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Abstract. Two robust methods of assessing the value and the uncertainty of the 
measurand from the samples of small number of experimental data are present-
ed. Those methods should be used when some measurements results contain 
outliers, i.e. when the values of certain measurement significantly differ from 
the others. They allow to set a credible statistical parameters of the measure-
ments with the use of all experimental data. The following considerations are il-
lustrated by the numerical example of the interlaboratory measurement data key 
comparison. Compared are the results obtained by a classical method with re-
jection of outliers with two robust methods: a rescaled median absolute devia-
tion MADS and an iterative two-criteria method. 

Keywords: robust statistics, outliers, uncertainty of measurements, inter-
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1 Introduction 

In many experimental studies in various fields, including the technical and scientific 
research, interlaboratory comparison and laboratory proficiency testing the measure-
ment samples can contain few number of elements only. This occurs because of the 
high costs of measurements, the use of destructive methods, the poor availability of 
objects for testing, or the inability of multiple tests due to long or limited time of their 
execution. For small samples the measurement result and its uncertainty uA evaluated 
by the GUM recommendations [1], significantly depends on the outliers. Therefore 
the obtained values sometimes may be even unreliable or unrealistic. Removing one 
observation only from a small sample significantly reduces the credibility of the eval-
uation results. For example for a very small sample of 4 elements the relative standard 
deviation of uncertainty s(uA)/uA is as high as 42%, and for n=3 it will increase even 
up to 52% (GUM [1], Table E.1 in Appendix E.1). The removal of only one observa-
tion from a such small sample increases the relative standard deviation of uncertainty 
approximately on 24%. So the general tendency for small samples with outliers is to 
use the robust statistical methods, which applying all data obtained experimentally, 
including outliers. These methods are developed and to be used from the late 70's of 
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the twentieth century. They are highly resistant to the influence of outliers. Such data 
considered before in conventional methods as to be "bad" can be successfully used 
now. Literature on these methods is quite rich. An overview of the basic items are in 
the bibliography of [5] - [8]. Robust methods provide less than conventional methods 
the impact of too high errors caused by different usually unrecognized sources. The 
term robust means resistance immunity to irregularities and inhomogeneities of the 
sample data. 

In the robust statistics the outlier data are not removed, but are used different ways 
to modify their values, or their participation in procedures to estimate the statistical 
parameters of the sample. A number of robust statistical methods, (among others) are 
programmed in MatLab. Two of them are recommended in ISO 13528-2 [3] for profi-
ciency testing by interlaboratory comparisons. These methods should be added in the 
new upgraded GUM. Various data processing tasks appear constantly in the new ap-
plications of robust statistical methods including such one as calibration of multi-
parameter measurements in chemometrics. One of the areas where robust methods 
could also be usefully applied is estimation of accuracy of results obtained by the 
some measurement method in inter-laboratory comparison experiments [6] - [8]. 

2 Method of Rescaled Median Deviation 

In the simplest robust method for a sample of n elements used is the Median Abso-
lute Deviation  

 { }nin Mx −= medMAD   (1) 

where: ix - i-th element of the sample, { }in xM med= - the median. 

This simple robust procedure is as follows: 

─ for all n data xi ordered by values determined is the median med and considered to 
be the estimate of the measurement result value, 

─ the deviations of the sample data sets from this median the median absolute devia-
tion MAD is calculated, 

─  standard uncertainty s(x) of the measurand is considered the rescaled median de-
viation MADS  

 s(x) ≡ MADs = κ (n) MAD  (2) 

For a normal distribution the value of κ∞=1,483 is the asymptotic limit of the ratio of 
s(x)/MAD when n → ∞, i.e. for the general population. Use of κ∞ for samples with a 
finite number n of measurements gives too low the assessment of uncertainty, as s(xn) 
> s(x∞). Then for the more accurate estimation coefficient κ(n) as dependent on the 
number of elements n in the data sample has to be applied. Randa of NIST published 
values of the coefficient κ(n) in internet [4]. 
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3 The Robust Iterative Method 

