
67© Springer International Publishing Switzerland 2015
W. Wu, H. Choudhry (eds.), Next Generation Sequencing in Cancer Research, 
Volume 2, DOI 10.1007/978-3-319-15811-2_5

      Standardized Decision Support in NGS 
Reports of Somatic Cancer Variants 

             Rodrigo     Dienstmann    

    Abstract     With the advent of next-generation sequencing (NGS), we have the 
promise of a complete genetic description of patient tumors to optimally direct 
therapy. Of hundreds to thousands of somatic mutations that exist in each cancer 
genome, a large number are unique and nonrecurrent variants. Prioritizing and 
annotating genetic variants identifi ed via NGS technologies remains a major chal-
lenge. Some variants occur in tumor genes that have well- established biological and 
clinical relevance and are putative targets of therapy. However, most variants have 
limited evidence as predictive markers or are still of unknown signifi cance. 
Furthermore, how to prioritize therapy when multiple potentially targetable aberra-
tions and/or coexisting resistance mechanisms are identifi ed in a patient’s tumor 
still remains largely a heuristic task. In this context, there is a growing need for the 
biomedical research community to have access to curated and up-to-date cancer 
pharmacogenomic associations. In addition, the community needs to remain cogni-
zant of the potential consequences of misuse or overinterpretation of genomic data. 
Herein, I describe a systematic framework for variant annotation and prioritization 
and propose a structured molecular pathology report using standardized terminol-
ogy in order to best inform oncology clinical practice.  

1          Introduction 

 Clinical laboratories increasingly view large cancer gene panels and NGS as a cost- 
effective—and tissue-saving—alternative to running a series of multiple single- 
gene companion tests. Large amounts of genomic data are being generated as these 
assays enter the clinical realm, challenging molecular pathologists and cancer gen-
omicists in charge of interpreting and reporting the results. Manually annotating 
each single variant in terms of clinical signifi cance in every possible tumor type is a 
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daunting task. In addition, the strain on the turnaround time drives the need for pri-
oritization strategies for the identifi cation and reporting of clinically signifi cant 
genetic variants. 

 Routine testing of full gene sequences as opposed to hot spots frequently identi-
fi es mutations of low frequency and unknown functional consequences, most of 
which are likely to be neutral or passenger alterations. On the other hand, some 
variants occur in cancer genes that have well-established clinical utility, driving 
tumorigenesis, and tumor progression. The available scientifi c knowledge on these 
mutations should be presented in the report, so that physicians and patients can 
make evidence-based decisions in a responsible fashion. Genetic results may pro-
vide a strong rationale for treatment with matched targeted agents in clinical trials, 
with the potential of directly benefi tting the patient and accelerating the drug devel-
opment process [ 1 ]. Consolidating so much information into a very discrete report 
that emphasizes the clinical signifi cance while preserving observations that can be 
further looked into by the clinician is not an easy undertaking. As physicians trained 
in fi elds other than genetics are playing a more central role in the ordering and 
reviewing of genetic test results, the importance of translating genomic data into 
informative reports is further increased. 

 Performing NGS in the clinical laboratory is a multistep process that typically 
involves sample acquisition and quality control, DNA extraction, library prepara-
tion, sequencing, and genomic data generation. The process continues with three 
dynamic pipelines for data analysis: (1) bioinformatics tools for variant identifi ca-
tion, (2) variant annotation and prioritization, and (3) interpretation of clinical sig-
nifi cance and reporting to clinicians [ 2 ,  3 ]. In this chapter, I propose a framework 
for clinical interpretation of somatic cancer variants and describe how genomic data 
can be translated into structured evidence-based reports after a detailed variant 
annotation and prioritization process.  

