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  Pref ace   

 Cancer is a complex and heterogeneous disease with alterations of the genome that 
accumulate over time or, in some cases, occur as a one-time, catastrophic shattering 
and rearrangement of chromosomes (chromothripsis) after an exposure to radiation 
or genotoxic chemicals. Cancer is now a leading noncommunicable cause of death 
worldwide. Overall, for example, there were 14.1 million new cases and 8.2 million 
deaths in 2012 (GLOBOCAN 2012), and this number is projected to continue to 
rise—particularly in developing countries. We are pursuing two equally important 
tasks in the fi ght against cancer: understanding mechanisms of carcinogenesis and 
developing remedies to treat individual cancer patients. 

 During the last century, great progress has been made in understanding the 
framework of cellular and molecular mechanisms of initiation and development of 
cancer, and the process of its metastasis. Looking back, the cancer research journey 
began in 1914 with the chromosomal abnormality theory proposed by Theodor 
Boveri, and it progressed to the identifi cation in 1960 of the abnormal Philadelphia 
chromosome in chronic myelogenous leukemia by Peter Nowell and David 
Hungerford. The concept that “cancer is a chromosomal disorder” grew into a 
genetic framework for the development of cancer. Alfred Knudson’s evidence for a 
multiple-hit hypothesis for mutations in tumor suppressor genes and the identifi ca-
tion of proto-oncogenes by J. Michael Bishop and Harold E. Varmus in the early 
1970s and the cloning of k-RAS oncogene and RB1 tumor suppressor gene in the 
1980s broadened the concept that “cancer is a disease of genetic and epigenetic 
aberrations” and established a solid foundation for molecular cancer biology. 

 The late 1990s was a turning point in cancer research. The strategy changed dra-
matically from piecemeal methods to screen for cancer genes to the decoding of the 
cancer genome with high-throughput technology. Initially, this was done with 
Sanger sequencing, and later with massively parallel sequencing. As the Human 
Genome Project was moving to completion in 2003, the cancer genome project was 
initiated with the aim to identify somatically acquired, sequence variants and muta-
tions and, hence, to identify the genes that are critical in the development of human 
cancers. Subsequently, in 2008, the International Cancer Genome Consortium 
(ICGC) was developed to provide a collaborative and comprehensive picture of all 
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the mutations, including copy number changes, insertions, and deletions, in 50 types 
of cancers. To date, numerous cancer genomes and epigenomes have been sequenced 
for a range of cancer types and are helping us to gain an unprecedented understand-
ing of molecular mechanisms underlying the complexity of tumor biology. We have 
defi ned the cancer initiatome as the collection of all perturbations in genome space 
that lead to the emergence of malignant transformations; the driver genomic changes 
now extend beyond the ~2 % protein-coding gene content of the genome and they 
reside in the noncoding RNA molecules (e.g., piRNAs, microRNAs, long noncod-
ing RNAs) from the actively transcribed regions of the genome. Therefore, our con-
temporary thinking is that cancer is “a disease of genome alterations.” 

 A deep understanding of cancer biology is now revolutionizing the clinical man-
agement of cancer patients. The overall cancer survival rate is improving from early 
detection and diagnosis to early treatment, from monotherapy to multimodule ther-
apy (chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and so forth) 
or combinatory treatments, and from general cytotoxic therapy to targeted molecu-
lar treatment. As a result, targeted therapy has indeed improved treatment for cer-
tain cancers using drugs such as Gleevec (imatinib mesylate) for chronic 
myelogenous leukemia, Erlotinib for non-small cell lung cancer with EGFR muta-
tions, Herceptin (trastuzumab) for a subset of breast cancer with HER2/neu gene 
amplifi cation, and recent BRAF inhibitors for metastatic melanoma. An unprece-
dented number of more genomically derived drugs are currently under clinical tri-
als. Hence, living with chronic cancer disease while maintaining a high quality of 
life is not uncommon. 

 Worldwide efforts to beat cancer have never stopped. The result is that the cancer 
genome, epigenome, and transcriptome can now be read at the single nucleotide 
level, using massively parallel sequencing technology with a short turnaround time 
at an acceptable cost. Precision cancer medicine has been born, and the demand is 
now for individualized cancer therapy to effectively treat this genomically heteroge-
neous disease. 