More reliable statistical parameters than by above method can be obtained by an itera-
tive robust methods. In the method of robust statistics considered here the outlier data 
is downloading to positions closer to the center of the distribution. This operation is 
called winsoryzation after the name of American mathematician Winsor. Samples 
with the outlier data should not be simulated by a model of single normal distribution 
and the least squares method (LSM) is not useful, as shares of single data in it in-
creases with the square of its distance from the center of concentration. More resistant 
to large deviations is the criterion of minimum modules (LMM) given by Laplace. So, 
in robust methods many ways of both criteria "symbiosis" are used. It is assumed that 
only the central part of the PDF (Probability Density Function) of sample data distri-
bution, i.e. for small deviations from the estimate of measurand value, does not differ 
from the normal distribution. Only for them the least-squares criterion LSM can be 
used. Beyond the limits of this range the criterion of minimum module LMM is used 
to reduce the impact of outliers. After Tukay and Huber [5] works it is possible to 
apply for data processing the iterative robust method under acronym IRLS (iteratively 
reweighted least squares). In this method the following functional is used for the sen-
sitivity  

 ∑
=

−
n

i
ix

1
)( μρ  (3) 

where: )-( i μρ x - function depended on the selected parameter c. 

For observations of the deviation values of ||ε < σc  (where σ is the standard de-

viation, c - factor) a square function is used and for larger deviations the modules 
|x| i με −=  are minimized. So the function )(ερ  is "more mild" for data outliers with 

values ||ε > σc from the center of the sample distribution. Constant c determines the 

degree of "robustness". The value of the constant c depends on the percentage of 
"contamination" of the sample distribution. For 1%  c=2, and for the 5% c=1.4. 
Commonly c=1.5 is used. Experimental data are modified in accordance with the 
selected criterion as follows    
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where }{ˆ
ixmed=μ from data xi ranked in ascending order. 

"Treatment" of the data by (4) is one of the ways of winsoryzation. As resistant to 
outliers the estimate of the sample data grouping center μ̂  the median { }ixmed  shall 

be preliminary adopted. Huber [5] finds that the best assessment of the distribution 
center is the midrange between the lower first (p=1/4) and the higher third (p=3/4) of 
the sample quartiles (inter-quartile midrange) - Fig 1.  
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Fig. 1. Definition of inter-quartile mid-range: dotted lines – ordinates of first and third quartile 
a= µ - 0.6745, b = µ + 0.6745 

The iterative procedure starts after arranging the elements of the sample according 
to their values nxxx ...,, 21 . Then the center of grouping data is 

 nixmedx i ,...1,},{* ==   (5) 

In this case the standard deviation is 

 nMADs ⋅= 483,1*   (6) 

Then for c=1,5 with *5,1 s=ϕ  can be determined boundaries of the range ϕ±*x  to 

which are compared the original data xi. Data protruding beyond this range are pulled 
on this boundaries and whole procedure is repeated. In any step (j) of an iterative 
procedure, after the modified value from the step (j-1) according to the conditions (4), 
is in turn fined a new mean value and new standard deviation of the sample 
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Factor 1.134 is used when c = 1.5.  

The resulting value js  is used to calculate a new distance  
jϕ =1.5s to bounda-

ries of inter-quartile interval and again data coming off as outliers are pulled on them, 
and the procedure as above is continued. Convergence of the algorithm is determined 

by comparing the calculated values *
jx and *

1−jx of the current and the previous itera-

tion step. The procedure is repeated until changes of jx  and js between successive 

steps will be minimal. The procedure is stopped after j=m steps, where the difference 
of standard deviations )1()( −− mm ss for two successive steps is acceptably small. 
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Robust iterative double-criteria method IRLS has no defects of the median meth-
od. It allows in the calculation of the standard deviation of the sample also to include 
the outliers, i.e., data of the maximum absolute deviation, bringing them to the bor-
ders of the inter-quartile diapason of normal probability distribution of the data. An 
example of use this procedure in the inter-comparison measurements are presented in 
section 4. Numerical example of the data homogeneity conditions test and determina-
tion of limits of extreme deviations for small samples are given in [8]. 