2     Prioritizing Cancer Genomic Variants 

 Following variant identifi cation using bioinformatics pipelines, a computational 
engine is needed in order to parse the variants and suppress those that are irrelevant, 
highlight the ones which need manual curation, and identify pertinent “wild types” 
in each tumor sample. In the fi rst step of variant prioritization, as summarized in 
Fig.  1 , molecular pathologists have to defi ne what is considered a “reportable” vari-
ant. Several annotation and prioritization parameters are taken into consideration so 
as to provide a stronger estimation of the functional signifi cance of unknown and 
novel mutations. Useful tools include sequencing metric variables, external germ 
line single nucleotide polymorphisms (SNPs), and cancer databases for comparison 
of variants across populations, as well as prediction models for defi ning damaging/
deleterious or potentially driver mutations, as discussed below.  
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  Fig. 1    Variant analysis fl owchart of NGS tests performed in clinical laboratories. The bioinfor-
matics pipeline identifi es real and tumor-specifi c variants. During the variant annotation and pri-
oritization pipeline, curated databases, predefi ned thresholds, and functional prediction models 
serve as fi lters, with reportable variants as fi nal output. The clinical interpretation pipeline involves 
careful literature review and reporting of actionable variants       
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2.1     Upstream Filtering Tools 

 In the case of exome or whole genome sequencing, pairwise comparison with germ 
line DNA plays a pivotal role. Subtracting the genetic variation of a noncancerous 
“normal” genome from its cancerous counterpart allows the identifi cation of the 
somatic mutations. In parallel, eliminating known harmless variants that are present 
in public or in-house polymorphism databases is a very helpful strategy for reducing 
the candidate list of deleterious mutations. The next step involves prioritizing mis-
sense, nonsense, or splice-site mutations over synonymous and intronic variants. 
Different bioinformatic adjustments can be used in order to improve variant detec-
tion and deal with library preparation or sequencing artifacts along with sample 
characteristics, including tumor purity and heterogeneity. In order to consider the 
variant as real and reportable, it is also advised to establish a minimum threshold of 
mutant allele fraction (MAF), the number of alternate reads at the genomic position 
divided by the total number of reads—coverage—at the same site. This threshold 
should take into consideration tumor cellularity and also clinical context, as rare 
resistant subclones in the treatment-refractory setting might be of relevance. 
Therefore, known gene variants previously clinically annotated are generally priori-
tized irrespective of MAF. 

 The most useful annotation tool for somatic variant interpretation involves the 
assessment of published cancer databases. The software used for variant prioritiza-
tion should directly link genetic alterations to the Cancer Gene Census (  http://
cancer.sanger.ac.uk/cancergenome/projects/census/    ) or similar catalogues of genes 
for which mutations have been causally implicated in cancer [ 4 ], as well as the 
Catalogue of Somatic Mutations in Cancer (COSMIC) (  http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic/    ), International Cancer Genome Consortium (ICGC) 
(  https://dcc.icgc.org/    ), and The Cancer Genome Atlas (TCGA) (  http://cancerge-
nome.nih.gov/    ;   http://www.cbioportal.org/    ), large cancer databases that present 
prevalence of gene variants in different tumor types. Assessing whether a newly 
discovered alteration may be functionally relevant rests heavily on how many times 
it has been reported in these international cancer genomics studies, supporting fur-
ther clinical interpretation.  

