
Chapter 5
Sampling

Abstract Reliable analysis and kriging demand sound sampling, which must be
sufficient and have an acceptable configuration. Sampling to estimate the variogram
is problematic because the spatial scale of variation is often unknown, yet there
must be numerous pairs of sampling points within the correlation range, if it exists.
One might determine the spatial scale from visible features such as landforms and
vegetation on the ground or from remote sensing. If that is not possible a nested
survey and hierarchical analysis, by either analysis of variance or residual maxi-
mum likelihood (REML), can provide a first approximation to the variogram and a
guide for subsequent sampling. Variograms from previous surveys or from ancillary
data, in particular aerial image data, may also be used to guide sampling. Once a
variogram with known parameters is available sampling for kriging can be opti-
mized so that some tolerable kriging error is met but never exceeded. Alternatively,
if the budget for sampling is set the kriging equations can be solved to determine
the kriging errors everywhere within the region of interest and in particular the
maximum absolute error.

Keywords Model-based sampling � Spatial scale � Ancillary information � Nested
sampling � Hierarchical analysis of variance � REML � Kriging variance � Optimal
sampling � Tolerable error � Mapping

In Chap. 1 we introduced the need for sampling of the environment because of the
extent of area usually covered and because the variation is usually continuous.
We mentioned design-based and model-based approaches, and here we focus on the
latter where our principal concern will be to sample adequately and without bias to
enable us to predict accurately throughout the region. This requires sample data that
are suitable to estimate both the variogram and to krige. If one knows the variogram
of a variable for a particular region and can specify the maximum tolerable error in
predictions using it then one can optimize one’s sampling scheme (see Sect. 5.2).
In most instances, however, one must first estimate the variogram, and we therefore
describe the associated problems and the way to tackle them before dealing with the
kriging.

© The Author(s) 2015
M.A. Oliver and R. Webster, Basic Steps in Geostatistics: The Variogram
and Kriging, SpringerBriefs in Agriculture, DOI 10.1007/978-3-319-15865-5_5

71

http://dx.doi.org/10.1007/978-3-319-15865-5_1


5.1 Sampling for the Variogram

Sampling to estimate the variogram is one of the most problematic tasks in geo-
statistics. It receives too little attention among both research workers and practi-
tioners with the result that in many instances the data are too few or the spacings are
unsuitable for reliable estimates of the variogram. There have been several attempts
to optimize sampling for variograms, but without knowing the true variogram one
cannot succeed. Lark (2002) and Webster and Lark (2013) show that without prior
information on a variogram’s likely form and model parameters designing a sam-
pling scheme is little better than guesswork. In particular, one must guess the limit
of spatial dependence, if such exists in the region. In Oliver’s (Oliver and Webster
1987) initial survey of the soil the Wyre Forest in England, the sampling with even
coverage was too sparse; the distances between neighbouring sampling points
exceeded the range of spatial correlation in the soil variables.

We return to our search for that range below. Before that we state some general
principles.

1. The maximum lag to which you compute the variogram should exceed the
correlation range, and if it exists the sampling plan should ensure that.

2. The steps by which the lag is incremented should be small enough and the number
of lags large enough for the experimental estimates to reveal the functional form
of the variogram. Ideally you should aim for about six estimates within the
correlation range, if it exists, and another four beyond, and sampling should be
designed to provide them.

3. The size of sample should be large enough to place the estimates of the semi-
variances within acceptable confidence limits. A good working rule is to aim for
at least 100–150 sampling points.

You might be able to judge the first from your understanding of the environment
and from visible features of the landscape; physiography is a good guide. Alter-
natively, or in addition, you might already have or know of empirical variograms
for similar land nearby. Item 2 depends to some extent on item 1, because only if
you know the correlation range can you decide the interval between estimates and
the sampling intervals on the ground to provide them. If you want the variogram
solely for kriging then you should have one that is well estimated at short lag
distances, and you should design a scheme that includes many pairs of points
separated by short distances. Therefore, for a grid survey sample more intensively
from randomly selected nodes to provide such pairs of points (Fig. 5.5).