 This book is the second in a series of “Next generation sequencing technology in 
cancer research—from basepairs to bedsides.” Our goal continues to be fi lling the 
gap between cancer genome research and clinical management of the individual 
cancer patient. Our aims are to present the principles of next-generation sequencing 
(NGS) technologies and massively parallel DNA sequencing and their application 
of the whole-genome sequences (WGS), whole exome-seq (WES), RNA-seq, 
miRNA-seq, and ChIP-seq in cancer research programs, and to apply the newly 
discovered driver genetic alterations for prevention, early diagnosis, and genome- 
oriented precision cancer treatment. Therefore, we have again invited international 
cancer researchers and physician-scientists, all of whom are working in multidisci-
plinary programs, to contribute their achievements in cancer genomic research with 
the use of NGS technologies. They are eager to translate their new and novel fi nd-
ings from the cancer genomes of individual patients to an orchestrated cancer man-
agement team comprised of physicians, genomicists, bioinformatians, clinical 
researchers, and bioethicists in order to develop precision cancer treatments for 
individual patients. 
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 We bring together the implementation of a wide range of NGS technologies, 
including single-cell sequencing, in the clinical setting: discovery and validation of 
cancer biomarkers; standardization of NGS data production; NGS data reporting 
systems for clinicians; novel anticancer therapies development from NGS data; and 
conducting clinical trials of newly investigated cancer drugs. Several chapters dis-
cuss the issue of formalin-fi xed and paraffi n-embedded (FFPE) specimens as input 
materials for NGS. Moreover, decoding of viral genomes in cancer and the epigen-
etic genome is also covered. Intriguingly, the authors are providing pipelines for the 
discovery of novel therapeutic targets, using the actionable and druggable mutations 
from the cancer gene regulatory networks. Lastly, basic bioinformatic analysis is 
included in almost every chapter. With the authors’ optimistic and enthusiastic 
translation of cancer genome knowledge into clinical practice, we expect to improve 
diagnostic, prognostic, and therapeutic outcomes for individual patients. 

 We intended our book to be a comprehensive guide to contemporary cancer 
genome research with experimental and computational biology with application in 
clinics. It provides compelling evidence to signal a new future for health care and a 
new standard for cancer care. It will be of interest to a broad readership—including 
medical students, cancer biologists, bioinformaticians, and oncologists. 

 Successful completion of this book would not have been possible without con-
versations and assistance from many more people than we can individually acknowl-
edge. Our thanks to all of the authors who worked diligently to produce their 
enthusiastic contributions and meet the goals of the volume. We are grateful to Dr. 
Fred Biddle for his encouragement during the course of the book preparation and 
beyond. Our thanks also go to the Springer staff who have been constructive part-
ners in the publication of this frontier cancer genome research and have ensured that 
the series is produced in an effi cient and timely fashion. Our heartfelt gratitude goes 
to our own families, who continue to patiently support us as we put forward our 
efforts for this publication.  

  Calgary, AB, Canada     Wei     Wu   
 Jeddah, Saudi Arabia     Hani     Choudhry    
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      Single-Cell Next-Generation Sequencing 
and Its Applications in Cancer Biology 

             Biaoru     Li      ,     Xiaomeng     Zhang    , and     Jie     Zheng   

    Abstract     A complete set of DNA with its transcripts is defi ned as genome, which 
includes both the genes and the noncoding sequences of the DNA/RNA. After mak-
ing advances in decoding different genomes across species, genomic techniques 
such as SNP microarrays and gene expression microarray have been synchronously 
developed to analyze the genomic functions. Now, scientists are able to take the 
study of genomics into deep consideration of biological evolution and mechanism 
of different diseases. However, there are still challenges with the genomic technol-
ogy. Some tissues of human and animals, such as tumor tissues, contain multiple 
heterogeneous cells, making analysis extremely diffi cult. Additionally, some speci-
mens have very few cells, such as circulating tumor cells. To fully study DNA 
genomic changes and its expression changes in cancer, single-cell genomic tech-
niques have been broadly applied to fi elds such as cytogenomic diagnosis for speci-
mens on glass slides, tumor cells in circulating blood, measurement of sensitivity 
and specifi city of genomic analysis at tumor tissue level, mechanism of differentia-
tion of cancer stem cell, etc. Recently, next-generation sequencing (NGS) has 
become an important tool in single-cell genomic analysis. Here, we systemically 
introduce single-cell NGS from single- cell sampling, single-cell NGS, and single-
cell NGS-related bioinformatics into its application for tumor biology. This chapter 
also describes some advantages of single-cell NGS and addresses some challenges 
of single-cell NGS for genomics analysis due to the specimen features.  
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1          Introduction 