2.2     Downstream Filtering Tools 

 Prediction of the putative functional effect of a mutation is a common problem 
already addressed in the context of germ line SNP association studies, and several 
tools have been used for this purpose. These models annotate variants specifi cally 
with respect to evolutionary conservation, biochemical deleteriousness, and func-
tional importance scores, thereby facilitating the differentiation between functional 
and nonfunctional variants [ 5 – 7 ]. At present, for alleles without prior functional 
analysis in genes that have been related to human cancer, such as non-hot spot/novel 
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variants in known oncogenes and tumor suppressor genes, prediction algorithms 
based on evolutionary conservation patterns are often used. Sorting Intolerant from 
Tolerant (SIFT) [ 8 ] and MutationAssessor [ 9 ] exploit the fact that sequences 
observed among living organisms are those that have not been removed by natural 
selection and sites with fewer observed substitutions are inferred to be under tighter 
constraints, having more deleterious effects when mutated. On the other hand, 
mutations in non-conserved residues are likely neutral. Other resources for predict-
ing the effects of protein-coding sequence changes typically exploit the physico-
chemical properties of amino acids and information about the role of amino acid 
side chains in protein structure. These in silico protein sequence-based algorithms, 
such as PolyPhen2 [ 10 ], are capable of leveraging both evolutionary and biochemi-
cal information. Despite having high sensitivity for the detection of damaging vari-
ants, prediction tools that rely on conservation and structure should be used with 
caution. In addition to the low specifi city, these methods generally have limited 
value in annotating gain-of-function or switch-of-function mutations [ 11 ]. 
Furthermore, most of these algorithms have been designed for research purposes 
with germ line variants, and very few databases present clinically oriented molecu-
lar annotation. As an alternative, machine learning scoring methods attempt to 
increase the predictive precision of somatic mutations in cancer. One example is the 
cancer-specifi c high-throughput annotation of somatic mutation (CHASM) tool, 
specifi cally designed to distinguish driver from passenger somatic missense vari-
ants [ 12 ]. It is trained on a positive class of drivers curated from the COSMIC 
database and a negative class of passenger variants generated in silico based on 
background base substitution in specifi c tumor types. Limitations include reduced 
coverage as compared to traditional algorithms—restriction to missense mutations—
and the understanding that driver and passenger mutations are tumor type and con-
text dependent, possibly changing roles during cancer evolution and therapy [ 7 ]. 
Whether cancer-trained methods outperform more general predictors still needs fur-
ther investigation. Recent studies suggest that no method or combination of meth-
ods exceeds ~80 % accuracy [ 13 ,  14 ], indicating that there is still signifi cant room 
for improvement in functional prediction, possibly with the development of specifi c 
algorithms for different classes of mutations. 

 To summarize, complex criteria involving multiple annotation sources should be 
used in order to select or fi lter out variants. Part of this process can be automated, 
although most of the work still needs to be done manually. As the most valuable tool 
consists in leveraging the cancer literature, either generated in-house or derived 
from publicly available databases, the genomic prioritization engine needs to be 
dynamic in nature, recognizing driver cancer mutations that have been previously 
annotated and reported. Additional tumor-specifi c variants with very low MAFs and 
those considered silent mutations are typically excluded from further clinical inter-
pretation. Novel variants in genes that have been causally implicated in cancer are 
prioritized when functional models predict damaging/deleterious scores, the altera-
tion is in the phosphorylation loop of an oncogenic kinase, or it alters the reading 
frame of a tumor suppressor gene.   
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3     Interpreting Results with Clinical Perspective 

 After narrowing down the list of candidate variants, the biggest challenge is to 
interpret the remaining genomic alterations within a biological context. Potentially 
“reportable” variants can be grouped in three categories: (1) those that may have a 
direct impact on patient care and are considered “actionable,” (2) those that may have 
“biological relevance” but are not clearly actionable, and (3) those that are of 
“unknown signifi cance.” Different groups have varying defi nitions for clinically 
“actionable.” This category can be restricted to variants matched to drugs that have 
been approved by regulatory agencies for the tumor that is being studied, but may 
also include those directing to off-label use of approved drugs, as well as variants that 
are matched to drugs being investigated in clinical trials. Academic laboratories 
should adopt the most inclusive defi nition of an actionable mutation—which accounts 
for variants that support treatment recommendation and enrollment in a particular 
clinical trial or have prognostic or diagnostic implications—even knowing that it 
may increase challenges in clinical decision-making, as the results sometimes lead to 
regulatory issues regarding the use of targeted drugs in unapproved indications. 