Item 3 is widely misunderstood. You cannot apply the classical formula based
on χ2 to obtain confidence intervals on the experimental variogram calculated by the
method of moments, Eq. (3.1), because the same data are used many times over and
successive estimates are correlated. The advice in several texts to aim for 30–50
pairs of comparisons in each estimate, m(h) in Eq. (3.1), is seriously misleading. It
implies fewer than 50 points for a grid in two dimensions, and we know from
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empirical studies (Webster and Oliver 1992) that it leads almost inevitably to poor
estimates and to erratic variograms.

We have already drawn attention to this shortcoming in Chap. 3, and we rein-
force the matter in Fig. 3.5. That figure shows confidence intervals on experimental
variograms computed from samples of four sizes. The upper two, Fig. 3.5a, b, in the
figure for samples of size 49 and 81 are wide at all lags. As we have stated before,
you should aim to sample at 100–150 points to obtain a reliable variogram.

5.1.1 Nested Sampling

Surveyors often have little or no idea of the range of spatial dependence or of the
form of the variogram within its range. This is especially true when they begin
investigations in unfamiliar regions. Guesswork can be expensive, either because
the sampling is too sparse resulting in a variogram that is all nugget and is useless
for kriging or because it is unnecessarily dense. In these circumstances sampling
can be staged, with the first stage one of nested sampling followed by hierarchical
analysis of variance (ANOVA) or its equivalent by REML.

The aim of such a scheme is to estimate efficiently the contribution made to the
variation over scales ranging widely from fine to coarse in the region. The general
principle was first proposed by Youden and Mehlich (1937) for sampling soil.
Although the authors’ original paper lay buried for a long time the technique was
rediscovered and is now well documented in texts by Webster and Oliver (2007)
and Webster and Lark (2013). The latter includes several novel options in an
attempt to optimize the approach. Here we concentrate on the basic features of the
strategy.

Stages are defined in terms of spacings between sampling points. At the lowest
stage pairs or triplets of points are separated by the shortest distance of interest. At
the highest stage, stage 1, pairs or triplets of groups are separated by the largest
distance of interest. In between are several stages with points separated by inter-
mediate distances. The distances progress in geometric sequence such that at any
stage above the lowest the distance is at least 3 times that of the one below. The
separating distances are fixed, but the orientations of the separations are chosen at
random. The effects of distance are assumed to be random, and so the appropriate
model for the analysis of variance is Model II of Marcuse (1949).

For a design with p stages the model of variation is

Zijk...m ¼ lþ Ai þ Bij þ Cijk þ � � � þ eijk: ð5:1Þ

The quantity μ is the mean, and the Ai, Bij, Cijk, …, εijk…m are independent random
variables associated with stages 1, 2, 3, …, p, respectively, with means of zero and
variances r21; r

2
2; r

2
3; . . .; r

2
p. These latter are the components of variance for the

p stages, and each one is a measure of the variation attributable to that stage, i.e. to
that separating distance. Together they sum to the total variance:
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r2 ¼ r21 þ r22 þ r23 þ � � � þ r2p: ð5:2Þ

Miesch (1975) pointed out that if estimates of these components are accumu-
lated, starting with that at the smallest spacing, they form a first approximation to
the experimental variogram, thus:

br2
p ¼ bc hp

� �
br2
p�1 þ br2

p ¼ bc hp�1
� �

br2
p�2 þ br2

p�1 þ br2
p ¼ bc hp�2

� �
;

ð5:3Þ

and so on, where the hp, hp−1, hp−2, …, h1 are separating distances equivalent to the
lag distances in geostatistical convention.

The analysis of variance for Model II above can be set out as in Table 5.1 in
which there are four stages and N data, each of which belongs to one and only one
group in each stage.

The table is quite general. It can be extended for more than four stages, and it can
be simplified for fully balanced designs in which the same number of divisions is
made at any particular stage into groups at the stage below. Balanced designs are
attractive statistically because they lead to a straightforward analysis, and the
variance components are readily calculated from the table because, for example,
u3,3 = u2,3 = u1,3 and u2,2 = u1,2. Their big disadvantage is that the number of
sampling points increases exponentially, at least two-fold for each additional stage,
as the number of stages increases and soon becomes unaffordable.