4 Numerical Example 

In this example, the mean value of measurement results of nine laboratories and its 
estimated uncertainty are calculated by two classic and two above robust methods. 
Results will be compared. Measurement data is taken from [2]. Nine laboratories 
conducted a joint experiment involving comparative measurements by a tested meth-
od to assess its accuracy. It was assumed initially that the credibility of all laboratory 
measurements are the same. From measurements made by tested method in n = 9 
laboratories received are mean values x1 ... x9   ordered  below  

17.570  19.500  20.100  20.155  20.300  20.705  20.940  21.185   24.140. 
Two underlined results x1 and x9 are the significant outliers. Results obtained by 

various methods are shown in Table 1  

Table 1. Comparison of the results obtained by four methods 

Method For all data 
Rejected x1, x9  
by Grabbs crit. 

Robust 
MADs 

Robust 
iterative 

Result value 511.200 =x  m =20.4 med=20.3 412.20*
5 =x  

Std. uncertainty 727.10 =s  501.0=s  s(x9)=1.045 039.1* =s  

For the all 9 initial data xi=xi(0) the mean value 511,200 =x  and the sample standard 

deviation 727,10 =s . In the traditional model (cross-contamination) it is assumed that 

only valid observations are derived from a normal distribution. A consequence of that 
is to use the proper test, e.g. Grubbs test to find the outliers 

 sxxG nn /)(max −=  (9) 

After  rejection outliers 570.17(0)1 =x  i 140.24(0)9 =x , for the remaining data is ob-

tained the average value 41,20=x and much lower than previous the standard devia-
tion s = 0.50 as results common to the whole experiment. Both are calculated from 
measurements in 7 laboratories only. These assessments are of the lower statistical 
reliability. 

In the classical approach the average values 0x , m calculated by both methods 

differ relatively little. Standard uncertainty s0 of the data of all nine laboratories is 
very high. After elimination of two outliers by the Grabbs criterion, the uncertainty 
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calculated for seven laboratories is almost 3.5 times lower. However, measurements 
are unreasonably idealized here. The reliability of the averaged data for 7 labs is de-
creasing as the formula ( ) )1(21/ −= nuus AA

 (Table E.1 GUM [1]) showed that the 

relative standard deviation of the measurement uncertainty will increase from 25% to 
29%.  

For both robust methods values of the data grouping center are nearly similar. 
Their uncertainties differ each other only by 9% and are between these two of the 

classical method. For the iterative method achieved is s*= 1.039 > s. The mean value 
and standard deviation determined by this method is based on the data of all laborato-
ries and seems to be as closer to the data which would be for a larger number of inde-
pendent measurements treated as general population.  

5 Summary 

The rescaled median deviation method given in section 2, is very simple but it does 
not give correct results when the outlier is far from the rest of the data.  

Iterative method of section 3 is more complicated, but easier to automate the algo-
rithm. With the introduction of the threshold ±cσ decreasing sensitivity to data outli-
ers, oriented is mainly to determine robust assessment of uncertainty. 

Carried out in section 4 results of calculation showed the usefulness of the applica-
tion of two criteria iterative robust method resistant to determine the statistical param-
eters of samples with a small number of data when they are taken from the general 
population of the assumed normal distribution, but include the results significantly 
different from the others. It allows you to more objectively assess the value of the 
result and the accuracy of the test methods. 

The analysis shows that for the evaluation of results presented in controlled labor-
atories, should take into account the number of samples n obtained for the investigat-
ed objects. When a sample is of a small number of items, to evaluate the perfor-
mance of  results you can use the robust method of an iterative process of data with 
winsoryzation of outliers. In this case received is a much smaller variance and great-
er credibility than by the standard methods. 
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