 DNA (deoxyribonucleic acid) composed of four bases and its double helical strand 
structure was fi rst demonstrated by James D. Watson and Francis Crick in 1953 [ 1 ]. 
Since then, genes at the DNA and mRNA levels were broadly studied for their func-
tions such as normal evolution of species and mechanism of human diseases as 
described by Drs. Er and Chang in 2012 [ 2 ]. During the early period of research, 
DNA sequencing techniques played important roles for studying gene structures 
and gene expression. In 1977, Frederick Sanger launched DNA sequencing technol-
ogy that relied on DNA chain-termination method (Sanger sequencing) [ 3 ] and 
Walter Gilbert studied chemical modifi cation and cleavage at specifi c bases of DNA 
as an early sequencing technology [ 4 ]. Sanger sequencing is described as the fi rst- 
generation DNA sequencing due to its high effi ciency and low radioactivity as 
delineated by Dr. Pareek in 2011 [ 5 ]. Following great accomplishments from the 
human genome project in 2002–2003, massively parallel sequencing systems called 
as next-generation sequencing (NGS) were brought about the world. In 2005, the 
454 sequencing system provided massively parallel sequencing reading platform as 
reported by Margulies et al. in 2005 [ 6 ]; Solexa developed Genome Analyzer sys-
tem as portrayed by Warren et al. in 2006 [ 7 ]; and Agencourt supplied SOLiD plat-
form as explained by Mardis in 2008 [ 8 ]. All three NGS systems have similar 
features including high throughput and accuracy although there are differences such 
as the read lengths. Recently, the founder companies were bought by other compa-
nies. For instance, SOLiD system was purchased by Applied Biosystems in 2006; in 
2007, 454 sequencing system was bought by Roche and Solexa system was picked 
up by Illumina as reviewed by Dr. Liu in 2012 [ 9 ]. The three systems exhibit their 
advantages including their read length, accuracy, and applications as presented in 
Table  1 . NGS system has also been developed into compact model for small size of 
sample, such as Ion Personal Genome Machine (PGM) and MiSEQ. These two 
systems were extended by Ion Torrent and Illumina for their advantages in fast run-
ning and its cheap costs as shown in Table  2 . Moreover, accompanied with increas-
ing new modifi cations in NGS, a third-generation sequencing such as Single-Molecule 

   Table 1    NGS system comparison   

 Systems  454 GS FLX  HiSeq system  SOLiD system 

 Sequencing 
mechanism 

 Pyrosequencing  Sequencing 
by synthesis 

 Ligation and 
two-base coding 

 Read length  700 bp  50SE, 50PE, 101PE  50 + 35 bp 
 Reads  1 M  3 G  1200–1400 M 
 Output data/Run  0.7 Gb  600 Gb  120 Gb 
 Time/Run  24 h  3–10 days  7 days for SE 
 Advantage  Read length, fast  High throughput  Accuracy 
 Accuracy  99.90 %  98 %  99.94 % 
 Disadvantage  Low throughput  Short read assembly  Short read assembly 
 Cost/million bases  $10  $0.07  $0.13 
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Real-Time (SMRT) has increased appliances in genomic studies   . SMRT does not 
need PCR amplifi cation and the nucleotides real-time signal of SMRT in enzymatic 
reaction can be captured by fl uorescent (Pacbio) or electric current (Nanopore). 
Technically, NGS of whole-genomic DNA is called as DNA-Seq consisting of 
whole-genomics sequencing (WGS) and whole-exome sequencing (WES); NGS of 
whole mRNA is named as RNA-Seq; NGS of whole microRNA is said as miRNA- 
Seq and so on.

    The research and development (R&D) of single-cell genomics in tumor biology 
has the advantage of requiring few cells and a cellular environment of mixed cells. 
For instance, development of clonal cell (such as cancer stem cell in cancer) 
occurred with subtle heterogeneity at an early period including few mutations and 
chromosomal rearrangements fi nally leading to massive cell proliferation and dif-
ferentiation in a mixed tissue due to switch of the tumor cell program with enriched 
genomic changes. In the tumorigenesis, very few cells are available in the early 
period while mixed-cell tumor tissues arise in late tumor development according to 
Dr. Breivik’s study in 2005 [ 10 ]. All these reasons require R&D of single-cell 
genomic techniques to study the tumorigenesis. In addition, genomic diagnosis for 
a given type of cells in mixed-cell tumor tissue can only adopt very small numbers 
of cells such as clinic biopsy specimens or single-cell isolated from laser capture 
microscopy of tumor tissues. The single-cell technique with downstream genomics 
needs to be applied itself from cells on slides in molecular pathology and cytoge-
netic. Moreover, it is necessary for biomarker discovery of tumor cells in circulating 
blood as described by Liberko et al. in 2013 [ 11 ]. Several years earlier, genomics of 
identifi cation and quantifi cation have been developed into single-cell genomic level 
including Array-CGH and SNP-microarray for DNA genomics and mRNA microar-
rays, subtractive cloning and differential display (DD) for mRNA genomic profi les 
as illustrated by Ning et al. in 2014 [ 12 ]. Technically, each single-cell genomic 
analysis and diagnosis has its own disadvantages and advantages. After NGS was 
applied in 2007 and developed into single-cell genomic technique in 2010, single- 
cell NGS techniques have allowed physicians and scientists to use the important 
tools for single-cell diagnosis as explained by Ebenezer et al. in 2012 [ 13 ]. 

