual, ps
1: if π(p1) = π(p2) then
2: if p1.rank < p2.rank then
3: ps = p1
4: else
5: if p2.rank < p1.rank then
6: ps = p2
7: else
8: if d(p1) < d(p2) then
9: ps = p1

10: else
11: ps = p2
12: end if
13: end if
14: end if
15: else
16: ps = randomPick(p1, p2)
17: end if

Fig. 2. Niched selection operator in
U-NSGA-III

Input: Mono-objective function
Output: Best solution found, pbest
1: P = initialize()
2: while termination condition do
3: Q = φ
4: while |Q| < |P | do
5: p1 = tournamentSelect(P )
6: p2 = tournamentSelect(P )
7: (c1, c2) = recombination(p1, p2)
8: c1 = mutate(c1)
9: c2 = mutate(c2)

10: Q ∪ {c1, c2}
11: end while
12: P = best(P ∪ Q)
13: end while
14: pbest = best(P )

Fig. 3. Degenerated U-NSGA-III for
mono-objective problems

We now present the respective degenerative U-NSGA-III algorithm for solv-
ing mono-, multi- and many-objective optimization problems.

3.1 U-NSGA-III for Mono-objective Problems

For mono-objective problems, the flexibility of choosing any N alleviates one of
the discussed difficulties. The niched selection operator degenerates to an usual
binary tournament selection operator for which the solution having a better
objective value becomes the winner. Algorithm in Figure 3 presents a pseudo-
code for the resulting U-NSGA-III algorithm when M = 1 is specified. The
resulting U-NSGA-III is a generational evolutionary algorithm (EA) that uses
(i) a binary tournament selection, (ii) recombination and mutation operators,
and (iii) an elite-preserving operator. This our proposed U-NSGA-III is similar
to other generational EAs, such as elite-preserving real-coded genetic algorithm
[9] or the (μ/ρ + λ) evolution strategy [1], where μ = ρ = λ = N .
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3.2 U-NSGA-III for Multi-objective Problems

For two or three-objective problems, if N is chosen to be greater than H,
U-NSGA-III is expected to have multiple population members for each ref-
erence direction. For multi-objective problems having two or three objectives,
the non-dominated sorting will, in general, divide the population into multiple
non-dominated fronts. The proposed niched tournament selection operator of
U-NSGA-III then emphasizes (i) non-dominated solutions over dominated solu-
tions and (ii) solutions closer to reference directions over other non-dominated
but distant solutions from the reference directions. The rest of the U-NSGA-III
algorithm works exactly the same way as NSGA-II would work on multi-objective
problems. However, although like in NSGA-II, all final population members of
U-NSGA-III are also expected to be non-dominated to each other, the distribu-
tion of additional (N − H) population members need not have a good diversity
among them. Only H population members closest to each H reference directions
are expected to be well distributed.

When N/H is one or close to one, U-NSGA-III algorithm may not have a
solution for each reference direction in the early generations, but the selection
pressure introduced by the niched tournament selection will emphasize find-
ing and maintaining a single population member for each reference direction
until they are all found. In either case of N/H being one or more than one,
U-NSGA-III provides a right selection pressure for it to be a good algorithm
for handling bi-objective problems. For three-objective problems, the uniform
distribution of supplied reference points should find a better distributed efficient
points than those by NSGA-II.

3.3 U-NSGA-III for Many-objective Problems

For many-objective optimization problems, most population members are
expected to be non-dominated to each other. Hence, the niched tournament
selection operator degenerates in choosing the closer of two parent solutions
with respect to their associated reference direction, when both parent solutions
lie on the same niche. When N/H is much greater than one, this allows an
additional filtering of choosing parent solutions closer to reference directions for
their subsequent mating operation. This is, in general, a good operation to have
particularly when there are multiple population members available around a
specific reference direction. However, if N/H is one or close to one, the niched
tournament selection, in most cases, becomes a defunct operator resulting into
a very similar algorithm as NSGA-III.

4 Results

We now present simulation results of U-NSGA-III applied to mono-, multi- and
many-objective problems. For more detailed results, please refer to the original
study [13].
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4.1 Mono-objective Problems

We choose three mono-objective test problems and compare results of U-NSGA-III
with a generational real-parameter genetic algorithm which was used to solve var-
ious problems in the past [7]. We employ an elite-preserving operator between par-
ent and offspring populations in the proposed EliteRGA algorithm here. The prob-
lems are given below:

felp(x) =
n∑

i=1

ix2
i , −10 ≤ xi ≤ 10, i = 1, . . . , n, (1)

fros(x) =
n−1∑

i=1

[100(xi
2 − xi+1)2 + (xi − 1)2] − 10 ≤ xi ≤ 10, i = 1, . . . , n, (2)

fsch(x) = 418.9829n −
n∑

i=1

(xi sin
√

|xi|) − 500 ≤ xi ≤ 500, i = 1, . . . , n. (3)

For each problem, n = 20 is used and 11 simulations with the same set of
parameters but from different initial populations are performed. Although first
two problems are unimodal, fsch is multi-modal. We use N = 48, 100 and 300
for Ellipsoidal, Rosenbrock and Schwefel problems, respectively, due to handle
the increasing complexity in these problems. For all problems, we use pc = 0.7,
pm = 0.02, ηc = 0 and ηm = 20.

Figures 4(a), 4(b) and 4(c) show the median function value for Ellipsoidal,
Rosenbrock, and Schwefel problems over 11 runs for different function evalua-
tions, shown in the x-axis. EliteRGA and U-NSGA-III perform in a similar man-
ner for the unimodal problems, while for the multi-modal problem U-NSGA-III
performs the best. Table 1 summarizes the best, median and worst function value
over 11 runs for each problem after different function evaluations. The perfor-
mances of U-NSGA-III and EliteRGA are equivalent. As expected, NSGA-III
with N = 4 performs well on unimodal problems, but fails miserably on Schwe-
fel problem.

(a) Ellipsoidal (b) ROS (c) Schwefel

Fig. 4. Reduction of population-based function value with the number of function
evaluations
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Table 1. Best, median and worst objective values of three problems using EliteRGA,
NSGA-III, and U-NSGA-III

Func. EliteRGA NSGA-III U-NSGA-III
Eval. Best Median Worst Best Median Worst Best Median Worst

Ellipsoidal Problem

4,800 0.204 0.849 2.248 0.008 0.058 0.296 0.169 0.436 0.803
14,400 0.000 0.001 0.006 0.001 0.005 0.028 0.000 0.001 0.005
24,000 0.000 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.002

Rosenbrock Problem

100,000 21.119 72.412 771.324 3.974 35.241 73.086 20.005 56.201 135.439
300,000 0.256 17.005 760.077 0.624 6.637 71.777 8.569 16.801 78.111
500,000 0.253 16.226 760.069 0.176 6.407 71.558 8.144 16.346 74.871

Schwefel Problem

300,000 17.875 20.061 79.408 710.707 1184.421 1539.744 0.263 1.039 119.652
900,000 15.285 16.662 73.784 710.642 1184.385 1539.702 0.000 0.000 118.439

1,500,000 1.553 15.735 71.611 710.633 1184.384 1539.700 0.000 0.000 118.439

4.2 Bi-objective Problems

Table 2. Fixed HV values used in
bi-objective problems (Removal and
No Removal)

Problem No Removal Removal
ZDT1 0.64 0.64
ZDT2 0.316 0.316
ZDT3 0.516 0.512
ZDT4 0.53 0.53

As mentioned before, the performance of
NSGA-III was not tested on bi-objective
optimization problems in the original study
[10]. This section compares the performance
of U-NSGA-III, NSGA-III, and NSGA-II
on several bi-objective test problems. The
criterion of comparison used here is the
number of function evaluations required
to reach a pre-defined hyper-volume (HV)
value. Table 2 presents the HV values used in our bi-objective simulations. For
all runs of this and subsequent sections, we use SBX pc = 0.9, ηc = 30 and
polynomial mutation pm = 1/n and ηm = 20. We use ZDT1, ZDT2, ZDT3 and
ZDT4 as our test bed. In all four problems, we use 30 variables and 10 different
simulation runs are performed. Figures 5(a), 5(b), 5(c) and 5(d) compare the
performance of U-NSGA-III with NSGA-II for different population sizes N . In
each case, H = N is used for U-NSGA-III. Each figure is plotted with average
number of solution evaluations needed to achieve the respective HV value pre-
sented in Table 2. It can be seen from the figures that NSGA-II requires certain
minimum population sizes to catch up with the U-NSGA-III’s performance. For
small number of reference points (H or N), since U-NSGA-III’s reference points
are uniformly distributed over the entire efficient frontier, the corresponding HV
values are better than NSGA-II’s adaptive spreading mechanism. The difference
in performance is more for the ZDT2 problem. Interestingly, the performance of
both methods deteriorate after a certain population size for ZDT2 and ZDT4,
due to over-sizing to solve the respective problems. Clearly, there exists an opti-
mal population size for each of these two cases in terms of achieving a certain
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(a) ZDT1 (b) ZDT2

(c) ZDT3 (d) ZDT4

Fig. 5. Comparison of U-NSGA-III and NSGA-II for bi-objective problems for different
population sizes (N) with H = N

HV value from overall solution evaluation point of view. Nevertheless, the per-
formance similarity of U-NSGA-III and NSGA-II with an adequate population
size is clear from these figures.

Next, we compare the performance of U-NSGA-III, NSGA-III, and NSGA-II
algorithms in Figures 6(a), 6(b), 6(c) and 6(d) for the four ZDT problems for
which H is kept fixed following values: 16 for ZDT1, ZDT2 and ZDT3, and
100 for ZDT4. For U-NSGA-III, we have used different population sizes N ≥
H. Average number of solution evaluations over 10 runs needed to achieve the
pre-specified HV value (Table 2) are plotted in the figures. For runs having
a population size larger than number of reference points, the points that are
closest to each H reference line in the objective space are used for the HV
calculation. For ZDT1 and ZDT3, the use of a larger population size is not
found to be beneficial, whereas for ZDT2 and ZDT4 (more difficult problems), a
larger population brings in the necessary diversity needed to solve the respective
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(a) ZDT1 (b) ZDT2

(c) ZDT3 (d) ZDT4

Fig. 6. Comparison of U-NSGA-III, NSGA-III, and NSGA-II for bi-objective problems
for different population sizes (N) of U-NSGA-III

problem adequately. NSGA-III and NSGA-II are also applied with N = H for
all four problems and the average number of solution evaluations in 10 runs
needed to achieve an identical HV value is marked in the respective figure. It
is clear that in all problems, there exists certain population sizes, in general,
higher than H that make U-NSGA-III to perform better than NSGA-III and
NSGA-II. For relatively difficult problems, the difference is quite obvious. In all
cases, however, the performance of NSGA-III is better than NSGA-II, due to
the use of an external guidance for diversity through a uniformly distributed set
of reference points. These results are interesting and demonstrate the usefulness
of a larger population size than the number of reference points for the proposed
U-NSGA-III algorithm.
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4.3 Three-Objective Problems

To enable U-NSGA-III to work well on mono- and bi-objectives, there should not
be any performance degradation to three and many-objective problems. In this
section, we present results on three-objective DTLZ1 and DTLZ2 problems. For
these experiments, we have used H = 91 and N = 92 for both U-NSGA-III and
NSGA-III algorithms. Figures 7(a) and 7(b) show the final population of the
median (HV) of ten simulations using U-NSGA-III and NSGA-III, respectively.
Only minor differences can be seen across the two plots. Figures 7(c) and 7(d)
lead to the same conclusion on DTLZ2 problem. Exact HV values can be found
in Table 3.
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(d) DTLZ2 using NSGA-III

Fig. 7. U-NSGA-III and NSGA-III points for three-objective DTLZ1 and DTLZ2
problems

4.4 Many-objective Problems

Next, we consider five, eight, and 10-objective DTLZ1 and DTLZ2 problems for
our study here. We compare our proposed U-NSGA-III with NSGA-III in terms of
hyper-volume values which are computed using the sampling based strategy pro-
posed elsewhere [2] due to the computational complexities involved in the HV cal-
culation in higher dimensions. As discussed before, the difference between
U-NSGA-III and NSGA-III are negligible for many-objective optimization prob-
lems from a algorithmic point of view. Here, we are interested in investigating
how both these methods perform empirically on a series of test problems. In these
problems, we use identical values of N and H as those used in NSGA-III study.



U-NSGA-III: A Unified Evolutionary Algorithm 47

Table 3. Comparison of performance of U-NSGA-III
and NSGA-III on 3, 5, 8 and 10-objective DTLZ1 and
DTLZ2 problems

Problem #Obj. Max. Gen. U-NSGA-III NSGA-III

DTLZ1

3 400 0.79261 0.79425
5 600 0.96853 0.96867
8 750 0.00421 0.00421
10 1000 0.00108 0.00108

DTLZ2

3 250 0.42956 0.43016
5 350 0.70806 0.70866
8 500 0.90406 0.90532
10 750 1.01819 1.01697

Table 3 shows that
in most cases an identi-
cal HV value is obtained.
Even when there is a
difference, it is small.
The almost-identical PCP
plots can be observed
for 10-objective DTLZ1
problem in Figures 8(a)
and 8(b) for U-NSGA-III
and NSGA-III, respec-
tively. Similar results are
also obtained for three-
objective DTLZ2 in Fig-
ures 8(c) and 8(d) by U-NSGA-III and NSGA-III, respectively. All these results
demonstrate that the introduction of the niched tournament selection in the
original NSGA-III algorithm and the flexibility of using a different popula-
tion size from the number of reference points do not change its performance
in U-NSGA-III on many-objective optimization problems.

(a) DTLZ1 using U-NSGA-III (b) DTLZ1 using NSGA-III

(c) DTLZ2 using U-NSGA-III (d) DTLZ2 using NSGA-III

Fig. 8. U-NSGA-III and NSGA-III points for 10-objective DTLZ1 and DTLZ2
problems

5 Conclusions

In this study, we have developed an unified evolutionary optimization algorithm
U-NSGA-III which is a modification to a recently proposed evolutionary many-
objective optimization method. U-NSGA-III has been carefully designed so as
to solve mono-, multi-, and many-objective optimization problems. Simulation
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results on a number of mono-objective, two-objective ZDT, and scalable DTLZ
problems have demonstrated the efficacy of the proposed unified approach. In
each problem type on multiple problem instances, it has been found that the
proposed U-NSGA-III performs in a similar manner to a respective specific EA
– an elite-preserving rGA for mono-objective problems, NSGA-II for bi-objective
problems, and NSGA-III for three and many-objective problems. The ability of
one optimization algorithm to solve different types of problems equally efficiently
and sometimes better with the added flexibility brought in through a population
size control remains a hallmark achievement of this study.

We plan to extend U-NSGA-III for handling constrained problems by modi-
fying its selection operator. MOEA/D and other efficient EMO methods can also
be tried to develop an equivalent unified approach. As a further extension, the
unified approach can be modified to handle multi-modal problems for finding
multiple optimal or Pareto-optimal solutions in a single simulation. The popu-
lation approach and flexibility of EAs makes such a unified approach possible
and further such studies will demonstrate overall usefulness of EAs in solving
various optimization problems in an unified manner.
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Abstract. Multi-objective Evolutionary Algorithms (MOEA) are used
to solve complex multi-objective problems. As the number of objec-
tives increases, Pareto-based MOEAs are unable to maintain the same
effectiveness showed for two or three objectives. Therefore, as a way
to ameliorate this performance degradation several authors proposed
preference-based methods as an alternative to Pareto based approaches.
On the other hand, parallelization has shown to be useful in evolution-
ary optimizations. A central aspect for the parallelization of evolution-
ary algorithms is the population partitioning approach. Thus, this paper
presents a new parallelization approach based on clustering by the shape
of objective vectors to deal with many-objective problems. The proposed
method was compared with random and k-means clustering approaches
using a multi-threading framework in parallelization of the NSGA-II and
six variants using preference-based relations for fitness assignment. Exe-
cutions were carried-out for the DTLZ problem suite, and the obtained
solutions were compared using the generational distance metric. Exper-
imental results show that the proposed shape-based partition achieves
competitive results when comparing to the sequential and to other par-
titioning approaches.

Keywords: Multi-Objective Evolutionary Algorithms · Many-objective
optimization · Parallel evolutionary algorithms

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are well-suited for solving
several problems requiring simultaneous optimization of two or three conflicting
objectives [3,4]. In general, MOEAs differ in the fitness assignment method, but
some of the most successful of them, such as the NSGA-II [5], use the Pareto
dominance concept as the foundation to guide the search towards the optimal
solution set.

In the last few years, several researchers have pointed out convergence diffi-
culties that Pareto-based MOEAs face when solving many-objective problems,
c© Springer International Publishing Switzerland 2015
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i.e. problems having four or more conflicting objectives [17]. The main source of
these difficulties comes from that the proportion of non-dominated individuals
in an evolutionary population tends to one as the number of objectives increases.
Therefore, for a growing number of objectives, it becomes increasingly difficult to
discriminate among solutions to assign fitness values using only the dominance
relation [4,12]. In order to distinguish among solutions, some authors propose
to replace the Pareto dominance relation by preference relations that use addi-
tional information such as the number of objectives for which one solution is
better than another [9,12], the size of improvement [12,20], or the number of
subspaces in which a given solution remains non-dominated [8].

Even though there are other approaches to deal with many-objective prob-
lems using MOEAs [17], the use of alternative relations have shown to be able to
improve the quality of the obtained Pareto set approximations without requiring
to combine or reduce the number of objectives which, in several cases, may not
be adequate or even possible. Also, alternative relations are relatively easy to
incorporate into existing (Pareto-based) MOEAs with a minimal computational
overhead.

On the other hand, parallelization of existing MOEAs have proven to be
an effective mechanism to improve the quality of the obtained approximations
in multi-objective problems of increasing difficulty [3,21]. However, to the best
of our knowledge, parallelization of methods based on preference relations were
not applied and tested in many-objective problems. Moreover, parallel MOEAs
(pMOEAs) were mainly developed and tested in distributed memory parallel
systems [15]; however, nowadays availability of lower cost shared memory multi-
core platforms requires a review of the parallelization methods in the new existing
environment in order to leverage the computational power that these platforms
may offer.

The island model is the most popular parallelization paradigm for MOEAs,
it consists of a number of subpopulations or islands evolving independently pro-
vided with a mechanism to interchange individuals exploring for global optima.
Using multiple subpopulations has been identified as a simple way to increase
the chance of finding better solutions for a problem [2,3]. In general, in the island
model, the interchange of individuals is carried out by a migration operator that
selects solutions to migrate from one subpopulation to another. The migration
strategy definition includes to specify the elapsed time between migrations, as
well as the selection criterion and the number of elements to migrate.

Alternatively, instead of conceiving a migration strategy, other island-based
methods split the evolutionary population into multiple subpopulations that,
after evolving independently, are combined again into a single population, which
also can evolve in a single process for a number of iterations, then the division
process is repeated [1,13,18,19]. In this work, since division is usually used to
create partitions with similar individuals, these methods are generically called
clustering based parallel MOEA. Population partitions with similar individuals
induce a mating restriction, i.e. recombination of similar individuals, that has
shown to be useful to improve the performance of evolutionary algorithms [4]. As
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it is noted in [2], the main drawback of these pMOEAs based on repeated parti-
tioning of a global population is that the division procedure introduces a strong
dependency among the computing units. However, the expected improvement
provided by working with multiple subpopulations running in different proces-
sors may justify the use of these methods. Most of clustering based pMOEAs
were implemented into distributed parallel systems, thus, requiring additional
data communication to send subpopulations to the process in charge of join
them in a whole population and redistribute it again. However, in nowadays mul-
ticore systems with shared memory systems to gather subpopulations requires a
reduced communication and synchronization time.

This paper studies clustering based parallelization of NSGA-II variants using
preference relations for many-objective problems. In this case, the clustering
methods serves to search into different regions simultaneously using preference
based MOEAs, while, in each subpopulation, the preference relations are used
to improve the rank over similar individuals, which may be useful to improve
the overall search. Moreover, a new clustering method based on the shape of the
objective vectors is proposed (see Section 3).

In order to validate the proposal in the field of many objective optimization,
an empirical comparison of the proposed method against other alternatives for
population division for pMOEAs was produced considering the same parallel
framework. Using this framework, the NSGA-II and six of its variants based on
preference relations were parallelized with three options to divide the popula-
tion: at random, using the k-means clustering algorithm, and using the proposed
shape-based clustering algorithm. Sequential and parallel implementations were
used to solve the suite of DTLZ problems with 10 objectives and the obtained
results compared regarding the Generational Distance metric [4].

2 Clustering Based Parallelization of MOEAs

2.1 Parallel MOEAs Using Clustering

In general, the island model is used to develop pMOEAs as parallel extensions
of existing mono-objective or multi-objective evolutionary algorithms. Besides
the algorithm considered for parallelization, island based pMOEAs differ in the
mechanism used to interchange information among subpopulations searching for
the global Pareto front. As previously explained, an alternative to exchange
individuals among islands is to iteratively divide a global population into sub-
populations and gather them to repeat the cycle again. In this case, methods
may also alternate between the execution of sequential iterations, considering the
whole population, with parallel iterations. Some methods to divide the global
population into subpopulations considered here as relevant related works are:

– population partitioning based on sorting of a objective function [13,18],
– population partitioning based on the cone separation approach [1],
– population partitioning based on the k-means clustering algorithm [19].
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Parallelization approaches based on objective function sorting use the value
of one selected criterion to divide and distribute the population in different
islands. Thus, each island works on a subpopulation with individuals that are
similar regarding the chosen sorting objective. After some evaluations, subpop-
ulations are gathered again and the process is repeated until a stop condition is
met. Examples of these approaches the Divided Range Multi-objective Genetic
Algorithm [13] and the Parallel Single Front Genetic Algorithm [18].

The Cone Separation Approach [1] parallelizes MOEAs by dividing the search
space and mapping different search areas to different processors. In this case,
objective values are normalized, then, considering a given reference point, the
search space is divided in regular partitions or regions called cones that can be
assigned to different processors. As the searching process progresses, the search
space partitioning is adapted at regular intervals by normalizations and readjust-
ment of the region assigned to each processor. Region restrictions are applied
to each subpopulation and individuals not meeting constraints in a subpopu-
lation migrate to the one where they do not violate the constraints. Migrated
individuals are added to the receiving population without deletion. This way,
there is not a centralized process that divides the population iteratively but a
decentralized one; however, the method is conceptually equal to the methods
based on repeated division of a global population.

Streichert et al. [19] use the k-Means clustering algorithm to divide the search
space of a given optimization problem in suitable partitions without a priori
knowledge about the search space topology. The k-Means procedure is applied
over the current Pareto Front of the whole population to produce partitions to
be distributed to the available processors or islands. In case the size of Pareto
Front being smaller than the number of processors, next levels of Pareto fronts
are also used for clustering. Each processor runs NSGA-II until the number of
generations reaches a number of iterations, then, solutions are gathered in a
master procedure where search space is partitioned and distributed again.

2.2 Preference Relations in MOEAs for Many-Objective Problems

The NSGA-II is a well known MOEA that showed an excellent performance in
several multi-objective problems, thus, several researchers considered the NSGA-
II [5] as the base algorithm to implement and validate their proposed relations
and algorithmic approaches both in multi-objective as well as many-objective
problem domains. The NSGA-II assigns the fitness of solutions based on two
values: its non-dominance ranking and its crowding distance. Variants of the
NSGA-II can be produced by considering alternative methods to calculate fit-
ness. In this paper, the following operators and ranking methods are used to
modify the fitness assignment procedure of the NSGA-II in a minimization con-
text, for space limitation reasons the details are not explained here but we refer
the interested reader to the corresponding references:

1. Favour relation [9]: this relation counts the number of objectives in which
a given solution outperforms another. Given a multi-objective problem min-
imizing a function F(x) = (f1(x), . . . , fm(x)) with m objectives, and let x
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and x′ be two vectors in the set of feassible solutions Xf , it is said that x is
favoured than x′, denoted as x ≺favour x′, if and only if

nb(F(x),F(x′)) > nb(F(x′),F(x)) (1)
where:

nb(F(x),F(x′)) = |{fi(x) s.t. fi(x) < fi(x′)}| (2)

In [9], the favour relation is proposed to be used with the Satisfiability Class
Ordering classification (SCO) procedure [9] to sort solutions.

2. ε−Preferred Relation [20]: the ε−Preferred relation compares solutions
by counting the number of times a solution exceeds user defined limits
for each dimension (εi) and, in case of a tie, it uses the favour relation.
Given two solutions x and x′ ∈ Xf , F(x) = y = (y1, . . . , ym), F(x′) =
y′ = (y′

1, . . . , y
′
m), it is said that x is ε−preferred than x′, denoted as

x ≺ε−preferred x′, iff x ≺ε−exceed x′ ∨ (x′ �≺ε−exceed x ∧ x ≺favour x′),
where x ≺ε−exceed x′ implies that:

|{i : yi < y′
i ∧ |yi − y′

i| > εi}| > |{i : y′
i < yi ∧ |y′

i − yi| > εi}|

As in [9], in [20] the SCO algorithm is used to rank solutions.
3. Preference Ordering based on order of efficiency (POk) [8]: a solu-

tion x is considered to be efficient of order k if it is Pareto optimal in the(
m
k

)
subspaces of the objective space taking into account only k out of m

objectives at a time. The order of efficiency of a solution x, denoted by K(x)
is the minimum k value for which x is efficient.

4. −ε-DOM [16]: the −ε-DOM distance replaces the NSGA-II crowding dis-
tance. The −ε-DOM distance of a solution x is the smallest value such that
if subtracted from all objectives of F(x′), makes x dominated.

5. (1 − k)−dominance relation [12]: this relation counts the objectives in
which a solution is better or equal than another one. Let x and x′ ∈ Xf ,
F(x) = y, F(x′) = y′, it is said that x (1−k)−dominates x′ iff : ne(y,y′) <
m and nb(y,y′) ≥ m−ne

k+1 , where m is the number of objectives, 0 ≤ k ≤ 1,
nb is as in Eq. (2), and ne(F(x),F(x′)) is |{fi(x) s.t. fi(x) = fi(x′)}|.

6. Fuzzy (1 − kF )−dominance relation [12]: the fuzzy extension of (1 −
k)−dominance is defined by determining membership functions μi

b , μi
e and

μi
w for each objective function i.

2.3 A Framework for Clustering Based Parallelization of MOEAs
Based on Preference Relations

To study clustering based pMOEAs, Algorithm 1 presents a framework for
pMOEAs that use iterative partitioning of a global population for multi-threading
systems. Using this framework, by setting the corresponding parameters it is pos-
sible to study different options for pMOEAs based on clustering.

Algorithm 1 starts reading its parameters; the MOEA M to be considered
for evolutions and its parameters, the partition method (PM), the number of
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Algorithm 1. A framework for clustering based pMOEAs
Read parameters
Set t = 0
Create an initial random global evolutionary population Pt

while t < itg do � itg is the total number of evolutionary steps performed
for its iterations do � its: iterations considering a single population

Evolve Pt in Pt+1 using M � M is the MOEA to be used
t = t + 1

end for
In τ parallel threads
t′ = 0
for itp iterations do � itp: iterations considering subpopulations in parallel

if t′ mod itc = 0 then
Split Pt in P 1

t , . . . , P τ
t using partition method PM

end if
Evolve P Id

t+t′ in P Id
t+t′+1 using M

t′ = t′ + 1
end for
End parallel
t = t + itp

end while
Save non-dominated solutions from Pt

islands (τ), the total number of evolutionary steps (itg), the number of single
thread iterations (its), the number of parallel iterations (itp) and the number of
iterations before clustering (itc). Next, the global number of iterations t is set to
0, and the global population Pt is created at random. After initialization, while
t < itg , its evolutionary iterations are executed in a single thread considering the
evolutionary population as a whole. Then, τ threads are created, one for each
island, and parallel execution starts. The next step is to split P (t) using the
procedure PM in τ subpopulations (P 1

t . . . , P τ
t ), this procedure, repeated each

itc iterations, may be implemented in parallel or as a single thread. Each thread
has an identifier Id, thus at each thread Id, evolution of P Id

t occurs during itp
iterations. When iterations in all threads end, the global count of iterations t
is updated to t + itp and the cycle continues until the stop condition is met.
Finally, the final set of solutions is saved.

3 Partition Approach Based on the Shape of Solutions

In [10] it is presented a similarity measure over Euclidean spaces for high dimen-
sional vectors. To calculate this measure, a real vector y = (y1, . . . , yM ) ∈ Rm

is divided in a pair (s(y), π(y)), where s(y) is the ordered version (weak) of y
elements, and π(y) is the permutation of indexes {1, . . . , m} that produce the
sorting which is called as the shape part. The distance between two vectors y
and y′ is defined in [10] by a combination of the distance between s(y) and s(y′),
and π(y) and π(y′). The shape of a vector can be formally defined as follows:

Definition 1. Shape of a vector in Rm: Given a vector y ∈ Rm, a permutation
π(y) = {π1, . . . , πm}, πi ∈ {1, . . . , m}, is the shape of y iff:

yπi
≤ yπj

,∀i < j
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As an example, let y = [0.1, 0.5, 0.3] and y′ = [0.3, 0.1, 0.5], then, their shapes
are π(y) = [1, 3, 2] and π(y′) = [2, 1, 3].

This work proposes the shape of a vector to divide the population in groups
of solutions having a similar shape. The number of different shapes grows facto-
rially with the number of objectives, i.e. for three objectives there are 6 different
shapes, but for 5 objectives there are 120 possible shapes. Therefore, it is not
practical for a large number of objectives to split the solutions according to all
possible shapes, but by means of a clustering method considering the similar-
ity between the shapes of objective vectors. There are several measures that
can be used to measure the distance between permutations. In this work, the
Spearman’s rho distance, defined as follows, is considered [11].

Definition 2. Spearman’s rho distance: Given permutations π and π′, and inter-
preting πi as the position of element i in π, the Spearman’s rho distance is defined
as:

ρ(π, π′) = (
M∑

i=1

|πi − π′
i|2)(1/2) (3)

Algorithm 2 presents a clustering procedure using the shape of objective
functions. First, a set {C1, C2, . . . , Cτ} of τ clusters are initialized at empty.
Then, for each element x in the population to be classified P , a normalized
objective value F̂(x) is calculated with its corresponding shape πx = π(F̂(x)).
Thereafter, τ different shapes are randomly selected from the set of shapes of
the normalized objective values into a set S. If eventually there are less than τ
different shapes, S is completed by repeated elements. An index Id corresponding
to each cluster is assigned to each shape in S. Next, for each x in P , a set S ′

x

containing the indexes of the shapes in S having the minimal Spearman’s rho
distance to πx is created. The set S ′

x is used to select the index Id of the cluster
in which x will be included. If the cardinality of S ′

x is one, the index is the value
of the unique element in S ′

x; otherwise, one of the indexes in S ′
x is selected at

random. Finally, x is included in the cluster CId. The procedure finishes when
all individuals are assigned to a cluster.

Algorithm 2. Clustering algorithm using the shape of objective functions
Initialize {C1, C2, . . . , Cτ} clusters, s.t. CId = ∅ for Id ∈ [1, . . . , τ ]
For each x ∈ P obtain its normalized objective value F̂(x) and shape πx = π(F̂(x))
Randomly select τ different shapes S = {sh1, sh2, . . . , shτ} from shapes of x ∈ P
for each x ∈ P do

S ′ = { Id | shId ∈ minsh∈Sh{ρ(πx, sh)}}
if( |S ′| == 1 ) then Id is the element of S ′

else select Id at random from S ′

end if
Set CId = CId ∪ x

end for
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4 Experimental Comparison

4.1 Experimental Setup and Metrics

The main focus of this work is to compare the shape-based clustering method
to parallelize MOEAs based on preference relations with their sequential coun-
terparts and other population division methods over a set of many-objective
optimization problems. Thus, using the framework presented in Subsection 2.3,
three partition methods were implemented to parallelize the original NSGA-
II and six variants of it considering the relations explained in Subsection 2.2.
The considered partition methods are: the proposed clustering method based on
the shape of objective vectors (SH), a random (RN) partition and a k-means
based partitioning (KM). The test problems used in this work are the DTLZ1
to DTLZ7 problems with 10 objectives [6]. The programs were implemented in
C language and the OpenMP library.

For each problem 10 runs were executed for sequential and parallel programs
using 2, 4, and 8 threads. The choice of the number of runs was made taking
into account other works such as [8,14], and the available time to execute the
programs and analyse the results ( note that there is a total of 4900 executions).
The experimental computational platform was a machine provided with two Intel
Xeon quad-core Processors E5640 (12M Cache, 2.66 GHz, 5.86 GT/s) and 16
GB of main memory running the GNU/Linux operating system. The programs
consider the following common parameters: population size 400, itg is 400, binary
coding of 32 bits per variable, one point crossover probability of 0.8, mutation
probability of 0.002. For the ε-Preferred relation, the ε value is 0.0001; for the
(1 − k)−dominance relation, k is 0.5; and, for the (1 − kF )−dominance relation,
kF is also 0.5 and a fuzzy trapezoidal rule is used (a = −0.001, b = 0, c = 0,
d = 0.001) [12]. The k and kF values were selected taking into account the test
cases in [12], while the values used for ε and the fuzzy trapezoidal rule were
selected on experimental basis, however, no fine tuning of the above parameters
was considered. For parallel methods its = 0, itp is set to 400, itc is 1. The
sequential version is also implemented using the framework, but, in this case,
τ = 1 and itp = 0.

The obtained results were evaluated using the Generational Distance (GD)
and Spread (Δ) metrics. GD measures the average distance between obtained
solutions in objective space and the true Pareto Front of the problem, while
Spread evaluates the extent of the Pareto Front covered by the obtained set of
solutions. Since GD requires a reference PF � to be computed, and equations
to produce PF � are known, a set of 2000 optimal solutions was determined
analytically. Both metrics are expected to be minimized.

4.2 Experimental Results

Table 1 and Table 2 show the average GD and Spread values performing 10
runs of implemented combinations, for each DTLZ problem. In these tables,
for each problem, there are 10 rows corresponding to each execution type: one



58 C. von Lücken et al.

for the sequential execution (Seq) and 3 for each partition method used for
parallelization considering 2, 4, and 8 threads (τ value), while each column is
for different MOEAs tested in this work. The values in parenthesis show the
ranking obtained by each execution type of the given MOEA for each problem.
Note that, until the value is represented by using a reduced number of digits,
rankings are calculated using the machine numeric representation. Also, the best
value for each column (execution method) is boldfaced. In order to summarize
the results, the two last columns indicate the average of the rankings of each
row, and regarding the data in this column, the last column labelled ”Final”
shows the overall rank obtained by each execution type for each problem.

The results in Table 1 and Table 2 may be used to determine the combina-
tion of partition method, MOEA and number of threads, performing the best
for each problem and metric. However, in this work, the detailed results are not
analyzed but the general and average behaviour of the studied partition methods
in order to show how clustering may serve as a basis to develop pMOEAs for
many-objective problems. At first glance, Table 1 shows that in almost all cases,
for each MOEA considered, at least one parallel implementation evaluates better
than its corresponding sequential counterparts for the GD metric. Considering
the seven DTLZ problems and seven implemented MOEAs, only in 4 out of
49 results obtained by sequential implementations are not improved by parallel
executions for GD. The result is remarkable since parallel and sequential imple-
mentations were executed using the same number of iterations, and, therefore,
the same number of objective function evaluations. Therefore, the source of the
benefit is provided by the interactions among individuals in subpopulations and
not by executing more evaluations in the same execution time.

Figure 1 and Figure 2 show the final ranking of each combination of partition
method and number of threads by problem using data in Table 1 and Table 2,
respectivelly. The labels indicate the τ value followed by the partition method,
i.e. 2-KM is for implementations using 2 threads and k-means. As it can be
noted, in Figure 1 the smaller bars are for the SH implementations. In fact, in
5 out of 7 problems, an SH implementation obtains the best rank value for GD,
in one problem a method based on k-means and in another case a method based
on random partitioning. Also, the figure indicates that the best performance is
for 8-SH obtaining the best ranking positions for almost all problems. In fact,
the worst value obtained by the 8-SH is 5, in problem DTLZ6, whereas the other
partitioning options receive in at least one problem an overall ranking greater
than 5. From a visual inspection of Figure 2, it is not possible to determine which
implementation alternative may be considered as the best, however it appears
that sequential implementation obtain the best ranking in three problems, and
that the 8-KM obtains, in general, the worse values.

Figure 3 presents the ranking distribution for GD metric considering the 49
implementations of each sequential and parallel MOEAs with different number of
threads (7 MOEAs times 7 DTLZ problems). According to this figure the results
of shape-based implementations concentrates in the first ranks while they have
the fewer number of implementations in position 10. Thus, using the Figure 3 as
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Table 1. Average values for GD metric with 10 objectives

Ranking
Test τ Part ε−DOM ε−Pref (1 − k) (1 − kF ) Favour NSGAII POk Avg. Final

D
T

L
Z
1

1 0 1.05E-1(6) 1.28E+0(10) 2.11E-1(4) 1.99E-1(10) 2.50E-1(2) 3.40E+0(6) 8.77E-2(1) 5.57 5

2
KM 1.53E-1(10) 2.14E-1(3) 2.31E-1(7) 1.95E-1(9) 3.88E-1(6) 2.85E+0(5) 1.27E-1(6) 6.57 10
RN 9.24E-2(3) 3.87E-1(6) 2.33E-1(8) 1.47E-1(5) 2.39E-1(1) 5.31E+0(8) 1.21E-1(4) 5 4
SH 8.24E-2(2) 6.13E-1(9) 2.00E-1(3) 1.54E-1(6) 2.65E-1(3) 3.75E+0(7) 1.69E-1(10) 5.71 6

4
KM 9.26E-2(4) 1.75E-1(2) 3.21E-1(10) 1.43E-1(4) 4.12E-1(7) 1.14E+0(2) 1.10E-1(3) 4.57 2
RN 9.34E-2(5) 3.40E-1(5) 2.34E-1(9) 1.60E-1(7) 3.07E-1(5) 5.47E+0(9) 1.25E-1(5) 6.43 9
SH 1.14E-1(7) 4.62E-1(8) 2.15E-1(5) 1.19E-1(3) 4.88E-1(8) 2.58E+0(4) 1.62E-1(9) 6.29 8

8
KM 1.27E-1(9) 4.22E-1(7) 1.56E-1(2) 1.02E-1(2) 5.11E-1(9) 1.09E+0(1) 1.08E-1(2) 4.57 3
RN 5.35E-2(1) 2.36E-1(4) 2.28E-1(6) 1.67E-1(8) 2.75E-1(4) 1.11E+1(10) 1.61E-1(8) 5.86 7
SH 1.22E-1(8) 1.35E-1(1) 1.46E-1(1) 9.89E-2(1) 6.98E-1(10) 1.15E+0(3) 1.47E-1(7) 4.43 1

D
T

L
Z
2

1 0 6.63E-3(9) 6.18E-5(7) 2.02E-3(10) 1.38E-3(8) 2.90E-5(7) 4.92E-2(8) 5.83E-3(10) 8.43 10

2
KM 5.90E-3(7) 3.21E-4(8) 6.42E-4(8) 1.33E-3(4) 4.89E-5(8) 4.59E-2(6) 2.28E-3(8) 7 8
RN 6.84E-3(10) 3.62E-5(6) 1.47E-5(5) 1.96E-3(10) 1.97E-5(5) 4.88E-2(7) 4.86E-3(9) 7.43 9
SH 5.12E-3(4) 2.55E-5(5) 1.83E-5(6) 1.38E-3(7) 1.66E-5(4) 4.58E-2(5) 2.02E-3(6) 5.29 4

4
KM 5.07E-3(3) 1.08E-3(9) 1.15E-3(9) 1.33E-3(3) 6.76E-4(9) 4.16E-2(3) 5.47E-4(3) 5.57 7
RN 6.00E-3(8) 1.92E-5(4) 1.32E-5(1) 1.36E-3(6) 1.54E-5(2) 4.97E-2(9) 2.22E-3(7) 5.29 5
SH 4.60E-3(1) 1.86E-5(3) 1.38E-5(3) 1.73E-3(9) 1.98E-5(6) 4.33E-2(4) 8.21E-4(5) 4.43 2

8
KM 5.68E-3(6) 1.54E-3(10) 4.42E-4(7) 1.25E-3(1) 1.51E-3(10) 3.47E-2(1) 3.55E-4(2) 5.29 6
RN 5.37E-3(5) 1.65E-5(2) 1.41E-5(4) 1.36E-3(5) 1.65E-5(3) 5.12E-2(10) 7.92E-4(4) 4.71 3
SH 4.73E-3(2) 1.54E-5(1) 1.38E-5(2) 1.32E-3(2) 1.42E-5(1) 3.85E-2(2) 3.32E-4(1) 1.57 1

D
T

L
Z
3

1 0 6.82E-1(2) 6.01E+0(9) 5.57E+0(10) 1.14E+0(10) 2.70E+0(5) 2.84E+0(6) 6.41E-1(3) 6.43 7

2
KM 7.14E-1(4) 6.90E+0(10) 3.22E+0(9) 1.09E+0(7) 3.53E+0(7) 3.06E+0(7) 6.64E-1(4) 6.86 9
RN 7.70E-1(8) 3.97E+0(4) 2.42E+0(6) 1.08E+0(6) 3.75E+0(9) 4.02E+0(8) 7.02E-1(5) 6.57 8
SH 7.95E-1(9) 4.60E+0(7) 2.79E+0(8) 9.53E-1(5) 3.70E+0(8) 2.50E+0(5) 7.84E-1(7) 7 10

4
KM 7.35E-1(5) 4.75E+0(8) 2.02E+0(5) 9.26E-1(3) 3.89E+0(10) 1.30E+0(2) 8.51E-1(9) 6 5
RN 6.95E-1(3) 4.39E+0(6) 1.82E+0(3) 1.13E+0(8) 2.63E+0(4) 5.34E+0(9) 7.41E-1(6) 5.57 4
SH 7.54E-1(6) 4.16E+0(5) 2.72E+0(7) 9.44E-1(4) 2.01E+0(1) 1.92E+0(4) 8.90E-1(10) 5.29 3

8
KM 6.16E-1(1) 2.51E+0(1) 1.84E+0(4) 7.12E-1(1) 3.52E+0(6) 1.14E+0(1) 5.50E-1(1) 2.14 1
RN 9.96E-1(10) 3.00E+0(3) 1.40E+0(1) 1.14E+0(9) 2.12E+0(2) 1.87E+1(10) 8.07E-1(8) 6.14 6
SH 7.68E-1(7) 2.90E+0(2) 1.77E+0(2) 7.77E-1(2) 2.59E+0(3) 1.85E+0(3) 6.27E-1(2) 3 2

D
T

L
Z
4

1 0 6.74E-3(9) 2.55E-2(10) 4.62E-2(10) 1.83E-3(3) 4.16E-3(6) 6.79E-2(7) 1.13E-2(4) 7 10

2
KM 3.31E-3(1) 3.58E-3(3) 9.01E-3(8) 3.14E-3(6) 7.02E-3(10) 6.77E-2(6) 1.81E-2(9) 6.14 7
RN 6.99E-3(10) 6.32E-3(8) 7.61E-3(7) 1.22E-3(1) 4.27E-3(7) 7.01E-2(8) 1.39E-2(7) 6.86 9
SH 5.13E-3(5) 3.70E-3(4) 2.94E-3(4) 2.36E-3(4) 2.64E-3(2) 6.73E-2(5) 1.27E-2(6) 4.29 2

4
KM 3.78E-3(2) 3.04E-3(2) 1.38E-2(9) 3.56E-3(7) 3.39E-3(5) 6.36E-2(3) 2.11E-2(10) 5.43 5
RN 5.85E-3(7) 4.78E-3(7) 1.51E-3(1) 2.81E-3(5) 5.28E-3(9) 7.21E-2(9) 1.24E-2(5) 6.14 8
SH 4.40E-3(4) 2.64E-3(1) 3.68E-3(5) 4.53E-3(9) 2.28E-3(1) 6.57E-2(4) 1.08E-2(3) 3.86 1

8
KM 5.61E-3(6) 3.93E-3(5) 4.29E-3(6) 7.66E-3(10) 2.88E-3(3) 5.87E-2(1) 1.49E-2(8) 5.57 6
RN 6.55E-3(8) 9.10E-3(9) 1.51E-3(2) 1.76E-3(2) 3.12E-3(4) 7.35E-2(10) 9.02E-3(2) 5.29 4
SH 4.17E-3(3) 4.52E-3(6) 2.29E-3(3) 3.65E-3(8) 4.54E-3(8) 6.00E-2(2) 8.36E-3(1) 4.43 3

D
T

L
Z
5

1 0 3.85E-2(2) 1.34E-5(4) 1.25E-1(7) 1.30E-5(1) 1.38E-1(10) 1.20E-1(9) 1.14E-1(1) 4.86 2

2
KM 4.02E-2(9) 1.95E-5(9) 1.27E-1(8) 1.38E-5(5) 1.29E-1(9) 1.17E-1(5) 1.20E-1(3) 6.86 10
RN 3.95E-2(7) 1.26E-5(1) 1.25E-1(5) 1.32E-5(3) 1.28E-1(4) 1.18E-1(7) 1.25E-1(4) 4.43 1
SH 3.85E-2(3) 1.28E-5(3) 1.25E-1(6) 1.56E-5(7) 1.28E-1(7) 1.18E-1(6) 1.25E-1(5) 5.29 4

4
KM 3.86E-2(4) 1.46E-5(7) 1.28E-1(9) 1.58E-5(9) 1.28E-1(6) 1.14E-1(3) 1.17E-1(2) 5.71 7
RN 4.04E-2(10) 1.27E-5(2) 1.25E-1(4) 1.32E-5(2) 1.28E-1(5) 1.18E-1(8) 1.25E-1(6) 5.29 5
SH 3.91E-2(6) 1.42E-5(6) 1.25E-1(2) 1.56E-5(8) 1.28E-1(8) 1.14E-1(4) 1.25E-1(7) 5.86 8

8
KM 3.81E-2(1) 2.04E-5(10) 1.32E-1(10) 3.24E-3(10) 1.27E-1(2) 1.02E-1(1) 1.29E-1(10) 6.29 9
RN 4.01E-2(8) 1.40E-5(5) 1.25E-1(1) 1.36E-5(4) 1.25E-1(1) 1.28E-1(10) 1.25E-1(8) 5.29 6
SH 3.90E-2(5) 1.81E-5(8) 1.25E-1(3) 1.52E-5(6) 1.27E-1(3) 1.11E-1(2) 1.25E-1(9) 5.14 3

D
T

L
Z
6

1 0 1.75E-1(7) 2.98E+0(7) 6.36E-4(1) 2.69E+0(5) 2.73E-3(7) 4.57E-1(5) 4.19E-3(7) 5.57 7

2
KM 1.75E-1(8) 2.63E+0(3) 1.93E-2(10) 3.13E+0(10) 1.23E-2(10) 4.53E-1(2) 5.95E-3(8) 7.29 10
RN 1.64E-1(3) 2.76E+0(5) 7.55E-4(5) 2.77E+0(7) 3.48E-4(6) 4.65E-1(6) 4.14E-3(6) 5.43 6
SH 1.66E-1(4) 3.00E+0(8) 6.51E-4(2) 2.93E+0(8) 3.35E-4(5) 4.53E-1(1) 2.94E-3(3) 4.43 1

4
KM 1.87E-1(9) 2.40E+0(2) 1.32E-2(9) 2.75E+0(6) 9.25E-3(8) 4.56E-1(3) 1.03E-2(9) 6.57 8
RN 1.58E-1(2) 3.08E+0(9) 8.53E-4(6) 2.20E+0(2) 2.39E-4(1) 4.69E-1(8) 3.79E-3(5) 4.71 4
SH 1.70E-1(5) 2.72E+0(4) 6.79E-4(4) 2.98E+0(9) 2.48E-4(4) 4.57E-1(4) 2.55E-3(2) 4.57 3

8
KM 1.88E-1(10) 1.83E+0(1) 1.27E-2(8) 2.24E+0(3) 9.49E-3(9) 4.67E-1(7) 1.24E-2(10) 6.86 9
RN 1.52E-1(1) 2.90E+0(6) 1.51E-3(7) 2.11E+0(1) 2.44E-4(3) 4.75E-1(9) 3.40E-3(4) 4.43 2
SH 1.71E-1(6) 3.14E+0(10) 6.69E-4(3) 2.35E+0(4) 2.40E-4(2) 4.75E-1(10) 1.55E-3(1) 5.14 5

D
T

L
Z
7

1 0 8.44E-3(10) 9.11E-5(8) 6.28E-3(10) 1.34E-3(7) 2.93E-4(7) 4.67E-2(8) 7.10E-3(10) 8.57 10

2
KM 6.32E-3(6) 5.35E-5(7) 2.14E-3(9) 1.34E-3(5) 3.08E-4(8) 4.32E-2(6) 3.15E-3(6) 6.71 9
RN 7.93E-3(9) 4.53E-5(6) 2.70E-5(6) 1.31E-3(4) 2.37E-5(3) 4.67E-2(7) 5.43E-3(9) 6.29 7
SH 4.40E-3(2) 4.39E-5(5) 2.67E-5(5) 1.34E-3(6) 2.51E-5(4) 4.30E-2(5) 3.86E-3(7) 4.86 3

4
KM 4.75E-3(4) 1.43E-3(9) 1.07E-3(7) 1.25E-3(2) 8.48E-4(9) 3.76E-2(3) 8.80E-4(3) 5.29 5
RN 7.68E-3(8) 3.27E-5(3) 2.46E-5(2) 1.62E-3(9) 2.56E-5(5) 4.97E-2(10) 4.12E-3(8) 6.43 8
SH 4.65E-3(3) 3.64E-5(4) 2.44E-5(1) 1.35E-3(8) 2.79E-5(6) 3.97E-2(4) 1.44E-3(4) 4.29 2

8
KM 4.80E-3(5) 2.03E-3(10) 1.66E-3(8) 1.23E-3(1) 1.28E-3(10) 3.15E-2(1) 6.09E-4(1) 5.14 4
RN 6.92E-3(7) 2.93E-5(2) 2.56E-5(3) 1.88E-3(10) 1.98E-5(1) 4.94E-2(9) 1.60E-3(5) 5.29 6
SH 4.22E-3(1) 2.67E-5(1) 2.57E-5(4) 1.30E-3(3) 2.12E-5(2) 3.60E-2(2) 6.60E-4(2) 2.14 1
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Table 2. Average values for Spread metric with 10 objectives

Ranking
Test τ Part ε−DOM ε−Pref (1 − k) (1 − kF ) Favour NSGAII POk Avg. Final

D
T

L
Z
1

1 0 5.95E-1(3) 1.07E+0(6) 1.02E+0(1) 9.08E-1(8) 1.06E+0(5) 5.47E-1(7) 5.81E-1(1) 4.43 4

2
KM 6.07E-1(5) 1.06E+0(5) 1.09E+0(6) 8.35E-1(2) 1.04E+0(2) 5.31E-1(6) 7.28E-1(2) 4.00 2
RN 5.75E-1(2) 1.09E+0(8) 1.04E+0(2) 8.33E-1(1) 1.05E+0(4) 4.96E-1(4) 8.30E-1(4) 3.57 1
SH 5.59E-1(1) 1.00E+0(1) 1.11E+0(9) 9.11E-1(9) 1.03E+0(1) 4.66E-1(2) 1.06E+0(7) 4.29 3

4
KM 6.42E-1(7) 1.08E+0(7) 1.06E+0(4) 9.75E-1(10) 1.05E+0(3) 6.53E-1(9) 7.47E-1(3) 6.14 8
RND 6.78E-1(8) 1.02E+0(2) 1.06E+0(3) 8.78E-1(6) 1.09E+0(8) 4.79E-1(3) 9.28E-1(5) 5.00 5
SH 6.03E-1(4) 1.06E+0(4) 1.06E+0(5) 8.40E-1(3) 1.11E+0(9) 5.04E-1(5) 1.11E+0(8) 5.43 6

8
KM 7.18E-1(9) 1.16E+0(10) 1.09E+0(7) 8.87E-1(7) 1.08E+0(7) 6.70E-1(10) 9.88E-1(6) 8.00 9
RND 7.32E-1(10) 1.05E+0(3) 1.11E+0(8) 8.72E-1(5) 1.07E+0(6) 4.12E-1(1) 1.23E+0(9) 6.00 7
SH 6.12E-1(6) 1.14E+0(9) 1.18E+0(10) 8.48E-1(4) 1.21E+0(10) 5.85E-1(8) 1.52E+0(10) 8.14 10

D
T

L
Z
2

1 0 4.82E-1(3) 1.00E+0(1) 1.04E+0(2) 7.34E-1(3) 1.00E+0(1) 2.77E-1(10) 6.92E-1(1) 3.00 1

2
KM 4.86E-1(4) 1.03E+0(3) 1.22E+0(4) 7.31E-1(2) 1.03E+0(2) 2.44E-1(4) 8.58E-1(3) 3.14 2
RN 5.45E-1(7) 1.00E+0(2) 1.00E+0(1) 7.51E-1(7) 1.00E+0(1) 2.73E-1(9) 7.58E-1(2) 4.14 6
SH 4.81E-1(2) 1.00E+0(2) 1.00E+0(1) 7.61E-1(9) 1.00E+0(1) 2.51E-1(7) 1.09E+0(4) 3.71 3

4
KM 5.38E-1(6) 1.10E+0(4) 1.34E+0(5) 7.51E-1(6) 1.14E+0(3) 2.35E-1(2) 1.20E+0(6) 4.57 8
RND 5.77E-1(9) 1.00E+0(2) 1.00E+0(1) 7.52E-1(8) 1.00E+0(1) 2.53E-1(8) 1.17E+0(5) 4.86 10
SH 4.78E-1(1) 1.00E+0(2) 1.00E+0(1) 7.82E-1(10) 1.00E+0(1) 2.47E-1(5) 1.45E+0(8) 4.00 5

8
KM 5.72E-1(8) 1.31E+0(5) 1.17E+0(3) 7.49E-1(5) 1.23E+0(4) 2.33E-1(1) 1.32E+0(7) 4.71 9
RND 6.54E-1(10) 1.00E+0(2) 1.00E+0(1) 7.30E-1(1) 1.00E+0(1) 2.49E-1(6) 1.56E+0(9) 4.29 7
SH 4.92E-1(5) 1.00E+0(2) 1.00E+0(1) 7.38E-1(4) 1.00E+0(1) 2.39E-1(3) 1.63E+0(10) 3.71 4

D
T

L
Z
3

1 0 5.84E-1(5) 1.00E+0(2) 1.00E+0(1) 7.37E-1(5) 1.00E+0(1) 4.83E-1(8) 5.76E-1(1) 3.29 1

2
KM 5.92E-1(6) 1.00E+0(4) 1.01E+0(3) 7.48E-1(7) 1.01E+0(5) 5.11E-1(9) 7.41E-1(3) 5.29 8
RN 6.40E-1(7) 1.00E+0(5) 1.01E+0(4) 7.71E-1(9) 1.03E+0(6) 4.61E-1(6) 6.20E-1(2) 5.57 9
SH 5.47E-1(1) 1.00E+0(3) 1.01E+0(6) 7.12E-1(2) 1.00E+0(4) 4.69E-1(7) 9.17E-1(5) 4.00 3

4
KM 5.74E-1(3) 1.03E+0(6) 1.05E+0(7) 7.16E-1(3) 1.05E+0(7) 4.24E-1(4) 1.01E+0(6) 5.14 6
RND 6.95E-1(8) 1.00E+0(1) 1.00E+0(2) 7.44E-1(6) 1.00E+0(2) 4.28E-1(5) 8.98E-1(4) 4.00 4
SH 5.83E-1(4) 1.00E+0(1) 1.00E+0(2) 7.25E-1(4) 1.00E+0(2) 3.87E-1(3) 1.28E+0(8) 3.43 2

8
KM 7.91E-1(9) 1.13E+0(7) 1.16E+0(8) 6.93E-1(1) 1.22E+0(8) 5.66E-1(10) 1.13E+0(7) 7.14 10
RND 9.72E-1(10) 1.00E+0(1) 1.00E+0(2) 8.09E-1(10) 1.00E+0(2) 3.67E-1(2) 1.28E+0(9) 5.14 7
SH 5.63E-1(2) 1.00E+0(1) 1.01E+0(5) 7.70E-1(8) 1.00E+0(3) 3.66E-1(1) 1.56E+0(10) 4.29 5

D
T

L
Z
4

1 0 1.65E+0(8) 1.21E+0(6) 1.29E+0(6) 1.29E+0(4) 1.00E+0(2) 2.49E-1(10) 1.17E+0(4) 5.71 6

2
KM 1.67E+0(10) 1.40E+0(8) 1.46E+0(8) 1.54E+0(7) 1.19E+0(7) 2.24E-1(2) 9.47E-1(2) 6.29 7
RN 1.59E+0(3) 1.05E+0(2) 1.22E+0(4) 1.23E+0(1) 1.09E+0(3) 2.40E-1(9) 1.22E+0(6) 4.00 2
SH 1.64E+0(5) 1.16E+0(5) 1.02E+0(1) 1.26E+0(3) 1.00E+0(1) 2.28E-1(5) 1.20E+0(5) 3.57 1

4
KM 1.65E+0(7) 1.44E+0(9) 1.53E+0(10) 1.67E+0(10) 1.29E+0(9) 2.22E-1(1) 9.46E-1(1) 6.71 8
RND 1.50E+0(1) 1.09E+0(3) 1.25E+0(5) 1.36E+0(5) 1.15E+0(5) 2.33E-1(8) 1.24E+0(7) 4.86 4
SH 1.61E+0(4) 1.03E+0(1) 1.13E+0(3) 1.50E+0(6) 1.16E+0(6) 2.27E-1(4) 1.32E+0(8) 4.57 3

8
KM 1.66E+0(9) 1.61E+0(10) 1.52E+0(9) 1.66E+0(9) 1.57E+0(10) 2.24E-1(3) 1.14E+0(3) 7.57 10
RND 1.56E+0(2) 1.09E+0(4) 1.30E+0(7) 1.25E+0(2) 1.14E+0(4) 2.30E-1(6) 1.36E+0(9) 4.86 5
SH 1.64E+0(6) 1.24E+0(7) 1.04E+0(2) 1.57E+0(8) 1.23E+0(8) 2.30E-1(7) 1.44E+0(10) 6.86 9

D
T

L
Z
5

1 0 4.60E-1(8) 1.00E+0(2) 1.02E+0(5) 1.00E+0(1) 1.01E+0(7) 3.94E-1(9) 1.06E+0(7) 5.57 8

2
KM 4.91E-1(10) 1.00E+0(5) 1.14E+0(8) 1.00E+0(2) 1.19E+0(8) 3.12E-1(4) 1.10E+0(8) 6.43 9
RN 4.41E-1(5) 1.00E+0(3) 1.02E+0(3) 1.00E+0(1) 1.00E+0(6) 3.56E-1(7) 1.03E+0(4) 4.14 6
SH 4.50E-1(7) 1.00E+0(2) 1.02E+0(4) 1.00E+0(1) 1.00E+0(5) 3.12E-1(5) 1.01E+0(3) 3.86 5

4
KM 4.38E-1(3) 1.00E+0(1) 1.14E+0(9) 1.00E+0(1) 1.21E+0(10) 3.07E-1(3) 1.21E+0(10) 5.29 7
RND 4.34E-1(2) 1.00E+0(3) 1.02E+0(2) 1.00E+0(1) 1.00E+0(2) 3.43E-1(6) 1.03E+0(5) 3.00 1
SH 4.47E-1(6) 1.00E+0(6) 1.05E+0(7) 1.00E+0(1) 1.00E+0(1) 2.85E-1(2) 1.01E+0(2) 3.57 3

8
KM 4.71E-1(9) 1.00E+0(4) 1.16E+0(10) 1.04E+0(3) 1.20E+0(9) 4.40E-1(10) 1.14E+0(9) 7.71 10
RND 4.38E-1(4) 1.00E+0(4) 1.01E+0(1) 1.00E+0(1) 1.00E+0(3) 3.68E-1(8) 1.00E+0(1) 3.14 2
SH 4.31E-1(1) 1.00E+0(7) 1.04E+0(6) 1.00E+0(1) 1.00E+0(4) 2.80E-1(1) 1.03E+0(6) 3.71 4

D
T

L
Z
6

1 0 6.57E-1(5) 9.95E-1(1) 1.02E+0(7) 1.01E+0(8) 1.01E+0(7) 4.00E-1(10) 1.02E+0(7) 6.43 7

2
KM 6.50E-1(4) 1.01E+0(8) 1.37E+0(10) 9.97E-1(2) 1.29E+0(10) 3.13E-1(5) 1.05E+0(8) 6.71 8
RN 7.05E-1(8) 9.99E-1(4) 1.01E+0(2) 1.00E+0(5) 1.00E+0(6) 3.69E-1(9) 1.01E+0(4) 5.43 6
SH 6.72E-1(6) 9.96E-1(2) 1.01E+0(5) 1.00E+0(6) 1.00E+0(5) 3.20E-1(7) 1.00E+0(2) 4.71 3

4
KM 6.46E-1(2) 1.03E+0(9) 1.25E+0(9) 1.04E+0(10) 1.27E+0(9) 2.75E-1(2) 1.10E+0(9) 7.14 10
RND 7.66E-1(9) 1.00E+0(7) 1.00E+0(1) 9.97E-1(1) 1.00E+0(3) 3.21E-1(8) 1.01E+0(6) 5.00 5
SH 6.49E-1(3) 1.00E+0(5) 1.01E+0(6) 9.98E-1(3) 1.00E+0(4) 2.82E-1(3) 9.94E-1(1) 3.57 1

8
KM 6.34E-1(1) 1.08E+0(10) 1.25E+0(8) 1.04E+0(9) 1.27E+0(8) 2.57E-1(1) 1.19E+0(10) 6.71 9
RND 8.10E-1(10) 9.99E-1(3) 1.01E+0(3) 1.00E+0(4) 1.00E+0(2) 3.15E-1(6) 1.01E+0(5) 4.71 4
SH 6.76E-1(7) 1.00E+0(6) 1.01E+0(4) 1.01E+0(7) 1.00E+0(1) 2.85E-1(4) 1.00E+0(3) 4.57 2

D
T

L
Z
7

1 0 5.02E-1(3) 1.00E+0(1) 1.05E+0(4) 7.22E-1(5) 1.00E+0(1) 2.79E-1(10) 5.99E-1(1) 3.57 1

2
KM 4.86E-1(1) 1.00E+0(3) 1.27E+0(5) 7.14E-1(4) 1.02E+0(4) 2.53E-1(7) 7.87E-1(3) 3.86 3
RN 5.78E-1(8) 1.00E+0(4) 1.00E+0(1) 7.08E-1(3) 1.00E+0(2) 2.57E-1(8) 6.87E-1(2) 4.00 4
SH 5.11E-1(5) 1.00E+0(2) 1.00E+0(1) 7.28E-1(7) 1.00E+0(2) 2.46E-1(5) 8.24E-1(4) 3.71 2

4
KM 5.36E-1(6) 1.07E+0(8) 1.29E+0(6) 6.95E-1(1) 1.23E+0(6) 2.35E-1(2) 8.58E-1(5) 4.86 5
RND 5.66E-1(7) 1.00E+0(5) 1.00E+0(3) 7.25E-1(6) 1.00E+0(2) 2.59E-1(9) 8.61E-1(6) 5.43 8
SH 4.89E-1(2) 1.00E+0(7) 1.00E+0(1) 7.32E-1(9) 1.00E+0(3) 2.40E-1(4) 1.13E+0(8) 4.86 6

8
KM 6.03E-1(10) 1.26E+0(9) 1.35E+0(7) 6.98E-1(2) 1.22E+0(5) 2.35E-1(1) 1.04E+0(7) 5.86 9
RND 6.01E-1(9) 1.00E+0(6) 1.00E+0(1) 7.30E-1(8) 1.00E+0(2) 2.49E-1(6) 1.36E+0(9) 5.86 10
SH 5.06E-1(4) 1.00E+0(6) 1.00E+0(2) 7.32E-1(10) 1.00E+0(2) 2.39E-1(3) 1.53E+0(10) 5.29 7
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a complement to the average ranking values in the last two columns of Table 1,
we can state that parallelization using shape-based clustering can be considered
in general as the best parallelization option for GD improvement for the set of
problems and MOEAs considered.

To statistically support the claims about the convenience of parallelization
using shape-based clustering, Table 3 presents the number of wins among the
implementations indicated in each column regarding implementations in each
row for the Sign test pairwise comparisons [7] the obtained ranking using the GD
and Spread metrics. In case that detected differences exists these are indicated
in parenthesis, and the data is boldfaced. The values 32, 34, 36, and 37 are
considered as the critical number of wins needed to achieve levels of significance
of 0.1, 0.05, 0.02, and 0.01, respectively. In case of ties, the count is split evenly
between the pair of compared algorithms. This table shows that the 8-SH has a
significant improvement over the parallelization options using less than 8 threads.
Also, as it is indicated, parallel approaches based on shape clustering clearly
improve the results of the sequential implementations. For the Δ metric, there is
a similar number of wins among sequential and paralelization approaches based
on random and shape based partitioning, thus it can not be stated that one
algorithm performs better than another considering this metric. However, for
the Δ metric, all alternatives are better than the k-means parallelization using
8 threads.

Finally, Figure 3 also shows that considering the number of threads, the exe-
cution using 8 threads (clusters) clearly obtains a large number of GD rankings
one and two than the other alternatives. The results suggest that using a large
number of clusters may aid to improve the GD results of parallel executions
using clustering based pMOEAs.
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Fig. 1. Final GD ranking of each implementation option by problem
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Fig. 2. Final Δ ranking of each implementation option by problem

Table 3. Number of wins and detected differences for Sing test for pairwise distribution
of each implementation approach considering ranking values in Table 1 and Table 2

Generational distance(GD)
Seq 2-KM 2-RN 2-SH 4-KM 4-RN 4-SH 8-KM 8-RN 8-SH

Seq 24.5 24 30 35(0.05) 27 29 34(0.05) 30 31 36(0.02)
2-KM 25 24.5 28 34(0.05) 30 28 36(0.02) 33(0.1) 30 39(0.01)
2-RN 19 21 24.5 29 26 24 32(0.1) 29 27 38(0.01)
2-SH 14 15 20 24.5 23 22 29 24 25 37(0.01)
4-KM 22 19 23 26 24.5 25 23 28 26 33(0.1)
4-RN 20 21 25 27 24 24.5 28 26 26 33(0.1)
4-SH 15 13 17 20 26 21 24.5 23 23 35(0.05)
8-KM 19 16 20 25 21 23 26 24.5 25 27
8-RN 18 19 22 24 23 23 26 24 24.5 31
8-SH 13 10 11 12 16 16 14 22 18 24.5

Spread (Δ)
Seq 2-KM 2-RN 2-SH 4-KM 4-RN 4-SH 8-KM 8-RN 8-SH

Seq 24.5 15 26 29.5 15.5 24 28 9 25 21
2-KM 34(0.05) 24.5 29 32(0.1) 18 29 34(0.05) 12 28 25
2-RN 23 20 24.5 29 19.5 22 24.5 9 22 21.5
2-SH 19.5 17 20 24.5 14.5 20.5 24.5 12 23 17.5
4-KM 33.5(0.1) 31 29.5 34.5(0.05) 24.5 29.5 30.5 16 27.5 32.5(0.1)
4-RN 25 20 27 28.5 19.5 24.5 23.5 11 21 22
4-SH 21 15 24.5 24.5 18.5 25.5 24.5 15 22 15.5
8-KM 40(0.01) 37(0.01) 40(0.01) 37(0.01) 33(0.1) 38(0.01) 34(0.05) 24.5 32.5(0.1) 34(0.05)
8-RN 24 21 27 26 21.5 28 27 16.5 24.5 19.5
8-SH 28 24 27.5 31.5 16.5 27 33.5(0.1) 15 29.5 24.5
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5 Conclusions and Future Work

In evolutionary algorithms dealing with the simultaneous optimization of more
than 4 objectives, the use of parallelization may be useful to improve their per-
formances. One key aspect of this parallelization is the correct partitioning of
the population into subpopulations that are to be distributed among processors.
In this paper, we have proposed a method to do such partitioning based on what
is known as the shape of the objective vector. We present an experimental com-
parison of the performance of the resulting parallel MOEAs and their sequential
counterpart as well as a comparison of different partition methods.

The obtained results have shown that, in most of the studied cases, at least
one parallel MOEAs outperform their sequential counterparts (45 out of 49
cases). Comparison results have also shown that, for the considered experimen-
tal setting and metrics, the parallel implementations based on the clustering of
solutions using the shape of objective vectors obtains the best average rank in
almost all considered problems (5 out of 7 cases).

Future work is aimed at extending the evaluation considering the hypervol-
ume metric and increasing the number of objectives.
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Abstract. This paper is about computing the expected improvement
of the hypervolume indicator given a Pareto front approximation and a
predictive multivariate Gaussian distribution of a new candidate point.
It is frequently used as an infill or prescreening criterion in multiob-
jective optimization with expensive function evaluations where predic-
tions are provided by Kriging or Gaussian process surrogate models.
The expected hypervolume improvement has good properties as an infill
criterion, but exact algorithms for its computation have so far been very
time consuming even for the two and three objective case. This paper
introduces faster exact algorithms for computing the expected hypervol-
ume improvement for independent Gaussian distributions. A new general
computation scheme is introduced and a lower bound for the time com-
plexity. By providing new algorithms, upper bounds for the time com-
plexity for problems with two as well as three objectives are improved.
For the 2-D case the time complexity bound is reduced from previously
O(n3 log n) to O(n2). For the 3-D case the new upper bound of O(n3)
is established; previously O(n4 log n). It is also shown how an efficient
implementation of these new algorithms can lead to a further reduction
of running time. Moreover it is shown how to process batches of multiple
predictive distributions efficiently. The theoretical analysis is comple-
mented by empirical speed comparisons of C++ implementations of the
new algorithms to existing implementations of other exact algorithms.

Keywords: Expected improvement · Time complexity · Global multi-
objective optimization · Hypervolume indicator · Kriging surrogate mod-
els

1 Introduction

In simulator-based or experimental optimization a recurring problem is that
objective function evaluations can be costly. A common remedy to this problem
is the partial replacement of exact objective function evaluations by predictions
from Gaussian processes or Kriging models. These models provide a predictive
distribution, consisting of a mean value and variance for each objective function
value for each candidate point. The expected improvement [10,11] takes this
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 65–79, 2015.
DOI: 10.1007/978-3-319-15892-1 5
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information into account when computing a figure of merit for each given candi-
date solution. It thereby provides a robust pre-screening criterion and algorithms
with attractive theoretical properties [12].

Recently, the expected improvement was generalized for multiobjective opti-
mization using different approaches [7]. Among these the expected hypervolume
improvement (EHVI) [14] had interesting monotonicity properties [7] and a good
benchmark performance [6]. It is also widely used in applications, such as design
engineering [2,4,5], algorithm tuning [17] and for optimizing controllers [3]. The
EHVI represents the expected improvement in the hypervolume measure rela-
tive to the current approximation of the Pareto front [7] given the probability
distribution of possible function values.

Besides Monte Carlo integration [14,18], exact computation of the numerical
integral was proposed [1,8]. The time complexity for these original schemes was
O(nm+1 log n) for m = 2, 3 objectives and n points. The high computational
effort was so-far widely regarded as a disadvantage of the EHVI [3,7,17]. A
significant acceleration of exact algorithms by an efficient decomposition scheme
was recently achieved by Couckuyt et al. [6], however, without providing new
complexity bounds.

This paper introduces new exact algorithms for computing the expected
hypervolume improvement. After providing the preliminaries, new upper bounds
for the computational complexity of O(n2) for the 2-D case (Section 3) and of
O(n3) for the 3-D computation (Section 4) will be established by providing algo-
rithms. Moreover, lower complexity bounds and a new formulation of the exact
computation for the general case are introduced. Theoretical analysis is followed
by empirical studies on benchmarks (Section 5) comparing the approach to the
algorithm proposed in [6]. It is also studied to what extent the recycling of data
structures and reuse of nonlinear function evaluations can further increase speed.

2 Expected Hypervolume Improvement

The maximization of m ≥ 1 objective functions f1 : X → R, . . . , fm : X → R

is considered. The attention will be on points and probability distributions of
points in the objective space R

m (equipped with the Pareto dominance order).
With P = {p1, . . . , pn} ⊂ R

m we will denote a set of n mutually non-dominated
points. The family of such sets we denote with A (approximation sets).

Definition 1 (Hypervolume Indicator). The hypervolume indicator (HI) of
P ∈ A is defined as the Lebesgue measure of the subspace dominated by P and
cut from below by a reference point r: HI(P ) := λ{p ∈ R

m| p dominates r∧∃p0 ∈
P : p0 dominates p} = λ(∪p∈P [r, p]), with λ being the Lebesgue measure in R

m.

The set containing the part of the objective space that is dominated by the
points in P will be referred to as DomSet(P ). Note that in the entire article we
consider a fixed reference point1 that is dominated by all points in the Pareto
front approximation.
1 The choice of the reference point influences the placing of the hypervolume optimal

population. The methods in this paper work for every valid reference point.
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Definition 2 (Expected hypervolume improvement (EHVI)).The hyper-
volume improvement IH(p, P ) of a point p ∈ R

m is defined as the increment of the
hypervolume indicator after p is added to P , i.e. IH(p) = HI(P ∪ {p}) − HI(P ).
Given the probability density function (PDF) of a predictive distribution of objec-
tive function vectors the expected hypervolume improvement (EHVI) is defined
as: ∫

y∈Rm

IH(y, P ) · PDF (y)dy.

We will only consider independent multivariate Gaussian distributions with
independent components and mean values μ1, . . . , μm and standard deviations
σ1, . . . , σm, as they are commonly obtained from multivariate Kriging or Gaus-
sian process surrogate models.

Example 1. An illustration of the EHVI is displayed in Figure 1. The gray area
is the dominated subspace of P = {p1, p2, p3} cut by the reference point r ∈ R

m.
The PDF of the predictive Gaussian distribution is indicated as a 3-D plot. For
some sample from the multivariate Gaussian distribution, indicated as p, the
dark shaded area is the hypervolume improvement IH(p). The variable x stands
for the f1 value and y for the f2 value.

In order to calculate the EHVI, we need to calculate many integrals that
have the form of a partial one-dimensional improvement. In [8] a function was
derived that could be used for this purpose. In the following we introduce a
useful shorthand named ψ.

Definition 3. The function φ(s) = 1/
√

2πe− 1
2 s2

, s ∈ R is the PDF of the stan-
dard normal distribution and Φ(s) = 1

2

(
1 + erf

(
s√
2

))
is its cumulative proba-

bility distribution function (CDF). The general normal distribution with mean μ
and variance σ has the PDF φμ,σ(s) = 1

σ φ( s−μ
σ ) and the CDF Φμ,σ(s) = Φ( s−μ

σ ).
We define

ψ(a, b, μ, σ) := σ · φ(
b − μ

σ
) + (a − μ)Φ(

b − μ

σ
) (1)

Integrals of the form
∫ ∞

z=b
(z − a) 1

σ φ( z−μ
σ ) are equal to σφ( b−μ

σ + (μ − a)[1 −
Φ( b−μ

σ )]. Integrals whose upper limit is less than ∞ and lower limit greater
than −∞ can be written as the difference of two such integrals, allowing par-
tial expected improvements over an interval [l, u) ⊂ R, l ≥ f ′ to be calculated.
This difference can be neatly expressed in terms of ψ:

∫ u

z=l
(z − f ′) 1

σ φ( z−μ
σ )dz =∫ ∞

z=l
(z − f ′) 1

σ φ( z−μ
σ )dz − ∫ ∞

z=u
(z − f ′) 1

σ φ( z−μ
σ )dz = ψ(f ′, l, μ, σ) − ψ(f ′, u, μ, σ)

The value f ′ in this case is the current best function value recorded by an opti-
mization process. We will use the abbreviations φx(s) := φμx,σx

(s)(= 1
σx

φ( s−μx

σx
))

and Φx(s) := Φμx,σx
(s)(= Φ( s−μx

σx
)), where μx and σx are the mean and variance

of the x-component of the normal distribution associated to a point in the search
space. Analogously, we use abbreviations φy, Φy and φz, Φz for the y and the z
coordinate. In case the dimension of the objective space is more than 3 we revert
to natural number subscripts or to variables which vary over 1, · · · ,m, where m
is the dimension of the objective space.
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Fig. 1. 2-D expected hypervolume improvement: σ = (0.7, 0.6), μ = (2, 1.5)

3 Algorithm for the Bi-objective Case

The aim is to calculate the expected hypervolume improvement for a point for
which we have the mean (μx, μy) and standard deviation (σx, σy) of a predictive
distribution. Its EHVI can be computed by piecewise integration over a set of
half-open rectangular interval boxes (cells) formed by the horizontal and vertical
lines going through the points in approximation set P and through r. The final
EHVI is the sum of the contributions calculated for all grid cells. In Figure 1
a grid is indicated by the dashed lines. Formally, individual grid cells will be
denoted by C(a, b), where 0 ≤ a ≤ n and 0 ≤ b ≤ n, n represents the number
of segments in each dimension. Let Q = P ∪ {(∞, ry)} ∪ {(rx,∞)}, with Qx

denoting Q sorted in order of ascending x coordinate, and Qy denoting Q sorted
in order of ascending y coordinate. Let C be the set of grid cells representing
the interval boxes. The numbers a and b represent positions in the sorting order
of Q, starting with 0. Then, a is the position of elements of Qx and b is the
position of elements of Qy. The lower left corner of a cell will have the coordinates
(Qx

a.x,Qy
b .y). The upper right corner of the grid cell will have the coordinates

(Qx
a+1.x,Qy

b+1.y). The integration contributions for cells that have an upper
right corner that is dominated by or equal to some point in P are zero. The set
of all other cells (i.e., the non-dominated ones) we will call Cnd. It holds that
∀(C(a, b) ∈ Cnd, p ∈ P ) : p.x > Qx

a.x ⇒ Qy
b .y ≥ p.y and, analogously, p.y >

Qy
b .y ⇒ Qx

a.x ≥ p.x. Due to the definition of Q, we know that for p ∈ P it holds
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that p = Qx
k = Qy

n+1−k for some 0 < k ≤ n. Furthermore k > a and n+1−k > b,
if and only if p dominates C(a, b). From this we get the following equivalence:
a < n − b ⇔ C(a, b) is dominated by some point p ∈ P . Thus Cnd consists of
all cells satisfying a ≥ n − b. There are (n+1)(n+2)

2 of such cells. If we call the
lower corner of the cell l and the upper corner u, the contribution of a grid cell
to the integral is:

∫ uy

py=ly

∫ ux

px=lx
IH(p, P )φx(px)φy(py) dpx dpy. Dominated cells

have a contribution of 0 to the integral, and for cells which are non-dominated,
IH(p) can be calculated as a rectangular volume from which a correction term is
subtracted (see [8]):

∫ uy

py=ly

∫ ux

px=lx
((px − vx)(py − vy) − Sminus)φx(px)φy(py) dpx dpy

=
∫ uy

py=ly

∫ ux

px=lx
(px − vx)(py − vy)φx(px)φy(py) dpx dpy−

∫ uy

py=ly

∫ ux

px=lx
Sminus φx(px)φy(py) dpx dpy

= (ψ(vx, lx, μx, σx) − ψ(vx, ux, μx, σx)) · (ψ(vy, ly, μy, σy) − ψ(vy, uy, μy, σy))
−Sminus · (Φx(ux) − Φx(lx)) · (Φy(uy) − Φy(ly)).

The last step is by construction of ψ (Section 2) and Fubini’s Theorem [13].
It can be seen that the formula is of the form c1 − Sminus · c2, where c1 and c2
are calculations which are performed in constant time with respect to n for a
single cell. The correction term Sminus is equal to the hypervolume contribution
of S ⊆ P , where S consists of those points dominated by or equal to the lower
corner of the cell (Figure 2, (left)). Calculating the dominated hypervolume of
a set in the two-dimensional plane has a time complexity of O(n log n). This
complexity results from needing to find the neighbors of each point in order to
calculate the rectangular area it adds to the 2-D hypervolume. Sorting the set
has a time complexity of O(n log n), after which the dominated hypervolume
calculation itself is done in O(n) by iterating over each point and performing an
O(1) calculation using the points that come before and after it in the sorting
order. When calculating Sminus, the points for which the dominated hypervol-
ume is to be calculated come from P , which was already sorted. This brings
the complexity of this step down to O(n), but it can be brought down to O(1)
when the order of calculations is chosen carefully (Figure 2, (right)), giving the
algorithm a total complexity of O(n2). The ordering of the cells makes sure that
for any step at most just one point is added or deleted at the boundary of S as
compared to the set S for a neighboring cell for which Sminus was previously
computed (or, initially, the empty set). This neighbor can be found in constant
time. Adding or deleting the additional area at the boundary also takes only con-
stant time. See [19] for additional examples and further details. A lower bound
for the time complexity of computing the EHVI is Ω(n log n). This can be shown
by a linear time reduction of 2-D hypervolume computation (with time complex-
ity Ω(n log n) [9]) to EHVI: Set the values of σd to zero, and μd to the maximal
coordinates of each dimension d = 1, . . . , m found in P . Let Emax denote the
resulting EHV I. Then HI(P ) =

∏m
i=1(μi − ri) − Emax.
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Fig. 2. Definition of Sminus (left). Example showing the order of iterations which allows
the hypervolume contribution of S to be updated in constant time (right).

4 Algorithm for Three and More Objective Functions

The algorithm given in [8] for exactly calculating the expected hypervolume
improvement is not correct2 when the number of dimensions is higher than
two. This is because the shape of the hypervolume improvement becomes more
complex when the number of dimensions increases. We will derive a new formula
by first decomposing the calculation into parts with less complex shapes, and
then simplifying the resulting formula for the sake of more convenient calculation.

In higher dimensions, the search space can be divided into cells the same
way it is done in two dimensions, except instead of the boundaries being given
by lines going through the points in P and the reference point r, now the cells
are separated from each other by (m − 1)-dimensional hyperplanes (where m
is the number of objective functions). Each cell is denoted by C(a1, a2, . . . , am)
where a1 through am are integers from 0 to |P | denoting the labeling of the cell.
Then the left lower corner l ∈ R

m and right upper corner u ∈ R
m of the cell

with label a1, ..., am are defined as follows: Let P ′ = {r} ∪ P ∪ (∞, ...,∞)T and
let sd[0], . . . , sd[|P | + 1] denote the d-th components of the vectors in P ′ sorted
in ascending order. Note that ad refers to the ad-th point of P ′ in case P ′ is
sorted according to the d-th coordinate and thus ld = sd[ad] and ud = sd[ad +1]
for d = 1, . . . , m. In other words, corners of this cell complex are given as the
intersection points of all axis-parallel m − 1 dimensional hyperplanes through
points in P ′.

The hypervolume improvement of a new point p with respect to the current
Pareto front approximation P is given by the function λ (A \ DomSet(P )), where
A is the dominated subspace covered by p and cut from below by the reference
point. This is the same as calculating λ(A)−λ (DomSet(P ) ∩ A). We will denote
the set of dimension indexes by D = {1, 2, . . . ,m}. As exhibited in Figure 3,

2 The formula presented in [8] wrongly omitted a correction term for m ≥ 3.
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one can decompose the calculation of the hypervolume improvement of a point
p ∈ C(a1, a2, . . . , am) as follows:

IH(p) =
∑

C⊆D

IC , where IC := λ (AC) − λ (DomSet(P ) ∩ AC)

and the ACs are given by:

AC :=

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

v1
v2
...

vm

⎞

⎟⎟⎟⎠ ,

⎛

⎜⎜⎜⎝

w1

w2

...
wm

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦ , vd =

{
ld if d ∈ C

rd if d /∈ C
,wd =

{
pd if d ∈ C

ld if d /∈ C

λ denotes the Lebesgue measure in R
m. Note that it can happen that the dimen-

sion of AC is strictly less than m. In this case λ(AC) = 0. We can make a similar
remark about λ(DomSet(P )∩AC). For the Lebesgue measure for Rs with s < m
we will use the symbol with subindex s, i. e. λs.

Fig. 3. An example showing how the quantities AC for C ⊆ {1, 2, 3} are defined in
a three-dimensional objective space. A∅ is hidden within the rectangular volume. The
checkered volumes are dominated by the points in the Pareto front approximation.

The values of rd and ld are constant for all points that fall within a given
interval box (cell): r is the reference point and is, of course, always constant,
while l represents the position of the lower corner of the cell. From this, it
follows that IC represents the portion of the hypervolume improvement which
is constant with regards to the values of pd, d /∈ C, and which is variable with
regards to the values of pd, d ∈ C. In fact, it is linearly related to these values.
This is a direct consequence of the way the cell boundaries are defined.

Let SecC denote the cross-section of DomSet(P ) ∩ AC which goes through
p. This cross-section is defined by a projection to the dimensions not in C. If C
consists of k dimensions, the slice will be (m − k)-dimensional. The projection
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of DomSet(P ) uses only those points in P for which the function values in the
dimensions given by C are larger than the corresponding function values of p. We
shall call this selection Psel. No points in P can fall between cell boundaries in
any dimension, so the composition of Psel must be the same for all points within
a cell. The projection of AC to the dimensions not in C is constant for all points
within a cell as well, because the coordinates defining AC are independent of p in
all dimensions not in C. λm−k(SecC) is constant as a result. Because AC does not
span across cell boundaries in the dimensions in C, λ(DomSet(P )∩AC) is equal
to the hypervolume of SecC multiplied by the length of AC in each dimension in
C, and those lengths are given by (pd − ld) with d ∈ C. There is one quantity IC

for which C = D. This quantity ID is special because it is linearly related to all
values of p. ID falls entirely within the cell, and as such, instead of projecting P
onto a zero-dimensional space, it can simply be said that λ(DomSet(P )∩AD) =
λ(AD) if the cell is not dominated, and λ(AD∩DomSet(P )) = 0 if it is. Therefore,
ID = λ(AD) for non-dominated cells.

By decomposing the calculation of the hypervolume improvement, we can
use the sum rule to decompose the calculation of a cell’s contribution to the
EHVI as well.

∫ u

p=l

∑

C⊆D

IC · PDF (p)dp =
∑

C⊆D

∫ u

p=l

IC · PDF (p)dp.

IC is the product of a constant and a set of values which are linearly related to
exactly one coordinate of p, therefore we can first factor out the calculation of the
constant part. The PDF consists of independent normal distributions, allowing
the probability distributions for dimensions not in C (in which IC is constant)
to be factured out as well. An integral consisting solely of a normal distribution
can be exactly calculated using the cumulative probability distribution function
Φ to calculate the probability that a point is within range of the cell. For a fixed
subset C of D and a fixed cell [l, u] ⊂ R

m we will now integrate:
∫ u

p=l

IC · PDF (p)dp.

As stated earlier IC (which depends on p ) is,

IC = λ(AC) − λ(DomSet(P ) ∩ AC) =
∏

d∈C

(pd − ld) · ((
∏

d∈D\C

(ld − rd)) − λ|D|−|C|(SecC)).

So the needed integral is equal to:
∫ u

p=l

((
∏

d∈D\C

(ld − rd)) − λ|D|−|C|(SecC)) ·
∏

d∈C

(pd − ld) · PDF(p)dp,
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where PDF is the m-dimensional density. Denoting (
∏

d∈D\C(ld−rd)) − λ|D|−|C|
(SecC) by Iconst

C , we can write for the integral:
∫ u

p=l

Iconst
C ·

∏

d∈C

(pd − ld) · PDF(p)dp.

Now we can unravel this as follows.

Iconst
C

∫ u1

l1

· · ·
∫ um

lm

∏

d∈C

(pd − ld)φμ1,σ1(p1) · · · φμm,σm
(pm)dp1 · · · dpm.

This in turn is equal to (using Fubini’s theorem):

Iconst
C ·

∏

d∈C

∫ ud

ld

(pd − ld)φμd,σd
(pd)dpd ·

∏

d∈D\C

∫ ud

ld

φμd,σd
(pd)dpd,

According to Definition 3, we obtain:

Iconst
C

∏

d∈C

(ψ(ld, ld, μd, σd) − ψ(ld, ud, μd, σd))
∏

d∈D\C

(Φμd,σd
(ud) − Φμd,σd

(ld)).

Fubini’s theorem [13] states that iterated integration, performed in any order,
can be used to calculate a multiple integral under the condition that the multi-
ple integral is absolutely convergent. The partial integrals making up the cell’s
contribution to the EHVI all converge to finite numbers, so we can safely use it.

4.1 Calculation of 3-D EHVI

In Section 3 we showed that calculating the 2-D expected hypervolume improve-
ment is possible with time complexity O(n2). Although the algorithm described
in that subsection made use of characteristics of a 2-D Pareto approximation
set which are not present in higher dimensions, this subsection will show that
there is also a way to calculate the 3-D EHVI with time complexity O(n3).
In other words: the calculations necessary for computing the partial expected
hypervolume improvement of each grid cell will be performed in constant time.
The trade-off is that we will need O(n2) extra memory.

The only calculations which have a complexity higher than constant time
are the Lebesgue measure computations for the dominated parts of cross sec-
tions. Three sets of correction terms are needed to calculate the partial expected
hypervolume improvement of a cell:

– S−
∅ , a constant correction term which requires a three-dimensional hypervol-

ume calculation.
– S−

x , S−
y and S−

z , which each require a two-dimensional hypervolume calcu-
lation. We will call the 2-D areas used in the calculation of these correction
terms xslice, yslice and zslice, respectively.
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– S−
xy, S−

xz and S−
yz, which requires a ‘one-dimensional’ hypervolume calcula-

tion.

Instead of calculating these correction terms afresh for each cell, it is possible to
perform all necessary calculations in only O(n3) time total. For this we create
a data structure which allows us to check whether or not a cell is dominated in
O(1) time. This can simply be a two-dimensional array holding the highest value
of z for which the cell is dominated, which we shall call Hz. A simple way to fill
this array is to iterate over all points q ∈ P in order of ascending z value, setting
the array value Hz(a1, a2) to z for each q which dominates the lower corner of
C(a1, a2, 0) (overwriting previous ones). The complexity of this operation is in
O(n2n + n log n) = O(n3). This only needs to be done once, so the O(n3) time
complexity does not increase the total asymptotic time complexity of computing
the EHVI in 3-D. Figure 4 shows an example. Besides containing information
that allows constant-time evaluation of whether a cell is dominated, the value of
S−

xy for a cell C(a1, a2, a3) that is not dominated is also given by Hz(a1, a2). If we
build two more height arrays Hx and Hy where we use the highest value of x and
y instead of z, we can determine the results of all three of the one-dimensional
hypervolume calculations in constant time during cell calculations.

Now, only the two-dimensional hypervolume calculations representedbyxslice,
yslice and zslice, and the three-dimensional hypervolume calculation represented
by S−

∅ , still have a complexity greater than constant time. For notational simplic-
ity, we have omitted their dependence on a particular cell from the notation until
now, but in order to show the relations between correction terms of different cells,
we will write ‘S−

∅ belonging to C(a1, a2, a3)’ as C(a1, a2, a3).S−
∅ . For the area of

two-dimensional slices we proceed likewise.

Fig. 4. Example height array Hz for a population consisting of 4 points, which is
visualized on the left. Cells on the outermost edge of the integration area (which stretch
out to ∞ in some dimension) are always non-dominated.
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The value of S−
∅ is related to the values of xslice, yslice and zslice in the

following way:

C(a1, a2, a3).xslice =
C(a1 + 1, a2, a3).S−

∅ − C(a1, a2, a3).S−
∅

ux − lx

C(a1, a2, a3).yslice =
C(a1, a2 + 1, a3).S−

∅ − C(a1, a2, a3).S−
∅

uy − ly

C(a1, a2, a3).zslice =
C(a1, a2, a3 + 1).S−

∅ − C(a1, a2, a3).S−
∅

uz − lz

With our height array Hz, we can calculate all values of zslice for a given value
of a3 in O(n2) time. We can also calculate all values of S−

∅ for a given value of
a3 in O(n2) time, provided a3 = 0 or we have both S−

∅ and zslice for the cells
where a3 is one lower. The details of these calculations will be given below. If
we go through our cells in the right order (with a3 starting at 0, incrementing
it only after we have performed the calculations for all cells with a given value
of a3), we only need to update the values of zslice and S−

∅ n times, resulting
in an algorithm for the full computation with complexity in O(n3). If we know
the value of S−

∅ for all cells with a given value of a3, we can use the formulas
given above to calculate xslice and yslice in constant time whenever we need
them, so we do not need to calculate these constants in advance. The details of
calculating zslice using the height array are as follows. We will iterate through
the possible values of a1 and a2 in ascending order. We know that zslice(a1, a2)
is 0 if a1 = 0 or a2 = 0. If our height array shows that C(a1 − 1, a2 − 1, a3) is
dominated, zslice(a1, a2) is set equal to the area of the 2-D rectangle from its
lower corner to (rx, ry). Else, if that cell is not dominated, zslice(a1, a2) is set
equal to zslice(a1−1, a2)+zslice(a1, a2−1)−zslice(a1−1, a2−1). The value of
zslice(a1 − 1, a2 − 1) is removed as this is the area which is overlapping, causing
it to be added twice otherwise. For an example, refer to Figure 5.

5 Empirical Comparison

We compare the new algorithm (IRS) to the publicly available MATLAB imple-
mentation of the algorithm by Couckuyt et al. [6] (CDD13) and the MATLAB
2-D implementation of [8] (EDK11). A fast implementation of IRS, called IRS-
fast, was made by reusing previous computations of the Gaussian error function
(erf) when evaluating it for the same grid coordinate and the same candidate
point. Moreover, we stop computations when the result will be zero and compute
the data for a single cell for several (BatchSize) predictive distributions at once.

All implementations are made available at http://moda.liacs.nl/index.php?
page=code, except [6] which was obtained from http://www.sumo.intec.ugent.
be/software. Average runtimes (10 runs) for Pareto front sizes |P | ∈ {10, 100} are
computed. Moreover, different number of predictions (candidate points) {1 point,
1000 points} are processed as a batch. The 3-D test problems from Emmerich
and Fonseca [20] are used. The data for |P | = 100 is visualized in Figure 6.

http://moda.liacs.nl/index.php?page=code
http://moda.liacs.nl/index.php?page=code
http://www.sumo.intec.ugent.be/software
http://www.sumo.intec.ugent.be/software
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Fig. 5. Some values of zslice and S− for the example shown in Figure 4, with a3 = 0,
1 and 2, respectively. The x and y values of each cell’s lower corner are shown on the
axes. The grids with the values of S− are on the left and the grids with the values of
zslice are on the right.

For 2-D a uniform sample of points on a uniform sphere is created analogously
and the cliff3D problem is omitted as there is no such problem in 2-D. The
parameters in the experiments: σd = 2.5, μd = 10, d = 1, . . . , m was used. All
codes were validated against each other and produced the same results. For
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Fig. 6. Randomly generated fronts of type convexSpherical, concaveSpherical,
and cliff3D from [20] with n = 100 (above, left to right)

Table 1. Empirical comparison of strategies for 3-D EHVI

Problem Type |P | Batch Size
Time average(s)

EDK11 IRS CDD13 IRSfast

2D

Convex2D 10 1 0.0056 0.0004 0.0097 0.0001
Convex2D 10 1000 5.4336 0.1131 0.0206 0.0071
Convex2D 100 1 0.6438 0.0030 0.0601 0.0012
Convex2D 100 1000 901.4221 2.1934 0.1720 0.1052
Concave2D 10 1 0.0281 0.0003 0.0103 0.0001
Concave2D 10 1000 7.0726 0.1155 0.0192 0.0073
Concave2D 100 1 0.8896 0.0020 0.0616 0.0012
Concave2D 100 1000 920.2566 2.1264 0.1722 0.1053

3D

Convex3D 10 1 N.A. 0.0018 0.0747 0.0010
Convex3D 10 1000 N.A. 1.6187 0.6501 0.1461
Convex3D 100 1 N.A. 0.7813 9.6047 0.3388
Convex3D 100 1000 N.A. 787.1110 432.5856 12.1998
Concave3D 10 1 N.A. 0.0016 0.2213 0.0011
Concave3D 10 1000 N.A. 1.5791 0.6562 0.1434
Concave3D 100 1 N.A. 0.7143 7.1798 0.2653
Concave3D 100 1000 N.A. 726.5219 281.4245 9.8314
Cliff3D 10 1 N.A. 0.0016 0.2357 0.0014
Cliff3D 10 1000 N.A. 1.5598 0.7121 0.1477
Cliff3D 100 1 N.A. 0.7212 7.5086 0.3525
Cliff3D 100 1000 N.A. 734.1832 692.7653 9.7818

validation by Monte Carlo integration, see also [19]. The hardware was CPU:
Intel(R) Core(TM) i7-4800MQ 2.7GHz RAM: 32GB, 1600MHz. The software
used is: Microsoft Windows 7, 64 bit, MATLAB: 8.2.0.701 (R2013b), except IRS
code MinGW: MinGW x86 64 4.9.1, gcc 4.9.1., compiler flag -Ofast. The results
are displayed in Table 1.

The results show that the new code IRSfast is consistently faster in 2-D and
3-D for all test problems. The difference is particularly high for small batch size.
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For large batch sizes the optimizations IRSfast were needed to achieve the best
result. Both, IRS and CDD13 are faster than EDK11, the first implementation.

6 Conclusions and Future Research

In this paper we discussed the computation of the expected hypervolume improve-
ment in O(n2) for the 2-D case and O(n3) in the 3-D case. In both cases the time
complexity was improved by a factor of n log n as compared to [8] by accomplish-
ing O(1) computations per grid cell. A significant speed up can be achieved. A
significant improvement of the empirical runtime performance was achieved by
reusing computations of nonlinear functions on grid coordinates. The memory
complexity of the proposed algorithms is O(n2). Moreover, it has been shown
that the memory efficiency is O(n2) and the computational time complexity is
lower bounded by Ω(n log n) for m ≥ 2. Empirical comparisons on randomly
generated Pareto fronts of different shape show that the new algorithm is by a
factor of 5 to 200 faster than previously existing implementations.

It seems possible that the same ideas that have been used for the construction
of 2-D and 3-D algorithms could be used for construction of efficient computation
schemes for higher dimensions. So far, however, the algorithms by Couckuyt et
al. [6] remain the fastest available algorithms for m ≥ 4.
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Abstract. The hypervolume has become very popular in current multi-
objective optimization research. Because of its highly desirable features,
it has been used not only as a quality measure for comparing final results
of multi-objective evolutionary algorithms (MOEAs), but also as a selec-
tion operator (it is, for example, very suitable for many-objective opti-
mization problems). However, it has one serious drawback: computing
the exact hypervolume is highly costly. The best known algorithms to
compute the hypervolume are polynomial in the number of points, but
their cost grows exponentially with the number of objectives. This paper
proposes a novel approach which, through the use of Graphics Processing
Units (GPUs), computes in a faster way the hypervolume contribution of
a point. We develop a highly parallel implementation of our approach and
demonstrate its performance when using it within the S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA). Our results indi-
cate that our proposed approach is able to achieve a significant speed up
(of up to 883x) with respect to its sequential counterpart, which allows
us to use SMS-EMOA with exact hypervolume calculations, in problems
having up to 9 objective functions.

1 Introduction

Several recent studies have shown that Pareto-based multi-objective evolution-
ary algorithms (MOEAs) do not perform properly when dealing with problems
having more than three objectives (the so-called many-objective optimization
problems) [12]. This has motivated the development of new selection schemes
from which the use of quality assessment indicators is one of the most promis-
ing choices. The idea when using this sort of scheme is to maximize a quality
assessment indicator that provides a good ordering among sets that represent
Pareto approximations. From the many indicators currently available, the hyper-
volume has been the most popular choice, mainly because it is the only unary
quality indicator that is known to be Pareto compliant [20]. The nice mathe-
matical properties of the hypervolume has motivated the development of several
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hypervolume-based MOEAs (see for example [2,19]). However, these approaches
have a very high computational cost which normally becomes unaffordable for
problems having five or more objectives. Although there exist proposals to esti-
mate the hypervolume contribution using sampling (see for example [7]), these
approaches are known to have a poor performance with respect to those that
use exact hypervolume calculations [13]. Here, we propose a parallel approach,
which is implemented in graphics processing units (GPUs), and is coupled to a
hypervolume-based MOEA: the S-Metric Selection Evolutionary Multi-Objective
Algorithm (SMS-EMOA).

The remainder of this paper is organized as follows. Section 2 provides an
introduction to the hypervolume, including a short review of the main algorithms
that have been proposed to compute it. Our proposed approach is described in
Section 3. The experimental results are presented in Section 4, including the
methodology and a short discussion of our main findings. Finally, conclusions
and some possible paths for future research are provided in Section 5.

2 About the Hypervolume

The hypervolume indicator has become widely used in recent years [18]. This
indicator encapsulates in a single unary value a measure of the spread of the
solutions along the Pareto front, as well as the distance of the approximation
set from the true Pareto optimal front. Whenever one approximation completely
dominates another approximation, the hypervolume of the former will be greater
than the hypervolume of the latter. Also, the hypervolume is maximized if, and
only if, the set of solutions contains all Pareto optimal points. The hypervolume
is defined as the n-dimensional space that is contained by an n-dimensional set of
points. When applied to multi-objective optimization, the n-dimensional objec-
tive values for solutions are treated as points for the computation of such space.
That is, the hypervolume is obtained by computing the volume (in objective
function space) of the non-dominated set of solutions Q that minimize a MOP.
For every solution i ∈ Q, a hypercube vi is generated with a reference point W
and the solution i as its diagonal corner of the hypercube.

S = V ol

⎛

⎝
|Q|⋃

i=1

vi

⎞

⎠ (1)

The hypervolume has important advantages over other set measures [18]:

– It is sensitive to any type of improvements, i.e., whenever an approximation
set A dominates another approximation set B, then the hypervolume has a
strictly better quality value for the former than for the latter set.

– As a result from the first property, the hypervolume measure guarantees that
any approximation set A that achieves the maximally possible quality value
for a particular problem contains all Pareto-optimal objective vectors.
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– The ranking of the solutions that it generates is invariant to the linear scaling
of the objective functions.

In spite of its nice features, the use of the hypervolume is limited by its high
computational cost. Hypervolume computation has been proven to be #P -hard
(analogous to NP -hard for counting problems) in the number of objectives [3].
As a result, hypervolume algorithms have been used primarily for performance
assessment.

Many algorithms have been created to compute hypervolume, each of which
has a different worst-case complexity. Next, we introduce the main algorithms
that have been proposed for this sake, and we briefly discuss their time com-
plexities.

2.1 Inclusion-Exclusion Algorithm

The Inclusion-Exclusion hypervolume algorithm [17] is perhaps the easiest me-
thod for calculating the hypervolume. It works by the inclusion-exclusion prin-
ciple in the following way: the algorithm adds volumes of rectangular polytopes
(n-dimensional rectangular volumes) dominated by each point individually, then
subtracts the volumes dominated by intersections of pairs of points; after that,
it adds back in volumes dominated by intersections of three points, and so on.
Unfortunately, while simple, this method has a time complexity of O(n2m) that
makes it infeasible on all but the smallest sets.

2.2 LebMeasure Hypervolume Algorithm

The LebMeasure algorithm was proposed by Fleischer [8]. He realized that for
any space covered by a set of non-dominated points, one can always identify a
rectangular polytope that does not intersect with any other region, so that this
region can be lopped off. Then, the hypervolume contributions of these lopped
off regions can be easily computed. The hypervolume of the space dominated
by these polytopes is then added to a hypervolume accumulator and new points
are spawned to reflect the removal of such region. This process can then be
repeated until the remaining polytopes no longer dominate any region of space.
LebMeasure was initially thought to have polynomial time performance, however
it was later demonstrated empirically to exhibit exponential time complexity
in the number of objectives and later was proved that the lower bound for
LebMeasure’s worst case complexity is O(2n−1). Thus, it is also exponential in
the number of objectives [15].

2.3 HSO Hypervolume Algorithm

Another hypervolume calculation algorithm is HSO (Hypervolume by Slicing
Objectives) [16]. It manages a front by processing one objective at a time and slic-
ing it along the chosen objective. This is known as a dimension-sweep algorithm.
HSO is given with a front that is pre-sorted with respect to the first objective.
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Point values in this objective are used to create cross-sectional slices along this
objective. When sweeping along an objective, each point in the list is visited in
turn. A list of points is maintained which is sorted in the (n − 1)th-objective,
containing points that have been processed so far, i.e., the points contributing
to the current slice. At each slice, there is an n − 1-objective hypervolume, its
hypervolume is calculated recursively and multiplied by the depth of the slice,
i.e., the difference between the current point value and the next point value.
The point is then added to the n − 1-objective slice, after removing any points
that it dominates. This process is repeated until every point in the list has been
visited. While et al. [16] proved that HSO’s computational cost is exponential
in the number of objectives with a lower bound of O(mn−1), so it still performs
poorly for data sets with high dimensionality.

2.4 The FPL Hypervolume Algorithm

The FPL hypervolume algorithm [10] is another dimension-sweep algorithm
which improves upon HSO. It adds a new linked data structure which reduces the
work required to maintain the fronts built iteratively by HSO. Dominated points
must be retained, as points must be reinserted in the reverse order of their dele-
tion. Therefore, dominated points are marked instead of deleted and are skipped
over in lower objectives. This data structure improves performance by minimiz-
ing the number of comparisons necessary to maintain the sorting within the
n − 1-dimensional slices. It reuses previous calculations when a smaller dimen-
sional slice has already been calculated. Also, hypervolumes are stored along
with the current coordinate in the current objective. As these values become
staled, bound values which keep track of reusable hypervolumes are updated
whenever points are deleted or reinserted. The worst-case complexity of FPL
is O(mn−2 log m). Although all previously described exact hypervolume algo-
rithms and recent ones have led to improved feasibility or better worst-case time
complexities, hypervolume calculation remains #P -hard and exponential in the
number of objectives [3].

2.5 Hypervolume within MOEAs

The most common way to use the hypervolume as a selection method in MOEAs
is through the measure of how much an individual contributes to the hypervol-
ume value of the whole set it belongs to. Then, the solutions that contribute
the least to the hypervolume of a front are discarded. The contributing hyper-
volume of an individual a which belongs to a population P can then be stated
in the following way:

Ca = S(P, yref ) − S(P\{a}, yref ) (2)

Nowadays, there exist several MOEAs that incorporate the hypervolume in
their selection mechanism [2,19]. However, these approaches have a high compu-
tational overload and this creates the necessity to develop alternative strategies



84 E.M. Lopez et al.

to deal with this problem. Because of this, approximation approaches have also
been proposed (e.g., [7] which uses Monte Carlo sampling to approximate expen-
sive hypervolume calculations). Another example is an approach by Bringmann
and Friedrich [3] that has a polynomially bounded error and shows promise.
These types of methods are faster when the samples are small. However these
approaches do not guarantee a bound on the error and most of them deteriorate
their behavior as the number of objectives of the problem increases. In fact, in
some cases the number of samples needed to produce a good approximation is
too large, turning these approaches impractical for many-objective optimization.

3 Proposed Approach

The main idea of our proposed approach is to use all the available hardware
resources to calculate the exact contributing hypervolume in a more efficient way,
in order to alleviate the high computational overload that current hypervolume-
based MOEAs present. Since the computation of the exact hypervolume involves
a high computational complexity, in this work we try to circumvent this problem
by developing a faster way of computing the exact contributing hypervolume,
instead of the hypervolume itself. We propose a way of saving unnecessary hyper-
volume points computations and a model that is efficient and highly paralleliz-
able. For the descriptions provided next, we assume that we are dealing with sets
of non-dominated solutions. Next, we describe our proposed approach, which is
implemented in CUDA-C.1 For the bi-objective case, we take the points of the
non-dominated front and sort them in ascending order according to the values
of the first objective function f1. We get then, at the same time, a sequence that
is additionally sorted in descending order concerning the f2 values, because the
points are mutually non-dominated. Given a sorted front SF = {p1, . . . , p|SF |}
the contributing hypervolume of a point CPi

is given by:

CPi
= Δf1 ∗ Δf2 = (pi+1,1 − pi,1) ∗ (pi,2 − pi−1,2) (3)

The graphical representation of this computation can be seen in Figure 2.
The parallelization of this two-dimensional approach is done in the following
way: using the SIMD2 model, we work in each thread of the GPU with the com-
putation of the contribution of a point. First, a sorting procedure is performed.
For this purpose, we used the so called bitonic sort [1], which is a parallel sort-
ing algorithm, originally created for sorting networks. Once the non-dominated
front is sorted in ascending order, according to the values of the first objective,

1 The GPU platform and API developed by Nvidia called CUDA [14] (Computer
Unified Device Architecture), which is the one adopted in this work, is based on
the CUDA-C language, which is an extension to C that allows development of GPU
routines called kernels. Each kernel defines instructions that are executed on the
GPU by many threads at the same time.

2 SIMD (Single Instruction Multiple Data) is a computer architecture which can han-
dle only one instruction but applies it to many data streams simultaneously [9].
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the ith thread computes the Cpi
, so that a set of threads T H can obtain CP .

We consider the case where there might exist more non-dominated points in
a set than threads in the GPU and the assignment of the number of threads
created in the GPU is done with that in mind. This procedure is presented in
Algorithm 1 which shows the architecture of the kernel used for the GPU imple-
mentation. The communication between host (CPU) and device (GPU) is done
in a synchronous way, since we first need to send the whole set of non-dominated
solutions to the device’s global memory in order to compute the whole set con-
tributions CP ; once the CP set is ready, it is sent back to the host.

Input: A non-dominated set P with ‖P‖ = k, where Pi = (pi,1, pi,2) and a reference point
R = (r1, r2)

Output: A hypervolumen contribution set CP
Assign an Id for each thread ;
Assign the number of threads created in the GPU to Dimblock;
CP ← 0;
if Id = 0 then

Add the reference point R to P;
end
k ← k + 1;
Sort in ascending order the set P in the first objective. i ← Id + 1;
while i < k do

CPi
← (pi+1,1 − pi,1) ∗ (pi,2 − pi−1,2);

i ← i + Dimblock;

end
return CP ;

Algorithm 1. Computation of the hypervolumen contribution set P for
two dimensions in a GPU.

For the case of problems with three or more objetives we propose a model in
which we try to save unnecessary hypervolume points computations by finding
which points in the non-dominated front are not needed for the computation of
the contributing hypervolume of an individual. Having a set of non-dominated
solutions of μ individuals, the contributing hypervolume of each of the individ-
uals in the whole set can be expressed in the following way:

∀Pi ∈ P, CPi
= S(P, yref ) − S(P\{Pi}, yref ) (4)

This means that we will need to compute the hypervolume μ+1 times. Here,
we try to discard the points that are unnecessary for computing the hypervol-
ume contribution of a point, in order to compute volumes of subsets with less
dimensions, thus reducing the cost. So, instead of computing each hypervolume
contribution CPi

with the aforementioned formulation 4, we are able to calculate
this contribution CPi

in the following way:

CPi
=

n∏

k=0

(|Pi[k] − yref [k]|) − V ol

⎛

⎝
⋃

y∈P′
i

{y′|y ≺ y′ ≺ yref}
⎞

⎠ (5)
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where P ′
i is a set of points shifted to be delimited by the non-dominated point Pi.

So, we can reformulate the contributing hypervolume as the volume delimited
by Pi and a reference point yref , which we will call V ol(Pi), less the volume
of the set P ′

i, which is a subset of V ol(Pi), that we will call V ol(P ′
i), also with

the same reference point. This idea is presented in Figure 1, where we show a
graphical representation of the way in which the hypervolume contribution of a
point is computed. The P ′

i set contains the points that we want to find for each
non-dominated solution Pi of a set P, so that we can compute the hypervolume
contribution CPi

of a point Pi as: CPi
= V ol(Pi) − V ol(P ′

i).

Fig. 1. Computation of the hypervolume contribution of a point b which belongs to
a set P = {a, b, c, d, e} of non-dominated solutions with the use of a set of points
P ′ = {a′, c′, d′, e′} delimited by Pi

This is possible since it is always the case that V ol(P ′
i) ≤ V ol(Pi), because

P ′
i ⊂ P. So, what we want is to cut the volume given by the set of non-dominated

solutions P and the reference point yref , in order to compute the volume V ol(P ′
i)

of reduced sets of points P ′
i, i = 1, 2, . . . , |P |. This is less costly than the way

the original aforementioned approach works, for obtaining each individual’s con-
tribution. This new P ′ set of points, created from a specific non-dominated
solution Pi of a set, might have dominated solutions, so it is necessary to find
only the non-dominated solutions of this new set before performing the hyper-
volume computation of this. The kernel procedure for the computation of the
shifted set of points Pi’, delimited by a point Pi of the non-dominated set, is
shown in Algorithm 2.
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Input: A non-dominated set P ⊆ R
d with ‖P‖ = k, where Pi = (pi,1, · · · , pi,k) and the

current index is i for the point Pi

Output: A set P′

Assign an Id for each thread ;
Assign the number of threads created in the GPU to Dimblock;
Size ← d ∗ k;
i ← I;
// Restrict all points which are in the box delimited by Pi

while i < Size do
l ← i/d;
m ← i%d;
if P[I][m] > P[l][m] then

P′[l][m] ← P[l][m];
end
i ← i + Dimblock;

end
// Filter out all points which are covered by other points
i ← Id;
for i < k do

if ∃P′
j ∈ P′|P′

j � P′
i then

Remove P′
i of P′;

end
i ← i + Dimblock;

end

Sort in ascending order the set P′ in the first objective.
return P′;

Algorithm 2. Computation of a set P ′
i for a point Pi.

So, with this idea, we can develop a parallelization of this approach. The
model is implemented in two kinds of parallelism: using data-level parallelism3

and transaction-level parallelism4 through the use of streams5. Each stream in
the whole procedure is responsible for the kernel execution, and for sending a
set P ′

i of reduced points solutions from the GPU to the CPU, as well as of the
computation of the hypervolume contribution CPi

of a point Pi, all of which is
done in a parallel way. The number of streams adopted depends of each GPU’s
architecture and on the number of available streams. We perform a dynamic task
assignation to the streams so that the overhead generated is minimal. Figure 3
shows the way the assignation policy is done. The use of streams allows us to have
an asynchronous communication between the CPU and the GPU, since while a
streami performs the CP2 computation, another streamj executes the kernel with
its set of parameters and, at the same time, another streaml downloads data from
the GPU.

The overall procedure works in the following way: First, a set of streams is
created in the host to perform concurrent operations with the GPU. Then, the
set of non-dominated solutions P and the reference point yref are sent to the

3 In data-level parallelism, instructions from a single stream operate concurrently on
several data.

4 In a transaction-level parallelism, multiple threads/processes from different transac-
tions can be executed concurrently.

5 A stream is a sequence of commands, possibly issued by different host threads, that
are executed in a certain order.
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Fig. 2. Contributing hypervolume
computation of a point

Fig. 3. Task assignation to Streams

GPU. Next, each kernel, executed by an specific stream, finds the set P ′
i for a

point Pi. Once the set is computed, P ′
i is sent to the host in order to compute

the hypervolume contribution CPi
of such point. Each hypervolume is computed

making use of the FPL Hypervolume Algorithm, which is the fastest existent
algorithm for the hypervolume computation. The procedure goes on until all the
contributions of each point in the non-dominated set had been computed. The
pseudocode of the whole procedure is shown in Algorithm 3.

In order to apply our approach, we adopted SMS-EMOA [2], since it fits
perfectly with our parallel approach. SMS-EMOA is a steady state evolution-
ary algorithm in which each newly created solution is ranked and a solution is
removed from the worst ranked front in order to maintain the population size.
The solution that contributes the least to the hypervolume of the worst ranked
front is then discarded (see [2] for details).

4 Experimental Results

For purposes of this study, we adopted MOPs from two benchmarks: the Deb-
Thiele-Laumanns-Zitzler (DTLZ) test suite [6] (DTLZ2, DTLZ3 and DTLZ4)
and the Walking-Fish-Group (WFG) test suite [11] (WFG1, WFG2 and WFG3).
We compare our proposed approach with respect to a sequential version of SMS-
EMOA which uses the FPL algorithm. In our experiments, we used from 2 to 9
objectives. Our proposed approach is called S-Metric GPU Selection Evolution-
ary Multi-Objective Algorithm (SMGPUS-EMOA).

4.1 Methodology

For our comparative study, we decided to adopt several performance measures
as described next.

One of the most important actions in parallel computing is to actually mea-
sure how much faster a parallel algorithm runs with respect to the best sequential
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Input: A non-dominated set P ⊆ R
d with ‖P‖ = k, where Pi = (pi,1, · · · , pi,k)

and a reference point R = (r1, · · · , rk)
Output: The set of hypervolumen contributions CP of the non-dominated set P
Create s for asynchronous managing of the data ;
Assign an Id for each stream of the GPU;
CP ← 0;
if IdStream = 0 then

Send the non-dominated set P to the GPU;
Send the reference point R to the GPU;

end
Wait until all the data are sent to the GPU by the CPU;
IdSig ← 0; // Where IdSig is a shared memory for streams

// Start of the transaction parallelism

for each stream of the GPU in parallel manner do
while IdSig < k do

i ← IdSig;
if i < NumStreams then

i ← IdStream;
end
// Start of the data parallelism

Launch the kernel P ′
i computation <<<

NumSMs/NumStreams, SizeBlock >>> (P, i, k, d);
Copy the set P ′

i to the CPU ;
Calculate the V ol(Pi);
Calculate the V ol(P ′);
CPi ← V ol(Pi) − V ol(P ′

i);

end
// Wait until the shared resource is available

while IdStream is not increased do
if IdSig is available then

IdSig ← IdSig + 1
end

end

end
return CP ;

Algorithm 3. Computation of the hypervolumen contribution set P for
three or more dimensions in a GPU.

one. This measure is known as speedup. For a problem of size n, the expression
for speedup is:

Sp =
Ts(n, 1)
T (n, p)

(6)

where Ts(n, 1) is the time of the best sequential algorithm and T (n, p) is the
time of the parallel algorithm with p processors, both solving the same problem.
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In order to measure the uniformity of the solutions produced by a MOEA,
we adopted spacing [4]. This indicator is computed using:

S =

√√√√ 1
|Q|

|Q|∑

i=1

(di − d)2 (7)

where di = mink∈Q
∧

k 
=i

∑m
j=1 |f i

j − fk
j | and d is the mean value of the above

distance measure d =
∑|Q|

i=1
di

|Q| .
Low values of this indicator reflect a good (uniform) distribution of solutions.
We also analyze its convergence rate with respect to that of the sequential

version of SMS-EMOA. For this purpose, we adopted the hypervolume. The
reference points used for each of the problems are shown in Table 1. The aim of
this study is to identify which of the MOEAs being compared is able to reach
the results in a faster way. So, we decided to run each of the MOEAs being
analyzed, until reaching a maximum number of function evaluations. At that
point, we applied the performance measures previously indicated.

It is worth noting that the sequential version of SMS-EMOA may be unable to
achieve the desired number of function evaluations in a reasonable computational
time. For that reason, we used an additional stopping criterion: if an algorithm
hasn’t reached the desired number of objective function evaluations after 8000
minutes, then we stop it. We performed 25 independent runs for each algorithm,
problem instance and (given) number of objective functions. The number of
objectives used for each problem is shown in Table 2.

Table 1. Reference points used for the hypervolume indicator

Problem Reference points

DTLZ1 (1, 1, 1, . . . , 1)

DTLZ2-4 (2, 2, 2, . . . , 2)

WFG1-3 (3, 5, 7, . . . , 2m + 1)

4.2 Parameterization

The parameters of each MOEA used in our study were chosen in such a way that
we could do a fair comparison among them. Thus, for both approaches we used
the same parameter values since they are similar in everything but the way the
hypervolume contribution is computed. The distribution indexes for the SBX
and polynomial-based mutation operators [5], used by SMS-EMOA were set
as: ηc = 20 and ηm = 20, respectively. The crossover probability is pc = 0.9
and the mutation probability is pm = 1/L, where L is the number of decision
variables. The internal population size and the maximum number of function
evaluations for each problem is defined as indicated in Table 2. For the case of
our SMGPUS-EMOA, the number of threads used within the GPU was set in
the next way: for problems with two objective functions, 1024 threads were used,
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with just one stream in the whole process. For the case of three up to 9 objective
functions, 1024 threads and seven streams were used. The main characteristics of
the hardware used for the experiments are the following: An Intel Core i7-3930k
CPU running at 3.20 GHz, with 8GB of RAM 1600 MHz DDR3. Our GPU was
a Geforce GTX 680, and we ran our experiments in Fedora 18 (64-bit version).

Table 2. Parameterization values

Problem Objectives Population size Generations Function evaluations

DTLZ1
2 to 4 and 8 100 250 25000

5 to 7 95 263 24985
9 90 277 24930

DTLZ2
2 to 8 100 150 15000

9 90 166 14940

DTLZ3, WFG1 and WFG3.
2 to 6 100 750 75000

7 and 8 95 789 74955
9 90 830 74700

DTLZ4 and WFG2
2 to 7 100 500 50000

8 110 454 49940
9 90 555 49950

4.3 Results

Table 3 shows the mean of the spacing and hypervolume values obtained for
each final result obtained by the two versions of SMS-EMOA used in our study.
Additionally, we show the average time, in minutes, needed to perform the maxi-
mum number of function evaluations in each case. When no value is shown in the
table for any of the algorithms, this means that it was not able to perform the
maximum number of function evaluations after 8000 minutes. The results show
that our proposed approach SMGPUS-EMOA is considerably faster and that it
achieves a speedup of up to 883x with respect to the sequential algorithm (this
speed up is achieved in WFG2). We are also able to obtain the same results as
the sequential version, which verifies that our parallel implementation is working
as expected.6

5 Conclusions and Future Work

We have proposed a new approach for computing the hypervolume contribution
of a point. The core idea of our proposed algorithm is to exploit the paralleliza-
tion provided by the use of GPUs, combined with a novel implementation that
allows us to save unnecesary computations.7 The proposed algorithm was incor-
porated within SMS-EMOA, and was tested in several well-known test problems
6 There are a few differences in the spacing indicator, which are due to stochastic

variations produced by a few isolated runs, which affected the computation of the
mean values.

