
Chapter 3
The Variogram and Modelling

Abstract Accurate estimates of variograms are needed for reliable prediction by
kriging and subsequent mapping and for optimizing sampling schemes. Sample
variograms are usually computed by the method of moments at a sequence of lags,
and one or more ‘authorized’ functions are fitted to them. A variogram may be
computed along transects or on grids at regular intervals or in bins from irregularly
scattered data. Accuracy of the variogram depends on the size of sample, the
number of lags at which it is estimated and the lag interval relative to the spatial
scale of variation, the marginal distribution of the variable, anisotropy and trend.
Robust estimators can deal with extreme values, outliers. Variograms may be
bounded (for second-order stationary processes) or unbounded (intrinsically sta-
tionary only), and there are few simple authorized functions for modelling them.
The parameters of the models summarize the spatial variation and are needed for
subsequent kriging. Computing the variogram in at least three directions can
identify anisotropy if it is present. Diagnostics including residual mean squares and
the Akaike Information Criterion help in the selection of the best fitting model.

Keywords Experimental variogram � Method of moments � Model parameters �
Lag interval � Spatial scale �Marginal distribution � Anisotropy � Outliers � Robust
estimators � Nugget variance � Sill variance � Model diagnostics

The variogram is the cornerstone of many geostatistical applications. The experi-
mental variogram and any model fitted to it should be accurate. Only then can the
model describe the variation reliably. Kriging requires a variogram, and it is by
ensuring its accuracy that you will eventually obtain minimum-variance predictions
by kriging. If the variogram describes the variation poorly then the kriged pre-
dictions are likely to be poor also, and they might have little or no validity no matter
how ‘pretty’ the map. The term ‘cartographic pornography’ has been used by those
who realize that no confidence can be placed in many of the beautiful smooth maps
that exist because of sparsity of the data that underlies them (see Chap. 4). Further,
the parameters of the variogram model may be used later for sample design and the
kriged estimates for decision-making; computing experimental variograms and
modelling them should not be treated in a cavalier fashion.
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This chapter illustrates the essential steps in obtaining reliable experimental
variograms by Matheron’s (1965) method-of-moments (MoM) and modelling them.
In some geostatistics packages and several GISs, computing the variogram and
kriging from the data is automated. As a consequence of such a ‘black box’ approach,
the variogram is computed and modelled, and the parameter values from the model
are inserted into the kriging equations without any intervention or assessment by the
user. As a result the user has no idea of the variogram’s form (it might even be pure
nugget) or whether the model is a good fit. There are many other reasons for poor
variograms and their models, for example too few data (Webster and Oliver 1992),
unsuitable models, poor fitting, faulty processing and misunderstanding. These are
matters that form the basis of this chapter. Our aim is to prevent researchers from
wasting time on analyses for which their data are unsuitable, and to guide them
through the stages that will ensure that their variograms are ‘fit-for-purpose’.

3.1 The Experimental Variogram

The first task in turning theory into practice is to estimate the variogram from
sample data, say z(x1), z(x2),…, where x1, x2,… denote the positions of the sample
in two-dimensional space. We assume that those positions have been selected
without bias. They need not be random, as in design-based estimation, because we
treat the variables as the outcomes of random processes. Therefore, we can take a
relaxed attitude to the sampling design, which may be systematic, random, nested
or some combination (see Chap. 5). The usual equation to compute the variogram is
Matheron’s method of moments (MoM) estimator:

ĉðhÞ ¼ 1
2mðhÞ

XmðhÞ
i¼1

zðxiÞ � zðxi þ hÞf g2; ð3:1Þ

where z(xi) and z(xi + h) are the observed values of z at places xi and xi + h, and m(h)
is the number of paired comparisons at lag h. By changing hwe obtain an ordered set
of semivariances; these constitute the experimental or sample variogram. The way
that Eq. (3.1) is implemented as an algorithm depends on whether the data are
regularly spaced in one dimension, are on a regular grid or are irregularly distributed
in two dimensions.

3.1.1 Computing the Variogram from Regular Sampling
in One Dimension

Regular sampling in one dimension may be horizontal or vertical (e.g. down
boreholes or through the atmosphere) along transects. The lag, h, becomes a scalar
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h ¼ |h| that replaces h in Eq. (3.1). Semivariances, ĉðhÞ, can be computed only at
multiples of the sampling interval. Figure 3.1a shows how the comparisons between
pairs of points are made; first for h ¼ 1 and then for h ¼ 2; 3; . . .. This results in a
set of semivariances, ĉð1Þ; ĉ 2ð Þ; ĉ 3ð Þ,…, i.e. a one-dimensional experimental vari-
ogram which we can plot as a graph of ĉðhÞ against h as in Fig. 3.1b. There may be
positions along a transect where, for various reasons, there are no observations.
These missing data do not present a problem; they simply result in fewer com-
parisons for Eq. (3.1).

Transects may be aligned in several directions, for example to identify anisot-
ropy when at least three directions should be used (see Sect. 3.2.5). The same
procedure may be used to compute these variograms, and Eq. (3.1) will provide a
separate set of estimates for each direction.

(a)

(b)

Fig. 3.1 a Comparisons for
computing a variogram for
three lag intervals from a
regular sample every 10 m
along a transect and
b semivariances plotted
against the first three lag
intervals to form the sample
variogram (other possible
semivariances shown as
crosses)
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3.1.2 Computing the Variogram from Regular and Irregular
Sampling in Two Dimensions

Data from regular grid sampling in two dimensions can be analysed in one of three
ways. First, the grid can be treated as a series of transects in two dimensions—it is
one way in which you can investigate anisotropy, i.e. directional differences, in the
variation. The variogram can be computed as above, but in several directions of
the grid separately, for example, along the rows and columns of the grid and on the
diagonals. Second, the variogram can be computed in two dimensions as follows:

ĉðp; qÞ ¼ 1
2ðm� pÞðn� qÞ

Xm�p

i¼1

Xn�q

j¼1

zði; jÞ � zðiþ p; jþ qÞf g2 ;

ĉðp;�qÞ ¼ 1
2ðm� pÞðn� qÞ

Xm�p

i¼1

Xn
j¼qþ1

zði; jÞ � zðiþ p; j� qÞf g2 ;
ð3:2Þ

where p and q are the lags along the rows and down the columns of the grid,
respectively. In general, the lag interval is that of the grid. The variogram is
computed for lags from −q to q and from 0 to p. The output from this is then plotted
as a two-dimensional variogram as in Fig. 3.2.