Balance is not necessary, however, because one does not need the very many
degrees of freedom in the low stages to obtain reliable estimates of the components.
Unbalanced designs can still be analysed by ANOVA, but calculating the com-
ponents of variance is more complex because their coefficients, the u in the table,
change from stage to stage. Gower (1962) devised formulae for calculating the
coefficients, and a worked example appears in the 6th edition of Statistical Methods
of Snedecor and Cochran (1967), but not in later editions. For theoretical reasons
we now prefer to estimate the components by residual maximum likelihood
(REML) as described by Webster et al. (2006).

For balanced designs the results are the same, but for unbalanced ones they
generally differ somewhat.

Table 5.1 Hierarchical analysis of variance

Stage Degrees of freedom Parameters estimated by mean squares

Stage 1 f1 – 1 u1;1r21 þ u1;2r22 þ u1;3r23 þ r24
Stage 2 f2 − f1 u2;2r22 þ u2;3r23 þ r24
Stage 3 f3 − f2 u3;3r23 þ r24
Residual (stage 4) N − f3 r24
Total N − 1
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5.1.1.1 Illustrative Example: Nested Sampling in the Wyre Forest

Following the initial survey of the soil of the Wyre Forest Oliver (Oliver and
Webster 1987) planned a second one to discover the scale(s) of variation in the soil.
The sampling comprised nine principal nodes on a grid at intervals of 600 m; this
was stage 1. The points for stage 2 were selected 190 m from each node in a random
direction. From each point in stage 2 a point was selected 60 m away to form stage 3,
and from each of those points another was chosen 19 m away (stage 4). Finally,
from half of the stage 4 points, points were chosen 6 m away to form the fifth stage.
This gave 9 × 2 × 2 × 2 = 72 sampling points in the first four stages plus a further 36
in the fifth stage, giving 108 points in all. The structure of the scheme is shown as a
topological tree in Fig. 5.1. The hierarchy is unbalanced in that at stage 4 only half of
the sampling points have pairs in stage 5. Figure 5.2 shows the sampling configu-
ration on the ground for one node.

The design might not have been optimal, but it was almost certainly a better use of
resources than a balanced design, and, perhaps surprisingly, better than a design that
distributes the degrees of freedom equally among the stages (Webster and Lark 2013).

Oliver and Webster originally estimated the components of variance by Gower’s
method, but later they re-analysed their data by REML (Webster et al. 2006),
Table 5.2 lists the resulting components for three depths.

Fig. 5.1 Topology of one
branch of the nested sampling
scheme by Oliver (see Oliver
and Webster 1987) to sample
the soil of the Wyre Forest.
Notice that only half of the
branches at Stage 4 (19 m) are
divided in the unbalanced
design
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By accumulating the components from the bottom of the table upwards, as in
Eq. (5.3), we obtain the variograms shown in Fig. 5.3. The variograms are erratic,
but all three have maxima at 60 m.

Evidently, the range is roughly half of the distances between neighbouring points
in the first survey. The figure also shows that for the first and second depths, 0–5 cm
and 25–30 cm, a large proportion of the variance is between 6 and 60 m. Oliver
(Oliver and Webster 1987) went on to sample the region at 5-m intervals on transects
at various orientations and obtained accurate variograms by the method of moments
and modelled them for kriging from data on a grid with nodes at 20-m intervals.