7 The source code of our proposed approach is available from the first author, upon
request.
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Table 3. Experimental results

SMS-EMOA SMGPUS-EMOA

Objectives Hypervolume Spacing Time (mins) Hypervolume Spacing Time (mins) Speed-up

DTLZ1

2 0.873238 0.001283 0.1784 0.873162 0.001457 0.1354 1.3186

3 0.973716 0.007665 0.6921 0.97325 0.009791 0.5578 1.2409

4 0.992412 0.017341 9.927 0.994162 0.016266 0.9542 10.404

5 0.998515 0.026013 146.5268 0.99851 0.02788 1.9638 74.6154

6 0.999553 0.038846 1954.4977 0.99958 0.034769 9.4954 205.8373

7 0.999841 0.050285 25632.8153 0.999876 0.041381 52.7094 486.3049

8 – – – 0.99993 0.059126 437.9792 –

9 – – – 0.99997 0.056958 1673.3501 –

DTLZ2

2 3.210879 0.007702 0.2784 3.210868 0.007602 0.1339 2.0806

3 7.426076 0.041653 1.6382 7.426069 0.040691 0.2926 5.5995

4 15.5753 0.067581 11.1038 15.575445 0.06661 0.673 16.5008

5 31.677782 0.084248 168.761 31.678164 0.086913 1.3908 121.3476

6 63.75333 0.133544 2420.9844 63.753512 0.135595 10.4016 232.7513

7 – – – 127.79839 0.181875 49.7891 –

8 – – – 255.837758 0.192845 525.0347 –

9 – – – 511.846819 0.168345 1713.133 –

DTLZ3

2 3.208826 0.007444 0.6189 3.20903 0.0076 0.4559 1.3577

3 7.420476 0.041679 1.8316 7.421543 0.041999 1.4572 1.257

4 15.574479 0.06765 27.1425 15.57325 0.067938 2.1452 12.6527

5 31.67833 0.088963 434.3908 31.678284 0.085466 4.2416 102.4135

6 63.740603 0.146409 6040.9012 63.74412 0.161621 23.9932 251.7766

7 – – – 127.788183 0.223037 133.1065 –

8 – – – 255.815976 0.192676 1021.2014 –

9 – – – 511.840859 0.180436 4437.1247 –

DTLZ4

2 2.87192 0.005499 0.5385 3.065692 0.006722 0.3511 1.5339

3 6.887928 0.026107 3.1228 7.145613 0.032301 2.5011 1.2486

4 14.99058 0.049317 35.218 15.406114 0.057918 3.4136 10.3172

5 30.189868 0.050782 520.502 30.787056 0.062325 5.6853 91.5528

6 62.447761 0.07819 7446.6796 63.368461 0.098488 26.3014 283.129

7 – – – 127.726866 0.177763 125.5394 –

8 – – – 255.731938 0.194006 1629.4346 –

9 – – – 511.694486 0.184917 4199.4646 –

WFG1

2 6.735278 0.006432 1.6154 6.611425 0.009437 0.6304 2.5626

3 66.595412 0.047712 7.3843 64.496605 0.049191 4.2319 1.745

4 550.509191 0.077903 108.9946 635.368636 0.070628 5.0127 21.7439

5 5811.563198 0.077009 2047.7594 5981.306146 0.075655 6.6857 306.2917

6 – – – 69980.43159 0.072144 28.7109 –

7 – – – 975295.6509 0.074721 154.8892 –

8 – – – 16252223 0.071669 992.7482 –

9 – – – 260018586.1 0.082601 5850.1223 –

WFG2

2 10.655908 0.008643 0.6955 10.569597 0.008441 0.3571 1.9476

3 86.215292 0.04886 3.7612 86.827259 0.052103 2.4849 1.5137

4 786.873748 0.096958 74.153 793.125358 0.101117 3.3485 22.1456

5 8860.244206 0.082606 1458.6645 8566.72997 0.07059 4.5121 323.2813

6 110240.8108 0.100501 17867.2959 112357.7782 0.108096 20.2233 883.5017

7 – – – 1646787.124 0.178076 134.0804 –

8 – – – 27973328.67 0.240691 1288.5644 –

WFG3

2 10.954985 0.004739 1.648 10.954594 0.00423 0.6439 2.5597

3 76.42553 0.132885 6.3563 76.426786 0.132637 4.4548 1.4269

4 683.216698 0.442542 38.2058 683.589267 0.439745 7.8809 4.848

5 7474.344326 0.704298 188.9923 7484.96526 0.706353 35.5841 5.3112

6 96821.66284 0.939095 880.7624 96950.48865 0.905224 212.272 4.1493

7 – – – 1365800.643 1.030017 779.205 –

8 – – – 22781648.93 1.332752 5323.5093 –
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having up to 9 objectives. Our results indicate that our proposed approach is
able to achieve a speed up of up to 883x with respect to the sequential version
of SMS-EMOA, using the FPL algorithm.

As part of our future work, we would like to incorporate our proposed app-
roach into other hypervolume-based MOEAs (e.g., IBEA [19]). We would also
like to develop indicator-based MOEAs that combine the use of the hypervolume
with another (less computational intensive) indicator.
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Computation (CEC 2013), Cancún, México, pp. 924–931. IEEE Press, June 20–23,
2013. ISBN: 978-1-4799-0454-9

14. NVIDIA Corporation. Cuda zone (2014)
15. While, L.: A new analysis of the lebmeasure algorithm for calculating hypervolume.

In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 326–340. Springer, Heidelberg (2005)

16. While, L., Hingston, P., Barone, L., Huband, S.: A Faster Algorithm for Calculat-
ing Hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38
(2006)

17. Wu, J., Azarm, S.: Metrics for Quality Assessment of a Multiobjective Design Opti-
mization Solution Set. Transactions of the ASME, Journal of Mechanical Design
123, 18–25 (2001)

18. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the
design of pareto-compliant indicators via weighted integration. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 862–876. Springer, Heidelberg (2007)

19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)



A Feature-Based Performance Analysis
in Evolutionary Multiobjective Optimization
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Abstract. This paper fundamentally investigates the performance of
evolutionary multiobjective optimization (EMO) algorithms for compu-
tationally hard 0–1 combinatorial optimization, where a strict theoretical
analysis is generally out of reach due to the high complexity of the under-
lying problem. Based on the examination of problem features from a mul-
tiobjective perspective, we improve the understanding of the efficiency
of a simple dominance-based EMO algorithm with unbounded archive
for multiobjective NK-landscapes with correlated objective values. More
particularly, we adopt a statistical approach, based on simple and mul-
tiple linear regression analysis, to enquire the expected running time of
global SEMO with restart for identifying a (1 + ε)−approximation of
the Pareto set for small-size enumerable instances. Our analysis provides
further insights on the EMO search behavior and on the most important
features that characterize the difficulty of an instance for this class of
problems and algorithms.

1 Introduction

Black-box multiobjective combinatorial optimization problems are characterized
by a discrete solution space and by multiple objective functions, such as cost,
profit, or risk, that are ill-defined, computationally expensive, or for which an ana-
lytical form is not available. Due to the black-box nature of the objective functions,
problem-specific algorithms are usually excluded to identify or approximate the
Pareto set, so that an increasing number of general-purpose evolutionary multi-
objective optimization (EMO) algorithms and other randomized search heuristics
have been proposed in recent years [3]. However, the overall amount of understand-
ing about the pros and cons of different EMO algorithm designs and configurations
with respect to a given problem structure is rather scarce. Due to the increasing
number and complexity of black-box multiobjective optimization problems and
algorithms, one of the most difficult challenges is to devise and exhibit a number

c© Springer International Publishing Switzerland 2015
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of general-purpose problem characteristics and statistical methodologies allowing
to explain the dynamics and the performance of EMO algorithms.

Recently, a few attempts to explain the performance of randomized search
heuristics based on relevant fitness landscape features have been proposed for
single-objective optimization problems of continuous and combinatorial nature;
see e.g. [4,6,12]. In this paper, we address the issue of feature-based performance
analysis for EMO algorithms according to the main characteristics of 0–1 multiob-
jective optimization problems. We first extend our previous works by summarizing
a number of problem properties and fitness landscape features for black-box 0–1
multiobjective optimization [11]. They include features extracted from the prob-
lem input data, like variable correlation, objective correlation, and objective space
dimension [17], as well as features from the Pareto set [1,8], the Pareto graph [14]
and the ruggedness and multimodality of the fitness landscape [17]. Then, we ana-
lyze the correlation between those features and the performance of an EMO algo-
rithm. More particularly, we investigate the expected running time of the global
SEMO algorithm [9] with restart to identify a (1+ε)−approximation of the Pareto
set on a large number of small-size enumerable multiobjective NK-landscapes with
objective correlation, i.e. ρMNK-landscapes [17]. Our analysis shows the relative
influence of each individual problem feature on the algorithm performance. In par-
ticular, the running time of global SEMOappears to bepredominantly impactedby
the ruggedness of the fitness landscape, more than other features like the number
of Pareto optimal solutions. Additionally, we investigate different formulations of a
multiple linear regression model. This allows us to discuss the joint effect of differ-
ent subsets of features in capturing the dynamics of the algorithm. The ruggedness
and the multimodality, but also the number of objectives, the correlation between
them, and the hypervolume of the Pareto front turn out to be the most impactful
characteristics that allow to explain the performance of global SEMO for ρMNK-
landscapes.

The remainder of the paper is organized as follows. Section 2 details the
problem and algorithm settings of our analysis. Section 3 summarizes the prob-
lem features under consideration in the paper. Section 4 introduces different
regression models to explain the performance of global SEMO for enumerable
ρMNK-landscapes. Section 5 concludes the paper and suggests further research.

2 Problem and Algorithm Settings

In this paper, we are interested in the ability of evolutionary multiobjective opti-
mization (EMO) algorithms to identify a Pareto set approximation for black-box
multiobjective combinatorial optimization problems. In particular, we investi-
gate the (estimated) running time of global SEMO [9] with restart to identify a
(1+ε)−approximation of the Pareto set on a large bench of enumerable ρMNK-
landscapes with different structural properties. We consider the maximization of
an objective function vector f = (f1, . . . , fm) over the discrete set of solutions
X = {0, 1}n, where m is the number of objectives, and n is the problem size.
X is the solution space, and Z = f(X) ⊆ IRm is the objective space. A solution
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x ∈ X is dominated by a solution x′ ∈ X if ∀i ∈ {1, . . . , m}, fi(x) � fi(x′)
and ∃i ∈ {1, . . . , m} such that fi(x) < fi(x′). The set of solutions that are not
dominated by any other is the Pareto set, and its image in the objective space
is the Pareto front.

2.1 ρMNK-Landscapes

The family of ρMNK-landscapes constitutes a problem-independent model used
for constructing multiobjective multimodal landscapes with objective correla-
tion [17]. They extend single-objective NK-landscapes [7] and multiobjective
NK-landscapes with independent objective functions [1]. Feasible solutions are
binary strings of size n, i.e. the solution space is X = {0, 1}n. The parameter k
refers to the number of variables that influence a particular position from the
bit-string. The objective function vector f = (f1, . . . , fi, . . . , fm) is defined as
f : {0, 1}n → [0, 1]m such that each objective function fi is to be maximized.
The problem can be formalized as follows.

max fi(x) =
1
n

n∑

j=1

fij(xj , xj1 , . . . , xjk) , i ∈ {1, . . . , m}

s.t. xj ∈ {0, 1} , j ∈ {1, . . . , n}
(1)

As in the single-objective case, each separate objective function value fi(x)
of a solution x = (x1, . . . , xj , . . . , xn) is an average value of the individual
contributions associated with each variable xj . Indeed, for each objective fi,
i ∈ {1, . . . , m}, and each variable xj , j ∈ {1, . . . , n}, a component function
fij : {0, 1}k+1 → [0, 1] assigns a real-valued contribution for every combination
of xj and its k epistatic interactions {xj1, . . . , xjk}. These fij-values are uni-
formly distributed in the range [0, 1]. As a consequence, the individual contribu-
tion of a variable xj depends on the value of xj , as well as on the values of k < n
other variables {xj1 , . . . , xjk}. In this work, the epistatic interactions, i.e. the
k variables that influence the contribution of xj , are set uniformly at random
among the (n − 1) variables other than xj , following the random neighborhood
model from [7]. By increasing the number of epistatic interactions k from 0
to (n − 1), problem instances can be gradually tuned from smooth to rugged. In
ρMNK-landscapes, fij-values additionally follow a multivariate uniform distribu-
tion of dimension m, defined by an m×m positive-definite symmetric covariance
matrix (cpq) such that cpp = 1 and cpq = ρ for all p, q ∈ {1, . . . , m} with p �= q,
were ρ > −1

m−1 defines the objective correlation degree; see [17] for details. The
positive (respectively negative) data correlation ρ allows to decrease (respectively
increases) the degree of conflict between the objective function values. The same
correlation coefficient ρ is then defined between all pairs of objectives, and the
same epistatic degree k and epistatic interactions are set for all the objectives.

2.2 Global SEMO

Global SEMO [9], or G-SEMO for short, is a simple elitist steady-state EMO
algorithm for black-box 0–1 optimization problems dealing with an arbitrary
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objective function vector defined as f : {0, 1}n → Z such that Z ⊆ IRm, like
in ρMNK-landscapes. It maintains an unbounded archive A of non-dominated
solutions found so far. The archive is initialized with one random solution from
the solution space. At each iteration, one solution is chosen at random from
the archive x ∈ A. Each binary variable from x is independently flipped with a
rate of 1

n in order to produce an offspring solution x′. This mutation operator
is ergodic, meaning that there is a non-zero probability of jumping from any
point to any other point in the solution space. The archive is then updated
by keeping the non-dominated solutions from A ∪ {x′}. In its general form, the
G-SEMO algorithm does not have any explicit stopping rule [9]. In this paper, we
are interested in its running time, in terms of a number of function evaluations,
until an (1 + ε)−approximation of the Pareto set has been identified and is
contained in the internal memory A of the algorithm, subject to a maximum
budget of function evaluations.

2.3 Performance Measure

Let ε be a constant value such that ε � 0. The (multiplicative) ε-dominance
relation (	ε) can be defined as follows. For all x, x′ ∈ X, x 	ε x′ if fi(x) �
(1 + ε) · fi(x′), ∀i ∈ {1, . . . , m}. A set Xε ⊆ X is an (1 + ε)−approximation of
the Pareto set if for any solution x ∈ X, there is one solution x′ ∈ Xε such that
x 	ε x′. This is equivalent to finding an approximation set whose multiplicative
epsilon quality indicator value with respect to the (exact) Pareto set is lower
than (1 + ε), see e.g. [18]. Interestingly, under some general assumptions, there
always exists an (1 + ε)-approximation, for any given ε � 0, whose cardinality
is both polynomial in the problem size and in 1

ε [13].
Following a conventional methodology from single-objective continuous black-

box optimization benchmarking [5], the expected number of function evaluations
to identify an (1 + ε)−approximation is here chosen as a performance measure.
However, as any EMO algorithm, G-SEMO can either succeed or fail to reach
an accuracy of ε in a single simulation run. In case of a success, the running
time is the number of function evaluations until an (1 + ε)−approximation was
found. In case of a failure, we simply restart the algorithm at random. We then
obtain a “simulated running time” [5] from a set of given trials of G-SEMO on
a given instance. Such a performance measure allows to take into account both
the success rate ps ∈ (0, 1] and the convergence speed of the G-SEMO algo-
rithm with restarts. Indeed, after (t − 1) failures, each one requiring Tf evalu-
ations, and the final successful run with Ts evaluations, the total running time
is T =

∑t−1
i=1 Tf + Ts. By taking the expectation value and by considering that

the probability of success after (t − 1) failures follows a Bernoulli distribution of
parameter ps, we have:

E[T ] =
(

1 − ps

ps

)
E[Tf ] + E[Ts] (2)

In our case, the success rate ps is estimated with the ratio of successful runs over
the total number of executions (p̂s), the expected running time for unsuccessful
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runs E[Tf ] is set to a constant limit on the number of function evaluation calls
Tmax, and the expected running time for successful runs E[Ts] is estimated with
the average number of function evaluations performed by successful runs.

ert =
(

1 − p̂s

p̂s

)
Tmax +

1
ts

ts∑

i=1

Ti (3)

where ts is the number of successful runs, and Ti is the number of evaluations
required for successful run i. For more details, we refer to [5].

2.4 Parameter Setting

In the following, we investigate ρMNK-landscapes with an epistatic degree k ∈
{2, 4, 6, 8, 10}, an objective space dimension m ∈ {2, 3, 5}, and an objective cor-
relation ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9}, such that ρ > −1

m−1 .
The problem size is set to n = 18 in order to enumerate the solution space
exhaustively. The solution space size is then 218. A set of 30 different land-
scapes, independently generated at random, are considered for each parameter
combination: ρ, m, and k. They are made available at the following URL: http://
mocobench.sf.net.

We set a target ε = 0.1. The time limit is set to Tmax = 2n · 10−1 < 26 215
function evaluations without identifying an (1 + ε)−approximation. The G-
SEMO algorithm is executed 100 times per instance. For a given instance, the
success rate and the expected number of evaluations for successful runs are esti-
mated from those 100 executions. However, let us note that G-SEMO was not
able to identify a (1 + ε)−approximation set for any of the runs on one instance
with m = 3, ρ = 0.2 and k = 10, one instance with m = 3, ρ = 0.4 and k = 10,
ten instances with m = 5, ρ = 0.2 and k = 10, six instances with m = 5, ρ = 0.4
and k = 10, as well as two instances with m = 5, ρ = 0.7 and k = 10. Moreover,
G-SEMO was not able to solve the following instances due to an overload of
CPU resources available: m = 5 and ρ ∈ {−0.2, 0.0}. Those experiments have
then been discarded due to missingness. Overall, this represents a total amount
of 2 980 instances times 100 executions, that is 298 000 simulation runs.

3 Features to Characterize Problem Difficulty

In Table 1, we give a number of general-purpose problem features, either directly
extracted from the problem instance (low-level features), or computed from the
enumerated Pareto set and solution space (high-level features). Obviously, since
the features require the solution space to be completely enumerated, they are
not practical for performance prediction purposes. However, we still include them
in order to examine their impact on the algorithm performance. For the case of
ρMNK-landscapes, the neighborhood is induced by the bit-flip operator, which is
directly related to the Hamming distance between solutions. For the computation
of the hypervolume, the reference point is set to the origin z� = (0.0, . . . , 0.0). For

http://mocobench.sf.net
http://mocobench.sf.net
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Table 1. Summary of low-level and high-level features investigated in the paper

low-level features

(k) Number of variable (epistatic) interactions
(m) Number of objective functions
(ρ) Correlation between the objective function values

high-level features

(npo) Number of Pareto optimal solutions [1,8]
(hv) Hypervolume value [18] of a the Pareto set [1]

(avgd) Average distance between Pareto optimal solutions [11]
(maxd) Maximum distance between Pareto optimal solutions [11]

(nconnec) Number of connected components in the Pareto set [14]
(lconnec) Proportion of the largest connected component of the Pareto set [10]
(kconnec) Minimal Hamming distance to connect the Pareto set [14]

(nplo) Number of Pareto local optimal solutions [15]

a more comprehensive explanation of those features and a correlation analysis
between them, we refer to [11]. In the next section, we relate the value of those
features for enumerable ρMNK-landscapes to the performance of G-SEMO.

4 Problem Features vs. Algorithm Performance

In this section, we conduct a linear regression analysis on the correlation between
the problem features presented in the previous section and the performance
of G-SEMO. The algorithm performance is defined as the expected running
time ert, in terms of the number of evaluation function calls, required by the
algorithm to identify a (1 + ε)−approximation of the Pareto set. We first detail
our methodological setup. Then, we analyze the individual as well as the joint
impact of problem features on the algorithm performance. At last, we compare
the accuracy of regression models for different objective space dimensions.

4.1 Methodological Setup

Linear Regression. In order to provide an explanatory model for the algo-
rithm performance, we perform a linear regression, whose general model can be
formalized as follows:

y = β0 + β1 · v1 + β2 · v2 + . . . + βp · vp + e (4)

where y is the response variable, (v1, v2, . . . , vp) are the explanatory variables,
and e is the usual error term. In our case, the response variable to be explained is
the expected running time of G-SEMO: log(ert), and the p explanatory variables
correspond to selected problem features as detailed in Section 3. The response of
the linear model is here log-transformed in order to better approach linearity; see
Fig. 1 (top-left). Also, an order of magnitude is in general sufficiently relevant for
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Fig. 1. Histogram of the distribution of log(ert)-values over all the instances (top-left),
as well as scatter plots and regression lines for each feature vs. log(ert).

the running time of an EMO algorithm. Such linear regression models are usually
fitted using an ordinary least-square minimization. A least-square estimator β̂i

is then produced for each regression coefficient βi, i ∈ {1, . . . , p}, by minimizing
the sum of squared residuals between the fitted and the observed values. The
case of a single explanatory variable (p = 1) is known as simple linear regression,
whereas the extension to more than one explanatory variables (p > 1) is known
as multiple linear regression. Notice that, although a linear regression model
might not be able to reliably catch the existing correlation between explanatory
variables as well as non-linear dependencies with the response variable, it has
the advantage of being simple and easily interpretable.

Regression Accuracy. In the following, when measuring the accuracy of a
linear regression model, we will be interested in the following statistics:

– The absolute correlation coefficient (r) measures the linear association
between the predicted and the actually observed values (the conventional
Pearson correlation coefficient is here used). Its absolute value ranges from
0 to 1. The closer r to 1.0, the better the fitting. Actually, an r-value of 1.0
indicates that the linear regression line perfectly fits the data.

– The mean absolute error (MAE) measures the average value of the absolute
difference between the values predicted by the regression model and the
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values actually observed (the residuals). It aggregates the magnitudes of the
prediction errors into a single predictive power measure to compare different
models. Clearly, the lower the MAE, the better the regression model.

– The root mean-square error (RMSE) measures the square root of the average
squared difference between the values predicted by the regression model and
the values actually observed. Similarly, the lower the RMSE, the better the
regression model. Notice that the RMSE tends to favor a regression model
that avoids large errors even though it produces a less satisfactory fit overall,
whereas the MAE tends to favor a regression model that produces occasional
large errors while being reasonably good on average.

– The relative absolute error (%RAE) corresponds to the MAE relative to the
basic model that always predicts the mean, i.e. when no explanatory vari-
ables are used in the regression model (p = 0). As a consequence, smaller
values are better, and a RAE higher than 100% indicates that the corre-
sponding model is actually worse than this basic model in terms of MAE.

– The root relative squared error (%RRSE) corresponds to the RMSE relative
to the basic model that always predicts the mean.

For each of those statistics, we report the values observed on the training set,
i.e. the set of data used to build the model. In addition, we perform a 10-fold
cross-validation in order to assess how the results of the regression model gener-
alize to an independent data set. The original data set is randomly partitioned
into 10 samples of equal size. The cross-validation process is repeated 10 times,
with each of the samples being used exactly once as the validation data. For
each sample, the above statistics are computed, and then averaged in order to
produce a cross-validated r, MAE, RMSE, %RAE, and %RRSE value.

Data Preparation. Although features might usually have to be normalized
appropriately in order to get rid of scaling issues and for a fair comparison
between them, we here chose not to normalize them in order to ease the inter-
pretation of the different models. Notice that normalizing the features would
only result in a change on the value of the estimated regression coefficient β̂i,
i ∈ {1, . . . , p}. Moreover, this is not an issue within our experiments since we
explicitly generate instances of the same size (n = 18) that takes their objective
values in the same hyper-box [0, 1]m.

4.2 Individual Impact of Problem Features

The scatter plots between each feature and the log-transformed estimated run-
ning time of G-SEMO log(ert) is reported in Fig. 1. Notice that some features
(npo, nconnec, nplo) have been log-transformed in order to better approach lin-
earity. Additionally, the statistics of all possible simple linear regression models,
one for each feature, are reported in Table 2, from the lowest to the highest abso-
lute correlation value. The individual impact of each feature is analyzed below.

First of all, four features are not directly linearly correlated to the expected
running time of G-SEMO: the number of objective functions m, the objective
correlation ρ, the cardinality of the Pareto set log(npo), and the hypervolume hv.
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Table 2. Summary statistics of simple linear regression models, each one being based
on a single problem feature. Values are rounded to 10−2.

training set 10-fold cross validation
feature r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE
ρ 0.03 1.52 1.89 99.66 99.94 0.01 1.53 1.88 99.75 100.00
hv 0.04 1.52 1.89 99.66 99.94 0.02 1.53 1.89 99.73 99.99
log(npo) 0.08 1.54 1.88 100.61 99.70 0.07 1.54 1.88 100.66 99.74
m 0.21 1.51 1.85 98.63 97.86 0.20 1.51 1.85 98.69 97.91
kconnec 0.37 1.38 1.76 89.99 93.03 0.37 1.38 1.76 90.01 93.06
log(nconnec) 0.40 1.44 1.73 94.21 91.47 0.40 1.44 1.73 94.27 91.52
log(nplo) 0.46 1.41 1.67 92.53 88.56 0.46 1.42 1.67 92.57 88.59
maxd 0.47 1.30 1.67 85.07 85.07 0.47 1.30 1.67 85.09 88.36
lconnec 0.49 1.31 1.65 85.67 87.35 0.49 1.31 1.65 85.69 87.37
avgd 0.60 1.15 1.51 75.31 79.95 0.60 1.15 1.51 75.33 80.00
k 0.85 0.77 1.00 50.67 52.95 0.85 0.78 1.00 50.67 52.96
none 0.00 1.53 1.89 100.00 100.00 0.04 1.53 1.89 100.00 100.00

For each of these features, the absolute correlation coefficient value is under 0.25,
and the prediction error is around the one of the most basic model that always
predicts the mean. Surprisingly, there is no direct connection with the two main
low-level features from problem input data m and ρ. At least, the link between
the running time and those features is not a direct linear correlation, but a more
complex model will be analyzed in the next section. As well, the cardinality and
the hypervolume of the Pareto set, features closely related to the final goal of
the search process, do not explain the variance of log(ert) by themselves.

The features related to the connectedness of the Pareto set are all weakly
correlated to log(ert). The absolute correlation coefficients of the number of con-
nected components log(nconnec), the proportional size of the largest connected
component lconnec, and the minimum distance to be connected kconnec are
between 0.37 and 0.49. The more connected the Pareto set, the smaller the run-
ning time of G-SEMO. The algorithm performance is also moderately correlated
with the average and maximal distance between Pareto optimal solutions, avgd
and maxd (the absolute correlation coefficient values are 0.60 and 0.47, respec-
tively). The larger the distance between Pareto optimal solutions in the solution
space, the larger the running time of G-SEMO. Interestingly, the cardinality of
the Pareto set has a smaller impact on the performance of G-SEMO than the
distance between solutions in the Pareto set. Moreover, the multimodality of the
landscape, in terms of the number of Pareto local optimal solutions log(nplo),
is moderately correlated to the running time of G-SEMO: the more Pareto local
optima, the longer the running time (the correlation coefficient is 0.46).

At last, the only strong correlation appears with the feature related to the
ruggedness of the landscape. Indeed, the number of epistatic interactions k is highly
correlated to the efficiency of G-SEMO (the correlation coefficient is 0.85). The
more rugged the landscape, the longer it takes to identify a (1+ε)−approximation
of the Pareto set. In other words, by taking the features individually, the model
based on k is the one that gives the highest accuracy. On average, it allows to
predict the logarithm of the runtime of G-SEMO within ±0.77 of the observed
value. Since the RMSE is much larger (1.00), this suggests that the deviation to
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this average value might be large, as we can see also on Fig.1 (first line, second
column). Such a regression accuracy is around twice better than the most basic
model that always predicts the mean (±1.53), and largely better than the second
more accurate simple linear regression model based on avgd (±1.15).

Having the ruggedness of the landscape k as a more important (individual)
feature than the number of objectives m and the objective correlation ρ might
be surprising at first sight. Indeed, the number of Pareto optimal solutions is
known to increase exponentially with the number of objectives and the degree
of conflict between them; see e.g. [17]. However, let us remind that the algo-
rithm under consideration in the paper (G-SEMO) actually handles an unlimited
approximation set size. It is then only slightly affected by the minimum number
of solutions required to obtain a (1 + ε)−approximation of the Pareto set [13].
Actually, depending on ρ, the estimated expected running time of G-SEMO is
23 to 118 times larger for rugged two-objective instances than smoother five-
objective instances. For instance, when ρ = 0.2, the average ert−value is equal
to 61 836 for k = 10 and m = 2 while it is equal to 2 691 for k = 2 and m = 5.
Similarly, for ρ = 0.9, the average ert−value is 33 922 for k = 10 and m = 2,
and only 287 for k = 2 and m = 5. In accordance with known results from single-
objective optimization [2], the ruggedness of the landscape k seems to largely
impact the running time of EMO algorithms.

Overall, analyzing the individual impact of problem features supports the
hypothesis that the structural properties identified in the previous section can
help to understand the performance of a simple dominance-based EMO algo-
rithm like G-SEMO for ρMNK-landscapes. In the next section, different multiple
linear regression models are examined in order to better explain the running time
of G-SEMO, based on the joint effect of these problem-related characteristics.

4.3 Joint Impact of Problem Features

We start by fitting the response variable log(ert) against all the low-level and
high-level features presented in Section 3. The statistics related to the model
accuracy are provided in Table 3 (line 1). For this complete multiple linear
regression model, the correlation coefficient is over 0.9. Overall, it allows to
explain the performance of G-SEMO with a much higher accuracy compared
to the simple linear regression model based on k only, and outperforms the
basic model that always predicts the mean by around 60%. Moreover, the model
has a high degree of generalization. Indeed, the RMSE and the cross-validated
RMSE are very close to each other. The same happens with the MAE (the
difference between both is always under 10−2). The scatter plot of the actual
vs. the predicted performance values is given in Fig. 2 (left). This allows us
to visualize how the model accuracy varies depending on the hardness of the
problem instance: The model seems to slightly underestimate the runtime for
easier and harder instances whereas it rather overestimates it for an intermediate
instance difficulty.

Although the regression coefficients related to each feature are not interpretable
due to the different scaling of the metric values, not all regression coefficients are
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Table 3. Summary statistics of the multiple linear regression model with backward-
elimination feature selection. Values are rounded to 10−2.

training set 10-fold cross validation
r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE

all features 0.91 0.58 0.76 37.74 40.34 0.91 0.58 0.76 37.86 40.48
\ maxd 0.91 0.58 0.76 37.73 40.38 0.91 0.58 0.76 37.84 40.50
\ log(nconnec) 0.91 0.58 0.76 37.73 40.49 0.91 0.58 0.77 37.83 40.60
\ log(npo) 0.91 0.58 0.77 37.72 40.53 0.91 0.58 0.77 37.80 40.62
\ lconnec 0.91 0.58 0.77 37.74 40.54 0.91 0.58 0.77 37.81 40.61
\ avgd 0.91 0.58 0.77 37.83 40.58 0.91 0.58 0.77 37.90 40.64
\ kconnec 0.91 0.58 0.77 37.95 40.66 0.91 0.58 0.77 38.00 40.71
\ ρ 0.91 0.61 0.80 39.98 42.20 0.91 0.61 0.80 40.04 42.26
\ hv 0.89 0.67 0.87 43.59 46.29 0.89 0.67 0.87 43.63 46.33
\ log(nplo) 0.88 0.70 0.91 45.83 48.19 0.88 0.70 0.91 45.86 48.21
\ m 0.85 0.77 1.00 50.67 52.95 0.85 0.78 1.00 50.67 52.96
\ k 0.00 1.53 1.89 100.00 100.00 0.04 1.53 1.89 100.00 100.00

statistically significant in a general multiple linear regression model. In order to
eliminate the influence of the less significant regression coefficients, we proceed
by backward elimination. Starting from the inclusion of all features, we iteratively
remove the feature that has the lowest impact on the increase of the MAE until no
feature remains. This allows us to produce a ranked list of features by traversing the
feature space from one side to the other and recording the order that attributes are
deleted. Hence, the attributes that are deleted in the last steps have a more mean-
ingful impact on the model. The steps of the backward elimination are sketched in
Table 3, where one feature is removed at every line. Notice that a forward selection,
that does the opposite procedure of iteratively adding attributes, ends up with a
similar ranking on the importance of features, except that maxd is in the latter case
more important than log(npo) and log(nconnec) (detailed results are not reported
due to space limitation).

This feature selection analysis allows us to gain further insights about which
subset of features obtains the highest accuracy. Indeed, the error increase is
almost insignificant until the deletion of ρ in the model (line 8 in Table 3),
where the correlation coefficient drops from 0.91 to 0.89, the MAE rises from
0.58 to 0.61 and the RMSE rises from 0.77 to 0.80. We can then conclude that ρ
and subsequent attributes constitute the most significant subset for explaining
the algorithm performance. Actually, a more compact model, with only the five
most significant features, constitute an acceptable alternative, and has almost
the same accuracy than the full model; see also Fig. 2 (right). Once again,
the most important feature seems to be k, now followed by m, log(nplo), hv
and ρ, in the order of importance. As a consequence, although they are not able
to catch all the variations of log(ert) individually (see Section 4.2), the joint
effect of all three low-level features from the problem input data (k, m and ρ)
is relevant for explaining the running time of G-SEMO. Moreover, there is one
high-level feature related to the hypervolume of the Pareto set hv and to the
multimodality log(nplo). As well, the number of Pareto optimal solutions is not
a significant addition to the regression model. We attribute this to the fact that
the hypervolume incorporates a more relevant information related to the Pareto
front for the algorithm behavior.
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Fig. 2. log(ert) vs. fitted values for (left) the model with all features; and (right) the
model with a selected subset of features (i.e. k, m, log(nplo), hv, ρ).
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Fig. 3. log(ert) vs. fitted values for (left) m = 2, (middle) m = 3, (right) m = 5. All
features are part of the models.

4.4 Explanatory Models vs. Objective Space Dimension

In this section, we build a separate regression model for each objective space
dimension m ∈ {2, 3, 5}. The statistics related to the model accuracy are pro-
vided in Table 4. The information for the complete model mixing all m-values is
also given in the tables in order to facilitate the comparison between the different
models. Additionally, the scatter plot of the actual vs. the predicted performance
values is given in Fig. 3.

First of all, the regression model for a particular number of objectives is
always slightly more accurate than the global model for all m-values (whatever

Table 4. Summary statistics of the multiple linear regression models for all objective
space dimensions (∀m) and for each individual objective space dimension m ∈ {2, 3, 5}.
All features are part of the models. Values are rounded to 10−2.

training set 10-fold cross validation
r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE #inst

∀m 0.91 0.58 0.76 37.74 40.34 0.91 0.58 0.76 37.86 40.48 2980
m = 2 0.92 0.52 0.68 35.86 38.62 0.92 0.53 0.68 36.15 38.95 1350
m = 3 0.92 0.52 0.69 36.12 39.02 0.92 0.53 0.70 36.60 39.51 1048
m = 5 0.93 0.64 0.81 36.86 37.72 0.92 0.65 0.83 37.62 38.53 582
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the m-value, there is an improvement in terms of correlation, %RAE or %RRSE
over the complete model). Actually, the worsening in terms of MAE or RMSE for
larger m-values is only an artefact that the expected running time of G-SEMO
increases with the number of objectives; see Fig. 1 (first line, third column). This
means that constructing a regression model per objective space dimension only
allows to reduce the prediction error to a very small extent.

As reported in Table 5, by focusing on the five most relevant features iden-
tified in the previous section (k,m, log(nplo), hv and ρ, following the order of
importance), we are also able to construct a more compact regression model
for each m-value with a satisfactory response compared to the model using
all features. The difference in the correlation coefficient and the average error
between the models with all features and their compact counterpart is always
less than 2 · 10−2.

In fact, applying a feature selection procedure by backward elimination for
each of the models until the MAE increases by more than 10−2 ends up with
following subset feature selection, following the order of importance (detailed
results are omitted due to space restriction):

– k, hv and log(nplo) for m = 2;
– k, log(nplo) and hv for m = 3;
– k and ρ for m = 5.

Interestingly, this means that the objective correlation ρ is not a relevant fea-
ture for the models with m ∈ {2, 3}. We attribute this to the fact that the
number of Pareto local optimal solutions log(nplo) increases with ρ in these
cases, whereas the correlation between both is much lower for m = 5. For the
same reason, ρ is selected over hv in the latter case. In addition, given that
the proportion of Pareto local optimal solutions in the solution space increases
exponentially with m (we know, for instance, that more than 95% of the solution
space correspond to Pareto local optimal solutions for ρ = −0.2 and m = 5 in
average [17]), the multimodality of the landscape, corresponding to log(nplo),
is not relevant anymore for larger objective space dimensions. However, in all
cases, the ruggedness of the landscape k is again the most relevant feature.

Table 5. Summary statistics of the multiple linear regression models for all objective
space dimensions (∀m) and for each individual objective space dimension m ∈ {2, 3, 5}.
Only the subset of significant features (k, m, ρ, hv, log(nplo)) are part of the models.
Values are rounded to 10−2.

training set 10-fold cross validation
r MAE RMSE %RAE %RRSE r MAE RMSE %RAE %RRSE #inst

∀m 0.91 0.58 0.77 37.95 40.66 0.91 0.58 0.77 38.00 40.71 2980
m = 2 0.92 0.53 0.69 36.14 39.17 0.92 0.53 0.69 36.25 39.29 1350
m = 3 0.92 0.54 0.71 37.35 39.89 0.92 0.55 0.71 37.62 40.14 1048
m = 5 0.92 0.64 0.82 37.30 38.23 0.92 0.65 0.83 37.54 38.52 582



108 A. Liefooghe et al.

5 Conclusions

In this paper, we investigated the impact of problem features on the running
time of a simple dominance-based EMO algorithm with restart, that main-
tains an unbounded archive of non-dominated solutions found so far. The topol-
ogy of an arbitrary problem instance, in terms of ruggedness, multimodality,
objective space dimension, objective correlation, cardinality and hypervolume of
the Pareto set, as well as distance and connectedness between non-dominated
solutions, has been examined for a large set of enumerable multiobjective NK-
landscapes with objective correlation. First, a simple linear regression analysis
revealed that the ruggedness of the landscape had the more critical effect on
the algorithm performance. Second, a more-advanced multiple linear regression
analysis allowed us to highlight the more significant subset of problem features.
As in the single-objective case [2,7], the ruggedness and the multimodality of
the landscape affect the algorithm running time to a large extent. Additionally,
the number of objectives, the correlation between them, and the hypervolume
of the Pareto front to be covered are all jointly impactful in the multiobjective
case. At last, although problem features have a different impact depending on
the objective space dimension, the degree of explanation they are able to pro-
vide together is always as meaningful for the algorithm performance. Overall,
our feature-based analysis was able to highlight the main relationships between
the structural properties of the landscape and the performance of the algorithm.
This allowed us to better understand the behavior and the performance of this
EMO algorithm class.

The problem characteristics under analysis in the paper validate the rele-
vance of our methodology for explaining the performance of EMO approaches.
However, it remains an open question if there exist supplementary features that
could better capture the problem difficulty for different problem and algorithm
classes, and if more general regression models would allow to better apprehend
the correlations among the features as well as their (non-linear) dependencies
with the algorithm performance. Furthermore, the goal of the paper was on
understanding the algorithm behavior and performance rather than blindly rec-
ommending the best-performing approach, but a natural extension for future
research is to investigate the prediction power of the regression models proposed
in the paper, based on existing works from single-objective optimization [6]. Fol-
lowing the algorithm selection problem formulated by Rice in the 1970s [16], this
would allow us to design a portfolio approach for selecting the most appropri-
ate algorithm configuration, based on a relevant structural characterization of
the multiobjective problem instance to be solved. For that purpose, extending
our paradigm with more-advanced regression models based on problem features
that can be estimated inexpensively for large-size instances is currently under
investigation.
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Abstract. In this paper, we propose the use of modified distance calculation in 
generational distance (GD) and inverted generational distance (IGD). These 
performance indicators evaluate the quality of an obtained solution set in com-
parison with a pre-specified reference point set. Both indicators are based on the 
distance between a solution and a reference point. The Euclidean distance in an 
objective space is usually used for distance calculation. Our idea is to take into 
account the dominance relation between a solution and a reference point when 
we calculate their distance. If a solution is dominated by a reference point, the 
Euclidean distance is used for their distance calculation with no modification. 
However, if they are non-dominated with each other, we calculate the minimum 
distance from the reference point to the dominated region by the solution. This 
distance can be viewed as an amount of the inferiority of the solution (i.e., the 
insufficiency of its objective values) in comparison with the reference point. 
We demonstrate using simple examples that some Pareto non-compliant results 
of GD and IGD are resolved by the modified distance calculation. We also 
show that IGD with the modified distance calculation is weakly Pareto com-
pliant whereas the original IGD is Pareto non-compliant.  

Keywords: Evolutionary Multiobjective Optimization · Performance indicators · 
Generational distance · Inverted generational distance · Pareto compliance 

1 Introduction 

Evolutionary multiobjective optimization (EMO) has been an active research area in 
the last two decades [3], [6], [20]. One important issue in this area is performance 
evaluation of EMO algorithms. Since a set of non-dominated solutions is obtained by 
a single run of an EMO algorithm, performance evaluation in the EMO community 
usually means the comparison of different non-dominated solution sets. Various per-
formance indicators have been proposed to evaluate the quality of a non-dominated 
solution set [8], [14], [15], [26]. Among them, the hypervolume indictor [25] has been 
most frequently used. This is mainly because no other indicators are Pareto compliant 
[24]. It has been repeatedly pointed out in the literature [14], [15], [18], [24], [26] that 
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Pareto non-compliant misleading results can be obtained from some other perfor-
mance indicators. 

For example, Zitzler et al. [26] clearly illustrated that misleading results can be ob-
tained from the generational distance (GD) indicator [21] using a simple example of a 
two-objective minimization problem in Fig. 1 with a reference point set Z = {(1, 0), (0, 
10)} and three solution sets A = {(2, 5)}, B = {(3, 9)} and C = {(10, 10)}. GD is the 
average distance from each solution to its closest reference point. Thus the solution set 
B = {(3, 9)} is evaluated as being the best since (3, 9) has the minimum distance to its 
nearest reference point among the three solution sets (i.e., A, B and C). However, it is 
clear from Fig. 1 that A = {(2, 5)} is the best among the three solution sets since (3, 9) 
in B and (10, 10) in C are dominated by (2, 5) in A. A similar example of a two-
objective minimization problem was used in Schütze et al. [18], which is shown in Fig. 
2 with a reference point set Z = {(0, 1), (10, 0)} and two solutions sets A = {(5, 2)} and 
B = {(11, 3)}. In this example, the solution set B is evaluated as being better than the 
solution set A by the GD indicator whereas (11, 3) is dominated by (5, 2). 

 

       

Fig. 1. Example 1 (Zitzler et al. [26])               Fig. 2. Example 2 (Schütze et al. [18]) 

These misleading results are not obtained by the hypervolume indicator since it is 
Pareto compliant [24]. One difficulty of the hypervolume indicator is its heavy  
computation load. Recently evolutionary many-objective optimization has attracted 
increasing attention [12]. Test problems with ten or more objectives are used for per-
formance evaluation in recent studies on evolutionary many-objective optimization 
[7], [9], [10], [23]. The use of the hypervolume indicator for those test problems is 
often impractical from a viewpoint of computation time whereas its fast calculation 
[17], [22] as well as its efficient approximation [1] has been actively studied. Among 
other indicators, the inverted generational distance (IGD [4], [19]) is most frequently 
used for performance evaluation of EMO algorithms in evolutionary many-objective 
optimization studies [7], [9], [23]. IGD is the average distance from each reference 
point to its nearest solution. When a set of well-distributed reference points over the 
entire Pareto front is used, a small value of the IGD indicator suggests the good con-
vergence of solutions to the Pareto front and their good distribution over the entire 
Pareto front. 
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In the above-mentioned examples in Fig. 1 and Fig. 2, the solution set A is correct-
ly evaluated as being the best by the IGD indicator. Whereas IGD looks a more ap-
propriate indicator than GD in Fig. 1 and Fig. 2, both are Pareto non-compliant. Let us 
consider another solution set D = {(2, 1)} in Fig. 3. It is clear from Fig. 3 that the 
solution set D is evaluated as being the best among the four solution sets A, B, C and 
D by the GD indicator. However, the solution set A = {(2, 5)} is evaluated as being 
better than D by the IGD indicator with the Euclidean distance in Fig. 3 as follows: 

 

 5.24,    (1) 

 5.32.    (2) 

 
In Fig. 4, we show another example of a two-objective minimization problem with 

Z = {(0, 10), (1, 6), (2, 2), (6, 1), (10, 0)}, A = {(2, 4), (3, 3), (4, 2)} and B = {(2, 8), 
(4, 4), (8, 2)}. In Fig. 4, each solution in the solution set B is dominated by at least 
one solution in the solution set A. Thus we can say that A is better than B in the sense 
of Pareto dominance. The solution set A is also evaluated as being better than B by the 
GD indicator in Fig. 4. However, if we use the IGD indicator, the solution set B is 
evaluated as being better than A as follows: 

 

3.71,    (3) 

2.59.    (4) 

 

        

Fig. 3. Example 3 with a new solution set D       Fig. 4. Example 4 with misleading IGD 

In this paper, first we discuss why these misleading results are obtained by the GD 
and IGD indicators. Then we propose an idea of modifying the distance calculation 
between a solution and a reference point in the GD and IGD indicators by taking into 
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account the Pareto dominance relation between them. If a solution is dominated by a 
reference point, we use the Euclidean distance with no modification. However, if they 
are non-dominated with each other, we calculate the minimum distance from the ref-
erence point to the dominated region by the solution. This distance can be viewed as 
an amount of the inferiority of the solution (i.e., the insufficiency of its objective val-
ues) in comparison with the reference point. Only inferior objective values of the 
solution to the reference point are used in their distance calculation. In our former 
study [11], we suggested our idea (i.e., modified distance calculation) as a trick to 
remedy a severe sensitivity of the IGD indicator to the specification of a reference 
point set. In this paper, we explain our idea in a more general setting and propose its 
use in both the GD and IGD indicators. We also show a theoretical property of the 
IGD measure with the modified distance calculation: weak Pareto compliance. 

This paper is organized as follows. In Section 2, we briefly explain multiobjective 
optimization, Pareto dominance relations, and performance indicators. In Section 3, 
we explain our idea of modifying the distance calculation in the GD and IGD indica-
tors in detail. In Section 4, we demonstrate that the Pareto non-compliant results in 
Figs. 1-4 are resolved by the use of the modified distance calculation. Then we show 
that the IGD indicator with the modified distance calculation is weakly Pareto com-
pliant in Section 5. Finally, we conclude this paper in Section 6. 

2 Multiobjective Optimization and Performance Indicators 

Let us consider the following m-objective minimization problem with a decision vec-
tor x and its feasible region X: 
 

Minimize  subject to .  (5)  

 
In this formulation, z is an m-dimensional objective vector: z = (z1, z2, ..., zm). The 

feasible region Z of the objective vector z is defined as  using 

the feasible region X of the decision vector x.  
Let us denote two objective vectors as a = (a1, a2, ..., am) and b = (b1, b2, ..., bm). 

They are two points in the m-dimensional objective space. The Pareto dominance 
relation “ ” and the weak Pareto dominance relation “ ” are defined for the mini-
mization problem between the two objective vectors a and b as follows: 

 
Pareto Dominance: ,        (6) 

Weak Pareto Dominance: .        (7) 

 
The Pareto dominance relation  means that b is dominated by a (i.e., a is 

better than b). The second condition “ ” in (6) can be replaced with : 

 . The weak Pareto dominance relation a b means 

that b is weakly dominated by b (i.e., a is better than or equal to b). The weak Pareto 
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dominance relation  includes  while  is excluded from the Pareto 

dominance relation . 
If an objective vector  is not dominated by any other feasible objective 

vectors in Z,  is called a Pareto optimal solution. A set of all Pareto optimal solu-
tions is the Pareto optimal solution set. The projection of the Pareto optimal solution 
set onto the objective space is called the Pareto front. When  is a Pareto optimal 
solution,  is a Pareto optimal objective vector. 

Let A be a set of objective vectors. When no objective vector in A is dominated by 
any other objective vector in A, A is called a non-dominated set. Let us denote two 
non-dominated sets of objective vectors as A = {a1, a2, ..., a|A|} and B = {b1, b2, ..., 
b|B|} where |A| and |B| are the cardinality of A and B, respectively. 

In Zitzler et al. [26], the Pareto dominance relations between objective vectors 
were extended to the following relations between objective vector sets (also see [8]): 

 
Pareto Dominance for Sets: ,   (8) 

Weak Pareto Dominance for Sets: .   (9) 

 
 and  mean that “B is dominated by A” and “B is weakly dominated 

by A”, respectively.  does not allow the existence of any shared objective vector 
in A and B. That is,  requires . Whereas  does not allow 

any overlap between A and B,  allows  (i.e., A and B can be the same). 

In order to handle partially overlapping sets, Zitzler et al. [26] defined an interme-
diate relation called “better” denoted by “ ” as follows (also see [8]): 

 
Relation “better” for Sets:     and . (10) 

 

This relation  means that A is better than B [26]. The concept of the Pareto 
compliance [24] of an indicator I(.) can be defined using this relation as follows (it is 
assumed that a smaller value of the indicator I(.) means a better set): 

Pareto Compliant Indicator [24]: Whenever  holds between two non-
dominated sets A and B,  always holds: . 

In this definition, the indicator I(.) is a mapping from a set of objective vectors to a 
real number. Only the hypervolume is known as being Pareto compliant. In this paper, 
we also use the following weaker version of the Pareto compliance (some indicators 
such as the D1 [8] and the unary additive-ε [26] are weakly Pareto compliant): 

Weak Pareto Compliant Indicator: Whenever  holds between two non-

dominated sets A and B,  always holds: . 

As we have already explained in Section 1, the GD and IGD indicators evaluate the 
quality of an objective vector set using a reference point set. Let Z = {z1, z2, ..., z|Z|} be 
a given reference point set where |Z| is the cardinality of Z. The original definition of 
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the GD indicator can be written for a non-dominated objective vector set A = {a1, a2, 
..., a|A|} and the reference point set Z = {z1, z2, ..., z|Z|} as follows [21]: 

Generational Distance: ,    (11) 

 
where di is the Euclidean distance from ai to its nearest reference point in Z, and p is 
an integer parameter. In this paper, we always specify p as p = 1 in GD (and IGD). 

The IGD indicator is an inverted version of the GD indicator, which is defined as 
 

Inverted Generational Distance: ,     (12) 

 

where  is the Euclidean distance from z j to its nearest objective vector in A. 

To the best of our knowledge, the term of “inverted generational distance (IGD)” 
was first used in 2004 by Coello & Sierra [4] and Sierra & Coello [19]. However, 
similar indicators had already been used since Czyzak & Jaszkiewicz [5] in 1998. In 
Czyzak & Jaszkiewicz [5], the weighted achievement scalarizing function was used as 
the distance between an objective vector and a reference point. Their indicator was 
denoted as D1 [8], D1R [14] and ID [26]. The IGD indicator with the Euclidean dis-
tance was used in [2], [13] in 2003 without referring to it as IGD. 

Recently, Schütze et al. [18] proposed the following modification of GD and IGD: 
 

   and   .       (13) 

 
They also proposed a new indicator Δp(A) = max{GDp(A), IGDp(A)}. This new in-

dicator was used in an indicator-based EMO algorithm in [16]. 
In this paper, we always specify the value of p as p = 1. This is because (i) it makes 

the meaning of GD and IGD clear, (ii) it has often been used in the literature, and (iii) 
the modified GDp and IGDp [18] in (13) become the same as their original definitions 
when p = 1. The GD with p = 1 is the average Euclidean distance from each objective 
vector to its nearest reference point (and the IGD with p = 1 is the average Euclidean 
distance from each reference point to its nearest objective vector).  

3 Modified Distance Calculation 

As explained in Section 1, the GD and IGD indicators are Pareto non-compliant. In 
Fig. 5 (a), we show another example where both GD and IGD are misleading: GD(A) 
= 5.10 > GD(B) = 4.33 and IGD(A) = 5.24 > IGD(B) = 4.85. That is, the solution set B 
is evaluated as being better than the solution set A by the GD and IGD indicators  
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(a) Example 5 with misleading GD and IGD         (b) Distance to the dominated region 

Fig. 5. Example 5 with misleading GD and IGD, and modified distance calculation 

whereas B is dominated by A (i.e., ). These calculations also show that  is 

not Pareto compliant since 5.24 > 4.85 for p = 1.  

In our former study [11], we suggested an idea to calculate the distance from each 
reference point to the dominated region by a solution set in the IGD indicator. This 
idea is illustrated in Fig. 5 (b) where the distance from the reference point z2 to the 
dominated region by the solution set A is calculated as shown by the vertical solid 
arrow. The dotted arrow from z2 to a in Fig. 5 (b) shows the standard distance calcula-
tion from the reference point z2 to the objective vector a. 

In this paper, we formulate this idea in a more general setting so that the modified 
distance calculation can be used in both the GD and IGD indicators. We also explain 
the motivation behind the modified distance calculation and its meaning in detail.  

In Fig. 5, all objective vectors a, b1 and b2 are dominated by the reference point z1 

at (0, 1): z1 a, z1 b1 and z1 b2. The two objective vectors b1 and b2 in B are also 
dominated by a in A: a b1 and a b2. In this case, the distance from the reference 
point z1 is consistent with the Pareto dominance relations among a, b1 and b2 as 

 and  where d(a, b) is the Euclidean distance 

between a and b. Actually we can easily prove the following properties:  

 ,       (14) 

 .       (15) 

When  holds among the three vectors a, b and z, we have the following 
relations for their elements ,  and  (i = 1, 2, ..., m) from : 

 
   and  .           (16) 
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In this case,  always holds. When  holds, we have the 

inequality relations “ ” from the definition of . In 

this case,  always holds. 

The two properties in (14) and (15) suggest that the GD and IGD indicators can be 
Pareto compliant under some special conditions. However, the condition  
does not hold in general as shown by a and z2 in Fig. 5.  

Let us further discuss the distance calculation from a reference point to an objec-
tive vector. In Fig. 6, we show contour lines of the Euclidean distance from the refer-
ence point z. The shaded region in Fig. 6 (a) shows that all objective vectors b in this 
region are dominated by a. From the contour lines in Fig. 6 (a), we can see that 

 holds for all objective vectors b in the shaded region. This means 

that the Euclidean distance calculation is consistent with the Pareto dominance rela-
tion when  holds: . However, in Fig. 6 (b), 

b has a shorter Euclidean distance than a whereas  holds. That is, the dominat-
ed objective vector b is evaluated as being better than a by the Euclidean distance 
from z. The contour lines in Fig. 6 (b) show that every objective vector b in the 
shaded region has a shorter Euclidean distance than a while b is dominated by a. This 
inconsistency can be resolved in Fig. 6 (b) by calculating the minimum distance from 
z to the shaded area instead of the distance between z and a. This modification corres-
ponds to the short vertical arrow in Fig. 5 (b) from z2 to the dominated region by a 
(i.e., our modified distance calculation). 

  

         

      (a) Non-dominated region by a                 (b) Inconsistent region of b for a  

Fig. 6. Contour lines of the Euclidean distance from the reference point z 

In the GD and IGD indicators, smaller values mean better solution sets. The best 
value of each indicator is zero. Thus the distance d(z, a) between the reference point z 
and the objective vector a used in GD and IGD can be viewed as an error or a penalty 
to be minimized. The distance can be also interpreted as an amount of the inferiority of 
a (i.e., the insufficiency of the objective values of a) in comparison with z. This inter-
pretation is consistent with the Pareto dominance relation when a is dominated by z as 
in Fig. 6 (a). In Fig. 6 (a), the decrease in the distance d(z, a) by moving a towards z 
always improves the two objectives of a. However, when a and z are non-dominated 
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with each other, the decrease in the distance does not always improve the two objec-
tives of a. Actually the move from a towards z in Fig. 6 (b) degrades the first objective 
whereas it improves the second objective. Moreover, we do not know which is better 
between a and z since they are non-dominated with each other.  

From these discussions, we can see that the distance d(z, a) cannot be viewed as an 
amount of the inferiority to be minimized when a and z are non-dominated with each 
other. As shown in Fig. 7, the distance d(z, a) is the length of the vector . 
Each element  of d (i.e., ) shows how  is inferior to (i.e., larger 
than)  with respect to the ith objective. Thus a positive value of  can be viewed 
as an amount of the inferiority (i.e., insufficiency) of  to . However, if  is 
negative,  is superior to (i.e., smaller than) zi. In this case, a negative values of  
is viewed as having no inferiority (i.e., no insufficiency). As a result, we define an 

inferiority (i.e., insufficiency) vector  as follows: 

 

  , .              (17) 

 
When  holds, d+ is the same as  (see Fig. 7 (a)). However, when 

 does not hold, d+ is different from  since only the positive elements 
of d remain in d +. In Fig. 7 (b), the vector d+ is shown by the solid vertical arrow 
together with the dotted arrow d. It should be noted that the definition in (17) is re-

placed with  for multiobjective maximization problems. 

 

        

             (a) When  holds               (b) When  does not hold 

Fig. 7. Illustration of the two vectors d and d + 

Using (17), we propose the use of the following modified distance calculation 

 in the GD and IGD indicators instead of the Euclidean distance : 

Modified Distance Calculation for Minimization Problems: 
 

.  (18)  
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Modified Distance Calculation for Maximization Problems: 
 

.  (19)  

Contour lines of the modified distance from z are shown by solid bold lines in Fig. 
7 (a). In the right upper region of z where , the modified distance is the same as 
the Euclidean distance. However, in the left upper region of z in Fig. 7 (a), the contour 
lines are horizontal parallel straight lines since only a2 is used (and vertical parallel 
straight lines since only a1 is used in the right lower region of z). 

In this paper, we denote the GD and IGD indicators with the modified distance cal-
culation in (18) by GD+ and IGD+, respectively. This is because only the positive 
elements of  are used in the distance calculation in (18). 

The vector  defined by (17) can be viewed as showing the minimum amount of 

the increase from z so that  is weakly dominated by the objective vector a. Let 
us assume that  is weakly dominated by a. That is,  for all i’s. If 

 holds, u with the minimum length is obtained from  for all i’s. 
However, if z and a are non-dominated with each other, there exists at least a pair of 

 and  with . Such a  does not have to be increased from its current 

value. Thus  if . For the other ’s with ,  is speci-
fied as  so that  holds with the minimum increase . This 

definition of u is the same as the definition of d + in (17).  In Fig. 7 (a), the move of d 
is needed to make  be weakly dominated by a. However, the move of d is not 

needed in Fig. 7 (b). This is because  is dominated by a in Fig. 7 (b). 
These discussions can be summarized as the following minimization problem of 

the Euclidean norm ||u ||, which can explain d + in (17) and  in (18): 
 

 Minimize  subject to .     (20) 
 

The vector d+ defined in (17) is the optimal solution u* of this problem. The mod-

ified distance  in (18) is the corresponding optimal value. The standard 

Euclidean distance corresponds to the optimal value of (20) with the equality con-
straint  instead of the weak dominance constraint. For multiobjective max-

imization problems, the constraint  in (20) is replaced with  

where u shows the decrease from z so that  can be weakly dominated by the 
objective vector a. The optimal value of the minimization problem of  with 

 corresponds to the modified distance calculation in (19). 

4 Effects of Modified Distance Calculation 

We examine the effects of the modified distance calculation in (18) using the six ex-
amples in Figs. 1-5 (i.e., Examples 1-5) and Fig. 6 (b). The value of p is always speci-
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fied as p = 1. In Tables 1-6, we show the values of GD, IGD, GD+ and IGD+ together 
with the dominance relation among the given solution sets. It should be noted that 
GDp and IGDp [18] with  are the same as GD and IGD, respectively.  

In each table, a better indicator value (i.e., smaller value) is highlighted by bold. 
These tables show that all Pareto non-compliant results are removed by the modified 
distance calculation. However, the GD+ indicator is not Pareto compliant as shown in 
Fig. 8 and Table 7. In Fig. 8, the solution set A dominates the solution set B. However, 
B is evaluated as being better than A by GD and GD+ in Table 7.  

The IGD+ indicator is consistent with the Pareto dominance relation (i.e., if  

holds, the inconsistent result IGD+(A) > IGD+(B) is not obtained). This property will 
be explained in the next section. However, the IGD+ indicator is not Pareto compliant 
in the strict sense as shown in Fig. 9 and Table 8. In Fig. 9, the solution set A is better 
than the solution set B (i.e., ). However, in Table 8, IGD+(A) < IGD+(B) does 
not hold. Actually, I(A) = I(B) holds for IGD and IGD+. This is because the nearest 
objective vector (2, 2) from the reference point (0, 0) is shared by the two solu-
tion sets A and B in Fig. 9: A = {(1, 8), (2, 2), (8, 1)}, B = {(2, 2)} and Z = {(0, 0)}. 

 
Table 1. Example 1 in Fig. 1 ( )            Table 2. Example 2 in Fig. 2 ( ) 

Indicator I(A) I(B) I(A) < I(B)  Indicator I(A) I(B) I(A) < I(B) 

GD 5.099 3.162 Inconsistent  GD 5.099 3.162 Inconsistent 

GD+ 2.000 3.000 OK  GD+ 2.000 3.162 OK 

IGD 5.242 6.191 OK  IGD 5.242 7.171 OK 

IGD+ 3.550 6.110 OK  IGD+ 3.550 7.171 OK 

 
Table 3. Example 3 in Fig. 3 ( )           Table 4. Example 4 in Fig. 4 ( ) 

Indicator I(D) I(A) I(D) < I(A)  Indicator I(A) I(B) I(A) < I(B) 

GD 1.414 5.099 OK  GD 1.805 2.434 OK 

GD+ 1.414 2.000 OK  GD+ 1.138 2.276 OK 

IGD 5.317 5.242 Inconsistent  IGD 3.707 2.591 Inconsistent 

IGD+ 1.707 3.550 OK  IGD+ 1.483 2.260 OK 

 
Table 5. Example 5 in Fig. 5 ( )          Table 6. Example in Fig. 6 (b) ( ) 

Indicator I(A) I(B) I(A) < I(B)  Indicator I(A) I(B) I(A) < I(B) 

GD 5.099 4.328 Inconsistent  GD 3.162 2.236 Inconsistent 

GD+ 2.000 3.500 OK  GD+ 1.000 2.236 OK 

IGD 5.242 4.854 Inconsistent  IGD 3.162 2.236 Inconsistent 

IGD+ 3.550 4.854 OK  IGD+ 1.000 2.236 OK 
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Table 7. Example in Fig. 8 ( )             Table 8. Example in Fig. 9 ( ) 

Indicator I(A) I(B) I(A) < I(B)  Indicator I(A) I(B) I(A) < I(B) 

GD 6.318 5.000 Inconsistent  GD 6.318 2.828 Inconsistent 

GD+ 6.318 5.000 Inconsistent  GD+ 6.318 2.828 Inconsistent 

IGD 2.828 5.000 OK  IGD 2.828 2.828 I(A) = I(B) 

IGD+ 2.828 5.000 OK  IGD+ 2.828 2.828 I(A) = I(B) 

 

         

Fig. 8. Example with misleading GD+            Fig. 9. Example with overlapping solutions 

5 Weak Pareto Compliance of the IGD+ Indicator 

In this section, we show that the IGD+ indicator is weakly Pareto compliant (i.e., 

). That is, we show that  always holds 

whenever  holds between two non-dominated sets A and B. It should be noted 

that the IGD+ indicator is not Pareto compliant in the strict sense: Even when  

holds,  does not always hold (see Fig. 9 and Table 8 where 

 and ). 

Before showing the weak Pareto compliance property of the IGD+ indicator, we 

first show that  always holds whenever  holds. From the 

definition of the weak Pareto dominance , we have . Thus we have 

. Then the following relation is obtained: 

 

 .    (21) 

 

From (21), we can see that  holds. That is,  

always holds whenever  holds: 
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     .      (22) 

It should be noted that this relation holds for an arbitrarily specified reference point 
z since we do not use any assumption on z. For example, (22) holds when z is non-
dominated with a and b. It also holds even when z is dominated by a and b. 

Using (22), we show that the IGD+ indicator is weakly Pareto compliant. Let us as-
sume that A = {a1, a2, ..., a|A|} and B = {b1, b2, ..., b|B|} are non-dominated sets where 

 holds. We also assume that Z = {z1, z2, ..., z|Z|} is a non-dominated reference 

point set. From the definition of the weak Pareto dominance relation between the two 
sets A and B (i.e., ), the following relation holds: 

 
 .        (23) 

 
IGD+(B) is calculated in the following manner. First the distance from each reference 

point zk to the nearest objective vector in B is calculated using the modified distance cal-

culation . Then the average value is calculated over all reference points in Z. 

Let bj(k) be the nearest objective vector in B to zk with respect to the modified distance 

calculation  where  and . The distance 

from each zk in Z to its nearest objective vector bj(k) in B is . Thus IGD+(B) 

is calculated as  
 

 .        (24) 

 
From (23), there exists at least one ai(j(k)) in A that satisfies  for each 

bj(k) where  and . That is, we can choose ai(j(k)) 

for each bj(k) for  in (24) such that . From (22), we have  

 

     .     (25) 

 

Since  holds for ,  

also holds for . Thus we obtain the following inequality relation: 

 

. (26) 

 
The first inequality in (26) holds since the distance from zk to its nearest objective 

vector in A is equal to or smaller than . When  is the nearest 

objective vector in A to zk for all k’s, the equality holds between the first two terms in 
(26). The second inequality in (26) holds from (25).  
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6 Conclusions 

In this paper, we proposed the use of the modified distance calculation instead of the 
Euclidean distance in the GD and IGD indicators. The Pareto dominance relation 
between a reference point and an objective vector is taken into account in our mod-
ified distance calculation. Using simple numerical examples of two-objective minimi-
zation problems, we demonstrated that some Pareto non-compliant results of the GD 
and IGD indicators are resolved by the use of our modified distance calculation. We 
also showed that the IGD indicator with our modified distance calculation, which is 
called the IGD+ indicator, is weakly Pareto compliant whereas IGD is Pareto non-
compliant. One advantage of IGD+ over the frequently-used hypervolume indictor is 
its computational efficiency. No heavy computation is added to IGD in the modified 
distance calculation. That is, a theoretical property is added to IGD in the IGD+ indi-
cator with no severe increase in its computation load.  

As shown in this paper, the Pareto compliant property between two objective vec-
tors (i.e., ) does not always hold when the Euclidean 

distance is used. That is, if a reference point z and an objective vector a are non-
dominated with each other, an inconsistent result  can be obtained 

for a and b with . This inconsistency leads to Pareto non-compliant results of 
the GD and IGD indicators. However, when our modified distance calculation is used, 

the weak Pareto compliant property always holds: . 

Good results of GD+ and IGD+ were obtained from this property. Especially, it was 
shown that the IGD+ indicator is weakly Pareto compliant.  

One may feel some similarity between our modified distance calculation and the 
epsilon indicator [26]. In its additive version, ε is used for all elements of all reference 
points. That is, the maximum distance over all reference points (and over all objec-
tives of each reference point) is calculated instead of the average distance in IGD+. 
One may also feel some similarity between our modified distance calculation and the 
weighted achievement scalarizing function used in the D1 indicator [8]. In IGD+, the 
Euclidean distance is usually used as shown in Fig. 7 (a). 

Future research topics include theoretical and experimental studies on the effects of 
the modified distance calculation on evaluation results by the GD and IGD indicators 
of EMO algorithms. Only a few experimental results were reported in [11]. It may be 
an interesting study to re-evaluate recently reported performance evaluation results of 
EMO algorithms on many-objective problems using the IGD+ indicator.  
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Abstract. In this paper we investigate some aspects of stochastic local
search such as pressure toward and along the set of interest within
parameter dependent multi-objective optimization problems. The discus-
sions and initial computations indicate that the problem to compute an
approximation of the entire solution set of such a problem via stochastic
search algorithms is well-conditioned. The new insights may be helpful
for the design of novel stochastic search algorithms such as specialized
evolutionary approaches. The discussion in particular indicates that it
might be beneficial to integrate the set of external parameters directly
into the search instead of computing projections of the solution sets sep-
arately by fixing the value of the external parameter.

Keywords: Parameter dependentmulti-objective optimization ·Stochas-
tic local search · Evolutionary algorithms

1 Introduction

In many applications the problem arises that several objectives have to be opti-
mized concurrently leading to a multi-objective optimization problem (MOP).
Furthermore, it can happen that the MOP contains one or several external
parameters λ ∈ Λ such as the environmental temperature of a given mechanical
system. Such parameters cannot be ’optimized’, but on the other hand the deci-
sion maker cannot neglect them. Since for every fixed value of λ the problem
acts as a ’classical’ MOP, the solution set of such a parameter dependent MOP
(PMOP) is given by an entire family PΛ of Pareto sets. One question that arises
is to compute a finite size representation of PΛ which has been addressed so far
in some works using specialized evolutionary algorithms ([2,3,5,7,14,16]).
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In this work, we address one facet of this problem via investigating the behav-
ior of stochastic local search (SLS) within PMOPs. By utilizing a certain rela-
tion of SLS with line search methods as used in mathematical programming we
will see that—under certain (mild) assumptions on the model—both pressure
toward and along the set of interest (in objective space) is already inherent in
SLS. Initial studies on a simple set based method that includes SLS underline
that the problem to compute a finite size representation of the entire solution
set via stochastic search methods such as evolutionary algorithms (EAs) is a
well-conditioned problem. We hope that the obtained insights will be valuable
for future designs of specialized EAs. The results in particular suggest that it
might make sense to integrate the entire λ-space into the search which will allow
to compute the desired approximation in one run of the algorithm which is in
contrast to the current works which consider ’λ-slices’ in each run.

The remainder of this paper is organized as follows: in Section 2 we briefly
state the problem at hand and discuss the related work. In Section 3, we consider
some aspects of SLS within PMOPs which we underline by some computations,
and finally draw our conclusions in Section 4.

2 Background and Related Work

In the following we consider continuous parameter dependent multi-objective
optimization problem (PMOPs) of the form

min
x∈S

Fλ(x). (1)

Hereby, Fλ is defined as a vector of objective functions

Fλ : S → Rk,

Fλ(x) = (f1,λ(x), · · · , fk,λ(x)),
(2)

where S ⊂ Rn is the domain (here we will consider unconstrained problems,
i.e., S = Rn) and λ ∈ Λ ⊂ Rl specifies the external parameters to the objective
functions.

Note that for every fixed value of λ problem (1) can be seen as a classical
multi-objective problem (MOP) (for the discussion on classical MOPs we refer
e.g. to [6]). Thus, the solution set of (1) consists of an entire family of Pareto
sets which is defined as follows:

PS,Λ := {(x, λ) ∈ Rn+l, s.t x is a Pareto point of Fλ, λ ∈ Λ}. (3)

The according family of Pareto fronts is denoted by F (PS,Λ). Both sets typically—
i.e., under mild assumption on the model— form (k − 1 + l)-dimensional objects.

Probably the first study in the field of parameter dependent optimization
has been published by Manne in the year of 1953 [1]. In the following we sum-
marize some important works in the evolutionary multi-objective optimization
literature.
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A classification of dynamic MOPs (which are particular PMOPs where the
value of λ changes in time) is presented in [13]. This work focuses on the com-
ponents that lead to the observed dynamic behavior. The work of Farina, Deb,
and Amato [7] also deals with dynamic MOPs. It contains some test case appli-
cations as well as many results related to problems which depend of an external
parameter. Further, a classification of dynamic MOPs is established. The work
in [15] gives a good insight into PMOPs, but only treats problems with uniquely
one external parameter by using numerical path following algorithms. Also some
geometrical properties of the solution sets are discussed as well as connections
to bifurcation theory are provided. In [2] the authors provide a survey over the
evolutionary techniques that tackle dynamic optimization problems. They men-
tion four main ways to master such problems: (i) increasing the diversity after
the change of the solution set, (ii) maintaining the diversity over the complete
run of the evolutionary algorithm to detect the changes in the solution set, (iii)
memory based approaches, and finally, (iv) multi-population approaches which
are the ones that reduce the main problem into subproblems or ’slices’ in order
to maintain a small population until the family of solution sets is reached.

The idea to use slices, or multi-population approaches, in the evolution of
an evolutionary algorithm is used for example in [3]. There, an algorithm is
proposed that solves the problem by dividing the objective landscape into sub-
populations in order to reach all the solutions over the external parameter (in
this case time). Another work related to PMOPs can be found in [12]. Here
the authors use a parallel version of the NSGA-II in order to solve a dynamic
optimization problems to reduce the energy consumption when solving this kind
of problem. They divide the complete problem into nodes and then the algorithm
NSGA-II is executed in each node to compute the solution set. Finally, in [5]
the authors present a taxonomy of the ways to treat PMOPs and also mention
several similarities and differences between PMOPs and MOPs. Here again the
multi-population idea is used and adapted by using migration methods.

In the current literature, the investigation of stochastic local search for con-
tinuous PMOPs is neglected so far. This paper makes a first attempt to fill this
gap.

3 Behavior of Stochastic Local Search Within PMOPs

For our considerations it is advantageous to treat λ —at least formally— within
PMOPs as a ’normal’ parameter leading to the following problem:

F : Rn+l → Rk+l

F (x, λ) =

⎛

⎜⎜⎜⎝

f1(x, λ)
...

fk(x, λ)
λ

⎞

⎟⎟⎟⎠ =

⎛

⎜⎝
g1(x, λ)

...
gk+l(x, λ)

⎞

⎟⎠ ,
(4)
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where gi : Rn+l → R, i = 1, . . . , k + l. The Jacobian is given by

J(x, λ) =

⎛

⎜⎜⎜⎝

∇xf1(x, λ)T ∇λf1(x, λ)T

...
...

∇xfk(x, λ)T ∇λfk(x, λ)T

0 Il

⎞

⎟⎟⎟⎠ :=
(

Jx Jλ

0 Il

)
∈ R(k+l)×(n+l), (5)

where

Jx =

⎛

⎜⎝
∇xf1(x, λ)T

...
∇xfk(x, λ)T

⎞

⎟⎠ ∈ Rk×n, Jλ =

⎛

⎜⎝
∇λf1(x, λ)T

...
∇λfk(x, λ)T

⎞

⎟⎠ ∈ Rk×l, (6)

and where Il denotes the (l × l)-identity matrix.
To understand the behavior of SLS it is advantageous to see its relation to

line search as it is used in mathematical programming: if a point z1 = (x1, λ1)
is chosen (at random) from a small neighborhood of z0 = (x0, λ0), then z1 can
be written as

z1 = z0 + 1(z1 − z0) = z0 + ||z1 − z0|| z1 − z0
||z1 − z0|| . (7)

Thus, the selection of z1 can be viewed as a search in direction v := (z1 −
z0)/||z1 − z0||. For infinitesimal steps in a direction ν ∈ Rn+l (in decision space)
the related change in objective space is given by J(x0, λ0)ν. To see this, consider
the i-th component of J(x0, λ0)ν:

(J(x0, λ0)ν)i = lim
t→0

gi((x0, λ0) + tν) − gi(x0, λ0)
t

= 〈∇gi(x0, λ0), ν〉,
i = 1, . . . , k + l.

(8)

For problem (4) this direction is given by

Jν =
(

Jx Jλ

0 Il

) (
νx

νλ

)
=

(
Jxνx + Jλνλ

νλ

)
, (9)

where J = J(x0, λ0) and ν = (νx, νλ) with νx ∈ Rn and νλ ∈ Rl.

Based on these considerations, we now consider different scenarios for SLS
that occur in different stages within an evolutionary algorithm.

(a) (x, λ) ’far away’ from PS,Λ. Here we use an observation made in [4] for
classical MOPs namely that the ’objectives gradients’ may point into similar
directions when the decision point (x, λ) is far from the Pareto set. We assume
here the extreme case namely that all gradients point into the same direction.
For this, let g := ∇xfi(x, λ) and assume that

∇xfi(x, λ) = μig, i = 1, . . . , k, (10)
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where μi > 0 for i = 1, . . . , k. Then

Jxνx =

⎛

⎜⎝
∇xf1(x, λ)T νx

...
∇xfk(x, λ)T νx

⎞

⎟⎠ = gT νx

⎛

⎜⎝
μ1

...
μk

⎞

⎟⎠ . (11)

That is, the movement is 1-dimensional regardless of νx which is n-dimensional.
Since Jxνx = 0 iff νx ⊥ g, the probability is one that for a randomly chosen
νx either dominated or dominating solutions are found (and in case a domi-
nated solution is found, the search has simply to be flipped to find dominating
solutions).

Thus, for νλ = 0, which means that the value of λ is not changed in the local
search, we obtain for μ = (μ1, . . . , μk)T

Jν =
(

gT νxμ
0

)
. (12)

For νλ 	= 0, i.e., in the case that the value of λ is changed within the local search,
no such physical meaning exists to the best of our knowledge. Nevertheless, the
investigation of this problem will be one topic for future research.

As a general example we consider here the following PMOP ([9]):

Fλ : R2 → R2

Fλ(x) := (1 − λ)F1(x) + λF2(x),
(13)

where λ ∈ [0, 1] and F1, F2 : R2 → R2,

F1(x1, x2) =
(

(x1 − 1)4 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)
,

F2(x1, x2) =
(

(x1 − 1)2 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)
.

This problem is a convex homotopy of the MOPs F1 and F2 which have both
convex Pareto fronts. Figures 1 and 2 show the behavior of SLS for 100 uniformly
randomly chosen points near (x, λ) = (10, 45.2, 0.7) for νλ 	= 0 and νλ = 0. As
neighborhood we have chosen the infinity norm with radius rx = 2 in x-space
and rλ = 0.3 (respectively rλ = 0) in λ-space. For the case νλ = 0 a clear
movement toward/against F (PS,Λ) can be observed while this is not the case
for νλ 	= 0. Thus, it may make sense to exclude the change of the value of λ in
early stages of the search process where the individuals of the populations are
supposed to be far away from the set of interest.

(b) (x, λ) ’near’ to PS,Λ. Here we consider again the extreme case, namely that
x is a Karush-Kuhn-Tucker (KKT) point of Fλ. That is, assume that there exists
a convex weight α ∈ Rk such that

k∑

i=1

αi∇xfi(x, λ) = JT
x α = 0. (14)
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Fig. 1. SLS for a point that is ’far away’ from PS,Λ using νλ = 0
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Fig. 2. SLS for a point that is ’far away’ from PS,Λ using νλ �= 0

It can be shown ([8]) that the normal vector to the linearized set F (P(S,Λ)) at
(x, λ) is given by

η =
(

α

−Jλ
T α

)
. (15)

We obtain

〈Jν, η〉 = 〈ν, JT η〉 = 〈ν,

(
JT

x 0
JT

λ Il

)(
α

−Jλ
T α

)
〉 = 〈ν,

(
JT

x α
JT

λ α − JT
λ α

)
〉 = 0. (16)

That is, it is either (i) Jν = 0 or (ii) Jν is a movement orthogonal to η and thus
along the linearized set at F (x, λ). If we assume that the rank of Jx is k − 1,
then the rank of J is k − 1 + l and the dimension of the kernel of J is n − k + l.
Hence, for a randomly chosen ν the probability is 1 that event (ii) happens.
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Equation (16) tells us that the movement is orthogonal to the normal vec-
tor, but it remains to investigate in which direction of the tangent space the
movement is performed. For this, let

η = QR = (q1, q2, . . . , qk+l)R (17)

be a QR factorization of η. Then, the vectors q2, . . . , qk+l form an orthonormal
basis of the tangent space. If we assume again that the rank of Jx is k − 1,
then the rank of J is k − 1 + l. Since by Equation (16) η is not in the image
of J , there exist vectors νq, . . . , νk+l such that Jνi = qi, i = 2, . . . , k + l. Thus,
a movement via SLS can be performed in all directions of the linearized family
of Pareto fronts (i.e., both in x- and λ-direction). Figure 3 shows an example
for (x, λ) = (0.44, 0.47, 0.84)T and rx = rλ = 0.2. Again, by construction, no
structure in decision space can be observed, but a clear movement along the set
of interest can be seen in objective space.
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Fig. 3. SLS for a point that is ’near’ to PS,Λ

(c) (x, λ) ’in between’. Apparently, points (x, λ) do not have to be far away
from nor near to the set of interest but can be ’in between’. In this case, no
clear preference of the movement in objective space can be detected. However,
this ’opening’ of the search compared to the 1-dimensional movement in early
stages of the search is a very important aspect since it allows in principle to find
(in the set based context and given a suitable selection mechanism) and spread
the solutions. In this case for finding multiple connected components. Figure 4
depicts such a scenario for (x, λ) = (1,−1, 0.5)T and rx = rλ = 0.2.

(d) Simple Neighborhood Search (SNS) within set based search. As next step we
investigate the influence of SNS within set based methods. In order to prevent
interferences with other effects we have thus to omit all other operators (as,
e.g., crossover). The Simple Neighborhood Search for PMOPs takes this into
consideration: initially, a generation A0 ⊂ Rn+l is chosen at random, where Λ
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Fig. 4. SLS for a point that is ’in between’ using νλ �= 0

is discretized into Λ̃ = {λ1, . . . , λs}. In the iteration process, for every element
(ax, aλ) ∈ Ai, a new element (bx, bλ) is chosen via SLS, where bλ has to take one
of the values of Λ̃. The given archive Ai and the set of newly created solutions
Bi are the basis for the sequences of candidate solutions Al

i, l = 1, . . . , s, and the
new archive Ai+1: for Al

i the non-dominated solutions from Ai ∪Bi with λ-value
λl are taken, and Ai+1 is the union of these sets (plus the respective λ values).
Algorithm 1 shows the pseudo code of SNS. Hereby, nondom(A) denotes the
non-dominated elements of a set A, π(A, λi) := {a : (a, λi) ∈ A} denotes the
x-values of the elements of A with λ-value λi, and (A, λ) := {(a, λ) : a ∈ A}.

Algorithm 1. SNS for PMOPs
Require: Neighborhood Ni(x, λ) of a given point (x, λ) in iteration i.
Ensure: Sequence Al

i of candidate solutions for Fλl , l = 1, . . . , s
1: Generate A0 ⊂ n+l at random
2: for i = 0, 1, 2, . . . do
3: Bl

i := ∅
4: for all (ax, aλ) ∈ Ai do
5: choose (bx, bλ) ∈ Ni(ax, aλ)
6: Bi := Bi ∪ (bx, bλ)
7: end for
8: Al

i+1 := nondom(π(Ai ∪ Bi, λl)), l = 1, . . . , s
9: Ai+1 :=

⋃s
l=1(A

l
i+1, λl)

10: end for

For sake of a small comparison we also investigate here the global counterpart
of SNS, the Simple Global Search (GS), where all points are chosen uniformly at
random from the entire domain. That is, GS can be viewed as an application of
SNS where the neighborhood Ni in Line 5 of Algorithm 1 is chosen as the entire
domain. In order to reduce the overall number of candidate solutions we have not
stored all non-dominated solutions but have used ArchiveUpdateT ight2 ([11])
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to update the archives Al
i. The archiver ArchiveUpdateT ight2 aims, roughly

speaking, for gap free ε-Pareto sets. In our computations, we have used ε =
(0.05, 0.05)T . Further, in each computation we have used 10 equally spaced divi-
sions in λ-space and have generated one random element for the initial archive
A0 (i.e., |A0| = 10).

Figure 5 shows some numerical results by solving PMOP (13) in two different
angles. In this example we have used a budget of 3,000 function evaluations
(FEs) for SNS. Figure 6 shows the respective result for GS for a budget of 3,000
and 10,000 FEs. As domain we have chosen S = [−10, 10]2. The superiority of
SNS can be detected visually since those final archives are evenly spread around
the solution sets. Compared to this, the result of GS lacks both in spread and
convergence, though more than 3 times the number of FEs has been spent to
get this result. This observation is confirmed by the values in Table 1 where we
show the distances (measured in terms of Δ2 [10]) between the outcome sets and
the union of the 10 Pareto fronts (i.e., our discretized set of interest).

Table 1. Comparative results for PMOPs (13) and (18) using Δ2 value between the
final archives and the union of the 10 Pareto fronts for both SNS and GS for a budget
of 3,000 and 5,000 FEs. Shown are worst, average, and best value for 20 different runs.

Algorithm λ = 0.0 λ = 0.11 λ = 0.22 λ = 0.33 λ = 0.44 λ = 0.55 λ = 0.66 λ = 0.77 λ = 0.88 λ = 1.0

SNS
1.934 2.434 2.453 1.743 1.234 1.673 1.563 0.984 0.546 0.986

1.494 1.977 2.126 1.526 1.032 1.402 1.220 0.550 0.381 0.385

PMOP (13) 1.101 1.103 1.132 1.341 0.532 0.643 0.992 0.314 0.249 0.148

GS
25.342 14.349 24.342 6.342 11.433 7.322 6.424 3.221 9.534 5.213

17.220 7.349 22.440 5.826 9.356 5.963 3.226 2.217 6.241 3.320

PMOP (13) 14.425 7.023 20.213 4.342 9.003 4.095 2.657 2.043 5.141 2.134

SNS
0.632 0.567 0.453 0.578 0.375 0.198 0.297 0.246 0.186 0.123

0.365 0.221 0.136 0.104 0.049 0.047 0.069 0.056 0.077 0.045

PMOP (18) 0.242 0.201 0.103 0.098 0.019 0.043 0.034 0.022 0.062 0.032

GS
0.992 0.832 0.567 0.693 0.700 0.422 0.596 0.834 0.532 0.423

0.692 0.620 0.454 0.496 0.684 0.329 0.552 0.821 0.446 0.351

PMOP (18) 0.432 0.597 0.353 0.394 0.592 0.239 0.539 0.739 0.422 0.311

Next we consider a second PMOP which is again a convex homotopy of two
MOPs. In this case, one of the Pareto fronts is convex while the other one is
concave.

Fλ : R2 → R2

Fλ(x) := (1 − λ)F1(x) + λF2(x),
(18)
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Fig. 5. Numerical result of SNS with a budget of 3,000 FEs for PMOP (13)
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Fig. 6. Numerical result of GS with a budget of 3,000 FEs and 10,000 FEs for PMOP
(13)
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where λ ∈ [0, 1], a1 = 0, a2 = 1 and F1, F2 : R2 → R2,

F1(x) =
(

(x2
1 + x2

2)
0.125

((x1 − 0.5)2 + (x2 − 0.5)2)0.25

)
,

F2(x) =
(

x2
1 + x2

2

(x1 − a1)2 + (x2 − a2)2

)
.

Figures 7 and 8 show some exemplary numerical results of SNS (5,000 FEs)
and GS (5,000 and 10,000 FEs) using S = [−10, 10]2. Again, SNS, though less
FEs were used, is superior with respect to spread and convergence according the
indicator Δ2 in Table 1.
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Fig. 7. Numerical results of SNS with a budget of 5,000 FEs for PMOP (18)
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Fig. 8. Numerical results of SNS (5,000 FEs) and GS (10,000 FEs) for PMOP (18)
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4 Conclusions and Future Work

In this paper we have investigated some aspects of the behavior of stochastic local
search (SLS) within parameter dependent multi-objective optimization problems
(PMOPs) which can to a certain extent be explained by considering line search
with infinitesimal step sizes. By this, we have seen that both the movement
toward as well as along the set of interest (in objective space) are inherent
in SLS which we have done by considering the extreme cases in the stages of a
search process. Further, we have conjectured that there is also a kind of ’opening’
of the search in objective space which allows to find in principle all regions of
the solution set. Some first tests on a simple set based neighborhood search,
called SNS, confirmed these statements on two PMOPs. Thus, the discussions
indicate that the problem to find an approximation of the entire solution set of a
PMOP is a well-conditioned problem for set based probabilistic algorithms such
as evolutionary algorithms (EAs).

For future work, there are some issues that are interesting to address. For
instance, we intend to extend the above considerations to constrained problems.
Further, the design of a specialized EA for the approximation of the family of
Pareto fronts of a PMOP might be interesting. Based on the above insight it
might be in particular advantageous to develop strategies that allow to com-
pute the set of interest in one run of the algorithm instead of the consideration
in ’λ-slices’ as done so far. Finally, for the efficient comparison of methods a
better adaption of performance indicators would be desirable to assess the final
approximation of the family of Pareto fronts.
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Abstract. An Active Robust Optimisation Problem (AROP) aims at
finding robust adaptable solutions, i.e. solutions that actively gain robust-
ness to environmental changes through adaptation. Existing AROP stud-
ies have considered only a single performance objective. This study
extends the Active Robust Optimisation methodology to deal with prob-
lems with more than one objective. Once multiple objectives are consid-
ered, the optimal performance for every uncertain parameter setting is a
set of configurations, offering different trade-offs between the objectives.
To evaluate and compare solutions to this type of problems, we suggest a
robustness indicator that uses a scalarising function combining the main
aims of multi-objective optimisation: proximity, diversity and pertinence.
The Active Robust Multi-objective Optimisation Problem is formulated
in this study, and an evolutionary algorithm that uses the hypervolume
measure as a scalarasing function is suggested in order to solve it. Proof-
of-concept results are demonstrated using a simplified gearbox optimisa-
tion problem for an uncertain load demand.

Keywords: Robust optimisation · Uncertainties · Multi-objective opti-
misation · Adaptation · Gearbox · Design

1 Introduction

When solving real-world optimisation problems, the physical system is repre-
sented by a model to predict the future performance of candidate solutions. As
a result, uncertainties become an inseparable part of the optimisation process,
and solutions need to be robust in addition to having good predicted perfor-
mance. A solution is considered as robust if it is less affected by the negative
effects of uncertainties.

The ability of many products to adapt to environment changes provides them
with active robustness to uncertain operating conditions. The active robust opti-
misation (ARO) methodology was suggested in order to evaluate the added value
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 141–155, 2015.
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of adaptability [1]. Till date, ARO dealt with improvement of a single perfor-
mance metric through adaptation. Since the majority of real-world optimisation
problems involve several, often conflicting, objectives, this study extends the
ARO methodology to deal with multi-objective optimisation problems (MOPs).

1.1 Robust Multi-objective Optimisation

A MOP can be formulated as:

min
x∈X

f(x,p), (1)

where f is a vector of performance measures, x is a vector of design variables,
X is the feasible domain defined by a set of equality and inequality constraints,
and p is a vector of parameters that cannot be determined by the designer.

Since uncertainties exist in all real-world optimisation problems, they should
be accommodated within the optimisation procedure. Uncertainties might be
epistemic, resulting from discrepancies between the model used for optimisation
and the real system, or aleatory, where the variables within the system inherently
change from unit to unit or time to time.

In their review on robust optimisation, Beyer and Sendhoff [2] classified the
sources of uncertainties as follows:

Type A uncertainties occur when the environmental parameters p are
unknown (epistemic) or may change within an expected range (aleatory).
Type B uncertainties are present when the actual values of design variables
x differ from their nominal values, identified by the optimisation procedure. The
deviation might occur upon production (manufacturing tolerances) or during
operation (deterioration).
Type C uncertainties relate to model inaccuracies in predicting the perfor-
mance f of the candidate design. This may result from an incorrect or simplified
description of the relationship between variables within the model.

If the uncertainties are not addressed during the optimisation, solution iden-
tified as ‘optimal’ may poorly perform when implemented in real life. Over the
past two decades, robust optimisation (RO) has gained increasing popularity,
with many studies aiming at identifying robust solutions rather than optimal
solutions. When formulating a robust optimisation problem, robustness crite-
ria are specified to determine how candidate solutions should be evaluated with
respect to the uncertainties involved.

We use upper case letters to distinguish random variates from deterministic
values. Whenever uncertainties of either Type A-C are concerned, the objective
vector f becomes a random variate F. In a robust optimisation scheme, the aim
is to optimise the robustness criterion I[F], that holds some information about
the distribution of F:

min
x∈X

I[F(X,P)] . (2)
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The most common robustness criteria are the worst-case scenario (e.g.,
[3–5]), and aggregated values such as the mean value or the variance (e.g., [6–9]).
Other criteria also exist, for example, the probability for the objective functions
to be better than some predefined threshold [10], a minimum confidence level
in performance [5], or performing within a predefined neighbourhood of some
nominal performance vector [8].

Most of the existing evolutionary algorithms for multi-objective RO consider
Type C uncertainties, represented by added noise to the nominal function val-
ues. The first evolutionary algorithm for robust MOPs were suggested in 2001 by
Teich [6] and Hughes [7]. Teich suggested probabilistic dominance as an alterna-
tive to the dominance relation [6]. Hughes suggested a ranking scheme based on
the sum of probabilities for each solution to be dominated [7]. Since then, sev-
eral evolutionary optimisers were designed to account for Type C uncertainties
[11–15].

Perturbation in design variables (Type B uncertainty) was addressed by
[8,16], where each design was represented by a sampled set of designs within
its neighbourhood. An algorithm aiming for reducing the amount of function
evaluations for this scheme was introduced in [9].

To our knowledge, apart from previous work by the authors [1], there are
no studies that explicitly treat Type A uncertainties with an evolutionary RO
scheme. Instead, uncertain and dynamic environments are considered in the
scope of dynamic optimisation, where the aim is to track a moving optimum, and
remain optimal as the environment changes [17]. In dynamic optimisation the
problem is deterministic, but it has to be re-solved every time the environment
changes.

1.2 Active Robust Optimisation Methodology

The ARO methodology [1], is a special case of robust optimisation, where the
product has some adjustable properties that can be modified by the user after the
optimised design has been realised. These adjustable variables allow the product
to adapt to variations of the uncontrolled parameters, so it can actively suppress
their negative effect. The methodology makes a distinction between three types
of variables: design variables x, adjustable variables y and uncertain parameters
P, which cannot be controlled. A single realised vector of uncertain parameters
from the random variate P is denoted as p.

In a single-objective robust optimisation problem with Type A uncertainties,
each realisation p is associated with a corresponding objective function value
f(x,p), and a solution x is associated with a distribution of objective function
values that correspond to the variate of the uncertain parameters P. We denote
this distribution as F (x,P). In ARO, for every realisation of the uncertain envi-
ronment, the performance also depends on the value of the adjustable variables
y, i.e., f ≡ f(x,y,p). Since the adjustable variables’ values can be selected after
p is realised, the solution can improve its performance by adapting its adjustable
variables to the new conditions. In order to evaluate the solution’s performance
according to the robust optimisation methodology, it is conceivable that the y
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vector that yields the best performance for each realisation of the uncertainties
will be selected. This can be expressed as the optimal configuration y�:

y� = argmin
y∈Y(x)

f(x,y,p), (3)

where Y(x) is the solution’s domain of adjustable variables. it is also termed as
the solution’s adaptability.

Considering the entire environmental uncertainty, a one-to-one mapping
between the scenarios in P and the optimal configurations in Y(x) can be defined
as:

Y� = argmin
y∈Y(x)

F (x,y,P). (4)

Assuming a solution will always adapt to its optimal configuration, its perfor-
mance can be described by the following variate:

F (x,P) ≡ F (x,Y�,P). (5)

Following the above, the Active Robust Opimisation Problem is formulated:

min
x∈X

I[F (x,Y�,P)] , (6a)

where: Y� = argmin
y∈Y(x)

F (x,y,P). (6b)

It is a bi-level optimisation problem. In order to compute the objective func-
tion F in Eq. (6a), the problem in Eq. (6b) has to be solved for every solution
x, with the entire environment universe P. To evaluate F , one may consider one
or more robustness criteria I[F ].

2 Methodology

This study extends the single objective AROP in Eq. (6) to the following multi-
objective formulation:

min
x∈X

I[F(x,Y�,P)] , (7a)

where: Y� = argmin
y∈Y(x)

F(x,y,P), (7b)

where argminF is defined in terms of Pareto optimality, and the underscore
notation is used to distinguish a set from a single point.

The most notable difference between Eq. (6) and Eq. (7) is that the solution
Y� in Eq. (7b) is a variate of Pareto optimal sets, rather than the variate of
a single optimal configuration in Eq. (6b). Instead of a one-to-one mapping
between P and Y�, Eq. (7b) consists of a one-to-many mapping. As a result,
Eq. (7a) minimises the variate of Pareto optimal frontiers F(x,Y�,P).
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The difference between f(x,y�,p) and f
(
x,y�,p

)
is illustrated in Fig. 1. A

candidate solution x is evaluated for two scenarios of the uncertain parameter
space P (Fig. 1(a)). The performance of the solution for every scenario p (star
or triangle) depends on its configuration y (Fig. 1(b)). In Fig. 1(c), f1 is the only
objective. All possible objective values are bounded by the solid and dashed lines
for the star and triangle scenarios, respectively. The black stars and triangles in
Figures 1(b) and 1(c) mark the optimal configuration and objective value for each
scenario (y� and f(x,y�,p), respectively). In Fig. 1(d) an additional objective
is considered. Now all possible objective values are bounded by the solid and
dashed contours, and the optimal configuration for each scenario consists of a
set rather than a single configuration, denoted by the additional white shapes.

p2

p1

(a) Uncertain
parameter space

y2

y1

(b) Configuration
space

f1

(c) One objec-
tive

f2

f1

(d) Two objectives

Fig. 1. Optimal configurations of a candidate solution x for two scenarios of the uncer-
tainties, associated with the environmental parameters

The problem in Eq. (7) is termed here as an Active Robust Multi-objective
Optimisation Problem (ARMOP). It introduces a very challenging question: How
can adaptable products be evaluated and compared according to their variates
of Pareto frontiers F(x,Y�,P)? In Section 2.1 we introduce a first attempt to
address this challenge, and suggest a set-based robustness indicator. In Section 4
we demonstrate how this indicator can be integrated into an evolutionary algo-
rithm in order to solve an ARMOP.

2.1 Evaluating a Variate of Sets

In order to evaluate a candidate solution for an ARMOP, we suggest using a
robustness criterion that quantifies the variate of Pareto frontiers with a single
scalar value. Keeping in mind there is no way to avoid the loss of meaningful
information when using a scalarising function, we strive to extract as much infor-
mation as possible regarding the quality of the trade-off surfaces F(x,Y�,P).
Following the motivation in evolutionary multiobjective optimisation (EMO),
an approximated solution to a MOP is evaluated according to three major qual-
ities [18]: proximity of the approximated front to the true Pareto front (PF),
diversity of the solutions, and pertinence to the preferred region of interest.
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One of the well-known quality indicators for approximation sets is the hyper-
volume (HV), defined as the volume of objective space enclosed by the Pareto
front and a reference point [19]. The HV measure provides an integrated measure
of proximity, diversity and pertinence, although it is sensitive to the choice of a
reference point [20]. Despite this drawback, we use it to demonstrate the concept
of the robustness indicator suggested in this study.

Hypervolume-Based Robustness Indicator. Without loss of generality, we
consider the variate P as a finite set of sampled scenarios p. The HV of solution
x for scenario p is denoted as hv(x,p). It is calculated according to the ideal
vector f∗ and the worst objective vector fw, which are the vectors with minimum
and maximum objective values, respectively, amongst all known solutions and
scenarios. The robustness indicator Ihv is derived as follows:
First, the objectives of f are normalised in a manner that supports DM’s pref-
erences (e.g., setting f∗ to zero and fw to a vector of weights between 0-1).
Next, the hypervolume hv(x,p) is calculated for each scenario p ∈ P, using
the worst objective vector as a reference point. The variate of the hypervolume
measure that corresponds to the variate P is denoted as HV (x,P).
Finally, a robustness criterion is used to evaluate the variate HV (x,P):

Ihv[F(x,P)] = I[HV (x,P)] . (8)

Since the aim is to maximise HV (x,P) and its value is bounded between 0-1,
in a minimisation problem, the complement can be used:

Ihv[F(x,P)] = I[1 − HV (x,P)] . (9)

Fig 2 demonstrates the above procedure for a population of two solutions.
Three scenarios of p are considered, where the Pareto frontiers of the two solu-
tions are depicted in stars and circles. For scenario p3, dashed contours show the
domains in objective space that include the performances of all evaluated con-
figurations. The worst objective vector is calculated according to the objective
vectors of all configurations, including non optimal ones. The variate HV

(
x ,P

)

is shown as the collection of three HVs for x .

3 Case Study – Gearbox Optimisation Problem

We demonstrate our approach with a gearbox optimisation task for an uncertain
load demand. A load with inertia JL needs to be rotated at speed ωL with a
torque τL. All of the load parameters above may vary within known intervals.
The torque is transmitted to the load from a geared motor system consisting of
a DC motor and a two staged transmission with five gears. The gearbox optimi-
sation problem, formulated as an ARMOP, searches for the number of teeth in
each gear to minimise energy consumption and acceleration time. The system is
evaluated at both steady state, i.e., operating at the load-speed scenarios (which
are uncertain), and during transient conditions when accelerating from rest to
each scenario. Three objectives are considered: power consumption in steady
state (P ), energy required to accelerate to steady state speed (E), and time to
accelerate to steady state speed (T ).
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Fig. 2. Pareto frontiers F(x,Y�,P) of two solutions (x and x◦) for three scenarios.
The ideal vector is marked with a black triangle and the worst objective vector with a
white triangle. The hypervolumes hv

(
x ,p1

)
, hv
(
x ,p2

)
and hv

(
x ,p3

)
are shown

in the figure.

3.1 Mathematical Model

The variables and parameters of the motor and gear system are described in
Table 1. The values are based on the Maxon A-max 32 DC motor specifications.

At steady state, the power consumption of a geared DC motor is [21]:

P = V ∗ I, (10a)

where: I =

(
JL + Jg + n2

2Jl + n2Jm

)
ω̇ +

(
νg + n2νm

)
ω + τ

nkt
, (10b)

V = RI + nkvω. (10c)

When the load is accelerated from rest, it is possible to calculate the speed
trajectory, for given trajectories of input voltage and speed reduction, by solving
the following differential equation:

ω̇(t) =
n(t)ktV (t) − n(t)2kvktω(t)(

JL + Jg + n2(t)
2
Jl + n(t)2Jm

)
R

−
(
νg + n(t)2νm

)
ω(t) + τ

JL + Jg + n2(t)
2
Jl + n(t)2Jm

,

(11)

where ω(0) = 0 is used as a starting condition.
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Table 1. Variables and parameters for the gearbox ARMOP

Type Variable/ Symbol Units Lower Upper
Parameter limit limit

x no. of teeth zg 19 61

y gear no. i 1 5
input voltage V V 0 12

p load speed ω s−1 16.5 295
load torque τ Nm·10−3 10 260
load inertia JL Kg·m2 · 10−3 5 10
velocity constant kv V·s·10−3 24.3
torque constant kt Nm·A−1 · 10−3 24.3
armature resistance R Ω 2.23
motor damping coefficient νm Nm·s·10−6 3.16
motor inertia Jm Kg·m2 · 10−6 4.17
max nominal current Inom A 1.8
gear damping coefficient νg Nm·s·10−6 30
first reduction ratio n1 3.21
transmission no. of teeth Nt 80
maximum acceleration time tmax s 20

derived armature current I A 0 5.39
second reduction ratio n2 0.311 3.21
total reduction ratio n 1 10.3
layshaft inertia Jl Kg·m2 · 10−6 15.9 64.5
load shaft inertia Jg Kg·m2 · 10−6 5.21 53.7

The total energy required for acceleration E can be derived from Eq. (10):

E =
∫ T

0

V (t)
(
V (t) − n(t)kvω(t)

)

R
dt, (12)

where T is the time ω reaches the required speed.

3.2 Problem Formulation

According to the ARO methodology, introduced in Section 1.2, the problem
variables are sorted in Table 1 to three types: x, y and p. Most of the parameters
in this problem are considered as having deterministic values, but some (ω, τ and
JL) possess uncertain values. The random variates of ω, τ and JL are denoted
as Ω, T and JL, respectively. The resulting variate of p is denoted as P.

A gearbox is required to perform well both in steady state and during
acceleration. These two requirements can be considered as different operation
modes, with different configuration spaces. The configuration space in steady
state includes the choice of the gear i and the input voltage V . During accelera-
tion, it consists of trajectories in time of i(t) and V (t). Therefore, the search for
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the optimal configuration can be separated to y�
ss that minimises P , and to y�

t

that minimises E and T . Since the latter is a solution to a MOP, it is expected
to be a set. The variates of y�

ss and y�
t that correspond to the variate P, are

denoted as Y�
ss and Y�

t , respectively.
Following the above, the AROP is formulated:

min
x∈X

[
P (x,Y�

ss,P), E
(
x,Y�

t ,P
)
, T

(
x,Y�

t ,P
)]

, (13a)

where : Y�
ss = argmin

y∈Y(x)

P (y,P), (13b)

Y�
t = argmin

y∈Y(x)

[E(y,P), T (y,P)] , (13c)

x = [zi] , i = 1, . . . , 5, (13d)
y = [i, V ] , (13e)
P = [Ω, T ,JL, kv, kt, R, νm, Inom, νg, n1, Nt, Jm, Jl, JG, tmax] , (13f)

s.t. : zg,i + zl,i = Nt, i = 1, . . . , 5, (13g)
Iss ≤ Inom, (13h)
T ≤ tmax. (13i)

The steady state current constraint is evaluated according to Eq. (10b), and the
objectives according to Equations (10a), (11) and (12).

Since the ARMOP consists of separable configuration spaces, it can be decou-
pled into two subproblems, one that searches for Y�

ss and P (x,Y�
ss,P), and

another that searches for Y�
t and

[
E

(
x,Y�

t ,P
)
, T

(
x,Y�

t ,P
)]

. The former prob-
lem is a single-objective AROP, and the latter is an ARMOP. Using robustness
indicators, Eq. (13a) can be converted to the following bi-objective problem that
simultaneously minimises the steady-state AROP and the transient ARMOP:

min
x∈X

[
I
[
P (x,Y�

ss,P)
]
, Ihv

[
E

(
x,Y�

t ,P
)
, T

(
x,Y�

t ,P
)]]

. (14)

4 Optimiser Design

The problem was solved by a bi-level EMOA whose structure is described in
Algorithm 1.

First, the uncertain domain is sampled Np times. These samples serve as the
same representation of uncertainties to evaluate all solutions.

Next, Eq. (13b) is solved for the entire design space, and Y�
ss and P (x,Y�

ss,P)
are stored in an archive for every feasible solution. It is possible to find the opti-
mal steady-state configuration of every solution for all sampled load scenarios
because the design space is discrete and the objective and constraints are simple
expressions. The search space consists of 962,598 different combinations of gears
(choice of 5 gears from 43 possibilities). The constraints and objective functions
depend on the number of teeth z, so they only have to be evaluated 43 times



150 S. Salomon et al.

for each of the sampled scenarios. A feasible solution is a gearbox that has at
least one gear that does not violate the constraints for each of the scenarios (i.e.,
I ≤ Inom and V ≤ Vmax).

Next, a multi-objective search is conducted amongst the feasible solutions
to solve Eq. (14). The solutions to Eq. (13c) for every sampled scenario are
obtained by the evolutionary algorithm described in Section 4.1. The solutions
to Eq. (13b) are already stored in an archive.

Algorithm 1.. Pseudo algorithm for solving the ARMOP
sample the uncertain domain
evaluate all possible solutions for steady state (s.s)
initialise nadir and ideal points for transient objectives (limits)
generate an initial population
while stopping criterion not satisfied do

for every scenario do
for every new solution do

optimise for time–energy and store PF
end for

end for
if limits have changed then

update limits
calculate HV of entire population

else
calculate HV of new feasible solutions

end if
assign scalar indicator values for s.s and transient
evolve new population (selection, cross-over and mutation)
re-mutate solutions that were already evaluated / infeasible for s.s

end while

4.1 EMOA for Identifying Optimal Gearing Sequences

For every load scenario, a multi-objective optimisation is conducted for each
candidate solution to identify the optimal shift sequence that minimises energy
and acceleration time. Early experiments revealed that maximum voltage results
in better values for both objectives, regardless of the candidate solution or the
load scenario. Therefore, the input voltage was considered as constant Vmax, and
the only search variable is i(t), the selected gear at time t. A certain trajectory
i(t) results in a gearing ratio trajectory n(t) that depends on the gearbox x that
is being evaluated.

The trajectory i(t) is coded as a vector of time intervals dt = [dt1, . . . ,dtN ]
defining the duration of each gear in the sequence from first gear to the N th,
with N being the optimal gear at steady state for the load scenario under
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consideration. The sum of all time intervals is equal to tmax, and this relation is
enforced whenever a new solution is created by setting:

dt ← dt
‖dt‖1

tmax. (15)

Plugging n(t) into Eq. (11) results in a trajectory ω(t), which can be used to
calculate E, T or whether the gearbox failed to reach the desired speed before
tmax. A multi-objective evolutionary algorithm was used to estimate:

y�
t = argmin

n(t)

[E(x, n(t),p), T (x, n(t),p)] , (16)

where both x and p are fixed during the entire optimisation run.
Solving the differential equation (11) repeatedly to obtain y�

t is the most
expensive part of the algorithm in terms of computational resources. Therefore,
all of the solutions to (16) are stored in an archive to avoid repeated computa-
tions.

4.2 Calculating the Set-Based Robustness Indicator

The ARMOP’s indicator Ihv uses a dynamic reference point. At every genera-
tion, after the approximated Pareto frontiers F(x,Y�,P) are identified for all
evaluated solutions, the ideal and worst objective vectors are re-evaluated to
include the objective vectors of the new solutions. If neither the ideal nor the
worst objective vectors have changed, Ihv is calculated only for the recently eval-
uated solutions according to the procedure described in Section 2.1. Otherwise,
the indicator values of the entire current population are recalculated as well, in
order to allow for fair comparisons between new and old candidate solutions.
No preferences were considered in this case study, hence, the objectives were
normalised by setting fw to one.

5 Simulation Results

5.1 Parameter Setting

The ARMOP described in Section 3 was solved with the proposed evolutionary
algorithm. Two robustness criteria were considered: Iw considers the worst case
scenario, meaning the upper limits of the uncertain load parameters, as given
in Table 1. Im considers the mean value over a set of sampled load scenarios.
For both cases the same criterion was used for the steady state and transient
indicators of Eq. 14, i.e., either Iw and Iw

hv or Im and Im
hv.

A standard elitist MOEA [22] with a fixed number of generations was used
for both stages of the problem (referred to as outer and inner).
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Parameter setting of the outer algorithm: population size N = 100, 50 genera-
tions, integer coded, One-point crossover with crossover rate pc = 1, polynomial
mutation with mutation rate pm = 1/nx = 0.2 and distribution index ηm = 20.
Parameter setting of the inner algorithm: population size N = 50, 30 gener-
ations, real coded, SBX crossover with crossover rate pc = 1 and distribution
index ηc = 15, polynomial mutation with mutation rate pm = 1/ny = 0.2 and
distribution index ηm = 20.

Both stages used sequential tournament selection, considering constraint vio-
lation, non-dominance rank and niche count, and had an elite population size
of NE = 0.4N . The uncertain load domain was sampled 25 times using Latin
hypercube sampling.

5.2 Results

The approximated Pareto frontiers for both worst-case and mean-value criteria
are depicted in Fig. 3. For the worst-case criterion, the PS consists of only two,
almost identical, solutions. In a close-up view on the approximated PF for mean
performance, the extreme solutions are marked as A and B. Mean performances
of the approximated Pareto set for the worst-case problem are also shown.
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Fig. 3. Approximated Pareto frontiers for the worst-case and mean-value criteria. A
close-up of the robust mean Pareto front is shown with the extreme solutions marked
as A and B, and the mean performance of the approximated set according to Iw.

Details on the solutions for both robustness criteria are summarised in Table 2.
Note the similarity in both design and objective spaces between the two solu-
tions of the worst-case problem, and the difference between Solutions A and B.
Also note that the best solutions found for a certain robustness criterion, are
dominated for another. Solution B performs well in most steady state scenarios,
since it has a large variety of high gears (small reduction ratio), but its ability
to efficiently accelerate the load is limited from the same reason. Solution B
becomes infeasible when the worst-case is considered. This was not detected
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Table 2. Optimisation Results

Goal Solu- Reduction Ratios Im [P ] Im

hv [T,E] Iw [P ] Iw

hv [T,E]

tion 1st 2nd 3rd 4th 5th

Im A 9.02 4.34 2.62 1.93 1.30 5.672 0.2857 13.10 0.9631
B 2.76 2.25 1.92 1.73 1.64 5.577 0.3481 infeasible

Iw 7.06 3.38 2.14 1.55 1.14 5.649 0.2896 12.30 0.9511
7.49 3.38 2.03 1.46 1.14 5.660 0.2899 12.52 0.9510
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200

400

600

T [s]

E
[J
]
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Fig. 4. Approximated Pareto frontiers F(x,Y�,P) of two solutions (A and B) for three
scenarios (of 25). Solution A dominates Solution B in all evaluated scenarios.

while optimising for the mean value since the worst-case scenario was not sam-
pled. This result highlights the impact of the choice of robustness criterion, and
the challenge in optimising for the worst-case (see [3]).

The dynamic performances of Solutions A and B for three load scenarios are
depicted in Fig 4. Solution A’s superiority for both dynamic objectives is well
captured by the Ihv indicator values.

6 Discussion and Future Work

This study introduced a new optimisation problem, the Active Robust Multi-
objective Optimisation Problem. It enables a designer to examine the effective-
ness of design adaptability to improve performance in an uncertain environment.
The ARMOP introduces several challenges, some of which were addressed in this
study, and others which need to be further explored.

The approach taken in this study to solve an ARMOP is to use a scalarising
function to represent the variate of Pareto frontiers of every candidate solution.
This approach was found useful for the gearbox case study – solutions with better
Pareto frontiers were assigned with a better indicator value. However, whenever
a set is represented by a scalar value, some of its information must be lost. As
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a result, setting a robustness criterion for the utility indicator value does not
automatically imply that the individual objectives will also be robust.

Being a bi-level optimisation problem, an AROP requires many function eval-
uations. An ARMOP is even harder to solve, because the inner problem is a MOP.
The strategy for obtaining robust solutions taken in this study was based on Monte
Carlo simulations to represent theuncertain variables.This representation requires
a large set of samples to adequately capture the nature of the uncertainties involve,
and to gain confidence in the robustness of the obtained solutions. Due to limited
computational resources, the approachwasdemonstrated in this studywith a small
set of sampled scenarios, only to provide a proof of concept. Even for these mini-
mal optimiser settings, almost 70 million function evaluations were conducted. It
took approximately three days to compute on a 3.40GHz Intel� CoreTM i7-4930K
CPU, running Matlab� on 12 cores.

Future research should explore other representations of the uncertainties that
involve more efficient sampling approaches and use of a-priori knowledge; as well as
optimisation algorithms for expensive function evaluations.Alternative scalarising
functions, and their effects on the optimisation results, should also be explored.
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Framework Programme. The first author acknowledges the support of the Anglo-Israel
Association.
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Abstract. Multi-objective multi-armed bandits (MOMAB) is a multi-
arm bandit variant that uses stochastic reward vectors. In this paper, we
propose three MOMAB algorithms. The first algorithm uses a fixed set of
linear scalarization functions to identify the Pareto front. Two
topological approaches identify thePareto front using linearweighted com-
binations of reward vectors. The weight hyper-rectangle decomposition
algorithm explores a convex shape Pareto front by grouping scalarization
functions that optimise the samearm intoweight hyperrectangles. It is gen-
erally acknowledged that linear scalarization is not able to identify all the
Pareto front for non-convex shapes. The hierarchical PAC algorithm iter-
atively decomposes the Pareto front into a set of convex shapes to identify
the entire Pareto front. We compare the performance of these algorithms
on a bi-objective stochastic environment inspired from a real life control
application.

Keywords: Multi-objective multi-armed bandits · Scalarization
functions · Pareto front identification · Topological decomposition

1 Introduction

Multi-armed bandits [1] (MAB) is a machine learning paradigm used to study and
analyse resource allocation in stochastic and uncertain environments. The multi-
armed bandit problem that considers reward vectors and imports techniques from
multi-objective optimisation into the multi-armed bandits algorithms is referred
to as multi-objective multi-armed bandits (MOMAB) [3].

A reward vector can be optimal in one objective and sub-optimal in the other
objectives.ThePareto front contains several arms considered to be the best accord-
ing to their reward vectors. Scalarization functions transform the reward vectors
into scalar rewardvalues inorder touseMABalgorithms. In thecaseof linear scalar-
ization functions, each scalarization instance corresponds to aweightvector.Due to
its simplicity, linear scalarization is the most popular scalarization function used
in designing both multi-objective optimisation and reinforcement learning algo-
rithms [9,11,13]. Section 2 gives a short introduction to the MOMAB problem.

A common approach in multi-objective optimisation selects a number of weight
vectors that are uniform randomly spread in the weighted space [3,4] with the goal
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 156–171, 2015.
DOI: 10.1007/978-3-319-15892-1 11
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to minimize the regret of choosing a sub-optimal arm. In Section 3 we propose a
baseline algorithm that is basically probably approximatively correct (PAC) algo-
rithm [6] meaning that it identifies the best arm for each scalarization with high
accuracy within a confidence value and a given number of arm pulls as budget.
Note that PAC has the goal of identifying the best arm rather than minimizing the
regret. The dominance relation for uncertain environments is imported from multi-
objective evolutionary optimisation [12] and integrated in the MAB paradigm,
where the unbiased estimator is traditionally a mean reward vector and a confi-
dence vector represent the uncertain and stochastic nature of the environment. In
the literature [7], the Hoeffding and Bernstein races use uncertainty for the single
objective evolutionary direct policy search.

An uniform distribution of the weight vectors does not guaranty a good cover-
age of the Pareto front. Furthermore, several scalarization functions can identify
the same optimal arm, and there could be unidentified Pareto optimal arms. Opti-
mising in stochastic and uncertain environments is costly because numerous arms
pulls (or samples) are required for a reasonable accuracy in prediction. Thus, from
a computational perspective, it is important to have a minimal set of scalarization
functions with a good coverage of the Pareto front.

Wepropose two linear scalarizationbasedPareto front identificationalgorithms
with efficient exploration / exploitation mechanisms based on topological prop-
erties of the Pareto front. In Section 4, we design an efficient linear scalarization
based MOMAB algorithm that identifies Pareto fronts with convex shape. Weight
hyper-rectangles decomposition (WHD) is a Pareto front identification algorithm
that groups the weight vectors optimising the same arm from the Pareto front into
weight D-dimensional hyperrectangles, or simpler weight D-rectangles, where D is
the number of objectives.

In general, the Pareto fronts generated with real applications have non-convex
shapes, e.g. the wet clutch [10]. Linear scalarization, and implicitly the algorithms
that use linear scalarization, has limitations in identifying the entire Pareto front
of non-convex shapes. In Section 5, we iteratively decompose Pareto fronts of any
shape into convex shapes [8] using topological techniques. The initial algorithm
from [8] is designed for two objectives, but similar hierarchical decomposition
algorithms from computational geometry can deal with three objectives [2]. The
original decomposition algorithm groups the Pareto optimal solutions in convex
sub-shapes. We consider that the problem of convex hull decomposition is solved
withspecificmethods fromcomputationalgeometry,our focusbeingonthestochas-
tic process.Hierarchical PAC identifiesPareto fronts of any shapewith a given con-
fidence value.

Ourbi-objective stochastic environment is awet clutch [10] that is a systemwith
one input characterised by a hard non-linearity, when the piston of the clutch gets
in contact with the friction plates, and stochastic output because of the variations
in environmental temperature. In Section 6, we compare these scalarization based
MOMAB algorithms on a bi-objective environments generated with the wet clutch
control problem. Section 7 concludes the paper.
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2 Multi-ObjectiveMulti-ArmedBandits Problem

Consider an initial set of arms I with cardinality K, where K ≥ 2 and let the
vector reward space be defined as aD-rectangle [0, 1]D.When arm i is played, a ran-
dom vector of rewards is received, one component per objective. The random vec-
tors have a stationary distribution with support in [0, 1]D so that we can apply the
Hoeffding inequality. At time steps t1,t2,. . ., the corresponding reward vectorsXt1

i ,
Xt2

i , . . . are independently and identically distributed according to anunknown law
with unknown expectation vectorμi = (μ1

i , . . . , μ
D
i ). Reward values obtained from

different arms are also assumed to be independent.
A policy π is an algorithm that chooses the next arm to play based on the list of

past plays and obtained reward vectors. Let Ti(N) be the number of times a sub-
optimal arm i has been played by π during the first N plays. The expected reward
vectors are computed by averaging the empirical reward vectors observed over the
time. The mean of an arm i is estimated to μ̂i(N) =

∑Ti(N)
s=1 Xi(s)/Ti(N), where

Xi(s) is the sampled value s for arm i.

Dominance Relations. In the general case, a reward vector can be better than
another reward vector in one objective, and worse in another objective. There are
several dominance relations that order vectors in multi-objective optimisation.
Pareto dominance relation is the natural order for these environments allowing
ordering the reward vectors directly in the multi-objective reward space. Let the
Pareto optimal set of arms I∗, or the Pareto front, be the set of arms whose reward
vectors are non-dominated by all the other arms. All arms in the Pareto optimal set
I∗ are assumed to be equally important.

We define the Pareto dominance relation as a variant of the Pareto dominance
relation for uncertain environments [12]. An arm � dominates another arm i, μ� �ε

μi, iff ∃j for which μj
i + ε

2 < μj
� − ε

2 , and for all other objectives o, o �= j, we have
that μo

i + ε
2 ≤ μo

� − ε
2 . Pareto front contains all the non-dominated arms �, for which

�∃i ∀j such that μj
� < μj

i − ε. We also assume that the non-dominant arms from I
are good approximations of their true means. Thus, we have ‖μ̂j

� − μj
�‖ < ε in all

objectives j, and for all arms � ∈ I.
Scalarization functions transform the reward vectors into scalar rewards using

e.g. linear or non-linear weighted sums. The linear scalarization function weighs
each value of the reward vector and the result is the sum of these weighted values.
More formally, a linear scalarized reward is fω(μi) = ω · μi =

∑D
k=1 ωk · μk

i , ∀i,
where ω = (ω1, . . . , ωD) is a set of predefined weight vectors. A valid weight vector
has

∑D
j=1 ωj = 1.

The estimatedmean value of the scalarized reward vectors is equal to the scalar-
ized value of the estimated mean reward vectors, fω(μ̂i) = f̂ω(μi). In the sequel,
for all weight vectors ω, we have that fω(μ̂i + ε) = fω(μ̂i)+ ε, where ε = (ε, . . . , ε)
and fω(ε) = ε. We will use these two properties in the next section.
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3 A Baseline Scalarized Pareto Front Identification
Algorithm

In the following, we propose a baseline algorithm to identify the Pareto front in
stochastic environments. We assume a tolerance error δ and we want to find the
Pareto front with probability at least 1 − δ. An arm i is optimal for a given scalar-
ization function fω iff

fω(μ̂i) > max
�∈I

fω(μ̂�) − ε

Algorithm 1. The scalarized PAC algorithm sPAC(ε, δ, W)
1 for all arms k = {1, . . . , K} do

2 Pull each arm k for � = 1
(ε/2)2

log
(

2|W|K
δ

)
times ;

3 Compute the expected mean reward vectors μ̂k

4 I∗ ← ∅ ;
5 for all weight vectors ω ∈ W do
6 Select an optimal arm i∗ for function fω ;
7 Add arm i∗ to the Pareto front I∗ ← I∗ ∪ {i∗} ;
8 Delete dominated arms from I∗

9 return I∗

The pseudo-code for the sPAC(ε,δ, W) is given in Algorithm 1. sPAC extends
the PAC (probably approximatively correct) [6] algorithm to reward vectors. We
assume a fixed number of weight vectors W ← {ω1, . . . ,ω|W|}. The probability
that the expected reward vector of an arm i, μi, is not the same as its estimated
reward vector, μ̂i, is bounded with the confidence value ε > 0 and a small error
probability δ > 0.Wewant to bound the probability of the event fω(μ̂i)−fω(μi) >
ε, for any scalarization function fω.