Third, the variogram can be computed over all directions (omnidirectional) for
both regular and irregular sampling designs. For a grid the initial nominal lag interval
should be that of the grid spacing, whereas for irregularly scattered data the choice is
wider because the observations may be separated by potentially unique lags in both
distance and direction. Figure 3.3 explains how we can obtain semivariances over all
directions in two dimensions by placing the lags into bins. We choose a nominal lag
interval in both distance and direction as shown in grey in the figure. The width in
distance is designated w, which for irregularly scattered data could be the average

Fig. 3.2 Two-dimensional
anisotropic experimental
variogram of a simulated field
of 100 000 values computed
to 11 intervals on the
principal axes
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distance between neighbouring sampling points. The angular width is the angle a.
All pairs of comparisons that fall within that bin and contribute to ĉ are attributed to
its centroid at H with nominal lag h, # and where # is the lag direction. The lag is
usually incremented in steps of w and # so that each paired comparison falls into one
and only one bin. To compute the omnidirectional variogram, the angular width of
the bins is set to a ¼ p (i.e. 180°). We may also compute the variogram in a set of lag
directions, #, (see Sect. 3.3.2).

3.2 Factors Affecting the Reliability of Experimental
Variograms

3.2.1 Sample Size

The accuracy of the variogram depends primarily on one’s having enough data at a
suitable density or separating interval. It also depends on the design or configura-
tion of the sample because of the way that the variogram is usually computed. The
random function model (see Chap. 2) enables us to have the multiple realizations
required by theory; we treat each comparison between any pair of data as a single
realization of the process. Therefore, for every lag interval we require many
comparisons to ensure reliability of the estimated semivariances. At the shortest
lags or separating distances, we might have rather few paired comparisons for two-
dimensional data. As the lag interval between data increases, however, the number
of comparisons increases (see Table 3.1). At some distance that depends on the
number of data the number of pairs for comparison starts to decrease, although the

Fig. 3.3 The geometry in
two dimensions for
discretizing the lag into bins
by distance and direction
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numbers might still be much larger than for the first few lags (Table 3.1). The larger
numbers do not imply greater reliability, however, because individual data are used
repeatedly, and the estimated semivariances are more or less correlated with one
another. As a result, you should not rely on the number of comparisons as a guide to
the reliability of your variogram when you have too few data to ensure accuracy.

We illustrate the effect of sample size with data on exchangeable potassium in
the topsoil (0–23 cm) from a survey at Broom’s Barn Farm (an experimental farm
of 80 ha in Suffolk, England), which was first analysed by Webster and McBratney
(1987). Table 3.2 summarizes the statistics. There were 434 sampling sites at an
interval of 40 m on a square grid. The data were transformed to common logarithms
(log10) because the skewness coefficient is 2.04 (see Table 3.2 and an explanation in

Table 3.1 Lag intervals,
semivariances and counts for
log10 K

+ at Broom’s Barn
Farm

Lag/m Semivariance Counts Lag/m Semivariance Counts

48.0 0.00726 1 545 55.3 0.00818 53

92.5 0.00971 2 793 100.1 0.01245 90

131.9 0.01128 3 217 135.7 0.01439 124

169.3 0.01280 3 592 167.7 0.01715 137

212.6 0.01488 5 456 210.3 0.01808 223

253.0 0.01661 4 562 252.9 0.01617 190

293.0 0.01777 5 524 292.2 0.01647 230

334.8 0.01905 5 792 337.2 0.02171 243

374.8 0.01936 5 226 374.6 0.02059 193

414.3 0.01996 5 699 414.6 0.01616 236

453.0 0.01960 4 918 452.0 0.01949 174

492.2 0.02016 5 447 490.8 0.02363 236

534.5 0.01930 5 484 534.3 0.01786 226

575.6 0.01881 4 513 574.7 0.01706 187

614.5 0.01877 4 189 615.1 0.02181 167

653.5 0.01806 3 524 653.9 0.02363 139

693.2 0.01866 3 572 692.4 0.02228 142

734.9 0.01792 3 136 733.5 0.01774 123

775.1 0.01766 2 689 773.5 0.01832 119

Table 3.2 Summary statistics of potassium at Broom’s Barn Farm

K+/mg l−1 log10 (K
+) K+/mg l−1 log10 (K

+)

Number of data 434 434 87 87

Minimum 12.0 1.0792 14.0 1.146

Maximum 96.0 1.9823 70.0 1.845

Mean 26.31 1.3985 26.7 1.404

Median 25.0 1.3979 26.0 1.415

Standard deviation 9.039 0.1342 9.403 0.138

Variance 81.71 0.0180 88.42 0.019

Skewness 2.04 0.39 1.760 0.395
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Sect. 3.2.4). Figure 3.4a shows the experimental variogram of the full set of data
(symbols); the estimates lie on a smooth curve. The exchangeable data were sub-
sampled to 87 sites, and Fig. 3.4b shows a much more erratic experimental vari-
ogram. The result is therefore likely to be less reliable, and it is not clear what kind
of curve would fit it best.

Figure 3.4 gives the number of comparisons for each computed semivariance from
both the full set of 434 sites and from the sub-sample of 87 sites. The semivariances
computed on 434 data, Fig. 3.4a, have more than 1 000 comparisons at the first lag,
and they increase to more than 5 000 at the longest lags. The variogram computed
from 87 data, Fig. 3.4b, computedwith the same step and bin width as in Fig. 3.4a, has
many fewer comparisons at all lags. Nevertheless, the number of comparisons at
some of the longer lags exceeds 200. Many authors have been misled into thinking
that they can obtain reliable estimates of γ(h) based on 50 comparisons, or even fewer;
they cannot, as is clear from this result with 87 data—variograms computed on small
sets of data are unreliable (see Webster and Oliver 1992).