 Importantly, variants should not be reported in an uncategorized format, which 
can be confusing to clinicians and detrimental to patients. For actionable mutations 
to be fully curated, a team of experts with strong background in cancer biology and 
access to up-to-date knowledge resources is mandatory. Clinical interpretation of 
most variants identifi ed in NGS-based cancer diagnostic tests involves the burden-
some procedure of manually reviewing the published literature on four different 
layers: (1) gene, (2) specifi c variant, (3) drug or class-of-agent sensitivity/resistance 
patterns, and (4) tumor-type context. To facilitate this process, several groups have 
implemented “Sequencing Tumor Boards” or “Molecular Rounds” with up to 15 
faculty members that share expertise in cancer genomics, bioinformatics, pathol-
ogy, clinical genetics, bioethics, and clinical oncology as well as experimental ther-
apeutics. Rigorous analysis of comprehensive genomic data is a time-consuming 
and labor-intensive task, considering that not many mutations have been validated 
with a high enough level of evidence to predict for response to targeted treatment. 
Experts should prioritize the knowledge on mutations in tumor-specifi c contexts, 
but curation of data derived from other tumor types and preclinical experiments—
when clinical validation is under way—usually gives valuable information to clini-
cians. Unfortunately, most resources currently available cover information at 
limited levels: some focus on gene-tumor associations, others only on gene-drug or 
drug- target relationships. Moreover, databases originally developed to enable pre-
clinical research or annotate germ line variants are of limited applicability for clini-
cal oncology curation. Alternatively, associations on predictive, prognostic, or 
diagnostic variants in cancer can be retrieved in clinically oriented databases, such 
as My Cancer Genome (  http://www.mycancergenome.org/    ), Targeted Cancer Care 
(  http://www.targetedcancercare.org/    ), and Personalized Cancer Therapy (  https://
pct.mdanderson.org/    ). These websites are the result of large institutional efforts to 
provide information on cancer types, aberrant genes, and variants that are targeted 
by approved or experimental therapies. However, information available in these 
databases does not cover all genes, variants, and tumor types. In addition, it is not 
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accessible for download, mainly because it is presented in a descriptive format, 
without standardized terminology. 

 In order to deal with these limitations, some groups have developed internal 
knowledge databases with more comprehensive annotations on consensus and 
emerging clinical/preclinical predictive genomic markers linked to targeted thera-
pies. When integrated to the variant prioritization computational engine and report 
generation system, the curated information on somatic variants that have been clas-
sifi ed for clinical reporting is stored for future use. Maintenance of these databases 
involves a regular and systematic review of drug regulatory and approval status, 
consensus guidelines, peer-reviewed publications, and clinical trial databases. One 
example of detailed cancer genomics knowledge database is available for download 
through Synapse (  https://www.synapse.org/#!Synapse:syn2370773    ), the collabora-
tive cloud-based repository developed at Sage Bionetworks. As many academic 
groups are independently working on similar projects, an international consortium 
on curated cancer genomic data matching genomic aberrations to targeted therapies 
could have a huge clinical impact. Ideally, the information should be released as an 
interactive web-based tool, subjected to editing, validation, and critique from the 
medical community.  

4     Generating NGS Reports 

 Previous studies evaluating single-gene reports have suggested that patient care 
may be compromised as a consequence of poor communication between laborato-
ries and clinicians [ 15 ]. Developing a framework to content-rich NGS reports is 
complicated. The traditional “narrative” style reporting is too cumbersome for the 
amount of data generated by large cancer gene panels. In addition, medical oncolo-
gists prefer structured reports with results displayed in a more straightforward man-
ner rather than detailed descriptions of each genomic alteration. Consequently, 
web-enabled technologies are a good alternative to text reports as they enable 
dynamic and interactive display of the NGS results, which could be accessed by 
providers and patients in different formats. Embedding links to internal and external 
databases allows members of the team to further explore the results and the evi-
dence used to guide the interpretation, including more detailed information on the 
gene, the variant, the drug, or the clinical trial matched to a particular genomic 
alteration and tumor type, as well as records of PubMed identifi cation numbers for 
relevant clinical literature. Unfortunately, most laboratory information systems and 
electronic medical records (EMR) to date do not support data formatting and meta-
data (data associated with the result). Therefore, reports may need to be oversimpli-
fi ed to a static format for inclusion in the EMR. 