 In order to distinctly advocate single-cell NGS, here we will fi rst introduce the 
single-cell techniques and then present single-cell NGS techniques with downstream 

   Table 2    Compact NGS   

 Compact NGS  MiSeq  PGM 

 Sequencing method  Sequencing by synthesis  Semiconductor technology with 
a simple sequencing chemistry 

 Read length  Up to 2 × 300 bp  200–400 bp 
 Output  540 MB to 15 GB  30 MB to 2 GB 
 Sequencing time  4 h for 1 × 36 single read, 27 h 

for 2 × 300 bp end read 
 2.3–4.4 h for 200 bp reads 
 3.7–7.3 h for 400 bp reads 

 Sample preparation time  About 2 h  8 samples in parallel, less than 6 h 
 Input amount  Nanogram (Nextera)  μg 

Single-Cell NGS
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single-cell NGS bioinformatics. Finally, we will briefl y review applications to the 
study of cancer biology by using the single-cell NGS techniques. In conclusion part, 
we will also discuss advantages and disadvantages of applying different single-cell 
genomic techniques.  

2     Single-Cell Technique 

 Tumor specimens of animal and human tissue often contain multiple cells. Different 
DNA changes and different gene expression profi les in a given type of cells coexist 
in the same specimen of animal and human tissue. Theoretically, important fi ndings 
of genomic-DNA SNP profi le or mRNA expression profi les will be unclear for a 
certain type of cells if we make use of tissue-level genomic profi le. Therefore, pure 
or representative single cells will provide the most precise analysis possible of these 
subtle gene expression patterns in the given type of cells. Here, in order to explicitly 
discuss single-cell NGS, two techniques, or single-cell sampling and DNA/mRNA 
amplifi cation from a single cell will be fi rst introduced. 

2.1     Single-Cell Sampling 

 As shown in Table  3 , fl ow-cytometric cell sorting (FACS) and laser-based microdis-
section of tumor tissues provide ways to isolate single cells for DNA genomics 
change and gene expression profi ling in a given type of cells. In FACS system, cells 
labeled with fl uorescent signals in solution can be isolated based on a specifi c bio-
marker such as a tumor antigen attached to an antibody labeled by a fl uorescent 
signal. At present, FACS can specifi cally separate targeted cells and collect the 
single cell into 96 wells for downstream genomics (AmpliGrid by Advalytix) as 
reported by Brück et al. in 2010 [ 14 ]. Although FACS and multicolor FACS can 

   Table 3    Single-cell sampling   

 Methods  Advantages  Disadvantages 

 Laser-capture 
microdissection 

 Microenvironment 
and local data 

 Theoretical damage to the 
target cell 

 Laser-assisted mechanical 
microdissection 

 Microenvironment 
and local data 

 Laborious 

 Laser-catapult 
microdissection 

 Very little contamination 
with microenvironment 
and local data 

 Special slides 

 Flow-cytometric cell sorting  Auto- and rapid separation 
into 96-well plate 

 Limit in some cells such as neuron 
without microenvironment data 
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isolate and sort homogeneous cells, even single cell, three challenges limit their 
applications: (a) FACS cannot be subject to some types of cells such as neurons; (b) 
intracellular biomarker cannot be well defi ned and sorted by FACS; (c) the tumor 
microenvironment of a cell cannot be evaluated by FACS. The microdissection 
technique can avoid the aforementioned three limitations. In 1976, the use of lasers 
in tissue microdissection has been reported by Meier-Ruge et al. [ 15 ]. In contrast to 
single-cell FACS, microdissection allows both rapid in vivo localization and ability 
to analyze the cellular microenvironment as depicted by Schutze et al. in 1998 [ 16 ]. 
At present, three microdissection systems have been broadly developed as reported 
by Li in 2005 [ 17 ]: (1) laser-assisted mechanical tissue microdissection, (2) laser 
pressure catapult microdissection, and (3) laser capture microdissection (LCM). 
Laser-assisted mechanical tissue microdissection can focus on small target cell 
areas, reducing the chance of contamination with neighboring cells as portrayed by 
Emmert-Buck et al. in 1996 [ 18 ]. Although the concept of using a laser to dissect 
out individual cells is quite simple, the technique is laborious. Laser pressure cata-
pult microdissection concentrates on an interesting region with a high-energy cut-
ting laser. Following a low-power laser sets the depth of the tissue section, a pressure 
wave then separates the targeted tissue from the slide and catapults it into a recep-
tacle. The high precision of the thin beam laser is suffi cient to isolate subcellular 
targets such as chromosomes. The absence of physical contact between the sur-
rounding tissues and the collection apparatus results in a much lower incidence of 
contamination. In laser capture microdissection, a thin ethylene vinyl acetate fi lm is 
mounted on the tissue section. After an infrared laser heats and melts a cell of inter-
est, the resolidifi ed plastic fi lm binds directly to this cell and catches it as reported 
by Fend et al. in 1999 [ 19 ]. Now, all of three systems are commercially available for 
laboratory studies in animals, plants, and human beings.