In Algorithm 1, each arm is pulled for an equal and fixed number of
times 1

(ε/2)2 log
(

2|W|K
δ

)
. Thus, the budget for this algorithm is fixed N =

K
(ε/2)2 log

(
2|W|K

δ

)
. For each weight vector, ω, we identify the optimal arms using

theN armpulls.Theoutput for this algorithm is a reunionof the optimal set of arms
for each scalarization function fω. If an optimal arm is not already in the Pareto
front, then that arm is added to the Pareto front I∗. To maintain the Pareto front
I∗, the dominated arms are deleted from I∗.

Analysis. By definition, given fω, a policy is (ε, δ) - correct iff the arm i selected
after n trials is

P

(
fω(μ̂i) > max

�∈I
fω(μ̂�) − ε

)
≥ 1 − δ

Our goal is to identify the entire Pareto front with a given confidence ε and a small
tolerance error δ. Thus, by definition, an algorithm is (ε, δ, W) correct iff

∑

ω∈W
P

(
fω(μ̂i) > max

�∈I
fω(μ̂�) − ε

)
≥ 1 − δ
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Theorem 1. sPAC(ε, δ, W), cf Algorithm 1, is (ε, δ) correct and it has the sample
complexity of O

(
K
ε2 · ln

(
2|W|K

δ

))
.

Proof. Let k be an arm for which fω(μ̂k) < fω(μ̂i)− ε for any Pareto optimal arm
i given the function fω. For all objectives j, we want to bound the event fω(μ̂k) >
fω(μ̂i), when fω(μ̂k) > fω(μk) + ε/2 and fω(μ̂i) < fω(μi) − ε/2. Then, for any ω,

IP (fω(μ̂k)−fω(μ̂i) > ε) = IP (fω(μ̂k) > fω(μk)+ε/2 or fω(μ̂i) < fω(μi)−ε/2) ≤

IP (fω(μ̂k) > fω(μk) + ε/2) + IP (fω(μ̂i) < fω(μi) − ε/2) ≤ 4 · e−2(ε/2)2� =
δ

n

where we have used the Hoeffding inequality. If � = 4
ε2 · ln

(
2|W|K

δ

)
and we sum

over K the arms and W scalarization functions, then the error probability for Algo-
rithm 1 is bounded by δ. �
Remark.Our scalarized PAC algorithm considers that the larger the set of weight
vectors, thehigher, thusbetter, the confidence is in the identifiedPareto front. If the
confidence value ε is inverse proportional with the number of used weights |W|, ε =
1

|W| , then a larger number of weight vectors means a more accurate identification
of Pareto front. A smaller number of weight vectors means a larger, thus worst,
confidence value in the identification of Pareto front.

The Wet Clutch Setting. In the following, we exemplify the usage of the pro-
posed Pareto front identification algorithm for a realistic bi-objective example.

Example 1. Wet clutches are typically used in power transmissions of off-road vehi-
cles, which operate under strongly varying environmental conditions. The valida-
tion experiments are carried out on a dedicated test bench, where an electro-motor
drives a flywheel via a torque converter and two mechanical transmissions. The
goal is to learn by minimising simultaneously: 1) the optimal current profile to the
electro-hydraulic valve, which controls the pressure of the oil to the clutch, and
2) the engagement time. The output data is stochastic because the behaviour of
the machine varies with the surrounding temperature that cannot be exactly con-
trolled, and it has a non-convex Pareto shape.

In Figure 1 a), we show 50 points generated with this application, each point
representing a trial of the machine and the jerk time obtained in the given time.
The initial problem is a minimisation problem transformed into a maximisation
problembynormalising each objectivewith values between 0 and 1, and then trans-
forming it into a maximisation problem for each of the two objectives. The Pareto
optimal set of arms contains 16 optimal reward vectors, and it is about one-third
from the total number of arms, i.e. 16/50. Note that the shape of the Pareto front
makes it a mixture of convex and non-convex regions.
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Fig. 1. a) The 7-th coordinates on the convex coverage of the Pareto front that is delim-
ited by line segments. The rest of the 9-th coordinates belong to the arms on the non-
convex Pareto front and are located in the interior of the line segments. b) The linear
scalarization values and the corresponding Pareto optimal arms identified for each weight
vector.

To identify the Pareto front with sPAC(ε, δ, W), cf Algorithm 1, we consider 81
weight vectors that are uniform randomly spread in the weight vector space. The
step between two weight values is 0.0125 and the confidence value ε = 0.0. Only 7
Pareto optimal arms from a total of 16 arms are identified with 81 linear scalariza-
tion functions because these 7 arms are on the convex coverage of the Pareto front.
The rest of 9Pareto optimal arms areNOT on the convex coverage and they cannot
be identified with the algorithm using linear scalarization functions.

Figure 1 b) shows that the distribution of the weight vectors that identify the
7 Pareto optimal arms are unevenly distributed in the weight vector space. The
weight vectors from the first, ω1 = 0.0, to the twenty-second, ω22 = 0.275, weight
vectors optimise the first arm i∗1 = (0.12, 0.92). The arm i∗3 = (0.32, 0.83) is found
with only four weights, i.e. from the 23-th weight ω23 = 0.2875 to ω28 = 0.325.
The seventh arm i∗7 = (0.509, 0.742) is found with eight weight vectors, from ω29 =
0.3375 to ω41 = 0.5, whereas the tenth arm i∗10 = (0.54, 0.71) is found only with one
weightω42 = 0.5125.The twelfth arm i∗12 = (0.70, 0.54) is identifiedwith only three
weight vectors, from ω43 = 0.525 to ω45 = 0.55, and the arm i∗15 = (0.87, 0.32) is
identified with twenty-one weight vectors from ω46 = 0.5625 to ω67 = 0.825. The
arm i∗16 = (0.92, 0.08) is identified with fourteen weights from ω68 = 0.8375 to
ω81 = 1.0.

Remark.Note that the weight vectors that identify the same Pareto optimal arms
are grouped in disjunct subsets. Therefore, if we found the extreme weight values
that identify the same Pareto optimal arm, then we know that any weights between
the two weight values identify the same optimal arm. For example, the Pareto opti-
mal arm i∗1 is identified by any of the weight vectors with the first value in the
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intervalω1 ∈ [0.0, 0.275]. In thenext section,weuse this property todesign a scalar-
ized MOMAB algorithm with an efficient exploration mechanism.

4 WeightHyper-RectangleDecomposition

In this section, we assume that the Pareto front has a convex shape, and we propose
an algorithm that groups the weights into contiguous D-rectangles. This means
that we do not need to search between two weight vectors from the same weight
D-rectangle. Note the difference between the weight D-rectangles and reward D-
rectangles that are defined in different D-objectives spaces. The algorithm starts
with D weight vectors corresponding to the D extreme values of a weight D rectan-
gle with support in [0, 1]D. It iteratively adds weight D-rectangles to identify new
arms on the Pareto front.

WeightD-rectangles.For each weight vector, there is a Pareto optimal arm that
optimises its inner product. Consider ω a weight vector, and two reward vectors μi

and μh. If fω(μi) > fω(μh), then
∑D

j=1 ωj · (μj
i − μj

h) > 0. This means that ∃j

such that μj
i > μj

h, and thus μi is non-dominated by μh. Thus,

∀ω ∈ W , ∃! i∗ ∈ I∗ such that i∗ → arg maxi∈Iω · μi

withW theweight vector space.AtrivialweightD-rectangle containsa singleweight
vector. We need a set of scalarization functions, or a set of weight vectors, to gen-
erate a variety of arms on the Pareto front.

The weight D-rectangle of an arm i∗ on the Pareto front, i∗ ∈ I∗, is defined as

Hi∗ = {ω ∈ W | i∗ ← arg maxi∈Iω · μi}
This means that if two weight vectors, ω1 and ω2, belong to the same weight D-
rectangle, Hi∗ , then fω1 and fω2 identify the same Pareto optimal arm, i∗.

Let the Pareto front be convex and the weight D-rectangles be contiguous. If ω1

and ω2 belong to the same weight D-rectangle, ω1 ∈ Hi∗
1

and ω2 ∈ Hi∗
1
, then

all weight vectors ω3 between two weight vectors, i.e. for all objectives j, ωj
3 ∈

[min{ωj
1, ω

j
2},max{ωj

1, ω
j
2}], alsobelong to the sameweightD-rectangle,ω3 ∈ Hi∗

1
.

Two weight vectors, ω1 ∈ Hi∗
1

and ω2 ∈ Hi∗
2
, with i∗1 �= i∗2, are con-

sidered adjacent iff, exists an objective j ∈ {1, . . . , D} such that the distance
between the two weight vectors is minimal compared with the other weight vec-
tors in the same or different weight D rectangles. More formally, consider the
weight D-rectangle defined by the Cartesian product of the two weight values,
×D

j=1[min{ωj
1, ω

j
2},max{ωj

1, ω
j
2}]. These twoweight vectorsω1 andω2 are adjacent

iff the weight D-rectangle does not contain another weight vector. Thus, ω1 ∈ Hi∗
1

and ω2 ∈ Hi∗
2

are adjacent, iff they optimize different arms i∗1 �= i∗2 in different D-
rectangles and the difference between the two weight vectors is minimal in at least
one objective. Then, one of the three conditions holds, ∀j: 1) |ωj

1−ωj
2| ≤ min{|ωj

1−
ωj
3|, |ωj

3 − ωj
2|}, for all ω3 ∈ Hi∗

3
, and i∗3 �= i∗1 and i∗3 �= i∗2, 2) |ωj

1 − ωj
2| ≤ |ωj

1 − ωj
3|,

for all ω3 ∈ Hi∗
2
, and 3) |ωj

1 − ωj
2| ≤ |ωj

3 − ωj
2|, for all ω3 ∈ Hi∗

1
.
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Algorithm 2. Weight D-rectangle decomposition WHD(ε, δ, WWHD)
1 Initialise the Pareto front I∗ ← ∅; Initialise the weight D-rectangle H ← ∅ ;
2 Initialise the list of candidate weight vectors WWHD ← W1 ;
3 t → 1 ;
4 while the stopping criteria is not met do

5 Pull each arm for �t ← 4
ε2

· ln 2K|Wt|
δ

times ;
6 for all weight vectors ω ∈ Wt do
7 Compute the optimal arm i∗ for the scalarization function fω ;
8 if arm i∗ is not in the current set of arms i∗ /∈ I∗ then
9 Update the current set of arms I∗ ← I∗ ∪ {i∗} ;

10 Update the weight D-rectangle Hi∗ ← Hi∗ ∪ {ω}
11 else
12 Add the weight vector Hi∗ ← Hi∗ ∪ {ω}
13 Set Wt to be the candidate weight vectors generated between adjacent

D-rectangles ;
14 t ← t + 1

15 return I∗ ;

The Algorithm. The pseudo-code for the weight D-rectangle decomposition
(WHD) is given in Algorithm 2. The WHD algorithm starts with the initialisation
of the Pareto front to the empty set, I∗ ← ∅, and the list of weight D-rectangles,
H, is also initialized to the empty set. At first, for our initial set of candidate weight
vectors WWHD ← W1, we consider a fixed set of weight vectors, like the D extreme
weight vectors, i.e. with one objective set to 1 and all the other objectives set to 0.
Each iteration t, all arms are pulled �t ← 4

ε2 · ln 2K|Wt|
δ times. All weight vectors

are selected at random from the list of candidate weight vectors in order to identify
the corresponding Pareto optimal arm, i∗. If this optimal arm i∗ is already in the
Pareto front I∗, then the weight vector ω is added to the corresponding weight D-
rectangle, Hi∗ ← Hi∗ ∪ {ω}. Otherwise, if i∗ /∈ I∗ is a novel Pareto optima arm,
then i∗ is added to the Pareto front I∗ ← I∗ ∪ {i∗}, and a weight D-rectangle is
initialised for this optimal arm, Hi∗ ← {ω}.

The list of weight D-rectangles is also updated with new weight D-rectangle,
Hi∗ , generated between two adjacent weight D-rectangles. To generate a new
reward vector that could identify a new Pareto optimal arm, we select uniformly
at random two adjacent weight vectors in two different weight D-rectangles. Thus,
ω1 ∈ Hi∗

1
and ω2 ∈ Hi∗

2
, with i∗1 �= i∗2, and we generate a third weight vector, ω3,

such that, ∀j, ωj
3 = (ωj

1 +ωj
2)/2. The new weight ω3 is included in the list of candi-

date weights, W, to later evaluate its optimal arm. The algorithm stops when the
list of weight vectors is empty, i.e. W �= ∅, or a fix number of arm pulls, the budget,
is reached.

We assume that the Pareto optimal arms can be identified within a bounded
confidence value ε. Thus, two weight vectors could assigned to two different weight
D-rectangles evenwhen their rewardvalues are closer thanagivenconfidencevalue.
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Fig. 2.The weight D-rectangle decomposition algorithmWHD needs 7 iterations (see the
vertical coordinates) and only 18 weight vectors (see the horizontal coordinates) to find
the convex coverage of the wet clutch simulation.

Analysis.The arms pulls for each iteration is computed such that each of the iter-
ations is (ε, δ) correct, and WHD is also (ε, δ) correct meaning that the probability
of selecting the wrong arm for all scalarization functions is bounded by a small error
δ. The number of arms pulls for this algorithm is the sum of all arm pulls in each
iteration. Thus, the total budget for this algorithm is

N =
K

(ε/2)2
·

L∑

t=1

ln
2K|Wt|

δ
=

K

(ε/2)2
· ln

(
2K

δ

)L

· |W1| . . . |WL|

=
LK

(ε/2)2
· ln

2K

δ
· L

√
|W1| . . . |WL| ≤ LK

(ε/2)2
· ln

2K

δ
· |W|

L

where W is the reunion of weight vectors generated W = ∪L
t=1Wt, and L is the

number of iterations inWHD. Last inequality is the arithmetical - geometricalmean
and the equality holdswhen the set ofweights is (approximatively) equal.Note that
each arm is pulled for at most ≈ L

(ε/2)2 · ln 2K
δ · |W|

L times and the algorithm attains
its maximum efficiency in the number of arms pulls when the sets of weights D-
rectangles are small.

Theorem 2. WHD, cfAlgorithm2, is (ε, δ) correct and it has the sample complexity
of O

(
LK
ε2 · ln

(
2K
δ

|W|
L

))
.

Proof.Thus, using the same rational as in the proof of Theorem 1,WHD algorithm
is (ε, δ) correct. �

Note that when compared with the baseline algorithm sPAC, the WHD algo-
rithm has a larger budget given the same amount of weight vectors. WHD stops
faster because it generates less weight vectors than with sPAC.

The Wet Clutch Example. In Figure 2, we show that WHD, cf Algorithm 2,
finds the convex coverage of the Pareto front with less arm pulls than PAC, cf Algo-
rithm 1. In the first iteration, the two extreme weight vectors, (0, 1) and (1, 0), gen-
erate two different weight D-rectangles, Hi∗

1
and Hi∗

16
. In the second iteration, a

weight vector in middle of the two extreme vectors, (0.5, 0.5), generates another
weight D-rectangle Hi∗

7
. The third iteration, with the weight vectors (0.25, 0.75)
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and (0.75, 0.25), however, will not generate any new weight D-rectangle. In each of
the next iterations, i.e. from the fourth through seventh iteration, a new weight D-
rectangle is generated, that are, in the order of generation,Hi∗

15
,Hi∗

3
,Hi∗

13
andHi∗

10
.

Note that the wideness of the weight D-rectangles is variable. Some of the weight
D-rectangles are as narrowas a a singleweight vector, i.e.Hi∗

13
andHi∗

10
, or as broad

as four weight vectors for Hi∗
1

and Hi∗
15

. The difference with the baseline algorithm
is that the weight D-rectangles contains less weight vectors which is why WHD is
more efficient thanPAC. In total,WHD takes only 7 iterations and 18weight vectors
to find the convex coverage of the Pareto front. Note that the minimum number of
iterations vary with the shape of the Pareto optimal set and the distribution of the
weight D-rectangles.

Remark.A known problem with linear scalarization is its incapacity to find, using
any set of weight vectors, all the points on a non-convex Pareto front [3]. Thus, the
scalarized MOMAB algorithms, cf. Algorithm 1 and Algorithm 2, cannot identify
the entire non-convex Pareto front using any set of weights W. The following algo-
rithm has the goal of identifying all the arms for any shape of the Pareto front by
hierarchical decomposing the shape into convex subcomponents of thePareto front.

5 Hierarchical PACAlgorithm

In this section,wepropose anhierarchical shapedecompositionalgorithm,we call it
the hierarchical PAC (hPAC) algorithm with the pseudo-code given in Algorithm 3.
hPAC is a recursive procedure call that starts with the initial set of arms I. The first
call of thehPACalgorithmhasas input the entire set of armsand it returns thewhole
Pareto front I∗,

I∗ ← hPAC(ε, δ,WhPAC , I)

where I1 ← I. We denote the arms assigned to a reward D-rectangle with Id. The
output for each function call is a (sub)set of the Pareto front for the corresponding
reward D-rectangle, I∗

d . Each iteration d has two stages: 1) first stage identifies
arms on the convex coverage of the Pareto front, I∗

d , and 2) second stage iteratively
explores the disjunct convex reward subspaces, or reward D-rectangles, defined by
the arms in I∗

d . The search continues until there is no arm to explore or the edge of
the reward D rectangle Id is smaller than a given fixed confidence value ε. Thus,
Algorithm 3 always stops.

In the first stage of the d iteration, hPAC, cf Algorithm 3, identifies a subset of
the Pareto front I∗

d from the current set of arms Id using one of two algorithms
proposed above, cf. Algorithm 1 or Algorithm 2. It is fair to assume that, in one
iteration, only a subset of the Pareto front is identified because of the linearity of
the scalarization functions and the possible non-convexity of the Pareto front. For
sampling efficiency of the algorithm,we can either assume a small number ofweight
vectors in a simple and straightforward PAC algorithm, cf Algorithm 1, or a larger
number of weight vectors and the more efficient but sophisticatedWHD algorithm,
cf Algorithm 2.

Each arm from Id is pulled for a fixed number of times, �d, to identify its mean
reward vector with the confidence value ε and error tolerance δ. A minimal set of
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Algorithm 3. Hierarchical PAC algorithm hPAC(ε, δ, W, Id)
1 Initialise the subset of the Pareto front I∗

d ← ∅ ;
2 for all arms i ∈ Id do

3 Play arm i for �d = 4
ε2

ln 4|W||Id|
δ

times ;
4 Assign μ̂i to be the average reward vector of the arm i

5 for all weight vectors ω ∈ W do
6 Identify the optimal arm i∗ω for the scalarization function fω ;
7 Merge current Pareto front with the optimal arm, I∗

d ← I∗
d ∪ i∗ω ;

8 Remove dominated arms from I∗
d

9 for all adjacent pairs of optimal arms do
10 Select the corresponding subset of arms Id within the generated D-rectangle ;
11 if the reward D- rectangle Id is not empty then
12 I∗

d+1 ← hPAC(ε, δ, W, Id+1) ;
13 Merge the two Pareto fronts I∗

d ← I∗
d ∪ I∗

d+1

14 return I∗
d

weight vectors contains only: 1) the extreme weight vectors with support in [0, 1]D

with only one weight value set on 1 and the rest of weight values set to 0, and 2) the
weight vectors resulted from the combination of either equal weight values or 0s.
For each of the corresponding scalarization functions fω, a Pareto optimal arm is
selected, i∗, and merged with the current Pareto front I∗

d .
In the second stage of d iteration, hPAC decomposes the current reward D-

rectangle into smaller reward D-rectangles in order to recursively call hPAC on the
arms in these smaller reward D-rectangles. We consider all pairs of optimal arms
for which there is no other Pareto optimal arm contained between the two optimal
arms. Let i∗1 and i∗2 be two Pareto optimal arms, where i∗1 and i∗2 ∈ I∗

d . A reward
D-rectangle is theCartesian product×D

j=1[min{i∗j
1 , i∗j

2 },max{i∗j
1 , i∗j

2 }[ ofD subin-
tervals, oneperobjective j.Wegeta setofdisjoint rewardD-rectangles.Eacharmin
Id is assigned to exactly one of the reward D-rectangles defined by adjacent Pareto
optimal arms. A reward D-rectangle can contain more than one arm. It is straight-
forward to show that if an arm i is not assigned to any of these reward D-rectangles,
then the arm i is dominated by the currentPareto optimal set of armsI∗

d and, there-
fore, deleted. On each of these reward D-rectangles, Id, the hierarchical PAC algo-
rithm is called recursively. The current Pareto front I∗

d is updated with the arms in
the newly identified Pareto front, hPAC(ε, δ, W, Id). Note that the arms identified
as non-dominated by the hPAC algorithm can be dominated by the other arms in
I∗

d , therefore the dominated arms should be deleted.

Analysis. Each iteration, hPAC assigns the mean reward vectors within a confi-
dence value ε and the probability of erroneously deleting an optimal arm with the
tolerance error δ. The total number of times a single arm i is pulled depends on
the number of iterations where i is pulled, Li, and on the number of arms in the
corresponding reward D-rectangles. Thus, an arm i is pulled for at most Li

(ε/2)2 ·
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ln 2|W|
δ · |Ii|

Li
times,where |Ii| =

∑Li

d=1 |Id| andwehave considered the arithmetical
- geometrical mean as before. The sample complexity of the algorithm is bounded
by N ≤ ∑K

i=1
Li

(ε/2)2 · ln 2|W|
δ · |Ii|

Li
.

Note that the arms that are the most difficult to identify are pulled longest and,
thus, the sample complexity of hPAC depends on the distribution of the Pareto
front. If the solutionsonthePareto frontareuniformrandomlydistributed, thenthe
number of iterations is smaller than for non-uniform Pareto fronts. Furthermore,
the algorithm is more efficient than a simple PAC, cf Algorithm 1, also because the
suboptimal arms are discarded. The suboptimal arms that are further away from
the Pareto front are discarded at first, and the arms that are closer to the Pareto
front are discarded the last. In the experimental section, we show that, even in a
practical setting, for the wet clutch example, this algorithm is the most efficient
algorithm presented in this paper.

TheWetClutchExample. In Figure 3, we show the reward subspaces and their
succession (different type of lines) in generation. At first, the Pareto optimal arms
i∗1, i

∗
7 and i∗16 are identifiedas theoptimal arms for theweightvectors (1, 0), (0.5, 0.5)

and (0, 1), respectively. There are two reward D-rectangles generated between i∗1
and i∗7 and between i∗7 and i∗16. The first reward D-rectangle contains 7 arms and
the Pareto optimal arms identified for the three weight vectors are i∗2, i∗3 and i∗5. It
requires another two iterations to identify also the other two Pareto optimal arms
i∗4 and i∗6 not on the convex coverage from the reward D rectangle between i∗1 and
i∗7.

There are 22 arms between the Pareto optimal arms i∗7 and i∗16. In the second
iteration in this rewardD-rectangle,we identify other threePareto optimal arms i∗8,
i∗12 and i∗15. Another three iterations are required to identify the rest of Pareto opti-
mal arms. The reward D-rectangle between i∗15 and i∗16 is empty. Note the variable
size of these reward subspaces, as well as the different distance between non-convex
Pareto optimal arms.
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6 Numerical Simulations

In this section,weexperimentally compare theperformanceofMOMABalgorithms
on the wet clutch problem [10] with noise generated using a bi-variate normal dis-
tribution around the mean. Let’s consider the three MOMAB algorithms sPAC, cf
Algorithm 1, WHD, cf Algorithm 2, and hPAC, cf Algorithm 3, as before. For each
algorithm,wemeasure: i) thepercent of correctly identifiedPareto optimal arms, ii)
the percentage of erroneously identifiedPareto optimal arms, iii) the instantaneous
Pareto regret as defined in [3,5].

Settings. Each algorithm runs 30 times in order to collect the means and the
standard deviations. The number of weight vectors used is different for the three
linear scalarization based MOMAB algorithms. sPAC uses a fix set of weight vec-
tors, i.e. 11 or 81 weight vectors, uniformly spread in the weight vector space
to identify the 7 Pareto optimal arms on the convex coverage. hPAC and WHD
use each iteration a fixed set of weight vectors. One weight set is WhPAC =
WWHD = {(0, 1), (0.5, 0.5), (1, 0)} meaning that weight vectors are always gen-
erated at the half distance between two adjacent weight D-rectangles. Another
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Fig. 4.The performance of sPAC,WHD, and hPAC algorithms for a relatively small num-
ber of weight vectors, |WsPAC | = 11 and, for each iteration, |WhPAC | = |WWHD| = 3,
when (top) the variance around the mean is σ = 0.05, and (bottom) σ = 0.1
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Fig. 5.Theperformanceof sPAC,WHD, andhPACalgorithms for a largenumberofweight
vectors, |WsPAC | = 81 and, each iteration, |WhPAC | = |WWHD| = 11, when (top)
σ = 0.1, and (bottom) σ = 0.2

weight set is the 11weight vectors used also by sPAC,meaningWhPAC = WWHD =
{(0, 1), (0.1, 0.9), . . . , (1, 0)}.

In order to test the robustness of the proposed algorithms at environmental
noise,we consider theuncertaintyvalue ε = {0.1}anddifferent variance for thenor-
mal distribution around the mean, i.e. σ = {0.05, 0.1, 0.2}. Further, we set δ = 0.1,
and the budget for each algorithm can be calculated for each confidence value ε.
The total budget for sPAC when ε = 0.1 is K · � ≈ 2 · 105. The budget increases
considerable for a slight decrease in ε = 0.05, i.e. the corresponding sample com-
plexity is ≈ 8 · 105. The arms pulls for the initial iteration in WHD is ≈ 1.5 · 105

when ε = 0.1 and the sample complexity increases to ≈ 6.1 ·105 when ε = 0.05. We
set N = 5 ∗ 105, which for WHD with ε = 0.1 means the generation of about 40-50
weight vectors.

Results. Figure 4 compares the performance of the three MOMAB algorithms
when ε = 0.1 and variance in the normal distribution generating the noise in the
environment is either small σ = 0.05 (on the top) or σ = 0.1 (on the bottom), and
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a small number of weight vectors. For least noisy environments, σ = 0.05, hPAC is
the best performing algorithm although hPAC’s speed in Pareto front identification
in the first 250.000 iterations is the smallest. For the larger variance σ = 0.1, hPAC
has a large variance in the percent of correctly identified Pareto optimal arms dur-
ing each run. With 11 weight vectors, sPAC identifies all the convex Pareto optimal
arms. The noisier the environments, the larger the probability of error for all these
algorithms.

Figure 5 shows that, for a large set of weight vectors used each iteration
|WhPAC | = |WWHD| = 11, the two topological algorithms have a good perfor-
mance, i.e.hPAC andWHD.hPAC identifies about 90% fromthe entirePareto front
as compared with only 50% identified with sPAC using 81 scalarization functions.
hPAC is identifying themostPareto optimal arms even for a large varianceparame-
ter σ = 0.1, but its speed in identification of Pareto arms is lower than the other two
algorithms.WHD achieves the same performance like sPACwith a smaller number
of weight vectors, i.e. about 40 − 50 weight vectors.

The Pareto regret measures the distance between an suboptimal arm and the
Pareto front, thus the smaller this value is the better the algorithm performs. The
performance of an algorithm in identifying the Pareto front is correlated with its
regret measure. Thus in Figure 4 and Figure 5, the best performing algorithm is
hPAC, except in Figure 5 f) where its performance is affected by the large noise.
We conclude that the best performing scalarized MOMAB algorithm is the hPAC
algorithm because it finds all the Pareto optimal arms. The second best algorithm
is WHD because it identifies faster the convex coverage of the Pareto front.

7 Conclusions

In this paper we propose three MOMAB algorithms that identify the Pareto front
of stochastic environments.Thebaseline scalarizedPareto front identificationalgo-
rithm sPACuses afixed set ofweightvectors andafixednumberof armpulls.Weight
hyperrectangle decomposition (WHD) groups the weight vectors that optimise the
same Pareto optimal arm into weight D-rectangles. WHD iteratively searches new
weight vectors in new weight hyperrectangles in order to identify new Pareto opti-
mal arms. Hierarchical PAC (hPAC) identifies Pareto fronts of any shape by
iterativelydecomposingthecurrent rewardhyperrectangle into several rewardrect-
angles containing convex Pareto sub-fronts. We compute the sample complexity
of these algorithms, meaning the minimal number of arms necessarily to identify
the Pareto front with a give confidence value. The experimental section discusses
the behaviour of the proposed linear scalarization based MOMAB algorithms on
an example from control theory. The two topological based MOMAB algorithms,
i.e. hPAC and WHD, improve the efficiency of the baseline algorithm, sPAC. The
advantage of weight hyperrectangle decomposition is that the convex coverage of
the Pareto front is identified regardless of its distribution. The advantage of hier-
archical PAC is that the entire Pareto front is identified, regardless of its shape.
We conclude that the proposed scalarization based MOMAB algorithms are poten-
tially useful tools in optimising in uncertain environments.
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Abstract. When designing evolutionary algorithms one of the key con-
cerns is the balance between expending function evaluations on explo-
ration versus exploitation. When the optimisation problem experiences
observational noise, there is also a trade-off with respect to accuracy
refinement – as improving the estimate of a design’s performance typ-
ically is at the cost of additional function reevaluations. Empirically
the most effective resampling approach developed so far is accumulative
resampling of the elite set. In this approach elite members are regularly
reevaluated, meaning they progressively accumulate reevaluations over
time. This results in their approximated objective values having greater
fidelity, meaning non-dominated solutions are more likely to be correctly
identified. Here we examine four different approaches to accumulative
resampling of elite members, embedded within a differential evolution
algorithm. Comparing results on 40 variants of the unconstrained IEEE
CEC’09 multi-objective test problems, we find that at low noise levels
a low fixed resample rate is usually sufficient, however for larger noise
magnitudes progressively raising the number of minimum resamples of
elite members based on detecting estimated front oscillation tends to
improve performance.

Keywords: Pareto optimality · Differential evolution · Uncertainty ·
Noise

1 Introduction

Many real-world optimisation problems experience noise which corrupts the
observed quality values associated with a design. This may be due to, e.g., sen-
sor/measurement error or environmental variation during the evaluation of a
built design in embodied optimisation, or due to the stochastic nature of the
software simulation being optimised (repeated evaluations leading to slightly
different criterion values). Early multi-objective optimisation work raised the
issue of noise affecting an evolutionary optimiser [15], but practical work devel-
oping evolutionary multi-objective algorithms in this area did not commence in
ernest until nearly a decade later. There now exist a wide range of ‘noise-tolerant’
algorithms, designed specifically for multi-objective optimisation problems with
observational noise, e.g. [1–6,8–10,12,13,16–18,20,23,24,26,27,30], and recent
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 172–186, 2015.
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work has explored the situation where the objective functions themselves are
inherently uncertain [29].

The vast majority of noise-tolerant optimisers include some form of resam-
pling (repeated function reevaluation) of designs, in order to improve the esti-
mate of their associated objective values. This is required as noise will mean that
poor solutions with ‘favourable’ noise will be seen as better than they should
be, and likewise good solutions that experience detrimental noise will be seen as
relatively worse. This has the effect of corrupting fitness assignment and rank-
ing, polluting any elite sets that may be maintained, and generally degrading
optimiser performance. Furthermore, it has been observed in a number of studies
that as the estimated non-dominated set converges the main driver for updating
this set tends to be noise rather than improvements in the designs themselves
(see e.g. [10,12,13]). This can seriously impede the ability of an algorithm to
locate the Pareto front within the tolerance of the noise width(s).

There are many different approaches taken to resampling in the field, from
static approaches, where a fixed number of resamples are taken for each design
assessed, through to dynamic approaches based on, for example, reducing the
standard error to within an acceptable bound. The reader is directed toward
recent work by Siegmund et al. [25] for a full categorisation.

In the work presented here we are solely concerned with accumulative sam-
pling approaches (see e.g. [10,20]). These require only a maximum likelihood esti-
mator function being available, est(·), which takes a set of reevaluated objective
vectors associated with a design and provides the best estimate of the under-
lying noise-free objectives. This differs from a large number of other sampling
approaches which rely on the noise experienced being Gaussian, and often utilise
variance and standard error estimates [2,8,17,23,25,26].

Accumulative sampling approaches leverage the observation that increasing
the number of samples will increase the fidelity of the derived objective vector
estimate irrespective of the noise density experienced, as long as the estimator
is unbiased. That is, at the limit of infinite resamples the estimator will return
the noise-free objective vector. Furthermore, even in the case where an estima-
tor converges to the noise-free objective vector plus a bias, dominance-based
optimisation can still be performed effectively, as adding a constant does not
affect the relative Pareto ranking of solutions [10]. In accumulative resampling
of elite members, where the number of reevaluations per member is not limited,
there needs to be decision regarding how many function evaluations should be
expended on reevaluating elite members. In [20] the elite set is fixed in size,
and each generation the entire elite set is resampled once, with a correspond-
ing number of brand new designs also evaluated. In [10] each iteration of the
algorithm results in a single new design, and the elite member with the fewest
reevaluations is reevaluated a single additional time, with the last 5% of a run
entirely devoted to reevaluations. As such, both [20] and [10] split their allocated
function evaluations roughly equally between new proposals and previously eval-
uated proposals. Experiments at the end of [10] however indicate that an equal
balance between reevaluations and new design evaluations is not optimal for all
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problems. Here we examine the use of adaptive reevaluation approaches for elite
member accumulative resampling, including methods that ensure the number of
effective reevaluations per member increases over time along with methods to
increase the reevaluation rate if convergence is impeded by noise.

The rest of the paper is structured as follows. In Sec. 2 the multi-objective
optimisation problem with observational noise is defined, along with basic resam-
pling definitions. In Sec. 3 the properties of elite accumulative resampling are
discussed, and the proposed adaptive methods described. In Sec. 4 the different
approaches are compared empirically on the unconstrained problems of the IEEE
CEC’09 multi-objective test suite, modified with additive noise with a range of
magnitudes. Sec. 5 contains the paper conclusion and discussion.

2 Multi-objective Optimisation with Noise

Without loss of generality the multi-objective optimisation problem seeks to
simultaneously minimise D objectives: fd(x), d = 1, . . . , D where each objective
depends upon a vector x = (x1, . . . , xp, . . . , xP ) of P parameters or
decision variables. The parameters may also be subject to equality and inequal-
ity constraints which, for simplicity, we assume can be evaluated precisely. The
multi-objective optimisation problem may thus be expressed as: minimise f(x) =
(f1(x), . . . , fD(x)), subject to the constraints which define X ∈ R

P , the feasible
search space. When there are multiple competing objectives, solutions may exist
for which performance on one objective cannot be improved without degrading
performance on at least one other. Such solutions are said to be Pareto optimal.
The set of all Pareto optimal solutions is said to form the Pareto set, whose
image in objective space is known as the Pareto front.

A decision vector x is said to dominate another x′ iff fd(x) ≤ fd(x′) ∀d =
1, . . . , D and f(x) �= f(x′). This is often denoted as x ≺ x′. Pareto domi-
nance is a key comparator used in a wide range of evolutionary optimisers –
either directly in their fitness assignment and ranking schemes, or as a means
to identify their final Pareto set estimate. Elitist multi-objective optimisers gen-
erally maintain a mutually non-dominating set A (often called an archive) of
solutions which form their estimated Pareto set at any stage in their optimi-
sation. This may be active (providing input into the optimisation process) or
a passive record of the best solutions ever encountered during the optimisation
[28]. In a noisy optimisation problem we cannot directly access f(x), instead we
have access to y, which are the criteria contaminated by observational noise ε.
Here we are concerned with additive noise:

yd = fd(x) + εd. (1)

With n repeated reevaluations at a design location x we obtain a set of noise
contaminated objective vectors Y (x) = {yi}ni=1, which, in conjunction with an
unbiased maximum likelihood estimator will provide us with an estimate of the
noise-free evaluation of f(x): f̂(x) = est(Y (x)). For instance, if the noise was
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Gaussian then est(·) would be the mean function, whereas if the noise was
Laplacian it would be the median function.

In the noisy situation, we no longer have certainty that one solution domi-
nates another (or that they are mutually non-dominating), as the ε experienced
by each solution may be of a value sufficient to reverse the ordering of solutions
on one or more objective criteria. However, as n increases, our approximation
to f(x) improves (in general this accuracy improves proportionally to

√
n). In

order to ensure the exploitation of elite members uses accurately labelled designs,
recent noise-tolerant optimisers have focused on resampling elite members pref-
erentially [10,20].

3 Adaptive Accumulative Sampling

Depending on the problem and the noise experienced, the update dynamics of
the elite set may vary considerably. If members are regularly leaving the elite
set, and new members regularly entering it, then the number of reevaluations
per elite member may be in effect quite low – even when reevaluating an elite
member for each new solution evaluated. Alternatively, if the membership of A
changes relatively irregularly, then the n per elite member may be very large.
Neither of these situations may be ideal in practice, as in the first instance the
elite members may fail to accumulate sufficient resamples to mitigate the noise
when in proximity to the Pareto front, and in the second case some of these
function evaluations may be better expended on new designs.

One side-effect of reevaluating previously evaluated solutions is that the esti-
mated Pareto front can oscillate. This is distinct from the oscillating/retreating
front issue derived from truncating elite sets in noiseless problems [11,14], as its
root cause is due to the (estimated) objective location of previously elite solu-
tions moving, rather than the direct exclusion of solutions that are known with
certainty to be non-dominated. This therefore affects even unbounded elite sets
in the noisy case. An illustrative example is provided in Fig. 1. Here the differen-
tial evolution for multi-objective optimisation (DEMO) algorithm [21] is applied
to noisy variants of the IEEE CEC’09 UP1 problem, with varying levels of addi-
tive observational Gaussian noise. The population in DEMO is maintained using
non-dominated sorting, so, subject to the population limit being sufficient to con-
tain the number of non-dominated solutions encountered at any time point, on
first glance the population should contain the best performing solutions found
so far (as it will only discard dominated solutions). However, this maintenance
approach is not sufficient in the noisy case with reevaluations – as solutions may
be discarded which would later be determined as non-dominated due to reeval-
uations of elite members degrading their estimated performance (‘exposing’ the
previously dominated solutions). In Fig. 1 we expend one elite member reevalua-
tion for every new design evaluated. The left panel of Fig. 1 shows the number of
times the non-dominated subset of the DEMO search population did not contain
the non-dominated subset of all designs visited so far (based on their est(·)).
A secondary elite archive is maintained separately from the DEMO population,
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Fig. 1. Empirical oscillation of estimated elite members with Gaussian observational
noise on the UP1 problem. Noise standard deviations σ = {0.01, 0.1, 1.0, 10.0} used
for four different runs of the DEMO algorithm using elite reevaluations. Left: cumula-
tive number of times the search population in DEMO needed to be updated using a
secondary tracking archive (black through to light grey indicates low noise through to
high noise). Right: Corresponding archive size, |At|. Note that |At| never exceeds 100
– the size of the non-dominated sorting truncated search algorithm in DEMO – but
the search population regularly discards solutions which later become non-dominated
(and have to be fed back in again) due to the reevaluation of the noisy solutions.

using the techniques described in [7], and is merged in with the search population
whenever they are detected to have diverged (redirecting the DEMO population
back to the estimated optimal regions of design space). This recalibration can
be seen to be regularly required even when the search population membership
is much larger than that of the elite set (an order of magnitude bigger in the
highest noise case).

We now propose a number of adaptive schemes for incremental accumula-
tive sampling, and discuss the reasoning behind them. Each approach treats the
optimisation as an incremental process. At each time step t either a new design
is evaluated, or a previously evaluated elite solution is reevaluated. In both situ-
ations the membership of At (the estimated elite set at time t) may be altered,
as in the first instance the new design may enter At, and in the second instance
reevaluation may cause the previously elite member to be dominated and/or
move to a position in objective space such that solutions that were previously
identified as dominated should now (re)enter the elite set.

3.1 Fixed Resamples per Generation

The baseline approach evaluates one new design per algorithm iteration, and
reevaluates a single member of the elite set. The reevaluated elite member is
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Algorithm 1 Resample rate fixed over time.
Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t − 1)
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, update At and Xt

3: Reevaluate the member of At with fewest resamples, update At+1 and Xt+1

that with the fewest reevaluations contributing to its estimated objective values.1

The evaluation of a new design may cause a change in the elite set or a change
in the set containing all previously evaluated dominated solutions at a time
step (Xt). The reevaluation of a solution may also cause multiple changes in
both sets, as it can mean the removal of elements from At to insert into Xt (if
the reevaluated solution has moved to a dominated locations, or to a location
that now dominates members of At), and the addition of elements from Xt

to At (where designs that were previous dominated are now categorised as non-
dominated due to the reevaluated solution moving to an objective space location
which no longer covers them). A basic outline is presented in Alg. 1.

3.2 Increasing Resample Rate, Based on Detecting False
Convergence

As mentioned above, one of the key issues with noisy optimisation problems
is that as an algorithm converges, there is a tendency for noise to drive the
search process over improving performance on the underlying criteria. One way
of detecting this is to compare the state of the best elite set estimate at one time
step, At, with that of an earlier time step, e.g. At−m. If the performance if At

is worse than that of At−m then (assuming A has not been truncated) this can
only be because reevaluations of members of A in the m intervening time steps
has meant that their predicted locations through est(·) have worsened, and that
this shift backwards of At has not been compensated for by finding other designs
which provide equivalent or better predicted performance to those in At−m. In
other words, the noise experienced made At−m seem better than it was, and
we have not found any solutions (or reevaluated any) in the intervening m time
steps to compensate for this over-estimate. In order to mitigate this, the number
of reevaluations are increased, making it harder for rogue reevaluations to unduly
influence the performance assessment (as outliers should be more quickly diluted
with subsequent reevaluations).

Alg. 2 outlines this approach using the binary ε+ indicator (other indicators
could also be used, see [19] for a discussion of different indicators and their
properties). If the additive ε required to make the At−m set dominate the At set
is lower that the value required to make the At set dominate the At−m set then
the number of reevaluations per iteration is increased. Here the objective values
1 Selection could instead be based on the largest standard error for situations where
a priori noise density information allows this to be calculated.
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Algorithm 2 Increasing resample rate based on convergence assessment.
Require: k Current resample number
Require: m Convergence time window
Require: At−m Elite non-dominated members identified at time step t − m
Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t − 1)
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, update At and Xt

3: if number of time steps since last check meets or exceeds m then
4: if Iε+(At, At−m) > Iε+(At−m, At) then
5: k := k + 1
6: end if
7: end if
8: for i = 1, . . . , k do
9: Reevaluate the member of At+i−1 with fewest resamples, update At+i and Xt+i

10: end for

are normalised by the bounds of the minimum bounding box containing At and
At−m, and the est(·) used are those calculated for the designs at the respective
time steps. Rather than compare At with At−m at every time step this is done
every m time steps as a minimum (lines 3-7). This allows the increment of k (the
number of reevaluations per iteration) time to have an effect before the sets are
compared once more.

3.3 Increasing Minimum Revaluation Number, Based on Detecting
False Convergence

An alternative approach to increasing the absolute number of reevaluations each
iteration, is to increase the minimum number of reevaluations that archive mem-
bers must have accrued. This approach means the balance of function evaluations
expended on reevaluations versus new designs can alter back and forth from one
iteration to the next. For instance, if the minimum number of reevaluations per
elite member was k = 10, after reevaluating a single archive member with the
fewest reevaluations (Alg. 3 line 8), if all elite members had at least k reeval-
uations then no further reevaluations would be taken. On the other hand, if
there were elite members with fewer than k reevaluations, then the loop on lines
10-13 may be processed many times before the minimum number of reevalu-
ations condition was satisfied. Note that the check to increase k (lines 3-7) is
only undertaken in situations where the elite archive meets the condition that
all members have at least k reevaluations each.

3.4 Increasing Average Resamples per Elite Member

As the optimiser progresses we would like to say that the confidence we have in
our elite set (our estimate of the Pareto set) increases rather than decreases or
stagnates. With accumulative sampling the way to achieve this is to ensure that



Elite Accumulative Sampling Strategies 179

Algorithm 3 Increasing minimum number of reevaluations for elite members,
based on convergence assessment.
Require: m Convergence time window
Require: At−m Elite non-dominated members identified at time step t − m
Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t − 1)
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, update At and Xt

3: if number of time steps since last check meets or exceeds m then
4: if Iε+(At, At−m) > Iε+(At−m, At) then
5: k := k + 1
6: end if
7: end if
8: Reevaluate the member of At with fewest resamples, update At+1 and Xt+1

9: i := 1
10: while member of At+i with fewest resamples has fewer than k reevaluations do
11: Reeval. the member of At+i with fewest resamples, update At+i+1 and Xt+i+1

12: i := i + 1
13: end while

Algorithm 4 Increasing resamples per elite member over time.
Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t − 1)
Require: α Average number of resamples of A across all previous time steps
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, determine At and Xt

3: Reevaluate the member of At with fewest resamples, update At and Xt

4: i := 1
5: while mean num resamp(At) ≤ α do
6: Reevaluate member of At+i−1 with fewest resamples, update At+i and Xt+i

7: i := i + 1
8: end while

the number of reevaluations per set member is always increasing. Comparing
one generation directly to the next can be a brittle approach as it may force
a relatively large increase in resamples each time step (for instance if |A| = 1
for any stretch of time the imposition of an extra reevaluation each iteration
can be putative if the set grows in size later during an optimisation). Instead
we examine a less stringent average approach here, as outlined in Alg. 4. Here
the average number of resamples of solutions in At is compared to the average
across elite members of all previous time steps, and repeated reevaluations are
taken if the current average is lower (lines 4-6). This is in addition to the extra
reevaluation taken each generation as standard (line 3), which acts to steadily
increase the lower bound on this minimum.
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Algorithm 5 Incremental differential evolution candidate creation, p.
Require: Zt−1 DEMO population at previous time step
1: p := copy random member(Zt−1)
2: {a,b, c} := copy random members(Zt−1 \ {p})
3: for i := 1, . . . , |p| do
4: if rand() < cross prob then
5: pi := ai + differential weight × (bi − ci)
6: end if
7: end for

4 Empirical Results

We now compare Algs. 1-4 empirically. We use the DEMO algorithm [21] to gen-
erate a new design at each iteration prior to elite set member reevaluation(s).
We modify the original DEMO in two ways to use in the noisy optimisation con-
text. Firstly, in order to make the algorithm incremental a single new candidate
design is generated from the DEMO population at each time step rather than
doubling the population size (before its reduction via ranking and crowding).
This is achieved at each algorithm iteration by selecting one of the DEMO pop-
ulation at random to be the base parent (see Alg. 5, line 1). Secondly, due to the
noisy environment, there is no guarantee that non-dominated solutions preserved
by ranking and crowding truncation at one time step in the DEMO population
will be non-dominated on reevaluation (as illustrated in Sec. 3). To mitigate this,
a separate elite set At is maintained using the data structures introduced in [7],2

and whenever the DEMO search population, Zt, does not contain At, the omit-
ted members are combined with Zt prior to DEMO’s truncation operator being
applied. This was found to significantly improve the performance of DEMO in
the noisy domain in our preliminary experimentation.

Further details describing DEMO may be found in the original work [21]. We
use a DEMO population of 100 in all experiments, a probability of crossover of
0.9 and differential weight of 0.5. The external archive |At| is unbounded, and is
updated at each time step using the data structure from [7] to ensure it contains
the best estimate of the Pareto set. The algorithm variants are evaluated on
the IEEE CEC’09 test suite3 [31]. We use the unconstrained (bounded) prob-
lems from the suite, UP1-10, with the standard number of design parameters,
and modify the objective values with independent additive Gaussian noise with
standard deviations of σ = {0.01, 0.1, 1.0, 10.0} (making 40 test problem variants
in total). In (1) therefore εd ∼ N (0, σ2). We run each algorithm 30 times, for a
total of 300,000 function evaluations, and record the generational distance (GD)
and inverse generational distance (IGD) every 500 function evaluations using
the At at that time point. The noise-free reevaluation of the stored At is used
– the corresponding non-dominated set in its mapping to the noise-free space
2 Matlab code from https://github.com/fieldsend/.
3 Matlab code from http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared

Documents/Forms/AllItems.aspx.

https://github.com/fieldsend/.
http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared
Documents/Forms/AllItems.aspx
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Fig. 2. IGD results, initial 10% of run. The left block of bar charts shows the proportion
of time, across problems and polled every 500 function evaluations, where a resampling
technique led to the best results (black), the second best (dark grey), third best (light
grey) and worst (white), for each noise level. The right set of bar charts shows the corre-
sponding significance assessments – black indicates the proportion where the approach
is significantly better than all three other sampling approaches, dark grey significantly
better than two, light grey significantly better than one and white not significantly
better than any others.
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Fig. 3. GD results, initial 10% of run. Description as in Fig. 2 caption.

is extracted for the calculation of the quality measures. We utilise the modified
versions of the GD and IGD quality measures which are not susceptible to vari-
ation in set size (see [22]). We set the convergence check parameter m = 100 for
all experiments.

Figs. 2 and 3 give the relative IGD and GD performance for the four reeval-
uation routines embedded in DEMO, at each of the noise levels, averaged across
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Fig. 4. IGD results, final 10% of run. Description as in Fig. 2 caption.
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Fig. 5. GD results, final 10% of run. Description as in Fig. 2 caption.

the first 10% of the runs over the 10 test problems.4 For low noise levels the single
revaluation approach has generally good performance for both quality measures,
ranking first or second roughly 80% of the time across the initial stages of the
optimisation. This is seen to drop off as the noise increases. The minimum elite
member reevaluation approach (Alg. 3) performs fairly consistently across the
noise levels, and performs better than the steadily increasing reevaluations app-
roach. Interestingly the approach which increases the number of reevaluations
at each iteration (if oscillation is detected) tends to perform worst, except for
the largest noise level, where its relative performance jumps up.

Figs. 4 and 5 provide the combined results for the final 10% of the runs. The
general trends are as for the first 10% but the relative decline (and rise) of the
reevaluation approaches as the noise level increases is more pronounced. The
4 5% statistical significance is assessed using paired Wilcoxon signed ranks tests, with

each strategy compared to each of the other competitors.
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Fig. 6. Average number of resamples per elite member elite on a single run on UP1
(top) and size of At (bottom) for each update algorithm. Black through to light grey
indicates low noise through to high noise σ = 0.01, 0.1, 1.0, 10.0.

single revaluation approach degrades more steeply as the noise level rises, such
that between σ = 0.1 and σ = 1.0 the minimum elite member reevaluation app-
roach (Alg. 3) replaces it as being the preferred approach. Indeed, this approach
is best or second best for IGD 90% of the time for the highest two noise values.

4.1 Population Dynamics

We can explore some of the different behaviours of the resampling regimes by
examining the elite population dynamics over time, which also lends insight as
to why particular approaches seem better suited to different noise regimes. Fig.
6 shows the average number of reevaluations per member of At as a run pro-
gresses through to 50,000 function evaluations on the UP1 problem for each of the
accumulative sampling schemes, for the four different noise magnitudes. Some
immediate differences become apparent. When noise is high the standard app-
roach of fixing the ratio of resamples to new design evaluations throughout the
run can lead to fronts with large oscillations in the average number of resamples
per member (repeatedly jumping across the range of 2-15 in a few iterations).
On the other hand, increasing the number of reevaluations progressively each
time the front is detected as oscillating (Alg. 2) leads to rapidly increasing aver-
age number of reevaluations, meaning a relatively small proportion of expended
evaluations are on new designs. Alg. 3 (setting a minimum number of resam-
ples for archive members, and increasing this if convergence issues are detected)
can be seen to balance these properties, with the average number of resamples
increasing steadily in all noise regimes, but not drastically, and the variation rel-
atively small from one iteration to the next. Correspondingly, although the size
of At varies over time, it is seen to have lower amplitude on its high frequency
oscillations (indicating lower churn of elite members with this approach). Alg.
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4 similarly removes the wild variation in the average number of reevaluations
experienced by members of At which Alg. 1 and Alg. 2 are susceptible to, how-
ever as the noise level increases the lower bound on this can be seen to plateau,
rather than steadily increase as in Alg. 3. This decay is due Alg. 4 comparing
the current average reevaluations per member of At with all previous archive
averages, alternatively a moving window approach should mitigate this (though
obviously the window size then becomes an additional parameter beyond m).

5 Conclusion

Accumulative resampling of the elite population has previously been seen to
provide state-of-the-art performance when embedded in noisy multi-objective
optimisers. The management regime for deciding what proportion of function
evaluations to expend on accumulative elite reevaluations rather than new
designs has not however received much previous attention. Here we have com-
pared four alternative accumulative resampling regimes, which we have embed-
ded in an iterative version of the popular DEMO algorithm, and analysed their
performance on 40 variants of the unconstrained CEC’09 test problems. When
the noise is level is low (with widths up to 10% of the range of the Pareto front),
then having an equal balance of new designs versus elite reevaluations provides
relatively good results both at the early stages of optimisation, and also toward
the end. For larger noise widths however the balanced approach is not optimal.
Due to the estimated front oscillation there is a frequent churn of the elite set
membership, meaning the number of reevaluations accrued by members tends to
be low, and does not markedly increase as search progresses. This therefore nul-
lifies the benefits of accumulation, as the elite solutions do not progressively get
more accurate as time progresses under the standard regime. In these situations
the detection of oscillation, and the increase in the minimum acceptable num-
ber of reevaluations per elite member in response, is seen to provide consistently
good results. We look forward to being able to tackle highly noisy multi-objective
problems which these alternative reevaluation regimes would now seem to facil-
itate (the work presented here including noise widths up to 1000% of the range
of the Pareto front).

Further areas of research include examining the use of other indicators to
detect oscillations, using different sized time windows in the detection process,
allowing the sample rate to decrease as well as rise, and investigating switching
regimes between maintenance algorithms.
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Abstract. Optimization under uncertainty (OUU) is a very important
task for practitioners of engineering design optimization. In fact real–
world problems are often affected by uncertainties of different kind. The
search for robust optimal solutions is intrinsically multiobjective, being
formulated as the search for the optimal performance while minimizing
its variance. Thus, OUU should garner interest in the evolutionary multi-
objective optimization community. It is a challenging topic, because, for
instance, engineers have to deal with large scale or highly–constrained
problems. The first issue affects the feasibility of the optimization itself,
whereas the second affects the reliability of an optimal solution. In this
paper, we address the OUU problem to validate a number of best prac-
tices through the application to a benchmark problem: the optimization
of a boomerang launch parameters. To reduce the computational cost,
we consider variable screening as a preliminary step before performing a
stochastic optimization. For the latter we use a method recently proposed
by the authors, which combines robustness and reliability assessments
within a single optimization run.

Keywords: Uncertainty quantification · Polynomial chaos expansion ·
Evolutionary multiobjective optimization · Robust and reliability–based
design optimization · Screening analysis

1 Introduction

Real–world application problems of engineering design optimization are often
affected by uncertainties of different kind, such as unknown or changing envi-
ronmental conditions, variability in material or geometrical properties, model
assumptions, etc. Thus, the discipline of optimization under uncertainty (OUU)
has been the subject of growing attention. OUU presents several facets and
challenges. Below we list some of them.

First there is the problem of uncertainty quantification (UQ): quantifying
the a priori unknown uncertainty of system responses to uncertain inputs.

Second, the best solutions found with a deterministic approach are not guar-
anteed to be robust in the presence of uncertainty, as output values might vary
c© Springer International Publishing Switzerland 2015
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strongly for small input parameter variations. Moreover, in case of constrained
optimization problems they often lie on the boudary between the feasible and
unfeasible domain and are likely to violate one or more constraints. Thus, OUU
must look for robust and reliable solutions, stable against input parameter vari-
ations and with a negligible probability of violating some pre–defined criteria,
referred to as limit state functions (LSFs). This can be achieved with robust
design optimization (RDO) (see e.g. Refs. [1,2]) and reliability–based design
optimization (RBDO) (see e.g. Refs. [3–5]).

Third, the search for robust optimal solutions is intrinsically multiobjec-
tive, as it is commonly translated in the search for the optimal performance
while minimizing its variance. This is a strong contact point between OUU
and evolutionary multiobjective optimization (EMO), which is naturally an
effective instrument for solving multiobjective optimization problems. Moreover
Ref. [3–5] show the importance of using evolutionary algorithms to perform
RBDO for both the multiobjective and single objective problems (due to their
capability of reaching reliable global solutions).

Four, in real–world use cases OUU has to deal with large scale problems,
which combined with the use of computationally expensive function solvers,
might pose severe limits to the applicability of OUU.

Five, there are different types of uncertainties: random or probabilistic (due
to an inherent variability of physical systems and consequently irreducible) and
epistemic or imprecise uncertainties (due to a lack of knowledge or informa-
tion and, in principle, reducible at some stage of the modeling activity) (see
Refs. [6,7]). Here, we focus only on the first type, even though the procedure
described in this paper could be applicable to the latter as well.

Most of these challenges are reviewed in Refs. [6,7]. Specific reviews of evo-
lutionary optimization approaches to OUU can be found e.g. in Refs. [2,8,9].
Many papers were devoted to the single–objective case, with new heuristics for
determining the fitness function or its optimization in noisy environments, or
the use of hierarchical strategies for high performing explorations of the land-
scape, or the use of surrogate models to reduce the computational cost. Other
works highlighted the multiobjective nature of the robust optimisation problem
and extended single–objective methods to multi–objective OUU problems, where
robustness could be determined by analysing the solution behavior in its neigh-
borhood. Uncertainties effects on the Pareto dominance were studied and a few
different choices for robust objectives and constraints were explored. However
OUU deserves further investigation in the EMO field.

In this paper, we address the first four challenges of OUU with a practical
intent, i.e. with the aim of validating a number of best practices, which can be
useful in everyday engineering design, through the application to an example:
the optimization of a boomerang.

Though a toy model, this problem is a good representation of realistic design
optimization problems as shown in Ref. [10], where an optimization of geometric
and launch parameters was performed to determine at the same time optimal
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shapes and trajectories, together with aerodynamic analyses and the determina-
tion of response surface models for the extrapolation of aerodynamic coefficients.

For the present work, for simplicity we confined our investigations to the
optimization of the boomerang launch parameters. We started from a determin-
istic optimization. In order to reduce the computational cost of the stochastic
optimization, we performed a preliminary variable screening to detect the most
important uncertain variables to be considered as stochastic in the OUU.

For the OUU we used a method recently proposed by the authors, which
combines robustness and reliability assessments within a single optimization
run [11–13]. We used the polynomial chaos expansion (PCE) method to assess the
robustness of the optimization outcomes. The PCE was also used as a stochastic
response surface (SRSM) to quickly determine a sample cumulative distribution
function (CDF) for estimating the reliability of output properties. Particular
attention was given to the convergency check of the UQ parameters, such as
sample sizes, PCE degree, etc.

All the simulations shown below were done with the modeFRONTIER[14]
(mF) integration platform for multiobjective and multidisciplinary optimization.

In Section 2 we summarize the methods used in this work: the UQ and OUU
techniques in 2.1 and the screening analysis in 2.2. In Section 3 we briefly intro-
duce the chosen test case and illustrate the optimization problem. Sections 3.1
and 3.2 respectively describe the deterministic optimization performed on the
test case, and the screening analysis and UQ checks preliminary to the stochastic
optimization related in Section 3.3. The list of procedural practices is summa-
rized in the Conclusions as a guideline for designers and practitioners. Comments
on possible extensions are also provided.

2 Methods

2.1 Uncertainty Quantification and Optimization Under
Uncertainty

Probabilistic uncertain input parameters are modeled by random input vari-
ables following certain probability density functions (PDFs), which represent
the probability of occurrence of an event. Because of the input stochasticity, the
system response is also stochastic, but its PDF is not known a priori. Given that
objectives and constraints in optimization problems are often defined in terms
of output variables, UQ becomes very important. Distribution moments, like
mean and variance, can be estimated with many techniques, e.g. Monte Carlo
or Latin Hypercube Sampling (LHS)[15], or the more efficient PCE[16,17]. The
latter is accurate whilst usually requiring a smaller number of function evalua-
tions than sampling techniques, at least in the case of small–medium problem
dimensions. This is a crucial advantage, since computational time is one of the
major bottlenecks in design optimization processes.

We report below the key ideas of an OUU method recently introduced by the
authors. For a more detailed description, see Refs. [11–13] and references therein.
Our method relies on the PCE expansion of an output function Y of stochastic
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input variables X = (X1, ...,Xd) on a basis of polynomials ψi orthogonal w.r.t.
the input variable PDFs. In numerical applications the PCE is truncated to
a certain chaos order or polynomial degree k: Y � ∑k

i=0 aiψi(X). Thanks to
the orthogonality condition, the mean and variance of Y are respectively given
by μY = a0 and σ2

Y =
∑k

i=1 a2
i ||ψi||2. We determine the coefficients ai via a

least–square regression procedure on a sample of N points. The sample can be
arbitrarily chosen, with the exception of its minimum size Nmin, which must be
equal to the number of unknown parameters in the PCE, i.e. N ≥ Nmin = (k+d)!

k!d!
(in the single–variate case the number of coefficients equals k + 1, but in the
multivariate case it also depends on the stochastic input space dimension d).

Once the PCE coefficients have been determined, we can use the PCE as a
SRSM to approximate the function Y to find its CDF and determine percentile
values. The CDF is obtained by evaluating (and sorting) the PCE responses on
a LHS set of size Nperc. In this way we avoid calls of the real function solvers,
sensibly reducing the computational cost w.r.t. a pure sampling approach in
real–world applications. Percentile values can be used as probabilistic (or chance)
constraints to be optimized according to a given reliability threshold in the so–
called performance–measure approach (for a recent overview on RBDO methods,
see e.g. Ref. [3,5]).

The illustrated methods have been implemented within mF. The UQ flow is
nested into an optimization process. The statistical properties (mean, variance,
percentiles) computed in the nested UQ flow can be used as objectives or con-
straints in the main optimization flow, simultaneously enabling both RDO and
RBDO. This technique has been benchmarked in Refs. [11–13] on several test–
cases with particular attention to the optimal choice of the sample sizes and k
for the percentile determination.

Our method does not depend on the optimization algorithm used, which
can be chosen on the basis of the optimization problem and other necessities.
However, as mentioned in the introduction, EMO algorithms are quite beneficial
due to their robustness and ability of finding accurate Pareto fronts.

2.2 Screening Analysis

In the literature various variable screening techniques exist. We consider here
the Smoothing Spline–ANOVA (SS–ANOVA) method, a statistical modeling
algorithm based on a function decomposition similar to the classical analysis
of variance (ANOVA) decomposition and the associated notions of main and
interaction effects (higher–order interactions are typically excluded from the
analysis). In this context smoothing means nonparametric function estimation
in presence of stochastic data. In fact, SS–ANOVA belongs to the family of non-
parametric or semiparametric models, or, to be specific, to smoothing methods,
suitable for regression with noisy data, given the assumption of Gaussian–type
responses. For a detailed explanation of the subject, see e.g. Refs. [18,19]. The
key elements of this approach are provided below.

In order to determine the regression model f for a given stochastic dataset,
SS–ANOVA considers two functionals: [L(f)] defined as the minus log likelihood
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of the model f given the data (this functional is related to the the goodness of
the fit), and [J(f)] defined as a quadratic roughness functional (a measure of
the roughness/smoothness of the model f). The regression problem solution can
be stated as a constrained minimization problem

min L(f) , subject to J(f) ≤ ρ , (1)

where the minimization of L guarantees a good fit to the data, while the soft (i.e.,
inequality) constraint on J – limiting the admissible roughness below a thresh-
old ρ – prevents overfitting. By applying the Lagrange method, Eq. (1) can be
rewritten as: min L(f) + λ

2J(f), where λ is a Lagrange multiplier. The regres-
sion procedure through this minimization is called general penalized likelihood
method (because J represents a penalty on the roughness), penalty smoothing, or
smoothing method with roughness penalty. The value of the smoothing param-
eter λ controls the trade–off in the model f between smoothness and fidelity
to the data: the larger the λ, the smoother the model. Smaller values imply
rougher functions, though with a better agreement to the data. Other smooth-
ing parameters are contained in the expression of J(f). All these parameters are
determined through a data-driven process.

These techniques have been implemented in the modeFRONTIER software.
SS-ANOVA is a suitable screening technique for detecting important variables
in a given dataset. In fact, its results are easily interpretable, as the importance
of each term (main effects and interactions) is proportional to the percentage of
its contribution to the global variance of the statistical model. This measure can
be displayed in an effect bar chart to compare the relative importance of the
terms, as shown on Fig. 5 of Section 3.2.

3 Boomerang Test Case

The boomerang problem is an interesting non–standard application, firstly con-
sidered as a benchmark in Ref. [10], to which the reader might refer for more
details. Here we only summarize some key-points. The main purpose of that work
was to design an easy–to–launch boomerang, able to draw a smooth returning
trajectory, satisfying at the same time a minimum flight distance constraint.
The design process consisted in the geometric optimization of the boomerang
shape (built with a CAD software tool) and the optimization of the boomerang
launch parameters. The boomerang trajectory was determined by a dynamical

Fig. 1. One of the optimal boomerang geometries found in Ref. [10]
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model implemented in MATLAB[20] coupled with a computational fluid dynamic
model (CFD), which provided the forces and torques necessary for the trajec-
tory integration. Dedicated response surface models were built for each geometric
configuration on the CFD datasets to approximate the aerodynamic coefficients
called by the MATLAB scripts. The reasons for this choice are explained in
Ref. [10]. mF was used as an integration platform to orchestrate the interaction
among the different software tools involved and to drive the overall optimization
process, by exploiting its optimization algorithm libraries.

In this work we focused on one subproblem: the optimization of the boome-
rang launch parameters (see also the description of Fig. 19 in Ref. [10]). We
started from one of the optimal designs selected in Ref. [10] (its shape is shown
in Fig. 1) and used the response surfaces built in that work for MATLAB com-
putations, which we treated as a black box providing system response values to
our input parameters.

The input variables and parameters are summarized in Table 1. Velocity and
spin refer to the boomerang initial translational velocity and spin. Tilt is the
angle between the boomerang initial rotational axes and the vertical plane (a
zero degree tilt corresponds to a vertical plane of rotation). Aim is the angle
between the boomerang initial translational velocity and the horizontal plane.

Table 1. Input variables and constant parameters for the boomerang launch

Input variables Range of variation

Velocity [15 − 30] m
Spin [4 − 10] Hz
Aim [0 − 30]◦

Tilt [0 − 50]◦

Constant parameters Value

Initial height 2 m
Density 0.5 Kg/m3

Moment of inertia 0.0011263 Kg ·m2

Volume 0.0590711 m3

Monitored output quantities are listed below:

– Accuracy: the difference between the position from which the boomerang is
launched and the final position where the boomerang returns;

– Range: the maximum distance reached by the boomerang during its flight;
– Energy: the (translational plus rotational) energy necessary to launch the

boomerang;
– ie: a discrete–valued output, representing the stopping condition for the

MATLAB integration of motion equation.

3.1 Deterministic Optimization

Fig. 2 shows the optimization workflow (similar to Fig. 19 of Ref. [10]), with input
variables, constant parameters and support file nodes at the top and monitored
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output variables, objectives and costraints at the bottom. A central script node
(EasyDriver) handles the calls to the MATLAB scripts for the evaluation of
the boomerang trajectory on the basis of aerodynamic and mass properties as
explained in Ref. [10].

Fig. 2. Workflow for the deterministic optimization

The deterministic optimization problem was single–objective and consisted
in the minimization of the total energy, with a constraint on the range spanned
by the boomerang trajectory (range>10 m) and an equality constraint on the
stopping condition for the MATLAB integration corresponding to a return dis-
tance of the boomerang equal to 1 m (ie=2). As we found that several designs
(mostly at the beginning of the optimization) provided irregular or unsuccesful
trajectories, we decided to insert an “if-node” into our workflow so that such
designs would be labelled as error designs, which stabilized the optimization
(especially in the case of OUU shown below, because error designs would distort
the UQ assessments).

Although the problem was single objective, the optimization was done with
NSGA-II[21] to avoid the risk of getting stuck in a local optimum region. We
ran 100 generations with an initial population of 50 random individuals (cre-
ated by a random DOE algorithm), crossover and mutation probabilities equal
to 0.9 and 0.25 respectively, a distribution index of 2, and automatic scaling
for mutation probability. The first hundred evaluated designs were either error
designs (violating the condition imposed in the workflow) or unfeasible due to the
violation of the constraint on the stopping criterion ie (boomerangs that do not
come back or land at a greater distance than 1 m) or the minimum range con-
straint. Only after the first 300 designs, the trajectory became more stable and
eventually feasible designs were found. In the long run, most of the designs were
feasible. The unfeasible ones were distributed evenly between those violating the
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ie condition (but yielding designs very close to the return accuracy of 1 m) and
the constraint on the range.

Fig. 3 shows the history chart of the objective during the deterministic opti-
mization. Only the feasible design values of the total energy are shown. A good
convergence was achieved towards the end of the 5000 evaluations.

In Fig. 4 we show the trajectory of the best design found. This design cor-
responds to an initial velocity slightly greater than 15 m/s, an initial spin of
approximately 4.123 Hz, an aim angle of 10.433◦ and an almost zero tilt angle.
This set should make launching the boomerang relatively easy. These param-
eters yield a total energy of 3.5116 J , most of which is due to the boomerang
translational energy, while the rotational energy is approximately 5% of the total
energy. The maximum range spanned during the flight is slightly greater than
10 m.

Fig. 3. History chart of the minimization of the total energy (only feasible designs are
shown)

Fig. 4. Trajectory performed by the boomerang with deterministically optimized
launch parameters



Guideline Identification for Optimization Under Uncertainty 195

Fig. 5. Input variable main and interaction effects on the boomerang trajectory total
energy (top chart), accuracy (middle chart), and maximum range (bottom chart)

3.2 Screening Analysis and Uncertainty Quantification Checks

We begin this section with the analysis of input variable main and interaction
effects on output variables to identify which inputs, if stochastic, affect the out-
puts most. We performed a screening analysis with the SS-ANOVA tool on a
database consisting of the first 800 designs evaluated during the determinis-
tic optimization. We found that the total energy of the boomerang trajectory
depends almost uniquely on the initial velocity and spin (main effects) (see Fig. 5,
top chart). The accuracy appears to depend on several factors, like the tilt angle
and its interaction with the initial velocity and spin, the spin itself, etc. (see



196 M. Marchi et al.

Fig. 5, middle chart). None of these is predominant, which is consistent with the
complex mechanisms determining a succesful boomerang trajectory. We found
similar trends for the stopping criterion too. Finally, the effects determining the
range are shown on the bottom chart on Fig. 5. Also in this case there are mul-
tiple non–negligible factors, but the predominant effect can be attributed to the
spin immediately followed by its interaction with the initial velocity.

From this analysis, the boomerang initial velocity and spin, followed by the
tilt angle, appear to be the most important variables for the system response.
We chose the first two as stochastic variables for the OUU, while considering the
tilt as a deterministic variable like the aim angle, because we wanted to keep the
number of stochastic variables as low as possible to reduce the computational
effort of the calculations. Moreover, the tilt angle has the biggest effect on the
accuracy, which is determined by the stopping criterion ie on which we decided
to keep the deterministic constraint ie=2.

The identification of only two important stochastic variables out of four
inputs brings about a consistent computational cost reduction in UQ assessments
if PCE is used. In fact, for d = 4 stochastic inputs and chaos degree k = 3 ( or 4),
Nmin = 15 ( or 70), while for d = 2 and k = 3 ( or 4) Nmin = 10 ( or 35). This
way, approximately two thirds (or four fifths) function evaluations can be spared.

After detecting the most important variables, we performed some UQ checks
on the optimal deterministic solution in order to single out the best UQ method
for the robust optimization and check the convergence of the sample size and/or
PCE degree. We assumed the initial velocity and the spin to be normally dis-
tributed around the nominal design values with a distribution standard deviation
equal to approximately 3% of the variable range (i.e. respectively 0.5 m/s and
0.2 Hz).

First we did UQ by means of LHS. We generated samples of 13, 20, 50, 100,
200 and 500 designs and computed the sample mean and standard deviation.
Then, we considered the PCE technique and estimated the mean and variance
with a third order (k = 3) polynomial expansion built on samples consisting
of 13, 20, 50, 100 designs, and a fourth order (k = 4) expansion on samples
consisting of 20, 30, 50, 100 designs. The UQ check results are summarized in
Fig. 6. By examining the top and middle charts, we can notice that the k = 3
and k = 4 PCE data converge much faster than the LHS estimates even for
the smallest sample sizes, with the exception of the energy standard deviation
estimated from the third–order PCE. The PCE data appear to be well converged
also in the polynomial degree, since there is no noticeable difference between the
third and fourth order results (on the scale of the figures at least). Only the
estimates on the accuracy (i.e. return distance) deviate from these trends, as
shown on the bottom charts on Fig. 6, where the PCE estimates appear to
have bigger oscillations than the LHS outcomes. The reason for this is that the
samples contain several designs with different input values but identical accuracy
values (that is 1 m) because of the constraint on ie, and in such cases the PCE
cannot accurately fit the data.
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Fig. 6. Comparison of LHS and (third and fourth order) PCE estimates for the mean
value (left charts) and standard deviation (right charts) of the boomerang trajectory
total energy (top), maximum range (middle) and accuracy (bottom) computed on
samples of different sizes. A logarithmic scale is used on the abscissa axes.

3.3 Stochastic Optimization

Based on the results of Section 3.2, we performed an OUU of the boomerang
trajectory problem with stochastic spin and velocity as in Section 3.2 and the
UQ nested loop based on the PCE method, with a third order expansion and a
PCE sample size of 20 designs.

We considered two robust objectives, i.e. the minimization of the mean value
and standard deviation of the total energy, a probabilistic constraint (to optimize
the reliability) on the maximum range, such that only the 0.1% of designs should
fail achieving a range greater than 10 m (0.1-th percentile of the maximum range
> 10 m), and the deterministic constraint ie=2. As an optimizer, we used again
NSGA-II with the same parameters as in Section 3.1, starting from an initial pop-
ulation of 50 designs composed by the best solution and other feasible designs
found during the deterministic optimization. This way, the algorithm was able to
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Fig. 7. Total energy standard deviation (y–axis) vs. total energy mean value (x–axis):
OUU Pareto front (filled triangles) and deterministic result (filled square)

Fig. 8. Histograms on samples of 500 designs centered on the best deterministic (top
chart) and one of the stochastic (bottom chart) solutions. The light–colored part of
the deterministic histograms denotes designs violating the maximum range constraint.

find some feasible solutions from the very beginning. To compare results with the
deterministic run, we considered the same number of real function evaluations,
corresponding to 5 generations in this case (for each individual a sample of 20
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designs is evaluated in the nested UQ assessment). For the percentile computa-
tion we generated samples of 1000 designs, evaluated with the PCE as a SRSM.

Fig. 7 shows the stochastic Pareto front found with the OUU (filled triangles)
and the best deterministic solution (filled square). It appears that robustness and
reliability have been achieved at the expense of energy. To further inspect the
effect of the OUU on the Pareto front, we made UQ assessments on samples of
500 designs around selected solutions. As an example, in Fig. 8 we compare the
results for the total energy of the best deterministic design (top chart) and a
compromise solution (denoted with the label 201 in Fig. 7) in the central region
of the Pareto front (bottom chart of Fig. 8) (the main results illustrated below do
not depend on this choice). The OUU design has a probability density which is
slightly shifted towards higher energy values and more peaked around the mean
value (as expected by looking at Fig. 7). Most importantly, the deterministic
solution has a high probability of violating the threshold constraint on the range
spanned by the boomerang (the light–colored part of the histograms in the top
chart of Fig. 8 denotes the unfeasible designs w.r.t the constraint on the maxi-
mum range), while no design out of the 500 hundred drawn around the solution
found with the OUU violates that constraint.

4 Conclusions

In this paper we addressed the process of optimization under uncertainty through
the application to the optimization of a boomerang trajectory. Starting from a
deterministic optimization to obtain a reference solution, we performed a screen-
ing analysis to identify the most important input variables influencing output
variations. Those variables were used as stochastic variables for the OUU. We
compared two methods for UQ, namely the LHS and PCE techniques and per-
formed convergency checks to determine the sample size and the PCE degree.
Then we made an OUU looking for robust (minimum mean performance values
and minimum standard deviation) and reliable (probabilistic constraints were
considered) solutions. The solutions found were compared with the reference
deterministic optimum and a further UQ assessment was performed to show the
reliability of the stochastic solutions.

We could summarize the following general guidelines for OUU:

1. Increase the knowledge on the examined problem (e.g. with preliminary
deterministic optimization, or at least with a preliminary exploration cam-
paign where some designs are evaluated).

2. Identify the most important variables for the problem.
3. Check the parameter convergence of the UQ techniques and choose the

method providing the most accurate results with the minimum computa-
tional effort, if possible.

4. Perform the OUU and analyze output results.

The second step is very important for high–dimensional problems and real–
world applications where evaluating an output might be very expensive. In this
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paper our goal was to reduce the number of stochastic input variables in order
to reduce the minimum number of sample points for the determination of the
PCE coefficients (although the size of the problem was not large). An alterna-
tive approach would be to identify the subset of the most important variables
through screening and use it to build accurate surrogate models and perform
the optimization (deterministic or stochastic) while keeping the less important
variables fixed at their central values.

The third step is also important in that the choice of the UQ method might
affect the computational effort required by OUU, while the convergency checks
are necessary to estimate the accuracy of the results. Unfortunately, in real–world
applications engineers often need to make a compromise between accuracy of the
results and the feasibility of the simulations in a reasonable amount of time. Here
we have considered only the UQ and OUU techniques implemented in mF, but
the applicatbility of these considerations can be easily extended.

Even though we started from a single–objective optimization problem, the
guidelines obtained can be generalized to multiobjective optimization problems,
where mean performances could be treated as objectives, and their standard
deviations could be used as further objectives or constraints to improve the
robustness of the Pareto front solutions. Additional probabilistic constraints
could be used to improve the reliability as well. The first part, introduces other
problems close to the EMO community interests, such as the many–objective
optimization, but this goes beyond our present purposes.
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Abstract. In this paper, we propose an extension to Robust Ordinal
Regression allowing it to take into account also preference information
from questions about indifference between real and fictitious alternatives.
In particular, we allow the decision maker to suggest a new alternative that
is different from the existing alternatives, but equally preferable. As shown
by several experiments in psychology of the decisions, choosing between
alternatives is different from matching two alternatives since the two
aspects involve two different reasoning strategies. Consequently,by includ-
ing this type of preference information one can represent more faithfully
the DM’s preferences. Such information about indifference should narrow
down the set of compatible value functions much more quickly than stan-
dard pairwise comparisons, and a first simple example at least indicates
that this intuition seems to be correct.

1 Introduction

Multiple Criteria Decision Aiding (MCDA) (see [8,9]) aims to recommend the
Decision Maker (DM) a decision that best fits her/his preferences when a plu-
rality of criteria has to be taken into consideration. Typically, in MCDA, a set
of alternatives A = {a1, . . . , an} is described in terms of performances with
respect to a coherent family of criteria G = {g1, . . . , gm} [24]. Without loss of
generality, each criterion gj ∈ G can be considered as a real-valued function
gj : A → Ij ⊆ R, such that for any a, b ∈ A, gj(a) ≥ gj(b) means that a is at
least as good as b with respect to criterion gj .

Given two alternatives a, b ∈ A and considering their performances with
respect to the m criteria belonging to G, very often a will be better than b for
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 205–217, 2015.
DOI: 10.1007/978-3-319-15892-1 14



206 J. Branke et al.

some of the criteria while b will be better than a for the remaining criteria.
For this reason, in order to cope with any multiple criteria decision problem,
we need to aggregate the performances of the alternatives taking into account
the preferences of the DM. The three most well known aggregation models are
the following:

• MAVT - Multi-Attribute Value Theory (see [7,19]) assigning to each alter-
native a ∈ A a real number representative of its desirability ,

• outranking methods (see [10,12,24]) building some outranking preference
relations S on A, such that for any a, b ∈ A, aSb means that a is at least as
good as b,

• decision rule models using a set of “if..., then...” decision rules induced from
the DM’s preference information through Dominance-based Rough Set App-
roach (DRSA, see [14,15,26,27]).

Such MCDA models have recently been integrated into Evolutionary Multi-
objective Optimization (EMO) as a means to interact with the DM and focus
the search to the part of the Pareto front most preferred by the DM [1,3].

In this paper we consider the first model and we take into considera-
tion a value function U :

∏m
j=1 Ij → R such that for any a, b ∈ A, a is

at least as good as b (a � b) if U(g1(a), . . . , gm(a)) ≥ U(g1(b), . . . , gm(b)).
The simplest form of the value function is the additive form, defined as:
U(g1(a), . . . , gm(a)) =

∑m
j=1 uj(gj(a)), where uj(gj(a)) are non-decreasing func-

tions of their arguments. In the following, for simplicity of notation, we shall use
U(a) instead of U(g1(a), . . . , gm(a)) for all a ∈ A.

Application of any decision model requires the definition of its parameters
which can be obtained by asking them directly to the DM or inferring them from
preference information given by the DM. This second approach seems more prac-
tical because the DM can have some difficulty in realizing the exact meaning of
the parameters in the preference model and, moreover, their direct elicitation
requires a strong cognitive effort from the DM. The typical preference informa-
tion considered in this case is the pairwise comparisons between alternatives on
which the DM feels sufficiently confident. In this paper we propose a different
type of preference information expressed in terms of indifference between two
alternatives. More precisely, supposing that the DM declares that an alternative
a is preferred to another alternative b, we ask the DM to indicate another alter-
native b+, obtained by improving b on some criteria, so that alternative b+ is
indifferent to a. Another possible way to get a preference information in terms
of indifference is the following. Supposing again that alternative a is preferred
to alternative b, one can ask the DM to indicate an alternative a−, obtained by
deteriorating a on some criteria, so that a− is indifferent to b. Yet another pos-
sibility is to consider an alternative a+−, obtained from alternative a improving
its performances on some criteria and deteriorating its performances on other
criteria, so that a and a+− are indifferent. The main advantage we expect from
this type of preference information is that it should reduce the space of com-
patible value functions much more than usual information supplied in terms of
preference pairwise comparisons. Indeed, from the mathematical point of view,
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the new preference information should be translated by equality constraints that,
in case of a value function representing perfectly the preference of the DM, dras-
tically will reduce the space of compatible value functions. In the following, to
take into account a certain imprecision in the DM’s preferences, we model the
indifference information by imposing that the difference of the utilities of two
indifferent alternatives, in absolute value, should be no greater than an indiffer-
ence threshold. Anyway, even if we do not use equality constraints, the space of
compatible value function is strongly reduced, especially if the considered indif-
ference threshold is sufficiently small. Moreover, as proved by several experiments
in psychology of the decisions [25,29], choosing between two alternatives is dif-
ferent from matching two alternatives since the two aspects involve two different
reasoning strategies. Consequently, putting together usual preference informa-
tion in terms of pairwise preference of one alternative over another with the
new type of preference information we are introducing, permits to build a util-
ity function representing the DMs preferences in a more faithful way. We think
that this is beneficial also for the elicitation of preference information within the
EMO algorithms, as it should allow a faster convergence of the interactive EMO
algorithm to the part of the Pareto front most preferred by the DM.

The paper is organized as follows. In the next section we recall the basic
concepts of ordinal regression and robust ordinal regression. In the third section
we introduce the new type of preference information. In the fourth section we
present a didactic example. Conclusions and perspective for future research are
collected in the last section.

2 Ordinal Regression and Robust Ordinal Regression

2.1 Ordinal Regression

Each decision model requires the specification of some parameters. For exam-
ple, using MAVT, the parameters are related to the formulation of the marginal
value functions uj(gj(a)), j = 1, . . . , m. Since, as explained previously, the indi-
rect preference information is more applied in practice, within MCDA, many
methods have been proposed to determine the parameters characterizing the
considered decision model inducing the values of such parameters from some
holistic preference comparisons of alternatives given by the DM. This indirect
preference elicitation is the base of the ordinal regression paradigm.

The most well-known ordinal regression methodology is the UTA (UTilités
Additives) method proposed by Jacquet-Lagrèze and Siskos [17], which aims at
inferring one or more additive value functions from a given complete ranking
of alternatives belonging to a reference set AR ⊆ A. The method considers a
piecewise additive value function U(g1(a), . . . , gm(a)) =

∑m
j=1 uj(gj(a)) having

marginal value functions uj(·), j = 1, . . . , m, being piecewise-linear, with a pre-
defined number of linear pieces. UTA uses linear programming to determine
an additive value function compatible with the preference information provided
by the DM. Technically, in order to check if there exists at least one additive
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function compatible with the preferences provided by the DM, one has to solve
the following linear programming problem:

ε∗ = max ε, s.t.
U(a∗) ≥ U(b∗) + ε if a∗ � b∗, with a∗, b∗ ∈ AR,

U(a∗) = U(b∗) if a∗ ∼ b∗, with a∗, b∗ ∈ AR,
m∑

j=1

uj(βj) = 1, uj(αj) = 0, j = 1, . . . , m,

uj(gj(a)) ≥ uj(gj(b)) if gj(a) ≥ gj(b),∀a, b ∈ A, j = 1, . . . , m,

⎫
⎪⎬

⎪⎭
E

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

EAR

where

• βj and αj are the best and the worst considered values of criterion gj , j =
1, . . . , m,

• � and ∼ are the asymmetric and the symmetric part of the binary relation
� representing the DM’s preference information, i.e., a∗ � b∗ means that a∗

is preferred to b∗ while a∗ ∼ b∗ means that a∗ and b∗ are indifferent,
• here, as always in the following, ε is considered without any constraint on

the sign.

If the set of constraints EAR

is feasible and ε∗ > 0, then there exists at least one
additive value function compatible with the DM’s preferences. If there is no com-
patible value function, i.e., if the preferences of the DM cannot be represented by
an additive value function with pre-defined number of linear pieces, [17] suggests
either to increase the number of linear pieces in some marginal value functions,
or to select the utility function U that gets the sum of deviation errors close to
minimum and minimizes the number of ranking errors in the sense of Kendall
or Spearman distance.

The ordinal regression paradigm has been applied within the two main MCDA
approaches, that is those using a value function as preference model [4,17,18,23,
28], and those using an outranking relation as preference model [21,22].

2.2 Robust Ordinal Regression

Usually, from among many sets of parameters of a preference model representing
the preference information given by the DM, only one specific set is selected and
used to work out a recommendation.

Since the selection of one of these sets of parameters compatible with the pref-
erence information given by the DM is rather arbitrary, Robust Ordinal Regres-
sion (ROR; [5,6,16]) proposes to take into account simultaneously all of them,
in order to obtain a recommendation in terms of necessary and possible conse-
quences of applying all the compatible preference models on the considered set
of alternatives; the necessary weak preference relation holds for any two alterna-
tives a, b ∈ A (a �N b) if and only if a is at least as good as b for all compatible
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preference models, while the possible weak preference relation holds for this pair
(a �P b) if and only if a is at least as good as b for at least one compatible
preference model.

Although UTAGMS [16] is the first method applying the ROR concepts, in the
following, we shall describe the GRIP method [11] being its generalization. Then,
we shall mention the other applications of the ROR that have been published
later in several papers.

2.3 GRIP

In the UTAGMS method [16], which initiated the stream of further developments
in ROR, the ranking of reference alternatives does not need to be complete
as in the original UTA method [17]. Instead, the DM may provide pairwise
comparisons just for those reference alternatives (s)he really wants to compare.
Precisely, the DM is expected to provide a partial preorder � on AR. Obviously,
one may also refer to the relations of strict preference � or indifference ∼.

The transition from a reference preorder to a value function is done in the
following way: for a∗, b∗ ∈ AR,

U(a∗) ≥ U(b∗) + ε, if a∗ � b∗,

U(a∗) = U(b∗), if a∗ ∼ b∗,

}
E1

where ε is a (generally small) positive value.
Observe that a∗ ∼ b∗ can be represented as follows:

|U(a∗) − U(b∗)| ≤ δ, (1)

i.e.
U(a∗) − U(b∗) ≤ δ,

U(b∗) − U(a∗) ≤ δ,

}
(2)

where δ is a non-negative indifference threshold considered to take into account
imprecision in the preference information.

Observe that the case δ = 0 collapses to the constraints expressed as equality,
i.e. U(a∗) = U(b∗). It is apparent that if the indifference constraints are expressed
in terms of equality, one can get a more precise inference of the utility function
U (e.g. in case U is expressed as weighted sum and there are only two criteria,
then a single indifference comparison formulated in terms of equality is enough
to determine univocally the utility function). However, observe that this greater
precision can be misleading because a certain imprecision is always implicit in
the preference information given by the DM.

In some decision making situations, the DM is willing to provide more infor-
mation than a partial preorder on a set of reference alternatives, such as “a∗ is
preferred to b∗ at least as much as c∗ is preferred to d∗”. The information related
to the intensity of preference is also accounted for by the GRIP method [11].
It may refer to the comprehensive comparison of pairs of reference alternatives
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on all criteria or on a particular criterion only. Precisely, in the holistic case,
the DM may provide a partial preorder �∗ on AR × AR, whose meaning is: for
a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) �∗ (c∗, d∗) ⇔ a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗.

When referring to a particular criterion gj ∈ G, rather than to all criteria jointly,
the meaning of the expected partial preorder �∗

j on AR × AR is the following:
for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) �∗
j (c∗, d∗) ⇔ a∗ is preferred to b∗ at least as much as

c∗ is preferred to d∗ on criterion gj .

In both cases, the DM is allowed to refer to the strict preference and indifference
relations rather than to weak preference only. The transition from the partial
preorder expressing intensity of preference to a value function is the following:
for a∗, b∗, c∗, d∗ ∈ AR,

U(a∗) − U(b∗) ≥ U(c∗) − U(d∗) + ε, if (a∗, b∗) � (c∗, d∗),

U(a∗) − U(b∗) = U(c∗) − U(d∗), if (a∗, b∗) ∼ (c∗, d∗),

uj(a∗) − uj(b∗) ≥ uj(c∗) − uj(d∗) + ε, if (a∗, b∗) �j (c∗, d∗) for gj ∈ G,

uj(a∗) − uj(b∗) = uj(c∗) − uj(d∗), if (a∗, b∗) ∼j (c∗, d∗) for gj ∈ G.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

E2

In order to check if there exists at least one model compatible with the prefer-
ences of the DM we solve the following linear programming problem:

ε∗ = max ε s.t.
E ∪ E1 ∪ E2 = EDM (3)

If the set of constraints EDM is feasible and ε∗ > 0, then there exists at least
one additive value function compatible with the preference information pro-
vided by the DM, otherwise no additive value function is compatible with the
provided information. In this case, the analyst can decide to check for the cause
of the incompatibility [20] or can continue the decision aiding process accepting
the incompatibility.

Denoting by UAR the set of value functions compatible with the preference
information provided by the DM, in the GRIP method three necessary and three
possible preference relations can be defined:

• a �N b iff U(a) ≥ U(b) for all U ∈ UAR , with a, b ∈ A,
• a �P b iff U(a) ≥ U(b) for at least one U ∈ UAR , with a, b ∈ A,
• (a, b) �∗N (c, d) iff U(a) − U(b) ≥ U(c) − U(d) for all U ∈ UAR , with

a, b, c, d ∈ A,
• (a, b) �∗P (c, d) iff U(a) − U(b) ≥ U(c) − U(d) for at least one U ∈ UAR ,

with a, b ∈ A,
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• (a, b) �∗N
j (c, d) iff uj(a) − uj(b) ≥ uj(c) − uj(d) for all U ∈ UAR , with

a, b, c, d ∈ A, gj ∈ G,
• (a, b) �∗P

j (c, d) iff uj(a) − uj(b) ≥ uj(c) − uj(d) for at least one U ∈ UAR ,
with a, b ∈ A, gj ∈ G.

Given alternatives a, b, c, d ∈ A, and the sets of constraints

U(b) ≥ U(a) + ε

EDM

}
EN (a, b),

U(a) ≥ U(b)
EDM

}
EP (a, b),

U(c) − U(d) ≥ U(a) − U(b) + ε

EDM

}
EN (a, b, c, d),

U(a) − U(b) ≥ U(c) − U(d)
EDM

}
EP (a, b, c, d),

uj(c) − uj(d) ≥ uj(a) − uj(b) + ε

EDM

}
EN

j (a, b, c, d),

uj(a) − uj(b) ≥ uj(c) − uj(d)
EDM

}
EP

j (a, b, c, d),

we get that:

• a �N b iff EN (a, b) is infeasible or if EN (a, b) is feasible and εN (a, b) ≤ 0,
where εN (a, b) = max ε, s.t. EN (a, b);

• a �P b iff EP (a, b) is feasible and εP (a, b) > 0, where εP (a, b) = max ε, s.t.
EP (a, b);

• (a, b) �∗N

(c, d) iff EN (a, b, c, d) is infeasible or if EN (a, b, c, d) is feasible
and εN (a, b, c, d) ≤ 0, where εN (a, b, c, d) = max ε, s.t. EN (a, b, c, d);

• (a, b) �∗P

(c, d) iff EP (a, b, c, d) is feasible and εP (a, b, c, d) > 0, where
εP (a, b, c, d) = max ε, s.t. EP (a, b, c, d);

• (a, b) �∗N

j (c, d) iff EN
j (a, b, c, d) is infeasible or if EN

j (a, b, c, d) is feasible
and εNj (a, b, c, d) ≤ 0, where εNj (a, b, c, d) = max ε, s.t. EN

j (a, b, c, d);
• (a, b) �∗P

j (c, d) iff EP
j (a, b, c, d) is feasible and εPj (a, b, c, d) > 0, where

εPj (a, b, c, d) = max ε, s.t. EP
j (a, b, c, d);

As to properties of �N and �P on A, let us remind after [16] that:

• �N is a partial preorder on A,
• �N⊆�P ,
• a �N b and b �P c ⇒ a �P c, ∀a, b, c ∈ A,
• a �P b and b �N c ⇒ a �P c, ∀a, b, c ∈ A,
• a �N b or b �P a, ∀a, b ∈ A.

The above properties are the minimal ones characterizing �N and �P [13]. Other
interesting properties of �N and �P are the following [16]:

• �P is strongly complete and negatively transitive,
• �P is complete, irreflexive and transitive.
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3 Preference Information in Terms of Pairwise
Indifference Comparisons

In this section we introduce a new type of preference information expressed in
terms of indifference between alternatives. Of course, this new type of preference
information is supposed to be added to the type of preference information already
considered within GRIP and, more in general, within the ROR methods. Even
more, as explained in the following, the new type of preference information is
very often based on some preference information expressed in terms of strict
preference already considered within ROR.

We shall present three typical types of preference information expressed in
terms of indifference pairwise comparisons:

• suppose that the DM has already declared that a∗ is preferred to b∗. In
this case one can ask the DM to indicate a new alternative b∗+

H obtained
from b∗ improving the performances on criteria from H ⊆ G such that a∗ is
indifferent to b∗+

H . This preference information will be represented as follows:

|U(a∗) − U(b∗+
H )| ≤ δ, (4)

i.e.
U(a∗) − U(b∗+

H ) ≤ δ,

U(b∗+
H ) − U(a∗) ≤ δ

}
E(a∗, b∗+

H )

where δ is a non-negative indifference threshold considered to take into
account imprecision in the preference information;

• suppose again that the DM has already declared that a∗ is preferred to b∗

and let us ask the DM to indicate a new alternative a∗−
K obtained from

a∗ deteriorating the performances on criteria from K ⊆ G such that a∗−
K is

indifferent with b∗. This preference information will be represented as follows:

|U(a∗−
K ) − U(b∗)| ≤ δ, (5)

i.e.
U(a∗−

K ) − U(b∗) ≤ δ,

U(b∗) − U(a∗−
K ) ≤ δ

}
E(a∗−

K , b∗);

• let us consider a reference alternative a∗ and let us ask the DM to indicate
a new alternative a∗+−

H,K obtained from a∗ by improving the performances on
criteria from H and deteriorating the performances on criteria from K with
H,K ⊆ G,H ∩ K = ∅ such that a∗+−

H,K is indifferent to a∗. This preference
information will be represented as follows:

|U(a∗+−
H,K ) − U(a∗)| ≤ δ, (6)

i.e.
U(a∗+−

H,K ) − U(a∗) ≤ δ,

U(a∗) − U(a∗+−
H,K ) ≤ δ

}
E(a∗, a∗+−

H,K ).
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Besides the above three typical types, other preference information expressed
in terms of indifference pairwise comparisons can be the following: supposing
again that a∗ is preferred to b∗,

• a∗+−
H,K is indifferent with b∗, with the related constraint denoted by

E(a∗+−
H,K , b∗),

• a∗ is indifferent with b∗+−
R,S , with the related constraint denoted by

E(a∗, b∗+−
R,S ),

• a∗+−
H,K is indifferent with b∗+−

R,S , with the related constraint denoted by
E(a∗+−

H,K , b∗+−
R,S ),

with H,K,R, S ⊆ G,H ∩ K = ∅, R ∩ S = ∅.
ROR methodology proceeds as explained before, simply adding constraints

E(a∗, b∗+
H ), E(a∗−

K , b∗),E(a∗, a∗+−
H,K ), E(a∗+−

H,K , b∗), E(a∗, b∗+−
R,S ) and E(a∗+−

H,K , b∗+−
R,S )

to set of constraints EDM .
Let us observe that the new type of preference information is translated by

inequalities such as the classical preference information as introduced in all ROR
methods and, therefore, the recommendations obtained by the new model can be
considered appropriate and consistent for the decision problem at hand. More-
over, as already observed in [25,29], choosing between two alternatives is different
from matching two alternatives since the two aspects involve two different rea-
soning strategies. Consequently, we think that putting together these types of
preference information can represent more faithfully the DM’s preferences.

4 Didactic Example

In order to illustrate the proposed methodology, in this section we shall provide
a didactic example. Let us suppose that 8 alternatives are evaluated on 4 criteria
that should be maximized. The evaluations of the alternatives on the considered
criteria are shown in Table 1 and, for the sake of simplicity, we shall suppose
that the evaluation criteria can assume 5 discrete values only (1, . . . , 5).

Let us observe that the dominance relation on the set of alternatives A is
empty because no alternative dominates another alternative.
In a first moment, let us suppose that the DM provides the following preference
information:

a � f, c � h, b � e, c � d, d � f, e � h

Using this preference information, we get the following necessary preference
relation:

�N= {(a, f), (b, e), (b, h), (c, d), (c, f), (c, h), (d, f), (e, h)} ∪ {(x, x) : x ∈ A}.
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Table 1. Alternatives’ evaluations

Alternative / Criterion g1 g2 g3 g4
a 5 5 1 5
b 5 3 5 1
c 4 1 5 5
d 4 4 4 2
e 4 4 2 4
f 5 2 3 2
h 4 2 3 4
l 5 5 3 1

Let us suppose now that dealing with the same decision problem the DM provides
the following preference information:

• a � f, c � h, b � e,
• a ∼ f+

{2,4},
• c−

{1,3} ∼ h,
• e ∼ e+−

{3},{4},

where f+
{2,4} = (5, 4, 3, 4), c−

{1,3} = (3, 1, 4, 5) and e+−
{3},{4} = (4, 4, 4, 2) = d.

After considering the new set of constraints

U(a) ≥ U(f) + ε,

U(c) ≥ U(h) + ε,

U(b) ≥ U(e) + ε,

U(a) − U(f+
{2,4}) ≤ δ,

U(f+
{2,4}) − U(a) ≤ δ,

U(c−
{1,3}) − U(h) ≤ δ,

U(h) − U(c−
{1,3}) ≤ δ,

U(e+−
{3},{4}) − U(e) ≤ δ,

U(e) − U(e+−
{3},{4}) ≤ δ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EDM
∗

translating the preference information provided by the DM where δ = 10−4, we
solve the linear programming problems shown in Section 3, getting the following
necessary preference information:

�N= {(a, e), (a, f), (a, h), (b, d), (b, e), (c, h), (d, f), (d, b), (d, e)}∪{(x, x) :x ∈ A}.
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For example, by solving the optimization problem

ε∗ = max ε, s.t.

U(e) ≥ U(a) + ε,

EDM
∗ ∪ E

}

where E is the set of normalization and monotonicity constraints defined in
Section 2, we get ε∗ = 0 and, consequently, a �N e.

Observe that in this second case we get a slightly richer preference relation
in terms of pairs of alternatives from A for which necessary preference holds
(9 non-trivial pairs in this second case vs 8 non-trivial pairs in the first case),
with a smaller cognitive effort in terms of number of alternatives from A con-
sidered in the preference information (6 - a, b, c, e, f, h - in the second case vs
7 - a, b, c, d, e, f, h - in the first case).

5 Conclusions

In this paper we introduced new types of preference information in Robust Ordi-
nal Regression. More precisely we considered pairwise indifference comparisons
between real or fictitious alternatives. We believe that this new type of prefer-
ence information could permit to get a more precise induction of the DM value
function with a smaller cognitive effort. Moreover, the introduction of the new
type of preference information makes the obtained value function more faithful
because, according to the evidence of a certain number of experiments in Psy-
chology of the decision, choosing between two alternatives (corresponding to the
usual preference information) is different from matching two alternatives (corre-
sponding to the new type of preference information) since the two aspects involve
two different reasoning strategies. The results of a very first didactic example
presented in this paper seem promising, but a lot of work remains to be done.
In particular we envisage the following perspectives for the future research:

• we have to measure the advantages in terms of smaller cognitive effort and
better results of the MCDA procedure offered by the new type of preference
information;

• we have to discuss how to manage the selection of criteria to be modified
in order to get indifference in the considered pairwise comparisons between
alternatives;

• we have to verify how beneficial can be the use of the new type of prefer-
ence information in EMO procedures based on preferences, especially those
procedures based on ROR (e.g. [1–3].
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1. Branke, J., Greco, S., S�lowiński, R., Zielniewicz, P.: Interactive evolutionary mul-
tiobjective optimization using robust ordinal regression. In: Ehrgott, M., Fonseca,
C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467,
pp. 554–568. Springer, Heidelberg (2009)
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Abstract. This work is based on a disaggregation approach for the ELECTRE 
III method for the group decision-making. We provide a procedure in which the 
group is supported for modifying the parameters of outranking methods in an 
iterative and interactive process. In this work, we provide an application of the 
procedure through evaluating eight municipal districts for Water Company to 
invest in projects of water supply. An inferring parameters model performed by 
NSGA-II obtains marginal information from decision makers with more disa-
greement, which supports the stage of parameters modification in correspon-
dence with the preferences of the whole group (collective ranking). This paper 
shows how the inferring parameters model may be used to help the decision 
makers with different interest to iteratively reach an agreement on how to rank 
cities at a time, reflecting the preferences at the individual level and at the col-
lective level.  

Keywords: Inferring parameters · Preference disaggregation analysis · Outrank-
ing method · Genetic algorithm · NSGA-II · Group decision-making/GDSS  

1 Introduction 

The multicriteria group decision-making (GDM) process is a difficult task when the 
group tries to reach a consensus. When the members of the group can generate their 
own individual result and latter obtaining a collective solution, it is common to find 
that some individual results present a significant difference from the collective solu-
tion. This problem is very common in consensus schemas (see Parreiras et al. [1]) 
because the collective preference is generated from divergent individual solutions. 
Then the collective solution can reflect some individual preferences better than others. 
This consensus schema is related to an individual procedure called parallel coordina-
tion mode of work [2]. In the parallel mode, the members of the group work in an 
iterative way before reaching a consensus. It means they generate repeatedly the indi-
vidual solution in this procedure. 

The problem with the above approach is that DMs can obtain divergent results with 
respect to the global solution. In this case a tool to support the stage of parameters 
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modification is needed. A common technique to support the DM with complex mod-
els is based on preference-disaggregation analysis (PDA). This is based on previous 
information given by the DM. 

In this paper we apply an outranking method based for inferring inter-criteria 
 parameters in the stage of definition of parameters to support DMs in a group deci-
sion-making approach. This model includes DM’s marginal information to propose 
parameters for the outranking method, which generate individual solutions closer to 
the collective solution. The inferring model is exploited with a genetic algorithm, 
which takes as input DM’s original parameters and shared preference between indi-
vidual and collective solution. The output of the genetic algorithms is a set of parame-
ters (w, q, p, v), which can generate a ranking (individual solution) more similar to the 
group ranking (collective solution). 

This paper aims the application of a group decision procedure for the analysis of 
destination of resources for water supply, in order to prioritize the city in which the 
project will be implanted, in agreement with specific criteria [3]. In this procedure a 
group of four Decision Makers (DMs), which represent different interests, are sup-
ported by an inferring inter-criteria parameter model for outranking methods in the 
stage of parameters modification. This model proposes DMs inter-criteria parameters 
for ranking municipal districts. This paper describes how the set of criteria was devel-
oped, the use of an appropriate Multicriteria Decision Aids method (ELECTRE III, a 
ranking method proposed by Roy [4]), and the application of the method using the 
SADGAGE software [5], which support a multicriteria Group Decision Making 
(GDM) to reach a consensus collective solution.  

The paper is organized as follows. The multicriteria method group-based chosen to 
provide the decision support is presented in Section 2. Section 3 shows the results of 
applying the proposed methodology for prioritization of municipal districts to imple-
ment water supply. Finally, Section 4 draws the main conclusions of this study. 

2 MCDA Method for Group of Decision Makers 

A variety of studies have been developed using group decision-making based in indi-
vidual solutions approach. Alencar et al. [6] developed a multicriteria group decision 
model where a collective evaluation is undertaken from individual preferences. Mo-
rais and Almeida [7] propose a method based on the generation of individual rankings 
permitting the members be involved in the process to choose an alternative in-group 
for the water resources problem. Silva et al. [8] used a group decision approach for 
aggregating the individual result to obtain a global ranking. The problem with the 
above approach is that DMs can obtain divergent results with respect to the global 
solution. In this case a tool to support the stage of parameters modification is needed.  

2.1 A Consensus Procedure for Reaching a Higher Agreement  

Reaching a consensus in the group decision-making problem is an interactive and itera-
tive procedure. Fig. 1 illustrates the schema of a group decision-making procedure 
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where the DMs work in an individual manner. In each iteration the DMs construct their 
individual preferential models and individual ranking. With a group preferential aggre-
gation method, which is based on individual’s results, a temporal collective ranking is 
generated. Two methods based on individual’s preferences have been recognized in the 
scientific literature [9, 10]. 

In each iteration we calculate two consensus parameters, a consensus measure and 
a proximity measure. The first parameter guides the consensus process, and the 
second parameter supports the group discussion phase of the consensus process. The 
problem addressed is how to find the individual positions converge and, therefore, 
how to support the decision makers in obtaining and agreeing with a specific solution. 
To accomplish this goal, a consensus level α  required for that solution is fixed in 
advance ( 5.0],1,0[ >∈ αα ). When the consensus measure reaches this level, then the 

decision-making session is finished and the solution is obtained. If that scenario does 
not occur, then the decision-makers’ preferences must be modified. This modification 
is accomplished in a group discussion session in which we use a proximity measure to 
propose a feedback process based on simple rules, which supports the decision mak-
ers in changing their preferences. Here is when the inferring parameter tool is used to 
support the parameter modification stage, because the complexity for the DM. 

The proposed consensus model compares the positions of the alternatives based on 
the individual solutions and the group’s temporary solution. Based on the consensus 
level and the offset of the individual solutions, the model gives feedback suggesting 
the direction in which the individual decision makers should change their preferences, 
based in an inferring parameter model. The all procedure of the consensus for this 
group multi-criteria ranking problem is presented in Fig. 1. 

 

 
Fig. 1. Group multicriteria decision aid procedure for reaching higher agreement [5] 
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Consensus and Proximity Measures 
The consensus procedure considers the position-weighted measure (proximity) 

Gk
AwP ,  developed by Leyva and Alvarez [11] for expressing the differences in the 

ranking discrepancies between the group temporary ranking and the individual rank-
ings (see [12] ). The measure considers the rankings of a set of alternatives from the 
most important to the least important.  

1. We use a multi-criteria decision making method (e.g., Electre III, Promethee II) 
to obtain the individual rankings kR for each decision maker; then, we use a group 

multi-criteria decision making method (Electre for groups, Promethee for groups) to 
obtain a collective ranking of alternatives GR . 

2. We calculate the proximity of the k-th decision maker’s individual solution to 
the collective temporary solution, called Gk

AwP , . 

3. The global consensus measure, called AC , is calculated by the aggregation of 

the above consensus degrees for each decision maker, using the following expression: 


=

=
n

k

Gk
A

A n

wP
C

1

,

 

where n is the number of decision makers in the group. 

Feedback Process 
When the consensus measure AC  has not reached the consensus level required, then 

the decision makers’ rankings must be modified. The proximity measures Gk
AwP ,  is 

used to build a feedback process so that decision makers can adjust their preferences 
in order to achieve closer preferences between them. This feedback mechanism 
(adapted from that of Herrera-Viedma, Herrera [13] ) will be applied when the con-
sensus level is not satisfactory and will be finished when a satisfactory consensus 
level is reached. 

In the feedback process, every DM has the opportunity to make some preference 
modification, however in this procedure the DMs with more disagreement with the 
global preference must to be in priority to getting closer individual preference with 
the global preference. In order to meet this goal, the procedure regards the following. 
“if the proximity of the k-th decision maker’s individual solution to the collective 
temporary solution is less than a predefined threshold ]1,0[∈ρ then the decision mak-

er has to change their preferences, and it will be carried out in the following way”: 
1. Compute, for each member k, the agreement level Gk

AwP , . 

2. Compute the global consensus measure AC  

3. If the global consensus measure AC  exceeds the predefined threshold α, the 

procedure is stopped because a consensus order has been reached. In the oppo-
site case ( α<AC ), then we move to step 4 (the feedback process); 

4. In this step, the members can exchange information and discuss and modify their 
ranking to reach a consensus order. For this purpose, we proceed as follows: 
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4.1. Identify the members k whose proximity measure Gk
AwP ,  is less than a prede-

termined threshold ρ ; then, these members must change their preferences 

(w, q, p, v) supported by the inferring parameter tool. 
4.2. The inferring parameter tool suggests different sets of new parameters (w, q, p, 

v) for the DM. Each k member selects a set that matches better his/her prefe-
rences and the individual ranking kR  is modified. Then, the aggregation pro-

cedure is again performed to produce a new collective temporary ranking GR . 

Return to step 1. 

2.2 A Genetic Algorithm for Inferring Inter-criteria Parameters 

We identify two works in the disaggregation methods for group approach. Bregar, 
Gyorkos [14] infer w, λ parameters. Damart, Dias [15] propose a methodology for 
group, which cooperatively develop a common multicriteria evaluation model to sort 
actions. Covantes et al. [16] developed a inferring model for the sorting THESEUS 
outranking method. Fernandez et al. [17] developed the most recent work for the 
ranking problem in a outranking method for inferring parameters. However those 
methods are not developed for consensus schemes, when DMs generate their individ-
ual solution before the collective solution. 

In a group decision-making process, the methods and tools of decision-making 
support should include procedures that allow group members to include their prefe-
rences, which are reflected in a collective decision. The inferring parameters tool is 
based on a model that considers both individual and group preferences to propose 
parameters, which obtain individual results matching the collective preference. 

The model for this problem includes individual and group information to propose 
parameters for the outranking method, which generate individual solutions closer to 
the collective solution. The inferring model is exploited with a genetic algorithm, 
which takes as input DM’s marginal preference (original inter-criteria parameters) 
and, similar preference between individual and collective solution. The output of the 
genetic algorithms is a set of parameters (w, q, p, v), which can generate a ranking 
(individual solution) more similar to the group ranking (collective solution). 

The inferring parameters model is exploited with a genetic algorithm because the 
facility of converging and obtaining the Pareto frontier since first running. The com-
plexity of multiobjective optimization problems can be handled with evolutionary 
algorithm because computer efficiency of these methods is less sensitive to problem 
size in comparison to the traditional techniques [18]. The next sections present the 
brief information of genetic algorithm (GA) and the proposed model. 

Genetic Algorithm 
In this section, we present a multiobjective evolutionary algorithm (MOEA) based on a 
posterior articulation of preferences, which are able to detect the set of inter-criteria 
parameters that one DM should consider to change their evaluation in a particular subset  
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of criteria },...,,{
21 lkkk ggg , with the purpose of reducing the pairwise disagreements 

between the d-th order and the collective temporary order. The algorithm borrows fun-
damental elements from NSGA II [19]. In the following we present in further detail the 
fundamental aspects of the algorithms. 

A solution is encoded as a set of pseudo-criteria in an m-ary string. For each crite-
rion defined by the DM corresponds the w, q, p and v pseudo-criteria. The representa-
tion of each criterion in the m-ary string corresponds to 4 real values (see Fig 2.). The 
algorithm borrows fundamental elements from NSGA II [19]. The GA’s value para-
meters used for the model application: 40 individuals for population size, 10,000 gen-
erations, 0.90 crossover index and 0.4 mutation index. Although the NSGA II can find 
the Pareto front in the firsts runs, 10000 generations were needed to reach a diversity 
of parameters proposals for the DM. When the algorithm was ran with 5,000 genera-
tion or less, the results show few different proposals. The complexity of the problem 
requires higher exploration on the continuous search space. 

 

 

Fig. 2. Individual representation of the GA for inferring inter-criteria parameters 

Objective Functions 

Basic definitions.  

Definition 1. Let },...,,{ 21 maaaA = be a set of m alternatives and },...,,{ 21 ngggG =
be a set of n decision criteria defined on A. Without loss of generality, we can consid-
er the first t criteria },...,,{ 21 to gggG = as objective criteria and the rest n-t criteria 

},...,,{ 21 ntts gggG ++=  as subjective criteria.  

Definition 2. Let dK be the set of pairwise disagreements between the d-th order dO

and the collective temporary order GO defined as: 
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The first complement of dK , 
Cd

firstK ,
, is the set of pairwise agreements between the 

first d-th order dO and the collective temporary order GO and is defined as: 
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A Multiobjective Evolutionary Algorithm for Identification of Inter-criteria 
Parameters 
We use a value encoding scheme for representing a potential solution. 

Let be the schematic representation of an individual’s chromosome. 

∏ =
∈

n

i iCp
4

1

~ , where iC is the set of values that ip can takes. This set of values is 

dependent of the problem. 
In this section we describe the objective functions 1f , 2f  and 3f . The fitness of 

an individual is calculated according to a given fitness procedure. The approach for 
defining individual’s fitness involves the non dominated solutions in a similar form of 
NSGA II [19]. We define the objective function 1f  of an individual p~  as follows:  

Let npppp 421 ...~ =  be the schematic representation of an individual’s chromo-

some. Let nR rrrp 421 ...~ =  be a reference individual representing the original inter-

criteria parameters, i.e.: 

11 wr = , 12 qr = , 13 pr = , 14 vr = , 25 wr = , 26 qr = , …, nn qr =−24 , nn pr =−14 , …, 

nn vr =4 . Then: 
{ }nirprppf iiii 4,...,2,1|),()~(1 =≠=  

)~(1 pf  is the number of modified inter-criteria parameters. Note that the quality of 

solution increases with decreasing 1f score. With this objective function we want to 

preserve, as much as possible, the original inter-criteria parameters. 
The objective function 2f of an individual p~ measures the amount of pairwise dis-

agreements between the d-th order dO and the collective temporary order GO and we 
chose to define it as: 

dKpf =)~(2   

)~(2 pf  is the number of pairwise disagreements between the d-th order and the 

collective temporary order.  
With this objective function we want to reduce the pairwise disagreements between 

the d-th order and the collective temporary order in order to increase the value of the 
proximity measure Gd

AwP , . 

The objective function 3f of an individual p~ measures the amount of pairwise 

agreements between the d-th order dO and the collective temporary order GO and we 
chose to define it as: 

Cd
firstKpf ,

3 )~( =   

)~(3 pf  is the number of pairwise agreements between the d-th order and the col-

lective temporary order.  
With this objective function we want to maximize the original pairwise agreements 

between the d-th order and the collective temporary order in order to preserve the 
rationality and values system of the DM.  
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We are interested in: 
Individuals whose objective function 1f  value is close to zero. This assures us that 

the ordering represented by the individual is almost equal to the original set of inter-
criteria parameters; this is one characteristic always appreciated for all rational deci-
sion maker. 

Individuals whose objective function 2f value is close to zero. This objective im-

proves the feasibility and reduces the disagreements between two orders. 
Individuals whose objective function 3f  is closet to (m-1)! This assure us that the 

ordering represented by the individual increases the value of the proximity measure 
Gd

AwP , . 

Then, we use the genetic algorithm as evolutionary search for solving the multiob-
jective combinatorial problem: 

                   

∏ =
∈

n

i iCp

toSubject

pfMaxpfMinpfMin

4

1

321

~

))~(()),~(()),~((
 (1) 

where iC is the set of values that ip can takes. 

3 Proposed Model Application for Destination of Resources for 
Water Supply in a Group Decision Making Approach  

The model proposed to deal with individual preference desegregation to generate a 
collective ranking derived by individual results was applied for destination of re-
sources for water supply. The same problem of water supply was deal before by Mo-
rais and Almeida [3], however the procedure performed by the DMs in [3], the all 
group defined the parameters in agreement without generating individual results. In 
the present work the water supply problem is deal with different approach proposed to 
support the DMs to generate a ranking agreement derived from individual results.  In 
this sense, a brief description of the water supply problem is described. 

The implementation of the plan for water supply can be developed only in one city 
at time. Eight cities are competing for the water supply resource and four DMs (each 
representing different interest) should prioritize them in order to know the sequence, 
which the resource would be used. The DMs should reach an agreement of the collec-
tive ranking generated. 

In this study were considered four interest groups that act as decision-makers (DM) 
as follows: 

DM 1: Water Company, which that traditionally acts as the responsible of implan-
tation of the system.  

DM2: Environmental Agency, which is responsible to guarantee that the environ-
ment is protected with the project designed. 

DM3: Local Groups, which are representatives from local community. These 
people can actively influence the decisions to support their own interests. 
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DM4: Financial groups, that are entities tied to the government of the state with 
enough power to influence the decisions. In terms of financial aspects, bankers can 
impose pressure in favor of their own interests. Some of the players are: Caixa Eco-
nomica Federal (Federal Bank) and The Interamerican Development Bank. 

It should be noticed that each decision group has an opinion and a specific interest. 
So, conflicts can be generated due to a series of factors. It is clear that what is needed 
is a simplified methodology for the choice of the place for the implantation of a water 
supply system, by evaluating several aspects.  

Some meetings were arranged with these interest groups. In these meetings they 
had the opportunity to express the points and list the factors they perceived sufficient-
ly important to be taken into account in the selection process and defined four criteria 
to analysis the districts: 

Cost of Investment: Each district requires different amount of resource for the water 
supply project. This criterion specifies the investment amount.   

Population: It is the number of persons shall be beneficed by the project. It is ex-
pected the greatest number of people is beneficed by the project.  

Quality of life: This criterion represents the sanitary and hygienic conditions of the 
population. The Life Conditions Index (LCI) is used to estimates sanitation condi-
tions. For example, the LCI for Brazil is .723, while that for Pernambuco state is .616 
[20]. Thus, a city with the lowest LCI has higher priority to be attended with a water 
supply project with respect a city with higher LCI. 

Tourism: The criterion is measuring an economic aspect of the project. This evalua-
tion was taken by the actors related with the condition of the city in respect to the 
tourism. The values attributed to each verbal concept are 0.00 (weak), 0.33 (regular), 
0.67 (good) and 1.00 (very good). 

3.1 Results 

The evaluation was treated as a the multicriteria ranking problem and performed with 
SADGAGE system [5] hosted in http://mcdss.udo.mx/sadgage. Four DMs are 
representing different group’s interests for the prioritization on destination of resource 
for water supply. The DMs are evaluating 8 municipal districts for enterprise to invest 
in using the funds available. Table 1 shows code of each municipal district and four 
criteria codes for evaluation. Table 2 shows the performance matrix of municipal 
districts for each criterion. 

Table 1. Alternatives and criteria for water supply problem 

Alternatives Criteria
A Alianca 
B Moreno 
C Ouricuri 
D Passira 
E Pocao 
F Porto Galinhas 
G Toritama 
H Trindade 

 

 C1 Cost of investment 
C2 Population 
C3 Quality of life 
C4 Tourism 
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Table 2. Performance of the alternatives 

C1 C2 C3 C4
A 589,176 37,188 0.476 0.00
B 1,548,354 45,481 0.600 0.33
C 2,053,485 56,623 0.443 0.00
D 804,270 29,131 0.474 0.33
E 2,191,952 11,177 0.478 0.67
F 5,181,246 10,995 0.500 1.00
G 2,135,702 21,794 0.600 0.00
H 1,457,073 21,919 0.496 0.00

Table 3. Parameters: weights, indifference and preference thresholds in iteration 1 

  C1 C2 C3 C4 
  Min Max Min Max 

DM1 w 0.30 0.25 0.25 0.20 
 q 500000 10000 0.05 0.33 
 p 1000000 20000 0.1 0.67 

DM2 w 0.10 0.30 0.20 0.40 
 q 480000 0 0.025 0 
 p 1000000 0 0.6 0.33 

DM3 w 0.10 0.30 0.40 0.20 
 q 300000 9000 0.05 0 
 p 600000 125000 0.07 0.33 

DM4 w 0.40 0.15 0.30 0.15 
 q 300000 10000 0.01 0.33 
 p 600000 20000 0.03 0.67 

 
Table 3 presents the criteria selection, directions of the criteria, weight and thre-

sholds regarding every criterion selected by the DM. The next stage is constructing 
the preferential model of every DM. This stage can be performed with different out-
ranking methods. For this example, the ELECTRE III method was used and a MOEA 
[21] for exploits the preferential model generating a raking of alternatives for every 
DM. Those methods are embedded in SADGAGE system.  