The above shows something of what can be achieved by splitting survey into
distinct stages. Marchant and Lark (2006, 2007) developed this line of investiga-
tion, combining estimation of the variogram and kriging in stages such that the
information gained in one stage is used to adapt the sampling in the next, and so on
with the hope that eventually one would be able to predict and map a variable with
acceptable confidence within specified budgets, starting, as it were, with a blank

Fig. 5.2 Sampling plan of
sites for one of the main
branches from a grid node in
the Wyre Forest with
distances 190, 60, 19 and 6 m
(Oliver and Webster 1987)

Table 5.2 Components of
variance of percentage of sand
in the soil of the Wyre Forest
estimated by REML (from
Webster et al. 2006)

Source (stage) Distance/m Components of variance

Depth/cm

0–5 25–30 50–55

1 600 38.12 16.68 33.75

2 190 –58.03 –90.02 –100.19

3 60 102.50 198.51 314.81

4 19 131.50 131.96 –38.89

5 (residual) 6 54.9 108.56 303.26
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sheet of paper. We leave the reader to pursue their strategy in the papers mentioned
and in the book chapter by Marchant and Lark (2010).

What should you do if you must do the field work in a single stage? This is often
the case, perhaps because of logistic difficulties and costs of getting to remote
regions, perhaps because clients want quick assessments, perhaps because money is
available for only a single season in the field. In these situations surveyors find that
they must sample in such a way as to estimate the variogram and model it and krige
from the same set of data. They cannot expect to optimize any of the steps.
Pragmatically, a surveyor must start somewhere. One starting point, mentioned
already, is prior knowledge of the region, especially of the landscape and physi-
ography if one is dealing with attributes of the soil or land more generally. That
should enable one to decide sampling intervals on transects for estimating the
variogram and perhaps wider ones on a grid for the kriging. One will not know
what the maximum errors are until one has finished, and that is a hazard.

The example below shows how variograms of ancillary data from aerial photo-
graphs, sensors and yield monitors, and existing variograms of the properties of
interest can be used to guide sampling for future surveys. The data are from a 23-ha
field on the Yattendon Estate, Berkshire, England (Oliver and Carroll 2004). A
colour aerial photograph for 1991 was digitized and the variogram computed from
the digital numbers for the red waveband. Figure 5.4a shows the experimental
variogram and the fitted nested spherical model, Eq. (3.12), and Table 5.3 lists the
model parameters. The yield of wheat was recorded in the field in 1995 and the
variogram was computed and modelled. Figure 5.4b shows the experimental values
and the fitted nested spherical function, and Table 5.3 lists the parameters of that
model. The topsoil (0–15 cm) was sampled on a 30-m grid with additional samples at

Fig. 5.3 Approximate
variograms of percentage
sand at three depths from the
nested survey of the Wyre
Forest obtained by
accumulating the components
of variance estimated by
REML
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Fig. 5.4 Experimental variograms and fitted models of: a red waveband of a digitized colour aerial
photograph taken in 1991, b wheat yield recorded in 1995, c potassium of the topsoil (0–15 cm)
and d subsoil pH (30–60 cm) for a field on the Yattendon Estate, Berkshire, UK

Table 5.3 Model parameters of soil and ancillary data for the Yattendon Estate

Variable Model type Estimates of parameters

c0 c1 c2 a1/m a2/m

Soil

Potassium—0–30 cm Spherical 318.4 1065.0 140.1

pH—30–60 cm Circular 0.0824 0.152 109.8

Ancillary

Aerial image
1991—red waveband

Double spherical 16.86 24.91 74.52 32.66 126.8

Yield—1995 Double spherical 0.995 1.494 1.311 32.37 127.6
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randomly selected grid nodes 15 m apart, and the subsoil (30–60 cm) was sampled
on a 60-m grid with additional samples at selected grid nodes 15 m and 30 m apart.
The experimental variogram and fitted spherical function, Eq. (3.10), of topsoil
available potassium are shown in Fig. 5.4c, and the model parameters are listed in
Table 5.3. Figure 5.4d shows the experimental variogram of subsoil pH with a
circular function fitted, Eq. (4.16); the model parameters are listed in Table 5.3. Note
that the variogram ranges of the longer structure for the aerial photograph and yield,
and the ranges for potassium and pH are similar.

Kerry et al. (2010) suggested after repeated sampling of a large set of simulated
values that sampling at 0.33 or less of the variogram range would provide an
adequate basic grid. The average range of the variograms examined in the above
example is about 126 m, and sampling at 0.33 times the range of the variogram
would give an interval of 42 m for the grid. However, we recommend strongly
that additional samples are taken at intervening intervals as above for the field at
Yattendon to ensure that the variogram is estimated well near to the origin.