Fig. 3.4 Experimental
variograms of the common
logarithm of exchangeable
potassium, log10 K

+, in the
topsoil of Broom’s Barn
Farm, Suffolk; a computed
from data at 434 sampling
quadrats and b computed
from all 87 quadrats. The
numbers attached to the
points are the numbers of
paired comparisons from
which the semivariances are
computed. The lines are the
best fitting spherical models
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Over the years we have seen many erratic variograms computed on too few data,
in some cases as few as 25. Twenty years ago we explored the sampling fluctuation
in variograms (Webster and Oliver 1992). We concluded that one should aim for
150 data where variation is isotropic and set 100 as a minimum. Brus and de
Gruijter (1994) came to a similar conclusion via a different route, and the message
is reinforced with examples in Webster and Lark (2013) and in Oliver and Webster
(2014).

For this chapter we have revisited the matter by repeated independent sampling
from a much larger correlated random field of 400� 400 ¼ 160 000 with an iso-
tropic spherical variogram: 0.283 + 0.700 × sph(h|24) and variance of 1.0. See
Eq. (3.10) for a full definition of the function. Figure 3.5 shows the results of 15

Fig. 3.5 Experimental variograms computed from repeated sampling on grids of 7 × 7, 9 × 9,
12 × 12 and 18 × 18 points. The solid lines are those of the isotropic spherical model fitted to the
exhaustive experimental variogram, and the dashed lines join the 5 and 95 % quantiles, and the
circles are the mean values at the lags. The model is γ(h) = 0.283 + 0.700 × sph(h|24) for a field
with variance 1.0
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independent repeated samplings for four grids of sizes 7� 7 ¼ 49, 9� 9 ¼ 81,
12� 12 ¼ 144 and 18� 18 ¼ 324 sampling points. Evidently with 144 points the
estimates of γ(h) at the shorter lag distances lie close to the variogram used to
generate the field, the solid curve in the figure, but diverge at the longer lags. The
same is true for the much larger samples of 324 points. Sample sizes in the range
100–150 should be adequate where the variogram is required for kriging, but
estimates of sill variances will be erratic. Where variation is anisotropic, i.e. not the
same in all directions, more data are required to identify it and define it mathe-
matically. We deal with anisotropy below (Sect. 3.2.5).

3.2.2 Sampling Interval and Spatial Scale

The choice of a suitable sampling interval depends on the scale of variation that the
practitioner wishes to resolve, e.g. experimental plot, field, farm, catchment,
administrative region and so on. If you have rough variograms of the properties of
interest or variograms from related ancillary data such as aerial images then choose
a sampling interval that will give you at least five estimates of γ(h) within the
effective range. Alternatively, you can use an accurate existing variogram of a
property of interest to determine the kriging errors and so determine an optimal
sampling interval for kriging, see Chap. 5 (Burgess et al. 1981; Webster and Lark
2013). If the lag interval exceeds half the range or effective range of variation the
resulting variogram is likely to be flat; it will not capture the correlated structure and
so will not describe adequately the spatial variation present, as in Fig. 3.6. The
experimental variogram of topsoil sand in this figure was computed from a stratified
random sample of the soil of the Wyre Forest, England (Oliver and Webster 1987).
The average distance between neighbouring sampling points was 165 m, and the
experimental variogram was computed with a lag interval of 75 m. The resulting

Fig. 3.6 Experimental
variogram of topsoil sand
from a stratified random
survey in the Wyre Forest,
England. The variogram is
pure nugget
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variogram appears as ‘pure nugget’—it shows no spatial structure. Further surveys
revealed that the range of spatial dependence of topsoil sand here was approxi-
mately 70 m. In other words, all of the variation occurs over distances less than
70 m, which is much less than the average sample spacing in the first survey.

3.2.3 Lag Interval and Bin Width

As mentioned above, where data are on a regular grid or at equal intervals on
transects the natural step is one interval. Where they are irregularly scattered, the
comparisons must be grouped by distance as described in Fig. 3.3. The practitioner
must choose both the length of the step, h, and the limits, w, within which the
squared differences are averaged for each step. Usually the two are coordinated
such that each comparison is placed in one and only one bin. Choosing the width of
bins requires judgement. If the steps are short and the bins narrow then there will be
many estimates of γ(h), which can lead to a ‘noisy’ variogram because the semi-
variances are calculated from few comparisons. If in contrast the steps are large and
the bins wide then there might be too few estimates of the semivariances to reveal
the form of the variogram. The choice is thus a compromise; it is not one that
should be automated. The practitioner should graph the experimental values, as in
Fig. 3.7, so that the selection can be made objectively.

We illustrate the effect of lag interval and bin width with irregularly scattered
data on cadmium concentrations in the soil of a region to the south east of the
Madrid metropolitan area, Spain (Vázquez de la Cueva et al. 2014). The region is
35 km from west to east by 30 km from north to south. The topsoil (0–15 cm) was
sampled at 125 sites. The design comprised two superimposed grids, one at 5-km
intervals and the other at 1-km intervals. From the possible 1 116 nodes 74 were
chosen at random, and 51 points were added 200 m from the 74. At each site five
cores of soil were taken from a circle of radius 5 m and bulked for laboratory
analysis. Table 3.3 summarizes the statistics. The coefficient of skewness of 1.71
indicates a long upper tail in the distribution (see Sect. 3.4) that might be reduced
by transformation. After transformation to natural logarithms the skewness is
somewhat reduced to −1.11, but remains outside the generally advised limits
(Sect. 3.4). The experimental variograms in Fig. 3.7 were computed from the
natural logarithms of cadmium concentrations: those in Fig. 3.7a–c were computed
with a lag interval of 1 km and that in Fig. 3.7d with an interval of 3 km. The
variogram computed at 1-km intervals is very erratic because of the small number
of comparisons in each estimate. There is no clear indication from the experimental
values of the kind of model that will fit best. The sequence of points in Fig. 3.7d
computed with a lag interval of 3 km is now smoother and has a clearer structure.
This example shows that the lag interval and bin width give different pictures of the
spatial correlation: contrast Fig. 3.7a–c with d.
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3.2.4 Statistical Distribution