At this stage we have the individual ranking of every DM shown in Table 4. The 
collective ranking is shown in the last column of Table 4. This is a temporal ranking 
that reflects the group preferences in iteration 1. The group preferences were generated 
by an aggregation approach for groups which was strongly based on ELECTRE and 
for simplicity we call ELECTRE-GD [9]. In Table 4 we have a row showing the simi-
larity (proximity) between the individuals’ rankings and the collective ranking. This 
value was calculated by the proximity index proposed by Leyva and Alvarez [11]. 

In iteration 1, the rankings of the DM2 and DM3 with proximity value 0.536 and 
0.660, respectively, present greater difference to the collective ranking than DM1 
(0.907) and DM4 (0.886). The similarity values obtained in this iteration gain a con-
sensus level (CA) of 0.747. For this procedure a required level of consensus is α = 0.8 
(CA > α). In this case the consensus level is not reached (0.747 < α), it means that 
some DMs must change their preferences through a modifying parameters stage.  
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Table 4. Individuals and group ranking in iteration 1 

Position DM1 DM2 DM3 DM4 Collective
1 D C C A A
2 A E D C D
3 C F A D C
4 H B E H E
5 B D F B B
6 E A B E F
7 F H H F H
8 G G G G G
λ 0.55 0.597 0.6 0.55

Disagrees 5 10 9 5
Proximity 0.907 0.536 0.660 0.886

Consensus level (CA) 0. 747
Disagrees: the number of differences between two rankings seen in pairwise format 

 
To improve the consensus level a greater similarity value is required for some DM. 

In the analysis of destination of resource for water supply, the DMs with low proximi-
ty level ( 7.0=ρ ) were required to interact in preference modifying procedure to 

obtain a solution, which does not present strong preference chances to support. Then, 
DM2 and DM3 with similarity level of 0.536 and 0.660, respectively were involved in 
the procedure. For the 4.1 feedback stage of the consensus process the DM2 and DM3 
are the k members with ρ<Gk

AwP ,  in iteration 1. To support this stage we use the 

inferring parameter model of the Section 3.2.2 that use as input a set of similar prefe-
rence between individual and group solutions. The model concerns number of para-
meters’ changes (f1), number of disagreements (f2) and agrees of the first ranking that 
still remaining (f3); those objectives are evaluated in the new parameters proposal 
(See Equation (1)). Regarding with the 4.2 feedback stage of the consensus process 
where the DM2 and DM3 need to change their individual preference (inter-criteria 
parameters), the output of the inferring parameter tool is shown in the Table 5 and 
Table 6, respectively. The new parameters suggested for the DM2 and DM3 implies 
some changes in the weight, indifference and preference thresholds.  

The column 2, 3 and 4 is the evaluation of the f1, f2, f3, respectively. Column 5 is 
the epsilon value used for the new proposal o parameters. The values of the new pa-
rameters are limited by an epsilon value. The new parameter is in a neighborhood of 

)*( εiii rrp ±= . The column 6 presents the proposed parameters and column 7 the 

possible ranking will be generated. The last column is the proximity index that new 
ranking presents with the collective ranking of iteration 1. 

In iteration 2, the new inter-criteria parameters suggested by inferring model in 
Table 5 and Table 6 are showed to the DM2 and DM3, respectively to support the 
modifying parameters stage.  

The DM2 found that proposal 4 and 5 generate the same ranking (see Table 5) and 
the alternative C remains in high position. However proposal 5 requires stronger pre-
ference changes in weights for criterion 3 and 4. The proposal 4 requires smooth pre-
ference changes on weights for every criterion. DM2 selected proposal 4 because 
remains C in high position, the changes are easier to support and generates acceptable 
proximity level.  
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DM3 was interested on proposal 5’s result (see Table 6) because remains better 
his/her most preferred alternatives (A,C,D). However, this proposal requires to change 
7 parameters. Instead DM3 selected proposal 2 because remains A, C and D on high 
positions and has good proximity level with less number of preference changes (4 
parameters). 

The proposal selected by DM2 and DM3 are used to generate new individual’s pre-
ference models and rankings, the DM1 and DM4 remain their previous ranking (see 
Table 7). With the rankings showed in Table 7 a new collective ranking is generated 
(see column 6). With the new temporal solution, the proximity level for DM1 and 
DM4 remain high proximity levels, 0.946 and 0.857, respectively. 

The individual solution from DM2 and DM3 reflect improved proximity level 
0.850 and 0.854, respectively. The number of disagreements where reduced to 3 for 
DM2 and 4 for DM3. This new proximity between rankings generates a better con-
sensus level (CA=0.877) greater than required (CA > α). In this model application, the 
procedure finished with the consensus level obtained by iteration 2. 

Table 7. Individuals and group ranking in iteration 2 

Position DM1 *DM2 *DM3 DM4 +Collective
1 D D C A D
2 A C D C A
3 C B A D C
4 H A H H E
5 B E E B B
6 E H B E H
7 F F F F F
8 G G G G G
λ 0.55 0.600 0.600 0.55

Disagrees 3 3 4 5
Proximity 0.946 0.850 0.854 0.857

Consensus level (CA) 0.877
* DM with new ranking  + New collective ranking 

 
The procedure developed with the proposed model helped the participants to obtain a 

collective solution (iteration 2), which reflect their individual preference better than the 
first collective solution. In the first collective solution of the Table 4 the DM2 and DM3 
presented more disagreement with the collective solution. In this situation the collective 
solution did not reflect their individual preference of DM2 and DM3 as much as for DM1 
and DM4. The collective solution in iteration 1 (Table 4) presents the alternatives A and 
D in first and second order respectively. However, three individual solutions show D 
better ranked than A (DM1, DM2, DM3). The above has a negative impact in the DM’s 
agreement and as consequence in the consensus level. We can see how this situation is 
avoided with the collective ranking in the second iterations. Here alternatives D is ranked 
in higher positions (DM1, DM2 and DM3’ ranking). Thus the collective solution shows 
D higher than A (Table 7), now every DM shows better agreement and it is supported by 
the number of disagrees reduced in every DM’s ranking (see Table 7). The new collec-
tive solution obtained in the iteration 2 shows more proximity level for each DM and as 
consequence better consensus level (0.877). In different situation, the proximity level 
obtained for each DM in iterations can be reduced for some DM’s and increment for 



232 P.A. Álvarez  et al. 

other. The goal is get equilibrium in the agreement context for this been reflected in the 
consensus level. The final results must include a collective solution reflecting every 
DM’s preferences. 

The application of the model showed above presents the interaction process of  
the DMs in 2 iterations. This procedure shows how a group can be supported in the 
modifying parameters stage to generate new individual solutions closer to the group 
solutions. In others words, the DMs can obtain individual preferences closer to the 
group preferences. The most interesting aspect of the procedure is when the consensus 
level is reached the collective solution reflects individual preference better than first 
solutions. The amount of iteration could depend of the problem complexity and the 
availability of the DMs to change their individual information. 

4 Concluding Remarks 

In this work, we present a multiobjective optimization model to infer inter-criteria 
parameters for outranking methods (w, q, p, v) in an interactive process of group deci-
sion-making for the multicriteria ranking problem. Here we describe the interactive 
procedure for group decision-making. In this procedure a multiobjective optimization 
model and an evolutionary algorithm support the stage of modification of preference 
by iterative and interactive activities with DMs. 

The model was tested by the application in a real problem to evaluate municipal 
districts for water supply by DMs with different interests. This model provides both 
the facilitator and DMs a support tool for modifying inter-criteria parameters in an 
interactive group decision-making process. The inferring parameter model can reduce 
the facilitator’s influence on DMs when they are helped in the modification of para-
meters. However, this needs further research. 
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Abstract. This work presents an solution for the problem of planning
the routes of a small fleet of hand-launched fixed-wing UAVs to monitor
by vision an area of forest at the minimum possible time, for rescuing
support, fire detection, deforestation mitigation, among other important
applications in the Amazon rain forest operational scenario. However,
time is not the only criteria to be considered. Given that it is virtually
impossible to recover a missing airplane in the deep jungle, another rele-
vant objective is to apply as fewer UAVs as possible, to reduce the risks
for the whole UAV system. Moreover, another aspect that complicates
this specific application is the non-holonomic constraint of the fixed wing
airplanes (lack of instantaneous lateral velocity). We had to restrict the
changing of heading, and thus, the roll angle, to prevent the drifting of
the PoI (point-of-interest) out of the camera plane. As a consequence,
long turn radius imply longer route. The authors modeled this problem
using the multi vehicle routing problem, combined with Dubins path
generator to address the non-holonomicity aspect, in a multicriteria for-
mulation to reach a solution that simultaneously takes into account time,
number of UAVs and expended resources. The resulting problem formu-
lation has a computational effort that tends to be extremely high as the
number of way-points increases. The authors applied Genetic Algorithm
to solve this multi-criteria NP-hard Dubins adapted routing problem.
The presented results, applied to a fleet of mini-UAVs, show the effec-
tiveness of the proposed work in providing a satisfactory solution in a
very reasonable execution time.

Keywords: Path Planning · Multi Vehicle Routing Problem · Dubins
Path

1 Introduction

This work addresses the problem of routing a small fleet of hand-launched UAV
to overflight specific areas in the Amazon rain forest at a minimum time. Typical
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missions include, but are not restricted to, fire detection, deforestation mitigation,
seek-and-track targets, and rescue support. One would infer that an optimization
problem to reach minimum time would promote the maximization of the number
of vehicles per mission, in a divide to conquer approach. However, it is virtually
impossible to recover a small UAV in the deep jungle in the occurrence of failures.
Therefore, besides minimizing the execution time, one has also to consider to apply
as fewer airplanes as possible to reduce the risks for the fleet as a whole. These
objectives are clearly conflicting, and the resultingmulti-criteriamulti-vehicle non-
holonomic combinatorial optimization problem constitutes the scope of this paper.

An aircraft flight plan is usually defined by a set of way-points in geodesic
coordinates. Considering a fleet of UAV, the flight planning phase may be seen
as the vehicles routing problem (VRP) [13], known to be NP-Hard. The problem
will have to take into account the non-holonomic constraints of the airplane. An
well-known approach is to approximate an airplane in cruiser flight mode as a
Dubins Car (maximum steering angle and no backward capability) and consider
the Dubins curve [1] when computing the total path length.

One can find solutions to the VRP with Dubins curve in the literature, mostly
for the single vehicle problem (the travelling salesman problem-TSP). In [2],
the authors address the single vehicle DVRP, and their methodology is subse-
quently improved by [10] and [11]. In [15] the authors propose a solution based
on Genetic Algorithms to the single-vehicle problem with Dubins constraints.
One can find approaches for a fleet of vehicles, however, they do not consider
non-holonomic constraints [13]. As far as the authors are concerned, none of the
studied approaches proposes a solution for a multi-criteria, multi-vehicle with
Dubins curve formulation.

In the multi-objective optimization field of research, the Genetic Algorithms
(GA) is a suited tool when considering the complexity of an NP-hard problem
[7][8]. The proposal is to provide to each airplane a good set (measured by the
Fitness Function) of way-points so that the combined routes will reach the overall
mission goals. In other words, the proposed methodology seeks to simultaneously
minimize mission execution time, total flight distance and number of applied
UAV, while satisfying the operational constraints of the aircraft (flight autonomy,
radio link range, etc). The results were very promising, and a very detailed
discussion about the different combinations of these criteria showed that the
proposed methodology is a useful decision-making supporting tool.

The main contributions of this papers are: i) a novel formulation of the
routing problem of a fleet of Dubins vehicles, considering the simultaneous min-
imization of multiple mission objectives; ii) a solution proposal based on GA
contextualized to a fleet of mini UAVs; iii) a three-step methodology to validate
the algorithm.

This paper is organized as follows: Section 2 formulates the problem, while
providing the fundamental concepts and the related works. Section 3 details the
proposed algorithm to address the routing problem, showing the steps towards
the solution. Section 4 will presents the experimental results. The last sections
the authors conclude the paper.
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2 The Multi-objective Dubins Vehicle Routing Problem
(MDVRP)

The Vehicle Routing Problem (VRP) was first introduced by [13]. It is a NP-hard
combinatorial optimization problem that, in summary, consists on providing an
optimal route for a fleet of vehicles to attend a set of clients with known demands.
Although the problem supports multiples depots, usually, it assumes that there
is one coincident start and end points. In this context, each vehicle begins the
route from a given point, attends the clients and returns to the same point. The
overall goal is to visit every and each client just once in a way that the associated
cost for all vehicles is minimized. This problem is clearly a generalization of the
well-known traveling salesman problem (TSP) for the case where there are more
than one seller, or, in other words, the TSP is basically the VRP with just
one seller. Accordingly, let VRP be defined as an undirected graph G(V,E),
where V = {0, 1, ..., N} is the set of nodes, and E = {(i, j) : i < j} the set
of edges. Vertex V0 represents the starting point for a fleet of m vehicles, while
the remaining nodes are related to the clients position (e.g. cities, locations). A
non-negative cost (distance or time of traveling) cij is defined for each element
in E. The VRP usually has the objective to minimize the total traveled distance.

The classic VRP does not consider maneuvering constraints, an intrinsic
characteristic of all non-holonomic vehicles (those that can not move sideways).
In most cases a car-like vehicle can perform the point-to-point route, providing
enough space to maneuver. However, for a fixed-wing airplane, although space
might not be a problem, maneuvering is an issue as it can not move backward,
and reducing the speed to perform a short radius curve without drifting may
lead to stall. The Dubins curve [1] is a method to find the minimum path from
two starting and ending configurations, while considering the maneuvering con-
straints of a non-holonomic vehicle with a maximum steering angle and with
no backward capabilities. These characteristics are a valid approximation of the
cruiser flight of a fixed-wing aircraft (Eq. 1). Therefore, in this work the VRP is
adapted to consider the Dubins curve in the planned path.

We apply the algorithm using the same adaptation proposed in [10]. The
Dubins path is defined by an initial configuration (xi, yi, θi) and a final desired
configuration (xf , yf , θf ), where, in this case, (x, y) indicates latitude and longi-
tude, respectively, and θ is the airplane heading angle. To differentiate from the
classic formulation, the VRP with Dubins vehicles will be denoted as DVRP.

⎡

⎣
x
y
θ

⎤

⎦ =

⎡

⎣
v cos(θ)
v sin(θ)

v
ρu

⎤

⎦ , (1)

v being the longitudinal velocity, ρ the minimum ray of curvature, and u the
control input. The velocity is normalized and considered constant, and thus,
time and distance depend on the edge cost cij . For a fixed-wing airplane, edge
cost is not just the straight distance between two consecutive clients, but the
distance defined by the local Dubins arc D(ci, cj).
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Fig. 1. Two Dubins approaches: Left: The AA algorithm; Right: The BAA algorithm

Depending on the heading angle set at two consecutive vertexes, the length of
the resulting Dubin arc may be much higher than the direct distance. A common
approach is to use the Dubins Alternating Algorithm (AA) [9], which sets the
orientation between vertices Vi and Vi+1 to be given by the line that connects
them. This strategy forces the UAV to head to the next vertex as soon as it
leaves the current one, however it might promote high accelerations due to the
aggressive changing of orientation. Another variant of Dubins, Best Alternating
Algorithm (BAA)[10], proposes to use as much line segments as possible in order
to minimize the number of arcs. The BAA states that if the i index of the vertex
Vi is even, its orientation is based on the orientation of vertex Vi+1, otherwise, it
will be based on the Vertex Vi−1, forcing the alternation of straight lines curves.
Figure 1 illustrates the two approaches.

There are a sort of cost functions that can be minimized in the VRP, most
of them are linear combinations of the edge costs cij , and thus, related to the
minimization of the traveled distance. In this paper the authors will work with a
multi-objective formulation, combining criteria that capture different aspects of
the mission that should be optimized simultaneously. In general, given a vector of
n objectives J(·) = [(J1(·), J2(·), · · · Jn(·)] evaluated over the set S of all feasible
solutions s ∈ S. A multi-objective problem may be stated as:

min
s

V(J(s))

s ∈ S

where the Value Function V(·) incorporates the decision maker preferences about
the Pareto Optimal solutions [12].

Among all existing methodologies to define V(·), either implicit or explicit,
we will use the no-preferred approach based on the difference from the vector
J(s) to the ideal vector Ju = [Ju1, Ju2, · · · Jun] measured by the normalized
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Euclidean (l2) norm, or

Jui = min
s∈S

Ji(s) for all i = 1, . . . , n, (2)

with
V(s) = ‖(J(s) − Ju‖2. (3)

Such V(·) is justified by its simplicity, and the lack of a clear priority among
the objectives. Furthermore, the simple introduction of a weighted vector w to
modulate the influence of a specific objective in the norm computation will act
as a prioritization factor, if needed. To define the set feasible solutions S, let
G(V,E) be a graph composed by V vertices and Eij edges with cost cij , and M
be the total number of vehicles in the fleet.

Then, we formulated the the multi-objective problem as follows:

min
rk∈G(V,E)

‖(J(rk) − Ju‖2

s.t .

N∑

j=1

N∑

k=1

x0jk ≤ K (4)

N∑

j=1

x0jk =
N∑

i=1

xi0k ≤ 1 (k ∈ U) (5)

N∑

j=0
j �=i

K∑

k=1

xijk = 1 (i ∈ T ) (6)

N∑

i=0
i�=j

K∑

k=1

xijk = 1 (j ∈ T ) (7)

rk ≤ Dk (k ∈ U) (8)

where
• U = {1, 2, ...,K} is the set of all UAVs;
• T = {1, 2, ..., N} is the set of all targets (visiting way-points);
• V = T ∪ {0} aggregates the starting point 0 (or the depot in the VRP) to the
set of visiting way-points;
• Dk is the maximum distance Uk can fly (k ∈ U);
• xijk are the decision variables, given by:

xijk =
{

1 if Uk travels from target i ∈ V to j ∈ V , i �= j
0 otherwise

and

rk =
N∑

i=1

N∑

j=1

xijkcijk
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is the length of the k-th route of the set of K valid routes in graph G(V,E).
Constraint (4) ensures that there are no more than K routes out of the base.
Constraint (5) guarantees that every UAV that leaves the base also returns to
the base at the end of the tour. Constraints (6) and (7) ensure that all and each
target is visited only once. Constraint (8) ensures that the maximum distance
traveled by each UAV will not be exceeded.

In this work, we will apply Genetic Algorithm to solve this multi-criteria
DVRP optimization problem, named here as MDVRP.

3 The MDVRP via Genetic Algorithm

Basically, a Genetic Algorithm (GA) is an interactive procedure that maintains
a population of individual (in our case, an individual is the joint routes for the
UAV fleet to overfly all giving way-points only once) which represents candidates
of solutions for a given problem. GA is a powerful tool to solve high complex
optimization problem and high complex formulation. The method is based on a
mathematic function to generate a diverse population of individuals, either by
changing its values or attributes or by combining two individuals into a new one.
This new individual has a different configuration, and the Dubins path changed.
GA measures the adaptation of each individuals to the problem by a fitness
function. The best adapted individual is assigned as the solution of the problem.
The GA algorithm derived for this MDVRP problem was based on [4], [5], [6],
and is explained in the sequence.

Fig. 2. Algorithm GA
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3.1 Initial Population

An important factor for a fast convergence in any GA algorithm is the diversifi-
cation of the initial population. However, diversification implies computational
cost. Given this trade-off between good initial solutions and added cost, the
authors proposed an implementation based on the interactive improvement of
the solution. Given a randomly generated initial solution for a fleet composed
by one UAV, the algorithm consists in improving it interactively by a mutation
function. The solutions are recorded and then the best one, according fitness
values, is selected and added to the Initial Population set. This Local Search
technique, when applied along with GA is known as Hybrid Algorithm [14].

initialization;
l ← desired maximum list lenght;
n ← number of tweaks desired to sample the gradient;
S ← some initial candidate solution Best repeat

if Lenght(L) > l then
Remove oldest element from L

end
R ← Tweak(Copy(S)) BAA(R) for n − 1times do

W ← Tweak(Copy(S)) BAA(W) if
W /∈ Land(Quality(W ) > Quality(R)orR ∈ L) then

R ← W
end

end
if R /∈ LandQuality(R) > Quality(S) then

S ← R Enqueue R into L
end
if Quality(S) > Quality(Best) then

Best ← S
end
return Best

until we have run out of time;

Algorithm 1. Initial Population Generator Algorithm

3.2 Elitism

GA utilizes mutations and crossovers to diverse the current population, generat-
ing and eliminate new individuals. Elitism is a mechanism to preserve the best
current solutions for the next data set (or generation), avoiding they are deleted
during mutation and crossover. The algorithm to select the best individuals is
very simple. One set what percentage b% of the current population will compose
the elite set. Then, the algorithm moves the top b% of best adapted individuals
according to its fitness value to the next Population Pi+1.
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3.3 Mutation and Crossover

Mutation is a diversification by changing characteristics of one or more individ-
uals of the current population, while crossover is a diversification of the next
population creating new individuals utilizing two or more individuals of the cur-
rent population. After these steps, AA or BAA algorithm is used to generate a
new initial and final configuration at two consecutive way-points to evaluate the
new route distance based on the Dubin arc length. In this paper, the authors are
using a probability factor to decide between crossover and mutation operation,
described in [16].

Mutation. Mutation is the step used by GAs to create new solutions on popula-
tion, producing leap in solution area to avoid local and global maxima. Inversion
and Swap are example of techniques to avoid local maximum, insertion and dis-
placement, on the other hand, avoid global maximum. In this work the authors
defined three Mutation operators.

– Swap: two way-points c1 and c2 of any route individual I are randomly
chosen and have their visiting order interchanged. The mutation pair do not
need to belong to the same route. Swap is defined as: {c1,c2 ∈ S | c1 �= c2};

– Insertion: an way-point is randomly selected and inserted in another position
of a randomly selected route. The probability to create a new route with only
one way-point is 1

2∗V , where V is the number of UAVs in the current solution;
– Inversion: a route segment of an individual is selected and the visiting order

is inverted;
– Displacement: a route segment of an individual is selected, and it is inserted

in another position (keeping the order), either in the same individual or in
a different one. This operator is similar to the crossiover operator (detailed
next), with the difference that the insertion is random, while crossover per-
forms the insertion such that to minimize the total cost after the operator.
The probability to create new routes by this operator is not clear. Recent
approaches utilizes the probability of 1

2∗V , where V is the number of vehicles
in the current solution.

Crossover. As mentioned before, this operator is responsible to generate one
or more new individuals (or route solutions) by combining two or more from the
current population.That is, given an individual Ii and another individual Ij , one
can obtain a set of child solution C = Ci, ..., Cn. The fitness value for the child
solution may be better or worse when compared to its parents values. In this
work this comparison is not performed, and all children will be used to form the
next population. As one of the problems objective is to minimize the number of
UAVs, the crossover algorithm follows some steps to generate new individuals:

– Find the largest route between the parents;
– Eliminate the way-points already visited;
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– Select new routes: New routes are inserted on different routes to generate
a new one. When a route of a given UAV has already way-points (i.e. it is
already being used), the first way-point of the inserted route is positioned
just after the closest way-point of its current set.

3.4 Fitness: A Multi-objective Formulation

The Fitness function is the equivalent of the Value Function of Eq. (3). In GA,
the Fitness function evaluates how adapted (or fitted) an individual is to the
problem. The fitness is measured by each individual of the current population
and its value reflects the quality of the current solution, and the best fitted
solution will be assigned as the problem solution. Therefore, the selection of
the Fitness function became critical to the success of the GA in providing a
satisfactory solution for the MDVR Problem. In this work we will define three
criteria:

– J1: Total mission flight distance, defined as the sum of the lengths of all
routes in a giving solution. This criterion is the most used in the routing
problem and it is related with the resources spent to accomplish the mission;

– J2: Mission execution time. For a multiple-vehicle formulation, the mission
finishes when the last vehicle returns to the basis. Therefore, the mission
execution time is approximated to the longest route (considering all vehicles
flying as the same constant speed). The minimization of the execution time
is a key objective when time is critical, like in rescuing missions, surveillance,
fire detection, among others;

– J3: The number of vehicles launched to perform the mission. In some real
scenarios, like in the Amazon rainforest, it is important to use as fewer
vehicles as possible for at least two reasons: i) to reduce the risks for the
fleet, as in the deep jungle it is virtually impossible to recover a missing mini
UAV; ii) to reduce the readiness time for the next mission. In having part
of the fleet ready to launch, a second mission could be performed before the
UAVs used in the previous missions are ready to fly again.

Their respective mathematical representations are given by:

J1 =
N∑

i=1

N∑

j=1

K∑

k=1

rijk, J2 = max
k∈K

N∑

i=1

N∑

j=1

rijk, J3 =
N∑

j=1

K∑

k=1

x0jk (9)

As mentioned in Section 2, the ideal vector Ju is a non-reachable objective
vector composed by the minimum of each criterion individually, as if it was the
only one to be optimized (Eq. (2)). This ideal vector will be set as reference to
evaluate how far the current solution is from it. The squared of the Euclidean
metric will be used in the Fitness function. To avoid dimensional issues, we
normalized the distance by its respective ideal value. We notice that there is a
clear conflict between J1 and J2 and between J2 and J3. The conflicting nature
between J1 and J2 can be understood by considering that, to minimize the
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mission execution time, less way-points will be applied to each vehicles, and
then, more vehicles will have to be launched to visit all way-points, and the total
route length will increase. Concerning J2 and J3, as the number of applied UAVs
decreases, more way-points will be assigned to the remaining vehicles, increasing
the mission execution time. Finally, given that, in this application, launching
and arrival points are the same, both J1 and J3 promote the minimization of
the number of vehicles, not being clearly conflicting. Furthermore, given that the
number of UAVs in the fleet is just four vehicles, we did not to include the criteria
J3 explicitly in the fitness function, but rather, we considered it after solving the
bi-objective problem formed by J1 and J2 (see next Section for more details). It
is also worth to mention that, under the assumption of a constant cruiser speed,
the bi-objective formulation of J1 vs. J2 is correlated to the classical time vs.
energy problem. Thus, the Fitness function Fit(Pi) for the MDVRP is given by:

Fit(Pi) = ‖Jd‖2 = w1J
2
d1 + w2J

2
d2 (10)

where,
Jd1 = (J1 − Ju1)/Ju1 (11)

is the normalized deviation from the value Ju1, the route that ideally uses less
resources.

Jd2 = (J2 − Ju2)/Ju2 (12)

is the normalized deviation of J2, the mission execution time (the time to cover
the longest route) to the ideal value Ju2 (time to visit the furthest client). And,
w1 and w2 are weights to reflect the relative importance between the criteria.
We will use the convex combination w2 = (1 − w1), w1 ∈ [0, 1]

4 Experiments

This work is part of the mission planner subsystem of an unmanned aircraft sys-
tem based on hand-launched fixed-wing UAVs carrying a digital camera pointed
to the ground. The following three incremental steps methodology, also detailed
in the next sections, were used to validate the results:

1. Validate the core of the GA method: The GA implementation, and its diver-
sification functions, was validated by solving the classical VRP using the
benchmark presented in (Augerat, 1995);

2. Validate the BAA adaptation: The GA implementation was then used to
solve BAA adaptation of the DVRP for the same set of clients . As the arcs
will increase the route length, the solution of the VRP are expected to be
lower bound references for the BAA-DVRP;

3. Validate the MDRVP formulation: The MDRVP was then solved of the mul-
tiple criteria problem, combining the criteria in two, generating three two-
dimensional trade-off curves (J1 vs. J2, J2 vs. J3, and J1 vs. J3). The method
will be validated based on the Pareto-optimality of the solutions that formed
the trade-off curve. Additionally, the trade-off curves will be useful to analyze
the cross-influence between the criteria.
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Table 1. Experiments results of the GA algorithm applied to the instance A-n32-k5,
and the average total traveling cost with its iteration

Elistim Swap Inversion Insertion Displacement Average Total Cost Iteration

0.5 0.05 0.05 0.15 0.2 501.80 905.06

0.25 0.15 0.15 0.25 0.3 474.06 817.60

0.25 0.2 0.2 0.3 0.15 475.20 709.76

0.5 0.2 0.2 0.3 0.15 466.63 800.16

0.5 0.3 0.3 0.15 0.2 514.73 831.63

0.5 0.15 0.15 0.2 0.15 484.10 872.80

4.1 Classic VRP Results

The first step is to solve the classical VRP to find a lower bound to the next
Step. An well-known instance used to validate is the A-n32-k5, or Set A of
(Augerat, 1995). This instance has 32 vertexes, with values of demand ranging
from 1 to 24. The vehicle capacity is 100. The solution of this instance is such
that the minimum number of vehicles is 5 and the total cost is 784. The GA
algorithm was executed using: Population of 500 individuals, 50% elitism, the
mutation applied 0.2%, 0.2%, 0.4% of swap, inversion and insertion, respectively.
Table 1 shows the progression of operators values. For each setup the algorithm
was executed 30 times, and the average values can be anso seen on Table 1.
The random parameters are first set as related work and then increase to show
the behavior of algorithm in relation these values. As the GA algorithm could
find the optimal solution for this classical problem in all 30 trials, the authors
considered the GA implementation validated.

4.2 Classic VRP as the Lower Bound for the DVRP

In this step, the cost function of the classic VRP was modified to consider the
Dubins curve, using the same method as proposed in [10]. The so-called BAA
was executed using the same instance, and respecting the same 5 vehicles. After
several executions, all solutions were higher than the Classic VRP, as expected.
The solution was in average 712.23 or 20% higher than the lower bound.

4.3 Applying the MDVRP to an Actual Scenario

To validate the planner in an actual scenario, we considered the Forest Reserve
Adolpho Ducke (Figure 3), an environmental protected area nearby Manaus,
the two million inhabitants capital of the Brazilian State of Amazonas. The
deforestation pressure around the almost perfect 10 km x 10 km square is so
intense that its dark green highlights in the satellite imagery as if it was a
consequence of digital mosaicking process, but it is not. In this context, a closed
and regular monitoring is fundamental to establish a protection line around the
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reserve. Although located in the surrounding area of Manaus, the ground access
to the limits of the reserve is difficult, specially the north and east sides. Thus,
aerial monitoring is mandatory.

Fig. 3. Adolph Ducke reserve. Left: Manaus and the so-called meeting of the waters.
The arrow points to the reserve location, northeastern Manaus; Center: Close view at
the Reserve surrounding area. The arrow points to north. Right: Missions Way-Points
to monitor the limits of the Reserve.

It is important no mention that the authors are evaluating the performance
of the route planner. The aspects related to how the UAVs actually executed
the plan were considered out of the scope of this paper, and it will be addressed
in a future article. Micropilot c©autopilot is the main airplane onboard com-
puter, connected via radio to the ground station, an Intel i7 notebook with
Micropilot c©companion software, Horizon c©, installed. The experiments were
conducted on the ground station. A map of the area is uploaded to Horizon and
the way-points are collected using the software proper function. The selected set
of way points is input to the MDVRP that optimizes different routes, according
to the algorithm described in the previous section. The resulting routes will be
sent back to Horizon c©and them uploaded to the autopilot hardware onboard
the respective aircraft. The mission considered here is to monitor the limits of
the reserve by overflying 16 selected spots, marked as point-of-interests (PoI)
distant hundreds of meters from each other. including the center of the reserve
(Figure 3). We set the Dubins curvature radius as 500 m, which allows turns
with very small roll angles, keeping the camera pointing to the ground. We esti-
mated Ju1 and Ju2 by solving its respective mono objective VRP, resulting on
Ju1 = 57700m and Ju2 = 28003m.

We solved MDVRP for J1vs.J2 using the Fitness function as given by Eq.
(10), varying w1 = 0 to w1 = 1 in a step of 0.1. The algorithm was executed
15 times for each value of w1. Figure 4 presents the J1xJ2 solutions, where
the small red circles represents the non-dominated solution, small green circle
the dominated solution, and the crossed red circle marks the position of the
ideal solution. Due to the limitation of space only a summary of the results
was presented. In Table 2 one can verify that all frequent solution are non-
dominated. In fact, after all 110 times the MDVRP was executed for different
values of w1 up to 75% of the given solutions were non-dominated, considering
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Fig. 4. Non-dominated (red) and dominated (green) solutions of the J1 ×J2 bi-criteria
problem. The red ”x” points to the ideal solution.

a population of 500 individuals in the GA method. Interesting to mention that,
after increasing the population to 750 individuals (the limit of the computational
capacity of our notebook), we could not see a significant improvement on the
rate of non-dominated solution.

By analyzing Table 2 the decision maker can use J3 implicitly to decide
among the best fitted solutions. The ‖JA‖2 column presents values considering
no preference between J1 and J2 (w1 = 0.5), and in this case, given that there
is just an small difference from line 1 and 4, and the solution of line 4 uses
one aircraft less, it will be the preferable flight plan when the minimization of
number of UAV (J3) applies. In column ‖JB‖2 J1 is more important (w1 = 0.8),
and all solutions lead to the use of 2 UAVs, being the line 7 the best fitted
one. Similar analysis can be done by any combination of preference among the
criteria without having to recalculate the MDVRP, providing that a good set of
non-dominant solution was found. Figure 5 shows the best Dubin path (in terms
of ‖J‖2 for a given number of UAV, from 1 to 4.

Table 2. Most frequent solutions for J1 vs. J2

# ‖JA‖2 ‖JB‖2 J1 J2 J3 freq.
w1 = 0.5 w1 = 0.8 total lenght longer route UAVs

1 0.3997 0.3087 76446.9 34521.5 3 18

2 0.4614 0.4011 83320.2 31514.8 3 25

3 0.4692 0.4092 83869.9 31363.7 3 7

4 0.4096 0.2733 72812.7 36821.7 2 6

5 0.4144 0.2674 72057.9 37283.6 2 7

6 0.4633 0.2591 69289.5 39694.6 2 7

7 0.5265 0.2567 65322.9 42274.5 2 13

8 1.1819 0.5305 61060.5 61060.5 1 6
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Fig. 5. The routes found by MDVRP for 2 and 3 UAVs

5 Conclusions

This work addressed the problem of finding optimal routes for a fleet of mini
UAVs in monitoring missions over environmental protected areas. This hand-
launched fixed-wing UAV is being developed by a Brazilian network of researchers
and engineers. The main purpose of the present results is to implement the mis-
sion planner subsystem. A typical mission has to deal with multiple conflicting
objectives, such as to reduce the time to execute the mission, while minimizing
the applied resources. To use as fewer UAVs as possible in the mission is also an
important criteria. This scenarios leaded to a multi-criteria formulation for the
problem.

The method was validated in three steps: first, the GA implementation was
compared with a well-known benchmark; second, the VRP adaptation with
Dubins curves was validated comparing the results with the classic VRP, and,
finally, the multiple objective formulation was validated comparing the results of
three objectives organized into three pairs of bi-criteria problems. The proposed
methodology passed all three steps.

The application of GA reduced the complexity of the implementation of the
algorithm, while provided solutions that, in most cases, were optimal. The bi-
criteria formulation promoted a good learning process about the mission profile.
Changing the importance weight of one criterion when compared to the other
could give to the authors important insights of how to configure the mission for
better achieve the overall goals.

The results were promising, as the optimal routes were very consistent with
the non-holonomic characteristics of the airplane. The idea of constraint the
steering-angle of the lateral movement is not a limitation of the method, as it
can be modulated to fit to a better operational condition. A future work is to
consider no overlapping routes (to avoid collision).



248 E. Freitas and J.R.H. Carvalho

References

1. Dubins, L.E.: On Curves of Minimal Lenght with a a Constraint on Coverage Cur-
vature, and with Prescribe Initital and Terminal Positions and Tagents. American
Journal of Mathematics 79, 497–516 (1957)

2. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson
problems for dubins’ vehicle. In: American Control Conference, pp. 786–791 (2005)

3. Machado, P., Tavares, J., Pereira, F.B., Costa, E.: Vehicle routing problem: doing
it the evolutionary way. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2002), July 9–13, New York, USA (2002)

4. Pereira, F.B., Tavares, J., Machado, P., Costa, E.: GVR: a new genetic represen-
tation for the vehicle routing problem. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C.,
Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 95–102.
Springer, Heidelberg (2002)

5. Tavares, J., Pereira, F.B., Machado, P., Costa, E.: Crossover and diversity a
study about GVR. In: Proceedings of the Analysis and Design of Representations
and Operators (ADoRo-2003) a Bird-of-a-Feather Workshop at the 2003 Genetic
and Evolutionary Computation Conference (GECCO 2003), July 12–16, Chicago,
Illinois, USA (2003)

6. Potvin, J.-Y.: State-of-the art review - evolutionary algorithms for vehicle routing.
INFORMS Journal on Computing 21(4), 518–548 (2009)

7. Pohl, A., Lamont, G.: Multi-objective uav mission planning using evolutionary
computation. In: Em Winter Simulation Conference, WSC 2008, pp. 1268–1279
(2008)

8. Deb, K.: Multi-Objetive Optimization using Evolutionary Algorithms. Wiley
(2002)

9. Isaacs, J.T., Klein, D.J., Hespanha, J.P.: Algorithms for the traveling salesman
problem with neighborhoods involving a dubins vehicle. In: Em Proc. of the: Amer.
Contr. Conf. (2011)

10. Guimaraes Macharet, D., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.:
Data gathering tour optimization for dubins vehicles. In: The IEEE Congress on
Evolutionary Computation, (CeC 2012), Brisbane, Australia (2012)

11. Obermeyer, K.J.: Path planning for a UAV performing reconnaissance of static
ground targets in terrain. In: Em AIAA Conf. on Guidance, Navigation and Con-
trol, Chicago, IL, USA (2009)

12. Carvalho, J.R.H., Ferreira, P.A.V.: Multiple-Criteria Control: A Convex Program-
ming Approach, (extended version). Automatica 31(7), 1025–1029 (1995)

13. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Science
6, 80–91 (1959)

14. de Oliveira, H.C.B., Alexandrino, J.L., de Souza, M.M.: Memetic and genetic algo-
rithms: A comparison among different approaches to solve vehicle routing problem
with time windows. In: International Conference non Hybrid Intelligent Systems,
55 (2006)

15. Yu, X., Hung, J.Y.: A genetic algorithm for the dubins traveling salesman prob-
lem. In: IEEE International Symposium on Industrial Electronics (ISIE 2012),
Hangzhou, pp. 1256–1261 (2012)

16. Yan, X.S., Li, H., et al.: A fast evolutionary algorithm for combinatorial optimiza-
tion problems. In: Proceedings of the Fourth International Conference on Machine
Learning and Cybernetics, pp. 3288–3292. IEEE Press (2005)



An Interactive Evolutionary Multiobjective
Optimization Method: Interactive WASF-GA

Ana B. Ruiz1(B), Mariano Luque1, Kaisa Miettinen2, and Rubén Saborido3

1 Department of Applied Economics (Mathematics),
Universidad de Málaga, Málaga, Spain

{abruiz,mluque}@uma.es
2 Department of Mathematical Information Technology,

University of Jyvaskyla, Jyvaskyla, Finland
kaisa.miettinen@jyu.fi
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Abstract. In this paper, we describe an interactive evolutionary algo-
rithm called Interactive WASF-GA to solve multiobjective optimization
problems. This algorithm is based on a preference-based evolutionary
multiobjective optimization algorithm called WASF-GA. In Interactive
WASF-GA, a decision maker provides preference information at each iter-
ation simply as a reference point consisting of desirable objective function
values and the number of solutions to be compared. Using this informa-
tion, the desired number of solutions is generated to represent the region of
interest of the Pareto optimal front associated to the reference point given.
Interactive WASF-GA implies a much lower computational cost than the
original WASF-GA because it generates a small number of solutions. This
speeds up the convergence of the algorithm, making it suitable for many
decision-making problems. Its efficiency and usefulness is demonstrated
with a five-objective optimization problem.

Keywords: Multiobjective programming ·Pareto optimal solutions ·Ref-
erence point approach · Interactive methods · Evolutionary algorithms

1 Introduction

Many real-world applications arising in e.g. engineering involve solving multiob-
jective optimization problems where several conflicting objectives must be opti-
mized over a set of feasible solutions. In many occasions, these problems can be
complex to solve because they deal with different types of functions (nonlinear,
nondifferentiable, discontinuous, etc.) and different types of variables (contin-
uous, integer, binary, etc.). They may even involve black-box functions, whose
computational cost can be high.

Commonly, there is no solution where all the objectives can reach their indi-
vidual optima and we look for so-called Pareto optimal solutions. These solutions
c© Springer International Publishing Switzerland 2015
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are defined as solutions where an improvement of any objective always implies
a sacrifice in at least one of the others. The set of Pareto optimal solutions
is called the Pareto optimal set and its image in the objective space is known
as the Pareto optimal front. A decision maker (DM), a person who is interested in
solving the problem, decides which Pareto optimal solution best satisfies his/her
preferences and this solution is commonly known as the most preferred solution.

There exists a great amount of methods to deal with multiobjective optimiza-
tion problems in the literature. On the one hand, interactive Multiple Criteria
Decision Making (MCDM) methods are widely used due to the gradual incorpo-
ration of the DM’s preferences into the solution process in order to generate one
or a small set of Pareto optimal solutions according to these preferences [13,16].
On the other hand, during the last decades, Evolutionary Multiobjective Opti-
mization (EMO) algorithms have become very popular for solving different types
of problems [1,2]. Their main aim is the approximation of the whole Pareto opti-
mal front. However, although knowing the ranges of the objectives functions and
the conflict degree among them can be of great help for having a good knowledge
of the problem itself, the task of identifying a single preferred Pareto optimal
solution that pleases the DM may not be easy. Also, approximating the whole
Pareto optimal front may be impossible in e.g. large scale or computationally
complex problems. These difficulties can be managed by considering an inter-
active method that uses tools from an EMO algorithm. To be more precise,
one can incorporate preference information into EMO algorithms to overcome
various (computational and cognitive) challenges [8].

Some interactive EMO methods have been proposed in the literature, includ-
ing the following ones. The Reference-Point-Based NSGA-II (R-NSGA-II) pro-
posed in [5] modifies NSGA-II [4] as follows. According to one or several reference
points given by a DM, the crowding distance used in NSGA-II is replaced by
a preference distance, which equally emphasizes objective vectors that are close
to any of the reference points with respect to the Euclidean distance. In [21] an
interactive EMO method called the Preference Based Evolutionary Algorithm
(PBEA) was proposed, which modifies the EMO algorithm IBEA [27]. PBEA
allows the DM to interactively give reference points, with which the binary qual-
ity indicator of IBEA (which measures the minimal distance by which an individ-
ual needs to be improved in each objective to become nondominated) is redefined
using an achievement scalarizing function [24] from MCDM. A Preference-based
Interactive Evolutionary (PIE) algorithm was proposed in [18]. Starting from
a solution selected from a randomly generated population or from a reference
point, PIE progressively improves the objective function values by minimizing
an achievement scalarizing function [15] at each iteration using a single-objective
evolutionary algorithm. The DM guides interactively the algorithm by deciding
from which solution, at which distance from the Pareto optimal front and in
which direction the search for the next solutions is continued. iMOEA/D [9] is
an interactive version of the well-known MOEA/D method [25], where a set of
solutions is shown to the DM at intermediate generations, who must choose one
of them. Then, the search is guided to the neighbourhood of the selected solution
by relocating the weight vectors which determine the search directions.
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In [23], an interactive EMO method called iPICEA-G , which is based on the
PICEA-G algorithm (Preference-Inspired Co-Evolutionary Algorithm) [22], was
proposed. In this method, the DM’s preferences can be given either as a search
direction or as a reference point. In the former case, the DM has to indicate the
importance (s)he gives to each objective function and an angle between 0 and
Π/2 which determine the search range. This kind of information may be difficult
to provide for the DM. In the case of a reference point, all objectives are given
the same importance and the search range is set according to the number of
objective functions. In [19], an interactive evolutionary algorithm was suggested
which tries to find the most preferred solution with a limited number iterations
expecting DM’s involvement. The preference information is given by choosing a
desirable solution among a set of solutions.

Whatever algorithm is used, the final purpose of solving any multiobjective
optimization problem is that the DM can find her/his most preferred solution.
Thus, once a set of solutions that approximates the Pareto optimal front is
found, we cannot overlook the decision making phase in which the DM must
make an adequate decision to choose the final solution. Obviously, the DM plays
an active role in the process and an interactive method is supposed to be appeal-
ing and acceptable to her/him because (s)he is involved in the process. However,
it is important to consider several issues. On the one hand, for decision making
purposes, only a few solutions must be analysed by the DM in order not to over-
whelm her/him. Comparing too many solutions may be difficult in the presence
of a high number of objectives. On the other hand, asking preference information
in a format as simple as possible is very important since it makes the interactive
process more meaningful. Besides, if the DM feels that the solutions obtained
reflect well enough her/his wishes, and they are improved progressively, (s)he is
more motivated and it is more likely that (s)he wants to keep on iterating until
the most preferred solution is found.

Based on this, in this paper, we concentrate on the decision making phase and
the interaction with the DM necessary for solving any multiobjective optimiza-
tion problem. Taking into account the previous ideas, we propose an interactive
EMO method that generates a small set of solutions at each iteration and which
needs from the DM preference information which is not cognitively demanding.
The interactive method proposed is called Interactive WASF-GA and it is an
interactive version of a preference-based EMO algorithm called WASF-GA [17].
At each iteration of Interactive WASF-GA, the DM indicates the number of
solutions to be compared and a reference point containing aspiration levels, that
is, objective function values that are desirable. According to this, WASF-GA is
executed iteratively to generate the desired number of solutions in the region of
interest defined by the given reference point. However, we do not only propose
an interactive algorithm, but we also suggest a user interface aimed at enhancing
the interaction with DM when solving a problem with Interactive WASF-GA.

The rest of this paper is organized as follows. In Section 2, we introduce the
main concepts and notations used, including a brief overview of the WASF-GA
algorithm. Interactive WASF-GA is motivated and described in Section 3, where
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we also carry out a comparative analysis with respect to other interactive EMO
algorithms. In Section 4, a computational implementation is described, showing
the graphical user interface proposed and the solution process of a five-objective
optimization problem. Finally, conclusions are drawn in Section 5.

2 Formulation and Background Concepts

2.1 Concepts and Notation

A general multiobjective optimization problem is defined by

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where fi : S → R, for i = 1, . . . , k (k ≥ 2) are the objective functions that we
wish to optimize (to minimize in our case) simultaneously. The decision variables
x = (x1, . . . , xn)T are referred to as solutions or decision vectors and they
belong to S ⊂ Rn, called the feasible set. The images of the solutions f(x) =
(f1(x), . . . , fk(x))T are called objective vectors. The image of the feasible set in
the objective space Rk is called the feasible objective region Z = f(S).

Since, in the presence of conflicting objective functions, it is not possible
to find a solution where all the objectives can reach their individual optima,
there exist solutions that are mathematically incomparable. In these solutions,
no objective function can be improved without deteriorating at least one of the
others. A solution x ∈ S is said to be Pareto optimal if there does not exist
another x′ ∈ S such that fi(x′) ≤ fi(x) for all i = 1, . . . , k and fj(x′) < fj(x)
for at least one index j. The corresponding objective vector f(x) is called a
Pareto optimal objective vector. The set of all Pareto optimal solutions is called
a Pareto optimal set, denoted by E, and the set of all Pareto optimal objective
vectors is called a Pareto optimal front, denoted by f(E).

Given two objective vectors z, z′ ∈ Z, we say that z dominates z′ if and only
if zi ≤ z′

i for all i = 1, . . . , k, with at least one strict inequality. In the context
of EMO algorithms, we refer to a nondominated set as a set of solutions whose
objective vectors are not dominated by the objective vector corresponding to
any other solution in the set.

The ideal objective vector and the nadir objective vector are defined, respec-
tively, as z� = (z�

1 , . . . , z�
k)T such that z�

i = minx∈E fi(x) (i = 1, . . . , k), and
as znad = (znad1 , . . . , znadk )T such that znadi = maxx∈E fi(x) (i = 1, . . . , k). That
is, the ideal and the nadir values are, respectively, the best and the worst values
that each objective function can achieve in the Pareto optimal front (that is,
they define lower and upper bounds for the objective functions). While the ideal
objective vector can be easily obtained, the nadir objective vector is, in general,
more difficult to calculate and typically we need to settle for approximations
[3,20]. In what follows, we assume that the Pareto optimal front is bounded
and that there are available estimations of the ranges of the objective function
values.
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From the mathematical point of view, all Pareto optimal solutions can be
regarded as equally desirable and we need information about the preferences of
a DM to identify one as the final solution to be implemented [13]. A natural way
to express preferences consists of specifying desirable objective function values,
which constitute the components of the so-called reference point. A reference
point is given by q = (q1, . . . , qk)T , where qi is an aspiration level for the objective
function fi provided by the DM, for all i = 1, . . . , k. Usually, q is said to be
achievable for (1) if q ∈ Z+R

k
+ (where Rk

+ = {y ∈ R
k | yi ≥ 0 for i = 1, . . . , k}),

that is, if either q ∈ Z or q is dominated by some Pareto optimal objective
vector. Otherwise, the reference point is said to be unachievable, that is, for an
unachievable reference point, all components cannot be achieved simultaneously
(in some situations, a reference point is unachievable because some components
cannot be achieved although other ones can be attained).

Once a reference point is given, a so-called achievement (scalarizing) function
(ASF) [24] can be minimized over the feasible set in order to find the Pareto
optimal solution which best fits the reference point. These functions combine the
original objective functions with the preferences of the DM into a scalar valued
function. For an overview about ASFs, see [15].

2.2 WASF-GA Algorithm

As previously mentioned, the interactive method we proposed is based on the
preference-based EMO algorithm called WASF-GA [17]. This algorithm tries
to approximate the region of interest of the Pareto optimal front defined by a
reference point q given by a DM. In [17], the region of interest of the Pareto
optimal front associated to q is defined as followed. When q is achievable, the
region of interest is the subset of Pareto optimal objective vectors f(x), with
x ∈ E, which verify that fi(x) ≤ qi, for every i = 1, . . . , k. On the other hand, if
q is unachievable, the region of interest is formed by the Pareto optimal objective
vectors f(x), with x ∈ E, which verify that fi(x) ≥ qi, for every i = 1, . . . , k.
Therefore, in the achievable case, this region of interest contains all the Pareto
optimal solutions which dominate the reference point and, thus, which are the
most interesting solutions for the DM. In the unachievable case, the region of
interest is formed by the Pareto optimal solutions which are dominated by the
reference point. In this case, solutions lying in this region are likely to be more
appealing for the DM than the ones outside it because, at them, the objective
function values differ from the aspiration values as little as possible, although
they do not improve any of them. The solutions outside this region may improve
some of the aspiration levels (and not all of them) but at the expense of a sacrifice
in the rest of reference levels, what may not be so attractive for the DM.

To approximate the region of interest, WASF-GA maintains a diverse set of
nondominated solutions by considering, on the one hand, a predefined set of weight
vectors in the weight vector space (0, 1)k (let us consider Nμ vectors of weights)
and, on the other hand, by minimizing at each generation the ASF proposed by
Wierzbicki in [24] for the reference point given. Roughly speaking, at each genera-
tion of WASF-GA, parents and offspring are classified into several fronts.
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This classification is done according to the values that each individual takes on
the ASF, for the reference point and for each of the weight vectors in the set. To
be more precise, the first front is formed by the solutions which reach the lowest
value of the ASF for each of the Nμ weight vectors; the second front is consti-
tuted by the individuals with the next lowest value of the ASF for each of the Nμ

weight vectors, and so on until every individual has been included into some front.
Afterwards, the solutions which are passed to the next generation are those in the
lower level fronts until completing the new population. The solutions selected can
be considered as the best individuals at the current generation for minimizing the
ASF with respect to the weight vectors considered. The outcome of WASF-GA is
the first front of the last generation, which has Nμ individuals. From the practical
point of view, the region of interest is approximated by projecting the reference
point onto the Pareto optimal front in different ways, by using the set of projection
directions (or search directions) defined by the inverses of the Nμ weight vectors
considered.

Figure 1 gives a graphical idea of the working procedure of WASF-GA in a
biobjective optimization problem. The region of interest in the Pareto optimal
front has been highlighted with a bold line in both cases, and the arrows represent
the projection directions determined by a set of weight vectors. It can be seen that,
by varying the weight vectors and by emphasizing at each generation those indi-
viduals which minimize the ASF for each weight vector, the region of interest can
be approximated by projecting the reference point onto the Pareto optimal front
using several projection directions, for both unachievable and achievable reference
points. For more details about WASF-GA, see [17].

(a) Achievable reference point (b) Unachievable reference point

Fig. 1. Idea of the working procedure of WASF-GA

3 InteractiveWASF-GA

Based on the success of interactive MCDM methods, we propose a new interactive
method using a preference-based EMO algorithm. In Interactive WASF-GA, the
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preference information indicated by the DM at each iteration it are aspiration
levels for the objective functions, which determine a reference point denoted by
qit, and the number of solutions (s)he wants to compare, denoted by N it

S . The set
of new solutions is generated by applying the WASF-GA algorithm using as many
weight vectors as the number of solutions indicated by the DM, that is, Nμ = N it

S

at each iteration. Let us denote by μit,j the weights vectors used at iteration it,
for j = 1, . . . , N it

S .

3.1 Algorithm of Interactive WASF-GA

The steps of the Interactive WASF-GA are the following ones:

Step 1. Initialization. Initialize it = 1.
Step 2. Preference information I. If it > 1 and the DM wants

to generate new solutions using the previous reference point, set
qit = qit−1. Otherwise, ask the DM to specify a reference point
q and set qit = q.

Step 3. Preference information II. Ask the DM how many solu-
tions (s)he would like to see, N it

S . If it > 1 and N it
S = N it−1

S , set
μit,j = μit−1,j for every j = 1, . . . , N it

S and go to Step 5. Other-
wise, continue.

Step 4. Generation of the weight vectors. Following the proce-
dure described in [17], generate N it

S weight vectors, denoted by
μit,j for j = 1, . . . , N it

S .
Step 5. Generation of solutions. GenerateN it

S solutionswith the
WASF-GA algorithm using the set of weight vectors μit,j for j =
1, . . . , N it

S , and show the solutions to the DM.
Step 6. Termination rule. AsktheDMtoselect themostpreferred

of the N it
S solutions and denote it byxit. If the DM wishes to Stop,

the solution process concludes with xit as the final solution and
f(xit) as a final objective vector. Otherwise, set it = it+1 and go
to Step 2.

Next, let us make some remarks about some aspects of the algorithm:

– When it = 1, the DM must give a reference point in Step 2 because no refer-
ence point was provided previously.

– The number of solutions to be shown to the DM can be changed at each iter-
ation in Step 3, but (s)he can alternatively maintain the same number along
several iterations. In that case, the same set of weight vectors can be used
through these iterations and only the reference point changes.

– When the DM decides to generate new solutions using the same reference
point, only the N it

S weight vectors must be recalculated. Given that the proce-
dure described in [17] generates an initial large number of vectors from which
the weight vectors needed are selected, the new N it

S weight vectors can be
obtained using again the same initial vectors to reduce the computational
effort. Furthermore, the weight vectors that were already used at the previous
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iteration must be internally removed in order to assure that different solutions
are provided to the DM.

– The final population generated at one iteration can be used as the initial popu-
lation at the next iteration, which allows to accelerate the speed of the solution
process. This increases the convergence speed of the algorithm since the initial
population is already close to the Pareto optimal front.

– In order to guarantee at least local Pareto optimality of the final solution, the
last solution chosen by the DM can be locally improved by minimizing the ASF
proposed in [24] using the objective function values achieved by this solution
as the reference point, with some local optimization method.

3.2 Comparative Analysis

In order to compare Interactive WASF-GA with some of the reference point-based
interactive EMO algorithms mentioned in Section 1, we present Table 1, which
summarizes the main features of each algorithm. Next, we detail the information
given on each column and, as an example, we explain this information for the
Reference-Point-Based NSGA-II algorithm [5]. In this algorithm, at each itera-
tion, the DM must specify one or several reference points, which is indicated in
the ’Preference information’ column. At each iteration with preferences, the out-
come population shown to the DM consists of individuals in the first nondom-
inated front of the last generation. This is indicated in the ’Solutions shown to
the DM’ column. The’Computational cost’ column contains the complexity of the
basic operations of each algorithm in one iteration, considering their worst cases.
In this column, k represents the number of objective functions and N is the popu-
lation size used. For the Reference-Point-Based NSGA-II algorithm, we have used
only one reference point and we have taken into account the computational cost
needed for carrying out the nondominated sorting procedure, the preference dis-
tance assignment, the preference distance sorting and the ε-based selection strat-
egy (see [5]). Finally, if the algorithm needs to set any additional parameters to
be executed, they are indicated in the last column. In the example considered, a
value for ε is necessary to compute the niching operator.

Let us now analyse Table 1. Firstly, from the cognitive point of view, the pref-
erence information required from the DM in Interactive WASF-GA is very simple
compared to some of the other methods. For example, in the PIE algorithm or
in iPICEA-G, the DM is asked for the percentage of distance to the (unknown)
Pareto optimal front or for a search angle, respectively. This type of information
may not be easy to understand by the DM. Secondly, as it can be seen in the third
column, the only method that generates exactly the number of solutions the DM
wants to see is Interactive WASF-GA. Except from PIE (which generates one solu-
tion at each iteration) and i-MOEA/D, the rest of methods show the solutions
generated at the last generation. Consequently, the number of solutions shown
to the DM may be too high for making a fair comparison and cannot be known
beforehand. Besides, Interactive WASF-GA shows nondominated solutions which
approximate the region of interest, instead of showing nondominated solutions
generated at intermediate generations, as in i-MOEA/D. This may be seen as a
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Table 1. Comparison of several methods

At each
iteration

Preference
information

Solutions shown
to the DM

Computational
cost

Additional
parameters

Interactive
WASF-GA

A reference point
and the number of
solutions to be
compared (NS)

The NS solutions
generated at the
last generation

O(k · N · NS) No

Reference-
Point-Based
NSGA-II [5]

One or several
reference points

First nondominated
front of the last

generation

O(k · N2) To control the extent of
solutions, an ε-clearing

idea is used in the
niching operator

PBEA [21] A reference point Population of the
last generation

O(k · N2) The extent of solutions
is controlled by an

operator δ
PIE [18] Preferential

weights, a
reference point
and the distance
to the Pareto
optimal front

A solution at the
distance indicated

to the Pareto
optimal front

O(k · N) If the DM wants to
investigate solutions
previously obtained,

(s)he must indicate the
number of solutions to

be shown

iMOEA/D
[9]

The number of
solutions to be

shown and
choosing one

solution among a
set of solutions

Solutions at
intermediate
generations

O(k · N2) The number of
iterations to be taken
and a reduction factor
of the preferred region

iPECEA-G
[23]

A reference point
or a search

direction with a
search angle

Population of the
last generation

O(k · N2) Search angle to control
the extent of solutions

strength of our algorithm, since the solutions found at intermediate generations
may be still far from the region of interest and may not give a good idea about the
real trade-offs among the objectives in this region. Thirdly, regarding the ’Com-
putational cost’ column, the algorithm proposed has a much lower computational
cost than those needed by other algorithms given that the number of solutions the
DM wants to compare in Interactive WASF-GA, denoted by NS , is expected to be
much lower than the population size. The only method with a lower computational
cost than Interactive WASF-GA is PIE because this method internally solves a
single-objective (scalarized) optimization problem with a single-objective algo-
rithm instead of solving the multiobjective optimization problem itself. Finally,
it is worthy to mention that Interactive WASF-GA does not need to set any addi-
tional parameter during the solution process, while the other algorithms do require
some (see last column). In most of them, these additional parameters control the
extent of solutions in the region approximated in the Pareto optimal front and,
consequently, they affect the outcome of the algorithm.

The previous analysis highlights that, in comparison with some of the state-
of-art interactive EMO algorithms, Interactive WASF-GA requires very simple
preference information from the DM and it is able to generate exactly the number
of solutions the DM wants to see in the region of interest. Besides, its computa-
tional cost is quite limited and it does not need to set any additional parameter
during the solution process. As shortcomings of Interactive WASF-GA, we can
say that, on the one hand, the distribution of the NS weight vectors influences the
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distribution of the solutions generated and, thus, special emphasis must be taken
for using weights which produce well-distributed projection directions [17]. This
may be overcome by producing a large number of weight vectors (e.g., 100 or more)
and then using the k-means clustering [12] to select the NS most representative
ones.

On the other hand, one may think that it may be not assured that the DM is
shown exactly NS solutions because minimizing the ASF using different weight
vectors does not assure to generate different Pareto optimal solutions (for exam-
ple, in problems with discontinuous Pareto optimal fronts). In order to avoid such
a situation, more than NS weight vectors may be used in WASF-GA, e.g. we can
use N∗

S = 2 · NS vectors. In this way, more solutions are generated in the region
of interest and, afterwards, the set of solutions obtained may be filtered using e.g.
the k-means clustering in order to get the NS most representative solutions. This
procedure, which is also used in [11], increases the computational cost and it must
only be applied in case this situation is internally detected.

4 Computational Implementation

In this section, we demonstrate the computational implementation created for
Interactive WASF-GA, which is in a preliminary development phase. It has been
developed in Java by using jMetal [7], a Java-based framework for multiobjec-
tive optimization. In order to check the performance of the method proposed, we
have introduced into the platform several test problems from the ZDT, DTLZ
and WFG families [6,10,26], respectively by now, for which the number of objec-
tives can vary between 2 and 6. Of course, this implementation must be further
improved so that other multiobjective optimization problems considered.

The main menu can be seen in Figure 2, where we consider the DTLZ2 test
problem with 5 objective functions. The information is organized as follows:

– Algorithm’sConfiguration.There are three parameters in this box: (a) the
number of solutions the DM would like to compare at the current iteration;
(b) the population size and (c) the number of generations, the latter two being
technical parameters. In the implementation, default values are recommended
for these technical parameter for each problem although they can be modified
if so desired. For example, if the DM thinks that the solutions are not good
enough and (s)he wishes to obtain solutions closer to the Pareto optimal front,
one can allow more generations to be carried out.

– Problem’s Configuration. In this box, the multiobjective optimization
problem to be solved is selected.

– Reference Point. Approximations of the ideal and the nadir values are pro-
vided to the DM in order to let her/him know the ranges of the objective func-
tions. By clicking on each slider and moving it, the DM can set the aspiration
level for each objective, and the corresponding numerical values are shown in
the Value column.

– Solution Process. To generate the N it
S solutions the DM wishes to compare,

(s)he must click the Start button. If (s)he decides to take a new iteration by
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RP

Fig. 2. Interface of Interactive WASF-GA - DTLZ2 problem, iteration 1

changing some preference information (the reference point and/or the number
of solutions to be generated), (s)he must click the Next Iteration button to
generate new solutions.

– Solutions. Here, the objective values of the N it
S solutions obtained for the

current reference point are shown.
– Plot for the Problem. The objective vectors of the solutions found and the

reference point are shown graphically in order to ease the comparison among
them. For bi-objective optimization problems, they are plotted inR2, and also
theParetooptimal front is shown if it is known.Formultiobjective optimization
problems with three or more objective functions, we use a value path [14] rep-
resentation to shown the solutions obtained, as can be see in Figure 2. The ref-
erence point (labelled as RP) and each solution are plot by lines that go across
different columnswhich represent the objective function values they reach.The
lower and upper ends of each column represent the total values range of each
objective function, that is, its ideal and nadir values, respectively.

– Log. The Log box indicates if there has been any error during the execution.

In what follows, we illustrate the performance of Interactive WASF-GA with
the DTLZ2 problem with 5 objectives. Let us assume that the preference infor-
mation given by the DM at the first iteration is the one shown in Figure 2, that
is, he set the first reference point as q1 = (0.34, 0.4, 0.3, 0.38, 0.33) and wanted
to generate four solutions (N1

S = 4). Analysing the value path and the objective
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values of the solutions generated, it can be seen that none of the solutions obtained
has improved any aspiration value. Besides, a careful analysis of them highlights
the conflict degree among the objective functions. It can be observed that, when
a solution reaches an objective value closer to the corresponding aspiration value,
the values achieved by the rest of objective functions are further from their aspi-
ration values. This can be easily seen, for example, in solutions S2 and S4, which
attain values close to the aspiration levels for objective 5 and objective 1, respec-
tively, at the expense of the rest of the objective functions.

According to the above analysis, the DM decided to relax all the aspiration
levels and he set the new reference point as q2 = (0.36, 0.42, 0.33, 0.4, 0.36) for
generating four new solutions (N2

S = 4). The solutions generated are shown in
image and table (a) of Figure 3. As at the previous iteration, no solution reaches
or improves any aspiration level, but it can be seen that now the ranges of objective
values achieved by all the solutions are closer to their aspiration levels. Based on
this, the DM wished to have another iteration in order to check the solutions that
could be obtained if he maintained the same aspiration levels for the objectives 1,
2 and 5 and he relaxed a bit more the ones for the objectives 3 and 4. He fixed the
reference point as q3 = (0.36, 0.42, 0.38, 0.45, 0.36). The four solutions (N3

S = 4)
found can be seen in image and table (b) of Figure 3 and it can be observed that
now they are even closer to the reference point. Although the reference point was
still unattainable, the DM was satisfied enough with solution S2. This solution
improved the values achieved for the objective functions 1, 2 and 5 when compared
to the ones reached by most of the solutions at the previous iteration and, at the
same time, it attained the second best values for the objectives 3 and 4. After
three iterations the DM found the most preferred solution and was convinced of
its goodness.

With this example, we have shown the behaviour of Interactive WASF-GA
and the user interface proposed. If the DM changes the reference point, we have
seen that the solutions generated are different from the ones previously produced.
And if the DM indicates a higher or a smaller number of solutions, more or less
solutions are produced accordingly. We have not computationally compared our
algorithm with other interactive methods because a quantitative assessment of
interactive approaches is very difficult in practice when interacting with a DM.
Furthermore, traditional comparative tables which evaluate the performance of
EMO algorithms after several independent runs are not meaningful for assessing
Interactive WASF-GA because we focus on the DM’s interaction and the decision
making phase, and not only on the approximation of the Pareto optimal front.

5 Conclusions

In this paper, a new interactive evolutionary algorithm has been proposed for solv-
ing multiobjective optimization problems. The new algorithm is called Interactive
WASF-GA and it is based on the preference-based EMO algorithm WASF-GA. At
each iteration of Interactive WASF-GA, very easy to understand preference infor-
mation is asked to the DM: just a reference point (containing desirable objective
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Fig. 3. Solution process of the DTLZ2 problem

function values) and the number of solutions the DM wishes to compare. Accord-
ing to this information, a set with this number of solutions is generated in order to
represent the region of interest of the Pareto optimal front defined by the reference
point given. Subsequently, the DM analyses the solutions found and decides either
to stop or to carry out a new iteration by redefining the preference information.

While the original WASF-GA approximates the region of interest with a high
number of nondominated solutions, the interactive version only needs to gener-
ate few representative nondominated solutions. This fact allows to accelerate the
solution process and reduces the computational cost needed. Besides, as the DM
just compares a small number of solutions in the region of interest in order to
find her/his most preferred solution, the solution process is not very demanding
and requires a low cognitive effort. Furthermore, Interactive WASF-GA is able to
generate as many solutions as the DM indicates, and this is a strength in com-
parison to other interactive EMO algorithms, which provide the DM with sets of
solutions that may be too large to be compared. Also, it is noteworthy that Inter-
active WASF-GA does not need to set any additional parameter.

We have demonstrated the applicability of Interactive WASF-GA with a five-
objective optimization problem which has shown how our algorithm can be used
for reaching a solution interesting for the DM. Next, we plan to apply the algo-
rithm proposed to real-life multiobjective optimization problems.
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MultiobjectiveOptimization.LNCS,vol.5252,pp.27–57.Springer,Heidelberg(2008)

17. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm
for multiobjective optimization: The weighting achievement scalarizing function
genetic algorithm. Journal of Global Optimization (2014, in press). doi:10.1007/
s10898-014-0214-y

http://dx.doi.org/10.1007/s10898-014-0214-y
http://dx.doi.org/10.1007/s10898-014-0214-y


An Interactive Evolutionary Multiobjective Optimization Method 263

18. Sindhya, K., Ruiz, A.B., Miettinen, K.: A preference based interactive evolution-
ary algorithm for multi-objective optimization: PIE. In: Takahashi, R.H.C., Deb, K.,
Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 212–225. Springer,
Heidelberg (2011)

19. Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An interactive evolutionary multi-
objective optimization algorithmwith a limitednumber of decisionmaker calls. Euro-
pean Journal of Operational Research 233(3), 674–688 (2014)

20. Szczepanski, M., Wierzbicki, A.P.: Application of multiple crieterion evolutionary
algorithm to vector optimization, decision support and reference point approaches.
Journal of Telecommunications and Information Technology 3(3), 16–33 (2003)

21. Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based evolution-
ary algorithm for multi-objective optimization. Evolutionary Computation 17(3),
411–436 (2009)

22. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algo-
rithms formany-objectiveoptimization. IEEETransactionsonEvolutionaryCompu-
tation 17(4), 474–494 (2013)

23. Wang, R., Purshouse, R.C., Fleming, P.J.: “Whatever works best for you”- a new
method for apriori andprogressivemulti-objectiveoptimisation. In:Purshouse,R.C.,
Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811,
pp. 337–351. Springer, Heidelberg (2013)

24. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In:
Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applica-
tions, pp. 468–486. Springer (1980)

25. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731
(2007)

26. Zitzler,E.,Deb,K.,Thiele,L.:Comparisonofmultiobjectiveevolutionaryalgorithms:
Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

27. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
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Abstract. Lipschitz global methods for single-objective optimization
can represent the optimal solutions with desired accuracy. In this paper,
we highlight some directions on how the Lipschitz global methods can be
extended as faithfully as possible to multiobjective optimization prob-
lems. In particular, we present a multiobjective version of the Pijavskǐı-
Schubert algorithm.
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1 Introduction

Exact global search methods are a well known class of algorithms belonging to
the single-objective optimization literature.1 These methods usually demonstrate
appreciable speed of convergence and furthermore guarantee that the global
optimum of the function under exam is approximated with arbitrary precision
in a finite time, providing some constraints on the functions at hand. A well
known example of these methods is the Pijavskǐı-Schubert algorithm [18,19],
which is quickly reviewed in Section 2.

Unfortunately, it appears that in the available multiobjective literature there
has not been so much attention dedicated to the complete or deterministic meth-
ods for global search. Nevertheless, at least in the single objective case and when
limited computational resources are available, global deterministic methods have
proven their effectiveness and are known and widely employed. Now and then we
have witnessed the attempt of producing adaptations of some of these methods
for the multiobjective case. However, at least to the knowledge of the authors,
most of those adaptations follow one of the following schemes:

1. the method uses a scalarization of the multiobjective problem to a single
objective optimization problem and then applies the global algorithm to the
scalarization, or

1 These methods are referred to also as complete or deterministic, possibly referring
to more specific features [16].
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2. the method translates the underlying idea of the global method in the mul-
tiobjective format, but then applies a non deterministic method to produce
the Pareto set.

In both cases, we encounter the following problems contrasting with the global
and exact character desired:

1. the method cannot guarantee a systematic covering of the Pareto set, or
2. the method operates at some point some non deterministic choice.

Well-known and widely used methods belonging to the latter class are the evo-
lutionary multiobjective optimization methods. To partially overcome the first
problem some method try to realize a systematic covering of the space of para-
meters. However, this could not lead to a correspondingly systematic covering of
the Pareto set, especially in non convex cases. Therefore we do not consider this
approach as genuinely multiobjective and we would prefer to tackle the multi-
objective nature of the problem directly. We believe that the best strategy for
approximating the Pareto set is adopting a set-wise approach. That is, instead of
having a single point converging to a Pareto optimum at a time and then repeat-
ing this for a number of points, it is better to make converge multiple points at
the same time towards the whole Pareto set. This set-wise concept of conver-
gence is already adopted by evolutionary multiobjective optimization methods,
and it is in contrast to point-wise convergence followed by most scalarization
methods.

We restate our claim about the nonexistence of exact global methods in a
more positive sense, by presenting a pair of methods both attempting to adhere
to the most possible extent to deterministic methods and to guarantee a complete
representation of the Pareto set, at least requesting some regularity conditions
on the functions at hand. The first method [4] uses the Karush-Kuhn-Tucker
conditions to write a non negative auxiliary function whose zero set contains
the set of Pareto optima. The zero set of such a function is approximated by
using an associated ordinary differential equation and suitable iteration schemes
obtained from a discretization of it. Set-wise convergence with respect to the
Hausdorff distance is obtained if suitable regularity conditions are met. The set
obtained is the set of subcritical points, which strictly contains the set of Pareto
optima. The approximation obtained consists in a collection of hypercubes which
covers the subcritical set. The second method [12] uses a qualitatively similar
approach obtained from the Smale’s first and second order conditions [20,21].
For the special case of two functions in two variables, it is possible to write a
multiobjective extension of the Pijavskĭı-Shubert algorithm, i.e., it is possible to
guarantee the convergence to the Pareto set in global sense with respect to the
Hausdorff distance.

In both cases, the set obtained is a strict superset of the set of Pareto optima,
corresponding to first order conditions of optimality, i.e., extensions of the notion
of critical point for a single function, and furthermore, the application is limited
to low dimensional examples. Therefore effective and straightforward approx-
imation methods for the Pareto set are still missing, at least in the authors’
knowledge.
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In this paper, our main scope is to present a Lipschitz global optimization
algorithm for multiple objectives, namely an extension of the Pijavskĭı-Shubert
method which does not make use of auxiliary functions and that approximates
the set of global Pareto optima within a desired tolerance measured according
to the Hausdorff distance (see Section 2 for details). This method is a first step
in the direction proposed in [12] where the possibility of defining exact and
global strategies was outlined. This method produces an approximation of the
Pareto set consisting in a covering composed by arbitrarily small hypercubes.
In perspective, the method can be combined with surface tracing methods to
generate a faithful geometric surrogate of the Pareto set, as in the methods
[5–7,11].

2 Pijavskĭı-Shubert

The Pijavskĭı-Shubert algorithm [18,19] (from now on noted as the P-S algo-
rithm) is a 1-dimensional globally convergent method assuming that a global
Lipschitz constant is known in the domain of the search process. At each step of
the process, there is a finite number of points in the domain where the function
has been evaluated. Those points are taken as the extrema of a collection of
subintervals. For every subinterval a lower bound of the unknown function is
determined on the basis of the Lipschitz constant, on the subinterval width and
the values of the function at the extrema. The subinterval with the lowest esti-
mate is chosen for further sampling and subdivision, by taking the point where
the lower bound is predicted to be located.

l u l x1 u l x1x2 u

Fig. 1. Workings of the Pijavsk̆ı-Shubert algorithm. The domain is divided in subin-
tervals and for each subinterval a lower bound is computed on the basis of the global
Lipschitz constant for the function in study. The interval with the lowest lower bound
is then divided exactly at the position of the lower bound.

This method allows for detecting subintervals where the global minimum
cannot be located, discarding them from further analysis. Indeed if the lower
bound corresponding to a subinterval is higher than one of the already computed
values, it is impossible that the global optimum would be contained into the
interval.
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This method can be extended to higher dimensions although the compu-
tational complexity rises exponentially [15]. Nevertheless the method has been
the starting point for several efficient global algorithms, such as direct [8] and
Lipschitz Global Optimization (LGO) [17] and many more [9,10]2.

3 Extending P-S Algorithm to Multiple Objectives

In [12], tessellation of the 2D domain by means of equilateral triangles and
an auxiliary scalar function was used for deciding if a triangle could contain
a portion of the Pareto set or not. However in the method presented here, we
will try to define an approach valid for higher dimensions and we will avoid
any scalarization or auxiliary function. In particular we will estimate a vector
lower bound for every hyper interval, i.e., for each one of the available objective
function. This estimate will be on the lines of the scalar method, i.e., based on
the Lipschitz constant and on the hyper interval diameter. Then we will not
combine the single objective lower bounds in a unique scalar indicator but we
will keep the vector as it is and compare and rank different intervals on the basis
of Pareto dominance. More precisely, we will partition the set of hyper intervals
in two classes, the discarded and the candidates for further division. To decide if
an hyper interval should be discarded we will check if the estimated lower bound
dominates one of the already computed points. In that case there cannot exist a
point inside the hyper interval belonging to the Pareto set, so we are warranted
to discard it. All other hyper intervals will be selected for further division in the
subsequent iterations.

This will produce several candidate intervals for each iteration, but this does
not constitute a problem, because it is typical for multiobjective methods and
it occurs also for some scalar global optimization methods like [8]. A detailed
formal description of the algorithm proposed is given in Algorithm 1.

4 Global Convergence of Deterministic Algorithms

We recall some definitions from [12] about global convergence of multiobjective
algorithms, starting from the standard scalar case m = 1.

4.1 Algorithms and Global Convergence in Scalar Optimization

Let f : D → R be a Lipschitz continuous function, where W can be the n-
hypercube [0, 1]n for simplicity or a smooth n-dimensional compact manifold.

2 In a more general view, we notice that a Lipschitz constant represent a proxy for
the complexity of a function. As a result they can be used for optimization as well
as for other purposes, e.g., for function approximation (see [14]).
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Algorithm 1. multi-Pijavsk̆ı-Shubert (mPS) method
1: Let the domain (decision space) be a hyper-rectangle D := [0, 1]n, possibly after a

suitable normalization
2: Let the unknown function f : D → R

m be globally Lipschitz continuos with con-
stants different for every component L1, . . . , Lm.

3: Evaluate f on the corners of D

4: Initialize the set of evaluated points as E :=
{

(q, v)
∣
∣
∣ q ∈ {corners of D} , v = f(q)

}

5: Initialize the set of active subintervals as S := D
6: Set nIter ∈ N as the maximum number of iterations
7: for i = 1 to nIter do
8: for all I ∈ S do
9: Divide the hyper interval I in the 2n subintervals obtained by halving all

dimensions of the original hyper interval. Remove the hyper interval I from
the list S and add the subintervals to the list.

10: Evaluate f on all the midpoints p of the k-faces of the hyper interval I, for all
1 � k � n, i.e., all the corners of the subintervals. Add (p, f(p)) to the list E.

11: end for
12: Associate to each interval I in S the vectors vI,ι = (fj(qι) + LjdiamI)ι,j , where

qι is a corner of I and j = 1, . . . , m.
13: for all I ∈ S do
14: if all the upper bounds in the corners (fj(qι) + LjdiamI)j are dominated by

some vector of values v in E then
15: discard the interval I from S
16: end if
17: end for
18: end for

– Let us denote by f� the absolute, or global, maximum value of the function
f , x� being a point in W realizing the maximum. In other words, x� is an
optimum, while X�

f is the set of all optima:

f� = max
x∈W

f(x), X�
f :=

{
x� ∈ W

∣∣∣ f(x�) = f�
}

. (1)

– An algorithm is a finite sequence of well–defined instructions, which, when
running on a function f , produces the sample sequence

Xf := {x1, . . . , xk, . . . } ⊆ W.

In particular the function f is assumed to be actually computed in the point
xk at the kth step of the algorithm.

– We denote by Xf the full infinite sequence produced by an algorithm when
given a function f , by Xf,k or Xk the partial k–sequence. Xf is the closure
of Xf while X ′

f = Xf \ Xf , is the set of limit points of Xf .

Assume we are not in the trivial case X�
f ∩ Xk �= ∅ for any finite k.

– An algorithm sees the global minimum of the function f if X�
f ∩ X ′

f �= ∅.
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– An algorithm localizes the global minimum if X ′
f = X�

f (or weakly localizes
if X ′

f ⊆ X�
f ).

It seems useful to give further precise description of a class of algorithms for
detecting structured subsets rather than scatters of points.

– A set–wise sequential algorithm is a deterministic algorithm which, besides
the sample sequence Xf = {x1, x2, . . . } where actually the function f has
to be evaluated, generates a sequence of subsets {S1, . . . , Sk, . . . }, Sk ⊆ W ,
intended to give an approximation of the Pareto set.

– Notice that more or less explicitly, any multiobjective optimization strategy
is a set-wise sequential algorithm. If not specified in a different way, the
sequence of sets approximating the Pareto set is given by the non dominated
sets of the partial sequences:

Sk := nd({x1, . . . , xk}).

– It is a common belief that in typical cases the Pareto set is a finite collection
of smooth manifolds with edges and corners. Such objects have interesting
properties and are called stratified sets (see [13] for a discussion with the
point of view of multiobjective optimization). Simplicial methods like [1,6,7,
11,12] at each new iteration produce a simplicial complex as approximation
of the Pareto optimal set. These methods have the fundamental property
of offering a parametric representation of the Pareto set, which appears as
a very useful tool for exploring the available solutions during the decision
process.

4.2 Convergence in Multiobjective Optimization

To be convergent, an algorithm should produce a sequence S1, S2, . . . , converging
in some sense to the set of optima θop. Expressing a crude translation of the
concepts of seeing and localizing the optima is poorly useful, because apart from
degenerate cases, the set of Pareto optimal values does not consist in a single
(vector) value f� ∈ R

m. In the generic case, the set of Pareto optimal values
is infinite, as well as, of course, the set of Pareto optima θop. Limits have to
be considered in a set–wise sense, and therefore we need a concept of distance
between sets.

– Let A,B ⊆ W . The Hausdorff distance between A and B is defined as

dH(A,B) := max
{

max
x∈A

min
y∈B

d(x, y),max
y∈B

min
x∈A

d(x, y)
}

. (2)

– We say that a set-wise sequential algorithm A sees the set of global Pareto
optima θop if

lim
k→∞

min
x∈Sk,y∈θop

d(x, y) = 0. (A sees θop) (3)

(In a sense the limit set limk Sk ∩ θop �= ∅, i.e., at least the Pareto set
generated by the algorithm touches a portion of the global Pareto set, i.e.,
it generalizes the statement X ′

f ∩ X�
f �= ∅.)
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– We say that A weakly localizes the set of global Pareto optima θop if

lim
k→∞

max
t∈θop

d(t, Sk) = 0. (A weakly localizes θop) (4)

(In a sense the limit set will contain all portions of the global Pareto set
θop ⊆ limk Sk. The limit set is possibly larger than the Pareto set.)

– We say that A strictly localizes the global Pareto optima θop if

lim
k→∞

dH(Sk, θop) = 0, (A strictly localizes θop) (5)

i.e., the Pareto set generated by the algorithm coincides with the true Pareto
set.

– Dealing with algorithms which merely see the global optimum, or that local-
ize non strictly the set of Pareto optima seems not completely satisfactory
from the global multiobjective optimization point of view. For instance, an
algorithm optimizing only to one component of the vector function f would
give a non dominated point, and it would see the Pareto optimum.

4.3 Convergence for mPS

The convergence proof for the mPS algorithm 1 is twofold. Let us consider a
point x that it is not in the sequence of sampled points. Clearly this sequence
could be a dense subset of W in principle, but it has zero Lebesgue measure.

Proposition 1. prop:conv1 Let x ∈ W be a Pareto optimal point. Then

1. for every iteration step k ∈ N there exists a cell Ck in Sk containing x,
2. limk→∞ diamCk = 0.

Proof. et us assume that x is Pareto optimal and that at the step k + 1 > 0
there is no cell in Sk containing x. Assume that at step k there was a cell
Ck containing x, thus that cell must have been discarded at the k + 1 step. So
there must exist a point pt in the sequence of evaluated points such that fj(pt) >
fj(qr)+Ljdiam(Ck) for all j and all vertices qr in the cell Ck. But because of the
Lipschitz property, fj(x) < fj(qr)+Lj ‖x − qr‖ < maxqr fj(qr)+Ljdiam(Ck) <
fj(pt), so x is dominated and not a Pareto optimum. A contradiction. 	

Proposition 2. prop:conv2 Let x ∈ W be not Pareto optimal point. Then there
exists k ∈ N such that for every k′ � k there is no cell C in Sk′ containing x.

Proof. f x is not Pareto, let d the minimum distance from a Pareto optimum
p dominating x and let � = minj=1,...,m fj(p) − fj(x) > 0. Let L̄ = maxj Lj .
Assume that there exists for every k ∈ N a cell Ck in Sk that contains x. As
k → ∞ the cell size diamCk → 0, so let k̃ such that diamCk̃ < �

2maxj=1,...,m Lj

and consider any of the vertices y of Ck̃ and any of the vertices q of the cell Vk̃

containing p. Note that such a cell exists for every k because of the preceding
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Proposition, and that at the same iteration the cells in Sk have all the same size,
and let d = diamCk̃ = diamVk̃. We have

fj(q)−fj(y) > fj(p)−Ljd−(fj(x)+Ljd) = fj(p)−fj(x)−2Ljd > �−2 (max Lj) d, (6)

so, if

diamCk̃ <
�

2max Lj
, (7)

all the vertices of Vk̃ dominate the vertices of Ck̃, so the cell Ck̃ will be discarded
at the k̃ + 1 step, leading to a contradiction. 	


From the above propositions the convergence of Algorithm 1 follows straight-
forwardly.

Theorem 1. teo:naiveconv Let f : D → R
m globally Lipschitz continuous, with

Lipschitz constants L1, . . . , Lm and consider the application of Algorithm 1 to
f . Consider the sequence of families of sets Sk, where Sk is the active set of
intervals at the k-th step. Then Algorithm 1 strictly localizes the Pareto set of f .

5 Benchmarks

For testing our method, we consider a set of three non degenerate following
functions, so the Pareto sets are m− 1 dimensional objects, both in the decision
and in the objectives spaces, as it is expected for typical cases [13].

5.1 DTLZ2 with Three Decision Variables and 2 Objectives

This function is part of a collection of test functions largely known and used in
literature [3]. The function is scalable to any number of decision variables and
objectives, but we have used here the the version with three decision variables
and two objectives. We have performed two runs of the algorithm which are
documented in Figure 2. In panel (a) we report the outcome of three iterations
of Algorithm 1, corresponding to a total of 305 function evaluation while in panel
(b) we represent the outcome of four iterations (1205 function evaluations). In
both panels, the left figure represents the design space, while the right figure
is the objective space. Transparent cubes in design space represent the active
cells of the algorithm, i.e., the cells which are candidate for further splitting in
the subsequent iterations. The same active cells are mapped to the objectives
space into generic polygons (light blue regions in the right parts of the panels).
This region surrounds the non dominated points and can be considered as an
approximation of the Pareto front.
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Fig. 2. Test function DTLZ2 with m = 2 objectives and n = 3 dimensions for the
design space. See text for the details.
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For comparison with a well known evolutionary strategy we report in panel
(c) the outcome of the MOEA/D method [22] with three generations (where the
first one is a random sample) corresponding to a total of 303 function evaluations,
since the population size is 101. The green crosses correspond to the Pareto non
dominated values of the points produced by the algorithm. In the same panel
we also represent the outcome of our method applied for three iterations (i.e.,
305 function evaluations), marked with red dots.

1 iter 2 iter

3 iter 4 iter

5 iter

Fig. 3. Test function L&H2x2. The iterations from 1 to 5 of the method are reported,
the decision space on the left and the objectives space on the right for each panel.
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Just for attempting to compare the outcomes of the two methods, we observe
that MOEA/D seems to span more densely the range of Pareto front, although
none of those points dominates a point produced by mPS. On the other side,
the Pareto set obtained with mPS dominates 14 out of the 44 points in the front
corresponding to MOEA/D, i.e., the 31% of the points composing the front,
attesting the higher accuracy of the new method.

5.2 L&H2x2

The L&H2x2 is an example proposed in [11] and used as a test function also
in [2,7,12]. The example is paradigmatic for the non convex case, because the
Pareto set is composed by two local fronts superimposing one another in the
objectives space. The corresponding global Pareto set is composed by three
separate branches, although we observe a unique connected Pareto front in
the objectives space. We test our method and plot the outcomes in Figure 3,
going from 1 to 5 iterations, corresponding to 25, 81, 201, 445, 920 functions
evaluations.
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Fig. 4. Outcome of the SiCon method on the test function L&H2x2. Left panel: decision
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For comparison purposes, the local Pareto set as obtained from the SiCon
method [11] is reported in Figure 4. SiCon is a continuation method, which
produces an approximation of the Pareto set as a simplicial complex. SiCon
produces an accurate representation but cannot distinguish among local and
global optima, and its outcome cannot be refined as easily as with mPS. As a
result, the Pareto set obtained with this method (the orange lines in figure) is
composed by two connected components while actually the set of global optima
has three separate components.

5.3 L&H3x3

This function is a three dimensional version of the previous example, for the
function definition see [11]. Also in this case there are two superimposing local
fronts, although, because of the higher dimensionality of the decision space,
the Pareto set results composed by two connected components. In Figure 3 we
have reported the outcomes of 1, 2 and 3 iterations of the mPS method on
this function, corresponding to 125, 633 and 6156 function evaluations. The
left panels represent the points evaluated and the active cells while on the right
panels we have the function values and the images of the active cells. The bump in
the center of the surface corresponds to the smaller component of the Pareto set.

6 Conclusions and Perspectives

We have proposed a multiobjective translation of the Pijavsǩı-Shubert method
for global optimization, assuming that a global Lipschitz constant for the func-
tions at hand is known.

As far as the authors know, this is the first fully deterministic method prov-
ably generating convergent approximations to Pareto sets. The convergence is
defined in terms of Hausdorff distance between sets, i.e., the exact Pareto set of a
sufficiently regular function can be approximated with arbitrary precision (small
Hausdorff distance) in a finite number of steps. We have called the convergence
of the algorithm intended in this sense strict localization of the set of Pareto
optima. We have mentioned several methods inspired by the same ideas in the
global optimization literature, and we have observed that either they fall in the
set of local methods, because they focus on searching for single optimal points
or even only critical points, or either they make use of some random choice at
some point, missing in some sense an exact localization of the whole Pareto set.

The approximation found by means of the proposed method is sharp, in the
sense that only globally optimal points are approximated, and Pareto critical
points or local optima are sooner or later discarded by the method. This differs
from a previous method which strictly localized the singular set or the Pareto
critical set [12].

We have tested the method on three non convex examples and compared
the results for one of the cases with a well known evolutionary method, obtain-
ing positive results on the side of the accuracy of the representation. Actually
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the strategy is a very conservative one, therefore densely distributed represen-
tations of the Pareto set can be obtained with a large number of function eval-
uations. Nevertheless, as there are many efficient generalizations and extensions
of the Pijavsǩı-Shubert method, we figure that some of these variants can give
valid inspirations for writing new algorithms less computationally demanding
and also accessible for higher dimensional problems. We expect that such exten-
sions should be very attractive for experts and practitioners in multiple criteria
decision making community.
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Abstract. In this paper a biobjective Swap Body Inventory Routing
Problem (SB-IRP) is considered: A combination of the Swap Body Vehi-
cle Routing Problem (SB-VRP), which minimizes fixed and variable rout-
ing costs, and the Inventory Routing Problem (IRP). The problem is
based on the context of the VeRoLog Solver Challenge 2014, where our
proposed VeRoLog Solver was ranked third, and our previous work on
the IRP. Since we are investigating a multi-period problem, an addi-
tional objective function is formulated which includes inventory levels at
the customers. Dealing with the allocation of scarce optimization time
to the VeRoLog Solver is an essential topic, since an alternating app-
roach of the determination of a replenishment strategy and the routing
is considered. We propose an Iterative Variable Neighborhood Search and
analyze the allocation of the computational time by extended VeRoLog
test instances.

Keywords: Vehicle routing problem · Swap locations · Iterated variable
neighborhood search · Multi-objective optimization

1 Introduction

The Vendor Managed Inventory (VMI) concept is an example of a successful
cooperation between a customer and a supplier [7]. The supplier is in charge of
the inventory levels at the customers and decides when and how much should be
delivered. In fact, two supply chain management aspects, namely the inventory
management and transportation, are combined to enhance the performance of
the supply chain [1]. The customers do not have to cope with inventory control
and replenishment orders and the supplier can reduce the distribution cost since
deliveries for different customers can be combined [6,7]. Thus, the inventory, and
the distribution effort can be smoothened [1]. In this sense, VMI is an example
of value adding through logistics [6]. The VMI strategy is based on the solution
of a multi-objective SB-IRP that simultaneously includes the minimization of
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inventory levels and routing costs which are truly in conflict to each other. For
example, small delivery quantities lead to low inventory levels over time, whereby
large delivery quantities give the possibility to minimize the routing costs [15].

This paper introduces swap locations with predefined actions, different cus-
tomer characteristics and possible vehicle configurations within the IRP. In this
problem description of practical relevance, the possibility is given to leave the
depot with a semi-trailer attached to the truck and also deliver goods to cus-
tomers where only a truck is allowed (called truck customers). This distinction
of customer properties is made because of e. g. area restrictions [9] and demand
characteristics of the customers. The delivery is possible since the vehicle can
drive to a swap location, park the semi-trailer and continue with only the truck.

Since the SB-IRP is an extension of the recently investigated Swap Body
Vehicle Routing Problem, which was proposed for the VeRoLog Solver Chal-
lenge [14], we want to explain our motivation to investigate the SB-IRP. Besides
minimizing the routing costs, analyzing a multi-period SB-IRP brings up the
question of how to integrate inventory levels at the customers. This is neces-
sary because deliveries can take place before the actual demand and then are
stored at the customers. We include the inventory levels by formulating a second
objective function.

From a practical point of view, the VeRoLog Solver Challenge set the termi-
nation criterion to 600 seconds computing time on a 4-core CPU for the single-
period SB-VRP. Since we are now investigating 30 periods, the computational
time for the VeRoLog Solver becomes an issue. As a research question, we may
ask how to manage the limited computing time (e. g. 600 seconds) in a multi-
period model. This is the scope of this article.

The remainder of this paper is organized as follows. In section 2 the SB-IRP
is introduced and described. Section 3 presents the Iterative Variable Neighbor-
hood Search for the considered problem. Computational results are analyzed in
section 4, followed by the conclusion in section 5.

2 Problem Description of the Swap Body Inventory
Routing Problem

We consider a multi-objective and multi-period SB-IRP which is an extension
of the SB-VRP. The SB-VRP was initially introduced by the VeRoLog Solver
Challenge [14,20] and a further description is also given in [16].

The SB-IRP is classified based on the characterization of [2]. Our problem
introduces an one-to-many network where homogenous products are delivered
with a heterogeneous fleet over a finite planning horizon, t = 1, . . . , 30. Also
the fleet size is unconstrained and the inventory levels are restricted to be non-
negative. It is also assumed that the demand qit of customer i in period t (qit ≥ 0)
is deterministic since, from a practical point of view, numerous companies have
an idea of their consumption patterns [11]. The SB-VRP is summarized with
respect to its main characteristics:
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– customer properties,
– asymmetric travel times and distance costs,
– maximum driving time DTmax of the vehicle driver per period,
– the possible vehicle configurations and
– swap locations, including the different swap actions.

As illustrated in Figure 1, the vehicle can leave as a truck or as a train.
When a truck leaves the depot, only one swap body with capacity Q is attached.
Alternatively, a truck and a semi-trailer (train configuration) can depart from
the warehouse with two swap bodies. This differentiation is due to mainly two
reasons: 1) customer- and 2) demand characteristics. Based on these character-
istics, three types of customers are identified: truck-, train- and mandatory train
customers. Truck customers can exclusively be reached by a truck configuration
which is caused by accessibility constraints [9]. The second class of customers are
called train customers which can either be approached by a truck or by a train
vehicle composition. Differently, a mandatory train customer must be visited by
a truck and a semi-trailer since qit > Q.

In Figure 2 the different actions are described when a train configuration
moves to a swap location. One main action is the parking of the semi-trailer SB2

at the selected swap location. Note that every swap body must be picked up
before arriving back at the depot. Also a swap action is possible, which allows
the driver to change the currently used swap body by parking it at the swap
location (SB1 in the Figure 2) and using SB2 for further deliveries. The last
action is an exchange operation which is e. g. necessary when a truck customer
should be visited with SB2. This might be helpful when not enough goods are
in SB1. Hereby, SB1 is parked and the truck continues with SB2. These swap
actions are solely possible at the swap locations and not for example at the train
customers as proposed in [4,19]. Moreover, no transshipments, respectively load
transfers of goods [6,8] are allowed between the swap bodies.

swap body

swap body swap body

Fig. 1. Example of a truck- and train configuration [14,16]

The objectives of the problem are the minimization of the total costs of the
routes and the total inventory levels at the customers for every period. The
following components are included in the sum of the routing costs: the truck
and the semi-trailer costs. With respect to the truck costs, fixed costs [Monetary
Units (MU)/usage] occur when a truck is used in the solution. Additionally,
the travelled distances by the truck [MU/km] and the driver costs [MU/h] are
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Vehicle configura�on before the
swap loca�on

Storage of the swap body at the
swap loca�on

Vehicle configura�on a�er the
swap loca�on

swap body 2 swap body 1

swap body 1

exchangeswap body 2 swap body 1

swap body 2

swap body 2

swap body 1

swap body 1

swap body 2 swap body 1

park

pickup

swap

swap body 1

swap body 2

swap body 2

swap body 1

Fig. 2. Description of the possible actions at the swap location [14,16]

included. Also fixed [MU/usage] and variable costs [MU/km] are considered for
the semi-trailer, but no driver costs.

The solution should simultaneously determine for every period:

• when and how much to deliver to the customers,
• which vehicle configuration should be used to serve a customer and
• which swap locations and what kind of actions should be applied.

3 Applied Solution Methods

The SB-IRP is NP-hard since the VRP is a special case [5,6]. Based on the
complexity, the size of the test instances (number of customers is between approx.
50 and 550), and the limited computing time (600 seconds), a heuristic is applied.

With the aim of solving the SB-IRP, the problem is decomposed in two
decision levels: the determination of the delivery periods and the subsequent
generation of the tours.

Another idea to solve the SB-IRP could be to apply multilevel programming
which aims to incorporate the fact that different point of views exist on several
decision hierarchies, such as top management and divisions. Another common
feature is that each subordinate level executes its policy after, and in view of,
previous decisions [3]. In contrast to this idea, our multi-objective solution app-
roach only assumes one decision maker (DM), here the supplier, whose decisions
are not influenced by e. g. the customers. The main advantage of VMI concepts
is especially that the supplier has the responsibility of the inventory levels at the
customers. The focus of the DM is to investigate the trade-off between the two
objectives of the SB-IRP.

3.1 Replenishment Strategy

In order to determine a replenishment plan, a delivery alternative is represented
by an n-dimensional vector π = (π1, . . . , πn) where each position describes an
integer value. The length of this vector is equivalent to the number of customers
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which are investigated. Notice that this value shows for how many periods the
customer is delivered in a row (delivery periods). E. g., a vector π = (1, 2, 1)
means that the exact demand of the first and the third customer is serviced
every period. The demand of the second customer is fulfilled every second day.

The initial replenishment strategy is computed by identical delivery periods
for all customers, starting with 1 and then increasing every value by +1. As long
as the values can be varied, the vectors are added to an archive of non-dominated
solutions. Due to capacity constraints of the vehicles and the stock capacity, the
procedure terminates at some point.

Besides, when e. g. one customer has a demand qit > Q (mandatory train
customer), delivery periods of two might not be realizable for this customer. To
improve the initial replenishment procedure, also maximal delivery periods for
every customer are determined. If a position cannot be varied by +1, then the
maximal delivery period value is used. This procedure is continued until every
position in the vector assumes its maximum delivery period value.

The improvement procedure on the replenishment vectors applies a neighbor-
hood search operator which diversifies each position of the vector π by ±1. Since
at most one delivery per day is assumed, values < 1 are infeasible. The maxi-
mum number of neighboring solutions is therefore 2n [10]. Let us assume that
549 customers are investigated, then one neighborhood consists at most 1098
vectors in the archive. Furthermore, assume that the subsequent computation of
the routing costs is 30 seconds for one vector. Then, more than 9 hours (30 sec-
ond times 1098 vectors) would be needed to investigate only one neighborhood.

Determina�on of the
replenishment strategy

VeRoLog Solver

Do un�l termina�on
criterion is reached

Ini�al popula�on

Final popula�on

Improvement procedure

VeRoLog Solver

Fig. 3. Idea of the solution process
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It becomes quite clear that, in this light, only a subset of the neighborhood can
be investigated in a practical experimental setting.

3.2 Generation of the Tours

We recently achieved good results in the VeRoLog Solver Challenge and were
ranked third in the competition [13]. Based on our competitive algorithm, the
routing for the SB-IRP is solved by this idea.

Exemplarily, the idea of the solution process is shown in Figure 3. The initial
replenishment strategies are used as an input for the generation of the tours.
Thereby, deliveries for every customer and period are planned, and then the
VeRoLog code is used to generate the tours, resulting in the initial population.
After that the initial replenishment strategies are varied (see section 3.1) and
the VeRoLog Solver is applied to compute the tours. This is done until the
termination criterion is reached. The algorithmic idea of the VeRoLog Solver
stems from [16]. Thus, only the key points are here summarized.

Various tour segments are representing a tour and the aim of the solution
method is to assign customers to the different segments Sk, k = 1, . . . , 4. An
illustrative example of the different tour types and segments Sk are depicted in
Fig. 4 and described in Table 1.

Construction Heuristic. In order to assign a customer to a route segment
Sk, a customer is randomly selected. The priority of Sk is: S1, S2, S3, S4. If
the selected customer does not fit in the first route segment, the second route
segment is tested etc. If the customer does not fit in any Sk, a new tour is opened.
The vehicle configuration, either a truck or a train, is randomly chosen. The
generation of an initial solution is completed once all customers are allocated.

S2

S3

S1

S4

S1

S1

truck

train

depot

swap loca�on

S1

S1

truck customer

train customer

mandatory train customer

Fig. 4. Illustrative example of tour types and segments [16]
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Table 1. Characteristics of the different tour types [4]

Tour types Description

Pure truck tour

• A tour starts with a truck at the depot and visits 7 truck
customers before returning to the depot.

• In the tour representation customers are only assigned to
S1.

Pure train tour

• A train visits 6 train customers and arrives back at the
depot.

• From a representation’s point of view, train customers are
assigned to S1 and S2 = ∅ ∧ S3 = ∅ ∧ S4 = ∅.

Pure mandatory
train tour

• Only a mandatory train customer is visited.

Combined manda-
tory train tour

• This tour type includes mandatory train customers and
train customers.

• The train visits a mandatory train customer followed by two
train customers.

Combined tour

• Customers are assigned to every route segment. Thus, a
train and a truck vehicle configuration are used. A train
services a customer and then continues to the swap location
in order to park SB2.

• Then, the truck visits a truck customer, 2 train customers
and another truck customer which are assigned to S2 and
applies a swap action at the swap location.

• After that, the truck using SB2 drives to the customers on
S3. Prior to the arrival at the depot, a pickup action is exe-
cuted and customers of the fourth route segment are visited
by using the train.

Improvement Heuristic. The initial route plan X is improved by a combina-
tion of a Variable Neighborhood Search (VNS) [18] and Iterated Local Search
(ILS) [17]. Neighboring alternatives are investigated by a list of several neighbor-
hood operators. When an alternative cannot be improved, which means that a
local optimum is obtained, a perturbation move is applied and the search contin-
ues based on this alternative. This operator modifies the alternative by randomly
removing entire tours and then reconstructing new ones. In the following, let X
denote the set of feasible alternatives.
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The VNS makes use of several neighborhood operators:

Intra-Tour-Operator:

1. Intra-Move (INTRA) relocates a selected customer in another Si in the same
tour. A similar operator has been proposed by Van Breedam [21].

2. The classical 2-opt (2-OPT) tries to improve a tour by replacing two arcs
with two other arcs.

Inter-Tour-Operator:

1. Two-Inter-Exchange (2-EX) is a move in which the positions of two cus-
tomers are swapped [12].

2. Inter-Move (INTER) inserts a chosen customer of one tour in another tour.

Problem-Specific-Operator:

1. Change swap locations (CSL) modifies the swap location of every tour.

The acceptance criterion of every operator is the same: a neighboring alter-
native is accepted iff Tourcost (X ′) < Tourcost (X) ∧ X′ ∈ X .

4 Experimental Study

4.1 Test Instances

To evaluate the performance of our solution method, the VeRoLog instances are
taken [13]. These real-world instances have been proposed by the EURO Working
Group on Vehicle Routing and Logistics Optimization in collaboration with the
PTV Group, a company based in Karlsruhe, Germany. The competition was
divided into two phases: the qualification and the final phase. At the beginning
of the qualification phase, three instances were made public (see small, medium
and large1 instance in Table 2). After announcing the teams for the final phase,
one more instance was released (large2). In the final phase, another two instances
were used to test the VeRoLog Solver (final1 and final2).

The instances are summarized in Table 2. Every instance comes in three
variants: a normal-, an all without trailer- and an all with trailer instance. More
specifically, the ‘normal’ instance can contain truck-, train and mandatory train
customers. An ‘all without trailer’ instance only includes truck customers. Train
customers and mandatory train customers are used for the ‘all with trailer’
instance [14].

In order to study the effects of taking delivery quantity decisions into account,
we extended the given VeRoLog benchmark instances by the demand data and
the stock capacity for every customer. The given instances provided customer’s
demand data for one period. We simulated the demand for another 29 periods
by varying the given demand qi1 by at most 20%. Also it has to be taken into
account that the swap body capacity is not exceeded. Note that the demand qi1
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Table 2. Description of the SB-VRP instances

# swap # truck # train # mandatory
released

locations customers customers train customer
small
normal 20 15 41 1

Feb 1, 2014all without trailer 20 57 0 0
all with trailer 20 0 57 0

medium
normal 41 20 186 0

Feb 1, 2014all without trailer 41 206 0 0
all with trailer 41 0 206 0

large1
normal 99 50 498 0

Feb 1, 2014all without trailer 99 548 0 0
all with trailer 99 0 548 0

large2
normal 101 50 500 0

May 1, 2014all without trailer 101 550 0 0
all with trailer 101 0 550 0

final1
normal 102 50 499 0

Jul 1, 2014all without trailer 102 549 0 0
all with trailer 102 0 549 0

final2
normal 102 50 499 0

Jul 1, 2014all without trailer 102 549 0 0
all with trailer 102 0 549 0

of the SB-VRP and the SB-IRP is the same for the first period. In this sense, the
original problem of the Solver Challenge is included in our data’s first period. It
follows that the provided checker of the VeRoLog Solver Challenge [14] can be
used to verify the solutions for each period.

The stock capacity is a hard constraint and it is not allowed to exceed this
value at any time. The stock capacity of the customer is set to 10 times qi1.

4.2 Computational Results

Parameter settings
During a tuning phase, several parameters were tested and fixed:

– number of tours that should be removed by the perturbation,
– number of other customers in the vicinity of each customer; this allows the

reduction of the neighborhoods and
– number of neighboring swap locations which are tested by the CSL operator.

The algorithm removes two tours, the number of neighboring customers is
set to 100, and the number of swap locations which are tested is 15.
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Table 3. Hypervolume values for the initial population (single test run)

Instance 0.5 s 1 s 1.5 s 2 s

small
normal 0.6188 0.6362 0.6327 0.6302
all without trailer 0.5624 0.5215 0.5647 0.5658
all with trailer 0.6668 0.6579 0.6694 0.6682

medium
normal 0.7063 0.7203 0.7215 0.7201
all without trailer 0.6869 0.7139 0.7178 0.7248
all with trailer 0.7010 0.7199 0.7220 0.7223

large1
normal 0.7201 0.7621 0.7688 0.7701
all without trailer 0.6703 0.7066 0.7173 0.7208
all with trailer 0.7261 0.7652 0.7733 0.7762

large2
normal 0.7259 0.7586 0.7658 0.7686
all without trailer 0.6821 0.7188 0.7265 0.7287
all with trailer 0.7237 0.7601 0.7655 0.7704

final1
normal 0.0877 0.2384 0.2622 0.2765
all without trailer 0.3443 0.7631 0.8218 0.8448
all with trailer 0.0818 0.2293 0.2570 0.2600

final2
normal 0.7145 0.7477 0.7637 0.7641
all without trailer 0.6627 0.7177 0.7254 0.7285
all with trailer 0.7073 0.7423 0.7516 0.7551

The sequence of the neighborhood operators is for every experiment: 2-EX,
CSL, INTRA, 2-OPT and INTER.

Also several other parameters must be investigated, regarding the alternating
process of the replenishment strategy and the VeRoLog Solver, and are further
explained with respect to:

– How long is the VeRoLog Solver applied for each period?
– What is the termination criterion?
– How large is the subset of solutions when altering the values in π?

Since the allocation of the computational time is studied, 4 variants are tested
and analyzed. The VeRoLog Solver is applied to each period for: 0.5, 1, 1.5 or 2
seconds. In order to clarify the running time for one routing plan, an example
is briefly explained. Assume that the VeRoLog Solver is applied one second for
each period, then it takes approx. 30 seconds to compute one routing plan (since
our problem definition includes 30 periods).

The overall termination criterion is composed in the following way: 30 periods
times 600 seconds (given by the VeRoLog organizers) times 4 cores, resulting
in 72,000 seconds. For comparison reasons with the computational time of the
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SB-VRP, the termination criterion is multiplied by four because the experiments
of this article only utilize a single core. All experiments were run on an Intel Xeon
X5650 2.66 GHz (single CPU core).

In section 3.1, the diversification of the replenishment strategy is described.
Since it takes a long time to investigate one complete neighborhood, the size of
the subset is reduced to 1% at a time. Thereby, the selection of the vectors is
randomly chosen.
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Fig. 5. The initial population (dots) and the final population (stars) of the small-
normal instance with an allocation of 2 seconds to the VeRoLog Solver

In Table 3 the hypervolume values of the initial population are presented
for the different running times of the VeRoLog Solver over a single test run.
Additionally, Figure 5 shows the approximation of the Pareto-Front of the initial
and the final population (‘small-normal instance’ with an allocation of 2 seconds
to the VeRoLog Solver).

The hypervolume is commonly used by many researchers to measure the size
of the objective space which is dominated by the generated solutions [22]. The
hypervolume of a set is measured relative to an anti-optimal point in space [22].
As the worst-possible point, we assume the maximal value of each objective
function value plus 10%. Then, the rectangle of each solution with respect to
the worst-possible point is computed. The volume is enclosed by the union of
the rectangles [23].

The variant with one second never leads to the best hypervolume value. For
fourteen out of 18 instances (large1, large2, final1 and final2) the variant with
2 seconds achieves the best hypervolume values. For the ‘small- and medium
normal’, ‘small-all without trailer’ as well as for the ‘medium-all without trailer’
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Table 4. CPU time in seconds and cardinality of the initial population

Instance 0.5 s 1 s 1.5 s 2 s 0.5 s 1 s 1.5 s 2 s

small
normal 145 295 445 595 7 8 7 8
all without trailer 145 295 445 594 5 5 3 4
all with trailer 145 295 445 594 8 8 8 8

medium
normal 108 218 328 438 7 8 7 7
all without trailer 146 296 445 595 6 7 6 7
all with trailer 115 233 350 468 8 7 7 7

large1
normal 152 302 453 605 10 9 9 9
all without trailer 153 304 456 604 7 7 7 7
all with trailer 114 225 339 447 9 10 9 9

large2
normal 152 300 455 605 7 7 7 7
all without trailer 157 302 454 603 6 6 6 6
all with trailer 115 225 339 448 7 7 7 7

final1
normal 139 277 410 544 2 2 2 2
all without trailer 70 130 187 245 1 1 1 1
all with trailer 152 307 458 605 2 2 2 2

final2
normal 154 301 453 601 7 7 7 7
all without trailer 151 303 453 602 6 6 6 6
all with trailer 114 225 336 448 7 7 7 7

instances, the variants with 1.0 and 1.5 achieve slightly better values than allo-
cating two seconds to the VeRoLog Solver (see Table 3).

Table 4 gives the CPU times in seconds (left part of the Table) and the
cardinality (right part) of the initial population for all instances. Analyzing the
CPU times for the different variants, it can be seen that the computational
times strictly increase when the computational time for the VeRoLog Solver is
increased which has to be expected. Besides, it can be observed that the number
of initial solutions varies with respect to the test instances. These results are
simply caused by different demand data, vehicle- and stock capacities.

Surprisingly, the cardinality of the set of initial solutions for instance ‘final1’ is
low, although the same procedure is conducted. One main difference between the
‘final1’ and the ‘large1/large2’ respectively ‘final2’ instances are the composition
of the demand data (normal), which is the reason for the different results. For
example, the ‘large1/large2’ and ‘final2’ instances only have a single customer
which has a demand qi1 > 800. In contrast, the ‘final1’ instance consists of 73
customers with a demand higher or equal to 800, and 69 have a demand greater
than or equal to 900. This characteristic leads to difficulties in assigning several
customers to one vehicle, since we also combine the demand of several periods.
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Table 5. Hypervolume values for the final population (single test run)

Instance 0.5 s 1 s 1.5 s 2 s

small
normal 0.8176 0.8063 0.7951 0.7783
all without trailer 0.8288 0.8251 0.7962 0.8037
all with trailer 0.8176 0.7925 0.7902 0.7821

medium
normal 0.7807 0.7666 0.7594 0.7506
all without trailer 0.7776 0.7683 0.7731 0.7556
all with trailer 0.7735 0.772 0.7561 0.7518

large1
normal 0.7381 0.7758 0.7844 0.7913
all without trailer 0.6994 0.7265 0.7335 0.7407
all with trailer 0.7449 0.7801 0.7914 0.7933

large2
normal 0.7489 0.7742 0.7776 0.7802
all without trailer 0.7055 0.7365 0.7388 0.7409
all with trailer 0.7444 0.7731 0.7760 0.7778

final1
normal 0.2953 0.3794 0.3519 0.3369
all without trailer 0.5034 0.9039 0.9633 0.9321
all with trailer 0.2858 0.3549 0.3601 0.3600

final2
normal 0.7441 0.7678 0.7768 0.7800
all without trailer 0.7002 0.7376 0.7472 0.7530
all with trailer 0.7420 0.7638 0.7735 0.7762

This characteristic results in a higher number of vehicles and therefore higher
routing costs.

Since the demand characteristic of this instance could appear to be prob-
lematic, one idea to overcome this issue is to adapt the replenishment strategy,
e. g. instead of delivering only the exact demand of the customers, the delivery
quantities might be splitted to different periods as long as the demand in qit
can be satisfied. Another idea could be to modify the procedure for the initial
replenishment strategies. At the moment, each position in π is changed by +1 at
once and if πi cannot be modified, the maximal delivery period value is assumed.
Alternatively, only one position can be changed at a time in order to increase
the initial set of solutions.

The hypervolumes for the final population are illustrated in Table 5. For the
small and the medium instances, the highest hypervolume is achieved when 0.5
seconds are allocated to the Solver. For instances large1/large2 and final2 the
highest hypervolume is reached when 2 seconds are given to the VeRoLog Solver.
The allocation of 1 and 1.5 seconds to the Routing Solver lead to the highest
hypervolume value for the final1 instances.
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Table 6. Number of evaluations of the final population

Instance 0.5 s 1 s 1.5 s 2 s

small
normal 4963 2442 1620 1213
all without trailer 4962 2442 1621 1212
all with trailer 4999 2449 1623 1213

medium
normal 5741 2754 2009 1439
all without trailer 4938 2439 1621 1212
all with trailer 5966 3010 2033 1590

large1
normal 4890 2397 1603 1203
all without trailer 4764 2396 1596 1204
all with trailer 5963 3014 2022 1558

large2
normal 4683 2400 1597 1202
all without trailer 4812 2373 1603 1201
all with trailer 5959 3015 2027 1491

final1
normal 4485 2323 1572 1192
all without trailer 4165 2195 1510 1169
all with trailer 4533 2364 1575 1190

final2
normal 4706 2388 1598 1203
all without trailer 4814 2389 1594 1200
all with trailer 5957 3108 2051 1509

The number of evaluations is illustrated in Table 6. The highest value is
reached when half a second is allocated to the Solver and the lowest when two
seconds are assigned, which already has been suspected before the experiments.
Note that the number of evaluations is higher for the medium instance compared
with the small instance, and we must see into why this happens.

For nine out of 18 instances (‘large1/large2’ as well as ‘final2’), the allocation
of two seconds leads to the highest hypervolume and proves to be superior.
Although some counterexamples exist, the overall conclusion is rather strong in
favor of the assigning of two seconds, since the larger instances with up to 550
customers are more suitable for practical cases.

5 Conclusion

This article has developed an optimization approach for the biobjective SB-IRP.
After introducing the problem, which is based on a real-world application, a
two-stage solution approach is proposed that alternates between the determi-
nation of the replenishment strategy and the VeRoLog Solver. Subsequently,
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different variants for the allocation of the computational times are conducted
and analyzed on the extended VeRoLog test instances.

By comparing the hypervolume values for the different utilization of the
computational times, considerable differences became obvious. For the smaller
instances (between 57 and 200 customers), the allocation of little computa-
tion time to VeRoLog Solver achieves the highest hypervolume values. Contrary
for the larger instances (approximately 500 customers) it is better to allocate
more computational time to the routing plans, with the exception of the final1
instance, where also the cardinality of the set of initial solutions is small com-
pared to the other instances. Comparing the results with respect to the size of
the instances, it seems that, it is more convenient for smaller instances to invest
more time in the replenishment strategies than in the routing. On the contrary,
for larger instances the routing is more important. A higher hypervolume is
achieved when fewer solutions are investigated and more computational time is
allocated to the routing.

Although the conducted experiments indicate that the allocation of 2 seconds
to VeRoLog Solver is promising for larger instances, future research should be
dedicated towards the investigation of further variants, e. g. 3 seconds. Also the
allocation of longer computational times to instances greater than 500 customers
should be explored.
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Abstract. A key challenge, perhaps the central challenge, of multi-
objective optimization is how to deal with candidate solutions that are
ultimately evaluated by the hidden or unknown preferences of a human
decision maker (DM) who understands and cares about the optimization
problem. Alternative ways of addressing this challenge exist but perhaps
the favoured one currently is the interactive approach (proposed in vari-
ous forms). Here, an evolutionary multi-objective optimization algorithm
(EMOA) is controlled by a series of interactions with the DM so that pref-
erences can be elicited and the direction of search controlled. MCDM has
a key role to play in designing and evaluating these approaches, particu-
larly in testing them with real DMs, but so far quantitative assessment of
interactive EMOAs has been limited. In this paper, we propose a concep-
tual framework for this problem of quantitative assessment, based on the
definition of machine decision makers (machine DMs), made somewhat
realistic by the incorporation of various non-idealities. The machine DM
proposed here draws from earlier models of DM biases and inconsisten-
cies in the MCDM literature. As a practical illustration of our approach,
we use the proposed machine DM to study the performance of an interac-
tive EMOA, and discuss how this framework could help in the evaluation
and development of better interactive EMOAs.

Keywords: Machine decision makers · Artificial decision makers ·
MCDM · Interactive EMO · Performance assessment

1 Introduction

Good introductions to the current state of research in interactive evolution-
ary multi-objective optimization algorithms (iEMOAS) [3,10,21] indicate that
several important issues remain to be tackled when combining methods from
multi-criteria decision making (MCDM) and evolutionary multi-objective opti-
mization (EMO). We think that a most fundamental one is that few interactive
approaches have been evaluated in a quantitative way, in particular in a way
that would reveal how effective and efficient they are at finding a solution the
decision-maker (DM) finds satisfactory or preferred. More than this, we think
c© Springer International Publishing Switzerland 2015
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that quantitative assessment of methods involving decision-making remains con-
troversial1, and this controversy has perhaps led to a position where it is standard
to propose new methods, and to justify them on theoretical grounds, but not
to test them in a way that reveals practical properties. Testing is difficult (and
controversial) because of the need for a DM who interacts with the system (and
cares about the result), and the fact that DMs are all different [6,27]. Never-
theless, there is ongoing research pursuing the goal of quantitative assessment
by means of empirical analysis [7,16]. In one of the first works pursuing a the-
oretical quantitative analysis, Brockhoff et al. [5] derived bounds on both the
runtime and the number of queries to the DM for two different local-search based
EMOAs, under the simplifying assumption that the DM would be able to answer
a query whenever the EMOA had an incomparable pair of solutions to choose
between. A common criticism of such quantitative analysis is that they rely on
strongly simplifying assumptions about human DMs.

Simulating human DMs is not an easy task and most work in MCDM has
focused on how to model and elicit the DM’s preferences. Few works have con-
sidered the simulation of human factors and other non-idealities of the decision-
making process. Kornbluth [17] incorporates “unsureness” of the DM as a range
of values of the utility function for which the DM cannot make a decision. Mor-
gan [19] describes the development of an even more realistic model to simulate
expert decision-making in dynamic and time-critical environments (e.g., air com-
bat); yet, the model itself is not fully described and its applicability to other con-
texts remains unclear. Perhaps the most extensive simulation of DM biases and
other non-idealities has been conducted by Stewart [22–24], who studied how
the ranking of efficient solutions is affected by these non-idealities. Nonetheless,
the usual approach when evaluating interactive EMOAs in the recent literature
is to add random noise to the DM’s preferences [7,16].

The step which we propose (and begin to investigate here) beyond recent
studies is to use more realistic machine decision makers, and to perform a more
detailed and multi-factorial analysis of the relationships between performance,
DM satisfaction (i.e., finding and recommending a solution close to the ideal one
the DM would choose), DM biases, and the EMO/MCDM interactive approach.

This paper is structured as follows. Section 2 presents our proposed conceptual
framework for quantitative assessment of interactive multi-objective
optimization. In particular, we propose the concept of machine DMs as a problem-
and preference-independent framework for the simulation of realistic DMs.
Section 3 describes a possible instantiation of our framework based on previous
work from the EMO and MCDM literature. The goal of this instantiation is not
only to serve as an example, but also to show how variations of the human non-
idealities can have strong and surprising effects on the behavior of an interactive
EMOA. Towards this goal, we present in Section 4 experimental results that con-
firm these effects. Finally, Section 5 discusses in more depth related work and the
1 This is apparent from several discussions at the Dagstuhl series of seminars concerned

with MCDM and EMO [1].
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context of our proposal within the ongoing effort to combine MCDM and EMO
approaches.

2 A Conceptual Framework of Machine Decision Making
in Interactive Multi-objective Optimization

One of the difficulties when comparing interactive EMOAs is that competing
algorithms not only differ in their interaction style and the preference models
they can handle, but also on the underlying MOEA that ultimately provides
the alternatives that are considered by the DM. Thus, it is difficult to assess
whether any observable differences are due to one or another aspect, or their
precise combination. The other major difficulty, as discussed above, is how to
simulate a realistic DM in a way that allows us to understand the influence that
human biases and other non-idealities have on the behavior of iEMOAs.

In order to overcome the above difficulties, we propose a conceptual frame-
work for the quantitative analysis of iEMOAs. The architecture of our proposed
framework is shown in Figure 1. It is composed of three main modules: a machine
decision maker, an interactive module and an EMOA. Traditionally, research on
interactive EMOAs has focused on the combination of the two latter compo-
nents and considered the machine DM as a preference function, perhaps with
some added noise.