 Wagle et al. reported the fi rst framework to segregate genetic alterations derived 
from NGS tests on the basis of their predicted clinical utility [ 16 ]. The actionable 
category includes variants that predict tumor sensitivity or resistance to approved (tier 
1) or experimental therapies (tier 2). As shown in Fig.  2a , the mutational  categories 
are organized based on the strength of evidence supporting its predictive value. 
An alternative classifi cation is presented in Fig.  2b , which represents a simplifi ed 
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  Fig. 2    Examples of somatic variant classifi cation system for NGS reports. ( a ) Wagle et al. The 
actionable category includes variants that predict tumor sensitivity or resistance to approved (tier 
1) or experimental therapies (tier 2) and those that have prognostic/diagnostic implications. ( b ) 
Dienstmann et al. Reportable variants can be grouped in three categories: (1) actionable, which 
support treatment recommendation (therapeutic consensus) and enrollment in clinical trials (thera-
peutic emerging) and/or have prognostic or diagnostic implications; (2) biologically relevant but 
not clearly actionable; and (3) unknown signifi cance       
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gene-oriented approach developed to facilitate clinical decision-making [ 17 ]. Reports 
based on this framework provide the information in a hierarchical/categorical format, 
and results can be structured in tabular view. The content is formatted in such a way 
as to draw the clinician’s attention to associations with the highest level of evidence. 
As exemplifi ed in Fig.  3 , all actionable—predictive, prognostic, and diagnostic—
markers are displayed fi rst, followed by biologically relevant gene variants that warrant 
detailed annotation and pertinent negatives in the tumor being tested. Details are 
discussed in the following sections.   

  Fig. 3    Illustrative example of sequencing results describing somatic cancer variants with struc-
tured evidence-based classifi cation. Using the framework described in Fig.  2b , results are pre-
sented in a hierarchical and tabular format, drawing clinician’s attention to associations with 
different levels of actionability       
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4.1     Predictive Associations 

 Consensus predictive associations include those (1) linked to drugs approved or 
rejected by regulatory agencies in the context of a specifi c gene variant and tumor 
type or (2) described in national guidelines as predicting response or resistance to 
specifi c therapies. Emerging predictive associations were classifi ed in a hierarchical 
way based on the strength of evidence: (1) late trials, including evidence derived 
from trials that prospectively recruited patients based on genomic profi ling as well 
as large trials with robust data suggesting sensitivity/resistance to targeted therapies 
based on retrospective analysis of biomarkers; (2) early trials, referring to phase 1 
or 2 studies with genomically selected patients that show preliminary signs of effi -
cacy (or lack of effi cacy); (3) case reports of dramatic responses to targeted thera-
pies in a specifi c genomic context; and (4) strong preclinical data that is being 
explored in clinical trials. The magnitude of the biomarker-drug effects for clinical 
associations is classifi ed as “responsive,” “resistant,” or “not responsive” (when an 
expected responsive effect is not observed). In preclinical models, biomarker-drug 
associations are graded as “sensitive,” “reduced sensitivity,” or “resistant.” 

 Some of the questions that scientists involved in clinical interpretation of 
genomic data have to deal with include:

•    Is this an activating or inactivating mutation?  
•   Does this mutation engender sensitivity to targeted therapeutics—and what is the 

agent with highest potency?  
•   How to select therapy in case of multiple genomic alterations and/or coexisting 

resistance mechanisms?  
•   Is the association tumor type or context specifi c (treatment-naïve versus refrac-

tory setting) after exposure to which targeted agents?    