2.2        Genomic Amplifi cation from Single Cells 

 In a human diploid cell, the quantity of DNA is a constant or 6.6 pg of each diploid 
single cell (three billion base pairs multiply two for diploid and multiply 660 for 
molecular weight of each base pair), although about 5 pg per human cell is har-
vested in real experiment. After more than 10 years effort, genomics DNA isolation 
and amplifi cation from single cells are very mature called as whole-genome ampli-
fi cation (WGA) (Table   4  ). Now, three companies [Genomeplex kit (Sigma), Picoplex 
kit (Rubicon), and Genomiphi kit (GE)] are commercially available for genomics 
DNA isolation and amplifi cation for single cells as, respectively, delineated by 
Fiegler et al. in 2007 [ 20 ], Kurihara et al. in 2011 [ 21 ], and Pan et al. in 2008 [ 22 ]. 
All three products work very well for genomic DNA amplifi cation although there 
are some subtle differences such as base pair length and PCR amplifi cation tech-
niques (see Table   4  ) and although some scientists prefer to perform MDA (Multiple 
Displacement Amplifi cation) from the product to process DNA of single cell.

Single-Cell NGS
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   The quantity of mRNA in a single cell is greatly different, 1.0–20 pg (about 
5 × 10 5 –10 × 10 7  molecules) based on the cell size, cell function, and cell differenti-
ating stage as described by Ambion in 2004 [ 23 ]. Although some scientists try to 
isolate RNA from single cells, most of scientists prefer to use a crude cell lysate 
without purifying procedures as reported by Klebe et al. in 1996 [ 24 ]. This protocol 
has two important advantages. First, it ruptures the cells and releases the RNA 
directly into a cell lysis buffer without loss of RNA. Moreover, the heating step to 
rupture cells inactivates endogenous RNase for protecting RNA from degradation. 
Theoretically, mRNA amplifi cation should be applied in single-cell genomic tech-
nique. Now, four mRNA amplifi cations strategies have been developed into single- 
cell RNA-Seq. Their performances with their amplifi cation mechanism, primers 
design, and PCR product sizes are listed in Table  4 : Smart-Seq (switching mecha-
nism at the 5′ end of the RNA transcript), STRT techniques (single-cell tagged 
reverse transcription), CEL-seq, and Tang’s method, as respectively reported by 
Ramsköld et al. in 2012 [ 25 ], Lobo et al. in 2009 [ 26 ], Hashimshony et al. in 2012 
[ 27 ], and Tang et al. in 2009 [ 28 ]. Here, two basic mRNA amplifi cation principles 
will be fi rst launched: mRNA amplifi cation (aRNA) and PCR-based cDNA ampli-
fi cation. The aRNA procedure begins with total RNA or poly(A) + RNA that is 
reversely transcribed using an oligo (dT) primer containing a T7 RNA polymerase 
promoter sequence. After fi rst-strand synthesis, the reaction is treated with RNase 
H to fragment the mRNA. These fragments serve as primers during a second-strand 
synthesis reaction that produces a double-stranded DNA template for transcription. 
rRNA, mRNA fragments, and primers are removed before using the cDNA tem-
plate to produce linearly amplifi ed aRNA. The amplifi cation yields can reach 
1,000- to 5,000-fold following two rounds of in vitro transcription. RNA amplifi ca-
tion is commercially available and has been increasingly reported in gene expres-
sion studies as described by Eberwine in 1996 [ 29 ]. PCR-based amplifi cation has 
two protocols: specifi c profi le and global profi le applications. Specifi c profi le 
methods such as RT-PCR or multiplex RT-PCR reactions are sensitive at the single-
cell level, especially in nested PCR. Because the genes studied using these methods 
are preselected, it can only be applied to known genes. Global PCR-based 
approaches have been developed in genomic analysis. Two approaches are com-
mercially available, homomeric tailings and 3′-(3-primer-end) amplifi cation 
(TPEA). The homomeric tailings as designed by Toellner et al. in 1996 [ 30 ] use 
terminal deoxynucleotide transferase-generated homomeric 3′ tails to the fi rst-
strand cDNA. After RT-PCR and 3′ tailing addition and PCR amplifi cation, it has 
been applied to the analysis of single-cell global gene expression. Even though 
homomeric tailings can be used effectively in global profi le analysis, many of the 
cDNA copies are not full length and shorter cDNAs are preferentially amplifi ed. 
3′-end-amplifi cation (TPEA) as reported by Dixon et al. in 1998 [ 31 ] is a random-
ized amplifi cation of mRNA using an oligo-dT primer together with a 5′ primer 
containing a random pentamer. It can enable the detection of both high- and 
 low-abundance mRNA transcripts from single cells.   