Geostatistical analysis does not require data to follow a normal distribution.
However, variograms comprise sequences of variances, and these can be unstable
where data are strongly skewed and contain outliers. If your data do not have a

Fig. 3.7 Experimental variograms of cadmium in the topsoil of a region south east of Madrid
computed from 125 sampling points, a–c at 1-km intervals with bins 1 km wide, and d at 3-km
intervals with bins 3 km wide. Models have been fitted by GenStat as follows: a spherical model to
30 km with range set initially to 25 km (dashed), iterated once (dotted) and iterated twice (solid);
b spherical model to 30 km with range set initially to 10 km (dashed) and exponential model fitted
to 30 km with distance parameter set initially to 3 km (solid); c spherical (dashed) and exponential
(solid) models fitted to 15 km with same initial values for distance parameters as in (b); d spherical
models with range initially set to 3 km (dashed) and iterated once (solid) and with range set
initially to 10 km (dotted)
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near-normal distribution and have a skewness coefficient outside the limits ±1,
because of a long tail, you should consider transforming them. So, transform the
data in some appropriate way, say by taking logarithms, and examine variograms
computed on both raw and transformed values. Do the resulting variograms differ
substantially apart from a scaling factor? In some cases the answers will be ‘no’; in
others ‘yes’.

Kerry and Oliver (2007a) explored the effects of varying skewness and sample
size on simulated random fields with asymmetry. Their results showed that for a
large sample size of 1 600 data (on a 5-m grid), the change in shape of the variogram
with increasing asymmetry was small, even for a skewness coefficient of 5. For a
sample size of 400 (on a 10-m grid), the change in shape of the variograms was not
large with increasing skewness and transformation. With 100 data (20-m grid), the
semivariances at the first two lags proved to be similar to the generating function of
the simulated field, but beyond that they departed progressively as the skewness
increased, and for the skewness coefficient of 5 the variogram appeared as pure
nugget. Our advice is to transform if it makes a difference to the variogram, but
otherwise work with the original data (Table 3.2).

The variogram is sensitive to outliers in the data, i.e. unexpectedly large or small
values beyond the limits of the main distribution. Box-plots, Fig. 3.8, are an ideal
way to identify outliers. All outliers should be investigated and considered as
potentially erroneous values before they are allowed to remain as part of the data
set. For contaminated sites, however, the largest values will be of most interest. We
mentioned above that the same data can contribute to several estimates of γ(h), and
so outliers inflate the averages. If there are few outliers relative to the whole data,
removing them often reduces skewness, and this is a reasonable approach. The
values removed can be returned to the data for kriging if desired. Transformation
often fails to improve the distribution when outliers are present and can even make
matters worse. The alternative is to use one of the robust estimators, such as those
of Cressie and Hawkins (1980), Dowd (1984) and Genton (1998).

Cressie and Hawkins’s (1980) estimator, ĉCHðhÞ; is based on taking the fourth
root of the squared differences and dampens the effect of outliers from the sec-
ondary process. It is given by

Table 3.3 Summary
statistics of cadmium in soil
of Madrid region

Cd/mg kg−1 ln(Cd)

Number of data 125

Minimum 0.005 −5.298

Maximum 0.48 −0.734

Mean 0.137 −2.138

Median 0.11 −2.207

Standard deviation 0.0802 0.589

Variance 0.00643 0.347

Skewness 1.71 −1.107
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2ĉCHðhÞ ¼
1

mðhÞ
PmðhÞ

i¼1 zðxiÞ � zðxi þ hj j12
n o4

0:457þ 0:494
mðhÞ þ 0:045

m2ðhÞ
: ð3:3Þ

The denominator in Eq. (3.3) is a correction based on the assumption that the
underlying process to be estimated has normally distributed differences over all lags.

Dowd’s (1984) estimator, ĉDðhÞ; and Genton’s, ĉGðhÞ; estimate the variogram
for a dominant intrinsic process in the presence of outliers. Dowd’s estimator is
given as

2ĉDðhÞ ¼ 2:198fmedianðjyiðhÞjÞg2; ð3:4Þ

where yi(h) ¼ z(xi) − z(xi + h), i ¼ 1, 2,…, m(h). The term within the braces of
Eq. (3.4) is the median absolute pair difference (MAPD) for lag h, which is a scale
estimator only for variables where the expectation of the differences is zero. The
constant is a correction that scales the MAPD to the standard deviation of a nor-
mally distributed population.

Genton’s (1998) estimator, ĉGðhÞ; is based on the scale estimator, QNh, of
Rousseeuw and Croux (1992). The estimator, QNh, is given by

QNh ¼ 2:219 Xi � Xj

�� ��; i\ j
� �

H
2ð Þ; ð3:5Þ

where the constant 2.219 is a correction for consistency with the standard deviation
of the normal distribution, and H is the integral part of N=2ð Þ þ 1: Genton’s (1998)
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Fig. 3.8 Box-plot computed
from a field of 400 values
simulated with a spherical
variogram function with zero
nugget and contaminated with
five outliers resulting in a
skewness coefficient of 1.5,
where filled squares represent
the far outliers which are three
times beyond the interquartile
range and filled circles are
near outliers
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estimator uses Eq. (3.5) as an estimator of scale applied to the differences at each
lag; it is given by

2ĉGðhÞ ¼ 2:219 yiðhÞ � yjðhÞ
�� ��; i\ j

� �
H
2ð Þ

� �2
; ð3:6Þ

but with H being the integral part of fmðh=2Þg þ 1.
Kerry and Oliver (2007b) examined the effects of outliers and sample size in

detail with fields of simulated data. They concluded that skewness caused by
outliers must be dealt with regardless of the number of data. Furthermore, their
results indicated that practitioners should act when skewness exceeds 0.5 rather
than the limits mentioned above which are those generally used. Although the
robust estimators provided a reasonable solution, they did not perform equally well
in all the situations Kerry and Oliver examined. They therefore recommended the
removal of outliers before computing the variogram as the current ‘best practice’
where outliers are randomly located and will not be returned to the data for kriging.
Where outliers are crucial to the investigation, as on contaminated sites, practi-
tioners should compute several robust variograms and compare them by cross-
validation.