 Ideally, reports of NGS tests in oncology should include a list of clinical trials 
recruiting patients that harbor the specifi c genomic aberrations identifi ed in the 
 individual tumor sample. These are matched targeted therapies available either on-
site or as part of multi-institutional collaborations. A current limitation for matching 
a patient’s tumor genotype to clinical trials is the lack of molecular annotations in 
notices of national registries, such as the US National Cancer Institute clinical trial 
locator (  www.clinicalTrials.gov    ). As an example, the search term “PIK3R1” does 
not identify any matched trial, even though many PI3K pathway inhibitors in clini-
cal development have a clear rationale for testing in tumors that harbor  PIK3R1  
inactivating mutations.  

4.2     Prognostic and Diagnostic Associations 

 Medical oncologists are usually concerned about reporting detailed information on 
prognostic associations of genomic markers in cancer. First, the literature is full of 
inconsistent and even opposing results based on retrospective studies. Second, as 
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patients have access to the report, bad prognostic associations could lead to misin-
terpretation and anxiety, emphasizing the idea that this information should be dis-
cussed in person taking into consideration additional clinical parameters. Therefore, 
only prognostic markers with well-established associations in the same tumor type 
should be reported, preferably without description of the related outcome informa-
tion. Common diagnostic associations should also be described, mainly those favor-
ing a specifi c tumor subtype.  

4.3     Variants with Biological Relevance 

 Many variants in well-known cancer genes do not fall into the prior categories but still 
might be causally associated with the malignant phenotype. Their relevance is justi-
fi ed by known biological implications (pathway activation/inactivation) or by “theo-
retical” actionability, when agents potentially targeting novel activating mutations in 
oncogenes or the downstream effects of loss-of-function mutations in tumor suppres-
sor genes are available for clinical testing. Therefore, the expected effect of the vari-
ant on protein function (gain- or loss-of-function) is also presented in the report, as it 
might give insights to the ordering physician with regard to therapeutic interventions 
in the investigational setting. Nevertheless, until functionality is validated in preclini-
cal studies, it is appropriate to report these novel variants as non-actionable.  

4.4     Pertinent Negative Variants 

 Genes that have clear predictive, prognostic, or diagnostic associations in a specifi c 
tumor type and are found to be “wild type” in the NGS test should be described in 
the report.  

4.5     Variants of Unclear Signifi cance 

 The accelerated pace of advances in our understanding of cancer genomics justifi es 
the description of all “reportable” variants in the fi nal NGS report, even those not 
classifi ed as actionable or biologically relevant when the assay is performed. These 
variants may become biomarkers in the near future or may be of particular interest 
in research settings. The most practical approach to handle variants of unknown 
biological/clinical signifi cance is to present them according to the main pathway 
affected by the alteration. Key gene-pathway associations are increasingly being 
highlighted in the cancer genomics literature [ 18 ,  19 ]. As an example, in renal cell 
carcinomas, mutations in genes involved in histone modifi cation/chromatin remodel-
ing might dominate a report, warning the medical oncologist-translational researcher 
about the importance of aberrations in this pathway during cancer progression.  
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4.6     Germ Line Variants 

 The American College of Medical Genetics and Genomics (ACMG) recently 
published a minimum list of genes that should be reported to the patient when an 
incidental germ line mutation associated with heritable risk of cancer or other 
diseases is identifi ed and confi rmed [ 20 ]. The group prioritized disorders where 
preventive measures and/or treatments were available and those in which indi-
viduals with pathogenic mutations might be asymptomatic for long periods of time. 
Only pathogenic mutations should be reported, considering the challenges of 
interpreting variants of unknown signifi cance as incidental fi ndings. Notably, the 
group acknowledged the fact that insuffi cient data on penetrance and clinical utility 
support these recommendations. Considerable personnel resources, including 
genetic counselors with specialized training, may be needed to ensure that patients 
understand the potential benefi ts and risks of receiving somatic and germ line data 
and to support physicians in conveying such information.  