Aerial photographs are an excellent source of information for environmental
surveys where the patterns of variation they show are linked with those of the
variables of concern. Variograms can be computed from the digitized values prior
to field work and used to guide the sampling. Milne et al. (2010) made good use of
them in their analysis of gilgai patterns in Australia.

An alternative starting point is the budget; that will determine the total number of
sampling points. If all the points are placed on a grid then the interval might be too
large to estimate the variogram; there might be no comparisons from which to
estimate the semivariances at short enough lags.

Atteia et al. (1994) planned their survey, which had to be done in a single
season, with random nested sampling around 23 of their grid nodes. More often
practitioners place their additional sampling points on some of the grid lines joining
the nodes, as in Fig. 5.5. In Fig. 5.5a the additional points are 1.1 and 1.3 units

Fig. 5.5 Configurations for additional sampling at the node of a square sampling grid. The
supplementary sampling points are shown as crosses at distances of: a 0.1 and 0.3 times the grid
interval from the central node marked by a circle and b 0.2 and 0.4 times the interval
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away from the central node. This would allow one to compute semivariances, ĉ hð Þ,
at lag distances 0.1, 0.2, 0.3, 0.4, 0.6, 0.7 and 0.9 units on the principal axes. In
Fig. 5.5b the additional points are placed 0.2 and 0.4 units away from the central
node, and that allows one to compute ĉ hð Þ at lag distances of 0.2, 0.4, 0.6 and 0.8
units. These schemes are not optimal, but both are better than a strict grid in that
they enable one to compute and model the variogram over lags distances shorter
than the grid interval and which one needs for predicting values between the nodes.

5.2 Sampling Plans for Mapping

The prediction of variables at unvisited places without bias is a central aim of
geostatistics, and in Chap. 4 we presented the kriging equations to achieve that. The
kriging equations also minimize the variance of any prediction, and their solution
leads to an estimate of the kriging variance or error. In addition to being able to map
a variable at a fine resolution from sample data we can also map the kriging variance
or its square root, the kriging error. Such a map might show where extra sampling is
needed to diminish the error and increase confidence. We can also use the kriging
equations to plan sampling to map within some tolerable error—provided we have
an accurate model of the variogram.

You can see that Eqs. (4.3) and (4.5) contain only semivariances, which derive
from the variogram and the configuration of the sampling points in relation to the
target point or block. They do not depend on the observed values at the sampling
points. If you know the variogram then you can add points to the kriging systems
where data seem to be too sparse and calculate what the kriging variances would be
if you sampled at those points. To some extent choosing the additional sampling
points is a matter of trial and error. You add a point where the existing kriging
variance is greatest and solve the new kriging system, and you repeat the procedure
until the kriging error is small enough everywhere.

If you know the variogram beforehand you can plan a sampling that is nearly
optimal in that it will minimize the maximum kriging variance for a given cost. In
general, the further a target point is from data the larger is the kriging variance. You
can minimize the maximum distance between target and data by sampling on a grid;
in those circumstances the maximum distance is from the centre of a grid cell to the
nearest grid nodes. For punctual kriging the kriging variance is greatest there.

These maximum distances are minimized for a given sampling density with
triangular configurations, and the maximum kriging variance is least. Figure 5.6
shows the situation. For a square grid the maximum distance is 1=

ffiffiffi
2

p � 0:7071
units, whereas for an equilateral triangular grid with the same density the maximum
distance is 0.6204 units. Square grids are more convenient, however, and as the
maximum distance between a target point and the distance to the nearest sampling
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points is little more than for triangular grids of the same density and there are four
near points instead of three the maximum kriging variance is only slightly larger:
see Fig. 8.23a in Webster and Oliver (2007) and Fig. 9.7a in Webster and Lark
(2013).

Note, however, that kriging variances tend to increase as the margins of the
region are approached and that for irregularly shaped regions a regular grid should
be modified to achieve best results.