Single-Cell NGS
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3     Single-Cell Next-Generation Sequencing 

3.1      Single-Cell DNA-Seq 

 Routine genomic DNA performance including next-generation sequencing and SNP 
microarrays requires suffi cient and high-quality DNA. For single-cell genome analy-
sis, as previously discussed, a special process termed whole-genome amplifi cation 
(WGA) is added as illustrated in Fig.  1a . The WGA process can amplify the whole 
DNA population producing large amounts of DNA from a single cell whose quantity is 
comparable to routine genomic DNA. Due to the exponential amplifi cation, three chal-
lenges will be created in the amplifi cation process: amplifi ed sequence bias during 
WGA, genetic material contamination caused by heterogeneous amplifi cation, and 
genomic dropouts caused by tiny DNA materials as described by Gole and Gore in 
2013 [ 32 ]. To overcome the three obstacles, each step of the process must be performed 
under quality control (QC) with Good Management Practice (GMP) compliance.  

 After performing single-cell sampling and WGA from target cells, high- 
throughput sequencing using WGA DNA is carried out using routine genomic 
DNA-Seq, which is briefl y elaborated as follows. After the genomic DNA library is 
prepared, genomic DNA is fragmented and purifi ed for enzymatic processes such as 
DNA end repair, A-tailing, adaptor ligation, DNA fragment size selection, and DNA 
fragment amplifi cation. Following library amplifi cation, the library is quantifi ed 

Single-cell sampling

Cell direct-lysis with DNA
denaturation

Whole-genome
amplification (WGA)

WGA DNA fragmentation

Sequencing library

NGS

Single-cell sampling

Cell direct-lysis with RNAse
denaturation

mRNA amplification by
design

Amplified cDNA with
fragmentation

Sequencing library

NGS

a b

  Fig. 1    The diagram of next-generation sequencing procedure: ( a ) Single-cell DNA-Seq work-
fl ow: after single-cell sampling and whole-genome amplifi cation and fragmentation, library is 
quantifi ed and is submitted to the sequencer; ( b ) single-cell RNA-Seq workfl ow: after single-cell 
sampling and whole-genome amplifi cation by design and fragmented, library is quantifi ed and is 
submitted to the sequencer       
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using real-time PCR and a predetermined amount of DNA library is submitted to 
the sequencer. The exact protocol of all of these steps is described in different NGS 
systems by Landau et al. in 2014 [ 33 ].  

3.2     Single-Cell RNA-Seq 

 Routine RNA-Seq provides accurate quantifi cation of mRNA expression levels with 
entire transcript lengths. Routine sampling for RNA-Seq is largely based on traditional 
molecular biological protocols including the basic steps of poly-(A) + RNA isolation, 
fragmentation, reverse transcription, and amplifi cation before the actual sequencing 
takes place. The selection of poly-(A) + RNA is usually performed in order to suppress 
rRNA and tRNA. The fragmentation step is carried out in order to produce many short 
RNA or DNA fragments that represent the original transcript. 

 Following the basic principles of transcripts amplifi cation discussed previously, 
four strategies of mRNA amplifi cation for single-cell RNA-Seq have been developed 
into the single-cell level: Smart-Seq (switching mechanism at the 5′ end of the RNA 
transcript), STRT (single-cell tagged reverse transcription), CEL-seq, and Tang’s 
amplifi cation. After performing single-cell sampling and transcripts amplifi cation 
and fragmentation, high-throughput RNA-Seq is performed using routine RNA-Seq. 
As DNA-seq performance, after a genomic RNA library is prepared, genomic frag-
ment is purifi ed for enzymatic processes such as end repair, A-tailing, adaptor liga-
tion, library fragment size selection, and library fragment amplifi cation. The library 
of accurate quantity is also measured by real-time PCR and then accurate amount of 
library is submitted to the sequencer as shown in Fig.  1b . The detailed protocol of 
NGS is described in different NGS platforms by Panagopoulos et al. in 2014 [ 34 ].   

4     Single-Cell NGS-Related Bioinformatics 

 Next-generation sequencing (NGS) is a radical breakthrough at whole-genome 
level, offering unprecedented data depth not found in previous Sanger sequencing 
technology. A number of NGS platforms are developed based on different sequenc-
ing technologies, the details of which are beyond the scope of the work. Here, we 
simply highlight that all NGS platforms perform a common task that is to sequence 
millions of small fragments of DNA in parallel. Consequently, each of several bil-
lion bases in the target species or disease genome is sequenced multiple times, lead-
ing to a high level of data depth and accuracy. By making use of appropriate 
bioinformatics analysis tools, these fragments of data can be pieced together 
whereby individual reads are mapped to a species-specifi c reference genome. The 
mapped genome is highly sought after as it may shed light on the unexpected DNA 
variation or the quantity of RNA expression. In this section, we will focus our dis-
cussion on bioinformatics analysis related to single-cell NGS, to be more limited, 
single-cell DNA and RNA sequencing. 

Single-Cell NGS
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4.1     Single-Cell DNA-Seq Bioinformatics 

 As discussed in Sect.  3.1 , single-cell DNA-Seq faces three obstacles (amplifi ed 
sequence bias, genetic material contamination, and genomic dropouts). These    
obstacles make the single-cell DNA sequencing data inaccuracy. The impaired 
single- cell sequence data cannot be analyzed by most bioinformatics tools devel-
oped for bulk cell sequencing. To tackle this problem, some new bioinformatics 
tools have been designed for analyzing single-cell sequencing following the erup-
tion of single-cell sequencing data. In this section, we will describe the applications 
of single-cell bioinformatics in analyzing single-cell WGS or WES. 