Let us assume a multi-objective optimization problem with m objectives, and
let z = (z1, . . . , zm) ∈ R

m represent an objective vector. Moreover, let us assume
that there is an ideal preference function U(z) ∈ R that must be maximized in
order to satisfy the DM. Then, in our proposed framework, the machine DM
simulates a true preference function U(·), but in addition it simulates several
biases that distort the expression of the true preference function. As a result,
the interaction module does not have access to the true preference function and
instead it interacts (either directly or indirectly) with the resulting imperfect
preference function Û(·). Another characteristic of the proposed framework is
that the machine DM may also distort the true set of objectives (the true criteria
z ∈ R

m) such that they are different from the criteria optimized by the EMOA
(the modeled criteria ẑ ∈ R

m′
). The rationale for this is that the way the DM

sees the problem is not necessarily the way that the EMOA is able to optimize
it. If both non-idealities are present, they are combined such that the imperfect
preference function is evaluated on the modeled criteria.

A particular instantiation of each module can be defined by setting their
parameters (the parameter layer in Fig. 1). An instantiation of the framework
can then be applied to a given preference function and optimization problem,
and the effect of different parameter settings can hopefully help us to identify
general effects on the performance of various interactive EMOAs. Thus, the main
goal of the proposed framework is to enable a factorial analysis, where the effect
of the different modules can be analyzed separately and independently from a
particular preference function and optimization problem being tackled.
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Fig. 1. A conceptual framework for the quantitative assessment of iEMOAs. The frame-
work comprises three modules: the machine decision maker, the EMOA, and the inter-
action approach, which mediates between the other two. The parameter layer (top)
encapsulates the settings of each module to be controlled, which enables experiments
in a range of scenarios to be conducted. One goal of this framework is to generalize over
the actual DM’s preferences (true preference) and the actual optimization problem at
hand (true criteria). Moreover, although the EMOA interacts with the DM via the
interaction module, the problem being optimized by the EMOA (modeled criteria) is
not necessarily identical to the problem seen by the machine DM (true criteria).

3 An Example Instantiation of Our Framework

Rather than proposing our own interactive EMOA (iEMOA) here, we chose to
recast previous work as an instantiation of our proposed framework. This allows
us to re-analyze results from the literature in a new light, while also showing
how we can combine advanced iEMOAs with previous studies in MCDM.

The EMO Algorithm. The EMO algorithm used here is BC-EMOA [2], which
is a variant of NSGA-II that learns the DM’s preference function using support
vector ranking (SVR).

The Interaction Module. BC-EMOA offers several alternatives for interac-
tion. Here we consider the one recommended by the authors, which is based
on periodically presenting a set of solutions to the DM, who must rank them
according to her preferences. This means that, when the interaction module is
active, the EMOA algorithm does not have direct access to the preference values.

The Machine DM. The machine DM used in this work follows the simulation
of non-idealities proposed by Stewart [22]:

– Omitted objectives. From the m objectives considered by the DM, q < m
objectives are not known, that is, they are not modeled by the iEMOA. This
may be due to a failure to identify relevant objectives when modeling the
problem. The m − q objectives (ẑk, k = 1, . . . , m − q) that are known are
selected randomly with a probability proportional to their true weights.
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– Mixed objectives. The objectives modeled might actually correspond to
the aggregation of two or more of the objectives internally considered by the
DM. The machine DM simulates this “mixing” by making the m − q known
objectives a combination of two true objectives such that ẑk = (1 − γ)zck +
γzck+1 , where γ ∈ [0, 1) is called the mixing parameter, and ck is the position
of objective k in the random selection described above (the position for not
selected objectives does not matter).

– Imperfect preference function. Instead of the true preference function
U(z), the machine DM uses a transformed function Û(ẑ), which is similar
to the true preference function except that

• the q objectives that are not modeled are always set to the same value,
• and the addition of Gaussian noise N(0, σ2), where σ is a parameter of

the machine DM.

4 Experimental Analysis

4.1 Experimental Setup

In order to assess the impact of the non-idealities and compare our results with
those reported in the literature, we use similar parameters for BC-EMOA as
in the original paper [2], that is, the algorithm runs for 500 generations, with a
population of 100 individuals, and the standard crossover and mutation operators
of NSGA-II. After the first 200 generations, the algorithm presents 10 solutions
to the machine DM, who must rank them according to her preferences (either
the true preference function or the imperfect one). This interaction occurs at
most three times, with 20 generations between each interaction.

In the experimental analysis, we compare the best solution returned by three
variants of the algorithm:

– G, or the gold standard variant [2], uses the true utility function U(z)
directly without any interaction. The MOEA optimizes the true criteria z.

– M, or the modeled variant, uses the imperfect utility function Û(ẑ) directly
without any interaction. In addition, the MOEA uses the modeled criteria ẑ
instead of the true criteria z. When q = 0, γ = 0 and σ = 0, then Û(ẑ) and
U(z) are equal, thus G and M are equivalent.

– I, or the interactive variant, interacts with the machine DM as described
above. The machine DM uses the imperfect utility function to rank solutions
and the MOEA optimizes the modeled criteria.

As for the machine DM parameters, we consider all combinations of the
following settings: m − q ∈ {0, 1, 2}, γ ∈ {0.0, 0.05, 0.1, 0.2} and σ ∈ {0.0, 0.05,
0.1, 0.2}, which are in the range of those considered by Stewart [22].

As a simple benchmark problem suite, we consider DTLZ1, DTLZ2, DTLZ6
and DTLZ7 [11] with m = 5, 7 objectives and n = 2m variables. As for the true
preference function, although in principle any arbitrary additive value function
could be used [22], for simplicity, we consider here a machine DM with a linear
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scalarizing function and three different sets of randomly generated weights. The
application of the machine DM described above to such a preference function is
straightforward.

We repeat each run 10 times with different random seeds, but in order to
reduce variance, we use the same set of 10 seeds for all the variants compared.
Since some of the variants are equivalent, they will produce the same results.

We assess the results according to normalized true utility value U(·) of the
most preferred solution found computed as follows. For a given problem and
preference function, we compute the maximum and minimum values of the true
preference function ever found over all runs of the algorithms, then we normalize
the true preference values corresponding to the most preferred solution returned
by each run to the interval [0, 1], as U ′(z) = (U(z)−Umin)

(Umax−Umin)
, such that 0 corresponds

to the worst value and 1 to the best one.

4.2 Experimental Results

We present the results in terms of plots (e.g., Figure 2) of the mean U ′ for each
of the three variants G, M and I described above. Each point corresponds to
the mean value of the 10 runs for each of the three preference settings. The error
bars denote a 95% confidence interval around the mean.

Figure 2 shows the results of omitting objectives (parameter q) without noise
or mixing objectives for all problem instances with m = 5 (left) and m = 7
(right) objectives. When no objective is omitted (q = 0), the variants G and M
are equivalent. As soon as we omit one or two objectives, there is a significant
drop in the normalized preference value of the solutions found by M and I, which
for q = 2 becomes more than two times worse for some problems. Interestingly,
the difference between I and M often decreases for larger q. This is explained by
the fact that by dropping objectives, learning the imperfect preference function
becomes easier, despite the fact that the imperfect function is further away from
the true one.

Figure 3 shows the results of mixing objectives, where the degree of mixing is
controlled by parameter γ. The similar values obtained by G and M suggest that
γ = 0.1 is not high enough to produce a noticeable effect. On the other hand,
further increasing γ up to 0.2 produces an effect that is problem-dependent: In
the case of DTLZ2, it makes more difficult for the interactive approach I to
produce as good preferred solution as either G or M, whereas in the case of
DTLZ7 and m = 5, the value γ = 0.2 produces the opposite effect.

Figure 4 shows the effect of adding noise to the utility function via param-
eter σ. With a sufficient high noise, we can observe that the variant using the
imperfect preference (M) deteriorates noticeably with respect to the gold variant
G. However, the effect on the actual interactive variant I is limited. In fact, for
DTLZ1 and m = 5, a high σ does actually help I to approximate better the most
preferred solution. Except for a few cases (DTLZ2 and DTZL7 with m = 7), the
noise does not seem strong enough to produce any differences between G and
M, and neither it has a remarkable effect on I.
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Fig. 2. Results when omitting q out of m objectives without noise (σ = 0.0) nor mixing
of objectives (γ = 0.0)
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Fig. 3. Results when mixing objectives (parameter γ) without omitting objectives
(q = 0) and without noise (σ = 0.0)
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Fig. 4. Results when adding noise to the utility function (parameter σ) without omit-
ting objectives (q = 0) and mixing them (γ = 0.0)
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Finally, Figure 5 shows the combined effect of both noise (σ = 0.2) and mix-
ing of objectives (γ = 0.2) when omitting q = 0, 1, 2 objectives. The results are
mostly as expected, that is, the combined effect is a sharp decrease of the nor-
malized utility with respect to the gold variant G. The other major difference
with the corresponding plots in Fig. 2 is that, in this case, the interactive app-
roach that learns the preferences (I) is sometimes better than the approach that
directly uses the imperfect preference of the machine DM (M), e.g., in DTLZ2.
In addition, the results for DTLZ7 when q = 0 suggest that this problem is
quite easy for BC-EMOA. Yet, when omitting one or two objectives, there is an
enormous degradation of the utility value, despite the fact that there is almost
no difference between the values obtained by the interactive algorithm I and
the variant using directly the imperfect preference M. Thus, this indicates that,
although learning the preference function is relatively easy in this problem, even
in the presence of noise or mixing of objectives, the omission of two objectives
will lead the algorithm to a completely wrong answer with respect to the true
preference.

5 Discussion and Related Work

Although nearly 15 years old, the review by Coello Coello [9] is worthy of atten-
tion for the number of attempts at merging methods from MCDM with EMO
approaches already proposed by that time. Of course, in the intervening period
there has been much further progress in EMO and in preference-based opti-
mization and a proliferation of algorithms and interaction schemes. However,
we believe the advancement in methods for the assessment of interactive EMO
methods (in terms of their ability to satisfy a decision maker, or decision makers
of different types) is less clear and there seems to be much less work in this
direction.

As reviewed by Coello Coello [9], MCDM splits in broad terms into the French
and American schools, and there is in general much difference of opinion about
how preferences should be elicited, the benefits and vagaries of different schemes,
and any number of difficulties associated with this task. This is all further com-
pounded when one considers how to marry an MCDM approach eliciting and
modelling preferences interactively (or otherwise) to an EMO algorithm, which
generates a highly non-deterministic trajectory through the candidate solution
space. But sidestepping this undoubted complexity, we can ask a simpler ques-
tion. If a DM had a certain set of preferences and if they were expressible in some
fixed way (as in the American school), how could we assess whether a particular
modeling of this DM — the outcome of the method of preference elicitation —
was successful? We could answer this simple question by agreeing to use not
a human, but a machine DM for which we have full access to the underlying
preference model. What makes it a machine DM simulating a human DM, and
not merely a simple preference structure, is that we can also add into it more
complex actions like biases, inconsistencies, learning and so forth (but all con-
trollable by us). Using this approach, we can then evaluate how well the DM’s
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Fig. 5. Results when omitting q out of m objectives with both noise (σ = 0.2) and
mixing of objectives (γ = 0.2)
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true preference is captured by the preference elicitation scheme, or in an EMO
system, we can measure how well the search finds a solution that satisfies the
DM’s true preferences.

We are by no means the first to approach quantitative assessment in this
way. Indeed, we were inspired in this work most strongly by previous work by
Stewart [22–24], and based several aspects of our approach on it. In particular,
modeling several non-idealities of real human decision making, Stewart [22] mea-
sured the robustness in the ranking of alternatives obtained when attempting
to model the DM as a stable additively-independent (non-linear) value function.
Working with simulations involving 7 criteria and 100 nondominated alterna-
tives, a series of sensitivity analyses showed that the ‘elicited’ value functions
worked well in preserving the ‘true’ ranking of solutions provided that (i) the
value function was modeled as piecewise linear with a sufficient number of pieces
(4 seemed sufficient for value functions derived from Prospect Theory [15]), (ii)
the criteria are close to additively independent, and (iii) not too many criteria
are missed out (missing one or two was not very detrimental).

While seminal as a simulation to quantify the robustness and limits of addi-
tive value functions, the paper (ibid.) does not consider either the elicitation pro-
cess per se, or search (optimization). Thus the problem of evaluating iEMOAs is
a good deal more involved. We hope that we have remained true to Stewart’s aim
of using (machine) DMs that mimic real human behaviours in important ways,
while showing how we can begin to assess complete interactive EMO algorithms
in ways that matter for the DM who would be using them.

The choice of iEMOA used in the study, BC-EMO, is somewhat arbitrary;
although, the fact that it can handle up to five different types of preference
information means that future analysis can compare the results presented here
with those obtained with more complex preference models. Nonetheless, our
framework is intended to be able to abstract away from any particular EMO
algorithm, DM’s preference model and preference elicitation technique. Thus, it
would be very interesting to extend our analysis to other leading methods in
interactive EMO such as [4,8,12–14,20,28] within the same framework, and this
is our longer term goal. In particular, it would be important to study potential
mismatch between methods that use reference points and a DM with preferences
that do not rely on such, or vice versa. Evaluating very sophisticated approaches,
like robust ordinal regression [13] or those based on machine learning [7], would
shed light on whether these approaches really work in practice, and under what
violations of DM assumptions do they also begin to exhibit poorer performance.
And as EMO algorithms become more adept at handling many objectives, it will
be increasingly important to put proposals for preference-based many-objective
methods such as [28] to more stringent testing.

From a broader perspective still, the problem of eliciting human preferences
while searching [25,26] is not limited to mathematical optimization per se. A
common scenario where human DMs are exercised on a daily basis are web or
database searches for things such as books, holidays, and property. In these cases,
human users both seem to learn about or construct their preferences through the
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interaction, and also learn the querying system. Work in this area (ibid.) seems
advanced compared to work on iEMOAs in terms of the interaction systems
proposed, and also concerning evaluation of them. We see a bright future for
iEMOAs if and only if we can embrace a similar focus on the objective evaluation
of our MCDM/EMO hybrids, including realistic and generalized DM models
(machine DMs), and a more stringent testing regime that presents a variety of
challenges to the working of these methods.

6 Conclusion

We have given an illustration how EMO/MCDM interactive approaches can
be evaluated quantitatively using a conceptual framework based on machine
DMs incorporating human-like non-idealities. Whilst iEMOAs are becoming
more sophisticated, incorporating more advanced methods both from EMO and
MCDM, it has remained unclear up to now how we can quantitatively assess
the improvement. We proposed and demonstrated a few parameters of machine
DMs for assessing iEMOA performance quantitatively. Importantly, the robust-
ness of iEMOAs can be evaluated using this approach and we show with an
example that existing iEMOAs are not very robust in the face of these lesser
tested non-idealities. In particular, BC-EMOA is very sensitive to the omission
of objectives and much less sensitive to their mixing. In fact, we observed that
there are non-obvious interactions between various parameters of the machine
DM. For instance, under some circumstances, the mixing of objectives may actu-
ally help the iEMOA to not get confused by an imperfect preference function.
From these foundations, we hope to build a more comprehensive testing facility
for the interactive EMOA community.

The experiments reported here are evidently preliminary. We plan in the
future to extend the experiments to more complex preference functions. Given
the variability of these preliminary results, carrying out a full factorial ANOVA
would help to identify the most important factors. Future work will extend the
framework of machine DMs to other types of interactions, such as goal program-
ming [24] and aspiration-based techniques [23]. It is currently an open question
how to extend the framework to incorporate a wider range of human behaviors
and other non-idealities, in particular, the role of learning or evolving preferences
by the DM. Finally, the ultimate goal of this framework should be to provide
incentives and a way to benchmark interactive EMOAs able to cope with the
complex behaviors of human DMs, possibly enabling at some point in the future
the automatic design of interactive EMOAs [18].
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Abstract. In aviation, the performance impact of auxiliary air inlets
used for system ventilation is significant. The flow phenomena and con-
sequently the numerical model, is highly non-linear, leading to a compro-
mise between pressure recovery and drag for a given mass flow condition.
This work follows a step-by-step approach which highlights the impor-
tant issues related to solving such complex optimization problem, using
surrogate methods coupled to evolutionary algorithms. Its conclusions
can be used as a guideline to similar industrial applications.

Keywords: Design optimization · Genetic algorithm · Surrogate mod-
eling · Air inlet · CFD · Aerodynamics

1 Introduction

Air inlets are employed in aviation to provide external air for several purposes
such as cooling flow for heat exchangers, compartment ventilation, electronic
systems cooling, and auxiliary power unit (APU) operation. Installation and
dimensioning requirements for an air inlet are dictated by the requirements
of other connected systems and are dependent of performance-related factors
such as ingested air flow rate, total pressure and flow distortion. Larger air
inlets placed in regions of high pressure and where the boundary layer is thinner
are good candidates, although may increase aircraft drag, which is undesirable.
Hence, there is a compromise between improving air inlet performance and dete-
riorating the overall aircraft performance due to drag production by the inlet.
As most commercial aircraft usually have several air inlets, their contribution to
the overall aircraft drag is significant, thus the optimization of such components
constitutes a great opportunity for global performance improvement.

Reaching such a compromise solution between local air inlet and global air-
craft performance, subjected to the variation of geometrical and operational
parameters is a hard task due to the highly non-linear and possibly non-
monotonical characteristics of the flow phenomena involved, possibly resulting in
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multimodal responses with local maxima and minima that might deceive direct
optimization methods.

Experimental studies [1–3] have been conducted in order to determine the
influence of air inlet geometrical parameters on performance metrics and drag
production. However, these results have limited application because of the sim-
plified set up of the experimental schemes adopted [1–3]. The common industrial
practice is to rely on existent correlations based on experimental data [4]. High
fidelity calculations on realistic geometries are often obtained using Computa-
tional Fluid Dynamics (CFD), which require high performance computers and
might take several hours depending on computational model size and complex-
ity. Thus, an intensive use of high fidelity models for optimization might not be
practical, especially during aircraft preliminary design, as systems architectures
are under development and there is often the need for fast decision making.

This work describes in details the rational combination of advanced tech-
niques to reach a fast and accurate optimal design. Our approach is to investi-
gate sequentially design space sampling strategies, construction of a surrogate
model, definition of an optimization problem and its solution using an evolution-
ary algorithm. As those steps are taken, it will become clear that for complex
non-linear problems, as typically found in fluid dynamics applications, important
questions arise. Our main contribution is to propose a set of guidelines or, at
least, call attention to the potential difficulties and issues one might face while
solving similar problems in practical fluid dynamics applications.

Fig. 1. Simple configurations for submerged air inlets with varying sidewall angles

2 The Physical Problem and Numerical Solution

Air Inlet Performance Parameters

For the sake of simplicity, we consider only straight lip inlets, as seen in Figure 1.
The ramp angle induces the flow into inlet throat. The dynamic pressure of the
flow is low close to the solid surface so that, for a given pressure recovery, the inlet
area must be enlarged in order to overcome this effect. Placing the inlets along
the vehicle requires taking into consideration the local pressure distribution [5].
Along the sidewalls forms a pair of vortices that captures higher dynamic pressure
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from the flowfield and increases the pressure recovery. Figure 2 shows the right
side vortex of a parallel and a divergent wall inlet (as obtained from a numerical
solution). Both ramp (which translates to throat area) and sidewall angles have
important effect on inlet performance, since they are associated with the conver-
sion of dynamic pressure into total pressure at the inlet, providing the necessary
pressure difference to allow the influx of cooling air into the internal systems.

Fig. 2. Streamlines (in red) obtained by CFD simulation, representing flow path in air
inlets with parallel walls (on left) and divergent walls (on right)

Mass Flow Ratio

In order to generalize conclusions, previous experimental investigations [1] used
a non-dimensional parameter to represent throat area effect which is the mass
flow ratio (MFR):

MFR =
ṁ1

ṁ0
, (1)

where ṁ1 = ρ1V1Athroat is the mass flow rate actually passing through the inlet
throat, ṁ0 = ρ0V0Athroat is the ideal mass flow rate, ρ is the density and V is the
flow velocity. Indexes 0 and 1 represents the freestream and throat conditions,
respectively. For incompressible flow, the expression simplifies to MFR = V1/V0.

Pressure Recovery

A commonly used inlet performance characteristic is pressure recovery [1,4],
which can be calculated as:

η =
PT − PS∞

PT∞ − PS∞
, (2)

where, PT is the area averaged total pressure at the air inlet throat, PS∞ is
the freestream static pressure, PT∞ is the freestream total pressure. Pressure
recovery is a representation of the amount of the freestream dynamic pressure
that is recovered by the air inlet.
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Drag Coefficient

The cost of having pressure recovery (at a given MFR) is increasing drag of the
air inlet. Since energy is being extracted from the flowfield, the resistance of the
vehicle will increase. Here, two components of drag are taken into consideration:
parasitic drag and ram drag. Parasitic drag is present whenever a body is immerse
in a viscous non-steady flow and is caused, mainly, by skin friction drag (due to sur-
face contact between the body and the surrounding flow) and pressure (or form)
drag (mostly caused by boundary layer separation and vortex shedding). Ram
drag occurs as a consequence of the air ingestion by the inlet, i.e., some of the
energy in the external flow is extracted by the inlet to feed its associated system
or compartment. Although also important, air outlet design is not treated in this
work, and consequently, ram drag is accounted in air inlet drag calculation.

Parasitic drag (D0) is calculated integrating air flow stress tensor over the
exposed surface of the air inlet, while ram drag (DRAM) is the amount of momen-
tum passing over the throat cross-section, expressed as an integral over the throat
area. Hence, total drag coefficient (CD) is defined as:

CD = CD0 + CDRAM =
2

ρ0V 2
0 Sthroat

(∫

S

τwdS +
∫

throat

ṁV · dS
)

, (3)

where ṁ is the mass flow rate across the inlet throat, V is the velocity vector,
Sthroat is the inlet throat cross-sectional area, τw is the viscous stress on the
inlet surface wall (S) and ρ0V

2
0 /2 is the freestream dynamic pressure.

High-fidelity Model

As mentioned previously, pressure recovery and drag coefficient calculations are
carried out by CFD, which involves the solution of a set of partial differential
equations using a discretized domain (a mesh or grid) that represents the prob-
lem geometry. The process here adopted follows a benchmark standard [6,7].
Previous studies [8–10] indicate that the level of accuracy compared to experi-
mental data validate the present process.

Fig. 3. Scheme of model geometry and boundary conditions.
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Geometry

Figure 3 represents the geometric model considered in this work, in which air
inlets are placed in a flat plate. Since the air inlets are symmetrical, only half
model is simulated. The use of CFD is not limited to flat surfaces, it was a choice
for the present study to focus on the development of the process guidelines.

Computational Mesh

After geometrywasbuilt, a computationalmesh thatdiscretizes thedomain formed
by the model boundaries was constructed. For this task, structured multi-block
grid features of ICEMCFD were used, producing a computational mesh of about
3 million elements with adequate refinement in regions of interest (near wall and
across surfaces with higher curvature).For each of the simulated inlet configura-
tions a different mesh was constructed. Since conclusions of this work are based on
some level of comparison of results obtained from different meshes, use of struc-
tured multi-block meshes in these cases (instead of common unstructured hybrid
meshes) is recommended as there is a perfect block topology association between
any given two meshes (and thus configurations). As a result, spurious differences
in the results due to distinctions on meshes topology are not expected.

CFD Solver

Computational meshes for each configuration were imported into CFD++ v.
14.1.1 which is a commercial CFD solver employed for the simulations and
was set to resolve the Reynolds-Averaged Navier-Stokes (RANS) equations with
Realizable k-ε turbulence model. To each wall (physical or not) in the geomet-
ric model/computational mesh, a boundary condition was assigned. For all the
studies a single reference flow condition was used (standard atmosphere sea level
pressure and temperature at Mach number 0.197). Inlet flow condition is varied
to provide corresponding MFR value.

Equations were solved in high performance computers using 32 processors
per case. Convergence of each configuration has been obtained after about 2000
iterations, after approximately 8 hours of simulation. This relatively high compu-
tational cost motivates the use of sampling and surrogate modeling techniques.

3 The Optimization Problem and Surrogate Modeling

The problem under investigation is the design optimization of an air inlet con-
sidering effects of the variation of two parameters, inlet mass flow ratio (x1) and
sidewalls divergence angle (x2), on two responses, pressure recovery (y1) and
drag coefficient (y2). A larger optimization problem with respect to number of
design variables and/or objective functions (or constraints) might be easily set
up. As the results will show, even for this small sized problem, the non-linearity
of the flowfield presents interesting issues that need to be discussed. This prob-
lem could be treated either as a multi-objective or as a single-objective opti-
mization problem, in which the responses are combined into a single objective
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function. Both approaches are considered. The responses pressure recovery and
drag coefficient, are respectively represented by y1 = f1(x) and y2 = f2(x),
where x = (x1, x2)T ∈ X ⊂ R

2 corresponds to the air inlet parameters of inter-
est. The optimal design is obtained by maximizing pressure recovery (y1) and
minimizing drag coefficient (y2).

For multi-objective optimization, both y1 and y2 are considered as objective
functions. Some operational changes in these functions are required, however,
as the adopted algorithm (nsga2, contained in mco package for R computing
environment [11]) works by minimizing objectives. There are two options: w1 =
−y1, and z1 = 1/y1, where minimization of w1 or z1 results in maximization of
y1. For the final drag coefficient objective function the notation w2 = z2 = y2 is
adopted for symbolic consistency. Therefore, multi-objective optimizations with
two set of objective functions will be performed: one with w1 and w2 (mo1) and
another with z1 and z2 (mo2).

For single-objective optimization, the objective function is defined as y =
f(x) = f1(x)/f2(x) so its maximization (GA package for R computing environ-
ment [12], which instead of nsga2, search for maxima in functions) is obtained
for maximum pressure recovery (y1) and minimum drag coefficient (y2).

Design Space Sampling

Due to the high computational cost of CFD simulations (8 CPU hours per
design point), instead of working directly with the objective functions, a sur-
rogate model was be adopted. Several distinct methods can be used to obtain an
adequate set of data as input to build the surrogate. In this study, the sampling
points were generated using space-filling Latin Hypercube Design (LHD) [13],
and cover the two dimensional space of considered parameters: mass flow ratio
(x1, in the interval [0, 1.5]) and divergence angle (x2, in the interval [0, 10]).

Construction of LHD was carried out using function maximinlhs found in the
lhs R package. Despite the lower cost of evaluating a surrogate model instead
of CFD model, building a surrogate model is not a trivial task. In order to
evaluate the trade-off between cost and accuracy of the surrogate model, three
sets of training points were sequentially obtained: the first set (set1) with only
5 points, is a subset of the second one (set2), containing 10 points which, in
turn, is a subset of the third set (set3), with 21 points (see Figure 4).

Surrogate Model

Response vectors y1, y2 and y obtained from CFD simulations are used as input
to build surrogate models ŷ1, ŷ2 and ŷ that represent y1, y2 and y for any point
within the design space. The use of the Kriging method provides an estimate for
prediction errors, which is valuable to ascertain the accuracy of the surrogate
model ([14]). For this contribution, the DiceKriging R package is used to build
a Kriging model. Basic parameters for function km are the training data, along
with surrogate model settings, like covariance function type, set here to be of
Gaussian type.
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Fig. 4. Scatter plot of points generated by Latin Hypercube Sampling. Original set of
5 points (set1) is represented as the larger markers (3 circles); second set (set2), as
midsize markers (2 circles) and third set (set3), as small dots. Sets of data were built
in a “nested” manner, so that set1 is contained in set2, and both are contained in set3.

The Kriging surrogate models were assessed by “leave-one-out” cross-vali-
dation (CV), in which the i-th Kriging estimate is obtained by iteratively exclud-
ing the corresponding point of the training data, which produces ŷ−i. This
procedure is repeated for each point in the training dataset, so that it is possible
to compute the global lack-of-fit of the surrogate:

RMSE =

√√√√ 1
n

n∑

i=1

e2CV (i), (4)

where e2CV (i) = y(x(i)) − ŷ−i(x(i)). Reasonable values for this metric depend on
the application field. For aeronautical applications, maximum acceptable errors
in air inlet pressure recovery predictions (ŷ1) are around 10% (so RMSEy1 ≤ 0.1),
while for drag coefficient (in aircraft scale) predictions, errors up to 0.00005
(half “drag count”) might be admitted. Converting drag coefficient to air inlets
scale, acceptable errors in ŷ2 are below 1.0 (RMSEy2 ≤ 1.0). Propagating these
errors within the objective function y, acceptable values for RMSEy are around
0.01. Besides global metrics for inaccuracy, cross-validated standard error for the
surrogate model can also be calculated for each training point.

Figure 5 shows contours of ŷ1 obtained for each subset of points as well as
cross-validation for the corresponding surrogate. Figures 6 and 7 show analogous
results for ŷ2 and ŷ. Plots on the right in the corresponding figures show a com-
parison of original responses and cross-validated Kriging estimates. Error bars for
two seCV (i) determine approximate 95% confidence intervals for each estimate.

The results obtained from set3 (shown in Figure 5) indicate non-linear behav-
ior of pressure recovery (y1) as a function of MFR (x1) and divergence angle (x2),
and three main local maxima can be pointed out close to coordinates (0.3, 10),
(0.5, 0.0) and (1.0, 1.0). The literature [1] presents pressure recovery peak ranging
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Fig. 5. Contour plot of the Kriging surrogate ŷ1 obtained from CFD results for LHS
design points in set1, set2 and set3 (left side plot). Training points are represented by
the points plotted over the contours. Cross-validation of Kriging surrogate responses,
where error bars correspond to 95% confidence interval (right side plot).
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Fig. 6. Contour plot of the Kriging surrogate ŷ2 obtained from CFD results for LHS
design points in set1, set2 and set3 (left side plot). Training points are represented by
the points plotted over the contours. Cross-validation of Kriging surrogate responses,
where error bars correspond to 95% confidence interval (right side plot).
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Fig. 7. Contour plot of the Kriging surrogate ŷ obtained from CFD results for LHS
design points in set1, set2 and set3 (left side plot). Training points are represented by
the points plotted over the contours. Cross-validation of Kriging surrogate responses,
where error bars correspond to 95% confidence interval (right side plot).
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from approximately MFR = 1.0 for air inlets with parallel walls, to MFR = 0.2
for inlets with high wall divergence angle. Thus, the obtained results are in
agreement with experimental observations.

Generally speaking, the RMSE results obtained for the surrogates suggest
improvements in model prediction accuracy as the number of training points
increases. Thus, regarding the assessment of surrogates based solely on RMSE
values (see in Figures 5, 6 and 7), it is possible to conclude that: (i) The Kriging
model obtained from set3 is the only surrogate acceptable for predicting y1
(pressure recovery), as RMSEy1 ≈ 0.05 ≤ 0.1; (ii) Drag coefficient (y2) is well
represented by all surrogates built from any of the training data sets, since except
for predictions on very low and very high values of MFR, surrogates obtained
from all sets of data are very similar in topology and magnitude; and (iii) Strictly
considering RMSE results for response y, only the Kriging model based on set1
would qualify.

The RMSE measure should not be considered alone to evaluate the quality
of the surrogate. Observe, for example, the results of ŷ for set1: the RMSE out-
performs the other two surrogates for the same response, obtained with higher
computational cost (set2 and set3). Such incoherent result is actually accidental,
since the surrogate estimates for points in set1 are contained in an narrower range
(which reducesRMSE)butpresent large confidence intervals,whichmeans the esti-
mates are very imprecise. Furthermore, this surrogate is inaccurate. The bottom
plot in Figure 7 shows a contour plot of the response surface for y based on set3.
Close inspection provides insight on approximate location of maxima: (0.2, 10) and
(0.4, 0). This feature is completely missed out using surrogate based on set1.

In terms of computational cost, surrogates obtained based on set1 took about
40 hours of high fidelity model simulation. This scales to 80 hours for surrogates
calculated from set2 and then to more than 160 hours if set3 is used as training
dataset. Although considerably less expensive, use of training data sets of sizes
comparable to set1, or even set2, could cause significant impact on prediction
precision and accuracy, thus on optimization results.

4 Single and Multiobjective Solutions

As previously stated, optimization is performed using evolutionary computation.
As input to the genetic algorithms, instead of CFD simulation results for each
individual in the population, the less expensive Kriging surrogate model results
were be calculated. For single-objective optimization package GA ([12]) from
R statistical software was used. The objective (or fitness) function to be maxi-
mized is y = f(x). The following set of genetic algorithm parameters were fixed:
(i) Population size: 100 individuals; (ii) Number of iterations (generations): 1000;
(iii) Crossover probability: 80%; (iv) Mutation probability: 10%; (v) Elitism: 5%
(best) individuals.

No convergence criteria was established; the execution log was checked to
ensure that at least during the last 50 iterations (generations), fitness value had
not changed. The optimal design obtained in this process was then simulated
via CFD and compared to surrogate model results.
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For multi-objective optimization, the nsga2 function from R package mco
was employed with the same settings as before. Genetic algorithm was run for
the two sets of objective functions previously presented (mo1: w1 and w2; mo2:
z1 and z2) by minimization (instead of ga). Resulting Pareto fronts will be
presented next.

Optimization Results

Multi-objective optimization (via nsga2 ) for two different function definition
approaches was performed. Figure 8 shows results for both approaches (“mo1”
and “mo2”), comparing pareto fronts generated using Kriging surrogates built as
previously described. For a given set of training points used, it is noticeable that
Pareto fronts obtained from mo1 and mo2 are coincident, though the points are
not exactly the same, they lie on the same line, leading to the conclusion that
optimization performed for both multi-objective function sets (mo1 and mo2)
might be equivalent for the problem discussed in this work.

In addition, Pareto fronts obtained from different training points present con-
siderable differences in topology (including Pareto front points location in design
space). However, as the number of training points increases, some convergence is
observed since groups of Pareto points become clustered in the design space. This
is particularly noticeable comparing Pareto front results obtained for surrogates
based on training sets set2 and set3.

Single-objective optimization (via ga for y) produced the evolution presented
in Figure 9(a), which corresponds to optimization of Kriging surrogate for y
based on data in set3 (21 points). The optimal design is found at coordinates
(0.214, 9.993) with fitness function value ŷ = 0.216, which is represented by a
black dot in the bottom plots in Figure 8.

An additional run of the genetic algorithm (also using Kriging surrogate
obtained for set3) with different values of population (50), crossing-over prob-
ability (60%), mutation probability (5%) and elitism (1%) was performed and
results are shown in Figure 9(b). Although same fitness and optimal design point
were eventually found, genetic algorithm evolution passed through a local max-
imum at (0.421, 0.010) (see the bottom plot at left side of Figure 7) and took
about 400 generations to get closer to the global maximum. This interesting
result comes as consequence of the multimodal nature of the studied responses
(especially y1). Figure 4 shows LHS design has not put any point actually very
close to the optimal design point obtained via single-objective optimization. For
this reason, an additional CFD simulation was performed to evaluate obtained
surrogate at this point. Calculated response is y = 0.215 which is close enough
to surrogate result at this point (ŷ = 0.216).

Another interesting observation is that single-objective optimization results
are contained in the corresponding Pareto fronts for the proposed multi-objective
optimization (in Figure 8, single-objective optimization results are represented
by the black dot). Additionally, single-objective optimal design is located in the
same cluster of optimal designs generated by multi-objective optimization. This
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Fig. 8. Multi-objective optimization results using Kriging surrogate data obtained from
set1, set2 and set3: location of Pareto front points in the design space (on left side) and
plot of Pareto front for single-objective, “mo1” and “mo2” optimization approaches (on
right side).
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tendency is observed even when using surrogates obtained employing different
training points sets.

In terms of computational cost, each of the multi-objective optimization was
processed in less than 5 minutes using an average personal computer (200,000
surrogate evaluations performed), while single-objective optimization took 2
minutes to run (100,000 surrogate evaluations). Considering the amount of pro-
cessing time to generate training data set responses (more than 160 hours for
set3), optimization computational cost is negligible for this case. This is typical
of industrial applications.

Fig. 9. Evolution of population fitness for two genetic algorithm executions using Krig-
ing surrogate built from training points in set3. Blue dots correspond to population
average fitness while green dots represent best fitness value for each generation.

5 Conclusion

In this contribution, aspects of aeronautical submerged air inlet design optimiza-
tion are discussed. Influence of two geometric parameters (divergence angle and
mass flow ratio/throat area) on performance responses (pressure recovery and
drag coefficient) was modeled using CFD simulations. In order to reduce simula-
tion results fluctuation the same mesh topology was maintained for all analyzed
geometries. Three different sets of training points were sampled from design
space and resulting Kriging surrogate models were assessed considering accept-
able levels of error for responses established based on application experience,
leading to verification of an adequate sampling size. Non-linear behavior of the
studied phenomena is observed as multi-modal features are presented in the con-
tours of obtained surrogate models. Use of surrogates as means of design evalua-
tion greatly reduced computational time, making optimization process viable for
this case. Pareto fronts generated adopting the chosen two sets of multi-objective
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functions were shown to be coincident. Calculated single-objective optimal design
was contained in corresponding Pareto front, though it consistently lied in the
same “cluster” of designs. Moreover, genetic algorithms parameters were shown
to cause some influence on optimization result, possibly leading to different opti-
mal designs if convergence is not reached. Finally, optimization problem studied
in this work – a single incompressible flow case with two objective functions and
the variation of only two parameters – presented many aspects and interesting
issues under a perspective not usually seen in industrial applications.
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Abstract. In the current market, engineers are continually required to
optimize their designs to realise improved performance whilst meeting
ever more stringent regulations and competing for market share. This
reality increases the demand for optimization. Due to these, and sev-
eral other reasons, real-world optimization problems often have a large
search space, are non-convex, and have expensive-to-evaluate objective
functions that have many conflicting objectives. However, even if these
problems are overcome, to select an acceptable solution, the decision
making process itself is equally demanding. Some of these difficulties
could be alleviated if a tool existed to support the analyst and decision
maker throughout the entire process. The aim of this work is to illus-
trate and share insight gained in using Liger in such a scenario. Liger
is an open source integrated optimization environment and its use is
described in a case study of involving the calibration of a diesel engine
using multi-models. The benefits of using Liger are demonstrated along
with the procedure we followed to obtain an optimized engine calibration
that complies with performance and regulatory requirements.

Keywords: Diesel engine optimization · Liger · Integrated optimization
environment · Multi-objective optimization · Drive-cycle optimization

1 Introduction

Designing a modern day vehicle is a feat that requires many considerations to be
taken into account. These considerations are based on constraints imposed by
the industry, the customers and government regulations. We could argue that
the main objective of the industry is profit from vehicle sales, which requires
high appeal to customers and low production cost. Governments are introducing
ever more stringent regulations pertaining to the reduction of harmful emis-
sions to humans and the environment. Broadly speaking, although customer
requirements are quite varied, they can be split into a small number of groups,
such as purchase cost and vehicle safety along with fuel economy, performance,
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design and brand. The design process has to incorporate all these requirements
simultaneously.

Diesel engines by design are reliable, safe and their main advantage is fuel
economy. They have a high thermal efficiency, which is a result of their high com-
pression ratio, but this also leads to increased nitrogen oxide (NOx) emissions[21].
Modern diesel engines have been vastly improved, resulting in reduced emis-
sions and an overall cleaner engine, while maintaining their high efficiency. More
detailed analyses of the different emission control technologies currently applied
on diesel engines can be found in [10] and [11].

What is of interest now is how to best utilise the hardware described above,
in order to obtain optimal, or at least improved performance. The design param-
eters of the hardware and the calibration of the software parameters controlling
that hardware can be used to alter the engine performance. Therefore, it is
preferable to automate this procedure by means of an optimization algorithm
(stochastic, gradient-based or some other alternative) to reduce the engineer-
ing overhead that would be introduced with empirical calibration. Furthermore,
although for non-convex problems a certificate of optimality cannot be issued,
as is the case for a large number of convex problems, empirical calibration often
produces inferior results.

The use of optimization enables the study of a number of additional issues
that could not be easily addressed with empirical calibration. One issue is the
fact that the number of competing objectives is usually large but is kept to a
relatively small number to reduce the complexity for the decision maker (DM).
Nevertheless, multi-objective optimization is becoming more and more prevalent,
given that it can be applied to different kinds of real-world problems (e.g. [13],
[15], [19], [20]). An issue associated with population-based algorithms, is that
due to the sheer number of available algorithms it is virtually impossible, even
for experts in the field, to select the best algorithm for a given problem. Even if a
small subset of algorithms is shortlisted for evaluation, their implementation can
be challenging and costly for the practitioner. In [7], an overview of population-
based algorithms and the considerations in choosing an appropriate algorithm
are given. It is obvious from the conclusions in [7], that it is not a trivial task to
make a decision on the algorithm family, implementation or the selection of the
configurable parameters.

Some of the problems identified above can be solved by developing tools that
make the use of optimization algorithms straightforward and provide tools to
assist the DM in exploring the resulting solutions. Such tools are, for example,
the OpenMDAO [8], OpenOpt [2], TAO [16] and Liger [6]. Tools such as these
can simplify the task of optimisation by incorporating state-of-the-art algorithms
into their libraries and providing advanced visualization to assist in the design of
experiments. The use of such tools can reduce engineering time while producing
as good or better solutions in comparison with algorithms built by practitioners
that are potentially non-experts.

In this case study, we are interested in reducing fuel consumption, nitrogen
oxide (NOx) emissions and particulate matter (PM) production in a diesel engine
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drive-cycle. The diesel engine under investigation is equipped with an exhaust
gas recirculation (EGR) and turbocharging systems and a common rail injection
system. Optimization tasks like this one, are very commonly performed in the
industry and we are interested in evaluating the effectiveness of using an inte-
grated optimization environment in performing this task, while we obtain a set
of possible settings that can be used on the real engine. Liger [6] is used, in order
to complete all of the optimizations; statistical models of the engine, provided by
Ford, represent an entire drive-cycle of the engine under investigation. It is not
our goal to compare algorithms or other optimization frameworks, but merely
demonstrate the use of one such tool, Liger, to solve a practical problem. We also
do not claim that Liger is the best available alternative, but we want to stress
its strengths and its weaknesses. This could potentially help other developers of
similar tools improve their own software.

The remainder of this paper is organised as follows. In Section 2 we describe
the diesel engine model and in Section 3 we present the mathematical formulation
of our optimization problem. Section 4 provides details on the experiment set
up and the use of Liger to complete the experiments. Subsequently, in Section
5 we present and comment on the obtained solutions with Liger. In Section 6
we discuss shortcomings, benefits and future potential in the use of Liger for
engineering design problems. Lastly, this work is summarised and concluded in
Section 7.

2 Diesel Engine Drive-Cycle Model

Modern diesel engines are comprised of a large number of control variables. Many
of the components that are added on the powertrain to reduce emissions, improve
efficiency or vehicle performance, can be calibrated in order to improve their
performance. However, optimal performance of an isolated component does not
guarantee that the collection of components will perform equally well. This, in
turn, increases the scope of the optimization problem and increasing its param-
eter space. Furthermore, the operating conditions of the engine vary in time
from turn-on to turn-off. An operating period from engine turn-on to turn-off
is called the drive-cycle. During a drive-cycle the engine is subjected to varying
environmental and usage parameters, for example, temperature, humidity, oxy-
gen density, load and speed requirements. The engine performance will not be the
same for different points in this parameter space. Since models of the engine are
not built from first principles (since such a task would be prohibitively complex
and expensive), creating a single model that will describe all those variations in
the engine state usually leads to inaccurate models. The alternative scenario is
to create models in the neighbourhood of a set of parameter points (operating
points) and then combine this set of models to obtain the estimated response of
the engine throughout a drive-cycle. Such models are called multi-models.
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2.1 Multi-models

Multi-models provide the engine response for different operating points. The
collection of local models for all operating points comprise the global model.
For example, when fuel consumption is to be evaluated for the engine, the oper-
ating point at which the evaluation is required must be provided. If the operating
point provided matches one of the local models in the global model for the fuel
consumption response, then an output can be evaluated. If the operating point
is not in the discrete set of operating points, an output cannot be evaluated,
since no interpolation takes place between local models. The layers of the entire
engine model, can be seen in Figure 1. Local models provide a local response,
based on the local inputs. The local model is chosen by the operating point
(global inputs), which in our case is a set of engine speed and brake torque.

Fig. 1. A general view of how multi-layer models are used to estimate a response, based
on a predefined set of operating points

A disadvantage of using multi-models is that a large amount of data is
required; more engine physical tests (bench-tests) are required in order to esti-
mate the parameters of the local models. Another disadvantage is that local
models cannot be used to interpolate between operating points. This means
that if we want to obtain data at an operating point that is not in the discrete
set of operating points, we must design another experiment for that operating
point and estimate the parameters for that new local model.
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2.2 Obtaining the Multi-models

In order to obtain the models for each of the responses that we are interested
in, discrete sets of engine speed and brake torque were first defined. These sets
are discrete operating points of the engine and represent the drive-cycle profile,
on which the vehicle will be tested. Each country has a different drive-cycle, for
which the emissions need to be limited. In total, there are 30 operating points
in our models. These operating points are split into two test plans, based on the
engine operating temperature, namely the hot-fast and warm operating regions.
In the hot-fast regions 18 sets of engine speed and brake torque operating points
are defined and in the warm region there are 12 such sets.

At each set of speed and torque, experiments were performed and 29 outputs
were measured. Finally, using the MATLAB model-based calibration (MBC)
toolbox, a local model for all the responses was obtained, for each of the operating
points. Amongst those responses are the fuel consumption, NOx emissions and
PM production, which we are interested in minimising.

2.3 System Control Inputs

The inputs of the system model are also the values we are interested in cali-
brating. So we must identify parameters of the engine that are of interest to us,
based on their effect on the whole system. As previously stated, the diesel engine
we are working on is fitted with an exhaust gas recirculation (EGR) system, a
common rail (CR) injection system and a turbocharger.

The amount of recirculated exhaust gas is controlled with a valve, the EGR
valve. Using an EGR system can lower the NOx emissions of a diesel engine, but
it increases the PM production and after a certain point it can cause instabilities
in the combustion process. These instabilities can cause loss of power and an
increase in carbon based emissions. For a detailed study about the effects of
EGR, see [21].

The common rail (CR) injection system is controlled by the engine control
unit (ECU). The controlled states of the CR injection system are the pressure
in the CR, the quantity of injected fuel and the timing of the injection. These
variables have an effect on the NOx emissions, particulate production and the
performance of the engine. The emissions can be controlled by changing the
rate of the injected fuel [17]. The amount of PM produced can be controlled
by changing the pressure in the common rail. The NOx emissions also depend
on the timing and quantity of injected fuel by a pilot injection [14]. This pilot
injection is also used to reduce the noise generated by the combustion process.

The turbocharger increases the density of the air inside the cylinder, which
increases the overall pressure in the cylinder and the power output. This is
controlled using the turbocharger valve and is described as a percentage of actu-
ation. More information on turbocharging and effects of the different techniques
of turbocharging can be found in [11].

The controlled states of the hardware described above are the local inputs of
our multi-models and can be optimized in order to obtain a better performance.
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The hot-fast region models have six inputs, the percentage amount that the EGR
and turbocharger valves are from being fully open, the main injection phase, the
CR pressure and the pilot injection phase and quantity. The warm region models
have two more inputs, the quantity and timing of a second pilot injection. Both
the hot-fast and the warm region models have two global inputs, the engine
speed and the brake torque, that are used for the switching between the local
models, as described previously (Figure 1).

Finally, the range of the inputs is also defined in the models and is given by
the convex hull boundary. A sample convex hull boundary for three of the inputs
of the system can be seen in Figure 2. All values for the inputs inside the “blue”
mass, are valid. Any values outside the constraint are not allowed.

Fig. 2. A convex hull boundary example for three of the system inputs Turbocharger
valve actuation (TrbCh rActB1 [%]) on the y-axis, CR pressure (RailP pFit [hPa]) on
the x-axis and EGR valve (EGRVlv rAct [%])) actuation on the z-axis

3 Diesel Engine Parameter Optimization

The models described in Section 2, will be used to define our objective functions,
based on which we will measure the performance of the engine model for each
of our decision vectors.

As seen in the previous section, the calibration settings have different effects
on the performance of the engine and sometimes opposing effects. For example,
according to [11], the EGR can reduce NOx emissions, but has been associated
with increased PM production. Based on the study in [18], the pilot injection
timing and quantity, controlled by the CR injection system, can reduce PM,
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previously increased by the EGR system, but at the cost of increased combustion
noise. It is clear that there is a trade-off relationship between a number of the
objective functions.

Because we are dealing with a multi-objective problem, there are many pos-
sible solutions that cannot be distinguished in terms of fitness from one another.
After the optimization process is performed, a set of solutions is obtained. The
feasible solutions are selected from the final population. The decision maker,
identifies the trade-offs between the objective functions and, in turn, will make
an informed decision about the final design.

3.1 Formulation of the Optimisation Problem

Our engine calibration problem is split into two parts, each being a separate
optimization problem. In the first part, the PM production response is defined
as a constraint. In the second part, it is defined as an objective. Re-defining the
PM as an objective, might reveal solutions that do not satisfy the initial PM
production constraint posed, but result in a large benefit in another objective.
It should also be noted that the NOx and PM outputs of the engine can be
further reduced by the addition of exhaust after-treatment techniques. The after-
treatment requirements should also be taken into consideration by the decision
maker.

The first part, as stated previously, is to perform a drive-cycle optimization.
In order to perform the drive-cycle optimization, the objective functions are
multiplied by a time-weight and then summed for each of the set-points of engine
speed and brake torque. Mathematically, the optimization problem is defined as
follows,

minimize
Xj

F =

(
30∑

k=1

Tkf1k(Xj),
30∑

k=1

Tkf2k(Xj)

)

subject to 0 <

30∑

k=1

Tkf3k(Xj) ≤
30∑

k=1

pTk,

gk(Xj) < 0,

j =
{

1 , for 1 ≤ k ≤ 18
2 , for 19 ≤ k ≤ 30

X1 =
(
x1, x2, x3, x4, x5, x6

)
,

X2 =
(
x1, x2, x3, x4, x5, x6, x7, x8

)
,

k = 1, 2, . . . , 30.

(1)

In (1), F = [F1, F2] is the objective function vector, where F1 and F2 are
the drive-cycle responses for the fuel consumption and the NOx emissions, com-
prised by their respective local responses. The local responses are f1k is the fuel
mass consumption for each speed and torque operating point, k, f2k is the NOx
emissions response and f3k is the PM response. gk is the convex hull boundary at
point k (described in detail in Section 2, which is a function of the same inputs
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and effectively defines our search space. In total there are 30 operating points.
Because there are two operating regions, the hot-fast and the warm, which are
defined for different operating temperatures of the engine, there are two sets of
models for each of the responses and the total speed and torque set-points are
split in these two categories.

The models for the hot-fast operating region have 6 local inputs, therefore
6 decision variables are defined in the decision vector X1 and the warm region
models have 8 local inputs, defined in the X2 decision vector. The hot-fast oper-
ating region is denoted by j = 1 and the warm operating region by, j = 2, which
consist of 18 and 12 operating points, respectively. Finally, Tk is the time weight
vector in seconds and it defines how long each operating point is “active” in the
drive-cycle. The local constraint for the PM production is denoted by p. A local
constraint is a constraint that must be met at each individual operating point,
which in our case was 3.5g/hour in the case of the PM production.

The second part of this case study, is to perform another drive-cycle opti-
mization, with the PM production (f3k) defined as an objective. In (1), the
objective function vector becomes F = [F1, F2, F3]. This can be interpreted as
an exploratory optimization, in order to obtain solutions in a wider range for all
of our three objectives.

4 Integrated Optimization

Empirically, we know that a large number of optimizations will be needed to
solve the problem in (1). Furthermore, more than one iteration of the entire
process is performed, to ensure that a satisfactory population of solutions is pro-
duced. This process is time consuming but can be greatly simplified by making
use of the right tools. Liger, currently has a collection of implementations of sev-
eral population-based algorithms. Additionally, Liger also offers a collection of
visualization tools, that can assist the decision maker. Finally, nodes that allow
Liger to work together with external software, such as MATLAB, are provided,
in order to further simplify the task.

4.1 Algorithm Choice

Two of the algorithms that have already been implemented and tested on Liger
are the GDE3, a version of generalized differential evolution [12] and a non-
dominated sorting genetic algorithm implementation (NSGA-II) [1]. Unfortu-
nately, these algorithms are not well equipped to handle constraints. Given that
our optimization problems have constraints that need to be satisfied, more tests
will be necessary in order to obtain a satisfactory number of feasible solutions.

An alternative approach, that is planned to be implemented in Liger by the
developers, is proposed in [4] and further described in [5]. Fonseca and Fleming
[4], propose the use of progressive preference articulation (PPA), in order to ben-
efit from the existence of constraints in an optimization problem. This approach
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allows the decision maker to initially perform the optimizations without any con-
straints, in order to obtain solutions from the entire search space. The decision
maker can then gradually limit the freedom of objective functions, effectively
add constraints, to obtain a richer population within these limits.

4.2 Experiment Description

For each part of our problem described previously, a total of 150 tests are per-
formed, with each of the algorithms. Basic constraint handling was implemented
using a simple penalty constraint approach. The penalty is assigned to a func-
tion that does not perform within the set limits, in order to direct the algorithm
towards the feasible region. This is necessary because the optimization library
that Liger currently uses is a C++ version of jMetal [3] ported in Qt, which does
not support constraint handling.

Both for NSGA-II and GDE3, a population of 100 will be used. The maxi-
mum iterations for GDE3 are set to 250; the CR parameter, which controls the
crossover operation and the F parameter, which scales the mutation operation,
are both set to 0.5. For NSGA-II, the objective evaluations were set to 10000, the
crossover probability to 0.9 and the crossover distribution index at 20. These are
the default values provided in [12] and [1] and we chose not to change them. The
interested reader can find more information about the effects of the parameters
above for GDE3 in [12] and for NSGA-II in [1].

4.3 Liger Work-Flow

Designing optimization work-flows in Liger is very intuitive and straightforward.
A Liger work-flow is comprised of nodes and links. Each node, depending on its
function, has inputs and outputs. The links are used to transfer signals between
nodes, so that all nodes are evaluated in the required sequence. The work-flow
can be viewed as a visual description of operators, that perform a task on the
data set and their execution is timed from start to end node. Work-flows are
created in the “Designer” tab, which is selected in Figure 3. The most interesting
elements, numbered in Figure 3, are listed in Table 1.

A single optimization is defined by the nodes enclosed between the “Start”
node (1) and the “End” node (7). The number of iterations can be defined in the
“End” node. This number defines the number of optimizations (experiments) to
be performed. At the end of each iteration, a final population is obtained. The
“Objective Function” node (3), defines our objectives. More specifically, the pop-
ulation of solutions, determined by the “Algorithm” node (4), is used by node 3
to evaluate the objectives, in this instance using MATLAB. Node 3 could be any
of the nodes provided in the “Problems” tab of the “Node Collection Sidebar”.
The default “Problem” nodes are mainly some of the standard problems used
to test optimization algorithms (e.g. WFG problems [9]), but the practitioner
can create custom problem nodes, since the source code is provided. The “Algo-
rithm” node is where the population of solutions is determined, based on the
optimization algorithm used. The evaluation of the final population, is also an
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Table 1. Nodes illustrated in the work-flow shown in Figure 3

Reference Number
Node Name

Figure (3)

1 Start
2 MATLAB Import
3 Objective Function
4 Algorithm
5 Signal Split
6 MATLAB Export
7 End
8 Parallel Co-ordinates Plot
9 Matrix Scatter Plot
10 Node Collection Sidebar

iterative process and should not be confused with the iteration loop defined by
the start and end nodes.

The “MATLAB Import” node (2) is used to import data with a specific
format into Liger from MATLAB. The “Matlab Export” node (6) is used to
save the final population of solutions. Finally the ‘Parallel Co-ordinates Plot”
(8) and the “Matrix Scatter Plot” (9) nodes, provide visualization tools that can
assist the DM to interpret the results of the experiments.

Fig. 3. An example Liger work-flow used to perform the optimizations in this case
study

The “MATLAB Objective Function” node evaluates our objective functions
(fuel consumption, NOx emissions, PM production), by calling a predefined
MATLAB function file. Creating the function files is straightforward, since a
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template (.m) file is provided (in the latest versions of Liger we used). Two
functions for the drive cycle were created. The first function file is used to
perform the optimizations for all the operating points without constraints. The
second function used constraints, as described in section 3.

5 Results

From the second part of the optimizations we obtained a total of 420 solutions,
which are inside the convex hull boundary. As stated previously, solutions that
are not within the convex hull boundary cannot be physically implemented on
the engine. A more detailed breakdown of the results can be found in Table 2.
Table 2 contains a summary of the total solutions yielded by our optimizations,
for each part of the problem and for each algorithm separately. The reader can
also find the mean values and standard deviations for each of the objective
functions for each case.

Table 2. A summary of the results of the optimizations for each algorithm and for
each part of our optimization problem

GDE 3 NSGA - II

Part 1 Part 2 Part 1 Part 2
Total

Experiments
150 150 150 150

Total
Solutions

15000 15000 15000 15000

Valid
Solutions

190 231 222 189

Fuel Consumption
Mean 0.4938 0.4922 0.489 0.4928

Standard Deviation 0.0072 0.0083 0.0061 0.0108

NOx Emissions
Mean 7.7775 10.6889 7.8651 10.1288

Standard Deviation 2.1947 1.6894 2.2281 1.6443

PM Production
Mean N/A 0.077 N/A 0.0814

Standard Deviation N/A 0.014 N/A 0.0163

Figure 4 is a scatter plot of the NOx emissions versus the Fuel consumption
for each solution of the first part of the optimizations. In Figure 5, you can find a
matrix scatter plot for the three objective optimization in the second part of our
problem. All solutions from both optimizations inside the convex hull boundary
were included.

Figure 6 shows the parallel co-ordinates plot for the second part of the opti-
mizations as well; it includes a small subset of the entire cohort of solutions, in
order to be easy to read. All plots (Figure 4, 5 and 6) were produced with the
help of the visualization plug-in of Liger.
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Fig. 4. Two-objective optimization with a PM drive-cycle constraint scatter plot

Fig. 5. A matrix scatter plot of all the solutions obtained from the cycle optimization
with three objectives from both NSGA-II and GDE3. FC denotes the fuel consumption.
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Fig. 6. Parallel co-ordinates plot of a reduced set of the valid solutions for the three-
objective optimizations

6 Discussion

Using Liger we managed to run a large number optimizations with ease. Setting
up our experiments was straightforward and even though the software is at an
early stage of development, the included functionality was able to cover our
needs. The availability of the source code also allowed us to make some small
additions that we needed, in order to perform our experiments with more ease.

Based on Table 2, we can see that both algorithms performed similarly. Fur-
thermore, performing optimizations with the PM defined as an objective, yielded
solutions that were more widely spread. This can also bee seen by comparing the
NOx emissions versus the fuel consumption scatter plots in Figure 4 and Figure
5 (second row third column scatter plot).

The optimization framework currently used by Liger is unable to handle con-
straints effectively. This could be one of the reasons that we did not obtain more
solutions that were within the convex hull boundary and satisfied the PM pro-
duction constraints. A penalty was used in the evaluation of the objectives, in
order to indirectly drive the algorithm towards feasible solutions, but there was
no control over the population of solutions that would produce the next gener-
ation. The developers of Liger are currently implementing a new optimization
library, which will not only allow the use of “pre-made” implementations of algo-
rithms, such as the ones we used, but also the construction of an algorithm itself
using nodes representing algorithm operators. Additionally, this new library will
be able to handle constraints natively. This will allow Liger to be used for a
wider range of applications.
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Lastly, our original problem is actually much larger (in terms of objectives
and constraints) than it became after our reformulation. The responses for each
of the operating points were combined to provide a drive-cycle response. In the
case of the PM constraint, this practically means that even though the drive-cycle
constraint is met, the local constraint might not be. Meeting the local constraints
of a drive-cycle is very important for manufacturers, since the drive-cycle cannot
represent the driving habits of all drivers. Additionally, the combustion noise
is another very important constraint, which we did not consider, because this
constraint can only be satisfied locally, at each operating point. In fact, the real
problem originally consisted of 60 objectives and 62 constraints, for the first
part, where the PM production is a constraint. For the second part it consisted
of 90 objectives and 32 constraints.

7 Conclusion

In this case study, we have demonstrated the use of Liger, an open source inte-
grated optimization environment, to find a solution for a real-world problem.
Problems such as the one investigated in this paper are very common in the
industry and tools like Liger, that help the practitioners tackle them, are much
needed. Even though the original problem was reduced in size, the complexity
of the problem and the difficulty of finding feasible solutions were still high.

What Liger offers is an open source framework that has the potential to
be as efficient as other commercial alternatives. The main advantage of being
open source is its inherent transparency, allowing everything implemented to be
tested, verified and criticised by the research community. At the same time it
offers a comprehensive interface to solve complex optimization problems and a
framework that can easily be use to test new ideas, and construct workflows to
support solution analysis and decision making.

Our next goal, is to tackle the original problem and meet the constraints at
the local operating points, by making use of the new optimization library that
the developers of Liger are currently introducing.
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Abstract. Re-Design for Robustness (RDR) represents a practical class
of problems, where a limited set of components of an existing product
are re-designed to improve the overall robustness of the product. RDR is
still a common inefficient, expensive and a time consuming industry rit-
ual, where component sensitivities are sequentially analyzed and altered
with human experts in loop. In this paper, we introduce an automated
approach, wherein a trade-off set of design variants (varying number
of altered components) spanning the entire a range of feasibility and
performance robustness are identified using a decomposition based evo-
lutionary optimization algorithm. The benefits offered by the approach
are highlighted using two re-design optimization problems from the auto-
motive industry.

1 Introduction and Background

Virtually all products (consumer electronics, automobiles, home appliances etc.)
that we are exposed on a daily basis share a number of common components
with its predecessor. Usually, re-design is the underlying process resulting in
improved products over time. While the objective of a re-design exercise might
vary, i.e., improved performance, need to meet new industry standards/statutory
requirements, improved robustness etc.; in this paper we focus on re-design for
robustness, which aims to deliver a set of tradeoff robust designs with varying
number of altered components. While the term robust refers to solutions that are
less sensitive to varying loading conditions, material imperfections, inaccuracies
in analyses/simulations and imprecise geometries [1], we restrict our discussion
to problems involving uncertainties in the design variables only e.g., imprecise
geometries. Furthermore, the uncertainties in the design variables are assumed
to follow Gaussian distribution.

Robustness of solutions is typically assessed using two measures i.e., fea-
sibility robustness (FR) and performance robustness (PR). The first measure
assures feasibility, while the second provides an assurance on the performance.
A comprehensive review of robustness quantification schemes, formulations and
optimization strategies for robust optimization appear in [2]. This paper builds
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 343–357, 2015.
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upon author’s previous work on robust optimization and extends the approach
to deal with an important class of problems, i.e., re-design for robustness. The
central question is given an existing design, which components can be changed to
improve the robustness of the product? With this goal, enhancements have been
proposed to the previously introduced decomposition based evolutionary algo-
rithm for robust optimization (DBEA-r) algorithm. Specifically, the following
research contributions are made:

• A new formulation is presented in order to deal with re-design optimization
problems. Apart from feasibility and performance robustness modeled using
objectives, an additional objective is introduced i.e., the number of altered
components.

• A generational model of DBEA-r embedded with customized recombination
schemes is developed to deal with re-design optimization problems.

• The efficacy of the proposed approach is illustrated using two engineering
design optimization problems, namely vehicle crash worthiness optimization
problem (VCOP) and car side impact problem (CSIP).

2 Problem Formulation and Robustness Quantification

Robustness has been quantified using the “sigma-levels”, denoted as sigmag and
sigmaf for feasibility and performance robustness respectively:

• The term sigmag refers to the ratio of expected constraint value (μg) and
standard deviation (σg) of constraint g. Since the constraints have been
formulated as g > 0, the ratio sigmag = μg/σg is equivalent to (μg − 0)/σg,
which is a measure of how many standard deviations can be fit between
the constraint boundary (0) and the given solution [2]. This quantity is
positive for feasible solutions and maximization of this quantity would result
in solutions with high feasibility robustness.

• The term sigmaf refers to the ratio of an user defined acceptable deviation
σf0 and the standard deviation (σf ) of objective f . For σf , the boundary
is the user prescribed specification limit. Hence, the ratio sigmaf = σf0/σf

denotes the number of standard deviations of the objective function that can
be fit within the specification limit. Again, maximization of sigmaf would
result in solutions with high performance robustness.

If the value of sigmag is greater than a given value Rc, the value is truncated
to Rc. It essentially means, the user is satisfied with the feasibility robustness
level Rc and solutions having any higher robustness has the same preference as
the one with Rc. A similar truncation strategy has been applied to sigmaf (using
Rf ) to ensure performance robustness. In a problem involving multiple con-
straints, the minimum sigmag across all constraints is considered to represent
the overall sigmag of the solution. This translates to measuring the sigma-level
of constraint that is most likely to be violated; which is different from tradi-
tionally used six-sigma formulation where defects caused using all constraints
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together are considered. Same strategy has been adopted for sigmaf for the case
of multiple objectives. This way of quantifying robustness helps comparing the
robustness of solution with respect to each objective/constraint on a common
scale (even though their raw values and standard deviations may be of different
orders). For a six-sigma design, both Rc and Rf are set to 6.

The problem formulation introduced in this study for re-design is derived
from Form-4 discussed in [2]. For ease of reference, Form-4 will be referred to
as Feasibility and Performance Robustness (FPR) formulation, and the mod-
ified formulation introduced in this study will be referred to as FPR for Re-
design (FPRR) formulation. In FPR, the objectives are the minimization of the
expected values of each performance function and maximization of feasibility
robustness and performance robustness measures (in terms of “sigma-level”). In
order to quantify quantum of change between the base design and a candidate
design, a new objective Fnc has been introduced. This new objective measures
the number of variables that have been altered with respect to the base design.
This objective is to be minimized. For example, consider a base design with
design variables as {xb

1, x
b
2, x

b
3} and a candidate design as {x1

1, x
1
2, x

b
3}. Since the

candidate design has different means value for x1 and x2, therefore Fnc would be
equal to 2. The FPRR formulation is presented in Equation 1. The objective and
constraint functions involve a set of variables x with a given standard deviations.
For deterministic variables the standard deviations will be zero.

Minimize
(x)

μfi(x), i = 1, 2, ..............M

Maximize
(x)

fM+1(x) = Min(sigmag, Rc)

Maximize
(x)

fM+2(x) = Min(sigmaf , Rf )

Minimize
(x)

fM+3 = Fnc(x,xb)

subject to
sigmag ≡ Min(μgj(x)/σgj(x)) ≥ 0

x(L) ≤ x ≤ x(U)

where
sigmaf ≡ Min(σf0,i(x)/σfi(x))

x(L) ≤ x ≤ x(U)

(1)

3 Solution Strategy

Robust formulation presented in the previous section requires solution of opti-
mization problem involving additional objectives. The total number of such
objectives is four or more and hence a many objective optimization algorithm is
required to solve the problem efficiently. The algorithm used in this study is a
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variant of the decomposition based evolutionary algorithm (DBEA-r) developed
by the authors [2]. The algorithm referred to DBEA-rg relies on the use of a gen-
erational model as opposed to a steady state form reported in [2]. The method
is outlined in Algorithm 1, and its components are discussed in the following
subsections.

Algorithm 1.. DBEA-rg
Input: Genmax (maximum number of generations), W (number of reference points),
pc (probability of crossover), pm (probability of mutation), ηc (distribution index for
crossover), ηm (distribution index for mutation)

1: gen = 1; Corner Set (CS) = ∅;
2: Generate the reference points using Normal Boundary Intersection (NBI) method.

Each reference direction is a vector connecting origin to these reference points.
3: Initialize the population P consisting of W individuals. Randomly assign each

individual of P to an unique reference direction.
4: Assign a random binary vector BV of size n to each individual, where n denotes

the number of variables of the problem.
5: Repair the individuals of the population based on its BV and the base design.
6: Evaluate the initial population using prescribed robust formulation.
7: Compute the ideal point and the extreme point.
8: Normalize the individuals of the population
9: Use corner-sort to identify 2M corner solutions and assign them to Corner

Set (CS).
10: while (gen ≤ Genmax) do
11: Select I1 = 1 : W as the base parents
12: I2=Generate a shuffled list of individuals in the population
13: Create offspring individuals C via recombination of I1 and I2
14: Create offspring BV ’s via recombination of I1 and I2
15: Repair the offspring individuals using their BV ’s and the base design.
16: Evaluate the offspring individuals C
17: Update the corner set CS, ideal and extreme points
18: Normalize the individuals of P and C
19: Compute the distances (d1 and d2) for all members of P in their respective

reference directions.
20: Compute the distances (d1 and d2) for all members of C in all reference direc-

tions.
21: Update the parent individuals in the shuffled order of W with Cl using single-

first encounter strategy, where Cl is the set of individuals satisfying replacement
condition.

22: gen = gen + 1
23: end while

• Generation of reference directions: A structured set of reference points
γ is generated spanning a hyperplane with unit intercepts in each objective
axis using normal boundary intersection method (NBI) [3]. The approach
generates W points on the hyperplane with a uniform spacing of δ = 1/s
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for given number of objectives M with s unique sampling locations along
each objective axis. The total number of points (W ) is W=

(
M+s−1

s

)
. The

reference directions are formed by constructing a straight line from the origin
to each of these reference points.

• Normalization of the solutions: In DBEA-r [2], the normalization was
based on intercepts calculated using M extreme points of the non-dominated
set. In DBEA-rg, the extreme solution aj has the coordinates corresponding
to the maximum in each objective direction computed based on the set of
non-dominated solutions and the corner solutions delivered by corner-sort
procedure [4]. In corner sort, the top M solutions are the minimum in each
objective, while the following M solutions are the minimum based on L2

norm of all but one objectives. The ideal solution zj has the coordinates
corresponding to the minimum in each objective direction computed based
on the set of non-dominated solutions.
Every solution in the population is normalized as follows:

f ′
j(x) =

fj(x) − zj
aj − zj

, ∀j = 1, 2, ...M (2)

• Computation of the distances: For any given reference direction, the
performance of a solution is judged using two measures d1 and d2 as shown
in Equations 3 and 4. The first measure d1 is the Euclidean distance between
origin and the foot of the normal drawn from the solution to the reference
direction, while the second measure d2 is the length of the normal. Mathe-
matically, d1 and d2 are computed as follows:

d1 = wT f′(x) (3)

d2 = ‖f′(x) − wT f′(x)w‖ (4)

where w is a unit vector along any given reference direction and f′(x) is a
vector of normalized objective values. A value of d2 = 0 ensures the solu-
tions are perfectly aligned along with the reference directions ensuring good
diversity, while a smaller value of d1 indicates superior convergence.

• Recombination and Repair: In order to deal with re-design optimization
problems, a modified recombination scheme and a repair method is used.
The base design and the binary vector BV is used in the repair process.
Let us assume that [1.1, 4.5, 3.2] denotes the base design and [ 1.4, 2.6, 2.8]
denotes a randomly initialized individual with a BV of [1 0 1]. The repair
process will result in an individual with [ 1.4, 4.5, 2.8], i.e., a design with the
second variable value fixed at the base design. During the process of recom-
bination, two offsprings are generated using simulated binary crossover and
polynomial mutation [5]. Thereafter, the corresponding BV s are generated
in the following way. If for a given variable xj , BVj of the two parents are the
same (either 0 or 1), then the BVj of the offspring is set to the same value.
Otherwise, if one of the parent has BVj = 0 and other has BVj = 1, then
the corresponding BVj of the offspring is set as 0 or 1 with equal probability.
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Thereafter, the offsprings are repaired using BV s and one of them (selected
at random) is considered as a candidate attempting to enter the population
via replacement. It is to be noted that the objective Fnc corresponding to
any given solution is simply the number of 1’s in its BV .

• Selection/replacement:In the generational form, the non-dominated off-
springs attempt to enter the population via replacement. For the entry, each
offspring solution has to compete with all the solutions in the population
in a random order until it makes a successful replacement. If we denote the
distances as {d1r , d2r} for a rth solution in the population and {d1c , d2c}
denotes the distances for the offspring solution along rth reference direction,
the offspring is considered winner if d2c is less than d2r . In the event the d2c
is equal to d2r , the offspring is considered a winner if d1c is less than d1r .

• Constraint Handling: The constraint handling approach used in this work
is based on epsilon level comparison reported earlier in [6].

4 Numerical Examples

In this section, we illustrate the behavior of FPR and FPRR strategies using two
engineering design optimization problems. The first problem is a bi-objective
Vehicle Crash-worthiness Optimization Problem (VCOP) while the second is a
single objective Car Side Impact Problem (CSIP).

4.1 Experimental Setup

If the original problem has M objectives, FPR formulation will involve M +
2 objectives, while FPRR will involve M + 3 objectives. Therefore, for FPR
formulation, the total number of objectives is four for VCOP and three for
CSIP. As for FPRR, the corresponding numbers are five and four.

Population sizes of 820, 820, 969 and 1001 have been used for two, three, four
and five objective (overall) problems arising out of DF, FPR and FPRR formula-
tions. The reference directions have been created using Normal Boundary Inter-
section method (NBI) with the spacing parameter s is set to 819, 39, 16 and 10
for 2, 3, 4 and 5 objective formulations respectively. The probability of crossover
is set to 1 and the probability of mutation is set to 0.05. The distribution index
of crossover and mutation are set to ηc = 30 and ηm = 20 respectively. The pop-
ulation is evolved over a maximum of 164000 function evaluations and a sample
size of 100 has been used to compute the expected value of the functions through
explicit averaging. These samples have been generated using Latin-hypercube
Sampling with Gaussian distribution (LHS-Gaussian). For comparison, we have
also included the results of deterministic formulation (DF) of these problems.

4.2 Vehicle Crash Worthiness Optimization (VCOP)

The problem was first introduced by Sun et al. [7]. A modified bi-objective
formulation of the problem is studied in this paper which seeks to maximize
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the post-impact energy absorption (U) of the vehicle structure and aims to
minimize the structural weight (M), subject to the constraint on peak decel-
eration (a). Higher energy absorption lowers the risk to the occupants of the
car. However, increase in energy absorption often leads to unwanted increase
in the structural weight. To limit impact severity, a constraint on maximum
deceleration is imposed in this formulation which is assumed to be 40g (g =
9.81 m/s2). A full-scale finite element (FE) model of Ford Taurus was used as
the baseline case obtained from the National Crash Analysis Center (NCAC) at
http://www.ncac.gwu.edu/vml/models.html.

Problem Definition: Part thicknesses of three key members, inner rail, outer
rail and the cradle rail of the vehicle front end structure have been chosen as
design variables. Table 1 reports the bounds on the design variables together
with the corresponding base thickness and mass.

Table 1. Part thicknesses (variables) and variable bounds for VCOP

Variable name Part no. Lower bound Thickness Upper bound Mass
(mm) (mm) (mm) (kg)

Inner rails (t1) 29 1 1.50 2 7.49
Outer rails (t2) 30 1 2.00 2 8.95
Cradle rails (t3) 79 and 81 1 1.93 2 9.22

The multi-objective robust optimization problem is represented using Equa-
tion 5.

Maximize Uµ =72.4996 + 2.8178366t1 − 0.0778410t21 + 3.7901860t2

+ 6.0060214t22 + 52.005026t3 − 17.599580t23

+ 1.2718916t1t2 − 0.5211597t1t3 − 30.982883t2t3

+ 11.034587t2t
2
3

Minimize Mµ =0.00392497 + 4.9603440t1 + 4.4474721t2 + 4.7437340t3

subject to aµ =48.3807 − 8.4035115t1 + 4.0333016t21 − 17.774059t2

+ 4.2845324t22 − 11.547927t3 + 4.3592314t23

+ 4.7775756t1t2 + 4.5825734t2t3 ≤ 40

(5)

Robust Optimization: In this example, all three variables are assumed to be
of uncertain nature and their uncertainties are assumed to follow a Gaussian
distribution with standard deviations of σ2

x1
= 2.5 × 10−3, σ2

x2
= 2.5 × 10−3 and

σ2
x3

= 2.5 × 10−3. The allowable performance variation threshold is assumed to
be as follows: σf0,1 = 2.10 units and σf0,2 = 2.10 units.
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Results obtained from 30 independent runs of DF and FPR formulations were
accumulated. Nadir and Ideal points were identified from this set as [−100.2440,
23.3580] and [−106.1330, 14.1550] and they have been used for normalization
of the objectives (to calculate hypervolumes). The hypervolume calculation is
done using the method described in [8]. The hypervolume obtained using DF
and FPR formulations are presented in Table 2.

Table 2. Hypervolume comparisons in (μf ) space

Prob. DF FPR

VCOP

Best 0.54638 0.53840
Median 0.54162 0.53453
Mean 0.54191 0.53230
Std 0.00114 0.01349

To visualize the solutions obtained, the results from the median run of FPR
are color coded and shown in Figure 1(a) and Figure 1(b). One can clearly
observe from Figures 1(b) that only a few solutions have six-sigma perfor-
mance (in both feasibility and performance). While the performance of such
six-sigma solutions are not too different from the ones identified using DF, they
seem to lie on a specific region of the front as visible from Figures 1(a).
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Fig. 1. Solutions of VCOP using DF and FPR formulations

Re-design for Robustness: In the previous subsection, we assumed that the
designer had the flexibility to redesign/change all three component thicknesses to
ensure six-sigma feasibility and performance robustness. However, as discussed
before, one may often be faced with a situation where an existing design is
in production and the aim is to identify the minimum set of components that
need to be re-designed to deliver a six-sigma robustness. For this problem, the
baseline design is {xb

1, x
b
2, x

b
3} ≡ {1.50, 2.0, 1.93} [9]. With three variables in play,
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there are six possibilities for re-design (i.e., changing one variable at a time and
changing two at a time while keeping the other variables fixed at their base
design values). The cases are listed in Table 3 and each of the six cases have
been solved using FPR formulation. The hypervolumes obtained in the μf space
are presented in Table 3, whereas the obtained fronts and their sigma-levels
are shown in Figure 2. The base design under prescribed uncertainties is itself
infeasible in terms of feasibility robustness i.e., it has amu of 52.412.

With one variable fixed at the base design and the other two allowed to
vary (Cases 1-3), a number of solutions with various sigma levels are obtained as
shown in Figure 2. The sigmag and sigmaf values of the median run using FPR
formulation with different number of variables allowed to change are presented
in Figure 3. One can observe that, the base design can be modified to a six-sigma
FPR design by changing variables x2 and x3, and keeping the x1 the same as
base design (Case 1).

With two variables fixed at the base design and the remaining one is allowed
to vary (Cases 4-6), there is no feasible solution obtained for re-design and hence
Cases 4-6 have been excluded from further discussion.

Table 3. Part thicknesses and variable bounds for each of the re-design cases

Scenarios Variable name Part no. Lower bound Thickness Upper bound Mass HV (Best,
Median, Mean,
Std)

(mm) (mm) (mm) (kg)

Case-1
Inner rails (t1) 29 1.50 1.50 1.50 7.49

(0.4174, 0.4171,
0.4170, 0.0002)

Outer rails (t2) 30 1 2.00 2 8.95
Cradle rails (t3) 79 and 81 1 1.93 2 9.22

Case-2
Inner rails (t1) 29 1 1.50 2 7.49

(0.3736, 0.3729,
0.3728, 0.0005)

Outer rails (t2) 30 2.00 2.00 2.00 8.95
Cradle rails (t3) 79 and 81 1 1.93 2 9.22

Case-3
Inner rails (t1) 29 1 1.50 2 7.49

(0.1738, 0.1735,
0.1734, 0.0002)

Outer rails (t2) 30 1 2.00 2 8.95
Cradle rails (t3) 79 and 81 1.93 1.93 1.93 9.22

Case-4
Inner rails (t1) 29 1.50 1.50 1.50 7.49

-Outer rails (t2) 30 2.00 2.00 2.00 8.95
Cradle rails (t3) 79 and 81 1 1.93 2 9.22

Case-5
Inner rails (t1) 29 1 1.50 2 7.49

-Outer rails (t2) 30 2.00 2.00 2.00 8.95
Cradle rails (t3) 79 and 81 1.93 1.93 1.93 9.22

Case-6
Inner rails (t1) 29 1.50 1.50 1.50 7.49

-Outer rails (t2) 30 1 2.00 2 8.95
Cradle rails (t3) 79 and 81 1.93 1.93 1.93 9.22

Next, we solve the same problem using the FPRR formulation discussed in
Section 2. The algorithm DBEA-rg was run for the same number of function
evaluations as used in each of the FPR re-design cases. The results obtained
are presented in Figure 4. The combined robust solutions obtained from all the
cases of FPR are shown in Figure 4(a). The results obtained from a single run of
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Fig. 2. Robust solutions for redesign Cases 1,2,3 and their corresponding sigma levels
using FPR for a median run

FPRR are shown in Figure 4(b). It can be seen that the same level of robustness
is achieved using only a fraction (roughly one-sixth) of the total evaluations
using FPRR as compared to exhaustively investigating all possible re-design
cases using FPR formulation.

FPRR would be the only practical alternative for problems involving large
number of variables. While FPRR is meant to deliver robust re-design alter-
natives, it will also include solutions where all the variables/components might
have been altered i.e., the solution to the original robust optimization problem
using FPR formulations.
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Fig. 3. sigmaf and sigmag of the solutions obtained for VCOP from a median run
of FPR, i.e., Case-1 to 3 (two variable altered) and the original robust optimization
formulation (all three variables altered)
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Fig. 4. Comparison of robust non-dominated solutions obtained in the μf space for
VCOP

4.3 Car Side Impact Problem (CSIP)

In this problem, the objective is to minimize the weight of the car subject to
a set of constraints as presented in [10]. The design variables are described in
Table 4. The baseline design listed in Table 4 is from [9]. It is important to
take note that the baseline design violates the constraints listed in [10] and in
particular the constraint related to lower rib deflection.

Table 4. Description of the design variables for CSIP

Design Variable Side constraints Base design Deterministic optimum

Thickness of B-pillar inner 0.5≤ x1 ≤ 1.5 1 0.5
Thickness of B-pillar reinforcement 0.45≤ x1 ≤ 1.35 1 1.2382

Thickness of floor side inner 0.5≤ x1 ≤ 1.5 1 0
Thickness of cross members 0.5≤ x1 ≤ 1.5 1 1.5
Thickness of door beam 0.875≤ x1 ≤ 2.625 1 0.875

Thickness of door belt line reinforcement 0.4≤ x1 ≤ 1.2 1 1.1783
Thickness of roof rail 0.4≤ x1 ≤ 1.2 1 0.4

Material of B-pillar inner 0.345≤ x1 ≤ 0.345 0.345 0.345
Material of floor side inner 0.192≤ x1 ≤ 0.192 0.192 0.192

Barrier height 0.0≤ x1 ≤ 0.0 0 0
Barrier hitting position 0.0≤ x1 ≤ 0.0 0 0

Robust Optimization. Seven out of eleven variables have been assumed to
be of uncertain nature. The uncertainties associated with the variables have
been assumed to follow a Gaussian distribution with the standard deviations
of σ2

x1
= 1.7 × 10−3, σ2

x2
= 1.7 × 10−3, σ2

x3
= 1.7 × 10−3, σ2

x4
= 1.7 × 10−3,

σ2
x5

= 1.7 × 10−3, σ2
x6

= 1.7 × 10−3, σ2
x7

= 1.7 × 10−3. 1. The allowable per-
formance function (weight) variation is set as σf0 =2.5 units. Table 5 presents

1 x8 to x11 are kept fixed as in [10].
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the performance of the baseline design and robust solution obtained with the
maximum sigma level using FPR formulation. One should note that the base-
line design does not satisfy the original constraints imposed (as can be seen in
Table 5 that lower rib deflection and pubic force are greater than 32mm and
4kN respectively). However, the solution with the highest sigma level obtained
using FPR has sigmag = 5.600 and sigmaf = 5.785. The sigmaf and sigmag

values of the final population obtained from the median run of FPR formulation
are presented in Figure 5.

Table 5. Performance of the base design and the robust design with the highest sigma
level obtained for CSIP

Response Performance of
the base
design

Robust solution
which maximizes
(sigmag,sigmaf )

Constraints

Weight (kg) 29.05 26.84 −
Abdomen load 0.69 0.39 ≤ 1kN
Viscous Criterion Upper 0.19 0.21 ≤ 0.32mm/ms
Viscous Criterion Middle 0.19 0.19 ≤ 0.32mm/ms
Viscous Criterion Lower 0.27 0.29 ≤ 0.32mm/ms
Rib deflection Upper 27.19 26.92 ≤ 32mm
Rib deflection Middle 25.97 25.03 ≤ 32mm
Rib deflection Lower 32.0095 29.65 ≤ 32mm
Pubic force 4.03 3.87 ≤ 4kN
Velocity of V-pillar 9.23 8.98 ≤ 10mm/ms
Velocity of front
door

15.12 15.39 ≤ 17.5mm/ms
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Fig. 5. Robust solutions obtained for CSIP using FPR formulation (Median run)

Re-design for Robustness–Results and Discussion: Unlike VCOP, the
total number of re-design cases (if done individually) using FPR for this problem
would be very large (27 − 1 = 127 cases, including the one where all variables
can change from baseline). Since it is computationally prohibitive to do all cases
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individually via FPR, we make use of FPRR formulation. The solutions obtained
using FPRR formulation are shown in Figure 6. The baseline design is itself
infeasible and the effect of altering one through to seven variables is presented
in Figure 6.

The effects of number of altered variables on the robustness measure and the
performance measure is presented in Figure 7(a) and Figure 7(b) respectively.
One can observe that by merely altering one of the variables (different combi-
nations may be possible), the design can be improved from being infeasible to
nearly 1-sigma in feasibility and performance. If two variables were allowed to be
altered, a robustness of nearly 5-sigma can be achieved. It is worth noting that
the infeasible baseline design has an weight of 29.05kg, while the one 5-sigma
design with two or more variables altered would offer a mean weight of nearly
31.65kg. The example also illustrates that altering any more than two variables
do not offer any benefit in terms of robustness.

0 1 2 3 4 5 6
4

4.5

5

5.5

6

Sigma
g

S
ig

m
a f

 

 

Sigma>=0
Sigma>=1

(a) 1 variable altered

0 1 2 3 4 5 6
4

4.5

5

5.5

6

Sigma
g

S
ig

m
a f

 

 

Sigma>=0
Sigma>=1
Sigma>=2
Sigma>=3
Sigma>=4
Sigma>=5

(b) 2 variables altered
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(c) 3 variables altered
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(d) 4 variables altered
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(e) 5 variables altered
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(f) 6 variables altered
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Fig. 6. sigmag and sigmaf of the solutions obtained using FPRR formulation for CSIP
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Fig. 7. Re-designed solutions using FPRR for CSIP

5 Summary and Future Directions

It is well recognized that practical solutions of real life problems need to be robust
in terms of feasibility and performance. In authors’ previous work [2], a com-
prehensive formulation was presented, wherein such robustness measures were
included as objectives, and an efficient decomposition based many-objective evo-
lutionary algorithm (DBEA-r) was developed for its solution. This work builds
upon the previous study and offers an approach to automate the process of re-
design, where one is interested in improving the robustness of a base design via
changes to a selected set of components. The specific contributions of this paper
are summarized below:

• A new formulation referred to as Feasibility and Performance Robustness
for Re-design (FPRR) is introduced in this paper. Apart from the expected
performance and robustness measures, an additional objective is included in
order to minimize the number of changes required in the baseline design to
achieve robustness.

• A generational model of DBEA-rg amenable to parallelization is introduced
in this paper. A new recombination strategy is introduced within DBEA-rg
to deal with the redesign aspects of the problem.

• The performance of DBEA-rg is studied using two real-life engineering opti-
mization problems, namely vehicle crash worthiness optimization problem
and car side impact problem. Robust solutions obtained for each problem are
reported and compared with solutions identified using FPRR formulation.
The study clearly highlights the ability of the approach to identify valuable
tradeoff set of alternative re-designs with various levels of robustness.

In this study, we have assumed that the variables are uncertain in nature and
follow a Gaussian distribution. The resulting performance function in the face
of uncertainties is also assumed to follow a Gaussian distribution. While explicit
averaging with 100 samples have been used in this study, alternative approaches
based on Polynomial Chaos can be used to compute the mean and variance of
the distributions using far fewer samples.
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Abstract. The NN-DM is a method developed to find a mathematical
model that represents the Decision-Maker (DM) by employing an artifi-
cial neural network (NN) in situations in which the preferences can be
represented by a utility function. This paper presents further develop-
ments to the NN-DM method to find a model in a polymer extrusion
process. The form of the DM’s interaction, the domain assignment, the
ranking process, and the performance assessment are adapted to a real
context of a multi-objective optimization problem followed by a design
decision. The DM is then requested to fill a matrix expressing his prefer-
ences considering pairwise comparisons expressing ordinal relations only.
Two multi-objective optimization problems are tested, each one with
three estimates of different Pareto-optimal fronts. The adapted NN-DM
method is able to provide a model which sorts the available solutions
from the best to the worst according to the DM’s preferences.

Keywords: Polymer extrusion process · Human decision-maker · Multi-
objective optimization · Multi-criteria decision analysis · Utility function

1 Introduction

Most real-world optimization problems involve multiple objectives which have
to be considered simultaneously. As these objectives are usually conflicting it
may not be possible to find a single solution which is optimal with respect
to all objectives. For obtaining only one solution a Decision-Maker (DM) has
to make a choice regarding the importance of different criteria related to the
optimization process [1]. Therefore, the final single solution of a Multi-Objective
Optimization Problem (MOOP) results from the combined optimization and
decision processes.

The importance of the decision-making process in a multi-objective environ-
ment is a characteristic of an interactive algorithm [6,10]. Two recent publica-
tions involving this kind of method are summarized here. Deb et al. proposed
c© Springer International Publishing Switzerland 2015
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an interactive Multi-Objective Evolutionary Algorithm (MOEA) based on pro-
gressively approximated value functions [2]. The DM’s preference information is
captured progressively by constructing a value function based on a preference
order defined by the DM by pairwise comparison between the current solutions.
In an approach considering reference points Köksalan and Karahan developed
the Interactive Territory-Defining Evolutionary Algorithm (iTDEA) [5] which
creates territories around the solutions with sizes reflecting the DM’s preferences.
The iTDEA guides the search converging to the entire Pareto-optimal front with
preferable regions highlighted by its density. The quality of the described meth-
ods concerning the correspondence between the produced solutions and the DM’s
preferences is assessed empirically.

The NN-DM method [8], focus of this paper, is a procedure for constructing a
mathematical model for the DM in situations in which the preferences are accord-
ing to the Multi-Attribute Utility Theory (MAUT), that is, the preferences are
represented by an underlying utility function U . The DM is required to express
his preferences by pairwise comparisons expressing ordinal relations only. Pedro
and Takahashi proposed a new method derived from NN-DM and NSGA-II meth-
ods called Interactive Non-dominated Sorting algorithm with Preference Model
(INSPM) [9]. INSPM is an interactive method for modeling the DM’s preferences
inside an adaptation of NSGA-II. In the NN-DM version discussed here, the pro-
cess of providing information is made a posteriori to the optimization procedure
and the data is employed in constructing a model, denoted NN-DM model Û ,
that represents the DM’s preferences in a specific domain D. The function Û can
be repeatedly employed whenever the available solutions are within the domain
D without further demand to the DM.

The specific contribution of this paper is an adaptation of the NN-DM
method to take into account some issues that arise in actual decision-making
processes that appear in design contexts. The adaptations take place to assist
the DM in the interaction process, making it simple and efficient. The original
NN-DM method is divided into four steps. In the current work the domain D
is previously provided by the DM. Thereby it is not necessary to establish the
domain as the original Step 1 has proposed. Step 2 introduces the ranking of
alternatives which is now built from a total sorting (the decision-making matrix).
Step 3 is unchanged, but additional changes are made in Step 4 since the per-
formance of the resulting model, assessed by the Kendall-Tau Distance (KTD)
in the original method, is now evaluated by the DM himself.

The chosen application is one important polymer processing technology: the
single screw extrusion [3]. The process performance depends on three different
parameters: the polymer properties, the system geometry, and the operating
conditions. Two MOOPs are examined and in each MOOP three sets of Pareto-
optimal Front Estimates (PFE) are available, considering different sets of deci-
sion variables: the operating conditions, the screw geometry, and a combination
of both. In each scenario the resulting NN-DM model Û provides the sorting
of solutions belonging to the PFE from the best to the worst according to the
DM’s preferences.
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This paper is organized as follows. In Section 2 the definitions ofmulti-objective
optimization andmulti-criteria decision-makingproblemsarepresented. InSection
3 the polymer extrusion process is explained and the examined data is presented.
In Section 4 the adaptation of the NN-DM method is introduced and an example
of the original NN-DM method is shown. In Section 5 the resulting NN-DM models
are established and tests with the available data illustrate the models’ behavior.
Section 6 discusses the obtained results and the work under development.

2 Problem Statement

2.1 Multi-Objective Optimization

A Multi-Objective Optimization Problem (MOOP) is concerned with mathemat-
ical optimization problems involving more than one objective to be optimized
simultaneously. In a MOOP, different optimal solutions usually exist such that
no single solution can be considered better than all other ones with respect to all
the criteria. The set of such solutions is called Pareto-optimal set and its image
in the space of objectives is called Pareto-optimal front, or just Pareto-front. In
the absence of any additional preference information, none of the Pareto-optimal
solutions can be said to be inferior when compared to any other solution, as they
are superior in at least one criterion.

Solving a MOOP is often a difficult task since it involves conflicting criteria
and usually several constraints exist. Multi-Objective Evolutionary Algorithms
(MOEAs) became popular in the task of solving problems of this class [11]. In
the current application the Reduced Pareto Set Genetic Algorithm (RPSGA) [4]
is the MOEA selected to solve the problem of parameter setting in the polymer
extrusion process. RPSGA is an algorithm based on the assignment of the fit-
ness through a ranking function obtained employing a clustering algorithm. This
optimization methodology has already been applied to the optimization of the
operating conditions and to the design of screws for polymer extrusion. RPSGA
has shown good performance and it is able to find solutions with physical mean-
ing in the proposed application. For further details see [3,4].

2.2 Decision-Making Methodology

The selection of a single solution from a Pareto-front resulting from an opti-
mization process requires information that may not be present in the objective
functions. This information, expressing subjective preferences, must be intro-
duced by a Decision-Maker (DM). The insertion of the DM’s preferences in the
optimization procedure allows the distinction among the solutions within a non-
dominated set and, as a consequence, provides a ranking of the solutions in the
MOOP.

In this work the DM indicates preference relations (ordinal relations only)
among simulated alternatives in the desired domain leading the NN-DM method
to construct a model for the DM’s preferences. The following basic elements are
involved:
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Set A of available alternatives This set is an estimate of the Pareto-front
provided by RPSGA which works as a problem instance of the multi-criteria
decision-making problem. The set A is discrete and each element a ∈ A cor-
responds to a solution located on the PFE.

Decision-Maker Each alternative possesses a value which is assigned by a
Decision-Maker (DM) that formally corresponds to a utility function U . The
best alternative x∗ ∈ A is the one that maximizes the function U in the
set A. It is assumed here that it is not possible to directly measure the val-
ues of U(x), for any alternative x. Only the ordinal information, provided
by a preference function U , may be extracted from yes/no queries to the DM.

Set F of simulated alternatives This set is constructed to request informa-
tion from the DM about the entire domain D in which the utility function
U is being approximated; the alternatives on a Pareto-optimal front usually
does not fully provide this kind of information.

3 Polymer Extrusion Process

3.1 Process Description

Single screw extrusion is an important polymer processing technology allowing
the production of products such as pipes, film, profiles, and fibers. The main
basic functions of a single screw extruder are: to transport the solid material
from the hopper to the heated barrel zone; to melt the polymer; to homogenize
and mix the melted polymer with the additives usually present; and to cre-
ate the necessary pressure which enables the polymer to pass through the die at
the desired output. Different polymers are characterized by properties such as:
thermal (heat conduction coefficient, melting temperature, heat capacity, etc.),
physical (friction coefficients, density, etc.), and rheological (which is a measure
of the resistance of the polymer to the flow).

In industrial practice the polymer processing technology is employed in man-
aging a single polymer whose properties change according to pressure and tem-
perature. Therefore, a thermo-mechanical environment is developed in which the
polymer passes through different thermal and physical states. Figure 1 illustrates
a simple extruder with a conventional screw with five geometrical zones:

(i) solids conveying in the hopper: the solids are fed into the hopper in
which, by action of gravity, are transported inside the barrel;

(ii) solids conveying in the screw: by action of the screw rotation and due
to the friction between the screw and barrel walls the solid polymer is pres-
surized and a solid bed is formed and, simultaneously, the polymer is trans-
ported to the heated barrel zone;

(iii) delay zone: due the the heat generated by friction and the heat conducted
from the barrel a melt film is formed;
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(iv) melting zone: a specific melting mechanism, characterized by the exis-
tence of a melt pool and melt films around the solid bed, is developed;

(v) conveying zone: the polymer is pressurized and it is transported to the
die.

Fig. 1. Thermo-mechanical functional process developed in a single screw extruder

The modeling of the polymer processing technology involves the linkage of all
those functional zones adopting the appropriate boundary conditions. The pro-
cess performance depends on different type of parameters (polymer properties,
system geometry, and operating conditions) which can be characterized by the
mass output of the machine (Q), the average melt temperature of the polymer
at die exit (Tmelt), the power consumption required to rotate the screw (P),
the capacity of pressure generation (Pmax), the length of screw required to melt
the polymer (Lmelt), and the degree of mixing quantified by the average of the
deformation induced, denoted WATS (W). Those are the common objectives
considered in the definition of the multi-objective optimization problem related
to the polymer extrusion process. Further details of the modeling routine imple-
mented can be found elsewhere [3].

3.2 Available Data

As the single screw extrusion is a computationally expensive multi-objective
optimization problem, this paper deals directly with previously estimates of dif-
ferent Pareto-optimal fronts obtained by the RPSGA multi-objective optimiza-
tion algorithm [3]. The objectives considered in the multi-objective optimization
problems are Q, P, and W. Two different optimization problems are considered
using only two objectives each with the aim of studying the process: Q × P
and Q×W. In each problem three sets of PFE are available considering differ-
ent decision variables. The first set considers the operating conditions given by
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the screw rotation speed (N) and the barrel temperature profile (Tb1, Tb2, and
Tb3); the second set considers the geometry, in which the variables are the screw
flighted length (L1 and L2), the screw outside diameter (D1 and D2), the screw
pitch (Pitch), and the flight width (e); and, finally, in the third set both types
of decision variables are considered. Table 1 resumes the information about the
available PFE and Table 2 provides the objectives, aim of optimization, range
of variation, and the partitions.

Table 1. Multi-objective optimization problems in a single screw extrusion process

PFE Objectives Optimization Type Decision Variables

QP1 Q and P Operating conditions N, Tb1, Tb2, Tb3

QP2 Q and P Geometry L1, L2, D1, D2, Pitch, e
QP3 Q and P Both N, Tb1, Tb2, Tb3, L1, L2, D1, D2, Pitch, e
QW1 Q and W Operating conditions N, Tb1, Tb2, Tb3

QW2 Q and W Geometry L1, L2, D1, D2, Pitch, e
QW3 Q and W Both N, Tb1, Tb2, Tb3, L1, L2, D1, D2, Pitch, e

Table 2. Objectives, aim of optimization, range of variation, and partitions

Objective
Aim of Range of

Partition
optimization variation

Mass output Maximization [1, 20] [f10, f11, f12, f13] = [1, 7, 14, 20]

Power consumption Minimization [0, 9200] [f20, f21, f22, f23] = [0, 3067, 6134, 9200]

WATS Maximization [0, 1300] [f30, f31, f32, f33] = [0, 434, 867, 1300]

Figure 2 presents the available estimates of the Pareto-optimal fronts con-
sidering the problems Q×P (QP1, QP2, and QP3) and Q×W (QW1, QW2,
and QW3). The domain is established by the range of variation presented in
Table 2.

3.3 Interaction with the DM

A decision-making matrix M is a matrix filled by the DM to assist the NN-DM
method in the construction of a model for the DM’s preferences. Each element
mij of M is defined as given in Equation 1.

⎧
⎨

⎩

mi,j = −1, if ai is preferable than aj ;
mi,j = 0, if ai and aj are equivalents;
mi,j = 1, if aj is preferable than ai.

(1)

Considering n the number of partitions in each dimension and m the number
of objectives the total number of simulated alternatives is given by nm. There-
fore, the total number of pairwise comparisons is given by n2m which corresponds
to the number of entries of the decision-making matrix. The information required
from the DM is reduced by dominance and comparisons between the same alter-
native (the matrix diagonal). The symmetry also develops an important role:
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Fig. 2. Available estimates of the Pareto-optimal fronts

given a utility function U and two alternatives a and b, U(a, b) = U(b, a) = a or
U(a, b) = U(b, a) = b. In both scenarios only one query is required from the DM
and the entries in the decision-making matrix are symmetric values ±1.

For exemplifying the described process consider a decision-making problem
with two objective functions F1 and F2 that should be minimized. The function
F1 is defined in the interval [a1, b1] and the function F2 in the interval [a2, b2].
Assuming only two partitions in each interval, the simulated decision-making
problem consists of 16 queries provided by the combination of elements of the set
{[a1, a2], [a1, b2], [b1, a2], [b1, b2]}. Table 3a presents the unfilled decision-making
matrix M for this example, with variables si, i = 1 . . . 16, representing the
entries. The answers to the queries si are then divided into four groups:

Equivalence Variables s1, s6, s11, and s16 derive from queries made between
the same alternative (the matrix diagonal). Therefore, their values are zero
indicating that a choice is unnecessary.

Dominance Variables s2, s3, s4, s8, and s12 are determined considering the
dominance, since a1 < a2, b1 < b2 and the aim of the optimization for both
objectives is minimization.

Symmetry Variables s5, s9, s13, s14, and s15 result from symmetry, since if
the preferred alternative between a and b is, for example, a, the preferred
alternative between b and a is also a.

Decision-Maker Variables s7 and s10 demand the DM’s expertise. Consider-
ing that s7 and s10 are provided from queries between the same alternatives,
in this example only one query would be presented to the DM.

Table 3b shows the decision-making matrix partially filled by considering
the equivalence, the dominance, and the symmetry among the alternatives. This
matrix is then presented to the DM who needs to provide an answer to the
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Table 3. Example of a decision-making matrix M

F1 × F2 [a1, a2] [a1, b2] [b1, a2] [b1, b2]

[a1, a2] s1 s2 s3 s4
[a1, b2] s5 s6 s7 s8
[b1, a2] s9 s10 s11 s12
[b1, b2] s13 s14 s15 s16

F1 × F2 [a1, a2] [a1, b2] [b1, a2] [b1, b2]

[a1, a2] 0 −1 −1 −1

[a1, b2] 1 0 s7 −1

[b1, a2] 1 s10 0 −1

[b1, b2] 1 1 1 0

(a) Unfilled matrix (b) Matrix presented to the DM

remaining queries. In this example, only one query would be required from
the DM.

In the real scenario considered here the number of partitions in each dimen-
sion of the grid is established as 4. This value provides enough information for
the NN-DM method for constructing suitable NN-DM models for the DM’s pref-
erences without requiring demanding information from the DM.

As each optimization problem is composed of two objective functions, there
are 16 pairs of simulated alternatives which generate a total of 256 pairwise com-
parisons per problem. Excluding the comparison of pairs composed by the same
alternatives (the matrix diagonal) and considering that M is anti-symmetric
the resulting number of queries becomes 120. Among these 120 queries the dom-
inance is applied considering the aim of optimization in each scenario, which
solves 84 queries. Therefore the DM had to answer only 36 of the 256 queries in
each optimization problem. The resulting matrix had been presented to a human
DM who had to choose the best alternative of each pair of simulated alterna-
tives whose answer was not obtained by one of those described decision criteria.
The decision-making matrices employed in estimating the DM’s preferences in
the polymer extrusion process are presented in Figures 4 and 5. The gray cells
indicate the 36 positions the DM actually filled.

Table 4. Decision-making matrix: mass output (Q) × power consumption (P)

Q×P [f10, f20] [f11, f20] [f12, f20] [f13, f20] [f10, f21] [f11, f21] [f12, f21] [f13, f21] [f10, f22] [f11, f22] [f12, f22] [f13, f22] [f10, f23] [f11, f23] [f12, f23] [f13, f23]

[f10, f20] 0 1 1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1

[f11, f20] -1 0 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1

[f12, f20] -1 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f13, f20] -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f21] 1 1 1 1 0 1 1 1 -1 1 1 1 -1 -1 -1 1

[f11, f21] -1 1 1 1 -1 0 1 1 -1 -1 1 1 -1 -1 -1 -1

[f12, f21] -1 -1 1 1 -1 -1 0 1 -1 -1 -1 1 -1 -1 -1 -1

[f13, f21] -1 -1 1 1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f22] 1 1 1 1 1 1 1 1 0 1 1 1 -1 -1 1 1

[f11, f22] -1 1 1 1 -1 1 1 1 -1 0 1 1 -1 -1 1 1

[f12, f22] -1 1 1 1 -1 -1 1 1 -1 -1 0 1 -1 -1 -1 1

[f13, f22] -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1 -1

[f10, f23] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

[f11, f23] 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 1 1

[f12, f23] 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 0 1

[f13, f23] -1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 0
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Table 5. Decision-making matrix: mass output (Q) × WATS (W)

Q×W [f10, f30] [f11, f30] [f12, f30] [f13, f30] [f10, f31] [f11, f31] [f12, f31] [f13, f31] [f10, f32] [f11, f32] [f12, f32] [f13, f32] [f10, f33] [f11, f33] [f12, f33] [f13, f33]

[f10, f30] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[f11, f20] -1 0 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1

[f12, f20] -1 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f13, f20] -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f21] 1 1 1 1 0 1 1 1 -1 1 1 1 -1 -1 -1 1

[f11, f21] -1 1 1 1 -1 0 1 1 -1 -1 1 1 -1 -1 -1 -1

[f12, f21] -1 -1 1 1 -1 -1 0 1 -1 -1 -1 1 -1 -1 -1 -1

[f13, f21] -1 -1 1 1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

[f10, f22] 1 1 1 1 1 1 1 1 0 1 1 1 -1 -1 1 1

[f11, f22] -1 1 1 1 -1 1 1 1 -1 0 1 1 -1 -1 1 1

[f12, f22] -1 1 1 1 -1 -1 1 1 -1 -1 0 1 -1 -1 -1 1

[f13, f22] -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1 -1

[f10, f23] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

[f11, f23] 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 1 1

[f12, f23] 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 0 1

[f13, f23] -1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 0

4 The Adapted NN-DM Methodology

This paper deals with a modification of the NN-DM method [8]. The NN-DM
method is an algorithm developed to find a model, denoted NN-DM model,
which simulates the DM’s preferences in situations in which these preferences
are represented by a utility function U . First, the domain D of the approximation
is established on the basis of the domain of the available alternatives A. Second,
a partial ranking is built by answers to pairwise comparisons provided by the DM
expressing ordinal relations only. Last, an artificial neural network is employed
in approximating the partial ranking resulting in a model Û that has the same
level sets of the DM’s utility function U . The NN-DM model Û is then able
to represent the DM’s preferences in alternatives belonging to the domain D
without further queries to the DM.

The real DM considered here, a polymer engineer, is assumed to have pref-
erences that can be represented by a utility function U and hence by a NN-DM
model Û . This engineer is required to fill a decision-making matrix regarding
a set of unsolved queries (Section 3.3). Additionally, the existence of a real
DM demands an adaptation of the NN-DM method, ultimately developed with
the assistance of an underlying utility function. The original NN-DM method,
divided into four steps, and the adjustments in steps one, two, and four are
better described next.

4.1 Step 1: Domain Establishment

In the NN-DM method the domain D is established from the available alterna-
tives A. In the original model the alternatives A are employed in constructing a
box whose values vary between the minimum and maximum values of the alter-
natives in each dimension problem. Into this domain a set of random simulated
alternatives F is created and employed in building a ranking of alternatives and
therefore the NN-DM model Û .

In this application, the DM provides the decision-making domain for the
objectives of each optimization problem. Assuming that this domain represents
the possible region of interest to the DM, it is then employed in establishing the
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domain D of the model Û . Into the domain D a grid of simulated alternatives
F is constructed to extract information about the DM’s preferences. The grid is
considered in an attempt to make the DM’s analysis easier.

4.2 Step 2: Ranking Construction

The original NN-DM method builds a partial ranking R of the alternatives which
assigns a scalar value to each alternative. Considering a set A with n alternatives,
a subset with p = log n alternatives,1 denoted pivots, is randomly constructed
from the set A. The pivots are sorted in ascending order of the DM’s preferences
and a rank is assigned to each pivot. Next the n − p remaining alternatives are
clustered into the classes defined by the log n pivots.

In an attempt to simplify this process to the real DM a decision-making
matrix is constructed. The equivalence, the dominance, and the symmetry are
first considered to take the decision in situations in which the answer is acquired
without consulting the DM. The remaining queries are then presented to the
DM as the decision-matrix M which captures the DM’s preferences within the
domain D and can be filled bu the DM in his own time.

Since the answers to all the queries are supplied by the matrix M a total
ranking R is now available. Even knowing that the total sorting provides addi-
tional information the partial ranking is employed here since the DM’s scale is
unknown and the integer scale is inconvenient to the approximation technique.
The partial ranking is built preserving the logn levels and distributing uniformly
the alternatives such that the number of alternatives is the same in each level,
with the possible exception of the higher level.

4.3 Step 3: RBF Approximation

A Radial Basis Function (RBF) network is an artificial neural network that uses
radial basis functions as activation functions. The output of the network is a
linear combination of radial basis functions of the inputs and neuron parame-
ters. Given certain mild conditions on the shape of the activation function the
RBF networks are universal approximators on a compact subset of R

n which
means that an RBF network with enough hidden neurons can approximate any
continuous function with arbitrary precision.

For training the RBF network Û which approximates the utility function U
the alternatives within the domain D are employed as inputs and the ranking
level of each alternative, as outputs. The shape of the function U is captured
by the ranking procedure and the artificial neural network has the role of repre-
senting a function which approximates this shape and provides answers to other
alternatives within the same domain.

The NN-DM model is trained in a domain standardized by scaling each
dimension between zero and one. This standardization is required to make the
1 The function log x is employed in this paper as representing the function log2 x.
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procedure of parameters tuning easier. Once the model is constructed it is
adjusted to the domain D.

All data processing has been performed employing the commercial software
package MATLAB c© [7]. For the construction of the RBF network the newrb
function has been chosen with parameters given by Table 6.

Table 6. MATLAB parameters of the newrb function employed in constructing the
RBF network

Name Value Name Value

P Set F SPREAD 500

T Partial ranking MN 200

GOAL 0 DF 25

4.4 Step 4: Performance Assessment

The original NN-DM method relies on the Kendall-Tau Distance (KTD) as an
efficiency metric. The KTD is a metric that counts the number of pairwise dis-
agreements between two ranking lists. In the NN-DM method these lists are
generated by sorting the available alternatives according to the DM’s underly-
ing utility function and the resulting NN-DM model. The resulting KTD value
is such that the smaller the value, the better the result. In the context of the
original NN-DM method the KTD is an applicable metric because an underly-
ing utility function is available to provide information about the quality of the
resulting model.

As this paper focus in a real DM there is no underlying utility function which
demands another validating process. The advantage is that here the process
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Fig. 3. (a) DM’s underlying utility function U (b) Example of an application of the
resulting function Û
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is validated by the DM himself. Once the model for the DM’s preferences is
constructed it is applied to sort the available data and the DM can verify the
accuracy of the results.

4.5 Algorithm

Algorithm 1 presents the adapted NN-DM method to the real scenario intro-
duced in Section 3. A grid of alternatives is constructed in the domain D provided
by the DM. The decision-making matrix M is filled by the answers provided by
the DM related to the alternatives belonging to the grid. A total ranking R is
constructed and then clustered into logn levels. The RBF network converts the
ranking R into a function Û that is able to provide answers to queries concerning
alternatives belonging to the entire domain D. The NN-DM model is now fit to
be employed in the estimates of each Pareto-optimal front.

Algorithm 1 Adapted NN-DM method

1: Read the domain D
2: Read the decision-making matrix M
3: Built the total ranking of alternatives R
4: Classify the alternatives into log n levels
5: Construct the RBF network Û

Algorithm 2 introduces the NN-DM model applied to the polymer extrusion
process. In each considered scenario the PFE and the corresponding model Û
are loaded. The model Û is then employed in evaluating each solution generating
a sorting of the solutions from the best to the worst.

Algorithm 2 NN-DM model applied to the polymer extrusion process

1: Load the Pareto-optimal front estimates
2: Load the NN-DM model Û
3: Evaluate each available solution
4: Sort the solutions from the best to the worst

Figure 3a presents an illustrative example in which the DM is represented by
an underlying utility function U expressed as a Gaussian. After the construction
of the NN-DM model the DM is not required to provide any data related to his
preferences within the domain D. Once the the resulting model Û is estimated
it can be employed in quantifying any alternative within its domain, as shown
in Figure 3b. From this point forward the alternatives can be sorted from the
best to the worst according to the DM’s preferences represented by the NN-DM
model.
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5 Computational Experiments

The filled decision-making matrices (Tables 4 and 5) provided by the DM are
taken into account to construct general NN-DM models as described in Section 4.
Figures 4 and 5 present respectively the models for the two considered scenarios:
Q × P and Q × W. The models have been trained in the provided domain D
(Table 2).

Figures 6 and 7 present the general NN-DM models applied to sort the esti-
mates of the Pareto-fronts considering the objectives Q and P (QP1, QP2, and
QP3) and Q and W (QW1, QW2, and QW3). The models’ level sets are illus-
trated in the figures and the DM’s preferences are represented by the external
scale.

The DM’s preferences, captured by the decision-making matrices, are now
represented by the NN-DM models which are employed in sorting the solutions
belonging to the estimates of the Pareto-fronts. Moreover, the resulting mod-
els are now available to represent the DM’s preferences in any other situations
without demanding further information from the DM.
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6 Conclusions

In this paper, adaptations of the NN-DM method were executed and six esti-
mates of different Pareto-optimal fronts derived from the polymer extrusion pro-
cess were examined. The DM had to answer only 36 queries related to pairwise
comparisons for each multi-objective optimization problem: Q×P and Q×W.
The final solutions are provided by the sorting given by the NN-DM models with
a low amount of DM’s intervention. The results shown that the adapted NN-DM
method is able to construct models that correspond to the DM’s expectations
used in practice.

Once the model Û is trained it can be employed in quantifying any alter-
natives according to the DM’s preferences and sort them from the best to the
worst. Furthermore, the resulting models Û can replace the DM in recurrent
decisions with alternatives within the trained domain D.

The authors are studying improvements in the NN-DM method to consider a
more complete polymer extrusion process. The average melt temperature of the
polymer at die exit (Tmelt) and the length of screw required to melt the polymer
(Lmelt) also characterize the process performance and could have been consid-
ered in the multi-objective optimization problem. However, in a five-objective
problem the decision-making matrix is inappropriate since it is difficult for a
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person to decide between two alternatives considering five conflicting objec-
tives. Therefore, it is necessary a different approach to extract information from
the DM. Additionally, since the optimization problem in this real scenario is
computationally expensive, the NN-DM model may be employed in guiding the
optimization process directly to the most preferable region, avoiding the com-
putational effort that would be spent in the non-preferable regions.
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Abstract. The definition of the gate location in injection molding is one of the 
most important factors in achieving dimensionally accuracy of the parts. This 
paper presents an optimization methodology for addressing this problem based 
on a Multi-objective Evolutionary Algorithm (MOEA). The algorithm adopted 
here is named Reduced Pareto Set Genetic Algorithm (RPSGA) and was used 
to create a balanced filling pattern using weld line characterization. The optimi-
zation approach proposed in this paper is an integration of evolutionary algo-
rithms with Computer-Aided Engineering (CAE) software (Autodesk Moldflow 
Plastics software). The performance of the proposed optimization methodology 
was illustrated with an example consisting in the injection of a rectangular part 
with a non-symmetrical hole. The numerical results were experimentally as-
sessed. Physical meaning was obtained which guaranteed a successful process 
optimization. 

Keywords: Multi-Objective Evolutionary Algorithms · Gate Location · Moldflow 

1 Introduction 

Injection molding is a complex but efficient polymer processing technique for produc-
ing a variety of plastics parts. It is especially adequate to produce products with low 
dimensional tolerances and complex shapes. It consists in reproducing the required 
geometry previously machined in the mold by injecting molten polymer into the mold 
cavity. The quality of the injection moulding parts are affected by different processing 
parameters, machine control system (e.g., injection cycle times and injection and 
holding pressures), cooling system (e.g., cooling channels geometry and cooling liq-
uid temperature), gates and runners (e.g., geometry and location) and cavities (e.g., 
geometry and total flow length). An important factor is the gate location, since it influ-
ences the way the polymer flows into the mold cavity, affecting the existence or not of 
weld lines and its eventual location, the shrinkage, mold filling pattern, dimensional toler-
ances, degree and direction of orientation, pressure distribution in the cavity, sink marks, 
gas traps and short shots, warpage and residual stress. Thus, the definition of the number, 
type, and location of the gate(s) is of high importance. These concepts will be explained in 
section 2. 
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For optimizing gate location it is necessary the integration of tools, such as, simula-
tion software able to take into account the referred processing parameters and optimi-
zation methodologies. There are in the literature various optimization strategies using 
different methodologies to optimize gate location in injection molding. 

Pandelidis and Zou (1990) optimized gate location based on the combination of 
simulated annealing with a hill-climbing method [1]. The optimization effect is re-
stricted by the determination of some weighting factors used by the authors. Young 
(1994) used a genetic algorithm to optimize gate location for the case of the molding 
of a liquid composite based on the minimization of the mold-filling pressure, the un-
even-filling pattern and the temperature difference during mold filling [2]. Lee and 
Kim (1996) proposed an automated selection method for gate location, in which a set 
of initial gate locations were proposed by a designer and, then, the optimal location of 
the gate was defined using the adjacent node evaluation method [3]. The scheme can 
be used for complicated parts, but it requires an extensive number of design evalua-
tions to obtain the best gate location. In their work, Douglas et al. (1998) designed a 
mold by combining process modelling and sensitivity analysis [4]. The gate location 
and injection pressure profile were optimized through minimizing the filling time. 
The extension of the proposed methodology to more complicated geometries is not 
obvious. Lam and Jin (2001) proposed the optimization of gate location based on the 
flow path concept [5]. For complicated parts, such as ones including holes, ribs and/or 
boss, the appropriate boundary is not easy to select automatically by computer being 
the user input required. Courbebaisse and Garcia (2002) suggested a shape analysis to 
estimate the best gate location of injection molding [6]. This methodology can only be 
used for simple flat parts with uniform thickness but it is easy to use and is not time-
consuming. Shen et al. (2004) optimized the gate location by minimizing a weighted 
sum of filling pressure, filling time difference between different flow paths, tempera-
ture difference and over-pack percentage [7]. A hill-climbing algorithm was used to 
search the optimal gate location. Zhai et al. (2005) developed an efficient search me-
thod based on pressure gradient (PGSS) to optimize the location of two gates for a 
single molding cavity [8]. The weld lines were subsequently positioned to the desired 
location by varying runner sizes [9]. Li et al. (2007) proposed a different objective 
function to evaluate the warpage of injection molded parts [10]. The quality of the 
warpage was defined from the “flow plus warpage” simulation outputs of Moldflow 
software and the optimization is made by using simulated annealing. Wu et al. (2011) 
developed a study where the combination of different classes of design variables are 
considered simultaneously, together with both the length and the position of the weld 
line as design constraints [11]. This study adopted an enhanced genetic algorithm, 
called Distributed Multi-Population Genetic Algorithm (DMPGA), combining with a 
commercial Moldflow software and a master–slave distributed architecture. However, 
only runner size, molding conditions and part geometry are taken into consideration. 

The above methodologies proposed to optimize gate location have some important 
limitations, namely, the capacity to handle with multi-objectives simultaneously, the 
linkage with the simulation codes and the complexity of the part geometry.  

Therefore, in the present work an automatic optimization methodology based on 
Multi-Objective Evolutionary Algorithms (MOEA) is used to define the processing 
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conditions and the gate location in injection molding of a complicated part containing 
a hole [12]. For that purpose a MOEA is linked to an injection molding simulator 
code (in this case Moldflow). The proposed optimization methodology was applied to 
a case study where the processing conditions and the gate location are established in 
order to create a balanced filling pattern, achieved by weld line length minimization, 
to maximize part quality, guaranteed by difference between the shrinkage at the end 
of the flow and the pre-defined design value and to minimize the cycle time to pro-
vide low costs on part production. Finally, the optimization results were assessed 
experimentally. This article follows two previous papers [14, 15] with additional con-
tribution subjected to the following tasks. First, Moldflow substituted C-Mold as the 
simulator program used in the other studies. Also, the way to connect Moldflow to the 
RPSGA algorithm is more sophisticated than with C-Mold. In this case AutoIt pro-
gram was used to mimic human interface with MoldFlow because input variables and 
output results are not allowed to be changed/saved by command line. Second, the 
robustness of the optimization methodology was tested by using injection molding 
gate location as a case study. Finally, to our knowledge, the experimental assessment 
of the gate location optimization results is a relevant step in the literature. 

This paper is organized as follows: first the optimization methodology used is de-
scribed, specifying how the MOEA interacts with the simulation software Moldflow; 
second, a case study based on the use of a rectangular part to be injected with a non-
symmetrical hole is presented and, finally, gate location optimization results are 
shown and compared with experimental measurements.  

2 Optimization Methodology 

2.1 Injection Molding Process 

Injection molding is a process of polymer transformation involving several steps, 
which are performed in an order that is repeated at each cycle, such as plasticizing, 
packing and cooling. A typical injection molding machines (see Figure 1) have four 
units: power supply unit, injection unit, clamping unit and control unit. The main 
concern in injection molding is to produce plastic parts of the desired quality, which 
are related with mechanical characteristics, dimensional conformity (shrinkage, war-
page) and appearance (sink marks, weld lines).  

For this study it is important to clarify the concepts of shrinkage, warpage and 
weld lines. Shrinkage is defined as the reduction in the size of a molded component in 
any direction after it has been ejected from the mold do to the cooling. Warpage oc-
curs when there are variations of internal stresses in the material caused by a variation 
in shrinkage. A weld line is formed when separate melt fronts travelling in opposite 
directions meet. Instead, a meld line occurs if two emerging melt fronts flow parallel 
to each other and create a bond between them. Thus, the meeting angle is used to 
differentiate weld lines and meld lines. If the meeting angle is smaller than 135 de-
grees produces a weld line. If the angle is greater than 135 degrees it will produce  
a meld line. In the first case, a weld line surface mark will appear in the part, but 
when the meeting angle reaches 120 - 150 degrees it will disappear. Weld lines are 
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considered to be of lower quality than meld lines, since relatively less molecular dif-
fusion occurs across a weld line after it is formed. Therefore, weld lines are the weak-
est areas on the part and are the potential failure locations (Moldflow reference [13]). 