A field of 400 values was simulated on a 10-m grid by a spherical function with
zero nugget, a sill of 1 and range of 75 m (Kerry and Oliver 2007b), i.e. c0 ¼ 0,
c ¼ 1 and r ¼ 75 m, see Eq. (3.10). Five of the values were contaminated by
another process to give a skewness coefficient of 1.5. Figure 3.8 shows the box-plot
of these values; the outliers are >4. An experimental variogram was computed from
all the values and modelled, Fig. 3.9a. The nugget variance has increased dra-
matically to 0.617 showing the effect of adjacent disparate values. The sill variance
is 1.341, which is an expression of the increase in variance, and the range has
decreased to 67.5 m. The dashed line in Fig. 3.9a is the generating function of the
simulated field. Figure 3.9b shows the experimental variogram and model for the
same values, but with the outliers removed. The nugget variance is zero, the sill
variance is almost 1.0 and the range is 73.6 m. This result shows how important it is
to deal with outliers in data.

3.2.5 Anisotropy

Variation can vary from one direction to another, i.e. it can be anisotropic. You
should therefore check your data for fluctuations in directional variation. In many
instances the anisotropy is such that it could be made isotropic by a simple linear
transformation of the spatial coordinates. Imagine that the region sampled is placed
on a rubber sheet, which could be stretched in the direction in which variation
seemed shortest. If the stretching eventually produces variation that is the same in
that direction as that in the perpendicular direction then the anisotropy is known as
geometric. The equation for the transformation is
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Xð#Þ ¼ A2cos2ð#� uÞ þ B2sin2ð#� uÞ� �1=2
; ð3:7Þ

where Ω defines the anisotropy, u is the direction of maximum continuity and # is
the direction of the lag.

For a spherical or exponential variogram, A is the distance parameter in the
direction of greatest continuity, i.e. the maximum value, and B is the distance
parameter in the direction of least continuity or greatest variation, the minimum. For
an unbounded variogram, the roles of A and B are reversed, and A has the larger
gradient in the direction of the greatest rate of change and B has the smaller gradient
in the direction of least change. Figure 3.12 shows an example in which there are
differences in the ranges for a bounded variogram (see Sect. 5.1).

Anisotropy can also occur as preferentially orientated zones with different means
that result in changes in variance with change in direction and fluctuations in the
sill. This is known as zonal anisotropy.

Fig. 3.9 Experimental
variograms (symbols) and
fitted models (solid lines)
computed from a field of 400
values simulated with a
spherical variogram function
with zero nugget (dashed
line): a contaminated with
five outliers resulting in a
skewness coefficient of 1.5
and b with the outliers
removed
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3.2.6 Trend

In Chap. 1 we mentioned trend. We consider it briefly here in relation to the
variogram, but Chap. 6 is devoted to the matter, and readers should turn to that
chapter for detail. We can always calculate an experimental variogram by Eq. (3.1),
but it estimates the theoretical variogram γ(h) only where the underlying process is
random. If there is trend then this equation gives a false summary of the random
part of the process. Typically, where trend is present the experimental variogram
increases without bound, and if it dominates then the experimental sequence
becomes increasingly steep as the lag distance increases (see Fig. 6.11). If you
obtain such a result then examine your data by fitting simple linear and quadratic
polynomials on the coordinates. Alternatively, map the data by some simple
graphical procedure before doing a statistical analysis; if the map shows gradual
continuous change across the region then there is trend with more or less patchiness
superimposed.

3.3 Modelling the Variogram

The experimental variogram consists of semivariances at a finite set of discrete lags.
These semivariances are estimates based on samples; they are therefore subject to
error, which itself varies from one estimate to the next. In addition, the underlying
function is continuous for all h, Eqs. (3.5) and (3.8). The next step in variography is
to fit a smooth curve or surface to the experimental values, one that describes the
principal features of the sequence (see Sect. 3.3.1) while ignoring the point-to-point
erratic fluctuation. Not any plausible-looking curve or surface will serve; it must
have a mathematical expression that can legitimately describe the variances of
random processes. It must guarantee non-negative variances of combinations of
values, and there are only a few simple functions that do so. They are known as
conditional negative semi-definite (CNSD) because the matrices to which they
contribute are themselves conditional negative semi-definite (see Webster and
Oliver 2007, for a full account).

3.3.1 Principal Features of the Variogram

(1) An increase in variance with increasing lag distance from the ordinate
In Fig. 3.10a the variogram shows a monotonic increase in variance as the lag
distance increases. The slope shows the change in the spatial autocorrelation
or dependence between sampling points as the separation distance increases.
In other words at short lag intervals, |h|, the semivariances, γ(|h|), are small
indicating that values of Z(x) are similar, and as |h| increases they become
increasingly dissimilar on average.
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(2) An upper bound, the sill variance
If the process is second-order stationary then the variogram will reach an
upper bound, the sill variance, after the initial increase as in Fig. 3.10b. For
some variograms the sill remains constant, whereas for others it is an
asymptote, which we explain below. The sill variance is also the a priori
variance, σ2, of the process.

(3) The range of spatial correlation or dependence
A variogram that reaches its sill at a finite lag distance has a range, which is
the limit of spatial correlation where the autocorrelation becomes 0, Fig. 3.10a.
Places further apart than this are spatially uncorrelated or independent. Vari-
ograms that approach their sills asymptotically have no strict ranges; in
practice, however, we use an effective range at the lag distances where they
reach 0.95 of their sills.