 Theoretically, single-cell sequencing data open up an opportunity to study gene-
alogy of an individual tumor cell. The genealogy of the tumor cell unveils the com-
plete picture from the earliest signs of mutation until accumulated heterogeneous 
tumor. If the mutation pedigree is constructed in a systematic manner, any unrelated 
lineage can be easily identifi ed. In early model, Navin and his colleagues performed 
copy number variation analysis on breast tumors using low coverage single nucleus 
sequencing as reported in 2011 [ 35 ]. Their study aimed to explain clonal evolution 
of the tumors. They constructed a phylogenetic tree based on sample cell numbers 
and subpopulations based on the distances in the tree between the samples. 
Following Navin’s analysis, Hou et al. used exome sequencing data from 58 single 
cells of an essential thrombocythemia (ET) tumor and Li et al. utilized exome 
sequencing data from 66 single cell samples of a bladder transitional cell carci-
noma, respectively, to perform mutation to study subgroup of the samples in 2012 
[ 36 ,  37 ]. All of these studies clearly illustrated clonal evolution using single-cell 
sequencing. In 2014, Kim and his colleagues continued working on the model of 
mutation pedigree including temporal and lineage relationships among DNA 
sequence mutation sites. They applied their algorithm in an 18-sites map as a lin-
eage [ 38 ] which Dr. Hou had previously identifi ed as lineage family in their single- 
cell sequencing dataset so that Dr. Kim proposed a new method to construct 
evolutionary mutation tree, which could indicate the temporal order relationship 
between mutation sites. They also proposed a method for estimating the proportion 
of time starting from the earliest mutation event and from the emergence of most 
recent common ancestor, respectively, toward the end of mutation. In conclusion, 
many new bioinformatics tools designed can be used to analyze single-cell DNA 
sequencing data as illustrated in Fig.  2 .   

4.2     Single-Cell RNA-Seq Bioinformatics 

 On top of the usual RNA-seq processes, single-cell RNA-Seq performance requires 
two additional processes: single-cell sampling and RNA amplifi cation. Although 
four techniques of RNA amplifi cation available from company products have been 
developed for RNA-seq, sensitivity and specifi city of genomic expression after 
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RNA amplifi cation have been carefully analyzed by our scientists. Our single-cell 
RNA-Seq technique from CD8 cell of tumor-infi ltrating lymphocytes (TILs) dem-
onstrated that fragments were 250–450 bp after fragmentation, amplifi cation, and 
adapter addition. There were 11.6 million reads mapped in raw sequencing reads 
(19.6 million). The numbers of mapped genes, mapped transcripts, and mapped 
exons were 31,332, 41,210, and 85,786, respectively. All QC results illuminated 
that RNA-seq techniques could be used for single-cell genomic performance. 
Analysis of the mapped genes showed that the number of genes mapped by RNA- 
seq (6,767 genes) was much higher than that of differential display (288 libraries) 
among similar specimens which we had previously developed. The single-cell 
RNA-Seq can detect gene splicing using different subtype by using TGF-beta anal-
ysis. The results using Q-RT-PCR assays demonstrated that sensitivity was 76 % 
and specifi city was 55 % from the single-cell RNA-Seq technique although some 
gene expression was still missing (2/8 genes). Therefore, the results support that 
RNA-Seq technique is feasible to analyze single-cell mRNA specimens as described 
by Xu et al. in 2013 [ 39 ].   

CBA

Cell Number increase

Pseudo-change Pseudo-change Pseudo-change

Root

Pseudo-change

Mutation
tree

Pseudo-
change

ET cell
Subgroups

BC cells
Subgroups

Root and
branches 

Mutation
tree

Pseudo-
change

Navin model Hou model Kim model    Li model

  Fig. 2    Four models of single-cell NGS to detect DNA informative change and pseudo-change. 
Navin model is to study clonal evolution of mutation tree from A to C according to enhancement 
of tumor cell number from A to C related with mutation order pattern and pseudo-change based on 
unrelated information; Hou model is to use Principle Component Analysis (PCA) as model: 
PCA-1 as  x -axis and PCA-2 as  y -axis,  blue spots  from normal cells and  red spots  from tumor cells, 
all exome sequencing data from 58 single cells of an essential thrombocythemia (ET) tumor to 
study ET cell mutation subgroups; Li model is to utilize mutation pattern in heat map to study 
mutation subgroup from 66 single cell samples of a bladder transitional cell carcinoma, in which 
N is control from normal cell, A is mutation pattern explained as earliest cell, B is second, and C 
is third described as continuance pattern with column indicating different genes,  red  is higher fre-
quency mutation and  green  is lower mutation frequency; Kim model is working on mutation pedi-
gree among DNA sequence mutation sites in which they have 18 sites defi ned as branches (total 18 
sites from site-A to site-R although the fi gure show only from S-1 to S-4). They can map root to 
branches including mutation tree and pseudo-change       
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5     Single-Cell NGS Application 