The major factors affecting part quality are polymer properties, mold design and 
operating conditions. Some of these variables will be considered later in the optimiza-
tion methodology. 

 

Fig. 1. Functional units of the injection molding machine 

2.2 Integrated Methodology 

A methodology, integrating modelling of the injection molding process and an opti-
mization strategy based on MOEA, is proposed [14, 15]. The aim being to define the 
best injection gate location and injection molding operating conditions in order to 
minimize the cycle time, the differential shrinkage and the weld line location and 
length, using as example the production of an injection part with a hole (see Figure 3). 

EAs are based on the principles of natural selection of survival of the fittest indi-
vidual by mimicking some of the concepts of this natural process. The selection, cros-
sover and mutation concepts are used by the EA to explore the search space in order 
to find an optimal solution or a set of optimal solutions. The initial population of 
chromosomes represents the gate location and/or the set of operative processing va-
riables, which is generated randomly within the feasible search space. Then, these 
solutions are evaluated using the modelling routine (Autodesk Moldflow 2010 soft-
ware). The performance of each one of the solutions (chromosomes) proposed by  
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the MOEA is quantified using as objectives the minimization of the cycle time, the 
differential shrinkage and the length and location of the weld line. A MOEA was used 
to optimize the process [16]. The Reduced Pareto Set Genetic Algorithm (RPSGA) 
proposed previously was used for that purpose. First, the population is random initia-
lized, where each individual (or chromosome) is represented by the binary value of 
the set of all variables. Then, each individual is evaluated by calculating the values of 
the relevant objectives using the modeling routine. Finally, the remaining steps of a 
MOEA are to be accomplished. To each individual is assigned a single value identify-
ing its performance on the process (fitness). If the convergence objective is not satis-
fied (e.g., a predefined number of generations), the population is subjected to the  
operators of reproduction (i.e., the selection of the best individuals for crossover 
and/or mutation) and of crossover and mutation (i.e., the methods to obtain new indi-
viduals for the next generation). The solution must result from a compromise between 
the different objectives. Generally, this characteristic is taking into account using an 
approach based on the concept of Pareto frontiers (i.e., the set of points representing 
the trade-off between the objectives) together with an MOEA. This enabled the simul-
taneously accomplishment of the several solutions along the Pareto frontier, i.e., the 
set of non-dominated solutions. The performance of this algorithm was tested in a set 
of problems and its efficiency well demonstrated [12]. 

Figure 2 shows the interface for integrating Autodesk Moldflow 2010 and the GA-
based optimization routine. First, coordinates of injection point are sent to Moldflow 
Adviser by an AutoIt script which mimics the user interface with computer. Next, 
geometric Moldflow Adviser file is renamed to geometric Moldflow Synergy file and 
an AutoIt script is executed to remesh the part and define processing conditions to be 
used in the simulation. A Fill+Pack+Warp analysis is done through command files 
provided by Moldflow Synergy software. When the analysis is finished, an AutoIt 
script is executed in order to obtain differential shrinkage in two different locations 
and weld line/meld line results files are saved. The optimization routine will use these  

results to calculate the cycle time, the dispersion of differential shrinkage and the 
length of the weld plus meld line, as described in next section. 

 

Fig. 2. Interfacing between optimization routine and Moldflow software 
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Table 1. Range of variation of the decision variables 

Decision variables Range of variation 

X coordinate (mm) – x  [0,140] subject to constraint  

Y coordinate (mm) – y [0, 60] subject to constraint 

Fill time (s) -  [1, 5] 

Melt temperature (ºC) -  [190, 270] 

Mold temperature (ºC) -  [10, 50] 

Holding pressure (MPa) -  [30, 60] 

Packing time (s) -  [1, 20] 

Cooling time (s) -  [5, 20] 

 
The RPSGA uses a real representation of the variables, a simulated binary crossov-

er, a polynomial mutation and a roulette wheel selection strategy [12]. The following 
RPSGA parameters were selected: 10 generations, crossover rate of 0.8, mutation rate 
of 0.05, internal and external populations with 30 individuals, limits of the clustering 
algorithm set at 0.2 and NRanks at 30. These values resulted from a carefully analysis 
made in a previous work [12]. The computation time required by the MoldFlow soft-
ware to evaluate a single candidate solution is approximately 5 minutes. Thus, the 
time necessary for a complete optimization is circa of 25 hours. This multi-objective 
problem used a ‘budget’ of 300 evaluations because of the expensive nature of eva-
luating candidate solutions, namely, the time taken to perform one evaluation, only 
one evaluation can be performed at one time and also the dimensionality of the search 
space is low-to-medium [20]. The proposed optimization methodology will be used 
for setting the injection location and to define the selected processing conditions that 
satisfy the objectives defined.  

3.3 Objective Functions 

The optimization problem consists in defining the values of the decision variables that 
allow the production of a part with the minimum cycle time, to minimize the produc-
tion costs, the minimum of warpage due to the anti-symmetric shrinkage and the min-
imum of weld plus meld line length, so that weakest areas are minimized.  

These objectives are defined as follows: 

• Minimize cycle time, CT: 

 min  (1) 

where  is the filling time,  is the packing time,  is the cooling time and  is the 
mold open time. 
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• Minimize warpage, WARP: 

 min   (2) 

where  and  are the differential shrinkage values measured in longitudinal and 
transversal directions, respectively. 

• Minimize length of weld plus meld line, LWML: 

 min  ∑ ,  (3) 

where , ,  represents the coordinates of the nodes in the finite element mesh 
were the weld and meld lines are located as calculated by Moldflow.  

4 Results and Discussion 

4.1 Optimization Results 

Figure 4 shows the results obtained for an optimization run considering simultaneous-
ly the three objectives defined before (minimization of cycle time, length of weld plus 
meld line and warpage), the aim being to define the best values for the decision va-
riables presented in Table 1. The figure represents all solutions of the initial popula-
tion and the non-dominated solutions of the final population (10th generation). The 
operating conditions and objectives of the optimal solutions found are presented in 
Table 2. 

Table 2. Solutions for gate location optimization 

 Variables Objectives 
Solu-
tions 

Tw (ºC)
 Tinj

 (ºC)
 tf (s)

 
Ph (%
)
 

tp (s) 
to (s) 

CT
 (s)
 WARP

 (%)
 LWML

 (m) 

P1 46 268 2.20 42 1.16 5.00 13.36 0.815 0.0331 
P2 28 268 4.30 56 12.7 10.1 32.06 0.800 0.0216 
P3 46 269 2.84 44 6.57 6.39 20.80 0.800 0.0219 
P4 38 265 2.61 47 1.49 5.30 14.20 0.820 0.0103 
P5 40 265 2.44 46 1.00 5.35 13.79 0.820 0.0216 
P6 46 268 2.27 42 1.21 5.40 13.88 0.815 0.0216 
P7 44 264 1.37 44 3.02 6.23 15.62 0.815 0.0106 

 
There is a clear improvement from the initial population to the 10th generation, 

since the optimal solutions found have better values for the objectives considered. 
Also, there is not a solution that, simultaneously, provides the better (minimum) val-
ues for all three objectives. Therefore, three cases will be analyzed considering each 
one of the objectives as the most important. 
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If cycle time is considered the most important objective, the solution with lower 
cycle time is P1 in Figure 4. In this case CT is equal to 13.36 s, WARP is equal to 
0.815 % and LWML is equal to 0.0331 m that is the highest value found for the length 
of weld plus meld line. Therefore, this solution is unsatisfactory when the length of 
weld plus meld line is considered. The injection molding machine must operate with a 
fill time of 2.2 s, melt and mold temperatures of 268 ºC and 46 ºC, respectively, hold-
ing pressure of 42 MPa, packing time of 1.16 s and cooling time of 5 s. 

Figure 5 (A) shows the gate location and the filling pattern, while Figure 5 (B) 
shows weld line location for solution P1 as calculated by Moldflow. Since gate loca-
tion is positioned in the top left corner of the part the two melt fronts will meet in the 
bottom right corner of the hole (were the weld line is plotted in Figure 5 (B)). In this 
case, the flow pattern design does not reach the top, bottom and left cavity boundaries 
uniformly, as shown by the filling pattern in Figure 5 (A). However, no weld lines 
were formed, since the meeting angles of the flow fronts are kept higher than 135 °. 
The line shown in Figure 5 (B) represents both a weld and a meld line, but that does 
not represent a problem for the molded part since the weld line does not reach the 
external boundary of the part. Figure 5 (C) shows the warpage distribution for solu-
tion P1. The value of WARP represents the standard deviation of differential shrin-
kage values measured on the boundary midpoints in horizontal and vertical directions. 
For the present case means that the distances between these points after part produc-
tion only differs of 0.815 % when compared with the distances in the mold cavity. 

 

Fig. 4. Optimization results for three objectives in the objectives domain. Black symbols: Pare-
to frontier at 10th generation; grey symbols: initial population (CT – cycle time, WARP – war-
page, LWML – length of weld plus meld line). 
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Fig. 5. Filling pattern (A), weld//meld line position (B) and warpage distribution (C) for solution 

 

P1 
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Fig. 6. Weld/meld line position for solution P2 

 
Fig. 7. Weld/meld line position for solution P3 

When warpage is considered the most important objective to satisfy, two solutions 
were obtained with lower warpage values, i.e., solutions P2 and P3. The main differ-
ence between these two solutions is related with the cycle time, which is 32.06 s for 
P2 and 20.80 s for P3. Since the values of WARP and LWML are very similar, it is 
clear that P3 is a much better solution than P2. Concerning solutions P2, P3 and P4, 
only the location of the weld plus meld lines are represented, since these are the re-
sults used in the experimental assessment. Figures 6 and 7 represents the location of 
weld plus meld line, respectively for P2 and P3. In both cases, the gate is located in 
the top right corner of the part and thus the weld plus meld line appear in the bottom 
left corner of the hole. Also, only meld lines are formed for these two solutions in the 
external boundary of the part. Figure 8 presents the modelling results for solution P4, 
i.e., the solution with lower length of weld plus meld line. In this case only a weld line  
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Fig. 8. Weld/meld line position for solution P4 

forms on the bottom surface of the molded part (as all the meeting angles of the flow 
fronts are lower than 135 °), which, due to the reasons referred above, makes this a 
bad solution concerning this aspect. Simultaneously, this solution has the higher value 
for WARP (0.820 %). 

4.2 Experimental Assessment 

The optimization results presented in the last section were experimentally compared 
using solutions P1 to P4 analyzed in the previous sections (Figure 4). The mold used 
for the experimental studies was built with four different gate locations corresponding 
to each of the solutions P1 to P4 (Figure 5 to 8). For the part weld lines characteriza-
tion a crossed polarizer was used to obtain the locations of the weld lines. To be poss-
ible to perform experimentally the optimization/modelling results, the total cycle time 
was fixed in the machine. Figure 9 shows the experimental weld lines locations for 
the four solutions chosen. The weld lines are identified in the figure with arrows to 
better understand their location. As can be seen the experimental results confirm the 
location of the weld lines predicted by the optimization methodology (Figure 5 to 8). 

Figure 10 shows the simulation vs. experimental warpage measurements. The re-
sults are graphically represented in two different plots to better distinguish the shapes 
of the curves due to differences in warpage scale. As can be seen the experimental 
results follow the same tendency of the simulated ones. Solution P1 is the only one 
that has a different pattern comparing to the simulated one, due to the use of a lower 
packing pressure in few packing time (see Table 2). In agreement with the simulation 
results the experimental solutions P2 and P3 have similar values. Moreover, those 
values are the lowest ones for warpage criteria. This can be explained by the use of a 
packing pressure during more time than in solutions P1 and P4. Quantitative differ-
ences between experimental and numerical results are explained by the fact that in the 
numerical warpage calculation the effect of differential shrinkage, differential cooling 
and orientation effects are taken into consideration. Simultaneously, the experimental 
measurements were made considering only the differential shrinkage effect.  
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Abstract. This work presents a decision support system for route plan-
ning of vehicles performing waste collection for recycling. We propose a
prototype system that includes three modules: route optimization, waste
generation prediction, and multiple-criteria decision analysis (MCDA).
In this work we focus on the application of MCDA in route optimization.
The structure and functioning of the DSS is also presented.

We modelled the waste collection procedure as a routing problem,
more specifically as a team orienteering problem with capacity con-
straints and time windows. To solve the route optimization problem
we developed a cellular genetic algorithm. For the MCDA module, we
employed three methods: SMART, ValueFn and Analytic Hierarchy Pro-
cess (AHP).

The decision support system was tested with real-world data from a
waste management company that collects recyclables, and the capabili-
ties of the system are discussed.

Keywords: Waste collection ·Vehicle routing ·Team Orienteering Prob-
lem ·Decision Support System ·Multiple-Criteria Decision Analysis ·Cel-
lular Genetic Algorithm · AHP · SMART · ValueFn

1 Introduction

Over the years, decision sciences have been applied in resource management to
achieve success in the business world. In order to avoid losses and increase income
while depending on the use of resources, companies tend to rely on the decisions
carried out by their managers. The process of decision-making often happens
over the analysis of several criteria that sometimes have conflicting objectives
or induce divergent results while aiming for the same goal. Those different out-
comes can either complement each other or create problems while deciding the
best course of action to complete a certain task or project. Common conflicting
criteria are cost (or price) and quality measures (or performance indicators).
Trying to achieve a good balance between important criteria implies weighing
their contributions and (adverse) consequences to the final objective, and opting
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for the best alternative for that specific situation. This process requires struc-
turing the problem in a proper way to reduce its complexity and making better
decisions.

MCDA is the acronym for multiple-criteria decision analysis, which involves
the application of models and methodologies to provide the decision maker (DM)
with tools that enable solving decision and planning problems, although, when
there are several criteria to consider, it is very difficult, if not impossible, to
determine an unique best solution. To find an overall best solution, the DMs
preferences need to be included in the decision process, since there are trade-offs
that need to be considered, and the importance given to each criteria depends
on the DM.

The dawn of computer age enabled the development of software implementing
various models and methods to solve multiple-criteria decision-making problems,
and there are plenty of commercially available general-purpose products, as well
as more specific ones. This kind of software became extremely useful in many
different management scenarios. Often, MCDA software is included in larger
(software) systems called Decision Support Systems (DSS). A DSS is an infor-
mation system that supports business decision-making activities, and helps mak-
ing decisions at different levels: 1) management, 2) operations and 3) planning.
A DSS is usually an interactive software tool that combines data from various
sources and formats and presents the user (i.e. the DM) with useful information,
displayed on graphical interfaces, that helps solving decision-making problems.

In this study, we focus on a real-world problem, where management issues
are faced by a waste management company (WMC) that needs to pick-up recy-
clable materials stored along a network of collection points. In general, success-
ful waste management highly depends on good performing logistic systems that
keep track of all needed requirements and the goals/objectives to be met by the
companies. Resource management (i.e. vehicles, drivers, assistants) and design-
ing cost-efficient waste collection routes are some of the major issues a DM in
a WMC has to deal with on a daily basis, and it often involves weighting the
importance of several criteria. This creates different operation scenarios that
need to be assessed for the DM to determine the best solution for a certain sit-
uation. Therefore, a DSS is an important tool to assist in this decision-making
process. The aim of this study was to develop a DSS that includes route opti-
mization models and employs MCDA methods to compare different operational
procedures carried out by a WMC when performing waste collections.

2 Problem Description

The recycling of waste materials has earned great importance over the years, and
today is a vital process to our survival in a clean and healthy environment, and
also to move towards a more sustainable future. Regarding waste composition,
in Portugal, more than 50% of municipal solid waste is composed of recyclable
materials, where paper accounts for 20.3%, plastics 18%, glass 6%, metals 5%,
and textiles 3.8% [19]. The collection of recyclable materials have lately become a
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fertile subject for the development of new ideas to improve resource management
and global efficiency. There is also a constant need for improvements in waste
management, especially in terms of resource management.

The process of collecting recyclables usually involves three main resources
that need management: 1) workers, 2) vehicles and 3) time. In addition, there
are elements that impose constraints to resource management such as cost limi-
tations in fuel expenditure, avoidance of high vehicle wearing, minimum (daily)
quotas of waste to collect to be met, and also certain collection performance stan-
dards that should be attained. Many improvements often occur through success-
ful fleet management, which greatly relies on optimization procedures applied to
the design of collection routes. Designing more efficient routes implies balancing
the use of resources while respecting all constraints that may be imposed.

Focusing on route design, the objective is to visit a set of waste collection
points using a vehicle fleet, while respecting constraints such as vehicle capac-
ity and maximum route duration and/or length (time spent and/or travelled
distance). This kind of situation can be addressed as a vehicle routing problem
(VRP) [13]. Although this description fits the mentioned waste collection prob-
lem, more flexibility is needed when designing the routes. Each collection point is
assigned a certain priority level to be visited and emptied, based on their waste
generation rates and current filling status. While scheduling collection routes,
there is a need to select which points to visit during those routes, and only a
part of those points may be collected. The VRP models can be too restrictive
when employed in this situation, since the premise is to visit all points in the
network, regardless of its filling status, and using as many vehicles as needed to
do so. So, instead of targeting all collection points, a more fitting model named
team orienteering problem (TOP) [8,11], can be applied. In this context, the
TOP can be described as the problem of designing routes and assign them to
a limited fleet of vehicles performing collection of recyclable waste stored along
a network of collection points; each collection point has a priority level; the
collection routes have maximum durations and/or distances; the vehicles have
capacity limits; the selection of collection points to be visited by the vehicles
is made by balancing their priorities and their contributions for route duration,
route distance and quantity of waste collected per vehicle. The objective is to
maximize the total amount of waste collected by all routes while respecting the
time and/or distance constraints, and also capacity constraints or even time
windows.

In Portugal, a major source of potentially recyclable materials is household
packaging waste (HPW), which is usually composed of materials made of glass,
paper/cardboard, plastic or metal. HPW is separated by citizens at the local
recycling site (collection point), named ecopoint (ecological point). Given the
goals Portugal has to fulfil for the recycling and recovery of HPW, there is a
permanent need for increased efficiency in waste collection performed by waste
management companies. Therefore, the main goal of this study is to explore
new solutions and management options for a real problem faced by a Portuguese
inter-municipal waste management company (WMC) that takes action across six
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municipalities and currently operates a network of more than 1,200 ecopoints.
This WMC’s area of operations is a mix of urban and rural areas, which prompts
the demand of different strategies for waste management.

There is no requirement for the mentioned WMC to visit all their ecopoint
sites every workday, as it would be unprofitable and inefficient, and of course
impossible, since there is a limited vehicle fleet available. Therefore, it is nec-
essary to select a subset of ecopoints to visit each day. Furthermore, given a
planning horizon of, for example, a week, or a month, the WMC must decide,
based on the priority levels of ecopoints, which ones must be visited, which ones
can be visited, and which ones can be skipped during the collection routes, and
then design effective routes to perform the collection of HPW. Therefore, mod-
elling this collection procedure as a TOP is suitable. In fact, this routing problem
can be modelled as a capacitated team orienteering problem with time windows
(CTOPTW), due to capacity constraints on the vehicles, and because there is
a time interval specified for each ecopoint, during which the waste containers
must be emptied.

It is not uncommon for performance requirements in waste collection to
change while aiming to accomplish different goals. There are times when a DM
might find himself in difficulty to choose the best strategy for a given situation,
and when performance indicators (PIs) are presented, conflicting objectives can
arise. For example, the company aims to collect as much quantities of waste
per route as possible, but also needs to minimize the total distance travelled by
the collection vehicles. Handling these situations and deciding on what the most
suitable solution is in order to attend acceptable values for the PIs, can be a
time-consuming task, and so, a valuable tool to use is a DSS with MCDA capa-
bilities, which can process a great amount of information and present solutions
to the DM at a faster pace. Nonetheless, the DM assumes a central role during
decision-making processes in a DSS.

The work presented in this paper is integrated in a R&D project named
Genetic Algorithm for Team Orienteering Problem (GATOP). The main goal
of GATOP is the development of more complete and efficient solutions for sev-
eral real-life multi-level vehicle routing problems, with an emphasis on waste
collection management. In this work, we intend to present a prototype DSS for
management of HPW collection, and it shall be composed of different modules
or elements. Our purpose is to design the proper functioning of the DSS by
determining how the modules interact, how information flows between them,
and how the information is processed and solutions are presented to the users.
In addition, we needed to do some improvements and changes to the route opti-
mization module for it to be able to handle different objective functions, which
were formulated based on the study of real case scenarios faced by a WMC.
Briefly, the tasks for this study were:

– Define alternative objectives for route design in waste collection for recycling;
– Develop a solution method to solve different objective functions for the rout-

ing problem;
– Define the set of criteria that will be used in the MCDA module;
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– Develop and implement the MCDA module;
– Define the structure and way of operation of the DSS prototype;
– Test the DSS for real case scenarios and evaluate its functionality.

3 Literature Review

3.1 Solution Methods for the TOP and Other Variants

In the context of fleet management there is a high demand for more efficient pro-
cedures and techniques to perform route planning and design. There are plenty
of problems involving transportation of people and/or items/commodities that
need route optimization for various purposes. This kind of problems can be
addressed as a vehicle routing problem (VRP). As we stated previously, the
VRP model is too restrictive for the collection of recyclable waste, and more
flexibility is required to enable the selection of locations to visit. Such flexi-
bility is achievable by modelling the collection process as a team orienteering
problem (TOP). A wide variety of algorithms have been developed to solve
the TOP, and some successful ones are tabu search [4,35], branch and price
[7], guided local search [43], path-relinking [33], ant colony optimization [22],
memetic algorithm [6], particle swarm optimization [12,32]. For the TOP with
time windows (TOPTW), efficient algorithms are iterated local search [42], vari-
able local search, ant colony system [25], variable neighbourhood search [24,41],
and hybrid iterated local search [34]. Other variant of the TOP includes capacity
constraints (CTOP) has been receiving attention lately, with tabu search being
a good solution option [2,3]. Other algorithms followed, as well as new variants
of the TOP and CTOP. Promising algorithms based on other methodologies
are also found in the literature of routing problems, such as genetic algorithms
[15,16,27,28,36,37] and cellular genetic algorithms [1].

3.2 Application of Multi-Criteria Decision Analysis to Routing
Problems

After a wide range review of literature on the application of multi-criteria deci-
sion analysis in decision support systems for routing problems over the last
decade, the authors came across some interesting works in this research field.

In 2002, the author Jacek Zak [45] brought attention to several problems faced
by many transportation companies. One problem was about the acceptance or
rejection of incoming orders based on the definition of minimum price for the
orders and the assignment of vehicles to orders. This multi-objective problem
was solved with the ELECTRE III method.

Cavar et al. [10], in 2005 applied AHP to the selection of the best VRP
algorithm to be used for a particular case, considering factors like the number
of vehicles to use, the time necessary to calculate the routes and the overall
travelled distance of the vehicle fleet.

Later, in 2008, an interesting application of MCDA to a routing problem was
carried out by Tavana et al. [39], within the subject of Joint Air Operations. Their
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goal was to model a problem that comprises the assignment of aerial vehicles to
mission packages. The MCDA model focus on four competing objectives consid-
ered for the assessment of vehicle-target allocation, and to solve the problem, the
Analytic Hierarchy Process (AHP) method is also used in the model.

In [20] the authors intended to optimize the design of a supply centre for
public service, and they employ Fuzzy-AHP to decide on the service facility
types and then use VRP solution methods to find the number and location of
the facilities. Criterion like delivery level, service level, supply cost, customers
response (satisfaction), transportation and service information were used.

Still in 2008, an application of goal programming (GP) methodology to model
a single vehicle routing problem with multiple routes was proposed in [21]. The
developed model is solved using a heuristic method based on an elementary
Shortest Path Algorithm with Resource Constraints.

Later, in 2010, Tavana and Bourgeois [38] focused on the problem of opera-
tional planning and navigation of autonomous underwater vehicles. A dynamic
multiple criteria support system was developed and the authors employed MCDA
methods, along with other methodologies, to assist in mission planning carried
out by the United States Navy.

A combination of GP and genetic algorithm was employed in [18] to model
and solve a multi-objective VRP with time windows. The considered objectives
were the minimization of total required fleet size and minimization of total trav-
elling distance, while constraints such as capacity and time windows are fulfilled.

A more recent work was presented in 2012 by Ries and Ishizaka [29]. The
authors developed a DSS to solve a routing problem of Unmanned Aerial Vehicles
within the scope of maritime surveillance. They applied MCDA methods such
as AHP and PROMETHEE to evaluate the operational scenarios produced by
the routing problem algorithm.

Also in 2012, a combination of AHP and TOPSIS was presented in [44] as a
solution method for assessing alternative routes for a VRP.

4 Methodology

Previously in this paper we stated that our intent was to present a proto-
type Decision Support System (DSS) to help managers deal with multi-criteria
decision-making applied to route planning in the context of waste collection.
In our concept, the DSS to be developed shall include three different modules:
1) a route optimization module, 2) a MCDA module, and 3) a waste genera-
tion prediction module to predict waste generation rates and determine priority
levels of the collection points. The route optimization module has its origin
on improvements made to previously presented works within the scope of the
GATOP project [15,16,26,27,28]. The same is applicable to the waste genera-
tion prediction module [17]. The base for the MCDA module development was
the beSmart software v1.1 [5]. Improvements were made to the software so it
could better meet our purpose with the DSS. In this section we will present the
modifications and improvements made to the route optimization module and the
MCDA module, as well as the adopted methodologies.
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4.1 Route Optimization for Waste Collection

Defining Different Alternatives for Waste Collection Routes. Waste
management companies usually have special concern about their waste collec-
tion system and how efficient their route planning procedures currently are and
how they can be improved. Many companies employ fixed collection routines and
schedules, and surely that simplifies resource management. However, perform-
ing route optimization according to specific objectives may represent a relevant
source of extra revenue, and that is a great motivator for the employment of bet-
ter management practices, the application of better route planning algorithms
and/or decision aid software. From now on in this document, the term solution
refers to a set of optimized routes that can be assigned to a vehicle fleet.

The definition of objectives when performing route planning is crucial in
order to meet certain goals or quotas for waste collection. For example, one
common objective is to minimize the distance travelled by the vehicles while
visiting a set collection points, and less mileage means less vehicle maintenance
costs and fuel expenses and also less greenhouse gas emissions. For this study,
we used a list of important objectives that were agreed with the WMC, that
should be taken into consideration while aiming to optimize routes:

– Minimize Total Distance Travelled - MinD
– Maximize Total Collected Quantity - MaxQ
– Maximize Performance - MaxP (quantity collected per kilometre travelled)
– Maximize Number of Ecopoints Collected - MaxE
– Minimize Number of Vehicles Used - MinV
– Maximize Number of Priority Points Collected - MaxPP

Performance Indicators in Waste Collection. The route planning proce-
dure often relies on specific algorithms and/or software tools. The quality of the
solutions obtained with those tools and techniques needs to be assessed using
some performance indicators. A performance indicator is a type of performance
measurement, and in this case it quantifies a certain factor related to waste
collection routes. All the values for the performance indicators are quantita-
tive, which makes it easier for comparisons when using some MCDA techniques.
These performance indicators are in fact a set of criteria that have influence in
the context of route planning for waste collection. The performance indicators
considered for this study are the following:

– Total Distance Travelled (per solution)
– Average Distance Travelled (per route)
– Total Collected Quantity (per solution)
– Average Collected Quantity (per route)
– Total Collection Performance (per solution)
– Average Collection Performance (per route)
– Number of Collected Ecopoints (per solution)
– Average Number of Collected Ecopoints (per route)
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– Number of Vehicles used (per solution)
– Number of Priority Points Collected (per solution)
– Average Number of Priority Points Collected (per route)
– Number of High Priority Ecopoints Collected (per solution)

A Cellular Genetic Algorithm to solve the CTOPTW. The final model
we used for route planning was the capacitated team orienteering problem with
time windows (CTOPTW). As mentioned in a previous section, there are sev-
eral methodologies capable of dealing with (solving) the TOP and its variants.
Nonetheless, we opted to follow a research line we have been pursuing, which
is the application of genetic algorithms (GAs) to solve optimization problems,
specially routing problems [15,16,26,27,28]. More recently, one of our focus has
been the employment of celular genetic algorithms (cGAs) since the experimental
results achieved with this method performed better than our previously devel-
oped GAs. So, in order to solve the CTOPTW, we developed an algorithm based
on the cGA methodology. We also made adjustments to the algorithm so it could
deal with different objective functions and output optimized routes accordingly.

4.2 beSmart A Multi-Criteria Decision Aid Software Application

Software Description and Improvements Made. There are many different
MCDA methods, and there are also many tools developed to implement the
MCDA methods. In 2010, Seixedo and Tereso [31] have assembled a list of the
available MCDA tools and developed a Multi-Criteria Decision Aid Software
Application for selecting MCDA software using the Analytic Hierarchy Process
(AHP) method. Later, in 2011, improved MCDA software for the same purpose
was developed by Tereso et al. [40]. The software tool was named beSmart [5],
and was designed to be a general-purpose application, which can load and process
data to help solving any MCDA problem. The beSmart became an interesting
tool for us to explore and integrate in the DSS prototype we intend to develop.

Although the beSmart software was at a good state of development, some
improvements were made in order to offer a better user experience. This was
achieved by enhancing the Graphical User Interface (GUI), using better display-
ing of options and commands in the menu bar, and by improving the contents of
tips and instructions displayed to the user throughout the decision-making pro-
cess. Changes to the solution explorer module were also made, in order to present
more useful information on the solutions produced. In addition, the option to
perform sensitivity analysis was included in the solution explorer.

MCDA Methods Available in beSmart. There are three MCDA methods
embedded within beSmart: 1) SMART, 2) AHP, and 3) ValueFn. The SMART
method [14] consists of assigning a score to each alternative, and the higher the
scores are, the more importance the alternative represents. In the AHP method
[30], a structuring process of the problem occurs so that it is decomposed into
a hierarchy of sub-problems. Then, the DM evaluates the relative importance of
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these sub-problems (criteria) by pairwise comparison, where a degree of impor-
tance is given to each criterion in relation to another. The AHP method converts
these evaluations to numerical values (weights or priorities), which are used to
calculate a score for each alternative. A consistency rate measures the extent to
which the DM has been consistent in the comparison done. This rate should be
lower than 0.10 [30]. In the ValueFn method [9,23], the evaluation of alterna-
tives is directly fitted into a function. It can be a maximization or a minimiza-
tion function, depending on the DMs intention to maximize or minimize a given
attribute. For further information and more detailed explanations on how these
MCDA methods were implemented into beSmart, one should check the work in
[31] and [40].

4.3 A Prototype Decision Support System to Improve Waste
Collection

Since each module of the DSS prototype is also a stand-alone software tool, a
proper design is needed in order to establish how each module interacts with
each other, how information flows between them and how solutions are pre-
sented to the end-user. A schematic in figure 1 shows how the DSS’s operates.
Initially, the waste generation prediction module forecasts the current state of
each collection point in terms of quantity of waste stored in its containers. These
informations are fed to the route optimization module, which in turn proceeds
with the computation of collection routes for all objectives previously presented,
although not in a multi-objective approach, with a solution for each objective
function being output separately. Once the routes are calculated, their values for
each performance indicator (PI) are saved in a text file, which is later loaded in
beSmart.

The beSmart software can help to select the best set of routes for specific
scenarios of waste collection where the DM needs to weigh the importance of each
PI. The decision process occurs during five steps (see figure 2). The first one is the
selection of alternatives for comparison, which are sets of routes called solutions.
Each solution results from the output of the route optimization module according
to a certain objective function. In the next decision step, the DM chooses the
PIs he finds relevant for solution assessment. The third step is the definition
of weights, and the DM expresses the relative importance of each previously
selected PI using either the SMART or AHP method. The DM assigns values
to each PI to denote its importance relative to the others. The fourth step is
the definition of priorities, and using the AHP or ValueFn methods, one can
determine the priority level each PI represents to each solution. Finally, in the
fifth step, the comparison results are displayed using charts and ranking lists.
It is possibile to perform real-time sensitivity analysis for the selected PIs. This
feature enables the DM to examine the trade-offs between a PI and the rest, and
also the impact of changing the priority level of each PI individually. Once the
decision process in beSmart ends, the DM is presented with a final ranking of
alternatives, sorted from the most to the least suitable solution. Using the DSS
makes the DM more aware of solution possibilities and their outcomes.
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Fig. 1. DSS’s Operational Schematic

Fig. 2. Steps for Decision-Making in beSmart

5 Experiments and Results

The assessment of the proposed DSS was done by simulation of real situations of
HPW collection, using the WMC’s data to design 10 CTOPTW instances. The
data sources used to assemble the instances consisted of a list of 94 ecopoints
and their GPS coordinates. These 94 ecopoints represent a whole municipality.



398 J.A. Ferreira et al.

Informations such as the values for time windows and waste quantities at each
ecopoint were obtained using the waste generation prediction module of the DSS.
Real distances between ecopoints were obtained using Google Maps, a web map-
ping service application. We made the instances and the test results available for
download at ”http://pessoais.dps.uminho.pt/zan/GATOP /instEMO2015.zip”.
With those instances we aimed to prove the usefulness of the DSS and its capabil-
ities to attend waste collection management goals. For each CTOPTW instance,
collection routes were planned for three vehicles with the same capacity. The
route optimization module assembled sets of three routes for each objective
function separately (not multi-objective optimization). However, some global
constraints were applied for the cGA to deal with: maximum route duration,
maximum distance to travel per route, minimum waste quantity to collect per
route, and minimum quantity to collect per solution. The cGA was run 5 times
for each of the six objective functions, hence outputting 30 different solution
alternatives and the respective values for each PI. The best alternative for each
objective function was loaded into beSmart, where the decision-making process
took place, with the 12 PIs previously stated used as criteria. We opted to test
a combination of MCDA methods during the decision process using beSmart.
First we employed the SMART method for the definition of weights, and later,
for the definition of priorities, the choice relied on a mixed application of AHP
and ValueFn, choosing the method that seemed most appropriate for each cri-
teria. In figure 3, the solution achieved using beSmart for one tested instance
is presented. On the upper-left area, the final priority ranking of alternatives is
shown. On the bottom-left area, a sensitivity analysis component is available.
On the bottom-right a detailed bar chart shows how the weight of each criterion

Fig. 3. Results with beSmart for the simulation scenario
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contributed for the ranking of each alternative. Although the best alternative
found was ”Route Solution MaxP”, if the DM expresses different preferences,
alternative solutions can be found. Throughout several similar tests, we observed
that the DSS has proven its usefulness, as it allows the user to solve waste col-
lection problems, and is able to help analyse the influence of several criteria,
weighing their contribution while aiming to attend certain performance levels.

6 Conclusions and Future Work

In this work we presented a decision support system (DSS) that provides solu-
tions for problems that arise in waste collection management. One main issue is
to perform route planning for selective collection of recyclable waste. We mod-
elled this routing problem as a capacitated team orienteering problem with time
windows (CTOPTW), and we developed a cellular genetic algorithm (cGA) to
produce solutions. The cGA is able to deal with different objective functions. We
presented twelve criteria based on waste collection performance indicators (PIs),
and we employed multi-criteria decision analysis (MCDA) methods to assist in
decision-making when weighing the importance of each PI in route planning.

The developed DSS includes three modules: waste generation prediction,
route optimization, and MCDA. We presented a design for the DSS and assem-
bled a prototype to run experiments at this stage of development. We performed
simulations of real problems faced by a waste management company (WMC)
responsible for collecting waste for recycling. The DSS was tested with real
instances of the problem. In our best knowledge, there are no similar approaches
to the one we presented in this paper for dealing in an unified way with several
problems related to waste collection management, and so, direct comparisons
with alternative systems were not possible. Nevertheless, we assessed the DSS’s
capabilities in terms of route planning and optimization, with a focus on MCDA.
The DSS provides different optimization options and can present alternative
solutions for the same instance of HPW collection, depending on the preferences
of decision-makers (DMs). These features are advantageous, since the DM’s pref-
erences play a central role in selecting the best routes for a certain planning
period, according to the WMC’s logistic strategy and the importance given to
each PI. We obtained positive feedback from the WMC and more improvements
are foreseen. We are positive that our DSS design can be of great assistance in
the context of waste collection, and WMCs would be able to improve their per-
formances by exploring better collection routines and by adapting to challenges
that may arise before them. Overall, the interpretation of computational results
output by the DSS can provide meaningful information to waste collection man-
agement practitioners. However, it is not advisable to apply the DSS on a daily
basis, as it would be an impractical and time-consuming task to go through
the decision process every day. Instead, the DSS should be used to outline the
WMC’s logistic strategy for a longer period such as a week, month or trimester.
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For future work, we intend to simplify the user’s interaction with the DSS
to enhance overall user experience and accelerate work flow. More experiments
with the DSS shall be conducted in more real-case situations to fully validate
our approach.
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Abstract. The Brazilian population increase and the purchase power
growth have resulted in a widespread use of electric home appliances.
Consequently, the demand for electricity has been growing steadily in
an average of 5 % a year. In this country, electric demand is supplied
predominantly by hydro power. Many of the power plants installed do
not operate efficiently from water consumption point of view. Energy
Dispatch is defined as the allocation of operational values to each tur-
bine inside a power plant to meet some criteria defined by the power
plant owner. In this context, an optimal scheduling criterion could be
the provision of the greatest amount of electricity with the lowest pos-
sible water consumption, i.e. maximization of water use efficiency. Some
power plant operators rely on “Normal Mode of Operation” (NMO)
as Energy Dispatch criterion. This criterion consists in equally divid-
ing power demand between available turbines regardless whether the
allocation represents an efficient good operation point for each turbine.
This work proposes a multiobjective approach to solve electric dispatch
problem in which the objective functions considered are maximization
of hydroelectric productivity function and minimization of the distance
between NMO and “Optimized Control Mode” (OCM). Two well-known
Multiobjective Evolutionary Algorithms are used to solve this problem.
Practical results have shown water savings in the order of million m3/s.
In addition, statistical inference has revealed that SPEA2 algorithm is
more robust than NSGA-II algorithm to solve this problem.
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1 Introduction

The demand for electricity is one of the key emerging issues in current energy
management in Brazil. According to the annual report of Brazilian Energy Plan-
ning Company (“Empresa de Planejamento Energético” - EPE, in Portuguese),
the share of renewable energy in electricity mix has dropped to 79.3% in 2013
due to unfavourable hydrological conditions despite owning the most diverse and
extensive river networks from around the world. Consequently, thermal gener-
ation has taken over which has resulted in increased CO2 emissions and a less
environmentally friendly generation mix. Fig. 1 shows a comparison between gen-
eration of electric power in Brazil in relation to the World and OECD member
countries.

Fig. 1. Comparing energy generation matrix - 2013 (Source: EPE, Brazil)

This comparison reveals that Brazil has an advantage regarding the use of
renewable energy over the rest of the World. Also notable is the reduction in
renewable energy use between years of 2012 and 2013. This was caused by a
widespread drought in 2013 causing thermal power plants to be called for pro-
duction in order to maintain domestic demand for electricity. Hence, proper use
of water resources is now an emerging topic in Brazil to guarantee that power
system remains sustainable in future years.

The optimal scheduling of hydroelectric power plants (HPP), which are com-
posed by several turbines, pipes turbines and connected electric generators or, in
simple terms, generation units, is known as the hydro unit commitment problem.
The objective consists in determining which generation units need to be on and
their respective electric power set-point (in MW) so that overall hydroelectric
power plant operation cost is minimized while meeting with the power required
to be produced by the whole plant and satisfying the constraint set.

Electric power set-points are defined to each available generation unit at the
hydroelectric plant, given some criteria to be met, such as operating limits, etc.
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This last problem, which is named as energy dispatch optimization problem,
can only be solved if the production model for the whole hydroelectric plant
is available. The majority of hydroelectric plants operators in Brazil equally
distribute total power required to be produced by the plant among the available
units. In this paper this will be referred as the “Normal Mode of Operation”
(NMO). However, one cannot say that this simple dispatch criterion presents a
good operation point for each unit since it does not take into account whether
each unit will be operating close to its optimal operational point or not. The
problem of finding optimal distribution of power demand among units of a power
plant is complex, due to non-linearities of the productivity function and the high
number of continuous and discrete constraints involved.

1.1 State of the Art

Several optimization techniques to improve energy production efficiency in power
systems were discussed in [1]. That study was motivated by the signing of Kyoto
Protocol by European Union in 1997 which has led to the definition of 2020
climate and energy package commonly known as “20-20-20” targets. Accord-
ingly, researchers have sought to find new methods and to use new optimization
techniques to improve EU’s energy efficiency in 20% by 2020, which is one of
the goals of that agreement. Some of the techniques described in [1] are: Search
Algorithms, Evolutionary Algorithms, Simulated Annealing, Tabu Search, Ant
Colony Optimization, Particle Swarm Optimization (PSO), Genetic Algorithms
(GA) and Evolutionary Programming. Among them, GA is recommended to
minimize energy losses and to maximize efficiency.

Baños [2] conducted a review of metaheuristic-based optimization techniques
that have been applied so far to solve renewable energy optimization problems.
The main conclusion of his survey is that the number of scientific papers that
used metaheuristics to solve these problems has dramatically increased over the
last few years. However, he has also reported that, in many cases, computa-
tional cost of using these methods is high even when using parallel processing
techniques.

Finardi [3] proposed a new mathematical model for long-term planning of
hydroelectric power plants. Linear programming was used to solve the problem
of energy dispatch. This approach was shown to have a high computational cost
which makes this model infeasible to be used for real time Energy Dispatch.
Despite of the interesting results obtained, the author has not clearly discussed
how important variables of the production function were discarded making the
model very difficult to be understood and validated.

Abrao [4] proposed to use an artificial neural network to model the produc-
tion function of a single generation unit. The author solved short-term planning
problem, which consists on defining the respective dispatch of each generation
unit for a specific period of time,using a version of Differential Evolution (DE)
algorithm and a version of a PSO algorithm. However, computational cost of
this solution is relatively high.
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Marcelino [5] proposed a new mathematical model to solve HPP energy dis-
patch problem using DE. He showed that evolutionary strategy DE/best/1/bin
is the most efficient for solving the mono-objective version of this problem. This
model proved to be efficient and provided very promising results.

The research work reported in [6] shows the application and multiobjective
algorithms to solve the classic electrical dispatch problem. The test case used,
which is based on IEEE 30-bus system, comprises thermal and hydro units.
Results indicate that SPEA algorithm achieved the best results compared to
algorithms NSGA and NPGA, where the goals are to minimize carbon emissions
and to minimize production cost.

Zhou [7] proposes a new multiobjective algorithm, which is named Multiple
Group Search Optimizer (MGSO), to solve the classic electrical dispatch problem
for IEEE-30 bus and IEEE 118-bus systems. The objectives are to minimize
carbon emissions and production cost of power plants. Practical results of MSGO
proved to be competitive when compared to results of NSGA-II and SPEA2.

This work proposes a multiobjective approach to solve energy dispatch prob-
lem in HPP using a mathematical model very similar to the one proposed in [5].
For this purpose, two objective functions are defined: maximization of hydro-
electric production function of whole HPP and minimization of distance between
“Normal Mode of Operation” (NMO) and “Optimized Control Mode” (OCM).
Note that OCM is the outcome of former objective. The latter objective is very
interesting from practical point of view. Usually, HPP operators are not used to
employ OCM and sometimes they can be restrictive. Moreover, from experience,
the maintenance cost of the turbine set will be increased since some components
can be subject to more wear reducing the turbine lifetime. As a case study, the
proposed approach is applied to a large HPP operating in Brazil.

The paper is organized as follows: Section 2 describes the problem of Energy
Dispatch in HPP; Section 3 presents the multiobjective problem proposed and
algorithms used to solve it; Section 4 shows the case study, outcome of experi-
ments and a simple comparative statistical analysis between different algorithms
used; Section 5 presents final conclusions.

2 Multiobjective Problem

A multiobjective problem is characterized by having two or more objective func-
tions, which are generally self conflicting. This type of problem does not have
a single solution but a set of optimal solutions. A multi-objective optimization
problem can be formulated as:

x∗ = minx f(x)

subject to:
{
gi(x) ≤ 0; i = 1, 2, · · · , r
hj(x) = 0; j = 1, 2, · · · , p

(1)

in which x ∈ R
n, f(·) : R

n → R
m, g(·) : R

n → R
r, and h(·) : R

n → R
p.

Functions gi(x) and hj(x) are, respectively, inequality and equality constraints.
Vectors x ∈ R

n are called parameters of the multiobjective problem and belong
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to a parameter space. Vector function f(x) ∈ R
m belongs to a vectorial space

called objective space.
In multobjective problems, there is not a single solution which is best or

global optimum with respect to all objectives. Presence of multiple objectives in
a problem usually gives rise to a family of non dominated solutions, called Pareto-
optimal set, where each objective component of any solution along Pareto front
can only be improved by degrading at least one of its other objective components.

Given two solutions, x and y, it is said that x dominates y (denoted x � y)
if following conditions are met:

1. The solution x is at least equal to y for all objective functions;
2. The solution x is better than y for at least one objective.

2.1 Evolutionary Multiobjective Algorithms

Studies related to evolutionary multiobjective algorithms date back to 1980s.
The first algorithm of this class based on Pareto Front was proposed in early
1990s and is named as Multiobjective Genetic Algorithm (MOGA) [8]. After this,
some other algorithms have emerged: Niched Pareto Genetic Algorithm (NPGA)
[9], Nondominated Sorting Genetic Algorithm (NSGA) [10] (and its evolution
NSGA-II [11]) and Strength Pareto Evolutionary Algorithm (SPEA) [12] (and
its evolution SPEA2 [13]). Since then, several other evolutionary multiobjective
algorithms were proposed and published. A general evolutionary multiobjective
algorithm can be run by the following pseudocode:

Step 1. Initialize population;
Step 2. Q(t=0) = q1. . . qμ;
Step 3. Initialize population of archive A(t=0) = 0;
Step 5. While (⇁ stop criteria) do

1. P(t) ← Q(t);
2. S(t) ← selection (P(t));
3. R(t) ← crossover (S(t));
4. Q(t) ← mutation (R(t));
5. A(t) ← file update (Q(t), A(t));
6. t ← t + 1.

This paper uses well-known evolutionary multiobjective algorithms, NSGA-II
and SPEA2, to solve the proposed problem.

3 The Problem of Electric Dispatch

The electricity production of HPP is result of a process of potential and kinetic
energy transformations. The potential energy stored in reservoir is transformed
into mechanical energy by the turbine through its shaft, which, in turn, is
transmitted to a electric generator unit. The electrical generator transforms
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mechanical energy into electrical energy. The power produced goes through col-
lector electrical substation and is injected in transmission system to be delivered
to consumption centres. A turbine-generator set has a specific hydraulic curve
which characterizes its efficiency according to specific water flow and reservoir
net head. This curve is called Hill Curve or Efficiency Curve, see Fig. 2.

Fig. 2. Hill Curve example [5]

The efficiency curve contains important information to be considered when
planning a HPP operation. Given this, it is possible to extract operating limits of
turbine-generator set, allowable range for net head in the dam, and also minimum
and maximum points of efficiency, where the point of maximum efficiency is in
the center of its contours.

From this, one can easily understand that the efficiency curve must be taken
into account to ensure power generation with minimal use of water resources
while considering operational constraints of a hydroelectric plant. This optimiza-
tion problem can be characterized as the maximization of electricity production
efficiency of whole HPP. In other words, the solution of this problem aims to
generate more power with minimal water discharge needed.

3.1 Mathematical Modeling of Power Productivity

This section presents brief summary of the mathematical model that describes
the energy dispatch problem HPP, which has been discussed in Marcelino’s [5]
work. Table 1 describes model parameters.

The equation which defines production of energy, in general, can be described
according to Eq. (2),

phjt = g · ηjt · hljt · qjt. (2)
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Table 1. Parameters used in model

Parameter Description

phjt is power generated by unit j at time t

g is acceleration of gravity

ηjt is global efficiency of unit j at time t

hljt is net water head of unit j at time t

qjt is water discharge of unit j at time t

Hbt is hydraulic head of the reservoir

ΔHjt is sum of pen-stock losses

ρ0j ...ρ5j are coefficients obtained from the Hill Curve

Dm is requested demand (MW )

qjtmin is minimum water discharge

phmin
jk is minimum power

qjtmax is maximum water discharge

phmax
jk is maximum power

Zjk is operative zone of a generator unit

qcc is total water discharge in normal mode of operation

Having that in mind and assuming that the model presented in this work is
the best representation for a power plant which uses Kaplan generators, as in
the case study, power production performed by an hydroelectric unit, in MW,
can be calculated by Eq. (3),

phjt = g · [ρ0j + ρ1jhljt + ρ2jqjt + ρ3jhljtqjt+ (3)

ρ4jhl2jt + ρ5jq
2
jt] · [Hbt − ΔHjt] · qjt.

Table 2 presents coefficients obtained by a multi-variable regression process,
representing 99% of accuracy, see [5].

Table 2. Efficiency Coefficients

Coefficient Value

ρ0j 1.4630e-01

ρ1j 1.8076e-02

ρ2j 5.0502e-03

ρ3j -3.5254e-05

ρ4j -1.1234e-03

ρ5j -1.4507e-05

3.2 Multiobjective Optimization Model

According to the mathematical model presented so far, the problem multiobjec-
tive goals are to maximize the hydroelectric productivity function (4), which is
derived from the electric power function (3), and to minimize distance between
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NMO and OCM in function (5). The optimization variables are water flow rate
of each generation unit in the following vector,

x = [q1t, q2t...qjt].

and the bi-objective problem can be described as

Maximize F1(x) =

∑J(r)
j=1 phjt

∑J(r)
j=1 qjt

, (4)

Minimize F2(x) =

√√√√
J(r)∑

j=1

(qjt − qcc)2 (5)

subject to:

J(r)∑

j=1

phjt
∼= Dm, qjtmin ≤ qjt ≤ qjtmax,

phmin
jk

∅j∑

k=1

Zjk ≤ phjt ≤ phmax
jk

∅j∑

k=1

Zjk,

Zjk ∈ {0, 1},

∅j∑

k=1

Zjk ≤ 1.

The first objective function determines how much power the plant is able
to produce with a given volume of water. Maximizing this function means to
produce more power using less water. The numerator of F1 is the production
function: as this number increases, objective function value also grows. When
the denominator of F1 is decreased, productivity ratio is also reduced. This
function is subject to operational constraints, i.e., the sum of all generation units
production must be equal to total power demand required to be produced by
the HPP. Power production must also comply with generation units operational
limits, represented by inequality constraints of objective function.

The second objective function, F2, measures distance between water dis-
charge used in NMO and water discharge used in OCM. This function was pro-
posed because, in practice, the plant technical operation staff has the predilection
for using NMO. This function shows that there are operation points in OCM
which are closer to NMO but still ensure the maximization of energy production
efficiency. This contributes to a new culture development by the HPP operation
staff, increasing their confidence on OCM.

The first constraint indicates that power to be delivered should be equal to
power requested to be produced by the HPP. The second constraint states that
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calculated flow rate must comply with the minimum and maximum flow capac-
ity of each generation unit. The third constraint requires that the corresponding
generated power must comply with the minimum and maximum power capacity
of each generation unit. At last, the fourth constraint ensures that each gener-
ation unit maintains its operating status, i.e. it stays ON or OFF during the
whole production period.

4 Experiments

As a computational simulation test, this paper proposes as test scenario a HPP
in Brazil with nominal installed capacity of 396MW . The HPP has in its pow-
erhouse 6 power generators. Water discharge varies between [70,140] m3/s and
power generators are operating in [35,66] MW range. The plant value of Hb
ranges between [32,56] m. All generation units are considered identical, so Hill
Curve coefficients are the same for each unit. Two experiments are presented to
validate the adopted multiobjective approach.

The first experiment aims to compare and to analyse the value found in
mono-objective approach proposed by Marcelino [5] (the solution was found via
a Differential Evolution algorithm [14]) and results found in proposed multi-
objective approach. The second experiment aims to assess Pareto front quality
obtained by NSGA-II and SPEA2 algorithms. Initialization parameters of both
multiobjective algorithms are: population size (50 individuals), crossover prob-
ability (80%), mutation probability (2%) and iterations (50 generations).

4.1 Experiment 1

The main goal of this experiment is to verify if the mono-objective solution
presented in [5] is a reasonable solution for the multiobjective approach solved
via NSGA-II and SPEA2. For that, a demand of 320MW is established, since
this is a typical demand of the HPP. The reservoir hydraulic head, Hb is set to
54m.

Fig. 3 shows that there is a point, belonging to Pareto Front obtained by
NSGA-II and SPEA2, which is very close to the result reported by DE/best/1/
bin [5].

A simulation report for DE/best/1/bin, NSGA-II and SPEA2 is shown in
Table 3. This table presents results for the best individual obtained by total
water flow (qjt) and, using these values, other parameters are calculated from
the mathematical model.

As a comparison to multiobjective optimization results, resulting power pro-
duction per unit would be 53.33MW per unit if NMO is used, which corresponds
to a global water flow rate of 655.05m3/s. In this context, the productivity of
NMO for this experiment is 0.48. The value found by DE algorithm after max-
imizing productivity is 0.4906 (DE/best/1/bin). Thus, DE/best/1/bin config-
uration achieves higher productivity rate than NMO and consequently higher
economy of water discharge, corresponding to a water flow rate of 2.54 m3/s.
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Fig. 3. Pareto Front to 320 MW

For the solution point obtained using SPEA2, water flow economy is even bet-
ter with 6.14 m3/s whereas water flow rate is 5.66 m3/s for case of NSGA-II.
Expanding to one month, this is equivalent to saving approximately 6.5
million m3 of water using mono-objective approach, 14.4 million m3 of water
using the solution of NSGA-II and 15.7 million m3 of water using the solution
of SPEA2 algorithm.

According to [15], monthly water consumption for a city of 300,000 inhab-
itants is, on average, 1.1 million m3. Belo Horizonte, which is the 6th biggest
Brazilian city, has a population of 2.4 million habitants. In a simple analogy,
15.7 million m3 is sufficient to supply the city of Belo Horizonte for almost 2
months, on average. It is also easy to check that, in OCM operation, all units
reached maximum efficiency of 93% by using determined water flow rate.

4.2 Experiment 2

In this experiment, NSGA-II and SPEA2 are executed for 30 times each, and
a combined Pareto Front is generated for each algorithm. After that, a domi-
nance routine is applied to generate the final Pareto Front for power demand of
320MW . Fig. 4 shows the final Pareto Front for NSGA-II and SPEA2.

Note that the multiobjective approach presents several solutions for the prob-
lem. The Pareto optimal set indicates different solutions among NMO (charac-
terized as the lowest point of the Pareto Front) and OCM (other points on
Pareto front). The solution set has an important role in operational scope since
the HPP operation team can realize the OCM is not far, in terms of water dis-
charge, from NMO. In this way, it is shown that OCM is a type of control that
can be used without harming departing from current operational practises. This
leads to optimization technique usage acceptance in industrial environment.
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Table 3. General Simulation Report for a Power Demand of 320 MW

Mono-objective algorithm: DE/best/1/bin — (Hb) = 54m — [5]

UN phjt (MW ) qjt (m3/s) ηjt (%) hljt (m) ΔHjt (m)

1 48,763 99,441 0,93 53,804 0,19595

2 54,589 111,26 0,93 53,836 0,16354

3 55,81 113,74 0,93 53,839 0,16103

4 56,429 115,00 0,93 53,841 0,15925

5 53,122 108,26 0,93 53,841 0,15925

6 51,438 104,83 0,93 53,839 0,16103

SUM 320,15 652,51 Flow in SCM: 655,05 (m3/s)

DIF +0,15 2,54 Productivity index: 0.4906

Multiobjective algorithm: SPEA2 — (Hb) = 54m

UN phjt(MW ) qjt(m
3/s) ηjt(%) hljt(m) ΔHjt(m)

1 53,475 108,274 0,93 53,759 0,24149

2 54,229 109,805 0,93 53,798 0,20155

3 53,363 108,047 0,93 53,802 0,19845

4 53,325 107,971 0,93 53,804 0,19625

5 52,891 106,094 0,93 53,804 0,19625

6 53,182 108,110 0,93 53,802 0,19845

SUM 320,467 648,903 Flow in SCM: 655,05 (m3/s)

DIF +0,46 6,14 Productivity index: 0.4936

Multiobjective algorithm: NSGA-II — (Hb) = 54m

UN phjt(MW ) qjt(m
3/s) ηjt(%) hljt(m) ΔHjt(m)

1 52,221 105,747 0,93 53,796 0,20377

2 51,751 104,804 0,93 53,83 0,17007

3 51,976 105,255 0,93 53,833 0,16745

4 55,687 112,787 0,93 53,834 0,1656

5 54,457 110,269 0,93 53,834 0,1656

6 54,358 110,526 0,93 53,833 0,16745

SUM 320,452 649,390 Flow in SCM: 655,05 (m3/s)

DIF +0,45 5,66 Productivity index: 0.4935

5 Statistical Analysis

5.1 ANOVA

Analysis of variance (ANOVA) is a statistical technique that evaluates hypothe-
ses about several populations means and variances. This analysis evaluates pri-
marily if there is a significant difference between the mean and the influence
factors on some dependent variable. In this way, ANOVA is used when one wants
to decide if sample differences are real (i.e., caused by significant differences in
observed populations) or casual (resulting from mere sampling variability) [16].
Therefore, this analysis assumes that chance only produces small deviations,
the major differences being generated by real causes. The null and alternative
hypotheses to be tested by ANOVA here are:
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Fig. 4. Comparison between combined Pareto Fronts

– Null hypothesis H0: populations means are equal;
– Alternative hypothesis H1: populations means are different, i.e. , at least one

of the means is different from the others.

To perform ANOVA hypothesis test, previously tested power demand (320
MW ) is used in 30 runs of NSGA-II and SPEA2 algorithms. For each run,
the obtained Pareto Front quality is assessed using S-Metric, and the mean
value of S-Metric is obtained for each result. S-Metric is a commonly accepted
quality measure for comparing approximations of Pareto fronts generated by
multiobjective optimizers [12]. This metric calculates hypervolume of a multi-
dimensional region enclosed by β and a reference point, thus calculating the
region extent that β dominates. Table 4 shows results of ANOVA. Since the
obtained P-value is 0.0008, the hypothesis of equality between NSGA-II and
SPEA2 S-Metric means is rejected with statistical significance of 95%.

Table 4. Reports by Analysis of variance

ANOVA

Source SS dF MS F Prob>F

Columns 8.1496 1 8.14963 12.48 0.0008
Error 37.8698 58 0.65293
Total 46.0194 59

Despite the indication of ANOVA that there is a significant difference between
the S-Metric values for the algorithms, it is not possible to say which algorithm is
the best one when the S-Metric values are compared. Since the statistician often
disagree over the efficiency of pairwise comparison method, two tests, Tukey and
Permutation tests, are used to determine which algorithm has a higher S-Metric
value.
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5.2 Tukey and Permutation Tests

Given its ability to analyse multiple data sets, this study used ANOVA with
Tukey test to find some information that differentiates the algorithms men-
tioned above. This statistical method can be interpreted as a comparison of
means between different groups, with variance between all individuals within
those groups. Tukey’s strategy is to define the least significant difference between
means. The hypothesis to be considered in this test is the equality of data sets
series results and adopted a confidence interval of 95% [17]. Permutation tests
are non-parametric statistical methods which estimate a reference distribution
by calculating all possible values (or at least a considerably large set) of a test
statistic under rearrangements of labels on a set of observed data points [17].
The mean difference between S-Metric values, NSGA-II - SPEA2, is used in this
test. Fig. 5 and Fig. 6 shows results of the performed Tukey and Permutation
tests.

Fig. 5. Left: Tukey test results

Tukey test shows that there is a difference between sets of data tested indi-
cating that, on the mean, the SPEA2 algorithm has higher value of S-Metric
with 95% confidence.

Fig. 6. Permutation test results
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Permutation test confirms this information by the fact that the average value
represented by the observed mean difference (“black ball”) is outside the confi-
dence interval tested, indicating that the data sets are different. This proves that
SPEA2 solves the multiobjective energy dispatch of HPP problem better when
compared to NSGA-II. It is worthwhile to notice that both SPEA2 and NSGA-
II showed superior results to those found in mono-objective approach using DE
algorithm, as shown in Table 3.

6 Conclusion

This paper presented a multiobjective approach to solve the energy dispatch
problem of Hydroelectric Power Plants using NSGA-II and SPEA2 algorithms.
Results of practical experiments indicate that it is possible to identify operating
points near NMO that present high productive efficiency. In one experiment, a
selected point in Pareto Front with power demand of 320 MW showed a produc-
tivity index equal to 0.4936. This point is very similar, in both objective func-
tions, to results found in previous mono-objective approaches, granting reliability
to the results and indicating a saving in energy production of 15.7 million m3 of
water using SPEA2. This amount of water is able to supply a city of 2.4 million
people for 2 months. The water savings are relevant with economic, environ-
mental and social implications. Through statistical inference, it was possible to
see that SPEA2 algorithm is shown to have greater robustness than NSGA-II
algorithm to solve this problem. To conclude, it is important to mention that
OCM approach can be easily adapted to run inside other kinds of plants, similar
to HPP case study discussed here, as it is a generalist approach.
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Abstract. I3FR (Intelligent Fresh Food Fleet Router) is a project in
development by the University of the Algarve and X4DEV, Business
Solutions. One of the I3FR’s main goals is to build a system for the
optimization of the distribution of fresh goods using a fleet of vehicles.
The most similar problem in literature is the well established and experi-
mented Vehicle Routing Problem with Time Windows, which is by nature
a multiple objective problems where the number of vehicles and the total
traveled distance must be minimized.

In this paper we propose a hybrid variant of the Push Forward Inser-
tion Heuristic with post optimizers, with the intention of achieving good
solutions under 10 seconds using a commodity computer. We show that
it is possible to obtain solution with “fair errors” when compared with
the best solutions of a well known benchmark.

Keywords: VRPTW · Hybrid PFIH · Commodity computers

1 Introduction

I3FR (Intelligent Fresh Food Fleet Router) is a project in development by the
University of the Algarve and X4DEV, Business Solutions. One of the I3FR’s
main goals is to build a system for the optimization of the distribution of fresh
goods. The system will be integrated with an existing ERP, namely the SAGE
ERP X3 [1], and will compute routes between the delivery points using cartog-
raphy informations.

The most similar problem to the one to be solved is the Vehicle Routing
Problem with Time Windows (VRPTW), common to the majority of the distri-
bution fleets. In its simplified form, the VRPTW can be stated as the problem
c© Springer International Publishing Switzerland 2015
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of designing an optimum set of routes that deliver a set of goods, to a set of
costumers, within predefined time windows.

In more detail, the objective is to compute routes from one or more depots
that visit each costumer once, within given time intervals, without violating
the vehicles capacities. Several approaches were made in the past regarding the
VRPTW. While there are methods which can solve instances of the Travelling
Salesman Problem (a subproblem of the VRP) with a few thousand nodes, the
VRP shows to be much harder to be solved exactly.

The problem is intrinsically a multi-objective problem. As expectable the
multi-objective optimization instances of the VRP are even harder than the sin-
gle objective. This combinatorial problems, as well as the majority of the multi-
objective optimization problems (see for example the Multiple Objective
Minimum Spanning Trees problem case in [3,4,13]) are classified as NP-complete
and even, in some cases, NP-# [9,12]. Academic papers and the majority of
the know libraries of problems, consider firstly the minimization of the necessary
number of routes, followed by the total travel distance. In [6] a study is conducted
taking into consideration conflicting relationships between 5 objectives: number of
vehicles, total travel distance, makespan, total waiting time, and total delay time.
The same work addresses real scenarios, where consideration like the traveled dis-
tance vs. traveled time are made, unlike the common datasets which consider that
an unit of distance (generally computed as Euclidean) always corresponds to a
time unit (e.g., [23]). Other objectives and constraints arise in real problems. For
instance, in the distribution of frozen, refrigerated and fresh goods it may be
important to minimize the distribution time (correlated with the traveled dis-
tance) since maintaining the temperature inside the refrigerated compartments
ads significant costs, associated with the consumption of fuel to keep the dedicated
freezing engines working. In this sense, a method that minimizes not only the fixed
costs for dispatching vehicles, but also the transportation, inventory, energy and
penalty costs for violating time-windows is presented in [14]. The same work dis-
cusses the time-dependent travel and time-varying temperatures, during the day,
which led to the modification of the objective functions as well as the constraints.
In [7] a mathematical model is presented which combines production scheduling
and vehicle routing with time windows for perishable food products. The objective
of the model is to maximize the expected total profit of the supplier by optimiz-
ing the optimal production quantities, the time to start producing and the vehicle
routes. In [10] the authors develop the MIXALG method as a way of solving rout-
ing problems with moderated size. The good behavior of the method was verified
by its application to a real logistic problem.

The use of heuristics and meta-heuristics is therefore a common solution to
solve problems of the VRP class (namely in the fresh goods deliveries). The
problem in study has an extra constraint: the solution should be achieved in
near real time since costumers tend to send their orders very near to the loading
time of the vehicles. In some extreme cases the orders are even made after the
beginning of the vehicle’s loading, which on those cases will not be unloaded.
These last minute orders are then engaged in an existing route, or into a new
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one if they are not engageable without violating feasibility (e.g., time windows
or vehicles capacity).

Recent solutions to solve the problem include the use of meta-heuristics such
as Genetic Algorithms, Ant Colony Optimization algorithm, among others [2,8,
11,16,18,19,24]. However, the time required by these methods is a major problem
when we take our premises into consideration, namely that good solutions should
be achieved fast. Besides, many of these meta-heuristics do not scale well.

In this paper we present a solution which integrates an ERP with an opti-
mization module communicating through a web services. Data comes from a local
database. To solve the problem in under 10 seconds, we propose an adapted Push
Foward Insertion Heuristic with extra operators. In those operators we include
a seed procedure to start building the routes, the well known 2-Opt and cross
routes operators, and we adapt the radial ejection operator to a band opera-
tor. The results show that for the majority of cases, good solutions (in some
cases, the best known in literature) are achievable in less than 10 seconds using
a commodity computer.

The paper is structured as follows. Section 2 presents the formulation of the
problem. The proposed variations to the PFIH method are presented in Section 3.
Results, conclusions and future work are presented in the last two sections.

2 Problem Formulation

A solution of an instance of the VRPTW is a set of routes which serve a set of
costumers, using a set of vehicles, within costumers and depots time windows,
and without exceeding the vehicles capacities.

Mathematically, we have considered an instance of the VRPTW composed
by a set of locations L (partitionable in two sets: costumers, C, and depots, D),
and distances d(i, j) ∈ IR and times t(i, j) ∈ IN between each pair of locations
i, j ∈ L. Furthermore, each vehicle has a capacity q, and each customer, i,
has associated a time window [ai, bi] (time interval in which the costumers are
available or wish to receive their orders), a service time si and a demand di
(volume), for i ∈ C.

A solution of the VRPTW is composed by set of m routes, Ti = (li,1, li,2, li,3,
. . . , li,mi

) with i ∈ {1, 2, . . . ,m}, such that li,1 = li,mi
∈ D is a depot (i.e., a

route starts and ends at the same depot), li,2, li,3, . . . , li,mi−1 ∈ C are cos-
tumers, and a costumer is served by a single route ({li,2, li,3, . . . , li,mi−1} ∩
{lj,2, lj,3, . . . , lj,mj−1} = ∅, i �= j).

The problem also has a set of restrictions. The feasible routes take into con-
sideration the travel time between costumers and the associated service time,
such that (1) each vehicle leaves and arrives at the depots in their time windows,
and (2) reaches the customers also within their time windows (or before the time
window opening, forced in this case to wait until the opening moment). In this
formulation it is assumed that the vehicles are allowed to wait at the delivery
site and the wait has no cost, except for time. Another restriction states that
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(3) the capacity of the vehicle should not be exceeded, i.e.,
∑

l∈Ti−{li,1,li,mi
}
dl ≤ q, i ∈ {1, 2, . . . ,m}.

Taking the previous formulation into consideration several criteria can be
optimized, e.g.: (1) Minimize the total number of vehicles required to achieve
the service within the restrictions; (2) Minimize the total traveled distances
(i.e., the sum of the distances made by each vehicle); (3) minimize the difference
between the longest and shortest route; or (4) maximize the minimum load of
the vehicles. The first two objectives are common to the majority of the datasets,
as already mentioned. The third and fourth objective try to produce balanced
routes, in terms of the workers effort and vehicles occupancies.

Particularly in this work, we will consider the first three objectives.
In the next section we will explore a set of heuristics keeping in mind the

achievement of solutions in limited time.

3 Algorithmic Approaches

Is this section we will describe the methods used in this work. Starting with the
definitions of methods already established in literature, we will propose some
variations and improvements that were tested. The established methods give us
an upper bound for our results.

3.1 Adapted Push Forward Insertion Heuristic

The Push Forward Insertion Heuristic (PFIH) is a greedy constructive heuris-
tic [23,27] proposed by M. Solomon. The method has been implemented and
tested by several authors [20,25,26,28]. In general, the PFIH tour-building pro-
cedure sequentially inserts costumers into the solution. Our option of implemen-
tation consists in the simultaneous construction of the routes. The overall steps
are described in Algorithm 1.

The Algorithm’s Step 4 requires the computation of the PFIH cost to set the
order in which the costumers are inserted in the solution. The i-costumer’s cost,
PFIHCosti, was defined as

PFIHCosti = −αd(i, o) + βbi + γθi
d(i, o)
360

+ λ(bi − ai)−1, i ∈ C (1)

where d(i, o) is the distance between costumer i and the depot, ai, bi are respec-
tively the lower and upper limit of the i-costumer’s time window, θi is the polar
angle for costumer i (considering the origin at the depot), and α, β, γ and λ are
parameters such that α + β + γ + λ = 1. Different α, β, γ and λ values allow to
give more or less importance to formula parcels, resulting in distinct orderings
of the costumers. For instance, large values of α will prioritize the insertion of
costumers near the depot. Larger values of β will make costumers with earlier
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Algorithm 1. Adapted Push Forward Insertion Heuristic Algorithm
Step 1. Instantiate an empty set of routes, S, which will contain the final solution.
Step 2. Optionally, seed S by starting a predefined number of routes (see Section 3.2)
Step 3. If all costumers were placed in a route go to Step 8;
Step 4. For all non inserted customers compute their PFIH cost and choose the one

with smallest value.
Step 5. If S is empty, start a new route (depot-customer-depot) and add it to S. Return

to Step 3.
Step 6. Try to insert the costumer into an existing route in S, minimizing the traveled

distance and taking into consideration the constraints (time windows and vehi-
cle capacities). If the insertion of the costumers is impossible without violating
the constraints, start a new route (depot-customer-depot) and add it to S.

Step 7. Update the distances, delivery times and vehicle capacities. Return to Step 3.
Step 8. Stop the procedure and return the built solution.

closing window preferable. Larger values of γ will make preferable the insertion
of the costumers in a circular spanning mechanism (like a “radar”). Finally,
larger values of λ will prefer costumers with smaller time windows to be inserted
first. Using Eq. (1) it was possible to set the order in which the costumers were
inserted in the building of the solutions.

Some considerations include the fact that this might be a good approach to
insert late costumers demands, in a dynamic situation, and that it can be used
to produce a set of relatively good solutions to be used in a meta-heuristic (e.g.,
initial population of a Genetic Algorithm).

3.2 Seeding the Solutions

Step 2 of Algorithm 1, optionally, starts a predefined number of routes. Since
the PFIH is capable of inserting nodes in any position of the routes, provided
feasibility, it is possible to create a partial solution a priori, i.e., before the exe-
cution of the algorithm. However, the creation of the partial solution shouldn’t
be randomly generated.

Given the customers’ demands,
∑

i∈C di, and the vehicles capacity, q, it is
possible to estimate the minimum required number of routes to solve the problem
by making a simple math division. This estimation of the number of routes is a
lower bound since time restrictions and possible temporal conflicts are not taken
into account. The PFIH algorithm (Step 6 of Algorithm 1) will latter take those
conflicts into account and solve them by starting new routes if necessary.

Once the number of initial routes is computed it is necessary to choose a set of
costumers and assign them to the new routes, of the type (depot, customer, depot).
Our proposal consists in consecutively choosing the farthest from all the routed
customers to start a new route. On other words, the first customer to be given a
new route is the one farthest away from the depot, c1 = arg maxi∈C d(depot, i).
The second route will be started with the customer farther away from the depot
and the customer in the first route, c2 = arg maxi∈C−{c1} d(depot, i) + d(c1, i).
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Algorithm 2. Seeded partial solution
Require: Set of costumers (C), depot, distance function (d(·, ·)), vehicle capacity (q)

and costumers demands (di)
Ensure: Partial Solution, S
1: S ← ∅ � Set of routes
2: C′ ← {depot} � Set of “served” costumers

3: numberOfRoutes ←
⌈∑

i∈C di
q

⌉

4: for i ∈ {1, 2, . . . , numberOfRoutes} do
5: farthestNode ← arg maxi�∈C−C′

∑
j∈C′ d(j, i)

6: C′ ← C′ ∪ {farthestNode}
7: S ← S ∪ {(depot, farthestNode, depot)}
8: end for

The n− th customer to be given a route will be the one farthest away from all the
previous “served” customers,

cn = arg max
i�∈C−C′

⎛

⎝d(depot, i) +
∑

j∈C′
d(j, i)

⎞

⎠ ,

where C ′ = {c1, c2, . . . , cn−1}. The process is summarized in Algorithm 2.
Once the partial solution is built, the adapted PFIH will complete the solu-

tion by inserting the remaining customers, as each client is evaluated and inserted
in a route where the insertion causes the minimum increment of the total dis-
tance and feasibility is satisfied. Figure 1 sketches on the left an instance with 101
nodes of the Solomon’s benchmark [22,23] (“clustered” type), while on the right
is shown the partial solution obtained with the previously described process.

Fig. 1. Partial solution obtained using the seed method

A simple test set was developed to study the performance of the PFIH algo-
rithm with and without a partial initial solution . The obtained results have
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(a)

Fig. 2. 2-Opt post optimization operator

shown that the creation of a partial solution, especially in clustered cases as
shown in Fig. 1, by the Algorithm 2 and the subsequent use of it in PFIH algo-
rithm considerably improves the quality of the solution (see Section 4).

3.3 Post-PFIH Improvement Methods

Once the extended PFIH algorithm is executed, a feasible solution is produced
which, in most cases, can be optimized by post-optimization methods. Due to
the multi-objective nature of the problem the post-optimization operators (can)
have different goals, namely to reduce the total distance, the number of routes,
or the maximum time difference between routes. The remainder of this section
will expose some of the tested operators.

Intra Route Operator (2-Opt). An intra route operator, as the name sug-
gests, performs operations on a single route. One of the most commonly used
operators from this set of methods is the 2-Opt operator (see Fig. 2). This oper-
ator iterates through all routes, one by one, and tries to rearrange the sequence
by which the customers are visited in order to reduce the route distance, main-
taining feasibility [5].

Inter Route Operator (Cross Operator). The inter route operators perform
a set of operations over two or more routes in order to reduce the total distance
of the VRPTW solution. In general, these methods reallocate a customer or
a set of customers from one route to another. The used method is similar to
the One Point Crossover operator of the Genetic Algorithms [17]. This method
receives two paths as input, and tries to find a cross where the routes can be
crossed improving the total distance and without loosing feasibility. The method
is sketched in Fig. 3. Although not considered, a multi-point cross operator can
be implemented using the same strategy.

Reduce Number of Routes Operators (Costumers Ejection). The pre-
vious operators are capable of diminishing the total distance, i.e., doing route
optimization. However, they are not capable of reducing the number of routes
present in the original solution. Adapted, they could also be used to reduce the
maximum time difference between routes.
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(a)

(b)

Fig. 3. Cross operator: (a) original solution and (b) returned solution

In order to reduce the number of routes, another set of methods, based on
the ejection of customers, was implemented. The ejection of customers consists
in their removal and possible reinsertion in other routes, without violating the
problems’ constraints. Several hypotheses arise on how to select the ejected cus-
tomers. A naive approach would randomly select one or more routes, eject all
customers from those routes and reinsert them using the previously described
PFIH. Tests showed that the optimization rapidly reaches a local optimum.

The proposed method is a generalization of the radial ejection presented
in [21]. The method selects a route and for each customer located in it, ejects a
certain number of geographical neighbors. The ejection is based on the proximity
and similarity of the nodes.

In more details, the first step is to choose a route to start the ejection. The
route is chosen by a roulette method, inspired by the rank selection operator
of the Genetic Algorithms [15]. To build our roulette it is necessary to sort
the routes in an ascending manner, from the shortest to the longest in terms of
the number of costumers. The next step is to give each route its own “slice” in the
roulette. We consider that shorter routes (less costumers) are more “defective”,
so they will have a bigger probability of being selected by the roulette procedure.
This means that costumers in those routes will be most likely to be chosen for
ejection. The probabilities of ejection for the i-worst route, previously sorted by
the number of costumers, is calculated according to expression

2i

n(n + 1)

where n is the number of routes.
Once the route is chosen and the first set of costumers to be ejected is known,

it becomes necessary to find the neighbors from other routes that will also be
ejected. The second phase ejects the neighbor of the first ejected customers which
are located in their proximity and have similar time windows. This phase takes
an ejection rate which gives the number of customers to be ejected.
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Fig. 4. Band ejection operator. In red the customers of the selected route, in light
blue the red customers’ “influence” area and in blue the customers ejected from other
routes.

Figure 4 exemplifies the procedure. In this case, the route in dark red,
π = (depot, C8, C9, C10, C11, C12, depot), was the one chosen by the rank pro-
cedure. Next, costumer C5, C7 and C14 will be also ejected since they are in
the geographical neighborhood of the customers of π and, for the sake of the
example, we have considered that their time windows are “compatible” with the
ones in π.

3.4 Overall Procedure

Algorithm 3 describes the overall procedure proposed in this document. The pro-
cess starts with a seeded partial solution, Sseed. Next, for all the PFIH parame-
ters (such that their sum equals 1) the seeded partial solution is completed and
stored in a set of solutions, PFIHSet. The next steps are computed until a
stopping criteria is met, in our case a maximum computation time is reached.
The cycle start by getting (and removing) the most promising solution from
PFIHSet and setting the ejection rate value. A tabu list, T , is started which
will contain all computed solutions before applying post-optimization, for each
ejection rate. Then try at most MaxTries times to improve the solution by
applying the 2-Opt, the cross route and the band ejection operators to Scurrent.
Reset the tries counter if the solution is improved or it is worst within a thresh-
old. If the number of tries (MaxTries) is reached or the obtained solution was
already post-optimized in a previous cycle then change the ejection rate, reset
the tabu list and repeat the improvement procedure. When all ejection rate
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values where tested, get a new solution for PFIHSet repeat the above post-
optimization process.

Algorithm 3. Overall PFIH procedure with seeded solution and band ejection
Require: Instance of the VRPTW, PFIH parameters (ejection rate, α, β, γ and λ)

ranges, MaxTries
Ensure: Set of solutions
1: Generate a seeded partial solution, Sseed � Section 3.2
2: PFIHSet ← ∅
3: for all Combination of the PFIH parameters such that α + β + γ + λ = 1 do
4: Set the PFIH parameters
5: Run the PFIH starting from Sseed to obtain a solution, Scurrent � Section 3.1
6: PFIHSet ← PFIHSet ∪ {Scurrent}
7: end for
8: Sort PFIHSet by the number of routes followed by distance and maximum time

difference between routes
9: while stopping criteria not met do

10: Scurrent ← pop(PFIHSet) � Get the most promising solution from PFIHSet
and remove it

11: Set the ejection rate � With its minimum value
12: repeat
13: NoSuccess ← 0
14: Set a tabu list, T = ∅ � will contain all computed solutions before applying

post-optimization, for each ejection rate
15: while NoSuccess < MaxTries and Scurrent �∈ T do
16: Sbackup ← Scurrent

17: Update the tabu list, T = T ∪ {Scurrent}
18: Apply 2-Opt, cross route and band ejection operators to Scurrent �

Section 3.3
19: if Scurrent improves Sbackup or is not worst within a threshold then
20: NoSucces ← 0
21: else
22: NoSuccess ← NoSucces + 1
23: end if
24: end while
25: Change ejection rate � Increase its value
26: until all ejection rates values where tested
27: end while

4 Experimental Results

This section presents a compilation of the achieved results when experimenting
the above methods. All tests were run on a PC containing an Intel i7-4770 pro-
cessor, with 16Gb of RAM and Kubuntu 14.04. As a base algorithm we have
considered the PFIH with α, β, γ, λ ∈ {0, 0.1, 0.2, . . . , 1.0}. The set of instances
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of the VRPTW was taken from Solomon’s benchmark [22,23], namely, instances
with 100 nodes in the form of random (R), clustered (C) and random-clustered
(RC) geometric distributions. Instances with numbering of the form 2xx repre-
sent the cases with vehicles with large capacity.

Table 2 summarizes the obtained results where the first two columns are the
best known values for the number of vehicles (routes) and total distance, and the
remaining columns are the results for seven variants of the algorithm, according
to Table 1. The stopping criteria was a single run of the operators for the non
random methods (PFIH0, PFIH1 and PFIH2) and a maximum of 10 seconds
for the remaining ones, which correspond to the ones with ejection. In this sense,
as a final observation, the values in Table 2 are the mean values for 25 runs of
the methods (PFIH3, PFIH4, PFIH5 and PFIH6). For this set of results, the
problem was considered as a multi-objective problem but with preference for the
number of routes, as is normal in majority of the VRPTW literature.

As we can see, there is a significant improvement in the majority of the cases
when comparing the basic PFIH (PFIH0) with the one with seeds (PFIH1).
Comparing the PFIH with seeds (PFIH1) with PFIH with seeds and 2Opt/cross
operators also shows general improvements. Finally, the use of the injection
methods allowed us in some cases to reduce the number of routes and the total
distance as desired, providing “fair” solutions given the computational time.

Table 1. Variants of the algorithm

PFIH Seeds
2-Opt and cross

operators
Radial ejection
on single node

Radial ejection on
multiple nodes

Threshold

PFIH0 �
PFIH1 � �
PFIH2 � � �
PFIH3 � � � � 0

PFIH4 � � � � 0.01

PFIH5 � � � � 0

PFIH6 � � � � 0.01

Some tests were also made considering the three mentioned objectives, namely:
number of vehicles, total traveled distances and the length difference between the
longest and shortest route. Figure 5 shows three clouds of solutions (in the objec-
tive space) obtained with PFIH6, for the (a) C102, (b) R102, and (c) RC102
instances of the Solomon’s benchmark. In red the non-dominated solutions and
in dark the dominated ones.
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Table 2. Results obtained with the proposed methods for instances (with 100 nodes)
of the Solomon’s benchmark

Best known PFIH0 PFIH1 PFIH2 PFIH3 PFIH4 PFIH5 PFIH6

Instance V D ΔV % ΔD% ΔV % ΔD% ΔV % ΔD% ΔV % ΔD% ΔV % ΔD% ΔV % ΔD% ΔV % ΔD%

C101 10 828,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C102 10 828,9 0,0 28,9 0,0 2,0 0,0 0,3 0,0 0,0 0,0 0,0 0,0 0,3 0,0 0,4
C103 10 828,1 0,0 57,4 0,0 4,0 0,0 1,8 0,0 0,0 0,0 0,0 0,0 2,8 0,0 2,9
C104 10 824,8 0,0 78,3 0,0 1,0 0,0 2,7 0,0 0,1 0,0 0,4 0,0 1,0 0,0 1,0
C105 10 828,9 10,0 11,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C106 10 828,9 10,0 35,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C107 10 828,9 0,0 9,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C108 10 828,9 10,0 59,3 0,0 4,1 0,0 0,0 0,0 0,0 0,0 0,2 0,0 4,1 0,0 4,1
C109 10 828,9 0,0 42,9 0,0 0,4 0,0 0,4 0,0 0,0 0,0 0,0 0,0 0,4 0,0 0,4

C201 3 591,6 0,0 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C202 3 591,6 0,0 0,0 0,0 0,0 0,0 14,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C203 3 591,2 0,0 29,8 0,0 4,1 0,0 1,5 0,0 0,0 0,0 0,0 0,0 3,9 0,0 4,0
C204 3 590,6 33,3 91,8 0,0 7,9 0,0 5,0 0,0 1,1 0,0 0,8 0,0 7,9 0,0 7,8
C205 3 588,9 0,0 7,8 33,3 11,7 0,0 3,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
C206 3 588,5 0,0 45,6 0,0 26,0 0,0 0,4 0,0 0,0 0,0 0,7 0,0 0,3 0,0 0,4
C207 3 588,3 0,0 13,4 0,0 2,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,7 0,0 0,6
C208 3 588,3 0,0 17,6 0,0 2,6 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,8 0,0 0,8

R101 19 1650,8 5,3 5,6 5,3 11,2 5,3 4,4 0,0 1,0 0,0 1,8 0,0 1,0 0,0 1,1
R102 17 1486,1 5,9 1,7 5,9 3,3 5,9 2,7 4,7 -0,2 4,9 0,6 5,9 -0,7 5,2 -0,5
R103 13 1292,7 7,7 -1,2 7,7 -0,9 0,0 4,6 7,7 -5,5 7,7 -5,3 7,7 -5,4 7,7 -5,0
R104 9 1007,3 22,2 27,8 11,1 19,0 11,1 9,7 11,1 3,1 11,1 -0,7 11,1 4,2 11,1 2,1
R105 14 1377,1 7,1 15,1 7,1 10,3 7,1 8,4 7,1 0,6 5,4 1,8 7,1 1,6 5,4 1,4
R106 12 1252,0 8,3 15,9 8,3 9,8 8,3 3,8 8,3 2,3 6,7 1,7 8,3 3,6 6,0 3,0
R107 10 1104,7 10,0 16,5 10,0 7,9 10,0 3,7 10,0 -1,9 10,0 -2,0 10,0 2,0 10,0 -0,2
R108 9 960,9 22,2 45,8 11,1 16,4 11,1 13,6 11,1 2,0 11,1 3,3 11,1 6,6 11,1 5,1
R109 11 1194,7 27,3 24,4 18,2 31,2 9,1 20,3 16,4 0,1 9,1 -1,3 11,3 2,6 10,2 1,9
R110 10 1118,8 30,0 49,5 20,0 18,6 20,0 7,4 20,0 1,0 14,4 -0,5 18,8 2,4 14,8 2,5
R111 10 1096,7 20,0 32,3 10,0 12,7 10,0 7,0 10,0 0,6 10,0 -1,4 10,0 2,5 10,0 0,4
R112 9 982,1 44,4 67,2 22,2 21,5 11,1 15,9 15,1 3,2 11,1 0,6 12,9 6,9 11,1 6,5

R201 4 1252,4 0,0 26,5 0,0 31,1 0,0 15,4 0,0 5,6 0,0 3,5 0,0 8,5 0,0 7,6
R202 3 1191,7 33,3 10,7 33,3 9,1 33,3 2,7 33,3 -7,9 33,3 -7,7 33,3 -0,6 33,3 -1,0
R203 3 939,5 0,0 15,7 0,0 14,7 0,0 6,0 0,0 3,5 0,0 0,8 0,0 11,5 0,0 11,8
R204 2 825,5 50,0 7,7 50,0 3,8 0,0 7,9 50,0 -4,7 50,0 -7,7 50,0 0,6 50,0 2,8
R205 3 994,4 0,0 45,3 0,0 34,9 0,0 21,1 0,0 13,2 0,0 5,7 0,0 22,7 0,0 21,3
R206 3 906,1 0,0 25,6 0,0 30,9 0,0 22,6 0,0 6,8 0,0 3,4 0,0 17,8 0,0 19,5
R207 2 890,6 50,0 34,9 50,0 23,9 50,0 13,4 50,0 -0,8 50,0 -2,4 50,0 8,4 50,0 8,6
R208 2 726,8 0,0 22,3 50,0 26,3 0,0 11,8 50,0 0,5 46,0 -0,5 50,0 11,3 44,0 12,7
R209 3 909,2 0,0 56,0 0,0 45,8 0,0 26,6 0,0 7,1 0,0 1,8 0,0 23,7 0,0 21,1
R210 3 939,4 0,0 25,4 0,0 27,1 0,0 20,9 0,0 4,1 0,0 5,0 0,0 18,9 0,0 17,3
R211 2 885,7 50,0 26,9 50,0 15,4 50,0 10,6 50,0 -3,1 50,0 -9,1 50,0 5,6 50,0 7,9

RC101 14 1696,9 21,4 9,8 14,3 7,9 14,3 2,6 14,3 -1,4 8,3 -1,2 14,3 -0,3 9,7 0,1
RC102 12 1554,8 16,7 14,2 16,7 11,9 16,7 2,6 16,7 -3,2 14,3 -3,8 16,7 -1,9 16,0 -2,7
RC103 11 1261,7 18,2 25,6 0,0 9,6 0,0 6,1 0,0 2,1 0,0 2,3 0,0 4,0 0,0 3,1
RC104 10 1135,5 20,0 35,0 0,0 9,2 0,0 7,0 0,0 5,7 0,0 5,3 0,0 6,6 0,0 6,0
RC105 13 1629,4 15,4 7,0 7,7 5,5 7,7 -1,2 7,7 -0,9 7,7 -0,2 7,7 -0,6 7,7 -1,4
RC106 11 1424,7 27,3 28,2 18,2 14,9 18,2 9,7 18,2 0,1 13,5 -0,9 17,8 1,2 18,2 0,6
RC107 11 1230,5 27,3 47,9 9,1 12,4 9,1 8,5 9,1 1,6 8,7 1,1 9,1 2,4 8,0 2,8
RC108 10 1139,8 40,0 55,2 10,0 5,6 10,0 7,9 10,0 0,3 10,0 0,9 10,0 4,2 10,0 4,6

RC201 4 1406,9 0,0 28,3 25,0 21,7 0,0 19,6 25,0 -2,2 25,0 -3,3 5,0 9,9 7,0 10,0
RC202 3 1365,7 33,3 18,4 33,3 14,4 33,3 6,4 33,3 -8,4 33,3 -9,6 33,3 -1,9 33,3 -2,9
RC203 3 1049,6 0,0 23,7 0,0 31,8 0,0 21,0 0,0 6,4 0,0 8,1 0,0 15,3 0,0 15,6
RC204 3 798,5 0,0 35,9 0,0 29,9 0,0 19,6 0,0 5,7 0,0 4,4 0,0 11,7 0,0 12,6
RC205 4 1297,7 0,0 29,1 0,0 19,6 0,0 17,5 0,0 4,9 0,0 4,3 0,0 9,6 0,0 9,1
RC206 3 1146,3 33,3 41,9 33,3 38,8 33,3 32,0 33,3 -2,7 33,3 -3,7 30,7 11,5 26,7 11,1
RC207 3 1061,1 33,3 51,3 33,3 40,6 0,0 39,9 22,7 1,5 13,3 1,0 22,7 14,7 21,3 14,4
RC208 3 828,1 0,0 84,3 0,0 43,3 0,0 40,5 0,0 8,4 0,0 7,0 0,0 19,7 0,0 21,5
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(a)

(b)

(c)

Fig. 5. Examples of the clouds of solutions (in the objective space) obtained with
PFIH6 for instances (a) C102, (b) R102, and (c) RC102 of the Solomon’s benchmark.
In red the non-dominated solutions and in dark the dominated ones.
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5 Conclusions

This work, part of the I3FR project, proposes a set of algorithms to be inte-
grated as an optimization module for an ERP system. The present ERP system
is used to plan the delivery of fresh goods to customers within time windows
and other constraints. The problem is dynamic as last minute order occur in
a common basis. To guarantee responses within the strict time constraints,
we adopted a Push Forward Insertion Heuristic combined with pre and post-
optimizers, namely the a seed partial solution generator, and the 2-Opt, the cross
and the band ejection operators. The last operator is a proposal of adaption of
the radial ejection operator. The results shown that the proposed algorithms
achieved acceptable solutions in less than 10 seconds while using a commodity
computer, when compared with the ones in a known benchmark.

Acknowledgments. This work was partly supported by project i3FR: Intelligent
Fresh Food Fleet Router – QREN I&DT, n. 34130, POPH, FEDER, the Portuguese
Foundation for Science and Technology (FCT), project LARSyS PEstOE/EEI/LA0009-
/2013. We also thanks to project leader X4DEV, Business Solutions

References

1. Sage, ERP X3. http://www.sageerpx3.com/ (accessed september 28, 2014)
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Abstract. This work presents a comparison of results obtained by dif-
ferent methods for the Multiobjective Open-Pit Mining Operational
Planning Problem, which consists of dynamically and efficiently allo-
cating a fleet of trucks with the goal of maximizing the production while
reducing the number of trucks in operation, subject to a set of constraints
defined by a mathematical model. Three algorithms were used to tackle
instances of this problem: NSGA-II, SPEA2 and an ILS-based multi-
objective optimizer called MILS. An expert system for computational
simulation of open pit mines was employed for evaluating solutions gen-
erated by the algorithms. These methods were compared in terms of the
quality of the solution sets returned, measured in terms of hypervolume
and empirical attainment function (EAF). The results are presented and
discussed.

Keywords: Open pit mines · Dispatch · Multiobjective optimization ·
Performance comparison

1 Introduction

The efficient use of available resources by companies is a requirement in any
highly competitive market. For mining companies, using the fleet of trucks and
shovels in the best possible way can enable a significant reduction in opera-
tional costs and a considerable improvement in productivity. According to Nel
et al. [21] the cost of operating trucks and shovels in a open pit mine corre-
sponds to between 50 to 60 percent of the total cost of operation. Moreover,
trucks ranging from 100 to 240 tonnes of transport capacity usually cost from
c© Springer International Publishing Switzerland 2015
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$1.8 to $4.7 million dollars, respectively [8]. Therefore, investment in efficient
usage of available equipments can result in significant reductions in the total
costs of a mining operation.

The solution to the problem of truck dispatching in open pit mines consists
basically of answering the question: where each truck should go after leaving
each place? Any answer must be provided with the aim of satisfying the needs
of the mine using the available resources in the best possible way. Thus, the
answer to this question must consider issues such as what should be produced,
what is the expected quality, travel time to the next location, and even possible
queues that may occur on the way to a given destination. When requesting a
new dispatch, a truck moves to a pit, which must have a shovel compatible with
that particular truck. The material removed from each pit has a certain quality
that is associated with the proportion of chemical elements such as Iron, Silicon,
Manganese, among others. If there is no queue at the place of loading, the truck
is loaded and moves up to a crusher. Each crusher has quality requirements that
the material produced must meet. Material that has no commercial value (that
is, waste) is conducted by the trucks to mine sites reserved for storage of this
type of material (rock piles).

The objectives of this work are twofold: first, to present a multiobjective
model that defines, for a given fleet of trucks, a sequence of dispatches for the
efficient use of equipment, minimizing the occurrence of queues and idle shovels.
The proposed multiobjective model for the open-pit mining operational plan-
ning problem (OPMOPP) additionally includes the modeling of possible queues
for truck loading operations as well as different speeds for loaded and empty
trucks. The second objective is to propose and compare the performance of three
approaches for the solution of the proposed model: two multiobjective evolution-
ary algorithms (MOEAs) and a metaheuristic based on the Pareto Iterated Local
Search (PILS). A specific solution encoding and operators for generating candi-
date solutions are proposed for the evolutionary approaches, in order to gener-
ate feasible solutions given the operational constraints of the problem, therefore
enabling a more effective search for the solution of this class of problems. The
algorithms are compared using standard quality indicators: hypervolume and
empirical attainment function (EAF).

2 Previous Works

The work of Doig and Kizil [8] studied the impact of the truck cycle time dif-
ferences in mine productivity. The authors conclude in their work that the cycle
time and the subutilization of the truck fleet impacts significantly on productiv-
ity in a mine, thus justifying the efficient use of available equipment. Addition-
ally, roads in good condition for transportation were also found to be relevant.
The work of Topal [26] asserts that proper planning of maintenance of trucks
is essential to minimize its costs. That is, assuming availability of the entire
fleet of trucks when looking for a solution may lead to oversensitive solutions,
as units may be unavailable due to the preventive maintenance schedule. A case
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study of a large-scale gold mine showed a significant reduction (10%) of annual
maintenance costs and more than 16% of overall reduction in maintenance costs
over 10 years of operation, in comparison with the baseline spreadsheet used in
operation [25].

Tan et al. [24] presented a procedure for obtaining the optimal number of
trucks in operation at the mine and also to estimate the capacity of the fleet.
For the simulation of mine the software Arena [17] was employed. The data used
for the simulations were collected using a GPS system and used weekly average
values as the reference. Souza et al. [22] proposed a solution to an open-pit min-
ing planning problem with dynamic truck allocation. The objective considered
in their work was the minimization of the number of trucks used in the mine,
and determination of the extraction rate at each pit to fulfill production and
quality goals. They developed a heuristic called GGVNS, which combines ideas
from both the Greedy Randomized Adaptive Search Procedure (GRASP) [9]
and General Variable Neighborhood Search (GVNS) [19]. The GGVNS was suc-
cessfully applied to solve the 8 distinct testing scenarios, with results validated
using the commercial optimization software CPLEX [16]. More recent work pre-
sented three heuristics to solve the same problem, considering a multiobjective
approach. Moreover, the work does not consider a possible queue to load and
unload the trucks and also does not define the order of dispatches [3].

Subtil et al. [23] proposed a multi-stage approach for dynamic allocation of
trucks in real environments for open pit mines. The proposed approach was val-
idated through a simulation model based on discrete events. The authors report
significant results using the algorithm, yielding increased production and also
reduced operational delays of equipments. The work also states that, although
the model is able to predict ore quality, this ability was not studied due to lack of
relevant data for analysis. He et al. [14] sought to reduce the number of vehicles
used in a mine by minimizing transportation costs and maintenance using GAs.
Although satisfactory results were achieved, the model employed does not con-
sider multiple constraints (compatibility between vehicles, production equipment
and shovels, among others) found in dispatching problems in mines.

Given the many works in the literature, one realizes that they each have
a different mathematical model and treat different objectives using techniques
such as weighted sum of funcions or goal programming. None of these works
directly address the multiobjective nature of the problem by using multicriteria
optimization techniques. Moreover, a large portion of these works aims at opti-
mizing functions related to production, but fail to consider the quality of material
produced or even operational constraints such as compatibility between shovels
and trucks. In the next section we propose a multiobjective model to address
these issues.

3 The Multiobjective Open-Pit Mining Operational
Planning Problem

This section presents a new multiobjective mathematical model that includes
two objectives: the first one is to maximize production at the mine, be it ore or
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waste rock. The second one is to minimize the number of trucks in operation.
However, as there are trucks with different capacities it is necessary to take their
size into consideration. To facilitate understanding of the model, the parameters
and variables are first presented. The parameters are defined by the test instances
discussed in section 6.1. Let the parameters be:

– C is the set of crushers;
– O is the set of active ore pits;
– P is the set of pits formed by O

⋃
W ;

– Q is the set of chemical elements of the ore;
– S is the set of shovels;
– T represents the set of trucks available;
– W is the set of active waste pits;
– Capt is the payload (in tonnes) of the truck t;
– fts is a flag variable. 1, if truck t is compatible with shovel s and 0, otherwise.
– Limcp is the number of shovels that can be allocated to pit p;
– Qlqc is the lower limit of the amount of concentration (in percent) of the qth

chemical element to the crusher c;
– Quqc is the upper limit of the amount of concentration (in percent) of the

qth chemical element to the crusher c;
– qqo is the content of chemical concentration (in percent) of the element q in

the oth pits of the ore;
– ysp ∈ {0, 1} is a flag variable. 1, if shovel s operates in pit p and 0, otherwise;
– ytp is a flag variable. 1, if truck t can operate in pit p and 0, otherwise;

Let the variables be:

– v ∈ {0, 1}|T | is the vector of optimization variables responsible for repre-
senting the availability of the trucks, with the tth position of the vector (vt)
indicating whether the truck is in operation (vt = 1) or not (vt = 0);

– M̃ defines the sequence of dispatches received for each truck in operation
inside the mine;

– xo is the production (in tonnes) of the ore pit o;
– xw is the production (in tonnes) of the waste pit w;
– xoc is the production of the oth ore pit, crusher c (in tonnes).

Next, the Eqs. (1)-(9) present the mathematical model for the problem under
consideration. It is important to highlight at this point that xo, xw, and xoc

are calculated as a function of optimization variables v and M̃ . The objective
functions are given as:

Maximize:
∑

∀o∈O

xo(v, M̃) +
∑

∀w∈W

xw(v, M̃) (1)

Minimize:
∑

∀t∈T

vt × Capt (2)
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subject to a number of operational constraints, that define key aspects of the
operating environment of a mine:

∑
∀o∈O

qqoxoc(v, M̃)

∑
∀o∈O

xoc(v, M̃)
≥ Qlqc, ∀q ∈ Q; c ∈ C (3)

∑
∀o∈O

qqoxoc(v, M̃)

∑
∀o∈O

xoc(v, M̃)
≤ Quqc, ∀q ∈ Q; c ∈ C (4)

∑

∀s∈S

ysp ≤ Limcp, ∀p ∈ P (5)

∑

∀p∈P

ysp ≤ 1, ∀c ∈ C (6)

ysp + ytp − 2fts = 0 (7)

|C|, |S|, |P |, |Q|, |T | > 0 (8)

Qlqc, qqo, h, ut > 0, ∀q ∈ Q; c ∈ C; t ∈ T ; o ∈ O (9)

The optimization variables v and M̃ are discussed in detail in section 4.1.
The constraints of the model represent the limits of chemical quality deviation
(3)–(4); the shovel allocation constraints (5)–(6); the compatibility between shovel
and trucks constraint (7); and theensures that the variables are greater than
zero (8)–(9).

4 Multiobjective Evolutionary Algorithms

The optimization problem presented in the previous section can be solved using
evolutionary algorithms. Evolutionary algorithms (EAs) [5] represent a family of
metaheuristics that perform an adaptive iterative sampling of the design space by
means of a population of candidate solutions. EAs generally work by iteratively
updating the current population to create a new population by means of four
main operators: selection, crossover, mutation and elite-preservation. Evolution-
ary methods can be easily designed or adapted to solve multiobjective problems,
with or without constraints [7]. Moreover, these algorithms are easily adjusted
to handle a diversity of problem domains, which allows for their straightforward
adaptation to the multiobjective OPMOPP.

In this work two algorithms were adapted to solve the multiobjective
OPMOPP: the NSGA-II [6] and the SPEA2 [27]. A detailed description of these
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two algorithms can be found in the references, and will not be provided here.
In common with other EAs, successful multiobjective implementations require
well-designed representation systems for individual problems and also genetic
operators that are appropriate for the task. Recombination (crossover) operators
can be particularly problematic. In the following sections a new representation
to allow the dispatch fleet of trucks in a open pit mine is presented, together
with operators to perform the crossover and mutation of candidate solutions
coded according to this representation. Moreover, it is important to note that
in this work the initial populations of all algorithms were randomly initialized.
Additionally, binary tournament selection [5] was used in all cases.

4.1 Representation

The proposed codification initially builds a matrix P̃ wherein each column j
represents a location of the mine. For each location, a subset of the possible
places to where a truck can be dispatched is defined. Therefore, each cell pij of
the matrix indicates a possible target location for a truck that is in location p.

From the initial matrix P̃ , the candidate solutions can be created without
the need for additional information from the mine, ensuring that the constraint
(7) is satisfied. For the generation of individuals it is necessary to inform the
value of k which aims to define the number of rows (i) of the matrix M̃ of the
solution s = [v|M̃ ]. The number of columns (j) is the same as in matrix P̃ . For
each cell of column j a random place p in column j of the matrix P̃ is chosen.
The vector v ∈ {0, 1}|T | is randomly constructed, indicating whether the truck
is in operation (vt = 1) or not (vt = 0). With this structure, for each request
for a new order by a truck in operation the candidate solution informs the next
destination for that truck, considering the location of the truck at the time of
the request.

4.2 Crossover Operator

The crossover operators proposed for this representation are based on cutting
operators, as discussed in several studies of the literature [12] [4]. Cutoff crossing
(1PX) considers two candidate solutions x

′
and x” represented by matrices M̃

of dimension I × J . An integer cutoff value c ∈ [1, J ] is randomly drawn from a
discrete uniform random variable, and a new candidate solution y

′
is generated

by combining the first c columns from x
′

and the final J − c columns from x”.
A second candidate solution y” is also generated with the c first columns of x”

and the last J − c columns from x
′
, as is the case of the usual 1-point vector

crossover employed in the EAs. Vector v uses binary crossover [5].

4.3 Mutation Operator

The mutation proposed for this representation is known as flip mutation [2]. In
this case, each cell of the M̃ of the solution s selected for mutation receives a
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new value obtained from the random matrix P̃ . This operator is applied, with a
certain probability of occurrence pm, to the candidate solutions generated by the
crossover operator. For the vector v, the bits are changed by turning individual
trucks on or off.

5 Multiobjective Iterated Local Search

To provide a comparison baseline for the evolutionary approaches NSGA-II [6]
and SPEA2 [27] using the operators defined in the previous section, and to
evaluate the potential of the specific operators proposed for the multiobjective
OPMOPP, we employ a method based on the Pareto Iterated Local Search
(PILS) [11], which is an adaptation of the Iterated Local Search (ILS) [18] for
multiobjective problems.

Algorithm 1. Multiobjective Iterated Local Search (MILS)
Input: maxIter
Input: maxCount
Output: Front

1 Front ← makeInitialSolutions()
2 iter ← 1
3 while iter ≤ maxIter do
4 s′ ← selection(Front)
5 labeled(s′)
6 count ← 1
7 while count ≤ maxCount do
8 s′′ ← perturbation(s′)
9 s′′ ← localSearch(s′′)

10 inserted ← refresh(Front, s′′)
11 if inserted then
12 count ← 1
13 s′ ← s′′

14 else
15 count ← cont + 1
16 end

17 end
18 iter ← iter + 1

19 end
20 return Front

The operation of the MILS is illustrated in Algorithm 1. It starts by gen-
erating an initial population and extracting the nondominated set, which gets
stored in the Front set (line 1). After this initial step, the iterative cycle is
started. For maxIter iterations, a solution from Front is selected and the itera-
tion of the main algorithm (lines 7-17) is executed. In this step, the procedures
of perturbation (line 8) and local search (line 9), similar to those existing in
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PILS, are executed. The front set is updated (line 10) with the refined solution
obtained after local search. If the solution generated after the procedures of per-
turbation and local search is nondominated, it is inserted into the set Front,
and the count variable is reset (line 12). Otherwise, count is incremented by one
(line 15). The maxCount variable indicating the maximum number of times the
solution is operated without inserting a non-dominated solution in the set front.

The procedure defined as perturbation (line 8) is responsible for generating
the solutions known as neighbors. For the problem addressed in this work, the
neighboring solutions are constructed as follows: two random integers p1 and p2
are generated such that 0 ≤ p1 ≤ (J − jd) and p2 = p1 + jd, where J represents
the number of columns of the matrix M̃ and jd is the number of columns to be
changed. All values in the interval [p1, p2] of the matrix M̃ are changed, creating
a new solution.

The other procedure used by Algorithm 1 is responsible for performing a
local search (line 9) with the objective of exploring neighboring regions of the
search space. To accomplish this task we use an algorithm known as reduced VNS
(RVNS) [13]. The RVNS is a simplified version of the Variable Neighbourhood
Search (VNS), where the deterministic local search procedure (the most time-
consuming part of VNS) is removed in order to reduce the computational cost.
This algorithm receives the solution to be perturbed and uses the mutation
operator (line 3) defined in this work. If the solution changed (s′′) dominates
the current solution (s′), it is replaced (line 4-5) and the variable iter is reset
(line 6). The procedure for generating neighboring solutions is performed N
times, where N is an input of the algorithm.

Algorithm 2. Reduced Variable Neighbourhood Search (RVNS)
Input: s′

Output: s′

1 iter ← 1
2 while iter ≤ N do
3 s′′ ← MakeNeighborhood(s′)
4 if s′′ ≺ s′ then
5 s′ ← s′′

6 iter ← 1

7 else
8 iter ← iter + 1
9 end

10 end
11 return s′

6 Experimental Setup

In this section we define the test problems and the experimental design of the
computational experiments employed to verify the ability of the NSGA-II and
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SPEA2 heuristics to obtain a good set of tradeoff solutions for the multiobjective
OPMOPP. This experiment has essentially two goals: to evaluate whether any
of the algorithms will be able to find feasible, interesting solution tradeoffs for
the multiobjective OPMOPP instances considered, and to check whether the
algorithms will yield significantly different performances.

First we describe the test scenarios employed and the configurations of the
algorithms. Afterwards the performance metrics and experimental design are
provided.

6.1 Test Problems

In this study we considered benchmark instances of problems based on those pro-
posed by Souza et al. [22] 1. Table 1 describes the main characteristics of the test
instances. Columns #Pits,#Shovels, #Trucks and #Par indicate the num-
ber of pits, shovels, trucks and control parameters (chemical), respectively. The
column Details provides the number and capacity (in case of trucks), or the pro-
ductivity (in case of shovels). For example, the pair (15;50t) means there are 15
shovels (or trucks) of 50 tonnes of capacity (or maximum productivity). The dif-
ference between Mines 1 and 2 are the levels of quality of chemical elements.

Table 1. Test Instances

Instance
Details

# Pits (# Shovels,capacity) (# Trucks,capacity) # Par

Mine1 8 (4,900t) (2,1000t) (2,1100t) (15,56t) (15,90t) 10

Mine2 8 (4,900t) (2,1000t) (2,1100t) (15,56t) (15,90t) 10

Mine3 7
(2,500t) (2,400t) (1,600t)

(30,56t) 5
(1,800t) (1,900t)

Mine4 10
(2,400t) (2,500t) (1,600t)

(22,56t) (7,90t) 5(1,800t) (1,900t) (3,1000t)
(3,2600t)

6.2 Evaluation of the Solutions

An expert simulation system, based on discrete events, was built to evaluate the
solutions generated by the optimization algorithms. This system has an interface
with these algorithms, in which candidate solutions are processed and returned
by the simulator to the algorithms, including the values of the objectives and
constraints. Dispatches for mining fronts consider the distance and the average
speed of trucks to calculate the time required for the trucks reaching their desti-
nation. In addition, the simulator considers the possbilidade queue occur when
loading trucks. The load time of each truck depends on the productivity of the
shovels and truck capacity. The trucks are then dispatched to the crusher or
1 The definitions of the test instances used can be retrieved online [1].
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waste piles, according to the quality of material produced. The stopping crite-
rion of the simulation is the operation time of the mine.. This simulator was
built using a programming language Java JDK 1.7.

6.3 Algorithm Setup

All the experiments considered the following (arbitrarily set) parameters: Popu-
lation size = 200; Maximum number of evaluations = 20,000; Crossover
rate = 0.9; and Mutation rate = 0.4. The dispatch matrices (M̃) have J=20,
i.e., twenty columns. The selection operator employed was the Binary Tourna-
ment [5]. Initial populations were generated randomly, and all trucks were con-
sidered as starting their operation in the crusher. The MILS used maxIter = 100
and maxCount = 20, and N = 10 for the RVND. All runs consider one hour
of operation of the mine. All algorithms were coded in Java and compiled with
JDK 1.7, and were tested in a PC Intel(R) Core(TM) i7-3632, 2.2 GHz, with 8
GB of RAM, running Windows 8.1.

6.4 Quality Indicators

Evolutionary multiobjective optimization techniques usually need to consider
complementary goals, namely the acquisition of a set of tradeoff solutions that
are at the same time near the true (oftentimes unknown) Pareto-optimal front,
and to have this set evenly covering the whole extension of the Pareto-optimal
front - dual objectives usually referred to as convergence and diversity. To con-
sider this multi-criterion nature in the evaluation of multiobjective algorithms,
regarding the convergence and diversity of the solutions, the following quality
indicator is used in this work.

Hypervolume or S-Metric. Proposed by Zitzler and Thiele [28], returns the
hypervolume of the region covered between the points present in the frontier
and a Pref point. This point (Pref ) is used as a reference and is dominated by
all solutions presented on this frontier. For each solution i ∈ PF is constructed
a hyperrectangle (ci) with reference to Pref . The result of this metric can be
calculated as:

HV (PF) =
|PF|∑

i∈PF
vi (10)

where vi provided by ci. The higher the value of HV better the quality of the
solution indicating that there was a better spread and also a better convergence
although the metric is more sensitive to convergence of solutions in relation to
the real Pareto frontier. For all the test problems we considered a reference point
10% higher than the upper limits of the Pareto optimal frontier.
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Empirical Attainment Function. In the face of random Pareto-set approxi-
mations, unary quality indicators provide a convenient transformation from ran-
dom sets to random variables. To prevent the transformation of sets of solutions
in a unary indicator and allow at the same time, a statistical analysis of the set
of solutions obtained by multiobjective algorithm was proposed calls Empirical
Attainment Function (EAF) [10]. Furthermore, an analysis using EAF allows
one to identify in which regions of the objective space one algorithm is better
than another, and to visualize this difference. The attainment function gives the
probability of a particular point in the objective space vector being attained
by (dominated by or equal to) the outcome of a single run of an algorithm.
This probability can be estimated from several runs of an algorithm, in order to
calculate the EAF of an algorithm. The EAF from to is defined as:

αn(z) =
1
N

·
n∑

i=1

bi(z) (11)

where b1(z), ..., bn(z) be n realizations of the attainment indicator bx(z), z ∈ R
d.

Then, the function defined as αn : Rd → [0, 1].
In the case of bi-objective optimization problems, the empirical attainment

function (EAF) is fast to compute, and its graphical representation provides
more intuitive information about the distribution of the output of an algorithm
than unary (or binary) quality indicators. A tool for graphical analysis of the
EAF is proposed on the work of Ibáñez et al. [15].

6.5 Experimental Design

The algorithms NSGA-II, SPEA2, and MILS were applied for the solution of
the four test instance on 33 independent runs, after which each quality metric
described in the previous section was calculated. The experimental model used
was a 2-way factorial design, with both the algorithms and instances as fac-
tors [20]. Since our main interest is on the effects of the algorithms, only their
effects were analyzed.

We first assessed the convergence of the three algorithms used considering
the hypervolume for the four scenarios considered. Figure 1 considers the average
of these metrics. The estimated Pareto frontier of the problem was constructed
assessing 106 solutions that aim to cover the search space of the problem.

The results presented by Figure 1 suggest that NSGAII and SPEA2 algo-
rithms have similar behavior except for instance 2, wherein the NSGAII has a
relatively better performance. Additionally, it is important to note that MILS
has worse performance for all test instances.

Tables 2 to 5 shows the results obtained by comparing the algorithm used
in the experiments for the four scenarios mine. The tests considered as null
hypothesis (H0) that the two proposed algorithms have the same performance.
Otherwise, there is a statistical difference between the algorithms. We consider
first-and second tests similar to those proposed in order Fonseca et al. [10].
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Fig. 1. Average hypervolume for the algorithms on each test case considered

Table 2. Hypothesis test results for Mine 1 (α = .05)

Table 3. Hypothesis test results for Mine 2 (α = .05)

Tables 2-5 show the comparisons between pairs of algorithms on each sce-
nario, regarding the EAF indicator. The Optimiser column of the tables highlight
the algorithms performed better when H0 was rejected. Overall, these results sug-
gest that NSGAII and SPEA2 algorithms perform better when compared with
MILS algorithm. The comparison between the NSGAII and SPEA2 algorithms
does not allows to identify statistical differences between them except for Mine
1 (Table 2).
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Table 4. Hypothesis test results for Mine 3 (α = .05)

Table 5. Hypothesis test results for Mine 4 (α = .05)

7 Conclusions

This work presented the definition of a multiobjective formulation for the open-
pit mining operational planning problem. This model considers as objectives the
maximization of production (ore and waste) and the minimization of the number
of trucks in operation. An innovative representation of candidate solutions was
proposed and employed by three multiobjective optimization methods: SPEA2,
NSGA-II, and MILS. The proposed encoding enables the use of algorithms for
heterogeneous fleets and also ensures that the solutions created are operationally
feasible.

An experiment to compare the algorithms in terms of hypervolume and
empirical attainment function values was performed. The results suggest that
NSGA-II and SPEA2 algorithms have a better performance when compared with
MILS for the problems considered, with the NSGA-II being marginally better
than the SPEA2. As future work, we intend to evaluate the idleness of trucks and
shovels. Moreover, the mathematical model can be extended to consider other
variables, such as, operating conditions of the mine.
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Abstract. This study proposes a model for managing spare parts in urban  
passenger bus transport companies so as to support maintenance planning deci-
sions. Spare parts play a significant role in the assets of these companies because 
inappropriate management of these inventories can cause significant losses to the 
business. A multi-objective model based on NSGA-II is developed to aid the 
management of spare parts in corrective maintenance. A multiple item portfolio 
approach is defined instead of a traditional single item approach. As a typical 
portfolio problem, a portfolio of multiple spare parts combines “n” items while 
competing for the same resources. Two criteria were considered: the level of ser-
vice and the total acquisition cost. An adaptation of non-dominated sorting ge-
netic algorithm II (NSGA II) was used to solve the problem. The model was 
tested in an urban passenger bus transport company in the city of Natal, Brazil. 

Keywords: Inventory management · Spare parts · Urban bus · Genetic algorithm 

1 Introduction 

Spare parts have low (or very low) consumption and forecasting demand is difficult and 
erratic. They have high unit costs, long lead-times, and are of high criticality for the 
operation (missing cost). It is common for enterprises to relegate these items to the 
background, but in some companies – such as steel, mining, petrochemical and automo-
tive ones, where in the latter alone, the annual costs of opportunity, storage, deprecia-
tion, insurance and handling of spare parts range from 25% to 35% of the book value of 
all stocks in any company – spare parts are a significant part of all product inventories, 
and therefore, need to be better controlled. [1] confirmed this when they showed that 
managing MRO (Maintenance, Repair and Operations) inventories represents 36% of 
the overall costs while the procurement process represents 25% of them. 

This is what happens especially in companies offering an urban passenger bus 
transport service: for them, spare parts are critical and have relevant value for the 
business. In Brazil, among the modalities of urban passenger transport, travelling by 
bus is the primary means of transportation for people within their cities and metro-
politan areas. This is evidenced by [2] which demonstrates that urban transportation 
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by bus was 11.4 billion passengers in 2009, while railroad transportation, the second 
placed, carried 2.1 billion passengers in same period. For this, buses ran 6.9 billion 
kilometers in 2009. Given that the average cost of a ticket was R$ 2.50, this sector of 
the economy produced revenue of about R$ 28.5 billion, only from this source of 
revenue. So, faulty parts and/or lack of spare parts possibly needed for replacement 
purposes, as well as vehicles being laid up for these reasons, can result in serious 
losses to any transportation company. Thus, good inventory management of spare 
parts certainly has a positive influence on maintenance management, since this leads 
to the higher reliability and greater availability of equipment and therefore has a direct 
impact on business profitability. 

In this context, [3] dealt with production jointly with spare parts inventory control 
strategy driven by condition-based maintenance (CBM) for a part of equipment, 
where the objectives to be minimized were the stock of spare parts and the total ex-
pected operating cost. [4] established a systematic method for the storage of aeronau-
tic spare parts, by analyzing the distribution of demand probability of the spare parts, 
and solved the model using dynamic programming. In the present work, the spare 
parts will be separated into critical and non-critical items and treated separately, as 
did [5], who prioritized those critical items, which are expensive, highly reliable, with 
higher lead times, and are not available in store. 

The application made in this work it is a typical problem of portfolio assets. [6] re-
ported that the three points to be investigated in a portfolio problem are the measure 
of the profitability of a portfolio of investments, the selection and planning of an op-
timal set of investments and measure the risk of a portfolio of investments. 

Multi-objective approaches are widely used to deal with problems related to main-
tainability of systems, where usually there are conflicts between relevant criteria for 
decision making. [7] proposed a multi-objective approach to find out an optimal peri-
odic maintenance policy for a repairable and stochastically deteriorating multi-
component system over a finite time horizon, in which the objectives to be minimized 
are the total cost of maintenance and total time of system unavailability. [8] dealt with 
the problem of scheduling bus maintenance activities using heuristics, looking to 
minimize the interruptions in the daily bus operating schedule, and maximize the 
utilization of the maintenance facilities. 

Multi-objective genetic algorithms (MOGA) are often chosen to solve different 
problems with conflicting criteria, mainly due their high computational complexity. 
[9] used multiobjective genetic algorithm coupled with discrete event simulation to 
analyze the trade-off between reliability and cost in a system reliability when han-
dling redundancy allocation problems, considering series-parallel systems comprised 
of components subjected to corrective maintenance actions with failure-repair cycles 
modeled by renewal processes. [10] applied genetic algorithm to a probabilistic-based 
levelized cost of energy problem to assess investment risks, taking into account four 
main factors: wind speed, system availability, maintenance policy and spare parts 
stock level. [11] proposed an efficient algorithm to find the Pareto optimal frontier to 
the problem of multi-objective optimization which aims to minimize both the global 
maintenance cost and the total maintenance time, while [12] presented a methodology 
for multi-objective optimization using an evolutionary algorithm to find out the best 
distribution network reliability while minimizing the system expansion costs. 
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In this context, there are many papers that address issues of spare parts policy us-
ing multi-objective genetic algorithms, as [13], who explored the possibility of using 
genetic algorithms to optimize the number of spare parts into a multicomponent sys-
tem in the optics of various goals, such as, for example, the maximization of system 
revenues and the minimization of the total spares volume, where the modeling of the 
system failure, repair and replacement stochastic processes is done by means of 
Monte Carlo simulation.  [14] proposed an approach using genetic algorithm to op-
timize preventive maintenance and spares policies of a manufacturing system operat-
ing in the automotive sector, as [15] developed a framework that integrates multi-
objective evolutionary algorithm (MOEA) with multiobjective computing budget 
allocation (MOCBA) method for the multi-objective simulation optimization problem 
of allocation of spare parts for aircraft. 

In this paper, to solve the multi–objective problem of spare parts policy, we used 
an adaptation of the multi-objective genetic algorithm proposed by [16], NSGA II, 
which consists in an elitist version and less complex computing than NSGA, formu-
lated by [17]. Several situations where NSGA II is applied to solve problems with 
more than one criteria are found in the literature, like [18], that presented an applica-
tion of multi-objective optimization techniques, NSGA and SPEA, to a project of 
power distribution systems, and concluded that, despite the differences between the 
two models, they have similar efficiency to solve the problem, while [19] showed an 
application of NSGA II for the multi-objective generation expansion planning (GEP) 
problem, where the objectives to optimize are the total minimum investment cost 
maximum reliability. 