(4) Unbounded variogram
The variogram may increase indefinitely with increasing lag distance as in
Fig. 3.10a. It describes a process that is not second-order stationary, and the
covariance does not exist. The variogram, however, does exist and fulfils
Matheron’s (1965) intrinsic hypothesis (see Sect. 2.1, Chap. 2).

(5) A positive intercept on the ordinate, the nugget variance
The variogram often approaches the ordinate with a positive intercept known
as the nugget variance, Fig. 3.10b. Theoretically, when h ¼ 0 the semivari-
ance should also be 0 (see Chap. 2). The term ‘nugget’ in this context was

Unbounded Bounded 
variation variation

(a) (b)

V
ar

ia
nc

e

Lag distance

c

c0

a

Range

Sill variance

Nugget variance

Spatially 
dependent

Spatially 
independent

Fig. 3.10 Examples of: a unbounded and b bounded variogram models with annotations to
illustrate the parameters of a bounded model function
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coined in gold mining because gold nuggets appear to occur at random and
independently of one another. They represent a discontinuity in the variation,
an uncorrelated component, because the gold content no longer relates to that
at neighbouring sites. For properties that vary continuously in space, such as
the amount of water vapour in the atmosphere or the pH of the soil, the nugget
variance arises from measurement error (usually a small component) and
variation over distances less than the shortest sampling interval.

(6) Directional variation anisotropy
Spatial variation might vary according to direction, as mentioned above, and
we need to be able to take this into account in our analysis and modelling.

3.3.2 Variogram Model Functions

There are two principal kinds of function, namely bounded and unbounded
(Fig. 3.10). We give the equations and illustrate the three most popular models;
power function (unbounded), spherical (bounded) and exponential (asymptotically
bounded). If none of these appears to fit the experimental values then more complex
functions may be fitted. Such functions may be any combination of simple CNSD
functions; these combinations are themselves CNSD.

Theoretically, the variogram model should intercept the ordinate at the origin
according to theory as in Eq. (3.8) and Fig. 3.10a. In practice the experimental
variogram frequently, indeed usually, appears to approach the ordinate at some
positive finite value. To make the curve fit one adds a nugget component to the
simple function as in Eqs. (3.8)–(3.11) and Fig. 3.10b where there is a nugget
variance and a structured component. A more complex function is required where
there are two or more distinct scales of spatial dependence, i.e. a nested model. We
illustrate this scenario with two spherical functions, one nested within the other,
plus a nugget variance, Eq. (3.12) and Fig. 3.11. We describe the models in their
isotropic form; they are symmetric about zero lag, but we define them for |h| ≥ 0
only.

The equations for the four models are as follows.

Power function. This is an unbounded function

cðhÞ ¼ ghb for 0 \ b \ 2; ð3:8Þ

where g describes the intensity of the variation and b describes the curvature. If
b ¼ 1, the variogram is linear and g represents the gradient. The limits 0 and 2 are
excluded because β ¼ 0 indicates constant variance for all h > 0 and β ¼ 2 that the
function is parabolic with zero gradient at the origin. The latter means that the
process is not random. Figure 3.10a gives an example of an unbounded variogram
with no nugget variance as in the equation above. If such a function had a positive
intercept at the ordinate the equation would be
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cðhÞ ¼ c0 þ ghb for 0 \ b \ 2; ð3:9Þ

Spherical model. This is

cðhÞ ¼
c0 þ c 3h

2r � 1
2

h
r

� �3n o
for 0\ h� r

c0 þ c for h[ r
0 for h ¼ 0;

8><
>: ð3:10Þ

where c0 is the nugget variance, c is the variance of spatially correlated component
and r is the range of spatial dependence. Figure 3.10b illustrates a spherical

Fig. 3.11 Wheat yield recorded in 1999 in Football Field on the Shuttleworth Estate a the
experimental variogram (symbols), b the solid line is an exponential function fitted to the
experimental values, c the solid line is a spherical function fitted to the experimental values and
d the best fitting nested spherical model (solid line). The model was decomposed to illustrate the
individual model components as shown by the ornamented lines
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variogram with annotations of the main features as described above. The quantity
c0 + c is known as the sill variance.

Exponential model. This is

cðhÞ ¼ c0 þ c 1� exp � h
a

� �� �
; for 0\h

0 for h ¼ 0

	
ð3:11Þ

where a is the distance parameter. This function approaches its sill asymptotically,
and so it does not have a finite range. For practical purposes it is usual to assign an
effective range, aʹ, which is approximately equal to 3a. Figure 3.11b shows an
example of a fitted exponential function.

Nested spherical. This is

cðhÞ ¼

c0 þ c1 3h
2r1

� 1
2

h
r1


 �3
	 �

þ c2 3h
2r2

� 1
2

h
r2


 �3
	 �

for 0\ h� r1

c0 þ c1 þ c2 3h
2r2

� 1
2

h
r2


 �3
	 �

for r1\h� r2

c0 þ c1 þ c2 for h[ r2
0 for h ¼ 0;

8>>>>>><
>>>>>>:

ð3:12Þ

where c1 and r1 are the sill and range of the short-range component of the variation,
and c2 and r2 are the sill and range of the long-range component. A nugget com-
ponent can also be added as above. The yield of wheat in Football Field, Shut-
tleworth Estate, Bedfordshire, was recorded in 1999, and an experimental
variogram was computed from the values. Figure 3.11a shows the experimental
values and Fig. 3.11b and c the fitted exponential and spherical functions,
respectively. It is clear that the spherical function, Fig. 3.11c, fits poorly and that the
exponential model, Fig. 3.11b, fits reasonably. The fit of the latter emphasizes the
small change in slope evident in the experimental variogram at about lag 30 m and
another change at around lag 140 m. Figure 3.11d shows the nested spherical
function, which provides a near-perfect fit to the experimental values with a smaller
nugget variance than the exponential model and follows the values closely. The
variously ornamented lines in Fig. 3.11d show the components of the nested model;
the nugget, short-range and long-range. Table 3.4 gives the parameters of these
models; they show that the spherical function has a larger nugget variance than the
other two models and a smaller range of spatial dependence. The parameters of the
exponential model are closer to those of the nested spherical with a smaller nugget
variance and an approximate effective range (3a) of 140 m. The diagnostics in
Table 3.4 reflect the visual observations. The residual sum of squares (RSS) is much
larger for the spherical function than for the exponential and nested spherical
models, and that for the exponential is larger than for the nested model.