4.7     Performance Characteristics of the Test 

 Specifi c regions interrogated by the assay and the coverage metrics by sample and 
target—including median depth, uniformity, and percentage of target covered at the 
minimum level—should be described in every NGS assay, regardless of application 
or platform. Minimum depth of coverage should be established during the test vali-
dation process and will depend upon the required sensitivity of the assay as well as 
the targeting/sequencing method. Regions of sequence not meeting the required 
read depth, especially genes with highest priority (see “pertinent negatives” above), 
should be clearly reported as indeterminate. Importantly, medical oncologists still 
need to be educated for the proper interpretation of MAF counts. This information 
is very useful in the research setting, refl ecting clonal evolution and selection when 
NGS tests are performed in different samples and time points over the course of a 
disease and therapy. Of note, continued medical education is an important aspect in 
the process of implementing NGS reports in a clinical lab, so that physicians are 
trained to understand molecular profi le results.   

5     Conclusion 

 NGS tests were initially developed for research or investigational purposes but will 
eventually become part of cancer care. During the process of clinical implementa-
tion of these assays, many technical, legal, and ethical challenges have to be over-
come. Clinical Laboratory Improvement Amendment (CLIA) or Good Clinical 
Laboratory Practice (GCLP) certifi cation is required for clinical centers and 
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consulting biotechnology companies offering NGS-based cancer diagnostic tests. 
Several professional societies have generated guidelines for the implementation of 
NGS tests, with a focus on analytical validity or patient privacy rules. Nonetheless, 
recommendations for the use of computational tools and bioinformatics pipelines 
and reporting of somatic cancer variants are still missing. A major challenge is how 
to convey the amount of data obtained from NGS tests and all the information 
reviewed for interpretation within a reasonable time frame, so that it can be trans-
lated into a useful clinical tool. Effective communication of results with interactive 
reports can promote appropriate clinical decision-making and minimize the poten-
tial for patient harm. Unfortunately, at the present time, validated evidence on spe-
cifi c gene variants linked to predictive, prognostic, or diagnostic associations in 
cancer is limited. In addition, genomics knowledge is currently ahead of our ability 
to therapeutically target tumors, given that many mutations identifi ed by sequenc-
ing either are linked to unapproved drugs or are not targetable by currently available 
molecular therapy. 

 Importantly, while sequencing can identify druggable targets, clinicians are often 
left with the task of further interpretation, treatment prioritization, and decision- 
making in the context of additional clinical information. When the best option is to 
offer the patient genomic-driven clinical trials, additional logistical challenges need 
to be overcome, including too strict eligibility criteria in phase 1 trials or slots not 
available at the time of referral and geographical limitations to access drug develop-
ment units. These diffi culties explain why only a small number of patients are ulti-
mately enrolled in a specifi c trial based on the results of NGS assays, even when 
actionable genomic alterations are identifi ed in the majority of the tumor samples 
tested [ 21 ]. Multi-institutional trial networks assessing novel agents that target spe-
cifi c mutations are needed in order to deal with these issues. Alternatively, when 
physicians and patients agree on off-label use of targeted therapies, another aspects 
that go beyond reimbursement concerns need to be taken into consideration. There 
is an inherent bias to publish positive results—case reports showing that sequencing 
results are associated with responses to off-label use of a targeted agent—and mech-
anisms to annotate lack of response in this setting are missing. One option is to 
create national formularies of targeted agents against common aberrations, so that 
every patient receiving a matched therapy in the off-label setting can be tracked and 
become a “cancer information donor.” These pharmacy exchange programs could 
generate ever-growing data banks integrating the genomic information with thera-
peutic response and outcome [ 22 ]. The information derived from these registries 
should be added to knowledge databases such as My Cancer Genome or Personalized 
Cancer Therapy and become readily available to oncologists worldwide, providing 
annotated predictive genomic markers in cancer and potentially changing the para-
digm of drug approval process. 

 In conclusion, structured reporting of clinically relevant variants may help 
addressing the current limitations of NGS to directly guide patient care. With stan-
dardized terminology and an expanding knowledge database, variant annotation, 
prioritization, and clinical interpretation become a fl uid process with the potential to 
open new therapeutic options.     