This study covers spare parts, with a failure rate and purchase cost, classified into 
critical and non-critical items which compete for the same funds of a budget that may 
or may not have constraints. The model proposed identifies for purchase the spare 
part that has the best cost-benefit ratio, i.e., the spare part that offers the minimum 
cost and the maximum service level. It is important to emphasize that only spare parts 
used in corrective maintenance, the demand for which is random, are dealt with in this 
paper rather than parts used in preventive maintenance for which consumption can be 
defined by a periodic replacement strategy. 

The content of this paper is organized as follows. Section 2 describes the mathe-
matical model with its structure and algorithm. Section 3 presents a case study and 
Section 4 provides the main results and a conclusion.  

2 The Mathematical Model 

The mathematical model proposed to the spare parts inventory problem was a multi-
objective optimization model, where the objectives to optimize are the total level of 
service, that should be maximized, and the total cost of the spare parts purchased, 
which should be minimized.   

Data analysis reveals a typical problem of a portfolio of assets, where each of these 
(in this case, the spare parts) vies for the resources available such that preference is 
given to purchasing the one that is based on the maximum return (or benefit) and at 
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the least risk that it could cause for the "investor", in this case, the manager of the 
stock. [20] showed that the basic elements of his portfolio theory were based on these 
two criteria - the expected return and the risk - with which the investor seeks to 
choose the optimal point (the "efficient frontier", in the words of that author) at which 
to apply his resources. 

It is worth noting that the model was designed to make use of consumable parts, 
used only in corrective maintenance, which if broken, will be replaced immediately if 
available in stock.  

The model aims to answer the main question inherent in any process of inventory 
management: what is the ideal inventory level for a spare part that guarantees the 
minimum cost and maximum availability by means of the Poisson distribution. 

As shown by [21], the Poisson distribution is the most widely-used mathematical-
statistical model in the literature for optimizing inventories of spare parts, and is premised 
on modelling the behaviour of demand for the item by a probability distribution, which is 
widely used to describe rare random events, such as, for example, the unforeseen failure 
of certain types of equipment, and hence is adhered to when representing demand for 
some cases of spare parts replacement. Among the main properties of the Poisson distri-
bution, it can be stressed that it is discrete and assumes independence between events, 
and is represented by Expression 1. 
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where: 
x  =  consumption of replacement parts by time interval for which the wish is to 

estimate the probability; 
t  =  time interval considered; 
λ  =  historical consumption rate of the replacement parts by unit of time; 
Px(t)  =  probability of there being “x” requests for replacement parts during time 

interval t. 
 

The model can be represented as follows: 
 

SPi = each bus spare part (critical or non-critical); 
xi = amount in stock of each bus spare part; 
λi = monthly rate of consumption of the i-th spare part; 
LSi = level of service of the i-th spare part associated with the quantity xi; 
Ci = unit cost of the i-th spare part; 

 
Such that: 

 
=

−

=≤=
i

i

ti

ii i

et
xxPLS

0 !

)(
)(

λλ
 (2) 

 
 



452 R.J.P. Ferreira et al. 

 

Thus the problem consists of: 
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3 Multi-Objective Genetic Algorithm 

In this paper, the genetic algorithm used to solve the spare parts inventory problem 
was an adaptation of the elitist multi-objective genetic algorithm proposed by [16] 
NSGA II. The algorithm is based on sorting the chromosomes based on non-
dominance to find the Pareto front of multi-objective problems, as well as it maintains 
the good solutions during the evolutionary process, since it’s an elitist algorithm. 

NSGA II differs from NSGA - proposed by [17] - mainly due to its lower computa-
tional complexity, elitism and mechanism of diversity preservation. The genetic algo-
rithm proposed in this paper keeps the main characteristics of NSGA II, remaining 
with non-dominated sorting mechanism and preservation of diversity based on crowd-
ing distance ([16]). What differentiates, essentially, the proposed algorithm from the 
original one are the genetic operators of crossover and mutation, which are presented 
below, and also how the chromosomes are represented. In the proposed algorithm, the 
length of the chromosome is equal to the number of different spare parts, where each 
gene represents the amount to be purchased. 

3.1 Genetic Operators: Crossover and Mutation 

The selection of parents who will undergo crossover operation to generate offspring is 
randomly made, and, for each set of parents chosen, two descendants are made using 
the genetic operators. Crossover and mutation are mutually exclusive, ie, if one oc-
curs, the other will not occur. The probability that the crossover happens is 90%, and 
the remaining 10% are the probability of mutation. 

The single point crossover is used, which is done by defining arbitrarily a position 
of the chromosome that will be the cutoff point, ie, offspring 1 inherits the genes of 
parent 1 until the position of the cutoff and, from this on, inherits the genes of parent 
2; offspring 2, then, inherits the genes of parent 2 until the cutoff point, and, from that 
point on, inherits the genes of parent 1. 

Mutation is incorporated in the evolutionary process in order to preserve diversity, and 
ensure that solutions are not concentrated in a local optimum. In this algorithm, a point 
corresponding to the position where the individual suffers mutation is randomly defined, 
ie, the gene in that point will come out of the chromosome, while another gene, also ran-
domly chosen, will become part of that chromosome, in the place of the excluded one. 
The mutation may improve or worsen the quality of the solution, but the aim is that it will 
ensure the population diversity. 
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4 Case Study 

For the case study, first of all, the procedure followed was: (1) to define the replace-
ment spare parts components of the buses to be studied, such that 33 items used were 
defined in corrective maintenance actions alone, and (2) to define the parameters to be 
quantified, which in this case were the consumption rate λ, the unit price, the criticali-
ty, and so forth. 

The data were collected from an urban collective public transport company that has 
been operating buses in Natal for more than 25 years and it has been regarded as ano-
nymous in this study. This company has a fleet of 83 buses the average age of which is 
5.69 years, which run 600,000 km per month. The initial data collected are in Table 1. 

Table 1. Initial data on the 33 replacement spare parts of a bus 

Spare 
Part 

Monthly 
Consumption 

(λ) 

Unit 
Price 

Criticality
Initial 
Stock 

P1 0.636 168 Y 0 

P2 0.364 660 Y 0 

P3 0.727 2,700.00 Y 0 

P4 1 1,843.00 Y 0 

P5 1 229 N 0 

P6 0.364 23 Y 0 

P7 2.273 882 Y 0 

P8 2.727 1,176.00 Y 1 

P9 1.364 136 Y 0 

P10 0.273 168 N 0 

P11 1.273 197 N 0 

P12 1.818 129 N 0 

P13 1.273 70 N 0 

P14 0.909 200 Y 0 

P15 27.636 12.97 N 0 

P16 18 1,180.00 Y 13 

P17 6.364 1.25 N 0 

P18 7.727 8.9 N 0 

P19 5.364 1.25 N 0 

P20 6.273 0.77 N 0 

P21 3.091 134 N 0 
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Table 1. (Continued) 
 

P22 7.636 380 Y 4 

P23 85.455 14.49 Y 74 

P24 68.545 14.1 N 0 

P25 63.364 16.65 N 0 

P26 97.455 18.21 N 0 

P27 1.273 268 Y 0 

P28 1.636 279 N 0 

P29 0.909 265 N 0 

P30 1.636 76.31 N 0 

P31 2,642.36 0.45 N 0 

P32 1,279.36 0.54 N 0 

P33 3 30 Y 1 

 
With these initial parameters, the critical items (which cause the bus to stop run-

ning when they fail) and non-critical ones (which do not immobilize the vehicle) were 
determined. 

Initially, the algorithm was run for the critical items. 99.9% was established as the 
upper limit of the level of service, which ensures a high quality of service obtained by 
the purchase of critical items. As mentioned in the previous section, the initial solu-
tion of the genetic algorithm was generated through the result of applying the model 
based on cost/benefit (CB), which is obtained through the ratio of the cost by varying 
the level of service caused by the purchase of spares. The algorithm based on cost-
benefit presented a total of 142 solutions in the Pareto frontier. The population size 
chosen to use in NSGA II was twice the number of solutions obtained by CB model, 
ie, 284. The first 142 chromosomes of the initial solution are the same chromosomes 
obtained by the CB model, and the other half of the chromosomes is generated ran-
domly, so as the diversity in the solutions is preserved. 

After 250 iterations of the genetic algorithm, we obtained a total of 276 solutions 
on the Pareto frontier. Of this number, only 21 coincide with the solutions generated 
by the CB model, which shows that the genetic operators have diversified a lot the 
initial solutions. If analyzed together, the two models generated a total of 397 differ-
ent solutions, of which 363 are non-dominated. 

A comparative graph of the solutions of the model based on cost-benefit and 
NSGA II for critical items is shown in Figure 1. 

On analysing Figure 1, it is easy to see that, near the origin of the graph, a lot is 
gained in the level of service with little investment. From an LS of 90% ahead, it is 
soon seen that there is a "saturation" in the curve, thus reversing the prevailing logic, 
i.e. there are then high investments for little return (low increments in the level of 
service), which clearly it is not worth the company’s spending resources on in this 
situation. 
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Abstract. Biodiversity conservation has been since long an academic
community concern, leading scientists to propose strategies to effectively
meet conservation goals. In particular, Systematic Conservation Plan-
ning (SCP) aims to determine the most cost effective way of investing in
conservation actions. SCP can be formalized by the Set-Covering Prob-
lem, which is NP-hard. SCP is inherently multi-objective, although it has
been usually treated with a monobjective and static approach. Here, we
propose a multi-objective solution for SCP, increasing its flexibility and
complexity, and, at the same time, augmenting the quality of provided
information, which reinforces decision-making. We used ensemble fore-
casting, considering future climate simulations to estimate species occur-
rence projected to 2080. Our method identifies sites: 1) of high priority
for conservation; 2) with significant risk of investment; and, 3) that may
become attractive in the future. To the best of our knowledge, this appli-
cation to a real-world problem in ecology is the first attempt to apply
multi-objective optimization to SCP associated to climate forecasting, in
a dynamic spatial prioritization analysis for biodiversity conservation.

Keywords: Multi-objective optimization · Systematic conservation
planning · Spatial conservation prioritization · Biodiversity conserva-
tion · Climate change · Uncertainty in simulations · Parameter tuning

1 Introduction

Effective conservation of biodiversity is essential for continued human well-being,
and has been since long a concern of the academic community, but only in recent
years it has been faced as a political, economic and social affair [20]. In this con-
text, the growing interest and concern regarding biodiversity is leading scientists
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to develop effective strategies to meet conservation goals. The underlying princi-
ple of these strategies lies on the Systematic Conservation Planning (SCP), which
determines the most cost effective way of investing in conservation actions.

SCP can be formalized by the Set-Covering Problem [5], which is NP-hard [9].
SCP can be enunciated as the problem of finding a minimum set of sites (among
several available ones), simultaneously maximizing the other features under
study. Thus, there are at least two conflicting objectives to be optimized, making
SCP a natural candidate for Multi-Objective Optimization (MOO).

Several parameters, e.g., vegetation remnants, annual actual evapotranspi-
ration (AET), and human occupation, among other environmental, social, and
political objectives, can be incorporated to SCP, adding more dimensions to the
problem, therefore increasing its complexity.

Albeit inherently multi-objective, SCP has been usually dealt with a monob-
jective approach through the assignment of weights to dimensions of the prob-
lem aiming to obtain a unique objective function [2,3,7,8,19,22]. Moreover, the
most known techniques for SCP are static, implicitly adopting the hypothesis
that conserved biodiversity does not change throughout time [17]. However, this
is not really accurate, and climate change analyses should be incorporated into
conservation plans to more properly reflect the biodiversity dynamics [15].

Quite a few reasons justify the use of the multi-objective approach to deal
with SCP. First, a set of solutions can be found, instead of just one, and this
can be of great interest to decision makers. In addition, flexibility of data type is
increased and constraints can be integrated, at the same time that the problem
is kept tractable [9].

In this paper, we propose a MOO approach for SCP, which significantly
augments the amount and quality of information provided to users, reinforcing
decision-making. We employ the well known NSGA-II, given the wide success
of the algorithm, this seemed a logical place to start before developing more
sophisticated multi-objective approaches.

To the best of our knowledge, this application to a real-world problem in ecol-
ogy is the first attempt to apply MOO to SCP associated to climate forecasting,
in a dynamic spatial prioritization analysis for biodiversity conservation. In par-
ticular, our analysis considered future climate simulations to estimate species
occurrence projected to 2080. Our method suggests sites of high priority for
conservation, regions with significant risks of investment and those ones that
may become attractive in the future.

The remainder of the paper is structured as follows. In Section 2 we discuss
the approaches previously used to deal with SCP. Section 3 describes the mate-
rials and methods adopted in this study. In Section 4, we discuss the results
obtained so far. Conclusions and possible future work are presented in Section 5.

2 Previous Approaches to the SCP Problem

The SCP problem aims to minimize the number of sites, total area or cost and
at the same time guarantee the representation of natural features (objects of
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conservation) [25]. In order to achieve this, the problem can been formulated as
follows [5]:

Let Am×n be a matrix where m = sites and n = natural features, whose ele-

ment aij ∈ {0, 1}, and aij =

{
1, if the natural feature j occurs in the site i;
0, otherwise.

Let each site i have a cost ci, and each feature j a desired representation level

rj . Let xi ∈ {0, 1}, where xi =

{
1, if the site i is included in the solution;
0, otherwise.

The SCP problem consists in minimizing Eq. 1:

m∑

i=1

cixi (1)

Subject to Eq. 2 (for all j, each feature should be represented at least rj
times):

∀j ∈ {1, 2, ..., n},
m∑

i=1

aijxi ≥ rj (2)

The development of algorithms and tools for SCP began in the 1980s [24].
Since then, several approaches have been suggested, ranging from a simple
scoring system to more complex optimization techniques. Commonly, in these
approaches, algorithms select complementary sites in a sequential order, until
they reach the goal of representing all the species (in effect, a greedy algorithm).
Alternatively, the adoption of an exact approach (which ensures the production
of optimal solutions, e.g., integer linear programming) was initially discussed by
Cocks and Baird, in 1989 (mentioned in [29]). However, as SCP is a NP-hard
problem, even the available software packages computing exact algorithms are
not able to solve some large data sets [26]. Due to these characteristics, meta-
heuristics are used as an alternative approach to SCP. The most widely used
metaheuristics for SCP are Simulated Annealing (SPEXAN [3], SITES [22], and
Marxan [2]), and the Tabu Search (ConsNet [7]). Nonetheless, as previously men-
tioned, these approaches have treated SCP in a monobjective way by combining
the different problem objectives in one single objective function.

On many occasions, it is difficult to work exclusively with agregated values in
a monobjective function. Often the subjectivity associated to such an approach
can drive to distinct results for the same data set [3,19]. Furthermore, when
two criteria represent distinctive value systems it can be impossible to combine
and/or compare such criteria in a meaningful manner. To insist in a single objec-
tive function can lead to disparate values, conducing to inaccurate results and/or
requiring assumptions that some decision makers would find inappropriate [8].
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3 Materials and Methods

3.1 Data

Plant Species. We used data of occurrence of 96 plants with economic impor-
tance in Cerrado, a large biome in Central Brazil, occupying around 1, 500, 000
km2. Satellite-based estimates of habitat transformations in Cerrado show rates
that are still very high and far from diminishing, which will likely put many
endemic and rare species under high threat levels or extinction [14]. Besides the
importance of the biome conservation, plant species used in this research have
historical and cultural relevance, being widely used as part of the culture and
development of regional communities [10].

Information of the 96 plant species under study were obtained from Cen-
tro de Referência em Informação Ambiental (CRIA; www.cria.org.br), from
Flora Integrada da Região Centro-Oeste (Florescer; www.florescer.unb.br), from
the scientific literature index in ISI (apps.isiknowledge.com) and from Scielo
(www.scielo.org). A total of 8,896 points were compiled and used for modelling
the 96 species. The Cerrado region was overlapped by a 181-cell grid, in which
cells were 1o of latitude by 1o of longitude. The occurrences were modelled as a
function of several environmental variables using different methods (for details
see [31]), and results were combined to generate the distribution data, which was
later converted into a matrix of presence-absence of species.

Climate Forecast. To evaluate the effects of future climate changes on the
species geographical distribution, we used an ensemble forecast approach, a con-
junction of different climate models, modelling methods and carbon emission
scenarios [13], obtaining what would be the distribution of the species in the
considered region by 2080 (for details see [31]).

Additional Objectives. Three additional objectives were used in this study:
annual actual evapotranspiration, human occupancy and vegetation remnants.

Annual Actual Evapotranspiration (AET). A measure of the joint availability of
energy and water in the environment. Information came from many databases,
and our dataset was obtained according to Rodriguez et al. [28].

Human Occupancy (H O). Human population density (H) has been often used
as a criterion to be minimized [18] or as an evidence of conflicts between eco-
nomic/social interests and biological conservation. Although, Rangel et al. [27]
showed that, in Brazilian Cerrado, species richness was positively correlated with
patterns of modern agriculture and cattle ranching, but not with human popula-
tion density. Consequently, other socio-economic variables should be considered
to minimize costs when establishing regional programs for conservation planning
in Brazilian Cerrado. Therefore, this study considered the human occupancy
(H O), a measure obtained compiling data on social and economic variables
indicating conservation conflicts [14,27]. Data was obtained from the Brazilian
Institute of Geography and Statistics (IBGE; www.ibge.gov.br).
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Vegetation Remnants (VR). These refer to the proportion of each 1o grid cell
covered by natural vegetation, based on remote sense information (Moderate-
Resolution Imaging Spectroradiometer (MODIS)). Data used in this article are
detailed described in Carvalho et al [6].

Conservation Scenarios. For present and future data, we have a presence-
absence matrix Am×n, where m = 181 sites and n = 96 plant species. In addition,
for each site over time, we have information about AET, H O, and VR. Hence,
we have five different objectives to be optimized: 1) minimize the number of
sites (among the 181 grid cells); 2) maximize the number of 96 represented plant
species; 3) maximize AET; 4) minimize H O; 5) maximize VR.

Our fitness functions were developed by having as many representations of
Eq. 1 as objectives to be optimized, and varying ci according to the objective
under consideration. This allowed to simultaneously optimize distinct objectives
instead of aggregating them into one single function.

We worked with minimization, so, based on the duality principle, w.l.o.g.,
we converted all objectives to their equivalent minimization representation (e.g.,
for the objective mentioned in item 2, optimization consisted in minimizing the
number of missing species – which is the same as maximizing the number of
represented species).

The experts defined that all the species should be represented at least once,
i.e. in Eq. 2, rj = 1, j ∈ {1, ..., 96}.

We defined three conservation scenarios:

• Scenario 1 : to represent all species in current time, applying optimization
in 2 dimensions (we optimized objectives 1 and 2, respectively, the number
of sites and the number of plant species);

• Scenario 2 : to represent all species in current time, using optimization in 5
dimensions (i.e., optimizing simultaneously objectives 1 to 5); and,

• Scenario 3 : to represent all species in 2080 (since it happens to be a forecast,
objectives 3 to 5 are not available, and optimization was performed in two
dimensions, considering only objectives 1 and 2).

3.2 Experimental Setup

Algorithm. We used the Non-Dominated Sorting Genetic Algorithm-II (NSGA-
II) [11]. For each run, a population of initial solutions was randomly generated.
These solutions were then evolved using NSGA-II, which was implemented in
Matlab R©.

Aleatory Uncertainties. In order to determine the number of runs required
to mitigate aleatory uncertainty in the stochastic algorithm employed, we used
Spartan (Simulation Parameter Analysis R Toolkit Application) [1], a package
of statistical techniques designed to support the identification of which simula-
tion results can be attributed to the dynamics of the modelled system, rather
than artefacts of uncertainty or parametrisation, or simulation stochasticity.
More specifically, we applied the Spartan’s Technique 1 (Aleatory Uncertainty
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Fig. 1. Spartan’s Technique 1 applied to Scenario 1. At 300 runs, stochasticity over the
measures M (missing species) and R (number of selected sites) attains a small effect.

Analysis). In order to do so, we analysed 20 subsets sample sizes of 1, 5, 50,
100, 300 and 500 runs each, requiring, therefore, 19,120 individual runs for each
previously described optimization scenario (a total of 57,360 individual runs). It
was found that, for all the scenarios, 300 runs were sufficient to reduce the effect
magnitude of aleatory uncertainty on results to less than “small” (the desired
level) (Fig.1).

Parameter Settings. Almost all of the heuristic procedures involve some param-
eter tuning. The task of setting parameter values is notably challenging because we
do not know, in advance, the impact of parameter values on the performance of the
algorithm, specially when the algorithm to be tuned is stochastic in nature [32] .
We used Spartan’s Technique 2 (Robustness Analysis) [1] to investigate the impact
of different parameter settings on the quality of the solutions, and to estimate the
most suitable values for the following parameters: population size, crossover proba-
bility,mutation probability, andmutation rate.The samplingmethodbegins at the
parameters lower value and increases the value by a set increment until the upper
limit is reached. Each parameter is addressed in turn, and simulation results for
value assigned to that parameter analysed (Fig.2). We analysed 26 subsets sample
(resulting from the combinations of the different parameter values) sizes of 300 runs
each (in accordance with results obtained from Spartan’s Technique 1), requiring,
therefore, 7,800 individual runs for each optimization scenario (a total of 23,400
individual runs). Based on the obtained results, parameter values were set to: pop-
ulation size=500; crossover probability=0.90;mutationprobability=1/L (where
L is the number of regions); mutation rate = 0.5. Besides we used: crossover oper-
ator = single point crossover (SPX); selection by binary tournament; number of
objective functions evaluation = 250.000.

Computer Infrastructure. The experiments were performed on two servers
running Ubuntu Linux 12.04 LTS, a HP ProLiant DL585 G7, 4xAMD Opteron
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(a) (b)

Fig. 2. Spartan’s Technique 2 applied to Scenario 2. The x-axis shows the range of
values explored and the y-axis displays the scores obtained by contrasting response val-
ues for perturbed parameter values to calibrated values. Solutions are considered over
the measures A (AET), H (human occupancy), V (vegetation remnants), M (missing
species), and R (number of seleted sites). (a) Scores for different values of crossover
probability, which when perturbed has no significant effect on solutions. (b) Scores for
simulations varying population size, this parameter has a strong effect on the obtained
solutions, and its most suitable value is 500. Results suggest that a change in the pop-
ulation size has a statistically significant effect on solutions, and it is more critical than
the crossover probability, which has no statistically significant impact.

6386 SE 2.8Ghz 16-cores (64 physical CPU cores), 512GB RAM, and a HP
ProLiant DL385p Gen8, 2xAMD Opteron 6386 SE 2.8Ghz 16-cores (32 physical
CPU cores), 256GB RAM.

Evaluation Metric. Due to the stochasticity of the algorithm, we used the
selection frequency metric (SF) [17] to compare the outcomes of our analysis.
This measure represents the number of times each site is selected in the solutions
to the overall problem. Once the SF to all cells was calculated, grid cells were
ranked based on the result. Grid cells with the highest SF were assigned the first
rank and those having SF value zero received the last rank. Next, cell relative
importance in both axes was rescaled to 0–100 (zero being not important, and
100 being highly important). Then, grid cells with value zero were excluded
and all the remaining grid cells ordered in a bi-dimensional plot showing the
relative importance of each cell related to current time and to 2080. This graph
epitomizes the scheme for dynamic spatial prioritization analyses for biodiversity
conservation.

Cells with rank higher than 90 for both axes were considered high-priority.
Cells ranking higher than 90 in the present, but not in 2080, are important now,
but will become climatically unsuitable in the future. Cells ranking higher than
90 in 2080, but not now, will become suitable in the future. High-priority cells
are those ranking higher than 90, now and in the future.
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It is worth noting that we settle the lower limit rank to 90 following the
literature [17], but this value is arbitrarily defined and, depending on the con-
text, can be relaxed assuming other lower reference values (e.g., considering cells
ranking higher than 50 as important, instead of higher than 90).

4 Results and Discussion

4.1 Scenario 1

The objective of the optimization in this context was to select the smallest set
of sites, among the 181 available ones, capable of representing all the 96 species
(the species diversity) in current time. This also allowed to establish a lower
bound for Scenario 2.

We found that the minimum number of sites required to represent all of
the species was 2. We found 35 distinct solutions with these characteristics,
reflecting diversity in solution, which is important since it provides more options
to decision makers. It is important to note that we have no hierarchy amongst
results, which means that all the solutions are equal in the considered context.

A relative frequency map of the multiple solutions indicates the relative
importance of a cell in order to fullfil the objectives of optimization (Fig.3).
This frequency can be taken as an estimator of irreplaceability1 of the cell [21],
e.g., the rarest plant appears in only 10 regions in current time, these sites tend
to be irreplaceables, so that if at least one of them is not selected, the conserva-
tion goal may not be achieved. One of such a site is #105, the most frequent site
in solutions (associated to the presence of the rarest specie, it has the greatest
diversity of species).

4.2 Scenario 2

The objective of the optimization was to select the smallest set of sites capable of
representing all the 96 species in current time, but at the same time optimizing
the additional objectives AET, H O, and VR.

Although there is some empirical inferences, and correlational data in the
literature, experts did not know, in principle, what to expect from the opti-
mization in 5 dimensions, since a behaviour was not determined with respect
to optimizing AET, H O and VR simultaneously. The initial expectation was
that this additional information would bring some advantage selecting sites to
compose solutions, improving, therefore, the overall quality of results.

NSGA-II was not able to find (at least in the number of evaluations per-
formed) the lower bound of 2 sites established in Scenario 1, being 3 the smallest
set of sites found. This can be due to the use of a multi-objective algorithm in this
scenario, when maybe the most appropriated would be to apply a many-objective
1 A measure that indicates the proportion a cell contributes to the overall solution,

e.g., cells with this measure converging to 1 often tends to be irreplaceable, in the
sense that if they are lost, the conservation goal is not accomplished.
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Fig. 3. Irreplaceability for: A. Scenario 1. B. Scenario 3. C. Synthesis of Scenarios 1 and
3. Irreplaceability scales from 0 to 1 (since it express the frequency a given site appears
in the solutions). Cells shown in the darkest colour tend to be irreplaceable, which
means that if they are lost, the conservation target (to represent all existing species)
may not be achieved. Sites presenting rare species tend to have higher irreplaceability
scores. Regarding the synthesis of two scenarios, irreplaceability can assume a negative
value (which is plotted as value zero; white cells), this indicates that the site has lost
importance (its capability to fullfil the requirements to achieve the objective).

approach [16]. Although, it can indicate that, in the context of using additional
objectives, better results are obtained not through the minimum absolute pos-
sible representation, but through a trade-off between minimum representation
and the other considered objectives.

The portfolio of solutions increased significantly, which was expected, since it
is known in the literature that as the number of objectives increases, the number
of solutions enlarge exponentially [9,16]. Thus, almost all new combination of
sites will give a different result with all species being represented, so it is included
in the portfolio.

Results (using Pearson correlation) confirmed the empirical conflict between
H O and VR (r = −.84, p < .0001), as well as between H O and AET (r =
−.93, p < .0001) (Fig. 4.a and Fig. 4.b), which corroborates with the evidence
of conservation conflicts [4]. This means that H O reflects properly the antropical
effect over biodiversity by the conversion of natural habitats in antropical ones [14].

This is a strong evidence that in addition to the standard biological data used
to guide planning decisions, some kind of human settlement patterns (here H O)
have to be explicitly considered from the very beginning of planning processes
[18]. This is essential to reduce the conflict between population density and bio-
diversity and to minimize the cost of conservation (since land prices inexorably
rise as human population density increases).

In addition, a positive relationship between H O and species richness may be
expected because both increase with AET [27]. This was confirmed by results
obtained with a steady number of sites, where for higher values of H O, higher



A MOO Approach Associated to Climate Change Analysis to SCP 467

(a) (b)

(c)

Fig. 4. Scenario 2, optimization of five objectives simultaneously. Scatterplot of addi-
tional objectives in pairs. A. VR vs H O (r = −.84, p < .0001). B. H O vs AET
(r = −.93, p < .0001). C. VR vs AET, showing a positive correlation between them
(r = .84, p < .0001), this is a poor pair for optimization. A and B show a negative cor-
relation, revealing a conflicting behaviour which means that they are proper candidates
for optimization.

values of AET were observed (human settlement follows better conditions pat-
terns), even though the relationship between H O and AET is inversely propor-
tional (H O has a deleterious effect on AET).

The scatterplot of AET and VR (Fig. 4.c) shows that these objectives have
a positive correlation (r = .84, p < .0001), i.e., there is no conflict between
them, revealing that this pair would be a poor candidate for multi-objective
optimization. But since by definition, in optimal solutions, improving the value
in one dimension of the objective function vector leads to a degradation in at least
one other dimension of it, the other objectives (H O and AET) hold optimization
conditions.
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As result of Scenario 2 experiments, we found that optimization in 5 dimen-
sions allowed to supply decision makers with a more diversified portfolio, increas-
ing the problem flexibility through the inclusion of more decision objectives,
which whilst increasing the complexity, significantly augments the amount of
information that can be used to provide users with an improved decision sup-
port system.

Although we shall investigate these aspects further, the current study makes
a significant contribution by applying a multi-objective optimization method
to a real-world problem. This reveals important relationships among objectives
that are common to conservation scenarios of a practical SCP problem.

4.3 Scenario 3

The objective of this optimization was to locate the smallest set of sites that
would be required to represent all species in 2080.

First, it is important to mention that it is not possible to represent all the
96 species, since one of them was extinct (species #80). Moreover, it is worthy
of note that projections by Simon et al. [31] to 2080 show that the species under
study will reduce about 78% of their geographic distribution in Cerrado due to
climate change that will have a strong influence on the distribution pattern of
these species, regardless the conservation plan adopted.

In this new scenario, the mimimum set of sites that represent the highest
diversity of plants (95 species) is 5. We found 4 distinct solutions with these
characteristics. Irreplaceability for Scenario 3 can be seen in Fig. 3.B, while
Fig. 3.C corresponds to the synthesis of information from Scenarios 1 and 3,
where positive values imply gain of irreplaceability and negative, loss. The irre-
placeability map has the advantage of showing the flexibility degree of systematic
conservation sites [23].

It is worth noting that despite ensemble forecast approach allows more accu-
rate predictions on changes in the species bioclimatic envelope, it is not possible
to remove all uncertainty associated with projections of future climates [31].

4.4 Dynamic Spatial Prioritization

Having a picture of how future scenarios will look like can be extremely use-
ful for decision makers. To assess the relative importance of sites in achieving
conservation targets both for current time (Scenarios 1 and 2) and for future
(Scenario 3), we compared the variation of site selection frequency scores under
dynamic conditions, using a bi-dimensional graph (Fig. 5).

Grid cells populating the upper right corner of the graph (framed by a square)
are important both for current time and for future scenarios of climate change,
therefore it would be a good choice to invest in them. However, grid cells located
in the lower right corner (framed by a rectangle) represent a risk of conservation
investment given their low relative importance in 2080, so, based in this infor-
mation, the decision maker might opt not to invest in these regions, redirecting
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Fig. 5. Graphs for establishing a dynamic spatial conservation prioritization analysis.
A. Scenario 1 x Scenario 3. B. Scenario 2 x Scenario 3. The relative importance of grid
cells is given by a rank ranging from 0 to 100, based on their selection frequency. Grid
cells placed in the upper right corner are important in the present time and in a future
scenario. Grid cells in the lower right corner represent a risk of conservation investment
as they seems to be very important in current time, but of low relative importance in
future. Grid cells in the upper left corner gain attention since they are not critical for
current time, but might became important in the future.

funds to another more promising area. Nevertheless, grid cells in the upper left
corner (framed by a rectangle) deserve attention as they might become very
important in the future even though they are not critical at present time. In this
case, careful land-use planning is imperative because these regions can represent
good cost-benefit in the long-term.

This information, associated to data displayed in Fig. 3.C, provides important
knowledge support to decision makers. Supported by scientific data, they can
scrutinize the options available in current time and decide how to define their
spatial conservation priorities, reviewing them if necessary.

For optimization in two dimensions (Scenario 1) (Fig. 5.A), results show data
concentrated along the vertical axis (that represents importance in 2080). We
were able to identify a region in the upper left corner, representing a location
that probably will become very important in the future, although not being
critical at present time. We also found a region in the lower right corner that
can represent a risk to conservation investment given its low relative importance
in 2080.

Our results show that with optimization using additional objectives (in 5
dimensions; Scenario 2) (Fig. 5.B), we were able to find data more smoothly
spread along both relative importance axes, and specially leading to the upper
right corner and closer to the upper left corner that could be the most attractive
locations to invest.

Although it would be interesting to find data in the upper right corner of
Fig. 5, the results reflected the available data, and it strongly indicates that these
solutions simply do not exist. However, our method is able to identify (if they
exist) sites of high priority for conservation, regions with high risk of investment
and sites that may become attractive options in the future. And these data can
be used in order to help decision makers to select their schemes of conservation.
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5 Conclusions and Future Work

As far as we know, this is the first attempt to apply multi-objective algorithms
to a SCP problem associated to climate forecasting, in a dynamic spatial priori-
tization analysis for biodiversity. Our work improves the methods used by most
of the tools for SCP, which in general apply a static and monobjective approach.

We applied the proposed new approach to a real and important SCP problem
that is the conservation of the Brazilian Cerrado obtaining consistent and useful
results.

The use of more dimensions allows to incorporate relevant information in the
context of SCP, increasing the complexity of the process but in a more intuitive
and simpler way (without the assistance of an expert).

We suggest that priorities for conservation could be integrated into a strategy
that considers different additional objectives helping to select areas, which results
in a conservation plan that is likely to be more effective taking into account the
impact of climate change.

The dynamic analysis is an improvement compared to the static approach
since it reflects a significant opportunity to adjust priorities into biodiversity
conservation plan, by comparing the relative importance of conservation targets
in current time and in the future.

Although bioclimatic models are effective and widely used to evaluate the
consequences of climate changes for biodiversity, there are still many uncertain-
ties associated to projections to the future.

Our results show that, despite the encouraging achievements, efforts to address
the loss of biodiversity need to be strengthened by complementary policies, since
changes in climate are inevitable and tend to strongly affect conservation projects
as result of the direct influence on the persistence of species.

This was an exploratory study that showed the advantages of the new app-
roach with respect to previous solutions. Having established that the approach
is viable with a standard MOO algorithm, our future work will focus on the
development of a multi-objective algorithm more specialized to the SCP prob-
lem. Given the success of a variety of work in the Artificial Immune System area,
e.g. [30], who showed better solutions (closer to the origin axes an more regu-
larly spread throughout the known Pareto Front), we will build on that work to
improve the work presented in this paper.

We also plan to perform further comparative studies addressing SCP problem
scenarios that deal with optimization of more than three objectives (e.g. Sce-
nario 2), applying approaches as many-objective optimization [16] and bilevel
optimization [12].
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Abstract. In this paper, a multi-criteria approach for ranking the Municipalities 
of the States of Mexico by their levels of marginalization is proposed, and the 
case for the State of Jalisco is presented. The approach uses the ELECTRE III 
method to construct a medium-sized valued outranking relation and then em-
ploys a new multi-objective evolutionary algorithm (MOEA) based on  
non-dominated sorting genetic algorithm II (NSGA-II) to exploit the relation to 
obtain a recommendation. The results of this application can be useful for poli-
cy-makers, planners, academics, investors, and business leaders. This study also 
contributes to an important, yet relatively new, body of application-based litera-
ture that investigates multi-criteria approaches to decision making that use 
fuzzy theory and evolutionary multi-objective optimization methods. A compar-
ison of the ranking obtained with the proposed methodology and the stratifica-
tions created by the National Population Council of Mexico shows that the  
methodology presented consistent and reliable results for this problem. 

Keywords: Multi-criteria decision analysis · Municipal marginalization · Rank-
ing problem · ELECTRE III · Multi-objective evolutionary algorithms 

1 Introduction 

Marginality can be defined as an involuntary position and condition of an individual 
or group at the margins of social, political, economic, ecological, and biophysical 
systems that prevents them from accessing resources, assets, and services, and that 
restrains their freedom of choice, preventing the development of capabilities, and 
eventually causing extreme poverty [7]. Such phenomena, which have caused the 
social inequality that has characterized Mexico, have persisted despite important  
advances. Related social, economic and demographics indicators have forced the 
Mexican government to endorse the commitment to continue fighting conditions that 
disadvantage certain population groups and certain regions of the country. 
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Reference [6] emphasizes the need for coherent policies and strategies to address 
multiple factors that constitute marginalization in socio-ecological systems. As part of 
demographic planning in Mexico, the National Population Council's (CONAPO) mis-
sion is to involve people in economic and social development programs that are for-
mulated within the government sector and to link their goals to the needs posed by 
this socio-demographic phenomenon. To clarify how this phenomenon occurs in dif-
ferent regions of the country, the CONAPO has built nine socio-demographic indica-
tors that, using the statistical technique of principal component analysis, generates a 
marginalization index (MI). The MI is a summary measure to differentiate entities and 
municipalities of Mexico according to the overall impact of shortages faced by the 
people because of lack of access to education, inadequate housing, insufficient funds 
and residency in rural areas. 

The relative marginalization of a region within a given country can be assessed us-
ing different types of traditional methods. However, such an evaluation method 
should be multi-criteria in nature because of the multidimensional nature of social and 
economic marginalization. This case study utilizes a Multi-criteria Decision Aiding 
(MCDA) method to construct an aggregation model of preferences and then employs 
a new MOEA to exploit the model to rank the municipalities of the State of Jalisco, 
Mexico, according to their marginalization level using the same socio-demographic 
indicators constructed by CONAPO. While such an application has practical implica-
tions, the methodology has not yet been sufficiently developed. The proposed metho-
dology is based on a previous work [8]. It is a MCDA method with an outranking 
approach which makes use of a MOEA to construct a partial order of classes of alter-
natives from a medium-sized set of decision alternatives. 

This paper is organized as follows: Section 2 describes the ELECTRE III method 
and the MOEA based on NSGA-II. Section 3 describes the case study, focusing on 
the procedure and method used. The final section presents conclusions, comments and 
future research. 

2 The (ELECTRE III – MOEA) Methodology  

2.1 The ELECTRE III Method 

As part of a philosophy of decision aid, ELECTRE (in its various forms) was con-
ceived by [10] in response to deficiencies of existing decision-making solution me-
thods. Roy’s philosophy of decision aid is well exposed in [11]; moreover, of the 
different versions of ELECTRE methods (I, II, III, IV, IS and TRI), this paper only 
uses the method referred to as ELECTRE III, which is used when it is possible and 
desirable to build valued outranking relationships and quantifying the relative impor-
tance of criteria.  

As part of the principle of the outranking approach, the ELECTRE III method 
comprise two phases: the construction of a so called outranking relation followed by 
an exploitation procedure to deliver a ranking. In the first step, basic information for 
the ELECTRE III method is composed by a set of n pseudo-criteria 

( ){ }, , , 1, 2,...,j j jg q p j n=  on a set of alternatives A and for each criterion is given: a 
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weight jw  expressing the relative importance of the jg  criterion, and an veto thre-

shold ( ) 0j jv g > . For each ordered pair ( , )a b A∈  are defined a concordance index 

( , )C a b  and a discordance index ( , )jd a b  as follows: 
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The concordance index is considered as a measure indicating whether “action a is 
at least as good as action b” (usually called “a outranks b”, denoted aSb ) on criterion 

jg  while the discordance index of a criterion jg  aims to take into account the fact 

that this criterion is more or less discordant with such assertion. Once these compo-
nents are known, an outranking relation for each pair of alternatives ( , )AS a bσ  is con-

structed as follows: 

 

( , )

( , )   if    ( , ) ( , ),

( , ) 1 ( , )
( , )    otherwise
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A j

j J a b

C a b d a b C a b j

S a b d a b
C a b

C a b

σ

∈

≤ ∀
= − ⋅ −

∏  (5) 

where ( , )J a b  is the set of criteria j such ( , ) ( , )jd a b C a b> . In this way, ( , )a bσ  can 

be interpreted as a credibility index expressing comprehensively in what measure “a 
outranks b” using both the comprehensive concordance index and the discordance 
indices for each criterion jg . 

For a detail explanation of ELECTRE III method, readers can review [12]. 
The second step in the outranking approach is to exploit the aggregation model of 

preferences represented by a valued outranking relation AS σ , and produce a ranking of 
alternatives from such valued outranking relation. Our proposed approach for the 
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exploitation step, is to use a MOEA-based heuristic method, briefly explained in the 
next section. 

2.2 A Multi-Objective Evolutionary Algorithm for Deriving Final Ranking 

In this subsection, we present a MOEA based on a posterior articulation of prefe-
rences, that is able to exploit a known valued outranking relation with the purpose of 
constructing a recommendation for the multi-criteria ranking problem with a medium-
sized set of alternatives. The algorithm borrows fundamental elements from NSGA-II 
[3]. In the following subsections, we present in further detail the fundamental aspects 
of the algorithm. 

Comparing Alternatives and Set of Alternatives 
First, we present a general structure in which alternatives and classes of alternatives 
can be compared to each other. We then use this structure to highlight and model the 
objective functions. 

Each potential solution in the population is associated with a number λ, the cut 
level, where 0≤λ≤1. Each cut level λ is associated with the given valued outranking 
relation AS σ . We then can induce a crisp outranking relation AS λ . From AS λ , we can 
deduce the followings preference relations: 

Indifference 
( , ) ( , )i A j i j j ia I a a a a aσ λ σ λ↔ ≥ ∧ ≥  

Preference 
( , ) ( , )i A j i j j ia P a a a a aσ λ σ λ β↔ ≥ ∧ ≤ −  

Incomparability 
( , ) ( , )i A j i j j ia R a a a a aσ λ β σ λ β↔ ≤ − ∧ ≤ −  

where λ is a constant cutting level and β  is threshold level indicating the mini-

mum values a decision-maker (DM) may accept that “ ia  outranks ja ” ( i A ja S aλ ). 

Let Pk(A)={C1,C2,…,Ck} be a partition of A. 

AS λ induces an antisymmetric crisp outranking relation ( )kP AS∗  between the deter-

mined classes in the following form: 
For each pair of classes (Cr, Cq), r, q=1,2,…,k we compute 

 {2,3,4}

arg max( ( , )

1

rq

rq i r j q

l i j
l a C a C

rq

a a if r q
l

if r q
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  (7) 
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and rql∗  represent the crisp preference relation between classes Cr and qC

( ) ( ) ( )(2 ,3 ,4 )
k k kP A P A P AP P R+ −→ → →  where ( ) ( ) ( ), ,

k k kP A P A P AP P R+ −  are the preference rela-

tions between classes “strictly preferred to”, “strictly preferred by” and “incomparable 
to” respectively. Reference [2] proofs that this procedure leads to the optimal crisp 
outranking relation *

( )kP AS  on such partition Pk(A)={C1,C2,…,Ck} of A. We construct 
*

( )kP AS  in such a form that it fulfills the reflexive and antisymmetric properties. 

Representation of a Potential Solution in the Ranking Problem 
The locus-based adjacency representation proposed in [9] is used. This is a graph-
based representation, as illustrated in Fig. 1, where each individual p consists of m 
genes p1,p2,…,pm, where m=|A|, and each gene pi can take allele values j between 1 
and m. A value of j assigned to gene pi is interpreted as a link from alternative i to j. 
The set of all linked alternatives forms a graph that can have 1 to m connected com-
ponents. Then, each connected component in the resulting graph is considered a class 
of alternatives formed with all of the alternatives that belong to each of them. The 
decoding of this representation requires the identification of all connected compo-
nents.   

The locus-based adjacency encoding scheme has several major advantages; most 
importantly, there is no need to fix the number of classes in advance, as it is automati-
cally determined in the decoding step. Hence, it is possible to evolve and compare 
solutions with a different number of classes in just one run of the evolutionary algo-
rithm. 

 

Fig. 1. Locus-based adjacency representation. A set of seven alternatives is partitioned. Figure 
(a) shows one possible genotypes of an individual of the population. It is transformed into the 
graph structure shown in Figure (b). Every connected component with this graph is interpreted 
as an individual class, as visualized by the circles in Figure (c). 

Objective Functions 

Maximizing the Cutting Level λ 
From the valued outranking relation AS σ , it is possible to define a family of nested 

crisp outranking relations AS λ ( { } 0( , ) : ( , ) , [ ,1]AS a b AxA a bλ σ λ λ λ= ∈ ≥ ∈ ). These 

crisp relations correspond to λ-cuts of AS σ , where cutting level λ represents the mini-

mum value for AS σ so that AaS bλ is true (see [5] for details). 

Each potential solution is associated with a λ-cut, that is connected with the credi-
bility level of a crisp outranking relation AS λ defined on the set of alternatives.  

a) Locus-based adjacency representation b) Graph representation c) Class representation
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We want potential solutions for which credibility level λ is near 1. This indicates to us 
that the ranking obtained from a decoded potential solution with credibility level λ is 
more trustworthy. We call this objective the maximum cut level objective. In practice, 
we use an additional condition for credibility level λ— the function f, which does not 
permit λ values to approach one— because in this case, we could have many incom-
parable genes. The function f is defined as follows: 

 
( , ): ~ ~ ;

( )
1,2,..., 1, 2,3,..., ,

i j i j j ik k k k k ka a a Sa and a Sa
f p

i m j m i j

 
=  = − = < 

  (8) 

( )f p is the number of incomparabilities between pairs of actions ( , )
i jk ka a in the 

individual
1 2

...
mk k kp a a a= in the sense of the crisp relation AS λ . Note that the quality of 

a solution increases with decreasing f score. In this case, we are interested in individ-
uals whose f values are equal (or close) to zero. This condition improves the compa-
rability of S on A. 

The Min Cut Objective 
The min cut shown in (9) aims to maximize the indifference within each class. We 
proceed by penalizing the pairs of alternatives inside the class that are not indifferent. 
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In (9), k is the number of classes, and in (10), ηij is the Boolean characteristic func-
tion η, which is defined as follows: 
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This objective function is minimized in the corresponding multi-objective optimiza-
tion problem. We call this objective the min cut objective. 

The Minimum Pair-wise Preference Disagreement Objective 
Let Pk(A)={C1,C2,…,Ck} be a partition of A. Suppose that CiOCj, where 

{ , , }A A AO P P R+ −∈ . Supposing that ( )ki P A jC P C+ , it is natural that in the beginning of the 

procedure, some pair of alternatives (ar, as), ar∈Ci, as∈Cj is not in concordance with 
(Ci, Cj), i.e., [while ( )ki P A jC P C+ in *

( )kP AS ], [arIAas, or r A sa P a− arP
-as, or arRAas  in AS λ ]. In 

these conditions, we have an inconsistency between the aggregation model of prefe-
rences AS λ and the crisp outranking relation of classes. The quality of the final crisp 



Marginalization in Mexico: An Application of the ELECTRE III–MOEA Methodology 479 

outranking relation *
( )kP AS

 
should also be judged according to the number of its dis-

crepancies and concordances with AS σ
 and the crisp outranking relation AS λ . Let V be 

the set of strong discrepancies defined as: 
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and nV = cardinality of V = |V|. 
O1 and O2 are preference relations in different sets of alternatives and 1 2O O≠  

means that there is not concordance between the preference relations 1r sa O a  in AS λ  

and 2i jC O C in *
( )kP AS . nV is a function that counts the number of the pair-wise prefe-

rence disagreements. 
We quantify the number of preferences between alternatives into the crisp outrank-

ing relation AS λ that are in disagreement in the sense of *
( )kP AS . We call this objective 

the minimum pair-wise preference disagreement objective. 
Based on these defined objectives, the multi-objective optimization problem that 

the MOEA aims to solve is as follows: 

 ( ( )), ( ( )), ( ( ))VMin MinCut p Min n p Max pλ    (13) 

subject to: 

 p ∈Ω  (14) 

 0[0,1],λ λ λ∈ ≥  (15) 

where Ω is the set of antisymmetric crisp outranking relations of classes of alterna-
tives of A, p  is an antisymmetric crisp outranking relation of classes of alternatives of 

a given set of data A, and λ0 is a minimum level of credibility. Usually, no single best 
solution for this optimization task exists, but, instead, the framework of Pareto opti-
mality is embraced. 

Preference Incorporation in NSGA-II 
Most approaches in the evolutionary multi-objective optimization literature concentrate 
mainly on adapting an evolutionary algorithm to generate an approximation of the Pare-
to frontier. However, this does not solve the problem. We present an idea: incorporate 
into NSGA-II the DM’s preferences, expressed in a set of solutions assigned to ordered 
categories. We modified the NSGA-II to make selective pressure toward non-dominated 
solutions that belong to the Region of Interest (ROI) of the DM. 

Along with convergence to the Pareto optimal set, it is also desired that an evolutio-
nary algorithm maintains a good spread of solutions in the obtained set of solutions. The 
original NSGA-II used the well known crowded comparison approach, which has been  
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found to maintain sustainable diversity in a population by controlling crowding of solu-
tions in a deterministic and prespecified number of equal sized cells in the search space. 

To solve the multi-criteria ranking problem using the NSGA-II, it is not necessary 
to seek the entire Pareto optimal set Ptrue or the associated Pareto front PFtrue because 
many of the non-dominated solutions are not of interest to the DM. We will use the 
strategy of attempting to find in each NSGA-II generation the most promising and 
attractive solutions for the DM, which in our case are those individuals 

( , )Vp MinCut n whose MinCut and nV scores are close to a value of zero and have a 

acceptable high value of λ. It is sufficient to seek a restricted Pareto optimal set, 
which for our purpose is defined as follows: 

 

: ( ( ), ( )) ,

, 0.5

true V
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true

p P MinCut p n p

P where is a small

non negative number
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ε
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Based on this strategy, the proposed method attempts to evolve a population toward 
the true restricted Pareto frontier ( )restricted

truePF  by means of a succession of the re-

stricted non-dominated solutions subset 1 2( ) { ( ), ( ),..., ( )}restricted
current nPF t P t P t P t= . At each 

generation the method computes the non-dominated solutions for the ranking problem 
that are closest to the fixed aspiration level (MinCut, nV), with ( ) 0MinCut p =  and 

( ) 0Vn p =  according to the Tchebycheff metric. 

Note that the true restricted Pareto frontier ( )restricted
truePF is the ROI of the Pareto 

front for the DM, the privileged zone of the Pareto frontier that best matches the 
DM’s preferences. 

In the modified NSGA-II, we use a modified crowded comparison approach to 
identify a small, privileged subset of the Pareto front ( )restricted

truePF . The new approach 

does not require any user defined parameter to identify the subset of the Pareto front. 
To describe this approach, we first define a Fixed Aspiration Point (FAP) metric and 
then present the FAP comparison operator. 

Fixed Aspiration Point distance: To identify the solutions surrounding the fixed 
aspiration level (MinCut, nV), with ( ) 0MinCut p =  and ( ) 0Vn p =  according to the 

Tchebycheff metric, we calculate the center of mass ( )CM rP  of the set 
( )

1 2 ( ){ , ,..., }r r r r
rP P P Pμ=  of solutions in rank r. The infinity norm of this point 

( )r CM rPσ
∞

=  serves as threshold value. 

The Center of Mass of a group of points is defined as the weighted mean of the 
points’ positions. The weight applied to each point is the point’s mass. 

∞
• is the 

maximum holder metric. Note that (1) restricted
currentP PF= . 

For each solution i in rank r, calculate the distance count _ id fal  using the follow-

ing equation: 
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This quantity serves to measure the proximity of the solution r
iP to the fixed aspira-

tion level (FAL) (call this the distance to the fixed aspiration level (d_fali)). 
The d_fali distance computation requires sorting the population according to each 

objective function value in ascending order of magnitude. 
After all population members in the set are assigned a distance, we can compare 

two solutions by their extent of proximity with the FAL. A solution with a smaller 
value of this distance measure is, in some sense, closest to the fixed aspiration point 
(FAP). This is exactly what we compare in the proposed Fixed_Aspiration_Point-
Comparison Operator described below. 

Fixed_Aspiration_Point (FAP)-Comparison Operator: The FAP-comparison oper-
ator ( n  ) guides the selection process at the various stages of the algorithm toward 
the ROI of the Pareto optimal front. Assume that every individual Pi in the population 
has two attributes: 

1. Non domination rank (irank); 
2. FAL_to distance (idistance). 

We now define a partial order n as i n jP P if (irank is less to jrank) or ((irank=jrank) 

and (idistance is less to jdistance)), where n is the number of non-domination ranks. 
That is, between two solutions with different non-domination ranks, we prefer the 

solution with the lower (better) rank. Otherwise, if both solutions belong to the same 
front, then we prefer the solution that is closest to the FAP. 

The ROI of the Pareto front for the DM is reached by using the FAP-comparison 
procedure, which is used in tournament selection and during the population reduction 
phase.  

Because of space limitations, we omitted the presentation of the Neighbourhood-
biased mutation operator, the initialization procedure, and the final step for obtaining 
a recommendation. 

3 Case Study 

3.1 Research Framework 

In this study, we embrace the framework of multi-criteria decision aid to achieve the 
goal of ranking the municipalities of the State of Jalisco, Mexico by their marginaliza-
tion level. Due to the complexity that represents working with a medium-sized set of 
municipalities (alternatives) we use the methodology presented in Section 2, drawing 
on the logic of outranking models (the ELECTRE III procedure [12]) complemented 
with a MOEA to “solve” the ranking problem. 
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3.2 Data Source 

The data used in this study are part of the socio-demographic indicators constructed 
by the CONAPO based on data obtained from the 2010 Census of Population and 
Housing for generating the 2010 marginalization index for the 125 Municipalities of 
the State of Jalisco. The data was provided by the CONAPO in www.conapo.gob.mx. 
We omit a complete list of the municipalities of Jalisco due to lack of space. 

3.3 Criteria 

The criteria used to rank the municipalities are the same socio-demographics indica-
tors constructed by the CONAPO to calculate the marginalization index. They are 
presented as follows: 

• Percentage of population aged 15 or more who are illiterate. 
• Percentage of population aged 15 or more who did not completed primary school.  
• Percentage of occupants in private homes without sewage.  
• Percentage of occupants in private homes without electric power.  
• Percentage of occupants in private homes without running water.  
• Percentage of private homes with some level of overcrowding.  
• Percentage of occupants in private homes with dirt floors.  
• Percentage of population living in towns fewer than 5000 inhabitants. 
• Percentage of working population with incomes up to twice the minimum wage. 

We have not reported the values of the criteria for each municipality (the perfor-
mance matrix) due to lack of space, but the reader can refer to [1] for further detail. 

3.4 Computations with the ELECTRE III-MOEA Methodology 

A number of factors influenced the specific selection of the ELECTRE III-MOEA me-
thodology for the problem of ranking the municipalities from the states of Mexico by 
their level of marginalization. First, in this paper, we presented a MOEA to exploit a 
valued outranking relation, but it is desirable to demonstrate the functionality of the com-
bination of ELECTRE III and MOEA with a real-world application. Second, there exist a 
set of municipalities and a set of socio-demographic dimensions that can be easily con-
verted into a set of alternatives and a set of criteria. Additionally, the problem type ad-
dressed in this study can be modeled as a multi-criteria ranking problem. Based on the 
literature, the ELECTRE family of methods is considered appropriate for working with 
problem types such as the one presented in this study (see [13]). This is especially true 
for the ELECTRE III method. Third, ELECTRE was originally developed by Roy to 
incorporate the fuzzy (imprecise and uncertain) nature of decision-making, by using 
thresholds of indifference and preference. This feature is appropriate for solving this 
problem. Finally, the choice of ELECTRE III was also influenced by successful applica-
tions of the approach (see [4] for a list of successful application of ELECTRE). 

Following the MCDA methodology presented in Section 2, we first applied 
ELECTRE III to construct a valued outranking relation. Then, the obtained valued 
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outranking relation was processed with the proposed MOEA to derive a final partial 
order of classes of alternatives. 

Due to the lack of space in this paper, the steps of the construction of the valued 
outranking relation are not shown; rather, we highlight the whole process followed by 
the proposed MOEA. 

To find the most promising solutions, we performed the MOEA 10 times with the 
following parameters: number of generations = 500, population size = 40, crossover 
probability = 0.9, lambda’s value range = [60, 75]. The mutation probability is auto-
matically deduced from the mutation operator. 

The top ten solutions, with lower numbers of inconsistencies of the restricted Pare-
to front, restricted

knownPF  returned by the MOEA at termination, are presented in Table 1. 

Table 1. Objective values, overall inconsistencies (MinCut+nV), and number of classes (# 
Classes) of the top ten solutions with lower numbers of inconsistencies 

Solution λ MinCut nV MinCut+nV # Classes 

1 0.65 483 782 1265 10 

2 0.65 504 767 1271 9 

3 0.65 510 764 1274 9 

4 0.65 510 766 1276 12 

5 0.65 516 761 1277 11 

6 0.65 489 788 1277 11 

7 0.65 545 736 1281 10 

8 0.65 534 748 1282 9 

9 0.65 508 775 1283 11 

10 0.65 551 733 1284 10 

 
From this set of solutions, we were inclined toward solution #2 because it is the 

one presented with fewer classes and inconsistencies. In Fig. 2 is shown the decoded 
representation as a partial order of classes of alternatives for the individual associated 
to the solution #2 and the stratifications according to the CONAPO study.  

These results indicate that the municipalities belonging to the first class C1 of the 
MOEA are the best evaluated according to their socio-demographic information. Addi-
tionally, all of these municipalities are in agreement with the first CONAPO’s stratifica-
tion labeled Very Low. The second class C2 of the MOEA presents some differences 
regarding the CONAPOS's stratification labeled Low; municipalities a3, a9, a15, a36, 
a37, a51, a82, a83, a93 and a121 are better according to the CONAPOS's stratification 
than the MOEA's ranking. In addition municipalities a4, a52 and a89 are worse accord-
ing to the CONAPOS’s stratification than in the MOEA's ranking. For the third class C3, 
all but three of the municipalities are in agreement with the third CONAPO stratification 
labeled Medium. The three exceptions are a79, a91 and a125, which are better according 
to the CONAPOS's stratification than in the MOEA's ranking. The municipalities in the 
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Fig. 2. Left: Decoded representation as a partial order of classes of alternatives of the asso-
ciated individual of solution #2. Right: ranking of classes (stratifications) according to the 
CONAPO study. At the left of each class of the MOEA ranking is the identification of each 
class; at the right of each class of the CONAPO ranking is a label indicating the marginaliza-
tion level of each class. Inside each class there are the municipalities that belong to them. Mu-
nicipalities are identified by “a + municipality’s number” (a stands for alternative). Municipali-
ties in circles are better ranked in the CONAPO ranking that the MOEA ranking; municipalities 
in squares are worst ranked in the CONAPO ranking that the MOEA ranking. 

fourth and fifth classes C4 and C5 could be considered at the same level of the third 
CONAPO stratification and are in agreement with it. We can see here the MOEA's abili-
ty to appreciate some indifferent patterns and group them apart. Municipalities in the 
Medium stratification are grouped in three different classes in the MOEA results. The 
sixth class, C6, is formed by just two municipalities and can be compared with the High-
labeled CONAPO stratification, which is formed only by the a27 municipality. The other 
municipality a31 from class C6 is worse according to the CONAPOS's stratification than 
in the MOEA's ranking. The next two classes, C7 and C8, each have just one municipali-
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ty. They are considered mutually incomparable; this means that there are no strong ar-
guments to compare them. These two municipalities could be considered in agreement 
with the Very high label of CONAPO stratification. Finally, the last class, C9, has just the 
a61 municipality; it is fully in agreement with the Very High CONAPO stratification. 

Based on this analysis, we determine that in the MOEA’s result 108 of the 125 
municipalities were well placed with respect to the CONAPO’s result, representing it 
at  a level of consistency of 86.4%. 

We omitted the result of a sensibility analysis on the intercriteria parameters of 
ELECTRE III due to lack of space. 

4 Conclusions and Future Research 

The aim of this paper was to offer a novel procedure for integrated assessment and 
comparison of marginalization of municipalities from the States of Mexico – consi-
dering the State of Jalisco as a case study – using a multi-criteria decision aiding ap-
proach. The proposed procedure for multi-criteria ranking of municipalities uses the 
ELECTRE III method to construct a medium-sized valued outranking relation, and 
then employs a MOEA based on the NSGA-II to exploit such relation to obtain a 
ranking of the municipalities in increasing order of marginalization. The achieved 
results of the stratification are at least as good as the results obtained by multivariate 
analysis’ traditional methods such as principal component analysis. 

The case study presented underpins the use of multi-objective evolutionary algo-
rithms to real life problems in a multi-criteria decision problem context. Thus, contri-
butes to a growing body of application-based knowledge, that was until recently the 
exclusive domain of engineering and the natural sciences. 

In this paper, we addressed the problem of multi-criteria ranking with a medium-
sized set of alternatives. The main methodological contribution is a multi-objective 
evolutionary approach that can be applied on a medium-sized valued outranking rela-
tion to solve this problem. 

In the future, we intend to use an empirical approach to test our method on a me-
dium set of benchmarks with a wide variety in their structure to highlight the efficien-
cy of the proposed method. Validation tests will be conducted on both artificial and 
real data sets. We expect to show how close the results from our method come to the 
optimal solutions. It will also be important to explore the limits of this approach by 
finding the top size within instances that can be solved with acceptable performance. 
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Abstract. Many methods to estimate the cut-off value in order to deter-
mine the actual groups from a dendrogram given via hierarchical cluster-
ing methods have been proposed in the litetarure. However, in most of the
cases, the determination of this value is critical and based on heuristics.
In this context, a new method based on Pareto-optimality and on the
hierarchical clustering method called Data Mine of Code Repositories
(DAMICORE) to determine the most promising groups in a given den-
drogram is proposed. This method is called Pareto-Efficient Set Algo-
rithm (PESA). In order to validate the proposed method, PESA was
applied find the most promising groups for the preventive control selec-
tion problem in the context of voltage stability assessment in electrical
power systems. PESA was able to design a set of controllers to elimi-
nate all critical contingencies and was successfully tested in a reduced
south-southeast Brazilian system composed of 107 buses.

1 Introduction

The occurrence of recent blackouts, with large impact in the system, associ-
ated with voltage stability problems justifies the necessity of developing Voltage
Stability Analysis (VSA) tools to assess the security of Electrical Power Sys-
tems (EPS), specially in large power systems, on real time. The main aim of a
VSA tool is the screening and ranking of a large number of contingencies and
the selection of preventive and/or corrective controls. Contingencies are ranked
according to severity, which is measured in terms of Voltage Stability Margin
(VSM). In case of existence of critical contingencies, the system is considered
insecure and preventive control actions have to be designed and implemented to
turn them into non-critical ones.

Many methods were developed for preventive control selection in the context
of VSA. A natural choice for the design of preventive control actions are the
techniques based on optimization methods. In this approach, the VSM is treated
as a constrain in the optimization problem [1,2]. One problem of optimization
approaches is that a large number of control variables are usually taken into

c© Springer International Publishing Switzerland 2015
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account and many control actions have to be performed to achieve the optimal
control. In order to avoid this problem, techniques to select the most effective
control actions have been desired such that a small number of control variables,
the most effective ones, are taken into account in the optimization phase.

Most of the techniques for selection of preventive control actions are based
on a sensitivity analysis of the Maximum Loadability Point (MLP) with respect
to control variables [3,4]. In [3], for example, the sensitivity of the MLP with
respect to control variables is computed using the information of eigenvectors
associated with the null eigenvalue of the Jacobian of the power flow equations in
the MLP. In [5], a fast method for sensitivity calculation, which does not require
an accurate computation of the MLP, but relies on the estimation of the MLP
via solution of two power flows [6], was developed.

All the aforementioned methods are capable of ranking the most effective
controls for each individual contingency of the list, however, they are not suitable
for providing coordination of these controls when a large number of critical
contingencies coexist. In [7], a new method to group and coordinate the most
effective preventive controls for a set of critical contingencies is proposed. For this
purpose, the method employs the sensitivity analysis proposed in [5] evaluating
the sensitivity of the VSM with respect to the variation of a control parameter.In
addition, a hierarchical clustering method [8] to group the preventive controls
that are efficient and sufficient to eliminate the criticality of all contingencies
simultaneously.

In [7], the selection of the groups is given by cutting the dendrogram, obtained
by the clustering method, in a certain level. However, the computation of this
level is very critical, since inadequate cutting levels can result in groups with
either large numbers of control devices or too small numbers in the sense they
are enougth to eliminate the criticality of all contingencies.

Another strategy to solve a problem of selection of groups is through the
Multi-Criteria Decision Analysis (MCDA) [9]. In [10] the selection and screening
of hard coating material was studied. MCDA were applied to rank and select
these hard coating materials. Pareto-optimality was used to select materials
that satisfies simultaneous optimization parameters. Moreover, the hierarchical
clustering was employed to group the materials with respect to their physical
behavior. Another method based on the multi-attribute utility theory that sim-
ulates preferences of a decision marker like the electrical systems operator was
proposed in [11]. An artificial neural network is constructed to approximate the
decision-maker preferences, reproducing an level sets of the underlying utility
function. Pareto-optimal was used to select the most appropriate solutions to
balance the training data error and the weight vector norm in order to avoid
underfitting.

The afformentioned methods use the Pareto-optimality technique to make
the multi-criteria decisions. In this work, the Pareto-optimal was defined as a
set of all non-dominated solutions from a given solution space. In the typi-
cal problem of MCDA, the solution space is defined as a region consisting of
all possible solutions [10]. In the context of selection of control actions, the
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Pareto-optimal technique can be applied to determine the most promising groups
of actions.

The idea of clustering solutions in a Pareto-optimal set is not new (e.g.,
[13,14]). An interesting study to understand the clusters of the optimal solutions
in multi-objective decision problems was proposed in [15]. The main goal of the
authors is the determination of groups with strongly related solutions in an
efficient set aiding the practitioner maker a better decision. In summary, this
is done in three steps: (1) a dendogram is obtained via hierarchical clustering
technique; (2) a cut-off value is estimated by heuristic method to generate the
actual clusters; and (3) the selected clusters are analyzed via Pareto-optimal to
inform possible trade-offs between conflicting criteria.

This paper proposes a multi-criteria analysis to determine the most promising
groups control actions for an electrical system. The proposed method takes into
account the effectiveness and the cost of each group in order to eliminate the
criticality of all selected contingencies, and avoids heuristic choices of thresholds
and cut sets. Moreover, the proposed approaches uses the DAMICORE (DAta
MIning COde Repositories) as a hierarchical clustering method, since it has
shown to be able to work with increased numberand size os samples. In this
sens, the DAMICORE is an interesintg technique since several electrical system
contingencies an controllers can be analyzed in order to make an decision.

In summary, the main contributions of the proposed method are: (1) it does
not require a cut-off value to determine the promising clusters; (2) the DAMI-
CORE benefits analyses with large number of contingencies and controllers; and
(3) the Pareto-optimality technique is applied to analyze all the clusters by the
DAMICORE.

2 Preliminary Formulation

After screening a large number of credible contingencies, a VSA tool offers a list
of critical contingencies. In the context of voltage stability, a contingency is con-
sidered critical if its voltage stability margin, measured as the difference of load
powers of the MLP and the current operating condition, is lower than a certain
threshold. System operators usually define acceptable voltage stability margins
for planning studies and operation. The National System Operator in Brazil, for
example, establishes a difference of 7% bellow the MLP as a excepatable margind
when studies of expansions, reinforcements and planning of operation [16].

Given a list of critical contingencies, the problem consists of designing pre-
ventive control to eliminate these criticalities. The design of preventive control
is commonly divided in two phases. In the first phase, a list of the most effec-
tive controls is determined and, in the second phase, these selected controls are
adjusted to bring the VSM to acceptable levels.

In the process of selecting the most effective controls, three main aspects be
considered: (i) the effectiveness of each control element in improving the stability
margin, (ii) the availability of each control and (iii) the cost of choosing each
control action.
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The effectiveness of each control can be estimated via sensitivity analysis
of the VSM with respect to the control variable. Let λ be a real variable that
parametrizes the load and generation increasing and define λmax as the max-
imum loadability of the system. The sensitivity of the MLP with respect to a
control variable uc is given by the derivative dλmax/duc. Let uc ∈ R represent
the c-th control. In order to consider the availability of the control element, a
parametrization is chosen such that uc = 0 represents the actual value of the
control, while uc = 1 corresponds to its maximum value.

In [7], a methodology inspired in the Look-Ahead method to compute the
sensitivity of VSM with respect to control variables was proposed. The control
actions are ranked according to this sensitivity level and those that are most
effective are employed to restore the stability margin for a determined set of
critical contingencies.

3 Clustering Method to Group the Most Promissing
Controls

In order to determine groups of promising preventive controls for a set of critical
contingencies, a new approach based on a clustering method is proposed in [7].
The Hierarchical Clustering Method proposed in this paper is called DAMI-
CORE (Data Mine of Code Repositories) [8]. Basically, this method is a propoer
combination of successful algorithms from other science fields: Normalized Com-
pression Distance (NCD) from Information Theory [17], Neighbor Joining (NJ)
by Phylogenetic Reconstruction [18], and Newman’s Fast Algorithm (FA) from
Complex Networks [19].

It is known that some clustering techniques show reduced performance with
increased number and size of samples. Fortunately, the DAMICORE does not
present such restrictions, this method performs better when there are a large
number of samples and size. Thus, it is believed that the DAMICORE method
can present relevant performance with increasing number of clusters of con-
trollers and contingencies.

Let C be the group of critical contingencies; λmaxi
be the MLP of the i-th

contingency, and dλmaxi
/duc be the sensitivity of control λmaxi

with respect
to uc. The DAMICORE works as follows: the NCD calculates a matrix of
distances between the sensitivities dλmaxi

/duc; the NJ constructs a phyloge-
netic tree describing the probable relationships among the sensitivities for C;
and, finally, the FA performs a hierarchical cluster a tree of preventive con-
trols (leaves of the tree) by grouping the most similar leaves according to the
constructed (phylogenetic) tree.

The DAMICORE generates a hierarchical cluster and proposes an initial
partitioning of the data in groups. Finally, such groups can be re-evaluated
according to some knowledge of the problem domain.
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4 Selecting the Most Promising Groups

The clustering method discussed in Section 3 provides in the data structure of
phylogenetic tree with the preventive controls grouped in a hierarchical form.
However, the cost of each group is not included in the aforementioned procedure.
Besides the effectiveness of each control action, the cost is a key attribute to
determine the implementation of some control action, in this case, a low cost is
desirable.

Let Cc be the cost of the c-th control action (where c = 1, 2, ..., NC), the
cost of the g-th group is given as follows:

Cg =
NCg∑

c=1

Cc (1)

where NCg is the number of controls and Cg the cost of the g-th group. In order
to determine the effectiveness of each group the harmonic mean (Hg) is applied.
In [7] the authors show that the harmonic mean gives an adequate measure
for this kind of problem. In this context, the groups with the most effective
controls actions and the lowest cost can be determined by Pareto-Efficiency Set
Algorithm (PESA).

Algorithm 1. Pareto-Efficient Set Algorithm (PESA)
1: Let G given by DAMICORE
2: P ← ∅
3: for Gi ∈ G do
4: dGi ← 0
5: for Gj ∈ G AND i �= j do
6: if (CGj ≤ CGi AND HGj > HGj ) OR
7: (CGj < CGi AND HGj ≥ HGj ) then
8: dGi ← dGi + 1
9: end if

10: end for
11: if dGi = 0 then
12: P ← P ∪ Gi

13: end if
14: end for
15: return P

Determining the groups considering the most effective control actions with
the lowest cost involves conflicting objectives. To overcome this hurdle a multi-
criteria analysis is proposed in order to take into account the cost implementation
of each group as well as the controls actions. The goal of this approach is offering
to operator the best groups considering a combination of effectiveness and low
cost.
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Algorithm 1 describes the main procedure to determine the best groups
according to both criteria. Basically, given a set G composed of all the possi-
ble groups in the dendrogram obtained via DAMICORE, Algorithm 1 evaluates
the dominance of each group Gi ∈ G with respect to the group Gj ∈ G, when
Gi �= Gj . If Gi is dominated by Gj , i.e., the cost and harmonic mean of Gj is
better than Gi, the dominance variable nd is increased by 1. The group Gi is
called optimal for our problem if the nd is equal to 0, in this case, Gi is added
to the Pareto set P.

5 Simulations and Results

The proposed algorithm has been tested in a reduced south-southeast Brazilian
system (test-system), Which is composed of 107 buses and 171 lines [20](See
Fig. 1). For voltage control, this system offers 20 shunt reactors, 13 shunt capac-
itors, 1 synchronous compensator and 1 static compensator. Only shunt capac-
itors were considered available for voltage control. It is noteworthy to mention
that the shunt capacitor 959 is being used in its maximum capacity, i.e., u959 = 1
(100%). As a consequence, this capacitor will not be available for control. Table 1
presents the localization, the capacity and the cost of each shunt capacitor.

Fig. 1. Reduced south-southeast Brazilian system with 107 buses

The contingencies were classified using Look-Ahead method. The critical ones
were selected according to the guidelines for operation and planning provided by
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Table 1. Shunt capacitors available for control

#Control Name MVAr Cost

u1210 Gravata 400 1230
u939 Blumenau 250 900
u959 Curitiba 100 700
u104 Cachoeira Paulista 200 850
u122 Ibina 200 850
u1504 Itajub 200 850
u123 Campinas 200 850
u120 Poos de Caldas 200 850
u234 Samambaia 150 700
u4522 Rondonpolis 30 500
u4533 Coxip 86 650
u4582 Sinop 30 500
u231 Rio Verde 30 530

Brazilian National System Operator [16], thus, critical contingencies are those
whose VSM is lower than 7% 2, see Table 2.

Table 2. Set C of critical contingencies

i Outage λmax i Outage λmax

Line Line

1 (100-101) 1.0374 6 (136-120) 1.0564
2 (101-102) 1.022 7 (136-138)A 1.0359
3 (106-104) 1.0526 8 (136-138)B 1.0395
4 (122-103) 1.0326 9 (140-138)A 1.0346
5 (136-120) 1.0564 10 (140-138)B 1.0383

*i is the i−th contingency in C.
*A and B means parallel transmission
lines.

The algorithm proposed in [5] was employed to estimate the sensitivity of
λmaxi

with respect to changes in the control parameter uc for each contingency
in Table 2. Next, these sensitivities were used to compute the clusters via DAM-
ICORE, thus obtaining the tree represented by the dendrogram of Fig. 2. Note
that control u959 does not appear in the dendrogram since its sensitivity is equal
to zero, thus, this control is being used to its fullest.

The most promising groups in the dendrogram to eliminate the criticality
of all the contingencies in set C can be obtained by Algorithm 1. The proposed
method selects 9 promising groups from a total of 23 groups found by the DAM-
ICORE. Figure 3 shows the classification obtained by the proposed algorithm.
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Fig. 2. The dendrogram of preventive controls of Set C of critical contingencies

The Pareto set (P) is formed by the most promising groups represented by balls
in the Figure3 and the worst choices are represented by crosses.

Table 3 describes the capacitors in each group of the Pareto set, the corre-
sponding harmonic mean (H) and the cost associated with each of these groups.
The selection of the best group to be applied to eliminate the criticality of set C
can be determined by the operator of the electrical system.

For example, group G20 thus it is a relevant choice of control. Table 3 presents
high effectiveness and lower cost. Using the controls in this group, the MLP
(λmax) was evaluated via Continuation Power Flow (CPFLOW)1 method adopt-
ing uc = 0.75 (75%)2 and the results are presented in Table 4.

Analyzing Table 4, one observes that group G20 eliminates all the critical
contingencies of set C by increasing the VSM to values large than 7%. Other
groups can be chosen according to the experience of the operator, for example
G20 is the cheapeast group does not violate the VSM.

1 CPFLOW is a comprehensive software tool for tracing power system steady-state
behaviors due to large or small variations in loads, generation, transactions, inter-
changes, and imports and exports. CPFLOW is designed for the analysis of large-
scale power systems and can trace a solution curve through the nose point (λmax)
without the numerical difficulties of repeated power flow solvers [21].

2 The values of uc were obtained by our experience simulations, optimal values of the
controls actions can be obtained by an optimization method.
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Fig. 3. Evaluation of cost and effectiveness of all the obtained groups

6 Conclusions

In this paper, a new method was proposed to group the most efficient preven-
tive controls for a set of critical contingencies and to select the promising ones
according to their cost and effectiveness. This method is based on a sensitivity
analysis presented in [5], based on a hierarchical clustering method proposed
in [8].

Tests were conducted in the reduced version of the south-southeast Brazilian
system with 107 buses and 171 lines. The control actions were well-grouped
in terms of their efficiency to increase the VSM for all the critical contingencies
from a particular set control actions. the implementation of selected actions
has shown that the criticality of that set can be eliminated. It is noteworthy to
mention that although the simulations were performed considering only the shunt
capacitors, other control elements can be easily incorporated in the proposed
methodology.

Future directions of this research include the generalization of the PESA
formulation to other kind of problems, the use of different hierarchical clustering
methods by DAMICORE in order to better sample the space of possible groups
which may increase the number of solutions in the Pareto set benefitting decision
of a system operator.
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Table 3. The most promising groups

Group #Controls H Total Cost

G70 u104, u1504, u123, u120,
u122,u4582, u4588, u4522,
u231, u234, u939, u1210

0.02952 9260

G40 u104, u1504, u123, u120,
u122

0.02688 4250

G30 u104, u1504, u123, u120 0.02541 3400

G20 u104, u1504, u123 0.02153 2550

G10 u104, u1504 0.01685 1700

G04 u1504 0.00851 850

G07 u234 0.00020 700

G08 u231 5.9e-05 530

G09 u4522 2.8e-05 500

Table 4. Set C of contingencies with best preventive controls the Pareto Efficient set

i Outage λmax i Outage λmax

Line Line

1 (100-101) 1.0717 6 (136-120) 1.0741
2 (101-102) 1.0719 7 (136-138) 1.0738
3 (106-104) 1.0737 8 (136-138) 1.0739
4 (122-103) 1.0745 9 (140-138) 1.0735
5 (136-120) 1.0741 10 (140-138) 1.0737

*i is the i−th contingency in C.
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danilosanches@utfpr.edu.br

2 Institute of Informatics, Federal University of Goias, UFG, Goiânia, Brazil
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to restore a feeder fault in networks with significant different bus sizes:
3,860 and 15,440. In addition, a MOEA using subproblem Decomposi-
tion and NDE (MOEA/D-NDE) was investigated. MEAN-DE has shown
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metrics R2, R3, Hypervolume and ε-indicators were used to measure the
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1 Introduction

There are many Multi-objective optimization problems (MOP) in real world such
as: vehicle routing, phylogenetic reconstruction and service restoration (SR) in
distribution systems (DS). MOP are characterized by the presence of multiple
objective functions to be optimized simultaneously, since such objectives can be
conflicting and there is no single optimal solution that satisfies all objectives
equally.

In order to find feasible solutions for MOP, Multi-objective Evolutionary
Algorithms (MOEAs), such as Nondominated Sorting Genetic Algorithm II
(NSGA-II) [1], Strength-Pareto Evolutionaty Algorithm 2 (SPEA2) and Multi-
objective Evolutionary Algorithm Based on Decomposition (MOEA/D) [2] were
proposed in the literature.

The performance obtained by MOEAs for service restoration in distribu-
tion systems is dramatically affected by the data structure used to represent
computationally the electrical topology of the distribution systems. Inadequate
data structure may reduce drastically the MOEA performance [3,4]. Other crit-
ical aspects of MOEAs are the genetic operators that are used. Generally these
operators do not generate radial configurations [3].

In this context, a new dynamic data structures (encodings) that exclusively
generate feasible solutions have been investigated. Those encodings allow a suit-
able exploration of the search space, increasing the quality of solutions provided
by MOEAs. Among the encondigs from the literature, the Node-depth encoding
(NDE) [5] better scales, enabling its use for optimization methods applied to large
networks. In this sense, some MOEAs using NDE have been investigated: MoEA
with Node-depth encoding (MEAN) [4,6], NSGA-II with NDE (NSGAN) [7] and
the integration of MEAN with both NSGA-II and SPEA-2 [8].

In this sense, the main contribution of this paper is to propose a differen-
tial mutation operator based on the NDE. The new operator can extract the
essential difference between two DS feasible configurations and use it in order to
compose new feasible configurations. Moreover, the average time complexity of
the proposed operator is O(

√
n), enabling efficient manipulation of large-scale

networks. In addition, the differential mutation operator based on the NDE is
combined with MEAN, producing a new powerful MOEA (called MEAN-DE)
to solve SR problems for large-scale DSs.

Although the majority of MOEA has successfully worked with combinatorial
Multi-Objective Problems (MOPs) with at most two objectives, the MEAN have
solved the SR problem formulated with more than two objectives [4]. Other
MOEA that has obtained interesting results for MOPs with more than two
objectives is the MOEA/D [2]. As a consequence, we also proposed an extension
of MOEA/D using NDE, called MOEA/D-NDE, adapted for the SR problem.
However, the MEAN-DE also presented better results in relation to MOEA/D-
NDE for the SR problem.



500 D.S. Sanches et al.

2 Service Restoration Problem

The Network reconfiguration for the Service Restoration Problem is the process
of opening and closing of some switches to modify the topology of a distribution
network modeled by a forest. Fig. 1 (a) illustrates an example of SR in a DS
with three feeders that are represented by nodes 1, 2 and 3. Each feeder supplies
a subset of consumer load points (sectors) represented by other nodes . The
sectors are interconnected by edges that indicate the switches (feeder lines). The
switches can be Normally Closed (NC) (solid lines) and Normally Opened (NO)
(dotted lines). Each tree of the forest corresponds to a feeder with its sectors
and Normally Closed switches.

Assuming that a fault occurred in sector 10 (Fig. 1 (a)), all the switches
connected to sector 10 (switches 10-11, 10-7 and 10-9) must be opened in order
to isolate the sector in fault, thus, Sectors 11, 9 and 28 are in an out-of-service
area. One way to restore energy for those sectors is by closing the switches 24-28
and 28-11 (Fig. 1 (b)).

Fig. 1. DS modeled by a graph, a fault is simulated in the sector 10 (a) and then is
restored energy for Sectors 11, 9 and 28 by closing the switches 24-28 and 28-11 (b)

The SR problem emerges after the faulted areas has been identified and
isolated. Its solutions is the minimal number of switching operations that results
in a configuration with minimal number of out-of-service loads, without violating
the DS operational and radialily constraints. The minimization of the number
of switching operations is important since the time required by the restoration
process depends on the number of switching operations. The SR problem can be
formalized as follows:
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Min. φ(G), ψ(G,G0) and γ(G)
subject to

Ax = b
X(G) ≤ 1
B(G) ≤ 1
V (G) ≤ 1
G is a forest,

(1)

where G is a spanning forest of the graph representing a system configuration [9]
(each tree of the forest [10] corresponds to a feeder or to an out-of-service area,
nodes correspond to sectors and edges to switches); φ(G) is the number of con-
sumers that are out-of-service in a configuration G (considering only the re-
connectable system); ψ(G,G0) is the number of switching operations to reach
a given configuration G from the configuration just after the isolation of the
faulted areas G0; γ(G) are the power losses, in p.u. (per-unit system), of config-
uration G; A is the incidence matrix of G [10]; x is a vector of line current flow; b
is a vector containing the load complex currents (constant) at buses with bi ≤ 0
or the injected complex currents at the buses with bi > 0 (substation); X(G)
is called network loading of configuration G, that is, X(G) is the highest ratio
xj/xj , where xj is the upper bound of current magnitude for each line current
magnitude xj on line j; B(G) is called substation loading of configuration G,
that is, B(G) is the highest ratio bs/bs, where bs is the upper bound of current
injection magnitude provided by a substation (s means a bus in a substation);
V (G) is called the maximal relative voltage drop of configuration G, that is,
V (G) is the highest value of |vs − vk|/δ, where vs is the node voltage magnitude
at a substation bus s in p.u. and vk the node voltage magnitude at network
bus k in p.u. (obtained from a Forward-Backward Sweep Load Flow Algorithm
(SLFA) for DSs) and δ is the maximum acceptable voltage drop (in this paper
δ = 0.1, i.e. the voltage drop is limited to 10%). The formulation of Equation 1
can be synthesized by considering:

– Penalties for violated constraints X(G), B(G) and V (G);
– The use of the NDE [4], i.e. an abstract data type for graphs that can effi-

ciently manipulate a network configuration (spanning forest) and guarantee
that the performed modifications always produce a new configuration G that
is also a spanning forest (a feasible configuration);

– The nodes are arranged in the Terminal-Substation Order (TSO) for each
produced configuration G in order to solve Ax = b using an efficient SLFA
for DSs. The NDE stores nodes in the TSO. Through x obtained from a
backward sweep, the complex node voltages are calculated from a forward
sweep;

– φ(G) = 0. The NDE always generates forests that correspond to networks
without out-of-service consumers in the re-connectable system.
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Equation 1 can be rewritten as follows:

Min. ψ(G,G0), γ(G) and
ωxX(G) + ωbB(G) + ωvV (G)

subject to
G is a forest generated by the NDE,
Load flow calculated using the NDE

(2)

where ωx, ωb and ωv are weights balancing among the network operational con-
straints. In this paper, these weights are set as follows:

ωx =
{

1, if, X(G) > 1
0, otherwise;

ωb =
{

1, if, B(G) > 1
0, otherwise;

ωv =
{

1, if, V (G) > 1
0, otherwise.

3 Evolutionary Algorithms with NDE

The SR problem, as formulated in the previous section, is based on NDE, thus,
the efficiency in solving it depends on such encoding. Two operators were devel-
oped to efficiently manipulate a forest stored in NDEs producing a new one: the
Preserve Ancestor Operator (PAO) and the Change Ancestor Operator (CAO).
Each operator modifies the forest encoded by NDE arrays, which is equivalent
to pruning and grafting a sub-tree of a forest generating a new forest. The
NDE operators generate only feasible configurations (radial configurations able
to supply energy for the whole re-connectable system). As a consequence, such
abstract data type does not require a specific routine to verify and to correct
unfeasible configurations. Those aspects enable the construction of new configu-
rations in a fast way for large-scale DSs (average-time complexity O(

√
n), where

n is the number of sectors in DS). In addition, a SLFA [11] based on the TSO
provided by the NDE fast evaluates each new produced configuration for large-
scale DSs (average-time complexity O(

√
nb), where nb is the number of load

buses of the DS).
Moreover, the formulations of Equations 1 and 2 correspond to a Multi-

Objective Problem (MOP). MOEAs are among the most relevant methods to
deal with MOPs [12,13]. However, these and other methods have shown success
to work with combinatorial MOPs with at most two objectives. In fact, problems
with more objectives have been called many-objective problems and relatively
few approaches were developed for them. Fortunately, MOEA combined with the
NDE proposed in [4] has properly solved DSR problems formulated with more
than two objectives. Additional information about the NDE and its operators
applied to DSR problems are described in [4].
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3.1 Multi-objective EA with Subpopulation Tables (MEAN)

MEAN was proposed in [4] and uses a simple and computationally efficient
strategy to deal with several objectives and constraints. The basic idea is to
subdivide a population into subpopulation tables related to different objectives
and constraints. The MEAN is different from VEGA (Vector Evaluated Genetic
Algorithm [14]), since it adds a fundamental subpopulation table that stores indi-
viduals assessed by at least one aggregation function (see Equation 3), moreover,
any individual can be simultaneously evaluated using weighted (by table(s) of
aggregation function(s)) and non-weighted scores (through the remaining tables)
from objectives and no additional heuristic is required to induce middling val-
ues as proposed in [14]. The ability of simultaneously searching for the extreme
points of the Pareto-front and the best values of the aggregation function makes
MEAN more similar to the MOEA/D [2].

The whole set of tables is organized as follows:

1. Tables associated with each objective and constraint:
(a) T1 - solutions with low γ(G); T2 - solutions with low V (G); T3 - solutions

with low X(G); T4 - solutions with low B(G) and T5 - solutions with low
values of an aggregation function, defined as follows:

fagg(G) = ψ(G,G0) + γ(G)+
ωxX(G) + ωbB(G) + ωvV (G), (3)

where ψ(G,G0), γ(G), X(G), B(G), V (G), ωx, ωb and ωv were defined
in Section 2;

2. Tables denoted T5+p that are related to the required pair of switching oper-
ations after fault isolation:
(a) Each Table T5+p, with p = 1, ..., 5, stores the best solutions found with

more than p − 1 and at most p pairs of switching operations. In these
tables the solutions are ranked (in increasing order) according to the
value of V (G)+X(G). Solutions with similar value, considering precision
10−2, are randomly ranked.

The reproduction operators used to generate new individuals are the NDE
operators PAO and CAO and more informations are described in [4].

3.2 Multi-Objective EA Based on Decomposition (MOEA/D)

MOEA/D is a multi-objective EA that uses a technique of decomposition [2] of
a problem into subproblems. This algorithm simultaneously optimizes V single
objective subproblems, each of them corresponds to an aggregation function.
MOEA/D usually employs the Tchebycheff approach [15] for the decomposition
of a multi-objective problem into subproblems. A coefficient vector λi defines
each aggregation function and a set with the U coefficient vectors that are the
closest to λi in {λ0, . . . , λV } composes the neighborhood of λi [2].

The coefficient vectors should spread uniformly in the objective space. The
number of vectors is V = Co−1

H+o−1, where o is the number of problem objectives
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and H + 1 is the size of weight set { 0
H , 1

H , . . . , H
H } used to construct coefficient

vectors. As a consequence, a tradeoff between o and H should be found in order to
bound V , generating a number of subproblems that is computationally tractable.

In relation to MEAN, MOEA/D requires the additional parameters U and H.
To work with the SR problem, we adapted MOEA/D to use NDE, which was
called MOEA/D-NDE.

3.3 Evolutionary History Recombination

In this section the recombination operator for the NDE is described: Evolution-
ary History Recombination (EHR) proposed in [16]. As the name of the operator
suggests, EHR is based on the evolutionary history of the operators PAO and
CAO, that is, on the sequence of vertices (p, a), for PAO, and (p, r, a), for CAO,
applied in the generation of new individuals. The history of each individual can
be retrieved by using the auxiliary structures from NDE: matrix Πx, which stores
the positions of node x in each individual, and array π, which stores the ancestor
of each individual.

In order to simplify the utilization of EHR, we propose a modification in
array π of the NDE, called πm, such that it can store not only the index of the
ancestor but also a triple of nodes (a, r and p) that were used in the application
of the operator PAO or CAO (in the case of PAO, the value in r is null). In this
way, a sequence of movements to generate individual Fi from any ancestor can
be accessed from πm.

4 Discrete DE with Movements List

In [17] the authors propose an optimization approaches for the differential evo-
lution, called Discrete Differential Evolution algorithm with List of Movements
(DDELM). DDELM was applied to combinatorial problems where the operators
difference, addition, and product by scalar in the differential mutation equation
are redefined in the space of discrete variables.

The difference between two candidate solutions is a List of Movements in the
search space defined as:

Definition 1: A list of movements Mij is a list containing a sequence of valid
movements mk such that the application of these movements to a solution si ∈ S
leads to the solution sj ∈ S, where S is the search space, that is, the set of all
possible combinations of values for the variables.

In this way, the “difference” between two solutions is defined as being the
corresponding list of movements:

Mij = si � sj , (4)

where � is a special binary minus operator that returns a list of movements Mij

that represents a path from si towards sj . This list, in some sense, captures the
differences between these two solutions.
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The multiplication of the list of movements by a constant is defined as:

Definition 2: The multiplication of the list of movements, Mij , by a constant
F ∈ [0, 1], returns a list M ′

ij with the �F × |Mij |� movements of Mij , where
|Mij | is the size of the list.

Thus, the multiplication of the list of movements by a constant can be
denoted, using the special binary multiplication operator ⊗, by:

M ′
ij = F ⊗ Mij . (5)

Finally, the application of a list of movements to a given solution is defined
as follows:

Definition 3: The application of the sequence of movements in the list M ′
ij into

a solution sk, returns a new solution s′
k:

s′
k = sk ⊕ M ′

ij . (6)

With the definition above, one can generate a mutant vector defined as:

vi = x0 ⊕ F ⊗ (x1 � x2)
vi = x0 ⊕ F ⊗ M12

vi = x0 ⊕ M ′
12,

which is the proposed discrete version of the typical differential mutation equa-
tion.

We emphasize that in this paper we extend the ideas in [17] by proposing a
list of movements based on the NDE, which is suitable for representing candidate
solutions in DSR problems.

5 Proposed Approach

The proposed approach is called MEAN-DE, which consists basically of MEAN
and the mutation operator of DE re-designed from the EHR operator. In other
words, the list of movements [17] is obtained from the application of EHR opera-
tor. In this sense, the difference between any two individuals x1 and x2 is a list of
movements M12 composed by a sequence of triples (p, , a) and (p, r, a) obtained
from πm (Section 3.3). In fact, the list is the concatenation of two sequences: one
from x1 to xc and another from xc to x2, where xc is their common ancestor.

Thus, the EHR can be used to implement a discrete differential mutation
operator that is computationally efficient (O(

√
n) in average). The implementa-

tion is straightforward as follows:
Be x0, x1, and x2 three individuals randomly selected from the current pop-

ulation to participate in the differential mutation equation:

vi = x0 ⊕ F ⊗ (x1 � x2) (7)
vi = x0 ⊕ F ⊗ M12,
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where the list of movements M12 is obtained from the history of applications of
PAO, CAO and EHR, which are stored into the modified array πm.

To illustrate the proposed differential mutation operator based on EHR, let
us consider the DS in Fig. 2(a), consisting of 3 feeders. The NDE of each feeder is
shown in Fig. 2(b). In this sense, consider the tree representation of the common
ancestor xc ((Fig. 3(a)), which is the forest shown in Fig. 2(a)) of individuals
x1 and x2 (shown in Figs. 3(b) and 3(c), respectively) generated through the
application of CAO and PAO. Individual 1 comes from ancestor xc by the fol-
lowing sequence of PAO applications (11, ,17), (7, ,6) and (24, ,23). Individual
2 derives from xc by applying CAO as follows: (21, 20, 14), and (11, 12, 13).

5 6 7 8 94

10 11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27

1 2

3

(a) DS with 3 feeders modeled by a
graph with three trees

(b) NDE for the feeders in Fig. 2(a).

Fig. 2. NDE arrays for three trees of the spanning forests

Thus, with the aid of the EHR, the list of movements for each individual is
written as:

Mc1 = [(11, , 17) (7, , 6) (24, , 23)] (8)
Mc2 = [(21, 20, 14) (11, 12, 13)]

The list of movements M12 between individuals x1 and x2 is the junction of
this two lists. M12 is built by choosing alternately one movement from each list
of the individuals in order to avoid a bias of the movements list from one only
individual. So, the movement list M12 is given by:

M12 = [(11, , 17), (21, 20, 14), (7, , 6),
(11, 12, 13), (24, , 23)] (9)

Assuming that F = 0.6 [17], the number of movements used from M12 is
� F × |M12| � = � 0.6 × 5 � = 3. Thus M ′

12 results in:

M ′
12 = [(11, , 17), (21, 20, 14), (7, , 6)] . (10)

The mutant vector vi is obtained by applying each movement of M ′
12 into the

base vector x0:
vi = x0 ⊕ M ′

12. (11)

Thus, using x0 from Fig. 3(d) and M ′
12 obtained above, the resultant mutant

vector is the one shown in Fig. 3(e).
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(b) Individual x1 generated by three
applications of the PAO operator into
the common ancestor of Fig.3(a)
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(c) Individual x2 generated by three
applications of the CAO operator into
the common ancestor of Fig.3(a)
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(d) Individual x0, base vector, randomly
choosing in a current population
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(e) The result mutant vector vi

Fig. 3. Example of Differential mutation operator based on EHR

In summary, the proposed approach allows the implementation of the dif-
ferential mutation operator for DSR problems by using the EHR operator to
build the list of movements as proposed in [17]. The list of movements captures
the differences between any two individuals and can be scaled and applied to
the base individual in order to generate a mutant solution. MEAN-DE employs
the differential mutation operator as the search engine within the MEAN
framework.
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6 Experimental Analyses

In order to analyze how the methods MOEA/D-NDE, MEAN and MEAN-DE
performs for SR problem, the real DS Sao Carlos city (called System 1) was used
to compose other DS with size of four times the original DS (called System 2).
System 2 is composed of four Systems 1 interconnected by 49 NO new additional
switches (the data of the two DSs are available in [18]). These DSs have the
following general characteristics:

System 1 (S1): 3860 buses, 532 sectors, 632 switches (509 NC and 123 NO
switches), three substations, and 23 feeders; System 2 (S2): 15 440 buses,
2128 sectors, 2577 switches (2036 NC and 541 NO switches), 12 substations,
and 92 feeders.

The approaches MEAN, MEAN-DE and MOEA/D-NDE were run using a
Core 2 Quad 2.4GHz, 8G RAM, with Linux Operating System Ubuntu 14.04
version, and the language compiler C gcc-4.4 and all the tests refers to a fault
at the largest feeder in Systems 1 and 2, interrupting the service for the whole
feeder.

Parameters of MEAN and MEAN-DE are the subpopulation table sizes,
which were all setup to STi

= 5. MEAN, MEAN-DE and MOEA/D-NDE used
dynamic probability of PAO and CAO applications. We evaluated different val-
ues of parameters U and H of MOEA/D-NDE in order to keep the total number
of evaluations closest to the number used in MEAN and MEAN-DE and we
chose the set that corresponded to the smallest number of switching operations,
returning U = 30 and H = 10.

The performance between MOEAs is usually assessed by the quality of the
approximated Pareto fronts found by the algorithms. In general, three charac-
teristics are taken into account to evaluate an approximated Pareto front: 1)
proximity to the Pareto-optimal front, 2) diversity of solutions along the front
and 3) uniformity of solutions along the front. These three criteria guide the
search to a high-quality and diversified set of solutions which enable the choice
of the most appropriate solution in a posterior decision-making process [19].

To quantify these three characteristics in a set of non-dominated solutions,
various measures have been developed, as example, Error Ratio, Generational
Distance, the R2 and R3 [20] Hypervolume (HV) [21] and ε-indicator [21]. In this
paper, R2, R3, HV and ε indicators are used to assess the performance of the
proposed algorithm, each of them is based on different preference information,
then by using them all we provide a range of comparisons intead of just one
point-of-view.

In this context, the experiments with the system test evaluated the approaches
according to: (a) the performance of them for the SR problem; and (b) the rel-
ative performance of those MOEAs concerning R2, R3, HV and ε-indicators.

MEAN, MEAN-DE and MOEA/D-NDE were run 50 times (with different
seeds for the used random number generator). Each run evaluated 100,000 solu-
tions. In this paper the MEAN, MEAN-DE and MOEA/D-NDE approaches will
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be search for SR plans which restore the entire out-of-service area (full restora-
tion cases) respecting radiality and all the operational constraints (voltage drop,
substation and network loading).

Table 1 enables a comparison of MEAN, MEAN-DE and MOEA/D-NDE
for S1 and S2 according to the number of switching operations for SR plans
(the most critical aspect for the SR problem). Those results concern only the
feasible solutions with the smallest number of switching operations found by each
approach in each run. Clearly, MEAN-DE and MEAN outperform MOEA/D-
NDE according to the number of switching operations for SR plans.

Table 1. Simulations with Single Fault in Systems 1 and 2

Switching Operations
MEAN-DE MEAN MOEA/D-NDE

S1

Minimum 7 7 9
Average 9 13 19

Maximum 11 29 73
Standard Deviation 1.46 5.48 13.41

S2

Minimum 7 11 27
Average 20 25 77

Maximum 77 107 105
Standard Deviation 14.07 20.1 22.11

Table 2 synthesize other electrical aspects of the best solutions found by
MEAN, MEAN-DE and MOEA/D-NDE for each objective and constraint. Basi-
cally, they emphasize that the found solutions are all feasible and don’t signifi-
cantly differ from each other according to those aspects, thus, the critical aspect
is the number of switching operations, as shown by Table 1.

Table 2. Simulation Results - Single Fault in Systems 1 and 2

MEAN-DE MEAN MOEA/D-NDE
Avg1 Dev.2 Avg Dev. Avg Dev.

S1

Power Losses 377.2 29.8 353.8 36.1 370.19 28.6
Voltage Ratio(%) 4.1 0.8 3.8 0.7 3.3 0.07
Network Loading (%) 77.7 7.7 74.4 8.4 86.3 6.9
Substation Loading (%) 53.9 2.1 53.3 1.5 53.1 2.9
Running Time 13.6 0.2 12.8 1.2 5.7 0.2

S2

Power Losses 1195.6 50.8 1191.6 69.5 1238.3 91.8
Voltage Ratio(%) 3.7 0.6 3.9 0.8 3.5 0.5
Network Loading (%) 80.7 10.1 83.1 9.5 88.1 7.2
Substation Loading (%) 55.2 1.9 57.1 4.8 57.2 3.4
Running Time 16.3 0.6 14.9 0.4 8.5 1.1

1Average.
2Standard Deviation.
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Fig. 4. Pareto fronts obtained from Systems 1 and 2.
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Fig. 5. Box plots for metrics R2, R3, HV and ε-indicators obtained using Systems 1
and 2.
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Moreover, analyses of the results according to metrics used to compare
MOEAs show that the MEAN-DE outperforms MEAN and MOEA/D-NDE
for test problem (S1 and S2) in terms of approximating the Pareto optimal
set while preserving a diverse, evenly-distributed set of nondominated solutions.
Fig. 4 indicates that MEAN-DE is able to evolve individuals near to the Ref-
erence Front ( which is composed using solutions of all found fronts obtained
from 50 trials with each method)when compared with the approaches MEAN
and MOEA/D-NDE.

The distribution of the performance metrics R2, R3, HV and ε-indicators for
System 1 are shown in Figs 5(a), 5(b), 5(c) and, 5(d), respectively. The MEAN-
DE can find in average a front that is diverse and uniformly distributed for test
problem when compared with other approaches. Moreover, Figs 5(e), 5(f), 5(g)
and, 5(h) corroborate such performance for System 2.

7 Conclusions

This paper presented a new MOEA using NDE with a powerful differential
mutation operator to solve the SR problem in large-scale DS (i.e., DS with
thousands of buses and switches).

The proposed approach, called MEAN-DE, combines the main characteristics
of MEAN, EHR operator and list of movements of the DDELM proposed in [17].
MEAN and MEAN-DE are both based on the strategy of subpopulation tables
to deal with multiobjective optimization involving more than two objectives.
The MEAN-DE uses a new differential mutation operator structured from the
EHR operator, providing computational efficiency in order to deal with relatively
large DS. In addition, a MOEA using subproblem Decomposition and NDE
(MOEA/D-NDE) was investigated.

In the experiments three approaches, named MEAN, MEAN-DE and
MOEA/D-NDE were applied to two DS test problem. To measure the qual-
ity of obtained solutions of MOEAs using NDE, the metrics R2, R3, HV and
ε-indicators were used. According to the simulation results, MEAN-DE showed a
better performance in terms of R2, R3, HV and ε-indicators in relation to other
approaches analyzed.

Acknowledgments. The authors would like to acknowledge CAPES, CNPq, Fundaão
Araucária and FAPESP for the financial support given to this research.
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Abstract. Earthworks tasks aim at levelling the ground surface at a target con-
struction area and precede any kind of structural construction (e.g., road and 
railway construction). It is comprised of sequential tasks, such as excavation, 
transportation, spreading and compaction, and it is strongly based on heavy me-
chanical equipment and repetitive processes. Under this context, it is essential 
to optimize the usage of all available resources under two key criteria: the costs 
and duration of earthwork projects. In this paper, we present an integrated sys-
tem that uses two artificial intelligence based techniques: data mining and evo-
lutionary multi-objective optimization. The former is used to build data-driven 
models capable of providing realistic estimates of resource productivity, while 
the latter is used to optimize resource allocation considering the two main 
earthwork objectives (duration and cost). Experiments held using real-world 
data, from a construction site, have shown that the proposed system is competi-
tive when compared with current manual earthwork design. 

Keywords: Earthworks · Equipment allocation · Metaheuristics · Data mining 

1 Introduction 

Levelling the ground surface and preparing the required foundation conditions are nec-
essary steps prior to the construction of most Civil Engineering structures. These steps 
are especially important in the construction of linear structures, as is the case of roads or 
railways, since they imply the levelling of large extensions of ground surface. In order 
to achieve this, engineers rely on heavy mechanical equipment, such as excavators, 
dumper trucks, bulldozers and compactors, which allow them to handle large amounts 
of soil or other materials. Usually these tasks include excavating material from areas 
that are above the target height and transporting them to the areas below target height, 
where they are spread into layers and compacted, forming an embankment. The tasks 
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associated with the usage of mechanical equipment to excavate, transport, spread and 
compact material in order to shape the ground surface in order to fulfil a specific pur-
pose are often referred to as earthworks. 

The design of earthworks tasks is often performed by a human expert. Such expert 
often uses her/his experience and intuition as the main criteria for the selection and 
allocation of resources throughout the construction process, in order to achieve a 
fixed trade-off between the two key earthwork design objectives, cost and duration. 
This is not a trivial task. Similarly to a wide range of real-word resource allocation 
tasks, the two-goal optimization is nonlinear and involves a large search space of 
design solutions for placing the available equipment in an earthworks project.  

Considering such human allocation practice, there is a high potential for reducing 
costs and duration of earthwork projects by adopting artificial intelligence techniques, 
such as data mining and Metaheuristics. In effect, data mining techniques have been 
proposed within this domain, taking advantage of the recent increase of available 
construction databases to accurately predict the productivity of mechanical equipment 
given specific site conditions [1–6]. Moreover, several Metaheuristics, such as evolu-
tionary computation, ant colony optimization and swarm intelligence, have been pro-
posed for optimal allocation of resources within the earthworks domain [7–13]. 

This paper presents a proposal of an intelligent system that uses both data mining 
and evolutionary computation to tackle the multi-criteria optimization problem asso-
ciated with resource allocation in earthwork construction. The optimization task  
addressed in this work is a particular instance of the more general job shop schedul-
ing problem. Considering that the data mining approach has been presented in [18], a 
stronger emphasis is given towards the evolutionary multi-objective optimization 
component of the proposed system. The main contributions are associated with the 
architecture and methodology that comprise the presented optimization system. In 
terms of optimization methods, previous works either optimize a single objective, 
such as cost [7, 8] or duration [9], or adopt a weighted approach [10], that optimizes 
separately three duration-costs weight setups (i.e. 0.8/0.2; 0.7/0.3; and 0.5/0.5). In 
contrast with these solutions, the system discussed in this paper takes a Pareto front 
optimization approach, which not only optimizes both objectives simultaneously, but 
also outputs a set of interesting trade-off solutions. Depending on the budget and 
deadline restraints, the solution that best adjusts the objectives of the designer can 
then be selected. Furthermore, regarding productivity estimation, while existent appli-
cations lean on the experience of the designer [9, 10], resulting in rough estimation of 
equipment work rates, others attempt to build computer-demanding simulation mod-
els to solve this issue [7, 8, 11]. Contrariwise, the novel system uses data-driven mod-
els (fit to real data) to estimate equipment productivity, which allows for a realistic 
estimation. Finally, proposed the system is validated by experimenting with real-
world data from a construction site and comparing the results with those obtained by 
conventional earthwork design.  

The paper is organized as follows. Firstly, the optimization framework for the de-
sign of earthworks, where the earthwork problem is described as a series of simulta-
neous production lines, susceptible to optimization, is presented in Section 2. Then, a 
brief state of the art description of data mining and Metaheuristics applications to the 
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earthwork domain is described in Section 3. Next, the multi-criteria optimization 
system is detailed in Section 4, featuring the description of the system and results that 
were obtained when applying such system with real-world data from a construction 
site. Finally, closing conclusions and perspectives of future work are presented in 
Section 5. 

2 An Optimization Framework for the Design of Earthworks 

Taking into account an optimization point of view, earthwork construction can be 
described as a number of production lines based on resources and dependency rela-
tions between sequential tasks. The resources are the mechanical equipment that is 
essential for the development of the project, namely excavators, dumper trucks, bull-
dozers and compactors, while the sequential tasks correspond to the associated proc-
esses, specifically excavation, transportation, spreading and compaction, respectively. 
The speed at which the latter can be completed depends on the amount of the former 
being allocated into each task. In other words, the work rate (in this case often meas-
ured in volume of handled material per hour, m3/h) in each sequential task can be 
manipulated by increasing or decreasing the amount of associated resources allocated 
to it. This means that earthworks are strongly susceptible to optimization, which is 
aimed at minimizing both execution cost and duration. The multi-criteria include 
conflicting properties: in general, one can decrease execution duration by increasing 
the amount of allocated resources (mechanical equipment) to a task, but such results 
in an increase of the associated execution costs and vice-versa. However, it should be 
noted that the costs related to fuel and machinery maintenance (indirect costs) are 
substantial. Since these increase accordingly to the duration that mechanical equip-
ment are working, a solution with the least possible amount of allocated resources is 
not necessarily the least costly. Thus, the optimal balance between the criteria must be 
established. 

The tasks that comprise earthwork projects have a set of specific characteristics in 
this context, of which the focal point is interdependency. Indeed, earthwork tasks are 
not only sequential, but also the work rate of each of them is always limited to the 
work rate of its preceding task. For instance, the dumper trucks cannot undergo the 
transportation of soil if the latter has yet to be excavated and loaded into them; and 
bulldozers cannot spread soil into layers so as to allow compaction if the material has 
not been brought to them by the dumper trucks, and so on. Furthermore, when dealing 
with sequential and interdependent tasks such as these, the speed at which a single 
production line can carry out its work is equivalent to the work rate associated with its 
last task. In this context, maximizing the work rate in the final task (in this case, com-
paction) would correspond to a solution with minimum execution time for a produc-
tion line. However, it is noteworthy to emphasize such allocation is limited by the 
available equipment and also by the site conditions, such as space restrictions in ex-
cavation or compaction areas (usually designated as fronts). To fully take advantage 
of the available resources, one must guarantee that the allocated compaction equip-
ment is fed enough material so as to allow for constant production. In other words, the 
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work rate in all tasks prior to compaction (excavation, transportation and spreading) 
must be equal or similar to the work rate obtained in the associated compaction front. 
Should the work rate of a task fall short of the work rate of succeeding tasks, then the 
productivity of the whole production line will be limited to the one obtained in that 
task. This keeps the equipment from reaching its maximum potential in terms of work 
rate, i.e. by forcing it to idle while waiting for material. Therefore, it is essential to 
control the work rate in each task within a production line. 

Naturally, an earthwork construction is not depicted in a single production line, but 
rather in several independent production lines working simultaneously. Each of these 
production lines is associated with a compaction front, since that is the final stage for 
handling the geomaterials. Moreover, there is one more characteristic specific to these 
production lines that significantly increases its complexity. As construction ensues in 
several simultaneous production lines, compaction work will come to completion in 
one production line at a time. At the point when one production line has completed its 
assignment, the associated equipment is no longer contributing towards the comple-
tion of the earthwork project, thus calling for its reallocation into either an existent or 
a new production line. However, considering that site conditions have changed since 
the previous allocation, this reallocation should include all available equipment once 
again if it is to keep its optimal status. Thus, the whole resource allocation must be 
reorganized in order to optimally resume the execution of the project. This enhances 
the problem with a dynamic nonlinear feature, which must always be taken into ac-
count in earthworks design. 

3 Artificial Intelligence in Earthworks Equipment Allocation 

3.1 Data Mining 

The quality of an earthworks project design can only be as good as the ability to esti-
mate the associated equipment productivity as close to reality as possible. Nowadays, 
this parameter estimation is often based on the experience of the designer. In most 
cases, designers either settle for a somewhat random distribution of equipment, just as 
long as it is feasible, or attempt to apply a set of standardized teams to every produc-
tion line, of which an average productivity can roughly be estimated. Obviously these 
neither guarantee a good design, nor result in optimal executions of the projects. In 
this context, data mining provides an interesting alternative approach for estimating 
productivity parameters. Data mining [14] allows the extraction of useful knowledge 
(e.g. predictive models) from raw data (often based on vast databases and/or with 
complex relationships), searching for patterns and tendencies in the data. Guided by 
domain knowledge and under a semi-automated process that uses computational 
tools, data mining is an iterative and interactive process. Popular predictive data min-
ing models are based on machine learning techniques such as multiple regression 
(MR), artificial neural networks (ANN) [15] and support vector machines (SVM) 
[16]. These techniques are capable of automatically analyzing complex relationships 
in the data, turning them into knowledge which can be used to predict future values in 
new environments and for a better understanding of the problem domain variable 
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3.2 Metaheuristics 

Although data mining can be used for estimating parameters with a good adjustment 
to reality, it cannot, by itself, guarantee an optimal solution in terms of execution 
costs and durations. Since these criteria are a function of the allocation solution cho-
sen by the designer, optimization becomes a complex task. Considering the non-linear 
characteristics of the problem and since the solution space includes a large search 
space (in terms of distribution combinations of equipment throughout the construction 
site in each phase), conventional Operational Research (e.g. linear programming) and 
blind search methods are not effective for solving this problem. As such, Metaheuris-
tics are an interesting solution within this domain, since they are capable of searching 
interesting search space regions under a reasonable use of computational resources. 
Indeed, several studies have followed this approach by using optimization methods 
such as Genetic Algorithms (GA) [7, 12, 22] and Swarm Intelligence [9, 10, 13, 23]. 
Yet, the optimization carried out in most of these systems (e.g., [7, 9, 10, 12, 13, 23]) 
still requires an estimation of parameters, especially equipment productivity, which is 
still left to the experience gathered by the designer or attempted to be estimated in 
theoretical simulation models. Moreover, many of these applications focus on single 
tasks or partial processes that comprise earthworks, i.e., excavation and hauling [9, 
12], in an attempt to deal with the high complexity of the problem. For this reason, 
these systems lack the advantages of a global optimization of execution durations and 
costs throughout all construction phases. In terms of optimization objectives, existent 
systems tend to be limited to single objective optimization, such as cost [7] or dura-
tion [9], or attempt to consider both objectives via a weight-based optimization [10]. 
Although these solutions are considered effective in reducing computation effort re-
quirements, they overlook the advantages of optimizing both objectives simultane-
ously. Even if it can be looked at as multi-criteria optimization, the weighted-based 
approach used in [10] only outputs a single trade-off for a particular weight combina-
tion (e.g. 0.8 for first criteria and 0.2 for second). However, as one can easily infer in 
non-trivial multi-criteria optimization problems, often there is not a single optimal 
trade-off solution, but rather a set of trade-offs with conflicting objectives. Thus, a 
much natural multi-criteria optimization approach is to optimize a Pareto front of 
solutions, where each solution is called non-dominated, or Pareto optimal, if none of 
the objectives can be improved in value without worsening the other. In the context of 
earthwork optimization, all Pareto-optimal solutions are considered equally good and 
the main choice criteria for selecting one solution over the other is often decided by 
the project designer based on the construction final deadline and/or budget. Obvi-
ously, secondary criteria may be used to support the final decision, such as environ-
mental aspects, which can be assessed by the determination of carbon emissions in 
each solution.  

Taking into account that Pareto front multi-optimization requires the tracking of a 
population of solutions, population based Metaheuristics such as evolutionary computa-
tion, have become a natural and popular solution. Evolutionary computation is inspired 
in natural evolution and selection processes. Several computational variants have been 
proposed, such as GA [24], which are quite used within the earthwork construction 
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domain. Evolutionary computation methods often start with a random population of 
possible solutions (or individuals), which are evaluated according to their fitness in a 
given situation. Then, the best fitted solutions are most likely to produce offspring, in 
the form of a new set of solutions that include characteristics from the individuals that 
originated then. This way, the initial set of solutions is improved in each iteration (or 
generation), ultimately coming to an optimal or near-optimal set of solutions.  

Several evolutionary computation methods have been proposed for Pareto front op-
timization. In this work, we adopt the Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II) [25] due two main reasons. Firstly, NSGA-II is a popular and standard 
method for multi-criteria evolutionary optimization. Secondly, NSGA-II is easily 
available for a computational use in the R statistical tool [20] via the package mco 
[26], which is the same tool adopted for the development of our integrated optimiza-
tion system. The R tool was selected since the data mining models (i.e., ANNs) were 
also fit using this computational environment, thus allowing an easier of integration 
of both data mining and NSGA-II methods. Moreover, the R tool includes several 
conventional optimization methods, such as the Linear Programming (LP) method 
that is used for individual fitness calculation (see Section 4.1). 

4 Multi-criteria Optimization of Earthworks 

4.1 System Overview 

The developed system is comprised of a data mining module integrated into the multi-
objective optimization module of equipment distribution in earthworks. The first 
module takes care of estimating equipment productivity, while the second module 
carries out its optimal allocation. The system architecture falls into the framework 
proposed in [6]. In this work, the data mining module was applied to the GTR guide, 
aiming to determine compactor productivity given the material and site conditions.  

The algorithmic flow for the multi-criteria evolutionary optimization method and 
its associated fitness function is shown in Figure 2. By interpreting the problem as a 
series of production lines, it becomes possible to focus the NSGA-II allocation of 
resources to the compaction task (last task of the production lines), which sets the 
work rate target value for each production line. Each solution is represents the com-
paction equipment for all necessary construction phases. For a particular construction 
phase, the solution is composed of a sequence of C integer genes: g1 g2 g3…gC, where 
gi denotes the position of the i-th compactor (or roller) in terms of its compaction 
front and C represents the total number of compactors. The genes can take a value 
that ranges from 0 (not used) to the maximum number of compaction fronts F that 
have to be completed. The whole individual (or chromosome) includes all construc-
tion phase gene sequences, thus the total number of genes corresponds to the number 
of available compactors times the number of necessary construction phases: CxF. For 
demonstration purposes, Figure 3 exemplifies a particular case where there are C=2 
rollers and F=2, thus individuals are represented using four genes. 
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the duration and costs of the current phase (up to the point the compaction in one of the 
fronts is completed), as well as the completed front, is saved into memory. Then, the re-
maining material volumes in every other active compaction and excavation fronts are 
updated. As the genes for the next construction phase are selected and the previously 
described process is executed, a second step of the repair strategy is added, which 
verifies which compaction fronts have been completed. The second step assures that 
any compactor in the current construction phase that is allocated to a completed front 
is: a) allocated to another front, if possible; or b) not allocated (by changing the gene 
to zero). For executing step a), the gene is iteratively changed according to the rule:  
gi = (gi+1) mod (F+1), until a feasible front value is found. This way the available 
equipment is reorganized throughout the construction fronts at the beginning of  
each construction phase, while assuring that work fronts that have already been com-
pleted are excluded from future allocations, as exemplified in the left of Figure 3. In 
each solution, this process is repeated for each construction phase, resulting in a de-
termination of global costs and durations for the initial distribution of compaction 
equipment. The best solutions are then subjected to NSGA-II genetic operators, 
namely crossover and mutation, generating new solutions which are evaluated using 
the same methodology. 

 
 
 
 

 

Fig. 3. Example of an initial chromosome for 2 compactors and 2 compaction fronts (left) and 
the final chromosome after the execution of the repair strategy (right) 

4.2 Results 

The proposed system was tested using real-word data from a construction site. A sub-
set from a database that has been previously used during the development of the data 
mining models [6] was used as a reference. The available data includes the daily allo-
cation of earthwork equipment throughout a road construction site, including informa-
tion on available equipment, material volumes and types in excavation and compac-
tion fronts and distances between fronts. The selected subset includes five production 
lines working simultaneously (F=5), to which equipment was originally allocated by 
conventional design methodologies. Since there is a total of C=5 available compac-
tors, the resulting individuals in the optimization system will be comprised of 5x5=25 
genes each, defining the search space for this problem. 

Pareto Results. Using the methodology described in Section 4.1, the system outputs a 
Pareto-optimal set of solutions and their associated global costs and durations. The 
Pareto line represents several potential allocations of equipment throughout the con-
struction site, in each construction phase, and this information can be accessed for each 
solution. Such Pareto-optimal set of solutions is useful for the designer or engineer, as 

2 2 1 2 

Phase 1 Phase 2 

2 2 1 1 
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she/he might want to choose different solutions depending on the available budget and 
the required deadlines. As earthwork construction is inherently a dynamic and unpre-
dictable environment, different cost-duration solutions might become better adjusted to 
the ever-changing site conditions as construction develops. 

The default parameterization of NSGA-II method, as implemented in the R tool, 
was adopted, namely: population size of 100, stop after 100 generations, crossover 
probability of 0.7 and mutation probability of 0.2. The rationale is to focus more on 
assessing and validating the capabilities of the proposed integrated system when 
compared with current human design, rather than calibrating the optimization algo-
rithm. We note that in preliminary tests, smaller population sizes (e.g., 20) were ex-
plored, but the obtained results were worse than the default population size of 100. 
Also, the fitness evaluation is computationally costly, as it requires several data min-
ing model estimations and LP optimizations (for each front), thus a population size 
much larger than 100 individuals would increase the computational effort. In effect, 
with the default NSGA-II population size, the method was executed with 3 runs on an 
Intel Core 2 Duo 2.66 GHz processor, and it required from 24 to 28 hours to complete 
each single run. The total computational time for the computational experiment (all 3 
runs) was approximately 76 hours, even though this could be easily reduced using 
parallel computation (e.g., server with several multicore processors). The average 
Pareto-optimal front (over all 3 runs) is shown in Figure 4a, while a comparison be-
tween the conventional human design and those obtained by the proposed optimiza-
tion system is illustrated in Figure 4b. The Pareto-optimal front (Figure 4a) is the 
result of a vertical averaging (i.e., according to the Duration objective) of the Pareto 
curves outputted by each run, using the averaging algorithm proposed by Fawcett [27] 
for vertical averaging of ROC curves. Since these are mean values, indication of the 
95% confidence interval according to a t-student distribution was also included. 

In this optimization attempt, the equipment available for the conventional design 
allocation was kept fixed. In other words, the presented results stem from a simple 
reorganization of the available equipment throughout the construction fronts, without 
the addition of any other piece of equipment. Bearing in mind Figure 4b, it is easy to 
infer how the solution obtained by conventional design is far from optimal. In fact, 
should this system be implemented for this construction project, a high impact could 
be achieved, with an estimated reduction of around 50% to 70% of both costs and 
durations. Still, the system does not take into account the occurrence of unpredictable 
events during construction (i.e., equipment malfunction). However, this could be 
mitigated by rerunning a new optimization procedure with new restraints, which 
would result in a new set of optimal solutions for current site conditions. 