The following procedure, proposed by Burgess et al. (1981) and reiterated by
Webster and Lark (2013), will enable you to plan a grid.

1. Set up the kriging equations for a square configuration of sampling points with
the target point or block at its centre.

2. Solve the equations for a small sampling interval, the smallest that is likely to be
feasible, and compute the kriging variance.

3. Increase the sampling interval in steps and repeat the calculations in 2 above at
each step.

4. Draw a graph of kriging variance (or its square root, the kriging error) against
the sampling interval and link the points by a smooth curve.

5. Draw a horizontal line on this graph at your chosen maximum variance or error
to cut the curve, and drop a perpendicular from the intersection to the abscissa.

That perpendicular gives the required sampling interval, from which you can
determine the number of sampling points for mapping and hence the budget.
Alternatively, if the budget for survey is fixed then that will determine the sampling
interval, and you follow step 5 in reverse. You draw a perpendicular from the
abscissa to cut the curve and read the corresponding maximum kriging variance or
error on the ordinate.

Fig. 5.6 Distances between the centres of grid cells and nearest sampling points for square and
equilateral triangular grids with the same sampling density of one point per unit area
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5.2.1 Illustrative Example: Sampling to Map Chromium
in the Swiss Jura

Atteia et al. (1994) sampled the topsoil of part of the Swiss Jura in a survey of
potential toxicity caused by heavy metals, among which was included chromium
(Cr). From 366 measurements they obtained the omnidirectional experimental
variogram shown by the points plotted in Fig. 5.7 and to which they fitted an
exponential model with equation

cðhÞ ¼ 19:98þ 98:34� 1� exp � h
174

� �� �
: ð5:4Þ

Here h is the lag distance, and the distance parameter, a = 174, is in metres.

Using this variogram we can calculate the maximum kriging variances or errors
for points or blocks of any reasonable size against sample spacing by following
steps 1 to 4 above. Usually we shall be interested in blocks, and in Fig. 5.8 we show
the maximum kriging errors for two sizes of block, 50 m × 50 m (= 0.25 ha) and
100 m × 100 m (= 1 ha), as the curves.

If the grid interval is much shorter than the side of the block the maximum
kriging variance can occur for blocks centred on grid nodes (Burgess et al. 1981;
Webster and Lark 2013), but the differences between it and that from cell-centred
blocks are small and of little practical significance.

Let us suppose that in some future survey the maximum kriging error is to be no
more than 10 % of the tolerable maximum concentration. The threshold for Cr set in
the VSBo of 1986 for Switzerland (FOEFL 1987) is 75 mg kg−1 of soil. That leads

Fig. 5.7 Variogram of
chromium in the topsoil in the
Swiss Jura. The line is the
fitted exponential model with
the parameters shown on the
graph
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to a maximum tolerable kriging error of 7.5 mg kg−1. So we draw a horizontal line
at that value to cut the curves and drop the perpendiculars shown in the figure. For
0.25-ha blocks the spacing is 245 m, and for the 1-ha blocks it is 322 m.

5.3 Summary

We can provide guidelines for sampling for geostatistical interpolation and mapping
if you have a satisfactory model for the variogram. The best advice is to sample on
a grid, for which either the survey budget or the maximum tolerance on a prediction
determines the grid interval. If you have to estimate the variogram first and have
little idea of its form then the best approach is to survey in stages, beginning with a
nested scheme with analysis by REML to estimate the spatial components of
variance, followed by systematic sampling to estimate the variogram and model it,
and finally a grid for the mapping. If the survey cannot be staged then your best
approach is to survey on a grid with its interval determined by whatever information
you can glean from existing sources and an understanding of the landscape―or by
the budget if that is fixed―and augment the grid with additional sampling points
between the grid nodes.

Fig. 5.8 Maximum kriging
errors for chromium in the
topsoil in the Swiss Jura for
square blocks of 0.25 and
1 ha. The horizontal line is
drawn at concentration
7.5 mg kg−1, which is 10 % of
the tolerable maximum set in
the VSBo (FOEFL 1987)
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