Standardized Decision Support in NGS Reports of Somatic Cancer Variants



80

   References 

    1.    Dienstmann R, Rodon J, Tabernero J. Biomarker-driven patient selection for early clinical trials. 
Curr Opin Oncol. 2013;25:305–12.  

    2.    Watt S, Jiao W, Brown AM, et al. Clinical genomics information management software linking 
cancer genome sequence and clinical decisions. Genomics. 2013;102:140–7.  

    3.    Van Allen EM, Wagle N, Levy MA. Clinical analysis and interpretation of cancer genome 
data. J Clin Oncol. 2013;31:1825–33.  

    4.    Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer 
genes across 21 tumour types. Nature. 2014;505:495–501.  

    5.    Cooper GM, Shendure J. Needles in stacks of needles: fi nding disease-causal variants in a 
wealth of genomic data. Nat Rev Genet. 2011;12:628–40.  

   6.    Frousios K, Iliopoulos CS, Schlitt T, et al. Predicting the functional consequences of non- 
synonymous DNA sequence variants – evaluation of bioinformatics tools and development of 
a consensus strategy. Genomics. 2013;102:223–8.  

     7.    Zhang J, Liu J, Sun J, et al. Identifying driver mutations from sequencing data of heterogeneous 
tumors in the era of personalized genome sequencing. Brief Bioinform. 2014;15:244–55.  

    8.    Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on 
protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.  

    9.    Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: applica-
tion to cancer genomics. Nucleic Acids Res. 2011;39:e118.  

    10.    Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging mis-
sense mutations. Nat Methods. 2010;7:248–9.  

    11.    Flanagan SE, Patch AM, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and 
gain-of-function mutations. Genet Test Mol Biomarkers. 2010;14:533–7.  

    12.    Wong WC, Kim D, Carter H, et al. CHASM and SNVBox: toolkit for detecting biologically 
important single nucleotide mutations in cancer. Bioinformatics. 2011;27:2147–8.  

    13.    Gnad F, Baucom A, Mukhyala K, et al. Assessment of computational methods for predicting 
the effects of missense mutations in human cancers. BMC Genomics. 2013;14:S7.  

    14.    Gonzalez-Perez A, Lopez-Bigas N. Improving the assessment of the outcome of nonsynony-
mous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet. 2011;88:440–9.  

    15.    Lubin IM, Caggana M, Constantin C, et al. Ordering molecular genetic tests and reporting 
results: practices in laboratory and clinical settings. J Mol Diagn. 2008;10:459–68.  

    16.    Wagle N, Berger MF, Davis MJ, et al. High-throughput detection of actionable genomic altera-
tions in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 
2012;2:82–93.  

    17.    Dienstmann R, Dong F, Borger D, et al. Standardized decision support in next generation 
sequencing reports of somatic cancer variants. Mol Oncol. 2014;8:859–73.  

    18.    Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37.  
    19.    Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 

2013;339:1546–58.  
    20.    Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental 

fi ndings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.  
    21.    Tran B, Brown AM, Bedard PL, et al. Feasibility of real time next generation sequencing of 

cancer genes linked to drug response: results from a clinical trial. Int J Cancer. 2013;132:
1547–55.  

    22.    Schilsky RL. Implementing personalized cancer care. Nat Rev Clin Oncol. 2014;11:432–8.    

R. Dienstmann


	Standardized Decision Support in NGS Reports of Somatic Cancer Variants
	1 Introduction
	2 Prioritizing Cancer Genomic Variants
	2.1 Upstream Filtering Tools
	2.2 Downstream Filtering Tools

	3 Interpreting Results with Clinical Perspective
	4 Generating NGS Reports
	4.1 Predictive Associations
	4.2 Prognostic and Diagnostic Associations
	4.3 Variants with Biological Relevance
	4.4 Pertinent Negative Variants
	4.5 Variants of Unclear Significance
	4.6 Germ Line Variants
	4.7 Performance Characteristics of the Test

	5 Conclusion
	References