Allocation Analysis. From the original solution regarding equipment allocation 
throughout the five production lines, a general improvement could be observed. In most 
cases, a reasonable reduction in both durations and costs was attained by the optimiza-
tion system, which is the case of the second example described in Table 1 (production 
line 2). One production line featured a significant increase in global work rate without 
increasing costs, while in other cases considerable reductions in costs were achieved 
without a relevant increase in total duration. Regarding the latter, a comparison between  
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Fig. 4. Optimization results: a) vertically averaged Pareto-optimal front; b) comparison be-
tween optimized Pareto front (line) and the real-world human based allocation solution (dot); in 
both graphs, the Cost objective, y-axis, is presented in Euro, while the Duration objective,  
x-axis, is presented in hours 

the resource allocation in the original human based solution and the one obtained by the 
proposed optimization system is shown in Table 1 (production line 1). This also corre-
sponds to the production line where the highest amount of material volume was han-
dled. The same methodology was used to determine costs and durations for both the 
original and the optimized setup. 

It is easy to infer that, for both production lines depicted in Table 1, the work rates 
in each task of the original setup are not homogeneous, as opposed to the work rates 
of the optimized solution. For both cases, the whole production line is limited by the 
work rate of excavators in the original setup, which means that the other tasks have to 
wait for material to be excavated in order to allow for its transport, spreading and 
finally compaction. This incurs in equipment idle time while waiting for material to 
be ready for handling, which represents wastes in terms of resources (since these do 
not work at full efficiency) and fuel (contributing to unnecessary costs), as well as an 
increase on unnecessary carbon emissions. As a result, the total work rate of these 
production lines cannot be considered superior to that of the minimum work rate ob-
tained in the production line tasks, in this case excavation (1080 m3/h in production 
line 1 and 394 m3/h in production line 2). In contrast, the work rates obtained in the 
proposed optimized solutions for each task that comprises the production line are as 
homogeneous as possible, given the available equipment. As such, a constant flow of 
material throughout tasks can be achieved, using the allocated resources to their full 
potential and efficiency. It is noteworthy to emphasize that, besides optimizing the 
whole allocation in terms of costs and durations, the developed system is expected to 
always keep the allocated equipment working at full efficiency. This is done by 
minimizing equipment idle time as much as possible, which will also result in mini-
mization of unnecessary carbon emissions. This is very challenging to achieve by 
conventional design methodologies. 

Although the total work rate of the original setup is still slightly superior to the one 
obtained in its optimized counterpart in production line 1, the human based allocation 
solution features several pieces of equipment which are not necessary for its progress, 
as is the case of the six 40 ton dumpers that have been originally selected, for instance. 
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In this case, the optimization system allocated five considerably smaller trucks (lower 
capacity, but lower fuel consumption and, thus, lower operation costs) to fulfil this role 
instead. As a result, the optimized setup for this case resulted in a decrease of 75% in 
total costs, while not incurring in any significant increase in duration (the actual in-
crease in total duration is less than 1 hour of work). In the case of production line 2, 
besides solving the problem of work rate bottlenecks when compared to the original 
solution, the proposed optimized solution also features the allocation of higher produc-
tivity equipment. Consequently, a substantial decrease, over 50% in both cost and du-
ration objectives, is obtained when comparing the integrated system optimized setup 
with the original human based solution. These results emphasize the importance of 
using intelligent computational tools for optimizing this type of construction works, 
also revealing how conventional human design allocation methodologies can be rela-
tively counter-productive in some situations. 

Table 1. Comparison between the conventional allocation the optimized allocation for two 
different production lines 

 Production line 1 Production line 2 

Parameter Original solution 
Optimized 
 solution 

Original solution 
Optimized  
solution 

Average distance 
to excavation 
fronts (m) 

700 175 

C - Number of  
Compactors 

2 2 1 1 

Compactor work 
rate (m3/h) 

1831 1008 614 1055 

Number of 
spreaders 

2 2 1 2 

Spreader work 
rate (m3/h) 

1500 1088 413 1239 

Number of 
dumper trucks  

6 5 2 2 

Dumper truck 
work rate (m3/h) 

2228 1009 2960 1600 

Number of  
excavators 

2 2 1 2 

Excavator work 
rate (m3/h) 

1080 1080 394 1080 

 
Finally, is important to note that the results associated with Figure 4 and Table 1 

were obtained using an efficiency factor for mechanical equipment, k, of 0.75. This 
efficiency factor is related to the amount of time that the mechanical equipment 
spends in actual production. According to earthwork technical guides [19], actual 
“on-the-job” productivity is commonly influenced by factors such as operator skill, 
personal delays, job layout and other delays.  Since one of the main focuses of this 
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system is to maximize productivity of all the allocated mechanical equipment, it 
makes sense to consider the maximum value commonly suggested in earthwork tech-
nical guides (k=0.75). However, it is very hard to achieve the same efficiency factor 
in practice by means of conventional design, especially taking into account the fact 
that, as previously mentioned, it is mostly based on the experience of each designer. 
Additionally, unforeseen delays due to unpredictable situations that can occur in a 
real environment often have a significant impact on the actual efficiency factor of 
equipment in a construction site. In the present case, the available data indicates that 
the average actual efficiency factor for the mechanical equipment was just over k=0.3, 
which is not uncommon in this type of construction. As such, this large gap between 
these efficiency factors must be taken into account when analyzing the apparent dis-
crepancy between the optimized results and the ones obtained by conventional design. 

5 Conclusions and Future Work 

Earthwork tasks are resource-dependant processes which aim to level target ground 
areas so as to allow for the construction of structures or infra-structures. Considering 
that these tasks represent a significant percentage of total execution durations and 
costs of road and railway projects, optimizing the resources involved is essential. 
However, the fact that conventional design methodologies lack the tools for optimal 
resource allocation can significantly hinder the durations and costs associated with the 
obtained solutions. Moreover, these methodologies are not prepared to keep up with 
the recent increasing demands regarding higher productivities and environmental 
aspects, such as minimizing carbon emissions. 

In this work, a Pareto approach based on Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) was chosen as a basis for the development of an earthworks optimization 
system. The proposed system integrates several technologies, including artificial intelli-
gence, in the form of evolutionary computation and data mining methods, and linear 
programming optimization, in an attempt to adjust to the complex reality associated with 
these types of constructions. The aim is to optimize the available resource allocation 
(represented by mechanical equipment) throughout the sequential tasks (namely excava-
tion, transportation, spreading and compaction of geomaterials) that comprise the earth-
works process. In this framework, the data mining technology supports the optimization 
techniques by providing realistic estimates to the productivity of the available equipment 
given site conditions. 

Experiments have been carried out, using real-word data from a construction site and 
focusing on the assessment of the capabilities of the integrated system when compared 
with human allocation design. Competitive results were achieved by the proposed sys-
tem, stressing the importance of using intelligent optimization tools in the design of 
earthworks. Also, some limitations of conventional human allocation design were 
shown, in particular where the production line equipment is either significantly above 
the required work rate requirements (incurring in unnecessary costs) or below it (result-
ing in idle times and low efficiency ratios). Moreover, it was possible to verify the ca-
pability of the proposed system to distribute equipment in a relatively homogeneous 
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way (when compared to conventional design), while minimizing costs and durations, 
which was the goal of this research. 

Future work should include the addition of features which should allow a better ad-
justment to reality by the system, as is the case of better grasping of space restriction 
conditions in the construction site. The determination of carbon emissions, either to 
be used as secondary criteria or a minimization objective, also fits the future work 
category. Furthermore, the exploration of different NSGA-II parameterization (e.g. 
crossover and mutation probability), as well as other multi-objective optimization 
methods, such as Strength Pareto Evolutionary Algorithm 2 (SPEA-2) or S-Metric 
Selection Evolutionary Multi-objective Optimization Algorithm (SMS-EMOA), will 
be addressed in future work.  
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Abstract. Almost all studies which apply feature selection for super-
vised classification are limited to single-objective optimisation, validating
feature sets with only one criterion like accuracy, classification error, cor-
relation with the category, etc. However, this approach usually leads to
a decrease of performance with respect to other relevant criteria. In this
paper, we provide a summary of previous studies on supervised evolu-
tionary multi-objective feature selection with a focus on the choice of the
objectives. Further, we explore the application of EMO-FS for 28 pairs of
evaluation measures in a case study predicting musical genres and styles
based on the initial set of 636 features. To measure the advantage of
a multi-objective approach over a single-objective one, we propose two
metrics based on hypervolume and provide a statistical comparison of
multi-objective performance across 14 categorisation tasks.

Keywords: Multi-objective feature selection · Evolutionary feature
selection · Music classification · Genre recognition

1 Introduction and Literature Survey

1.1 Single- and Multi-objective Feature Selection

Supervised classification of data instances is based on the previously extracted
and typically numerical data characteristics (features) together with labels, for
example binary relationships to given categories. In real-world classification sce-
narios, automatic classification often faces a problem that high demands on time
and/or computing resources are necessary to create a large enough set of labelled
instances to learn from: the labelling may require intensive manual efforts, expen-
sive probes, or complex simulations.

If a large number of feature candidates are used to construct classification
models from a rather limited training set of data instances, the danger of over-
fitting increases and some irrelevant features may be identified as relevant by
chance. Highly overfitted classification models perform very well for the training
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 529–543, 2015.
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data, but their generic performance is poor [22]. The identification of a “perfect”
feature set instead of the training of classification models with all available fea-
tures may provide further benefits. Because the number of features is reduced,
it is possible to save time and storage resources of feature extraction, prepro-
cessing, training of classification models, and classification itself. For instance,
the classification of unlabelled data is done faster with small and robust models
instead of complex and probably overfitted ones.

In general, feature selection can be defined as follows:

q∗ = arg min
q

[m (y, ŷ, Φ(F , q))] , (1)

where q is a binary vector which denotes the features to be selected (one at
i-th position means that i-th feature should be selected), Φ is the correspond-
ing subset of the complete feature set F , and m is a relevance function (also
referred to as evaluation measure) for the evaluation of feature sets. y are the
true labels, ŷ the predicted ones, and q∗ is the optimal feature set w.r.t. the given
relevance function. Note that some relevance function are not dependent on the
labels (amount of correlated features, classification runtime, etc.). Measures to
be maximised like accuracy can be adapted for the minimisation.

The decision to optimise a feature set with respect to a particular relevance
function often leads to a decrease of performance w.r.t. other relevant criteria,
consider several examples:

– Models with very small classification errors often require more features, have
a lower generalisation ability, and the classification may be slower.

– For binary classification, the performance on positive and negative data
instances may be in conflict.

– Models trained with small training sets may efficiently reduce efforts for data
labelling but have a lower classification quality.

In the multi-objective feature selection (MO-FS), K conflicting relevance
functions m1, ..., mK are taken into account:

q∗ = arg min
q

[m1 (y, ŷ, Φ(F , q)) , ...,mK (y, ŷ, Φ(F , q))]. (2)

For a set of F features, there are exist 2F − 1 combinations of possible non-
empty subsets, and the problems related to feature selection were described
as NP-hard [16]. Because many deterministic strategies require a large number
of feature subset evaluations (for an exhaustive overview of methods see [13]),
heuristics like evolutionary algorithms (EAs) may help to find a (sub)optimal
feature subset within an acceptable amount of evaluations. Because EAs evolve
a set of (among others non-comparable) solutions at the same time, they are
also well suited to solve MO-FS.

The first application of EAs for feature selection was proposed in [33].
Evolutionary multi-objective feature selection (EMO-FS) was introduced approx-
imately a decade later [6]. In the following years and until now, a number of studies
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on EMO-FS was reported. Probably the most exhaustive up-to-date overview is
provided in [23] - however only ten references on supervised EMO-FS are listed (in
the next section we refer to several further works). This indicates a strong poten-
tial for further studies.

1.2 Evaluation Measures in Previous Works on Supervised
Evolutionary Multi-Objective Feature Selection

There exist many relevance functions which may be in conflict and important
for a concrete application scenario. In [39,41], we discussed several groups of
evaluation measures with a specific aim to improve the reliability of music clas-
sification. However, this categorisation is also applicable for other supervised
classification scenarios:

– Measures of classification performance include commonly applied meth-
ods for the evaluation of supervised classification and are typically based on
the confusion matrix: accuracy, precision, recall, etc., for a general discussion
see [1,35]. Some of these measures were constructed for highly imbalanced
data sets [34].

– Resource measures describe demands on runtime and storage space. It is
usually hard to measure runtime in a credible way because it depends on
the hardware, load of the operating system, but also on the (in)efficient
implementation of the method or differences between runtime environments.

– Model complexity measures help to identify simpler models which are
more robust against overfitting. Because more complex models often have
larger demands on resources, this group of measures is related to resource
measures. However, the primary goals are different and sometimes a model
with larger demands on storage space can be indeed more robust: consider a
k-nearest-neighbours model which requires more storage place compared to,
e.g., a decision tree model.

– Optimisation of user related measures aims at the reduction of any personal
efforts necessary to create a supervised classification model (e.g., labelling of
a large training set or any interaction during the training process), but also to
increase personal satisfaction with classification results.

– Specific performance measures are designed for the evaluation of a partic-
ular task. For example, the evaluation of music segmentation (binary recog-
nition of boundaries between song sections like intro, bridge, or verse) may
be based on a non-linearly weighting of the distances between predicted and
existing boundaries.

Even closely related measures may be less correlated as observed in our pre-
vious study on music genre and style recognition [40] and thus can be used as
objectives for EMO-FS. Following combinations of objectives were reported in
the literature:
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– In a majority of works the goal is to minimise the number of features
and the classification error (or maximise the accuracy) [6,11,12,14,
19,21,26,27,39,41,42,45,47,48]. Sometimes the definition of multi-objective
feature selection is explicitly restricted to this case [14,47,48].

– Further combinations of two objectives related to classification
performance are recall and specificity [7,10,39] and precision and recall
[5]. Only a few works explore more combinations of two objectives: 3 com-
binations in [12] and 4 in [11], however always with the number of features
as one of both criteria (together with accuracy, F-measure and two error
measures).

– Optimisation of pairs of measures beyond classification performance
and the number of features is seldom applied. The classification error
and the size of decision tree classifier are minimised in [29]. Filter-based
measures are included in [46] (inter-correlation between a feature set and a
category against intra-correlation across features in the set1) and in [44] (15
combinations of 6 importance measures). The last work reports the largest
number of combinations of objectives in our survey.

– Three and more objectives optimised at the same time are the number of
features together with the classification error and F-measure [12], extended
with the number of features, classification error, and recall in [11]. Further
combinations are the number of features, the classification error, and the
difference in error rate among classes [20], the number of features, recall,
and specificity [37], the number of features, accuracy, and mutual information
[45], the number of features, information gain, and mutual correlation [31],
and the number of features together with 3 pairs of criteria selected from
accuracy, F-measure, and Matthews correlation coefficient [21]. Simultaneous
optimisation of four objectives (the number of features, error, recall, and F-
measure) was applied in [11].

Not only numbers of objective combinations, but also the sizes of feature
sets were typically not very large in related works. From the above mentioned
studies only [10,20,29,39,41,42,47] addressed sets of features above two hundred.
Though, in one of the first exhaustive studies on evolutionary feature selection
it was recommended to apply EAs for “very large” sets with more than 100
features [18].

Various popular multi-objective evolutionary algorithms (MOEAs) were
applied for feature selection (however, without a systematic comparison across
the methods), for example, NSGA-II [3] in [5,14,21,31,44,46], SMS-SMOA [8]
in [39,41,42], PSO [15] in [47], and differential evolution [30] in [48]. The design
of specific operators to enhance the original methods was addressed in some
works, e.g., commonality-based crossover designed to preserve “building blocks”
of features with high performance [6], memetic framework to improve EA with
a local search [49], asymmetric mutation to favour smaller feature sets [42], or
the ensemble of multi-objective optimisers [37].
1 Note that the evaluation of feature sets w.r.t. filter-based measures only does not

belong any more to supervised feature selection.
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1.3 Music Categorisation and Evolutionary Feature Selection

Music information retrieval (MIR) is a growing research domain which com-
prises subfields such as music transcription, recommendation of new music, opti-
cal music recognition, analysis of listening preferences, automatic correction of
vocals, detection of plagiarism, and so on. Because the current scope of MIR
goes far beyond the “retrieval of information”, a probably better acronym is
“music information research” as introduced in [32]. The last document provides
a well structured description of current tasks and future challenges of MIR. The
history of the earlier stage of MIR is discussed in [4].

Categorisation of music data plays one of the most prominent roles in MIR.
The categories to predict are musical genres, styles, personal preferences, moods,
instruments, harmonic properties such as key and mode, and so on. Among
others, the recognition of genres is a very common application, [36] refers to
several hundreds of related publications.

In contrast to some other classification scenarios, however, feature selection
was until now not very often applied for music classification. The simple reason
is that the number of features was not very high in the recent past. For example,
in one of the pioneering works on audio genre classification [38], 30 features were
used. However, this situation is changing:

– The number of new approaches for the extraction of high-level, seman-
tic features relevant to music theory is growing. For example, in [41] we
extracted a set of 566 high-level descriptors, partly integrated from several
MIR frameworks and partly developed by ourselves.

– The analysis of “big data” gathered from listener statistics on the Internet
can be used for categorisation. Automatically predicted user tags [2] can be
a feature source for the recognition of further categories, or playlist statistics
may lead to successful recognition of musical genres [43].

– In some works automatic feature construction was proposed [24,25,28].
The evolution of method chains built as combinations of various signal-
related operators (e.g., Fourier transform, filters) and general operators
(product, autocorrelation, etc.) leads to a theoretically unlimited number
of features, so that the proper identification of relevant feature sets becomes
necessary to control this process.

Therefore, music classification is a promising and praxis-related application
for the comparison and analysis of feature selection methods. Evolutionary FS
was applied probably the first time for music classification in [9]. A list with
further studies on EA-FS in MIR is provided in [41]. EMO-FS is until now
almost unexplored for MIR, and we hope that after our first studies [39,41,42]
the interest on this topic will grow.

The choice of conflicting objectives for the optimisation of music classification
depends on a concrete application. For example, resources play a more important
role for the applications on mobile devices. The balance between surprise and
trustworthiness for the recommendation of new music depends on the preferences
of a listener. In other scenarios the limitation of human efforts may be very
important (learning only from a few music tracks or even only by positives).
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2 Experimental Setup

2.1 Classification Scenarios

For a case study on the exploration of combinations of different evaluation mea-
sures for supervised EMO-FS we use our music data set of 120 albums2. The
categories to recognise are 6 genres (Classic, Electronic, Jazz, Pop, Rap, R&B)
and 8 styles (AdultContemporary, AlbumRock, AlternativePopRock, etc.). A
complete set of 636 audio signal features contains various characteristics of time
domain, spectrum, cepstrum, phase domain, etc. For the exact list of features
and references to their definitions see [41]. Feature vectors were extracted for
classification windows of 4s with 2s overlap, and the classification models are
created with three binary supervised methods: naive Bayes, random forest, and
support vector machine with a linear kernel.

2.2 Measures for the Evaluation of Feature Subsets

SMS-EMOA [8] was applied for two-objective optimisation of all 28 pairs of 8
evaluation measures described below. 5 statistical runs for each of 3 classification
methods and 14 categories led to an overall number of 28 · 5 · 3 · 14 = 5, 880
experiments. The number of EA iterations in each statistical run was limited to
3,000. The details about our adaptation to the original SMS-EMOA are provided
in [41].

Two evaluation measures to minimise were the rate of selected features mFR

and the balanced relative classification error mBRE :

mBRE =
1
2

(
FN

TP + FN
+

FP

TN + FP

)
, (3)

where TP denotes true positives (number of classification windows labelled
as belonging to a category and correctly predicted as belonging to it), TN true
negatives (labelled as not belonging and predicted as not belonging), FP false
positives (not belonging but predicted as belonging), and FN (belonging but
predicted as not belonging). Estimation of mBRE makes sense for imbalanced
sets if the performance on both categories is relevant.

Evaluation measures to maximise (Equations 4-9) were precision mPREC ,
recall (sensitivity) mREC , specificity mSPEC , F-measure mF1, geometric mean
mGEO, and Spearman’s correlation coefficient mSPEAR.

Precision, recall, and specificity evaluate the performance for instances of one
class or identified as belonging to one class.

mPREC =
TP

TP + FP
, (4)

mREC =
TP

TP + FN
, (5)

2 http://ls11-www.cs.uni-dortmund.de/rudolph/mi#music test database

http://ls11-www.cs.uni-dortmund.de/rudolph/mi#music_test_database
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mSPEC =
TN

FP + TN
. (6)

F-measure and geometric mean are the combinations of these measures:

mF =

(
β2 + 1

) · mPREC · mREC

β2 · mPREC + mREC
, (7)

and mF1 is a special case with β = 1 (mPREC and mREC are evenly bal-
anced).

Geometric mean was proposed in [17] for imbalanced training sets:

mGEO =
√

mREC · mSPEC . (8)

Finally, Spearman’s correlation coefficient measures the rank-based correla-
tion between true and predicted labels:

mSPEAR =
∑T

i=1 (R(ŷ(i)) · R(y(i))) − T
(

T+1
2

)2
√(∑T

i=1 (R2(ŷ(i))) − T
(

T+1
2

)2) ·
(∑T

i=1 (R2(y(i))) − T
(

T+1
2

)2)
,

(9)
where T is the number of all classification windows, y(i) the true label of the

i-th window, ŷ(i) the predicted label of the i-th window, and R(·) the rank after
the sorting of windows.

2.3 Evaluation of Multi-objectiveness

If two evaluation measures are strongly (anti)correlated, MOO is not neces-
sary: minimisation or maximisation of one of both criteria is sufficient. However,
if the correlation between two measures can not be explained theoretically, a
large number of evaluations of classification models is necessary to decide if
MOO makes sense. Further, dependencies between objectives may be stronger
or weaker for certain regions of the search space. For example, an increasing
number of features often leads to a larger risk that some of irrelevant features
would be identified as relevant, and the general performance suffers (we observed
this behaviour in our previous studies on EMO-FS). On the other side, this does
not mean that a simple reduction of the number of features would increase the
classification performance. To provide an automatic justification for the deci-
sion for or against MOO, we propose below two a posteriori validation measures
based on hypervolume which describe the best found non-dominated front.

Dominated hypervolume, or S-metric, evaluates both the closeness to the
Pareto-front and the diversity of solutions [50]:

S(a1, ...,aN ) = vol

(
N⋃

i=1

[ai, r]

)
, (10)
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where a1, ...,aN are N solutions (feature subsets in case of EMO-FS) of the
front, r is a reference point (usually worst possible solution), and vol(·) is the
united volume of all hypercubes between the reference point and a1, ...,aN .

For a multi-objective minimisation of K objectives, consider the ideal solu-
tion aID which components are built from the best individual values for each
objective. If the minimisation of one of both objectives would be enough to
(almost) achieve this ideal solution, the volume between the non-dominated
front and aID would be small and in extreme case equal to zero, when single-
and multi-objective approaches would converge to the same single optimum.
Thus, we can measure the volume exquisitely dominated by the ideal solution
as S(aID) − S(a1, ...,aN ). The share of this volume in per cent to the overall
volume dominated by aID is calculated as:

εID =
S(aID) − S(a1, ...,aN )

S(aID)
· 100%. (11)

To illustrate εID, Fig. 1 sketches two examples. A higher diversity of tradeoff
solutions in the left subfigure leads to a larger volume exquisitely dominated by
the ideal solution (shaded area). The right subfigure presents an example with
only a marginal advantage of MOO over a single-objective approach.

Another possibility to measure the advantage of MOO over SOO is to find a
solution with the maximum contribution to the dominated hypervolume and to
estimate the hypervolume exquisitely dominated by other solutions of the non-
dominated front. If this volume is very small, the search for the solution with the
maximum contribution to the dominated hypervolume may be sufficient and can
be achieved optimising a weighted sum of both objectives. This volume corre-
sponds to areas marked with diagonal lines in Fig. 1. The share of this volume
to the volume dominated by the complete front is defined as:

εMAX =
S(a1, ...,aN ) − max

i∈{1,...,N}
S(ai)

S(a1, ...,aN )
· 100%. (12)

For the estimation of εID and εMAX , we set the reference point to the Nadir
point after all experiments for the related combination of two objectives.

Fig. 1. Stronger (left subfigure) and weaker (right subfigure) advantage of MOO
against single-objective approach. Circles: solutions from the non-dominated front;
Asterisk: ideal solution; diamond: reference point.



Exploration of Two-Objective Scenarios 537

Fig. 2. Left subfigure: All solutions found during the maximisation of precision and
recall for ‘Electronic’; Middle subfigure: EMO with the same pair of objectives for ‘Clas-
sic’; Right subfigure: Minimisation of classification error and maximisation of geometric
mean for ‘Rap’.

3 Discussion of Results

3.1 General Comparison of Objective Pairs

Table 1 in the Appendix lists εID and εMAX for all combinations of objec-
tives and classification tasks. The measures are estimated for non-dominated
fronts after 15 experiments (5 statistical repetitions for each of 3 classifiers),
cf. Sect. 2.2. As it can be expected, pairs of objectives are very differently suited
for MOO. This is illustrated in Fig. 2. The best combination on average across
14 categories is precision and recall: mean of εID is 21.27%, and mean of εMAX

is 30.87%. The left subfigure shows all feature subsets found during EMO pro-
cess for this pair of objectives and a category with the highest values of εID and
εMAX (‘Electronic’, εID = 33.90%, εMAX = 39.52%) and the subfigure in the
middle for a category with the lowest values of multi-objectiveness (‘Classic’,
εID = 4.20%, εMAX = 12.99%). Differing complexities of classification tasks
explain smaller values of εID and εMAX for ‘Classic’ compared to ‘Electronic’:
the distinction of classical music against popular tracks was the simplest task
across all categories.

Fig. 2, right subfigure presents an example for a pair of objectives which is
at least reasonable for MOO, geometric mean and the balanced relative clas-
sification error (‘Rap’, εID = 0.00%, εMAX = 0.14%). The enlargement in the
rectangle shows that there are two non-dominated solutions even if SOO would
be sufficient for feature selection. All pairs with zero entries in Table 1 belong
to 6 possible combinations of mBRE , mF1, mGEO, and mSPEAR. Thus, it can
be suggested after the experiments that only one of these measures should be
selected for MOO. In particular, these measures evaluate the classification qual-
ity w.r.t. the imbalance of the data set.

3.2 Statistical Comparison of Objective Pairs Across Categories

The values of εID and εMAX may vary for different categorisation tasks as
shown above. To compare the pairs across the categories, Mann-Whitney test
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was applied for all vectors u(i, j) and v(i, j), where i ∈ {1, ..., 28 · 28} iterates
through all combinations of objective pairs and j ∈ {1, 2} indicates if εID or
εMAX build the elements of 14-dimensional vectors u and v (14 is the number
of categories).

The results are plotted in Fig. 3. Black entries in matrices indicate that
the pair of objectives in the corresponding row has a significantly higher multi-
objectiveness than the pair in the column and white entries that the pair in the
row has a significantly lower value of multi-objectiveness than the pair in the
column. Grey values indicate no statistical difference. For example, the optimi-
sation of mBRE and mPREC led to larger εID compared to mBRE and mFR or
mBRE and mREC , but there is no statistical difference across categories between
mBRE , mPREC and mBRE , mSPEC .

Fig. 3. Comparison of pairs of objectives against each other based on εID (left subfig-
ure) and εMAX (right subfigure). For further details see the text.

Another observation is that there are many entries marked with grey colour:
19.31% for the matrix with εID values (28 diagonal entries were not considered
for this statistic) and 24.87% for the matrix with εMAX values. This means, for
instance, that it can not be stated that the application of EMO is more promis-
ing for mBRE and mPREC rather than for mBRE and mSPEC . On the other side,
there are some pairs of objectives which are in general better suited for EMO. In
particular, the mREC+PREC row contains black entries except for the comparison
with itself and mREC+SPEC ; this holds for both εID and εMAX . Other combina-
tions make no sense for MOO, e.g., the mF1+SPEAR row contains white entries
except for the comparison with itself and mGEO+BRE for both matrices.

3.3 Difference between εID and εMAX

εID and εMAX were defined having slightly different aims in mind. Despite of
expected correlation between these measures we may expect also some differences
for particular combinations of objectives and classification tasks. Fig. 4, left
subfigure plots all pairs of εID, εMAX from the Table 1.
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Fig. 4. Comparison of εID and εMAX

To show the most extreme cases for imbalance between εID and εMAX , the
hypervolume was estimated for all points of the Fig. 4, left subfigure, with the
goal to maximise εID and minimise εMAX . In other words, it was searched for
a non-dominated front with the highest share of the volume between the front
and the ideal feature subset (better for MOO) but also the largest share of
the volume exisuitely dominated by the solution with the largest hypervolume
(better for SOO). This combination of εID and εMAX is marked with (a). Feature
subsets from all corresponding experiments are visualised in the middle subfigure
(maximisation of mREC and mSPEAR, category ‘ClubDance’), and the shaded
rectangle marks the dominated hypervolume of the solution with the largest S
from the non-dominated front.

Respectively, (b) in the left subfigure and the right subfigure (mPREC , mGEO,
‘SoftRock’) illustrate the opposite situation. Here, the share of the volume between
the non-dominated front and the ideal solution is comparably smaller, but the
share of the hypervolume of the solution with the largest hypervolume lower.

A possible problematic issue of εID is that if the hypervolume between the
ideal and Nadir points is very large, the share of the volume between the non-
dominated front and the ideal solution may be smaller, although both objectives
may be in conflict and of interest for a decision maker. For example, the row
‘BRE,FR’ in the upper half of Table 1 contains smaller values than ‘BRE,FR’
in the bottom half of the table. As discussed in our previous studies on the
optimisation of mBRE and mFR, the choice of solutions from the non-dominated
front depends on the application scenario. E.g., for a mobile device with limited
resources it could be promising to accept a slightly worse classification error
removing approximately half of features necessary to achieve the minimal error.
Nevertheless, εID still describes important properties of non-dominated fronts.

4 Conclusions and Outlook

In this paper, we provided an up-to-date overview of related works on evolu-
tionary multi-objective feature selection for supervised classification. Further,
we proposed two measures to evaluate the multi-objectiveness which may help
to identify reasonable combinations of objectives. As a case study we optimised
28 pairs of criteria for 14 music classification tasks. The results showed that for
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many pairs of objectives the advantage of mutli-objective approach over single-
objective one depends on the category, but there are also pairs of objectives
which are generally very well or barely suited for MOO.

There exist several possibilities for further studies, for instance, extending
the number of objectives, but also investigating combinations of three and more
criteria. To limit their number, objectives can be sorted w.r.t. discussed mea-
sures for multi-objectiveness. We also plan to compare the impact of EMO-FS for
music classification to other classification tasks with large feature sets. Another
promising direction is to systematically compare the impact of different enhance-
ments to MOEAs proposed for the optimisation of feature selection.
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24. Mäkinen, T., Kiranyaz, S., Raitoharju, J., Gabbouj, M.: An Evolutionary Fea-
ture Synthesis Approach for Content-Based Audio Retrieval. EURASIP Journal
on Audio, Speech and Music Processing 2012 (2012)

25. Mierswa, I., Morik, K.: Automatic Feature Extraction for Classifying Audio Data.
Machine Learning Journal 58(2–3), 127–149 (2005)

26. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A Methodology for Feature
Selection Using Multiobjective Genetic Algorithms for Handwritten Digit String
Recognition. Int’l Journal of Pattern Recogn. and Artif. Intell. 17, 903–929 (2003)

27. Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles using the
multi-objective optimization approach. In: Jin, Y. (ed.) Multi-Objective Machine
Learning, Studies on Computational Intelligence, vol. 16, pp. 49–74. Springer (2006)

28. Pachet, F., Roy, P.: Analytical features: A Knowledge-Based Approach to Audio
Feature Generation. EURASIP J. on Audio, Speech, and Mus. Proc. 2009 (2009)

29. Pappa, G.L., Freitas, A.A., Kaestner, C.A.A.: Attribute Selection with a Multi-
objective Genetic Algorithm. Adv. in Artificial Intell., 280–290. Springer (2002)
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Appendix

Table 1. Results of experiments for all combinations of objectives and categories

εID
Clas Elec Jazz Pop Rap R&B Adul Albu Alte Club Heav Prog Soft Urba

BRE,FR 0.53 1.97 1.51 1.30 1.38 0.81 1.00 1.03 1.03 2.12 1.20 1.61 1.77 0.85
BRE,PREC 3.11 16.24 9.54 8.09 6.78 4.72 17.30 8.25 10.29 7.31 5.27 10.87 7.79 7.62
BRE,REC 1.09 8.37 4.52 4.96 1.98 6.64 1.82 2.91 3.29 7.56 4.48 0.52 0.82 8.73
BRE,SPEC 8.09 4.96 6.69 5.45 4.18 6.06 14.62 10.68 12.38 14.00 5.74 11.02 13.71 5.39
F1,BRE 0.00 1.97 0.98 0.00 1.19 0.20 4.80 1.43 1.70 0.00 1.77 1.65 1.80 1.80
F1,PREC 1.20 3.33 2.53 8.94 0.23 0.04 1.91 2.06 1.24 1.17 0.17 0.21 3.06 2.47
F1,REC 3.07 16.58 9.80 3.01 6.37 21.48 17.82 17.03 18.46 10.26 16.71 5.47 9.55 19.01
F1,SPEAR 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.02 0.00 0.19 0.06 0.14
F1,SPEC 4.86 1.36 1.21 4.80 0.11 3.30 2.85 4.67 2.33 6.67 1.64 3.47 4.51 1.33
FR,F1 0.91 1.67 1.31 0.86 1.02 3.35 2.28 2.07 1.45 1.91 1.56 2.37 1.09 2.19
FR,PREC 1.10 1.60 2.10 1.12 2.34 2.52 3.81 2.11 2.08 1.61 2.16 3.26 2.84 2.39
FR,REC 1.01 0.14 0.16 0.32 0.20 0.79 0.39 0.37 0.51 0.06 0.09 0.31 0.34 0.38
FR,SPEC 0.25 0.18 0.37 0.07 1.01 1.16 0.40 0.58 0.25 0.44 0.57 0.48 0.68 0.10
GEO,BRE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GEO,F1 0.28 1.56 0.03 0.00 0.13 0.24 4.89 0.25 5.52 0.06 1.90 0.61 0.10 1.09
GEO,FR 0.76 0.63 0.56 0.79 1.91 0.82 0.77 0.60 0.64 1.29 0.47 0.59 0.79 0.77
GEO,PREC 3.55 11.70 8.35 11.11 4.21 2.28 24.14 13.40 12.62 0.56 6.53 4.36 9.89 4.76
GEO,REC 1.13 7.62 3.81 7.07 1.40 7.68 1.51 4.67 3.39 7.62 3.04 0.78 1.05 7.95
GEO,SPEAR 0.11 1.17 0.06 0.00 0.40 0.05 2.03 0.16 0.45 0.00 0.32 0.00 0.03 0.05
GEO,SPEC 8.19 3.25 5.78 4.84 3.08 5.03 8.79 7.47 9.35 7.78 4.29 5.90 7.31 4.42
PREC,SPEC 0.18 0.18 0.78 0.11 0.02 0.54 0.12 0.93 0.41 0.97 0.66 1.27 0.71 0.06
REC,PREC 4.20 33.90 18.69 32.03 11.93 20.14 31.68 20.42 27.57 11.04 22.76 12.74 26.10 24.61
REC,SPEC 6.41 14.07 12.45 19.06 8.00 20.57 25.39 19.52 14.74 14.51 12.86 19.61 19.24 13.47
SPEAR,BRE 0.87 1.71 0.02 0.00 1.00 0.05 0.01 0.27 0.23 0.00 0.76 0.00 0.22 0.44
SPEAR,FR 0.89 2.07 1.50 0.67 1.77 1.59 2.25 2.81 1.11 1.91 0.99 1.55 1.35 1.54
SPEAR,PREC 1.75 1.30 3.01 2.88 0.19 0.77 3.27 4.74 0.47 0.36 0.36 2.20 5.58 1.41
SPEAR,REC 2.58 10.86 6.00 3.06 5.49 8.09 2.45 10.40 7.75 11.32 10.32 0.84 5.00 15.22
SPEAR,SPEC 5.96 0.48 3.47 1.28 0.70 4.43 4.00 4.17 3.55 10.07 1.82 6.15 5.00 1.95

εMAX

Clas Elec Jazz Pop Rap R&B Adul Albu Alte Club Heav Prog Soft Urba
BRE,FR 7.33 11.19 10.53 9.62 11.15 6.33 8.57 8.00 4.68 12.71 6.98 11.46 11.46 4.72
BRE,PREC 17.13 30.63 24.97 25.45 21.86 16.70 29.57 23.39 26.93 11.82 18.28 28.95 19.58 25.21
BRE,REC 4.41 12.75 11.11 13.73 9.32 15.60 8.83 12.22 15.31 11.50 15.83 4.90 6.33 15.66
BRE,SPEC 21.24 18.64 18.17 21.38 14.40 15.74 26.26 24.18 24.92 22.74 16.72 24.20 25.00 14.49
F1,BRE 0.00 12.85 3.15 0.00 8.77 2.91 14.46 9.23 9.85 0.11 12.55 11.84 9.88 10.16
F1,PREC 9.91 11.65 11.03 26.10 3.50 0.88 11.64 10.78 6.11 8.59 2.90 1.90 14.12 7.27
F1,REC 14.11 21.62 19.82 16.68 16.59 33.66 29.85 27.62 32.60 16.44 30.02 20.79 27.89 27.78
F1,SPEAR 0.00 0.00 0.34 0.32 0.00 1.35 0.00 0.00 0.00 1.20 0.00 4.34 0.62 2.47
F1,SPEC 13.52 5.46 4.08 17.44 1.82 9.45 8.18 12.35 9.87 10.72 5.46 8.93 17.53 3.51
FR,F1 8.32 9.43 6.45 7.02 4.75 7.39 9.04 4.76 6.22 9.76 7.12 11.68 7.80 9.16
FR,PREC 5.85 4.21 4.24 3.44 7.05 4.74 8.65 7.52 8.85 5.32 7.80 10.84 7.66 4.48
FR,REC 2.91 3.08 3.64 2.67 2.79 1.30 3.20 4.42 4.23 2.23 2.25 3.94 4.06 2.40
FR,SPEC 2.61 3.16 1.21 2.34 8.47 4.71 2.96 1.22 1.77 4.25 1.84 1.89 4.10 2.37
GEO,BRE 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.21 0.00 0.11 0.00 0.00 0.26 0.00
GEO,F1 3.46 10.09 1.13 0.00 1.96 3.28 19.82 4.89 14.69 0.72 11.48 8.42 1.09 6.61
GEO,FR 7.23 7.27 6.44 5.96 11.60 8.37 4.92 6.65 6.80 10.51 7.19 6.78 8.95 6.10
GEO,PREC 13.61 28.72 22.72 29.12 16.47 11.87 27.40 25.48 25.45 2.78 22.85 18.11 28.70 19.49
GEO,REC 4.94 15.70 12.21 15.96 6.62 19.63 6.74 16.59 15.56 15.55 15.39 6.76 7.25 21.67
GEO,SPEAR 2.74 10.34 2.06 0.00 3.36 2.07 8.62 2.49 5.46 0.00 4.04 0.00 1.16 2.12
GEO,SPEC 19.92 14.30 19.68 17.96 15.62 16.73 24.14 19.92 22.14 18.87 14.41 21.26 21.88 14.62
PREC,SPEC 2.15 0.89 1.96 2.20 0.71 4.38 0.52 4.28 3.21 6.20 2.76 3.45 1.72 1.31
REC,PREC 12.99 39.52 29.46 38.11 27.23 28.69 39.26 33.92 38.95 16.16 36.01 28.75 32.10 30.91
REC,SPEC 13.05 22.17 21.57 33.84 21.32 27.19 38.50 31.25 25.42 17.64 26.89 33.73 34.22 23.71
SPEAR,BRE 7.84 10.76 1.13 0.00 6.05 0.83 0.15 4.11 2.22 0.00 5.63 0.00 2.24 5.04
SPEAR,FR 7.68 7.80 5.86 6.26 10.81 7.33 12.56 8.54 4.21 12.01 7.29 5.75 7.35 6.77
SPEAR,PREC 10.28 6.42 13.55 14.39 4.08 6.09 13.19 13.22 4.58 1.52 5.21 9.88 22.05 8.08
SPEAR,REC 10.68 19.59 13.19 18.16 15.00 19.20 11.29 18.90 22.79 14.61 24.96 5.19 10.78 27.08
SPEAR,SPEC 15.74 3.27 12.84 11.62 2.76 15.03 13.60 15.87 12.78 20.13 8.27 16.98 15.23 8.48
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Abstract. Hyperspectral images are one of the most important data
source for land cover analysis. These images encode information about
the earth surface expressed in terms of spectral bands, allowing us to
precisely classify and identify materials of interest. An approach that
has been widely used is the combination of various classification meth-
ods in order to produce a more accurate thematic map based on clas-
sification of hyperspectral images. Our multi-objective remote sensed
hyperspectral image classifier combiner (MORSHICC) approach uses a
genetic algorithm-based strategy for choosing the best subset of classi-
fiers, that is, the one which provides higher accuracy with the fewest
possible amount of classifiers. We propose to use combiners that linearly
weigh each classification approach through Genetic Algorithm (WLC-
GA) and Integer Linear Programming (WLC-ILP). For building the com-
biners, we used three data representations and four learning algorithms,
producing twelve classification approaches such that the multi-objective
approach can select the best subset. Experimental results on well-known
datasets show that the MORSHICC approach with WLC-GA and WLC-
IP not only produces combiners with fewer classifier approaches but also
improves the final accuracy rates. Therefore, these combiners may pro-
duce more accurate thematic maps for real and large datasets in a short
time.

1 Introduction

Remote sensing data have been used as source of information for many applica-
tions such as urban planning, agriculture, and environmental monitoring. Most
of these applications require automatic pattern analysis, which enables great
advances in the interpretation of the materials in the earth surface [3,14,18]. In
this context, the main step consists in classifying each pixel of the image [2].
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In typical pattern recognition problems, the objective is to yield the best results
in terms of accuracy rates [13]. Given a scenario with a set of classifiers, the
most näıve strategy is to select the classifier that achieves the best performance
as the final solution for the classification problem.

However, it has been observed that among the non-selected classifiers, or
even including the best ones, the sets of misclassified patterns are not always
correlated. It suggests that different classifiers can provide some information to
improve the final results [11]. Thus, combination of classifiers have been widely
employed, with the goal of using all available information, when a single classifier
can not achieve the expected results [19].

Several works have proposed effective strategies to construct good ensembles
of classifiers [4,17]. They state that the key issue for achieving the highest pos-
sible accuracy rates is to exploit the diversity among the classifiers. They make
errors on different instances. Hence, a combination of these classifiers can reduce
the total error [17]. In [4], the authors propose the concept of “good” and “bad”
diversity to the Majority Vote rule. The greater the “good” diversity value, the
smaller the Majority Vote error is.

Nonetheless, there is no a widely accepted definition for diversity. It is not
clear at this moment, what is the correlation between diversity and accuracy [7].
For instance, diversity is used in order to reduce the generalization error in [9].
As a conclusion, the authors pointed out that using only diversity measures is not
a good strategy to reach a suitable combination of classifiers. Also, dos Santos
et al. [7] noted that bad individual classifiers do not should be included in the
final ensemble even if it has high diversity in comparison with others.

The quality of an ensemble depends on the careful selection of classifiers to be
combined. One way to perform a suitable combination, i.e., how many and which
are the best classifiers, would be evaluate every possible combination given set of
classifiers. This task would require a high computational effort even for a small
number of classifiers/approaches, because there are 2n - 1 possible combinations
(for n = 12, 4095 combinations would be evaluated). Another option to deal with
this problem, due to the combinatorial nature of the search space, would be the
usage of algorithms that optimize combinatorial problems, such as Evolutionary
Algorithms. It is noteworthy that it is also interesting to get a combination with
a smaller set of classifiers. Therefore, the problem can be described as a search
for the accuracy maximization and minimization of the number of classifiers.

Having this context in mind, we propose in this paper the use of a multi-
objective approach for remote sensed hyperspectral image classifier combiner
(MORSHICC) based on genetic algorithm to determine the Pareto’s front (i.e.,
set of non dominated individuals) which represents the set of best combiners in
accord to two objectives: maximization of accuracy and minimization of the
number of classifiers used in the combiner. From our previous works, here,
we use linearly weighted combiners generated by Genetic Algorithms (WLC-
GA)[19], and Integer Linear Programming (WLC-ILP) [21]. For building the
combiners, we used three types of data representation and four well-known learn-
ing algorithms (Support Vector Machines (SVM) with linear and RBF kernels,
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Backpropagation-based Multilayer Perceptron Neural Network (MLP) and K-
Nearest Neighbor (KNN)) generating twelve classification approaches. For more
details regarding the classification approaches, since the focus of this work is not
on them, we suggest the reader to see [19–21] for more details. Experiments were
carried out in well-known datasets: Indian Pines and Pavia obtained by AVIRIS
and ROSIS sensors, respectively [16].

2 Background

The main goal of combining multiple classifiers is to improve the performance
of the final classification in comparison with single classifiers. It comprises the
selection of the most suitable classifiers. In this section, we present the methods
for combination and search that were used in this work.

2.1 Combination Methods

The input for the combination methods we have employed in this paper is the
output of the single classifiers. For each class, the classifiers produce a soft value,
i.e., a certain degree of support [13]. These outputs can be fuzzy, posterior
probabilities, certainty, or possibility values [10]. Based on these soft outputs
one can build a Decision Profile (DP). Formally, a DP for a given sample x can
be defined as a L × C matrix, i.e., DP (x) = [D1(x),D2(x), ...,Dl(x), ...,DL(x)]
in which Dl(x) = [dl,1(x), dl,2, ..., dl,c, ..., dl,C(x)]T , L is the number of classifiers,
C is the number of classes, and dl,c(x) is the degree of support given by classifier
Dl to class c [10,13], as illustrates Fig. 1. After building support degrees for
each input sample, a crisp value (the final label) can be assigned by using the
maximum support value in the set, for instance.

Fig. 1. Decison Profile. Adapted and modified from [13].

According to Kuncheva [13], combiners are methods that use all predictions
produced by two or more classifiers to build an accurate final decision. They can
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be divided into “nontrainable” and “trainable” combiners. The “nontrainable”
combiners have no need of training any parameter. They perform some basic
operation (for instance: average, maximum, minimum and product) in the DP
to produce new support values and, hence, a final decision.

The purpose of the “trainable” combiners is to give more discriminant power
to classifiers that have greater accuracy [13] when classifiers have different out-
puts. Weighted Average, Weighted Majority Vote (WMV), and other weighted
approaches are based on this idea. In the following, we briefly describe the two
linearly weighted combiners used in our proposed selection method, which, in
turn, is described further.

In this work, in particular, we use weighted linear combiners, from our pre-
vious works [19,21]. Let us first define a Weighted Linear Combination (WLC).
Given a sample x, let µc(x) =

∑L
l=1 wl × dl,c(x) be the support for the class c,

wl be the weight of the l-th classifier and dl,c(x) be the support of l-th classifier
for the class c.

The task of finding the best weights can be seen as an Integer Linear Pro-
gramming (ILP) optimization problem, generated the WLC-ILP approach [21].
This problem requires the minimization (or maximization) of a linear form sub-
ject to linear inequality constraints. New supports for each class are built using
the WLC and the weights found by running the simplex method. Then, a label
is assigned, for a given sample x, as the index of the maximum support µc(x).
The IBM CPLEX solver [12], a state-of-art ILP solver, is used as optimization
routine.

In [19], predictions of classifiers are also combined using a weighted linear
combination of the DP, as stated above. However, the weights are found using
a global search performed by a GA named WLC-GA. The fitness function was
built based on the accuracy produced using the WLC in the dataset. A bit string
representation encode the weights in individual chromosomes. Each weight can
be a non-negative integer value between 0 and 127, which means that there are
7 bits in chromosome for each weight.

2.2 Search Methods

Many works have investigated methods for selecting subsets of classifiers rather
than combining all classifiers [7,8,19,22]. This selection aims at improving the
performance of the combination, since it focuses on finding the subset of the
most relevant classifiers. From a set of classifiers Cl, we apply search algorithms
to select the subset of the best performing classifiers S, where |S| ≤ |Cl|. We
can notice two important aspects: the search algorithm and the search criterion.

Evolutionary Algorithms, such as Genetic Algorithms, attempt to find an
optimal or near optimal global solution. More specifically Multi-Objective
Genetic Algorithms seem to be a better option to the classifier selection problem
due to the possibility of dealing with a population of solutions.

Another important aspect is the choice of the most appropriate search crite-
rion. Although there is no consensus, the role played by diversity is emphasized
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in the literature. However, diversity and accuracy does not exhibit a strong rela-
tionship [4] and the estimated accuracy can not be replaced by diversity [9].

Our approach exploits a Multi-Objective Genetic Algorithm for searching.
The search criteria used are the accuracy and the number of classifiers. We
intend to reduce the number of classifiers, but also increase the accuracy. The
final accuracy of the combination is the one obtained by either the WLC-ILP or
WLC-GA combiners using the selected subsets of classifiers.

3 Multi-objective Optimization Approach

In this section, we present the multi-objective remote sensed hyperspectral image
classifier combiner (MORSHICC) based on genetic algorithm. We evolve a pop-
ulation of classifier combiners aiming at accuracy maximization and minimiza-
tion of the number of classifiers. The latter objective searches for faster and less
expensive combiners to efficiently classify large datasets.

Each individual is a combiner which, in turn, is represented by a set of
classifiers and its weights computed by a method, e.g., WLC-ILP or WLC-GA.
The set of classifiers for combination contains twelve classification approaches as
shown in Tables 1 and 2. We use a binary chromosome representation, in which
each position (gene) on chromosome represents the presence (or absence) of a
classifier. The population successively evolves through the generations following
a tournament which randomly selects two individuals and then applies crossover
and mutation rules. The binary selection is run six times such that twelve (M)
child individuals are generated. We use the one-point crossover, e.g., a point
along the chromosome is randomly selected, then the pieces to the left of that
point are exchanged between the chromosomes, producing a pair of offspring
chromosomes as crossover operator, and bit inversion as mutation operator.

We start with a randomly chosen initial population of size M , e.g., the num-
ber of classifier combiners used, in which the number of classification approaches
in each individual also randomly varies. For each individual of the initial popu-
lation, a combiner (WLC-ILP or WLC-GA) is run, and based on the classifier
combiner generated, the pair (classification accuracy, number of classifiers) is
computed. Note that either the WLC-ILP or WLC-GA is adopted during the
optimization process.

The evolution step is defined in terms of two objectives: maximizing the
classification accuracy and minimizing the number of classifiers. This step relies
on the concept of dominance: a point is said to be dominated if it is worse than
another point in at least one objective, while not being better than that point
in any other objective. The Pareto-set is the set that contains no dominated
solution, thus it consists of points that are not simultaneously worse than any
other point in both objectives.

More specifically, a generation of the MORSHICC genetic algorithm works
as presented in Algorithm 1. Note that the initial population (generation zero)
is first evaluated (i.e., combiners’ computation). Then, it is submitted to the
Generation step. At the beginning of each generation, we create more M child
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Algorithm 1. Generation step of our MORSHICC
1: input: current: set of M evaluated individuals
2: child ← bin. select. on current and mutation & crossover
3: for each ind ∈ child do {evaluating every child}
4: (acc.,#class.) ←WLC-ILP (or WLC-GA) of ind
5: current ← current ∪ child {|current| = 2 × M}
6: next ← ∅
7: repeat {Pareto-set evaluation procedure}
8: best ← non-dominance set from current
9: next ← next ∪ best

10: current ← current − best
11: until |next| ≤ M
12: remove extra individuals
13: output: next: set of M evolved and evaluated individuals

individuals using binary selection and crossover/mutation operators (lines 2).
The child individuals are evaluated (lines 3-4) and joined to the parent individ-
uals updating the so called current generation set to 2M individuals (line 5).
The next generation set (output) is composed of individuals that survive to
the recursive Pareto-set evaluation procedure (lines 6-11). The Pareto-set of the
current generation set (line 8) is inserted into the next generation set (line 9),
which is initially empty (line 6). The current Pareto-set (best) is removed from
the current generation set (line 10). The process of computing a new Pareto-set
of the remaining individuals is repeated (lines 8-10) until the next generation
set contains M individuals. If eventually the last Pareto-set collects individuals
that extrapolates the M size limit of the generation set, among the last inserted
individuals, the ones with highest accuracy standard deviation1 are removed, so
that the output set reach exactly M individuals (lines 12-13).

The evolution (generation) process is repeated until a predetermined maxi-
mum number of generations is reached. This procedure is similar to the “Non-
Dominated Sorting” selection operator, which is employed in the NSGA-II [6].
It is noticeable that the final subset of classifier combiners is reprocessed such
that only non-dominated solutions remain.

4 Experimental Results and Discussion

The classification approaches selected for combination should constitute a diverse
set and provide additional information. For such aim we used data representa-
tions such as: Pixelwise [15]; Extend Morphological Profile (EMP) [1]; and Fea-
ture Extraction by Genetic Algorithms (FEGA) [20]. For classification, we used
well-known learning algorithms such as Support Vector Machines (SVM) [15],
with Radial Basis Function (RBF) and Linear kernels, Multilayer Perceptron
Neural Network (MLP) [1], and k-Nearest Neighbor (KNN) [5]. The full set of

1 Each combiner is evaluated using several training/testing sets.
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Table 1. IP dataset: classification approaches

Identifier Classification Train Accuracy (%)
Approaches 10% 15%

1 EMP RBF -SVM 88.77-(±0.39) 90.88-(±0.29)

2 PixelWise RBF -SVM 80.38-(±0.44) 83.51-(±0.29)

3 FEGA RBF -SVM 76.27-(±0.50) 78.99-(±0.34)

4 EMP MLP 81.60-(±0.76) 82.62-(±0.67)

5 PixelWise MLP 73.04-(±0.75) 76.83-(±0.48)

6 FEGA MLP 72.26-(±0.80) 75.14-(±0.64)

7 EMP kNN 83.94-(±0.34) 86.62-(±0.38)

8 PixelWise kNN 67.28-(±0.44) 69.40-(±0.33)

9 FEGA kNN 61.76-(±0.62) 63.66-(±0.38)

10 EMP linSVM 79.10-(±0.55) 80.14-(±0.43)

11 PixelWise linSVM 77.17-(±0.50) 80.55-(±0.39)

12 FEGA linSVM 72.96-(±0.59) 75.67-(±0.49)

classifiers used for combination contains twelve classification approaches (Tables 1
and 2).

Experiments were carried out in two training set scenarios, i.e., with 10% and
15% of samples using the well-know Indian Pines (IP) and Pavia University (PU)
datasets.

In both scenarios, the testing set were adjusted to 85% of unseen samples for a
fair comparison of the obtained effectiveness. During the MORSHICC evolution,
each individual (classifier combiner) was run 30 times using 30 different training
and testing sets randomly created. Mean and variances of these experiments
were used to compute the confidence intervals of each combiner using a 0.05
confidence level. For each run of each evaluated combiner, it is important to
note that 50% of the training data is used for initially train the classifiers and
the remaining 50% used for weights estimation in order to avoid biased and
specialized weights, and in a second training phase the classifiers are retrained
with the entire training set. Note that these all subsets (training+testing) were
initially created and then used in all experiments such that a fair comparison can
be performed. MORSHICC approach setup: We set the generation number
to 10 with a population of 12 individuals. We evaluated only 120 individuals
during the evolution process due to the high computation cost of our approach,
which took almost one week for both datasets using a personal computer with
Intel(R) Core(TM) i5-2450M processor and 4 GB of main memory with Ubuntu
12.04 Operating System. We used 12 bits to represent the presence/absence of
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Table 2. PU dataset: classification approaches

Identifier Classification Train Accuracy (%)
Approaches 10% 15%

1 EMP RBF -SVM 97.20-(±0.11) 97.56-(±0.08)

2 PixelWise RBF -SVM 93.17-(±0.13) 93.50-(±0.10)

3 FEGA RBF -SVM 90.87-(±0.22) 91.39-(±0.11)

4 EMP MLP 94.42-(±0.50) 94.48-(±0.74)

5 PixelWise MLP 92.43-(±0.20) 92.91-(±0.14)

6 FEGA MLP 89.70-(±0.27) 90.04-(±0.19)

7 EMP kNN 95.56-(±0.12) 96.23-(±0.08)

8 PixelWise kNN 84.99-(±0.17) 85.82-(±0.13)

9 FEGA kNN 88.31-(±0.18) 89.06-(±0.11)

10 EMP linSVM 90.72-(±0.16) 91.31-(±0.13)

11 PixelWise linSVM 90.96-(±0.18) 91.10-(±0.13)

12 FEGA linSVM 87.52-(±0.22) 87.61-(±0.13)

Table 3. Results for IP dataset using 10% training set

training set Classifiers’ Number of Accuracy Confidence
10% ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 89.57 0.80

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 89.72 0.52

MORSHICC 1-2-4-5-7-11-12 7 90.15 0.46
in WLC-ILP

MORSHICC 1-2-4-6-7-8-10-11 8 91.12 0.29
in WLC-GA

Best Individual 1 1 88.77 0.39
Classifier

each classification approach in combination, and the probabilities of crossover
and mutation to 80% and 0.9%, respectively.

In the following, the analysis for claiming statistically significance takes into
account the confidence intervals and mean accuracies reported in Tables 3, 4, 5,
and 6. In these same tables, from the Pareto’s front combiners obtained for
MORSHICC in WLC-ILP and WLC-GA, we choose to report the best mean
accuracies obtained by the combiners which are the ones with the largest number
of classifiers.
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Table 4. Results for IP dataset using 15% of training set

training set Classifiers’ Number of Accuracy Confidence
15% ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 91.55 0.62

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 91.63 0.54

MORSHICC 1-2-3-4-7-10-11 7 93.00 0.24
in WLC-ILP

MORSHICC 1-2-4-5-7-8-11 7 93.30 0.21
in WLC-GA

Best Individual 1 1 90.88 0.29
Classifier

For the IP dataset using 10% of training samples, in Table 3, it is shown that
our approaches achieved significantly better results than the best individual clas-
sifier. Also observe that the MORSHICC approach in the WLC-ILP produced
statistically similar accuracy, and the MORSHICC approach in the WLC-GA
produced statically better accuracy when compared with their respective com-
biner using all classification approaches. Anyway in both cases MORSHICC
approach employed fewer classifier.

For the IP dataset using 15% of training samples, our approaches have also
achieved significantly better results than the best individual classifier accuracy
as shown in Table 4. Moreover, in this scenario, the MORSHICC approaches
produced significantly better accuracies with fewer classifiers when compared
to both the WLC-ILP and WLC-GA combiners using all classifiers. Note that
the classification accuracies obtained using 15% for training the classifiers are
significantly higher than when using 10%.

Figure 2 shows the graphs of the Pareto’s fronts produced by our MOR-
SHICC approach training in 10% and 15% of training samples and tested in
85% of samples. It is important to claim that the individual approach 1 (EMP +
RBF -SVM), which has higher accuracy, is present in most combinations that
generated the Pareto’s fronts. By observing and comparing the red points (com-
biners) of each graph of the Pareto’s front, it is possible to see that smaller
combiners (few classifiers) can also produce higher accuracies with no statisti-
cally difference to the best combiners. This information is useful when faster
combiners (with low computational cost) are required.

For the PU dataset, using 10% and 15% of training samples, Tables 5 and 6,
respectively, show that the MORSHICC approach in the WLC-GA combiner
achieved significantly better results than the best individual classifier. However
its result is not statistically better if compared with the one obtained by the
WLC-GA approach using all combiners. Moreover, the MORSHICC in the WLC-
ILP performed poorly than the best individual combiner and also with respect to



A Multi-objective Approach for Building Hyperspectral Remote 553

0 1 2 3 4 5 6 7 8 9 10 11 12
80

82

84

86

88

90

92

94

96

98

100

Number of Classifiers

A
cc

ur
ac

y

(a) WLC-ILP/Training Set: 10%.
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(b) WLC-ILP/Training Set: 15%.
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(c) WLC-GA/Training Set: 10%.

0 1 2 3 4 5 6 7 8 9 10 11 12
80

82

84

86

88

90

92

94

96

98

100

Number of Classifiers

A
cc

ur
ac

y

(d) WLC-GA/Training Set: 15%.

Fig. 2. Pareto’s fronts for IP dataset. Blue bars stand for the confidence intervals.

Table 5. Results for PU dataset using 10% of training set

Approaches
Classifiers’ Number Accuracy Confidence

ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 97.73 0.18

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 97.55 0.62

MORSHICC 1-4-7-9-11 5 97.11 0.30
in WLC-ILP

MORSHICC 1-2-5-7-10-11-12 7 98.00 0.09
in WLC-GA

Best Individual 1 1 97.20 0.11
Classifier

the WLC-ILP approach using all combiners. Notice that the accuracy improve-
ment obtained in this dataset is smaller if compared with the obtained results
for the IP dataset since here there is few room for improvement, i.e., the best
individual classifier produces less than 3% of error. As a possible consequence
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Table 6. Results for PU dataset using 15% of training set

training set Classifiers’ Number Accuracy Confidence
15% ID Classifiers (%) Interval

WLC-ILP 1-2-3-4-5-6-7-8-9-10-11-12 12 98.12 0.24

WLC-GA 1-2-3-4-5-6-7-8-9-10-11-12 12 97.87 0.11

MORSHICC 1-2-3-4-5-7-11 7 97.28 0.40
in WLC-ILP

MORSHICC 1-2-3-5-7-11 6 98.44 0.79
in WLC-GA

Best Individual 1 1 97.56 0.08
Classifier
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(a) WLC-ILP/Training Set: 10%.
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(b) WLC-ILP/Training Set: 15%.
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(c) WLC-GA/Training Set: 10%.

0 1 2 3 4 5 6 7 8 9 10 11 12
80

82

84

86

88

90

92

94

96

98

100

Number of Classifiers

A
cc

ur
ac

y

(d) WLC-GA/Training Set: 15%.

Fig. 3. Pareto’s fronts for PU dataset. Blue bars stand for the confidence intervals.

of this fact, observe that the best results obtained for 15% (the MORSHICC
in the WLC-GA) is not significantly better than the one obtained for 10% (the
MORSHICC in the WLC-GA), even it is slightly higher.
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Figure 3 shows the graphs of the Pareto’s front produced by our approach
for the PU dataset using 10% and 15% of training samples. We can observe the
same conclusions we had in Figure 2 (IP dataset), however here with higher
accuracies.

In general (both datasets), the MORSHICC approaches in the WLC-GA
combiner produces higher accuracies than the ones MORSHICC approaches in
the WLC-ILP method, although they are not necessarily better in terms of sta-
tistical significance. This negative result of the WLC-IP method can be justified
by the numerical instability faced by it for solving the optimization problem.
Nonetheless the WLC-ILP method is in average 20 times faster than the WLC-
GA combiner for estimating the final weights as shown in [21].

5 Conclusions

In this paper, we have presented a multi-objective remote sensed hyperspectral
image classifier combiner (MORSHICC) approach based on genetic algorithm to
determine the Pareto’s front. Our aim is to use the Pareto’s front to determine
the set of best combiners. We have modeled the problem according to two objec-
tives: maximization of accuracy and minimization of the number of classifiers
used in the combiner. Experimental analysis shows that MORSHICC not only
produces an ensemble with a very small set of classifiers but also improves the
final accuracy results. Furthermore, the obtained ensembles may achieve more
accurate thematic maps for real and large datasets in a short time. Future work
includes the application of the proposed techniques in real world problems, such
as automatic agricultural crop recognition.
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Abstract. Barrier coverage focuses on detecting intruders in an attempt
to cross a specific region, in which limited-power sensors in these scenar-
ios are supposed to be distributed remotely in an indeterminate way. In
this paper, we consider a scenario where sensors with adjustable ranges
and a few sink nodes are deployed to form a virtual sensor barrier for
monitoring a belt-shaped region and gathering incidents data. The prob-
lem takes into account three relevant objectives: minimizing power con-
sumption while meeting the barrier coverage requirement, minimizing the
number of active sensors (reliability) and minimizing the transmission dis-
tances between active sensors and the nearest sink node (efficiency of data
gathering). It is shown that these three objectives are conflicting in some
degree. A Problem Specific MOEA/D with local search methods is pro-
posed for finding optimal tradeoff solutions and compared with a classical
algorithm. Experimental results indicate that knee regions exist, and these
knee regions may provide the best possible tradeoff for decision makers.

1 Introduction

In recent years, there has been increasing development in the field of wireless
sensor networks (WSNs). One of the most important applications in WSNs is
border surveillance and intrusion detection, such as detecting intruders crossing
country borders or boundaries of battlefields. Many recent works have addressed
such surveillance applications by using WSNs to organize the network nodes as
a barrier [1]. For deterministic deployment of sensors, the high performance
can be achieved sufficiently by analysis. However, surveillance tasks may involve
hard-to-reach areas, in which case unmanned mission way is more desirable.
Specifically, limited-power sensors and several sink nodes in these scenarios are
supposed to be distributed remotely, for example, dropped from aircraft; they
wake up, organize themselves as a network, and start sensing the area for intru-
sion. When a sensor detects an intrusion, the event is reported to the sink node
so that an appropriate decision is made.

Power efficient is always a critical issue in wireless barrier coverage. The single
objective optimization problem, minimizing the total power consumption while
the barrier is full covered, is referred to as General Min-Cost Linear Coverage
c© Springer International Publishing Switzerland 2015
A. Gaspar-Cunha et al. (Eds.): EMO 2015, Part II, LNCS 9019, pp. 557–572, 2015.
DOI: 10.1007/978-3-319-15892-1 38
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problem (GMCLC) [2]. However, there is no efficient way to get exact optimal
solutions since it is proved to be NP-hard [3]. In addition, since sensors are
vulnerable to failure, it is important to minimize the number of active sensors
to improve the reliability while meeting the coverage requirement. Besides, in
general wireless sensor networks, a large number of sensor nodes, which are
generally compact and inexpensive, are distributed in an observation area while
sink nodes with comparatively sufficient power are defined as the data gathering
center. Long transmission distances between sensor nodes and sink nodes cause
low efficiency of data gathering and high energy consumption.

In this paper, we take the considerations above into account simultaneously
and propose an algorithm to achieve the following objectives:

– Objective 1 : Minimizing the total power consumption via activating a subset
of the sensor nodes and adjusting their sensing ranges.

– Objective 2 : Minimizing the number of active sensors to improve the reliability
of coverage.

– Objective 3 : Minimizing the active sensors’ average distance from the nearest
sink node to improve the efficiency of data gathering.

However, these three objectives are conflicting in nature. The sensors are
failure-prone: each sensor fails independently with a certain probability. Under
the condition of fully coverage, the fewer sensors activated, the higher reliabil-
ity achieved. Meanwhile, the power consumption is proportional to the radii of
active sensors. Next, we take a simple instance to illustrate the conflict among
objectives. Fig. 1 shows two feasible solutions for the coverage problem. In the
first solution (the left one), the power consumption is Cost1 = rκ

1 and the num-
ber of active sensors |S1

∗| is one. In the second solution (the right one), the
power consumption is calculated by Cost2 = rκ

2 + rκ
3 , and number of active sen-

sors |S2
∗| is two. Since r1 = r2 + r3 = m

2 , we have Cost1 > Cost2. That is to
say, minimizing the total power consumption may increase the number of active
sensors, and require the active sensors to be distributed evenly along the bar-
rier. In addition, minimizing the active sensors average distance from the nearest
sink node may result in more active sensors close to the sink node. However, to
meet the coverage requirement, either more sensors, if available, are activated to
cover the region far away from the sink node or a larger sensing range is assigned
to the farthest sensors, leading to higher power consumption. Thus, finding the
tradeoff among them is worth exploring.

This problem can be formulated as a Multi-objective Optimization Problem
(MOP). Classical algorithms may not be applicable and few approaches tackle
these objectives simultaneously. It is reasonable to use Multi-Objective Evolu-
tionary Algorithms (MOEAs), which have been proven efficient and effective in
dealing with MOPs in wireless sensor networks [4] [5].

In this paper, we refine the barrier coverage problem to an MOP with three
objectives, which is referred to as Tradeoff on Barrier Coverage with Adjustable
Sensing Radius Problem (TBCAP). Solutions are obtained through a problem spe-
cific MOEA, which adopts the framework of decomposition-based multiobjective
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Fig. 1. Illustration of conflict among the objectives

evolutionary algorithm (MOEA/D) [6] as the baseline algorithm. We call it PS-
MOEA/D. The PS-MOEA/D employs the problem-specific operators and local
search methods. Besides, in order to improve the search, we incorporate a dynamic
strategy of computational resource assignment. Moreover, a perturbation is
involved to search for the global optimal solution.

The remainder of this paper is organized as follows. The related works is
presented in Section 2. In Section 3, we define and formulate the problem, and
give a naive algorithm for finding the tradeoff. Section 4 presents the details of
the problem specific MOEA/D. Section 5 shows the experimental results and
analysis. Finally, Section 6 outlines the conclusions and future directions.

2 Related Works

A heterogeneous WSN consists of several types of nodes with different capability,
in which a large number of sensor nodes with the capabilities of sensing data,
while fewer sink nodes may have larger battery and more powerful processing
resource [7]. They are widely used in surveillance [8] [9]. Among them, barrier
coverage problem deals with how to deploy sensor nodes to form barrier coverage
for detecting intruders crossing a belt-shaped area of interest [10] [11] [12].

Optimizing the efficiency of data gathering and transmission quality between
sensors and sinks have been widely studied [7] [13]. Mhatre et al. [7] studies a
heterogeneous sensor network in which nodes are to be deployed over a unit area
for the purpose of surveillance. They determined the optimum sensor nodes and
sink nodes intensities (λ0, λ1).

Power consumption is always a critical issue in wireless barrier coverage. It
helps to prolong the network lifetime by turning off some sensors while meet-
ing given coverage requirements. Since it is proved to be NP-hard [3], several
approximation algorithms have been proposed in recent years [2] [3] [14] .

Moreover, network failure, partial or whole, may not only be due to power
exhaustion of the sensor nodes. Some sensors may stop functioning due to mechan-
ical problems when they are working. This may result in unexpected consequences.
Very few researchers focus on the reliability of the sensor networks for coverage.
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To improve the reliability of coverage requirement, Sanjay et al. [15] consider an
unreliable wireless sensor grid network for coverage with sensors placed in a square
of unit area. In this model, all sensors are failure-prone, i.e., each node fails inde-
pendently with a certain probability.

Proposing a scheme for wireless coverage considering so many aspects
together is a challenging problem. To this end, MOEAs may provide a desirable
model for solving such sensor network design problems. While both coverage and
power consumption have been extensively studied in the past [16], few attempts
however, have been made on tackling the coverage, power consumption, reliabil-
ity and efficiency of data gathering simultaneously or explicitly. Martins et al. [17]
presented multiobjective hybrid optimization algorithms for minimizing the power
consumption and maximizing the coverage in flat WSNs subject to node failures.
In [16], the problem objectives are stated as maximizing the coverage and minimiz-
ing energy consumption for maximizing the network lifetime. A sleep scheduling
method is incorporated into a multiobjective optimization framework. Recently,
Lanza-Gutierrez et al. [18] use MOEAs to optimize a WSN composed of a set of
sensors, a sink node and relay nodes, analyzing the performance of algorithms by
objectives of the average energy consumption suffered by the sensors and the aver-
age coverage provided by the network.

3 Preliminaries

3.1 Multiobjective Problem and MOEA/D

An MOP is generally formulated as follows.

minimize F (x) = (f1(x), . . . , fm(x))
subject to x ∈ Ω

(1)

where Ω is the decision space and x ∈ Ω is a decision variable. Rm consists of
m objective functions f1, . . . , fm: Rm is the objective space. The objectives in
problem (1) often conflict with each other and an improvement on one objective
may lead to the deterioration of another. A Pareto optimal solution is an optimal
tradeoff candidates among all objectives. The Pareto optimum terminology is
described in [19], in which Pareto dominance, Pareto optimal, Pareto Set (PS)
and Pareto Front (PF) are defined formally. The decision makers require an
approximation to the PF for a good insight to the problem and make the decision.

Tchebycheff approach [20] is employed to decompose the MOP into a num-
ber of sub-problems. Let λ1, λ2, . . . , λn, be a set of uniformly spread weighted
vectors and z∗ be an ideal point. The problem can be decomposed into scalar
optimization sub-problems as follows.

minimize gte(x|λj , z∗) = max1≤i≤m{λi
j |fi(x) − z∗|} (2)

Therefore, one is able to obtain different Pareto optimal solutions by solving a
set of single objective optimization problems defined by the Tchebycheff approach
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with different weight vectors. MOEA/D minimizes all these m objective functions
simultaneously in a single run. Neighborhood relations among these single objec-
tive sub-problems are defined based on the distances among their weight vectors.
Each sub-problem is optimized by using information mainly from its neighboring
sub-problems. The details of MOEA/D can be found in [6].

3.2 Problem Formulation

Barrier Model. Consider a WSN consisting of a set of sensor nodes and several
sink nodes, in which sensor nodes form a virtual sensor barrier for monitoring a
belt-shaped region to detect and send intruding events to one of the sink nodes.
Fig. 2 shows an illustration of the barrier model. Intrusion is assumed to occur
from top to bottom. The assumptions are as follows.

– The sensor nodes and sink nodes are assumed to be randomly deployed and
static once deployed with known positions.

– Assume that each sensor has an adjustable disk sensing range r and is
equipped with limited power.

– The sink nodes with sufficient energy (comparing to sensor nodes) are not
failure-prone.

Mathematical Model. We define the following notations formally, which are
used in the analysis in the mathematical model:

– S: a set S of N sensors {μ1, μ2, ..., μN} are randomly distributed on a belt
region which needs to be monitored.

– ri: each sensor μi has an adjustable sensing range ri. The power consumption
of each active sensor is proportional to rκ

i for some positive constant κ ≥ 2.
– Π: a set Π of π sink nodes {s1, s2, ..., sπ} are distributed on a belt region,

in which π << N .
– (xi, yi): each sensor μi has a coordinate to denote the location.
– (xs

j , y
s
j ): each sink node sj has a coordinate to denote the location.

– dj
i: the distance between each sensor μi ∈ S∗ to its closest sink node

sj ∈ Π. The distance from the sensor μi to the sink node sj is dj
i =√

(xs
j − xi)2 + (ys

j − yi)2.

intruder

sink

sensor

sink

Fig. 2. Wireless barrier coverage model
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– S∗: a subset S∗ ⊆ S of sensors are activated and assigned ranges to formulate
a two-layer decision variable Ω = {(u1, r1), (u2, r2), ..., (ui, ri), ..., (uN , rN )},
ui ∈ {0, 1}.

In this way, TBCAP can be stated as an MOP, where we minimize the power
consumption (f1), the number of active sensors (f2), and the active sensors’
average distance from the closest sink node (f3).

f1 =
∑

μi∈S∗
ri

κ

f2 = |S∗|

f3 =

∑
μi∈S∗ dj

i

|S∗|

(3)

3.3 Weighted-Sum Algorithm

Weighted-Sum Algorithm (WSA) as the most widely used classical method for
MOP is used for comparing performance with our proposed PS-MOEA/D. It is
the simplest yet efficient approach to find solutions on the entire Pareto-optimal
set. The WSA in this paper is based on a genetic algorithm, which has the
following procedures.

Solution Encoding. The solution is represented by a two-layer coding struc-
ture C = {(u1,r1),(u2,r2),...,(ui,ri),...,(uN ,rN )}. The boolean ui describes the
working status of the sensor node and ri indicates the value of its radii.

Repairing Initial Solutions. An approximation algorithm is necessary to
guarantee the barrier coverage requirement, which can be found in [3].

Steady State Evolution. The Steady State Genetic Algorithm(SSGA) [21]
based operators are adopted in WSA, which benefit from selecting two individ-
uals and combining them to obtain two offsprings by crossover and mutation
operators. Then, if these two new individuals are more adapted than the worst
two individuals of the population, the former are included in the population by
replacing the latter.

Shrink Process. After performing initialization, there could be several overlaps
between sensors. If so, the radii of those sensors can be shrunk and repaired
immediately after operations.

Evaluation. In each generation, the fitness is calculated byweighted-summethod
after normalization. Specifically, fitness = ω1 × ∑

μi∈S∗ ri
κ + ω2 × |S∗| + ω3 ×

∑
µi∈S∗ dj

i

|S∗| , where ω1, ω2 and ω3 are weights varying between zero and one and ω1+
ω2 + ω3 = 1.
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4 Problem-Specific MOEA/D

In general, encoding representation, repair process and shrink process are identi-
cal to the WSA in Section 3.3. In order to improve the search ability of MOEA/D
for TBCAP, some modification and improvement have been introduced. In the
following part, we explain the procedure of Algorithm 1 in detail. The following
sections are related to the main steps of the PS-MOEA/D.

Algorithm 1. PS-MOEA/D Framework for TBCAP
Input:

NP : Population size and number of sub-problems
NN : Size of neighborhood
ME : Maximum number of evaluations

Output:
P : Final solutions
Step 1-Initialization: randomly generate an initial population and set parameters

Step 2-Repairing: repair the solutions to meet problem requirement
Step 3-Decomposition: decompose the TBCAP to NP sub-problems
Step 4-Evaluation
While e < ME

Step 4.1-Selection: selection of sub-problems by using tournament selection
based on μi as SelP or PerP

For i = 1 : |SelP |
Step 4.2-Mutation: generate a new solution by mutation operator
Step 4.3-Local Search: use of forward-LS and backward-LS
Step 4.4-Update: update of current and neighboring solutions

End-for
Step 4.5-Perturbation: perturbation operator on PerP
e ← e + 1
Step 4.6-Update Utility: calculate and update the utility

End-while
return P
End

4.1 Problem Decomposition

let Λ = λ1, λ2, . . . , λn, be a set of uniformly spread weighted vectors, z∗ be the
ideal point and values of fj(x) in problem (3) have been normalized. Thus, the
objective function of i-th sub-problem can be referred to problem (2). TBCAP
is decomposed into scalar optimization sub-problems. A neighborhood of weight
vector λi is defined as a set of its several weight vectors in Λ. The neighborhood
of i-th sub-problem consists of all the sub-problems with the weight vectors
from the neighborhood of λi. MOEA/D provides an easy yet efficient way to
take the advantage of scalarization method and solve all subproblems simulta-
neously with different objective preference in a single run. In this paper, Λ is
used to guide the problem specific operators for adjusting the degree of power
consumption, reliability and efficiency of data gathering and therefor obtaining
different preference barrier coverage.
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Algorithm 2. Local Search Strategies
Input:

χk (one individual of k-th sub-problem)
Nk

N (neighborhood size of the sub-problem)
Output:

χk (updated individual of k-th sub-problem)
1: Randomly choose a neighborhood j of χk

2: If j < k
3: For i = 1 : k − j

Forward-LS(χk,χj)
End-for

4: else
5: For i = 1 : j − k

Backward-LS(χk,χj)
End-for

6: return χk

7: End

4.2 Genetic Operators

Selection operators choose the most suitable solutions to produce offspring. In
this paper, we have adopted a tournament selection operator based on utility for
each sub-problem, which has been tested to be fast and effective [22]. Mutation
operator randomly selects two genes within a specific range (a relatively small
interval), in order to be further improved by fine-tuning the solution.

4.3 Local Search: Forward-LS and Backward-LS

Two original problem-specific local search strategies, as shown in Algorithm 2,
have been developed. There are two search directions, i.e., Forward-LS (Fig.
3(a)) and Backward-LS (Fig. 3(b)).

The idea of problem-specific local search strategies is inspired by workload
balancing, which is to construct two possible search directions for an offspring
whose performance is better. The search procedure is from starting point to end-
ing point. We set the search direction based on the number of active sensors of
starting point and ending point. The starting point can be randomly selected,
and the ending point is the best individual of the neighborhood. When an off-
spring shows improvement in terms of the objective function, it is adopted as
the solution of this subproblem. The details are given in Algorithm 3 and 4.

For example, consider the Forward-LS in Fig. 3(a), the active sensor j with
a large sensing radius to cover a specific region B of the barrier. Then, search
from the nearby sleeping sensors to check if there exists two sleeping sensors i
and k, which can be assigned sensing ranges to cover B. If exists, we set sensor
i from the status active to sleep, and sensor i and k from sleep to active with
corresponding radii.
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sensor j: active sleep
sensor i and k: sleep active

i
j k

… ... … ...

(a) Forward local search

sensor i and k: active sleep
sensor j: sleep active

… ... i
k

… ...i
kj

(b) Backward local search

Fig. 3. Local search procedures description

Algorithm 3. Forward-LS
Input: χk, χj

Output:
χk

1: Find the gene g with maximum radii rg
2: Find the two nearest genes g1 and g2 with radii zero around gene g
3: Assign the radius to genes g1 and g2 to replace the gene g, produce χ′

k

4: If χ′
k is better than χk

χk ← χ′
k

End-if
5: return P
6: End

4.4 Dynamical Resource Allocation

The sub-problems may have different computational difficulties, which makes it
reasonable to assign different amounts of computational effort to different prob-
lems [22]. As we can see, for the TBCAP, the complexity fits binomial distribu-
tion with the number of active sensors. Thereby, more computational resource
based on utility will be assigned to the sub-problems with higher complexity.

4.5 Utilities Update

We define and compute a utility for each sub-problem. Computational efforts
are distributed to these sub-problems based on their utilities. If evaluation times
is a multiplication of a certain number, then we compute the relative decrease
of the objective for each sub-problem i, Δi. The utility of the sub-problem can
be calculated as follows.

μi =

{
1.00 if Δi > 0.001
(0.99 + 0.01 Δi

0.001 ) otherwise

4.6 Perturbation

Perturbation improves the quality of solutions found by PS-MOEA/D, thereby
speeding up the search for global optimal solution. Let χk be the current solution
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Algorithm 4. Backward-LS
Input: χk, χj

Output:
χk

1: Find two disjoint genes g1 and g2 with the minimum radius
2: Find the nearest gene g0 with radii 0 to g1 and g2
3: Assign the radii to g0 to replace the gene g1 and g2, produce χ′

k

4: If χ′
k is better than χk

χk ← χ′
k

End-if
5: return P
6: End

to the k-th sub-problem, we apply a random interchange move on χk to produce
χ′

k. It randomly selects a number of genes within a specific range (a relatively
large interval), in order to jump out of local optimum.

5 Experiments and Discussions

5.1 Experimentation

This section presents the setup of the experimentation, with the purpose of vali-
dating the performance of the implemented PS-MOEA/D. The experiments are
conducted on a 3.4GHz Intel PC with 4GB RAM. The programming language
is MATLAB(R2013a). The proposed algorithm runs with the following parame-
ter values: the maximum number of evaluations ME = 1,000, neighborhood size
niche = 20, mutation rate Pm = 1.0 and the experiments for each instance are
replicated for 10 independent trials. Since an analysis of the parameter sensitiv-
ity is not a major concern of this study, we have not performed any previous
analysis to fix these values.

Depending on the deployment method, the coordinates of the sensor positions
may follow a particular distribution. For instance, if sensors are thrown off an
aircraft that flies over the middle of a field, most sensors are expected to fall
somewhere close to the central line, and several sensors are likely to end up
further out. One could then argue that the sensor distribution is uniform along
the axis of route. Thus, the experiments fall into two major parts, i.e., Uniform
distribution and Gaussian distribution. In the experiments, the length of barrier
and the default number of sink node is set as 1000 units and one, respectively.
The offsets of the sensors are assumed to be 0.

5.2 Performance Comparison

In this section, we study the effectiveness of the proposed PS-MOEA/D on
TBCAP. To do so, we compare the proposed method with the WSA.
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Performance Measure The quality of the obtained non-dominated solutions
is usually evaluated from three perspectives: (i) the closeness to the true PF,
(ii) diversity and (iii) uniformity. No single metric can reflect all these aspects
and often a number of metrics are used. In this study, we use the Set Coverage
C(X,Y ) (X � Y ) [23] and distance to reference set Dref (X,R) [24] metrics.

C(X,Y ) =
|y ∈ Y |∃x ∈ X : x ≺ y|

|Y | (4)

The C(X,Y ) metric compute the percentage of solutions in Y dominated by
solutions in X, divided by the total number of solutions in Y. The higher the value
of C(X,Y ) obtained, more diversely and uniformly the solution set X distributed.

Dref (X,R) =
∑

r∈R{minx∈X{dis(x, r)}}
|R| (5)

The distance from reference set calculates the average distance from a solu-
tion in the reference set R to the closest solution in X. The smaller the value
of Dref (X,R), the closer the set X is to R. In the absence of the real reference
set (i.e., true PF), we calculate the average distance of each single point to the
nadir point since we consider minimization objectives.

Comparison with the WSA. We validate the performance of PS-MOEA/D
by conducting comparison experiments in different scale (the number of randomly
deployed sensors) TBCAP. Fig. 4 shows that the PS-MOEA/D outperforms the
WSA in terms of set coverage and distance to reference set on Uniform instances,
where the horizontal axis represents the number of randomly deployed sensors and
the vertical axis represents the mean values of set coverage and distance to refer-
ence set. Similar results on Gaussian instances can be found in Fig. 5. From the
experimental results, it is observed that PS-MOEA/D obtains better PFs than the
WSA. Specifically, in both figures, the PS-MOEA/D obtains a percentage of dom-
inance 30% to 60%; if we check the inverse coverage relation, the fraction of non-
dominated solutions achieved by the WSA that dominates the Pareto sets obtained
by PS-MOEA/D, in all cases, this fraction is close to 0%. Besides, PS-MOEA/D
performs better on average than WSA in terms of distance to reference set. In addi-
tion, it can be noticed that PS-MOEA/D shows better stability of results as the
instance scale increases. Summarizing that, the PS-MOEA/D has obtained more
evenly distributed PFs providing a better approximation towards the nadir point
than the WSA.

5.3 Existence of Knee Regions

Knee points are made up of Pareto-optimal solutions, which provide the best
possible tradeoff among the three conflicting objectives, in other words, any
improvement in one objective must outweigh the aggregated deterioration of
other objectives. These are probably the most interesting solutions in many
real-world problems. Faced with multiple methods for finding knee points [25]
[26] [27], since it is a challenging topic to find the true extreme Pareto optimal
solutions for the TBCAP, we propose to find the knee points based on a trade-off
metric designed by Rachmawati and Srinivasan [26].
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Fig. 4. Comparison between PS-MOEA/D and WSA on Uniform instance
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Fig. 5. Comparison between PS-MOEA/D and WSA on Gaussian instance

Following this metric, we define a notation ρ(Xi, S) to represent the least
amount of improvement per unit deterioration by substituting any alternative
solution from non-dominated solution set S with Xi. Solutions residing in con-
vex knee regions have the highest values in terms of ρ(Xi, S). It allows us to
define the strong degree of knee points by setting a threshold value θ. It can be
mathematically defined as follow.

ρ(Xi, S) = minXj∈S;i�=j

∑
1≤m≤M max(0, fm(Xj) − fm(Xi))∑
1≤m≤M max(0, fm(Xi) − fm(Xj))

(6)

Sθ
knee = {Xi|ρ(Xi, S) ≥ θ,Xi ∈ S} (7)
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Xj corresponds to a member of the non-dominated solutions S that are non-
dominated with respect to Xi; fm(Xi) corresponds to the m-th objective value
of solution Xi, Sθ

knee denotes the set of knee points with the threshold value θ.
To demonstrate the existence of a knee region for this problem, two sets of

experiments have been conducted with different θ values, namely 0.5 and 0.25.
In Fig. 6, it shows that the obtained knee points obtained on the 500 sensors
Uniform and Gaussian deployment. Note that in this part of simulation, we
assume there is only one sink node, which is located in the middle of the barrier.
It can be noticed that the fronts have clear knee points in which it is more
reasonable to take a final decision about which solution should be adopted.

Besides, comparing with the Uniform deployment method, more knee points
have been found by the Gaussian deployment method. The PF obtained by
the Uniform deployments spreads more evenly than the Gaussian deployment.
Except for the reason of sensors’ positions, the biggest reason is the location of
the sink node. Since in this part of simulation, the sink node is assumed to be
located in the middle of the barrier. Following the Gaussian deployment, a large
number of sensors are deployed closely to the middle of the barrier. Thus, in this
case, the solutions tend to be high quality for the objective of average distance.

5.4 Effect of the Number of Sink Nodes

Intuitively, when more sink nodes are deployed, the estimated average distance
from sensor nodes to the nearest sink node should be shorter and influence other
objectives. The number of sink nodes is one of the factors that may influence
the obtained PFs. We compare the obtained PFs by PS-MOEA/D with the
number of sink nodes from 1 to 5. Assume that the sink nodes are uniformly
located along the barrier, then we run the experiments to validate the effect of
the number of sink nodes. As expected, from the results of Fig. 7, we can observe
an important property that more sink nodes are uniformly deployed, better PFs
can be obtained. The major reason is that the active sensors may have more
sink nodes to be chosen as the nearest sink.
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Fig. 7. Dref values found by varying number of sinks on different scale instances

6 Conclusion

This paper has made several contributions. Firstly, TBCAP is defined and for-
mulated. Secondly, a PS-MOEA/D has been proposed for finding optimal trade-
off solutions. Thirdly, an experimental investigation has been presented, which
explores the tradeoff among reliability, power consumption and average distance.
A comparative study is conducted to evaluate the proposed approach. Addition-
ally, the effect of the number of sink nodes to the PF have also been studied.
Our future work will enrich the model to make it closer to reality and further
improve the performance of the PS-MOEA/D.
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Abstract. Traffic Engineering (TE) approaches are increasingly impor-
tant in network management to allow an optimized configuration and
resource allocation. In link-state routing, the task of setting appropriate
weights to the links is both an important and a challenging optimization
task. A number of different approaches has been put forward towards
this aim, including the successful use of Evolutionary Algorithms (EAs).
In this context, this work addresses the evaluation of three distinct EAs,
a single and two multi-objective EAs, in two tasks related to weight
setting optimization towards optimal intra-domain routing, knowing the
network topology and aggregated traffic demands and seeking to mini-
mize network congestion. In both tasks, the optimization considers sce-
narios where there is a dynamic alteration in the state of the system,
in the first considering changes in the traffic demand matrices and in
the latter considering the possibility of link failures. The methods will,
thus, need to simultaneously optimize for both conditions, the normal
and the altered one, following a preventive TE approach towards robust
configurations. Since this can be formulated as a bi-objective function,
the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat-
urally, being those compared to a single-objective EA. The results show
a remarkable behavior of NSGA-II in all proposed tasks scaling well for
harder instances, and thus presenting itself as the most promising option
for TE in these scenarios.
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1 Introduction

Link-State protocols, such as Intermediate-System to Intermediate-System (ISIS)
[12] and Open Shortest Path First (OSPF)[11], are widely used routing proto-
cols. Positive weights, assigned to each link in the network, are used to compute
the shortest path (SP) between each source-destination pair, through which net-
work traffic flows. The SPs are obtained using the Dijkstra algorithm [5], and
minimize the total sum of link weights in the path. Thus, link weights define
how traffic is accommodated onto the underlying network topology, being, in
this context, the most important decision factor for the configuration of the
traffic routing process. The decision making involved in link weights configura-
tion, usually performed by a network administrator, is not an easy task when
the scale of the network and the typically high volume of traffic and flows are
taken into consideration. If inadequate, a configuration can cause the misallo-
cation of traffic into the available resources, resulting in packet loss, increasing
delays, and, potentially, in the unfulfillment of service level agreements (SLAs).

The Traffic Engineering (TE) problem addressed by this work arises in this
context. It consists in finding a set of weights that optimize the congestion levels
of the network, for which there are known aggregated traffic demands specified
for each source-destination pair. This NP-hard optimization problem has been
covered in previous efforts [1,8] with good results, resorting to several optimiza-
tion approaches, which include, for instance, Evolutionary Algorithms (EA) in
previous work by the authors [13,14]. Indeed, EA based approaches to TE have
been proven to deliver near optimal solutions for the weight setting problem with
several advantages when compared with other optimization techniques. Their
ability to provide a set of possible solutions, with distinct trade-offs between
objectives, enables network administrators to choose from a broader set of con-
figurations, and consequently offers a conscious choice of the most adequate
solution. However, distinct EAs have different merits and limitations [15] and
consequently some approaches may not offer equally good solutions.

In this context, the present work offers a comparative study of three popular
EAs spanning both single and multi-objective alternatives: the Non-dominated
Sorting Genetic Algorithm (NSGA-II), the Strength Pareto Evolutionary Algo-
rithm (SPEA2) and a Single-Objective Evolutionary Algorithm (SOEA) previ-
ously proposed by the authors. The experimental study allows to compare the
performance of the three approaches in two extensions of the described problem,
where the weights need to be set for scenarios considering the network’s dynamic
behavior, namely considering changes on the traffic demands over distinct time
periods, in the first case, and the possibility of a single link failure, in the latter
case.

The paper proceeds with section 2, describing the experimental model, the
framework that sustained the experiments and EAs configuration; section 3
presents the results for the scenario with two distinct traffic demand matrices;
section 4 presents the results for the scenarios with a single link failure; finally,
section 5 presents the conclusions of this study.
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2 Experimental Model

Changes on traffic demands and link failures are dynamic conditions that under-
mine the operational performance of a network. Traffic demands undergo peri-
odic changes during specific periods of time, such as night and day, which affect
the congestion levels of the network. To address effective TE under those changes,
network administrators could, eventually, perform alterations on the installed
weights configuration to induce the redistribution of traffic. However, weight
configuration changes cause a temporary instability on the traffic flows due to
the distributed nature and convergence time of the routing protocol. Further-
more, changes on traffic paths disrupt the performance of higher level protocols,
such as the Transport Control Protocol (TCP) whose connections may become
degraded by out of order packet delivery.

There are also similar considerations to be made when re-configuring weights
in response to link failures. The majority of these faults are single link failures,
and last, usually, a relatively short amount of time [9]. Frequent link weights
reconfigurations are thereby not considered a good approach to the problem. A
more appealing solution consists in finding a single weights setting that would
allow the network to maintain a good performance level against such events. In
this case, the weights configuration to seek would guarantee a good traffic distri-
bution in normal network conditions and continue to provide a good congestion
level after a link failure or in case of foreseen changes of traffic demands. The
next section presents an overview of the mathematical model used to support
the simulations.

2.1 Mathematical Model

Network topologies are modelled as directed graphs G (N,A), where N repre-
sents a set of nodes, and A a set of arcs, with capacity constrains ca for each
a ∈ A. The amount of demand routed on the arc a, induced by a particular
weight configuration, with source s and destination t, is denoted by f

(s,t)
a . We

define the utilization of an arc a as ua = �a
ca

where �a is the sum of all flows

f
(s,t)
a that travel over it. A well known piece-wise linear cost function Φa, pro-

posed by Fortz and Thorup [7], is used to heavily penalize over-utilized links.
The derivative of Φa is defined as:

Φ
′
a =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤ ua < 1/3
3 for 1/3 ≤ ua < 2/3

10 for 2/3 ≤ ua < 9/10
70 for 9/10 ≤ ua < 1

500 for 1 ≤ ua < 11/10
5000 for ua ≥ 11/10

(1)

The single optimization objective consists in distributing traffic demands in
order to minimize the sum of all costs, as expressed in Equation 2.

Φ =
∑

a∈A

Φa (2)
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A normalized congestion measure Φ∗ is used to enable results comparison between
distinct topologies and, for single objective EAs, to linearly combine the normal
state congestion value of a network with the congestion after the occurrence of
an event. It is important to note that when Φ∗ equals 1, all loads are below 1/3
of the link capacity, while when all arcs are exactly full the value of Φ∗ is 10 2/3.
This value will be considered as a threshold that bounds the acceptable working
region of the network.

It is now possible to define the general multi-objective optimization problem
addressed in this work. Given a network represented by a graph G = (N,A) and
one or more demand matrices Di, the aim is to find the set of weights (w) that
simultaneously minimizes the objective functions Φ∗

1 and Φ∗
2, that, respectively,

evaluate the congestion level of the network on a normal state and the congestion
level after a change on the network operational conditions. For single objective
optimization, the algorithms use a linear weighting scheme where the cost of the
solution is given by:

f (w) = α × Φ∗
1 + (1 − α) × Φ∗

2, α ∈ [0; 1] (3)

2.2 Experimental Framework

The experimental simulations were run on a publicly available optimization
framework, NetOpt [13], previously developed by the authors, in which the opti-
mization meta-heuristic algorithms are provided by a Java-based library, JEColi
[6]. An OSPF routing simulator is used to accommodate the traffic demands
onto the networks topology arcs, and therefore enabling the application of the
congestion evaluation function Φ∗. An overall view of the framework architecture
is shown in Figure 1 that also translates the general multi-objective optimization
problem defined in the previous section.

The simulations were run for two synthetic topologies with 30 nodes, named
302 and 304 (the indexes 2 and 4 stand for the average in/out degree of each
node), and a real-world backbone topology, the well known Abilene topology. The
synthetic topologies were generated by the Brite topology generator [10], using
the Barabasi-Albert model, with a heavy-tail distribution and an incremental
grow type. The link capacities uniformly vary in the interval [1; 10] Gbits. The
characteristics of each topology are summarized in Table 1.

Network Topology

OSPF weights 
Configuration

 Solutions
SOEA/MOEA 

Optimization EngineOther parameters:
 - Link Selection Stategy
 - EA configuration

Traffic Demands
and other constraints 

OSPF Routing 
Simulator

Fig. 1. General architecture of the optimization framework
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Table 1. Synthetic and realistic network topologies

Name Topology Nodes Edges

Abilene backbone 12 15
302 random 30 55
304 random 30 110

Traffic demand matrices provide, for every ingress point a and every egress
point b in the network, the volume of traffic from a to b over a given time interval.
For each topology, three distinct levels of traffic demand Di, i ∈ {0.3, 0.4, 0.5},
were used in the experiments, where i represents the expected mean of congestion
in each link. Larger level values imply more difficult problems, as the volume of
traffic to accommodate is greater. The set of demands Di for the Abilene network
were obtained by scaling Netflow data [3] publicly available and measured on
March 1st 2004 and September 1st 2004. The set of demand matrices for the
synthetic topologies were randomly generate to fulfill the requirements of the
expected mean of congestion.

2.3 EAs Setup and Evaluation Metrics

Three different EAs were considered in this study, and applied to the contem-
plated optimization problems. The first approach was the use of a single objective
EA (SOEA) based on previous work by the authors [14]. Alternative approaches
were provided by two of the most popular multi-objective EAs, namely SPEA2
[16] and NSGA-II [4]. All algorithms were configured to use the same encod-
ing and reproduction operators and their configurations was done to reduce any
differences not related with the inherent differences of the optimization engines.

In all EAs, each individual encodes a solution as a vector of integer values,
where each value (gene) corresponds to the weight of a link (arc) in the network,
and therefore the size of the individual equals the number of links in the network.
Although OSPF link weights are integers valued from 1 to 65535, only values
in range [1; 20] were considered, allowing to reduce the search space and, simul-
taneously, increasing the probability of finding equal cost multipaths (ECMP).
ECMP offers substantial increases in bandwidth by load-balancing traffic over
multiple paths.

The individuals that populate the initial populations were randomly gener-
ated, with arc weights taken from a uniform distribution within the reduced
range. All EAs resort to the same reproduction operators for solutions combina-
tion and genetic diversity:

– Random mutation, replaces a given gene by a random value, within the
allowed range.

– Incremental/decremental mutation, replaces a given gene by the next or by
the previous integer value, with equal probabilities, within the allowed range.

– Uniform crossover, this operator works by taking two parents as input and
generating two offspring. For each position in the genome, a binary variable
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is randomly generated: if its value is 1, the first offspring takes the gene from
the first parent in that position, while the second offspring takes the gene
from the second parent; if the random value is 0, the roles of the parents are
reversed.

The single objective EAs use a roulette wheel scheme in the selection proce-
dure, by converting the fitness value into a linear ranking in the population. In
the experiments, a population size of 100 was considered, and for the MOEAs,
an archive of the same size was used. For the SOEA experiments, the final
objective value is taken as a linear combination of the two objectives, weighted
by a factor (α) that defines the trade-off; three values were considered for
α ∈ {0.25, 0.5, 0.75}. Each simulation configuration was run 30 times with a
stopping criteria of 1000 generations.

Three performance metrics that enable results comparison and the evaluation
of the MOEA and SOEA algorithms performance were used in the experimental
study:

– C-measure: It is based on the concept of solution dominance. Given two
Pareto Fronts (PF1,PF2), the measure C(PF1; PF2) returns the fraction
of solutions in PF2 that are dominated by at least one solution in PF1. A
value of 1 indicates that all points in PF2 are dominated by points in PF1,
so values near 1 clearly favour the method that generated PF1; values near
0 show that few solutions in PF2 are dominated by solutions in PF1.

– Trade-off analysis (TOA): For a pareto front PF1, and given a value of α,
the solution that minimizes α × Φ∗

1 + (1 − α) × Φ∗
2 is selected. Parameter

α can take distinct values in the range [0; 1], thus defining different trade-
offs between the objectives. The values with the same α can be compared
among the several multi objective optimizers (MOOs) and also with those
from traditional algorithms.

– Hypervolume: It is the n-dimensional space that is contained by a set of
points. It encapsulates in a single unary value a measure of the spread of
the solutions along the Pareto front, as well as the closeness of the solutions
to the Pareto-optimal front. We considered as an approximation for the
Pareto-optimal front the non dominated solutions of all simulations in the
same context, regardless of the algorithm.

The next two sections present more precised definitions of the two studied
case problems where changes in the operational conditions of a network under-
mine its performance. In each case, the results produced by the three algorithms,
SOEA, NSGA-II and SPEA2, are discussed and compared.

3 Optimization for Two Traffic Demands Matrices

3.1 Problem Definition

Traffic demands possess temporal properties that have a significant impact on
internet traffic engineering. The diversity of services available on contemporary
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networks, as well as human behaviors and habits, provoke variations on traf-
fic volumes and flow patterns not accommodated by traditional routing solu-
tions. To acknowledge those variations, for example between two periods, such
as night and day, we aim to find a link weight configuration that enables the
network to sustain good functional performance in both periods. Thus, given two
demand matrices, D1 and D2, that represent the traffic requirements of two dis-
tinct periods, we want to find a link weight configuration w that simultaneously
minimizes the congestion functions Φ∗

1 and Φ∗
2. Each Φ∗

i is the normalized cost
function Φ (Equation 2) that evaluate the network congestion considering the
traffic demands matrix Di. The SOEA weighted-sum aggregation function for
this set of experiments is defined in accordance with Equation 3. The main idea
behind the optimization process is that, by compromising the congestion level
in each individual scenario, it is possible to obtain a suitable configuration for
both matrices. Under the SOEA algorithm, an administrator is able to fine tune
adjustments, such as favouring one of the matrices and penalizing the other, by
setting the α parameter accordingly in Equation 3. Under MOEA algorithms,
the produced solutions feature distinct trade-offs between the objectives which
enables network administrators to select the most appropriate solution.

3.2 Simulation Results

The experimental results, for each of the three algorithms (SOEA, NSGA-II and
SPEA2), are summarized in Table 2 and Table 3 which respectively present the
best and the mean fitness values of all runs with distinct trade-offs, organized
by traffic demands levels and α values. In the experiments with the 304 network
topology only D0.3 level traffic demand matrices were considered as for higher
levels of demands the obtained congestion values surpass the threshold of 10 2/3,
above which the network ceases to operate acceptably. As the size and degree of
each node increase, the difficulty of the optimization problem also increases. It is
important to mention that, in all simulations, the linear correlation between the
two considered traffic demands matrices, D1 and D2, for which the congestion
is simultaneously optimized, is approximately 0.5.

The results for the Abilene topology show that all three algorithms were able
to converge to the same best solution in at least one of the 30 simulations. The
average fitness values, for all levels of demands and trade-offs, Table 3, are also
very similar among the three algorithms. The performance metric C-measure,
given in Table 4, where the overall mean value for all the distinct instances
and runs was computed, reinforces the conclusion that all performances are
akin with respect to the Abilene topology. The SOEA, NSGA-II and SPEA2
algorithms were able to provide equally good solutions as all values are of the
same magnitude and, consequently, no algorithm’s pareto fronts are considered
to dominate the others.

For larger network topologies, the performance of the three algorithms starts
to diverge. The results for the synthetic topology 302, with 30 nodes and 55
edges, show that the NSGA-II algorithm is able to attain best fitness values
for every α and demands level. This can be observed, for instance, with D0.4
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Table 2. Best fitness comparison for two demand matrices optimization

Algorithm
First Second Abilene 302 304

Demands Demands 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

SOEA
0.3 0.3

1.139 1.161 1.179 1.374 1.386 1.398 2.503 2.487 2.472
NSGA-II 1.139 1.161 1.179 1.338 1.349 1.357 1.907 1.968 1.961
SPEA2 1.139 1.161 1.179 1.461 1.452 1.442 4.336 5.620 6.178

SOEA
0.3 0.4

1.446 1.367 1.283 1.745 1.638 1.531 - - -
NSGA-II 1.446 1.367 1.283 1.659 1.559 1.453 - - -
SPEA2 1.446 1.367 1.283 1.878 1.718 1.559 - - -

SOEA
0.4 0.4

1.522 1.522 1.521 1.951 1.985 2.019 - - -
NSGA-II 1.522 1.522 1.521 1.841 1.882 1.916 - - -
SPEA2 1.522 1.522 1.521 2.139 2.184 2.214 - - -

Table 3. Mean fitness comparison for two demand matrices optimization

Algorithm
First Second Abilene 302 304

Demands Demands 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

SOEA
0.3 0.3

1.218 1.218 1.218 3.103 2.977 2.785 38.017 40.592 43.167
NSGA-II 1.212 1.213 1.213 1.925 1.826 1.728 4.306 4.440 4.575
SPEA2 1.213 1.213 1.214 2.186 2.064 1.942 43.983 46.922 49.862

SOEA
0.3 0.4

1.489 1.399 1.308 7.946 6.115 4.285 - - -
NSGA-II 1.482 1.393 1.304 3.538 2.860 2.183 - - -
SPEA2 1.482 1.393 1.304 4.551 3.622 2.693 - - -

SOEA
0.4 0.4

1.565 1.554 1.543 10.446 10.213 9.980 - - -
NSGA-II 1.559 1.549 1.540 2.919 2.801 2.684 - - -
SPEA2 1.559 1.549 1.540 5.401 5.271 5.141 - - -

matrices and α = 0.5, where the minimum and average fitness values are, respec-
tively, 1.951 and 10.446 (SOEA), 1.841 and 2.919 (NSGA-II), 2.139 and 5.401
(SPEA2). Although NSGA-II and SOEA best values are very similar, and better
than SPEA2 results, the average congestion values for NSGA-II are substantially
smaller, that is, the NSGA-II solutions are globally better than those provided
by the other two algorithms. The averaged C metric values for the 302 network
topology scenarios, Table 4, show that NSGA-II solutions dominate SPEA2 ones
in more than 56% on average, with a reverse C-measure of almost 0%. When com-
pared with SOEA solutions, NSGA-II solutions dominate approximately 16% of
the SOEA ones and, for the reverse case, SOEA solutions dominate NSGA-II
ones in only about 6%. It is therefore possible to conclude, that, for the 302
topology experiment scenarios, the NSGA-II algorithm offers generally better
solutions than any of the two other algorithms and that the SPEA2 algorithm
had the worst performance of all.

As the size of the used topology increases, the performance of theNSGA-II algo-
rithm detaches from the others. The experiments with the 304 network topology
show that while the best values of the three algorithm remain acceptable, NSGA-
II features the best solutions, and is the only algorithm whose mean fitness values
remain within the acceptable operating limits of the network (Table 3). The C met-
ric values for this new set of simulations are very similar to those obtained for the
302 topology, and again, NSGA-II solutions are globally better than those provided
by SOEA and SPEA2.
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Table 4. Overall C-Measure for two traffic demand matrices optimization

Abilene 302 304

SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2

SOEA - 0.143 0.179 - 0.062 0.553 - 0.029 0.602
NSGA-II 0.150 - 0.182 0.161 - 0.564 0.150 - 0.600
SPEA2 0.110 0.113 - 0.001 0.004 - 0.000 0.001 -

Table 5. Average hypervolume for two traffic demand matrices optimization

Algorithm
Topology

Abilene 302 304

SOEA 0.002 0.585 34.359

NSGA-II 0.002 0.321 4.868

SPEA2 0.002 4.592 7950.838

It is possible to identify a consistency in the performance of all three algo-
rithms where NSGA-II is the algorithm that show comparatively best results.
The hypervolume indicators, presented in Table 5, also support that NSGA-II is
the best choice algorithm in the context of weights setting optimization for two
traffic demand matrices. The NSGA-II pareto fronts are closer to the Pareto-
optimal approximation, and better spread, than those provided by SOEA and
SPEA2.

4 Single Link Failure Optimization

4.1 Problem Definition

Link failures on network topologies can occur for different reasons. At the physi-
cal layer, a fiber cut or a failure of optical equipment may cause a loss of physical
connectivity. Other failures may be related to hardware, such as linecard fail-
ures. Router processor overloads, software errors, protocol implementation and
misconfiguration errors may also lead to loss of connectivity between routers.
Failures may also vary in nature. They can be due to scheduled network main-
tenance or be unplanned. Although backbone networks are usually well planned
and adequately provisioned, link failures may still occur and undermine their
operational performance. Several mechanisms can be used to protect an IP net-
work against link failures, such as overlay protection or MPLS fast re-route [2],
but protecting all links remains a very difficult task, or even impossible, espe-
cially for large network topologies. Thus, protection against failure continues to
be link based.

The NetOpt framework supports several criteria to select the failing link,
some are dynamic, that depend on the solution that is being evaluated, while
others are user choices. The framework also allows to select more than one link to
fail simultaneously each corresponding to an optimization objective. This study
only considers two of the available single link selection criteria:
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– Highest Load : The selected link, for each solution being evaluated, is the
one that has the highest load for the traffic demands given as parameter.
Therefore, distinct solutions may have a different failing link.

– User Selected : A network administrator identifies the link against whose
failure the network should be protected.

For a given network topology with n links and a traffic demands matrix D,
the aim is to find a set of weights w that simultaneously minimize the function
Φ∗

n, representing the congestion cost of the network in the normal state, and
Φ∗

n−1, representing the congestion cost of the network when foreseeing that a
selected link from the topology will fail. The SOEA weighted-sum aggregation
model is described in Equation 4:

f (w) = α × Φ∗
n + (1 − α) × Φ∗

n−1, α ∈ [0; 1] (4)

An administrator is able to define a trade-off between the objectives by tuning
the value of the α weight. When α = 1, the optimization is only performed for the
normal state topology, without any link failure, whereas when using α = 0.5 the
same level of importance is given to the two topology states. However, as the link
failure optimization can compromise the network congestion level in a normal
state, a network administrator may wish to focus on the performance of the
normal state network, e.g. using a α value between 0.5 and 1, at the expense of
the congestion level in a failed state, that may not occur. Although this feature
offers a good tuning tool for administrator, it requires several distinct runs in
order to assert the best compromised solution. MOEA algorithms, on the other
hand, are able to deliver such knowledge base and choice selection after a single
run, and therefore, being more appealing in this context.

4.2 Highest Load Link Failure Optimization

The failure of the network link that carries the highest traffic load is one of the
worst case scenarios for the failure of a single link in a network. Its failure would
translate into the re-routing of the higher amount of traffic and potentially the
worst case for out of order TCP packet delivery. Distinct levels of traffic demands,
D0.3, D0.4 and D0.5 were used to compare the algorithms in problems with
increasing difficulty. For comparison purpose, Table 6 that shows the obtained
minimum weighted-sum aggregation fitness values, also includes the optimized
congestion values for the networks without link failure optimization, and the
respective congestion level after the failure of the link with higher load.

The simulation results show that, for the smallest topology, Abilene, all three
algorithm behave alike producing equally good solutions. But, as the topology
size increases, or with the escalation of traffic requirements, NSGA-II is able to
obtain solutions which translate into lower congestion values before and after the
link failure. In the 304 network topology scenario, with D0.3 traffic demands and
α = .5, the fitness values before and after the link failure are, respectively, 2.19
and 2.29 for NSGA-II; 5.81 and 33.01 for SOEA; 204.29 and 219.19 for SPEA2.
These results are even more relevant when comparing with the congestion values



Comparison of Single and Multi-objective Evolutionary Algorithms 583

Table 6. Best fitness values for single link failure weights setting optimization - Highest
Load Link

Topology Demand
Without Link With Link Failure Optimization

AlgorithmFailure Optimization α = 0.25 α = 0.5 α = 0.75

Before After Before After Before After Before After

Abilene

0.3 1.20 1.76
1.29 1.23 1.29 1.23 1.23 1.33 NSGA-II
1.34 1.21 1.33 1.22 1.24 1.35 SOEA
1.29 1.23 1.29 1.23 1.23 1.34 SPEA2

0.4 1.53 32.22
1.63 1.58 1.63 1.58 1.55 1.70 NSGA-II
1.69 1.58 1.69 1.58 1.55 1.73 SOEA
1.64 1.58 1.64 1.58 1.55 1.70 SPEA2

0.5 1.91 309.48
2.14 1.91 2.14 1.91 2.05 2.17 NSGA-II
2.26 1.93 2.26 1.93 2.26 1.93 SOEA
2.14 1.91 2.14 1.91 2.04 2.14 SPEA2

302

0.3 1.49 14.20
1.55 1.42 1.44 1.48 1.44 1.48 NSGA-II
1.56 1.58 1.56 1.58 1.54 1.61 SOEA
1.57 1.50 1.56 1.51 1.49 1.64 SPEA2

0.4 1.79 41.44
1.83 1.76 1.75 1.80 1.75 1.80 NSGA-II
2.07 2.09 1.85 2.22 1.85 2.22 SOEA
1.95 1.93 1.91 1.96 1.91 1.96 SPEA2

0.5 5.49 180.94
4.99 3.70 4.99 3.70 4.11 5.31 NSGA-II

12.61 17.58 12.61 17.58 12.61 17.58 SOEA
8.23 8.41 8.15 8.48 7.86 9.03 SPEA2

304

0.3 3.67 73.69
2.38 2.20 2.30 2.25 2.10 2.59 NSGA-II

11.14 7.91 11.14 7.91 6.04 13.64 SOEA
59.48 29.64 28.95 47.39 28.95 47.39 SPEA2

0.4 33.93 223.04
18.66 10.13 18.66 10.13 10.07 28.42 NSGA-II
77.09 88.80 77.09 88.80 58.81 140.07 SOEA

355.03 139.57 205.65 190.92 159.03 325.12 SPEA2

0.5 126.90 158.44
157.19 95.15 97.19 132.37 97.19 132.37 NSGA-II
310.85 180.52 310.85 180.52 224.07 277.66 SOEA
490.70 466.66 490.70 466.66 467.31 504.91 SPEA2

when only the congestion of the network in the normal state is optimized by
resourcing to a single objective algorithm (α = 1). The NSGA-II algorithm
was able to provide a better solution while optimizing two objectives than a
SOEA algorithm that optimizes a single objective, the congestion of the network
before the link failure. This result is observed in all scenarios that are more
demanding, allowing to conclude that NSGA-II performs better in these more
difficult optimization tasks than SOEA even considering two objectives rather
than a single one.

Although congestion values above 10 2/3 are not acceptable within an oper-
ational network, the results allow to observe that the more difficult the problem,
the greater the difference between the quality of the solutions produced by each
of the three EAs. NSGA-II is able to outperform SOEA and SPEA2 in all sce-
narios. The lack of performance of the SOEA algorithm in more demanding
scenarios can be explained by its requirement of a higher number of generations
to properly converge. It is also important to acknowledge that even small changes
on a single weight can provoke drastic changes on shortest paths and therefore
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on the congestion value. The crowding distance used in the selection operator of
NSGA-II, that keeps a diverse front by making sure each member stays a crowd-
ing distance apart, seems to positively influence the algorithm performance.

Table 7. C-measure of the highest Load link failure optimisation

Abilene 302 304

SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2

SOEA - 0.173 0.242 - 0.071 0.702 - 0.056 0.887
NSGA-II 0.007 - 0.098 0.143 - 0.709 0.143 - 0.887
SPEA2 0.010 0.108 - 0.003 0.005 - 0.000 0.000 -

Table 8. Best fitness values for single link failure weights setting optimization - User
Select Link

Topology Demand
Without Link With Link Failure Optimization

AlgorithmFailure Optimization α = 0.25 α = 0.5 α = 0.75

Before After Before After Before After Before After

Abilene

0.3 1.20 1.76
1.23 1.73 1.20 1.74 1.20 1.74 NSGA-II
1.22 1.71 1.21 1.72 1.20 1.74 SOEA
1.24 1.72 1.20 1.74 1.20 1.74 SPEA2

0.4 1.53 25.57
1.58 33.44 1.58 33.44 1.53 33.52 NSGA-II
1.56 5.26 1.56 5.26 1.56 5.26 SOEA
1.58 33.44 1.58 33.44 1.53 33.52 SPEA2

0.5 1.91 309.48
1.97 119.30 1.95 119.32 1.93 119.34 NSGA-II
1.98 281.63 1.98 281.63 1.98 281.63 SOEA
2.01 119.29 1.95 119.32 1.93 119.34 SPEA2

302

0.3 1.49 8.17
1.40 1.50 1.40 1.50 1.40 1.50 NSGA-II
1.54 4.55 1.54 4.55 1.54 4.55 SOEA
1.61 1.74 1.60 1.74 1.60 1.74 SPEA2

0.4 1.79 58.65
1.76 1.93 1.76 1.93 1.75 1.93 NSGA-II
2.10 3.40 2.10 3.40 2.10 3.40 SOEA
2.18 2.50 2.18 2.50 2.18 2.50 SPEA2

0.5 5.49 193.16
5.79 41.19 5.44 41.51 5.44 41.51 NSGA-II

22.45 87.53 17.23 91.56 8.07 117.40 SOEA
28.13 47.86 12.86 55.66 12.30 56.43 SPEA2

304

0.3 3.67 117.13
2.20 2.29 2.19 2.29 2.18 2.33 NSGA-II
5.81 33.01 5.81 33.01 5.81 33.01 SOEA

204.29 219.19 204.29 219.19 204.29 219.19 SPEA2

0.4 33.93 98.98
10.43 9.67 9.90 10.05 9.85 10.11 NSGA-II
49.27 111.08 49.27 111.08 49.27 111.08 SOEA

456.36 509.50 456.36 509.50 440.71 544.54 SPEA2

0.5 126.90 421.07
89.91 88.98 62.21 112.74 62.21 112.74 NSGA-II

165.46 319.34 165.46 319.34 165.46 319.34 SOEA
557.49 600.71 557.49 600.71 557.49 600.71 SPEA2

The C-measure values in Table 7 show that, despite being able to offer solu-
tions with equivalent best fitness for the Abilene topology, the SO algorithm
produces more solutions that are neither dominated by NSGA-II or SPEA2
solutions. In contrast, for the more demanding topologies, 302 and 304, NSGA-II
solutions dominate approximately 14% of the SOEA solutions, when the reverse
is 7% or less. When compared against SPEA2, both NSGA-II and SOEA present
better values.
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4.3 User Choice Link Failure Optimization

A network administrator can consider that a particular link is more crucial than
others, because of its capacity or for other reasons. It is therefore important to
enable an administrator to select the link that needs to be protected against
failure. For this set of simulations, the selected link in each topology is such that
it occurs in the largest number of shortest paths when assigning to each link a
weight inversely proportional to its capacity.

The minimal congestion values before and after the failure of the selected
link, for distinct trade-offs (α = 0.25, 0.5, 0.75), are presented in Table 8.

The results of this new test suite consolidate previous observations, that is,
for simpler problems, with smaller topologies and lower traffic demand levels,
the SOEA and MOEAs algorithms provide equally good solutions, but, as the
number of nodes and links increases, or with the growth of traffic demands,
NSGA-II is able to deliver better solutions, in the large majority of scenarios,
both before and after the link failure. The C metric values, Table 9, are also
similar to those observed for the higher load link failure optimization. In average
and in the context of simpler problems, SOEA continues to have more solutions
that are not dominated by any of the non-dominated sets of solutions resulting
from NSGA-II and SPEA2 based optimizations. As the difficulty of the problem
increases, NSGA-II stands out, providing better sets of non-dominated solutions.

Table 9. C-measure of User Choice link failure optimization

Abilene 302 304

SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2

SOEA - 0.162 0.203 - 0.074 0.443 - 0.065 0.659
NSGA-II 0.008 - 0.063 0.122 - 0.468 0.163 - 0.657
SPEA2 0.024 0.125 - 0.014 0.019 - 0.000 0.001 -

5 Conclusion

The simplicity of link-state protocols, and their reliability proven over the last
two decades, continues to justify the use of such routing algorithms in the con-
text of IP backbone networks. However, the dynamic conditions of IP networks,
such as changes on traffic demands and disruptions on the underlying topology
need to be addressed so that the network continues to ensure a good opera-
tional performance even if such events take place. An administrator could react
to such changes by re-configuring the link weights but with a temporary nega-
tive impact on traffic flows. Other approaches, such as preventive optimization,
can effectively take into consideration foreseen changes to compute weight con-
figurations that allow the network to ensure a continues good levels of perfor-
mance even in dynamic conditions. In this context, two multi objective problems
were addressed, that consider changes on traffic demands and single link fail-
ure, resourcing to three popular EAs spanning both single and multi-objective:
NSGA-II, SPEA2 and single objective EA using weighted-sum aggregation.
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The results showed that for simpler problems the single objective optimiza-
tion approaches provide solutions with best fitness values as good as the MOEA
algorithms but, as the difficulty of the problems increases, for more complex
network topologies and for more demanding traffic requirements, NSGA-II pro-
vides better solutions. By comparing the obtained results with previous work by
the authors, it can be observed that SOEA algorithms require a greater number
of generations for more demanding problems than MOEA algorithms. The two
MOEAs, NSGA-II and SPEA2, rely heavily on their density estimator mecha-
nisms, where the NSGA-II ability to provide a broader spread seems to influ-
ence more positively the optimization process than a better solution distribution
attained by SPEA2.

Apart from the quality of the solutions other more practical aspects help
determine the most appropriate algorithm to the problem. The single objective
approaches have an important limitation. They assume, in each individual opti-
mization process, that there is a single optimum trade-off between the objectives.
A network administrator needs to guess which value of the weighting trade-off
parameter better fits the needs of a network on the addressed operational con-
ditions. In contrast, MOEA algorithms are able to calculate a set of solutions
with distinct trade-offs between the two objectives, and let the network admin-
istrator decide which solution to implement. Moreover, NSGA-II is able to offer
this broader set of solutions within a shorter time than the SOEA using weight-
aggregation, or SPEA2 in the same conditions.
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