If your models have the same number of parameters and the ones fitted seem to
fit well then choose the one with the smallest residual sum of squares (RSS) or
smallest mean square. You may wish to fit more complex models, but you should
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be cautious because you can always diminish the RSS by increasing the number of
parameters in the fitted model. For example, the double spherical model with
nugget has five parameters, whereas the simpler single spherical model with nugget
has only three. Are the two additional parameters justifiable? To ensure parsimony
in our fitting we can compute an estimate of the Akaike Information Criterion (AIC)
(see Webster and Oliver 2007, for more detail) if, as in our comparisons above, the
models have unequal numbers of parameters as for the nested spherical model. The
AIC is estimated by

AIC ¼ n ln
2p
n


 �
þ nþ 2

	 �
þ n ln Rþ 2p; ð3:13Þ

where n is the number of points on the variogram (16 in this example), p is the
number of model parameters and R is the mean square of the residuals (RMS in
Table 3.4). The quantity in braces is constant for any one experimental variogram,
and so we need compute only

Â ¼ n ln Rþ 2p: ð3:14Þ

We then choose the model for which Â is the least. In Table 3.4, Â is markedly
smaller for the nested spherical model than for the exponential and spherical func-
tions, and so we would choose the more complex function as providing the best fit.

Anisotropic model
To examine data for both types of anisotropy compute the variogram in at least four
directions to start with: along the rows, down the columns and on the principal
diagonals if data are on a rectangular grid (see Fig. 3.12). The semivariances can be
plotted in these directions, and no information is lost. For irregularly scattered data,
we have to group the separations by direction as well as distance as in Fig. 3.3. The
angle, a, within which data are included in estimating the semivariance should
allow complete cover to start with, i.e. p=4 for four angles, which will include all
data in those directions. Note, however, that this procedure loses some directional
information. If it reveals directional variation then reduce a to identify the direction
of strongest anisotropy, but realize that the smaller a becomes the fewer will be the

Table 3.4 Parameters of models fitted to yield from Football Field, Shuttleworth Estate,
Bedfordshire, UK recorded in 1999

Model type Estimates of parameters Diagnostics

c0 c1 c2 a1/m a2/m r/m RSS RMS %
variance

AIC

Exponential 0.2437 1.291 47.33 3 802 292.5 99.5 96.86

Spherical 0.4516 0.9994 118.4 14 896 1 146 97.8 118.7

Nested
spherical

0.1975 0.4318 0.8415 33.88 137.8 1 052 95.63 99.8 82.97
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number of comparisons and the greater will be the error in the estimated semi-
variances. Choosing a is therefore a compromise between a stable estimate based on
many comparisons that will underestimate the directional effect with a wide angle
and one that is subject to greater error but reflects the anisotropy more closely.

Figure 3.12a, b shows the experimental variograms of pH and exchangeable
potassium (as log10 K+), respectively, at Broom’s Barn Farm computed in four
directions. The directional variogram of pH shows a longer range of variation in the
north–south (90°) direction and a shorter range in the east–west (0) direction,
whereas for log10 K

+ no anisotropy is evident. The directional variogram for pH has
been fitted with an anisotropic exponential function:

cðh; #Þ ¼ c0 þ c 1� exp � hj j=Xð#Þ½ �f g; ð3:15Þ

where |h| is the modulus of the lag and Ω(#) is defined in Eq. (3.7). The model
parameters are given in Table 3.4 and Fig. 3.12a shows the envelope of the model
as the dotted lines. An isotropic exponential function was also fitted; the parameters
of this are given in the table and the model is the solid line in Fig. 3.12a.

Fig. 3.12 Experimental variograms computed in four directions: a pH; the solid line is the
isotropic exponential model and the dotted lines form the envelope of the fitted anisotropic
exponential model and b log10 K

+ with the fitted isotropic spherical function
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3.4 Factors Affecting the Reliability of Variogram Models

There are operational aspects that we need to consider when computing the exper-
imental variogram and fitting models. They include the effects of poor choice of lag
or bin interval and of maximum lag, and sample size on the reliability of the model
parameters that will then be used for kriging. The experimental variogram should be
computed and modelled only as far as it is reliably estimated. We recommend that
you compute it to a maximum lag of no more than a third to one half of the extent of
the data. Table 3.1 shows how the number of comparisons (counts) starts to decrease
after a certain lag distance. It is at this lag distance (about 530 m) that the semi-
variances also start to depart from the smooth curve; this is a sign that the estimates
are becoming increasingly unreliable (Fig. 3.13). Table 3.5 shows how the model
parameters of the fitted spherical models also change for log10 K

+ when the model
was fitted to a maximum lag of 900 m compared with 550 m.

3.4.1 Fitting Models

Fitting models remains controversial in geostatistics, yet it is one of the most
important stages to get right. Some practitioners fit models by eye, which we do not
recommend because the observed semivariances may fluctuate too much from point
to point and their accuracy is not constant, which makes this approach unreliable.
Fitting models with ‘black box’ software can also produce poor results because
there is no choice, judgement or control over the process. We recommend a pro-
cedure that involves both visual inspection and statistical fitting in steps as follows.

Fig. 3.13 Experimental
variogram computed and
modelled to a maximum lag
of 900 m for log10 K

+ at
Broom’s Barn Farm
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1. First, plot the experimental variogram, the black discs in Fig. 3.14.
2. Choose several models with a similar shape and fit each in turn by weighted

least squares, the curves in Fig. 3.14.
3. Plot the fitted models on the graph of the experimental variogram and assess

whether the fit looks reasonable. If all plausible models seem to fit well, choose
the one with the smallest residual sum of squares (RSS) or smallest mean
square. If the models have unequal numbers of parameters as for the nested
spherical model then compute the Akaike Information Criterion (AIC) and
choose the model for which the AIC is least as above.

Figure 3.14a, c and e shows the experimental variogram computed from
log10 K+ with 87 data. None of the three models chosen, power, spherical and
exponential Eqs. (3.9)–(3.11), respectively, and displayed above in Sect. 3.3.2,
appears to fit well. Without the diagnostic information in Table 3.5 it would be
difficult to choose between them. The exponential function has the smallest residual
mean square (RMS) and accounts for the most variance, albeit only 44 %. The
difference between the parameters of the two bounded functions, spherical and
exponential, Eqs. (3.10) and (3.11), is marked, especially in relation to the nugget
variance, c0. The power function, Eq. (3.7), provides the next best fitting model,
although it is clear from the variogram of the full set of data, Fig. 3.14b, that the
underlying process is second-order stationary and requires a bounded function. For
the same functions fitted to the experimental variogram of the full data, 434 sites,
the best fitting function is clearly the spherical one which has a very small RMS and
accounts for 99.4 % of the variance (Table 3.5). The exponential and power
functions fit less well both visually and from the diagnostic values. The importance
of an adequate sample size is clear from this example, which illustrates the poor fit
of all functions to the experimental values from the sample of 87 and the small
percentage variance accounted for compared with those for the full set.

Finally, we compare the effect of choice of lag interval and bin width for the data
on the cadmium in the soil near Madrid, again with data from Vázquez de la Cueva
et al. (2014). Figure 3.7 shows experimental variograms computed with a lag
interval of 1 km in Fig. 3.7a–c and of 3 km in Fig. 3.7d. The variogram computed
with a lag of 1 km is so erratic that none of the functions provides a good fit.
Several of the exponential and spherical models fitted appear to be as good as any
other, whereas for Fig. 3.7d it is clear that the model represented by the dotted line
(spherical with range of 10 km and no iteration) provides the best fit. Table 3.6 lists
the parameters of the functions fitted to the two experimental variograms. Different
initial values for the non-linear parameter, r, for the spherical model were used and
also different numbers of iterations which give increasing weight to values near to
the origin. Because the experimental semivariances are based on different numbers
of paired comparisons, m(h) in Eq. (3.1), and because confidence in the estimate of
variance decreases as its value increases, we generally weight the semivariances by
the number of counts when fitting the models. The inverse relation between the
reliability of an estimate of variance and the variance itself led Cressie (1985) to
propose a more elaborate weight, which has the form
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mðhjÞ
�
c�2ðhjÞ; ð3:16Þ

where c�2ðhjÞ is the value of semivariance predicted by the model. The quantity
c�2ðhjÞ is inserted into the weighting vector and the fitting is repeated, and the

Fig. 3.14 Experimental variograms computed from 87 data for log10 K+ Broom’s Barn Farm,
Suffolk and fitted with: a spherical model, c exponential model and e power function, and
experimental variograms computed from 434 data and fitted with: b spherical model, d exponential
model and f power function
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whole process is iterated to convergence, i.e. until there is no perceptible change in
c�2ðhjÞ. However, McBratney and Webster (1986) discovered that one iteration was
usually sufficient, and so in GenStat, for example, only one repeat is programmed.

The second iteration is a refinement of the former proposed by McBratney and
Webster (1986):

mðhjÞĉðhjÞ
�
c�3ðhjÞ; ð3:17Þ

where ĉðhjÞ is the observed value of the semivariance at hj. Both iterations give
more weight to estimates close to the origin, which is usually desirable for kriging.

Table 3.6 Models fitted to experimental variograms of cadmium in soil of Madrid region

Fitting Estimates of parameters Diagnostics

c0 c a/km r/km MSE MSDR Correlation

Lag interval 1 km

Spherical to
30 km, initial
25 km

0.2766 0.2011 76.0 0.3422 1.112 0.144

After one
iteration

0.2329 0.1259 18.5 0.3480 1.201 0.145

After two
iterations

0.1665 0.1833 10.6 0.3581 1.341 0.167

Spherical to
30 km, initial
10 km

0.1654 0.1868 10.75 0.3594 1.350 0.164

Exponential
to 30 km,
initial 3 km

0.1907 0.1762 6.63 0.3424 1.219 0.1898

Spherical to
15 km, initial
10 km

0.1575 0.1685 8.57 0.3392 1.284 0.228

Exponential
to 15 km,
initial 3 km

0.1012 0.2261 2.54 0.3371 1.292 0.241

Lag interval 3 km

Spherical to
30 km, initial
3 km

0.2754 0.2062 76.8 0.3422 1.115 0.144

After iteration 0 0.3415 4.32 0.3602 2.125 0.258

Spherical to
30 km

0.1536 0.1978 10.08 0.3574 1.364 0.181

c0 is the nugget variance, c is the sill variance of the correlated structure and a is the range of the
spherical model and r is the distance parameter of the exponential model
MSE is the mean squared error and MSDR is the mean squared deviation ratio
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The initial value of the non-linear parameter, r, for the spherical model, can
seriously affect the final model fitted: contrast the three curves in Fig. 3.14d. The
weights given to the semivariances, ĉðhÞ, can also seriously affect the final model if
the distance parameter is chosen poorly initially: see Fig. 3.7a and d and the
parameters in Table 3.6.

Another fairly popular way of choosing models for variograms is by cross-
validation. This procedure involves leaving out each and every value in the data in
turn and kriging the value there using the surrounding data and the given model
parameters. The kriged values ẐðxiÞ are compared with the observed ones z(xi). The
mean squared error (MSE) between the predictions and the observed values, the
mean squared deviation ratio (MSDR) and the median of the squared deviation ratio
are calculated and used as criteria of the goodness of the models. The precise nature
of these quantities will be apparent when we have described kriging and so they are
defined at the end of the next chapter, Chap. 4.
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