5.1     Pathological Diagnosis 

 The pathologic diagnosis of tumors relies on cell morphology, tumor cell arrange-
ment, and its infi ltrating into normal tissue. The diagnosis of cytogenetics depends on 
chromosome structure with its number and arrangement change. Following the devel-
opment of single-cell techniques, a new term, “Single-Cell Diagnosis,” has arisen in 
disease diagnosis in which single-cell genomic diagnosis is involved in molecular 
pathology and genetics, especially for tumor diagnosis. Now, single-cell genomic 
diagnosis can be applied for many clinical specimens, such as surgical specimens, 
biopsy specimen, and tumor cell from circulating blood. Single-cell genomic analysis 
and diagnosis have much more advantages than other diagnosis. For instances, along 
with genomic analysis from tumor cells, genomic data can convert pathological 
changes of tumors into biomarker discovery; in pace with genomic analysis, single-
cell genomic analysis can link tumor diagnosis into targeted therapeutics so single-
cell genomic diagnosis can be used for personalized therapy; in addition, single-cell 
genomic analysis and diagnosis can be developed for several other applications such 
as study of mechanism of tumorigenesis as explained by Macaulay et al. in 2014 [ 40 ]. 
Single-cell NGS of cancer diseases is one of earliest applications for next-generation 
sequencing. Because single-cell NGS plays a very important role in cancer biomarker 
discovery and personalized therapy, now, Genomeplex kit from Sigma Inc, Picoplex 
kit from Rubicon Inc., and Genomiphi from GE all participate in the research and 
development of single-cell NGS related to genomic analysis and diagnosis such as 
single cell from slides or single cell from circulating blood of tumor disease.  

5.2     Biomarker Discovery 

 Early diagnosis and treatment is an important impact to reduce the mortality of 
tumor disease. Currently, some of screening tools (CT, X-ray, mammography, and 
invasive needle or surgical evaluation for cancer disease) are not sensitive enough 
for early detection of the diseases, thus some of tumors cannot be treated at an early 
stage. Theoretically, if some special biomarkers can defi ne each type of tumor cells, 
it should be the best way for early diagnosis although it is diffi cult to defi ne now. 
Genomic technologies have allowed scientists to discover some special biomarkers 
from thousands of gene expression profi les and evaluate functions of special bio-
markers to obtain a global view of tumor cells. After tumor cells are defi ned on 
slides or after tumor cells are harvested from circulating blood, single-cell genomic 
diagnosis is a rational module to defi ne the tumor biomarkers. Single-cell RNA-Seq 
has been begun to apply for biomarker discovery including their therapeutic target-
ing. Now, Single-Molecule Real-Time (SMRT), third-generation sequencing has 
been successfully applied for biomarker discovery from glioblastomas as delineated 
by Meldrum et al. in 2011 [ 41 ].  
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5.3     Therapeutic Targeting Identifi cation 

 Recent development of cancer research has enabled scientists to understand the differ-
ence of certain type of cancers to respond to chemotherapy analyzed by    single- 
nucleotide polymorphisms (SNP) and genome-wide association studies (GWAS). 
GWAS analysis, one of genomic medicine, emphasizes different responses of drugs 
in a certain SNP, called as pharmacogenetics. Because    SNP is the information archive 
but most of the FDA compounds and drugs are directed at phenotype alteration (such 
as RNA or proteins), not direct to DNA archives, the phenotype products of genotype 
change have also a great impact on the genomic medicine. Now gene expression pro-
fi les related network are used to uncover genomic expression signature (GES, previ-
ously called as therapeutics targeting identifi cation, TI) to discover sensitive drugs, 
broadly called as pharmacogenomics. According to both concepts, drug discovery 
based on either GWAS or genomic expression signature related network is increas-
ingly developed in treatment of drug-resistant tumor diseases as discussed below. 

5.3.1      GWAS Related with Therapeutic Targeting 
and Personalized Therapy 

 Cancer stem cells (CSCs) and drug-resistant tumor cells mixed in tumor tissues play 
an important function in the tumor development and progression. CSCs drive the 
metastatic spread of cancer and are able to resist conventional therapies so that the 
disease is diffi cult to be completely eradicated. If a specifi c mutant or fusion pro-
tein, which results in tumor development or resistance of conventional therapy, can 
be uncovered by GWAS analysis, a specifi c targeting compound or Ab to target this 
mutant or fusion protein will offer a new therapeutic tool to treat drug-resistant 
tumor cells. According to this concept, several special antibodies and compounds to 
these mutant or fusion proteins have been routinely used to treat drug-resistant 
tumors called as molecular therapy or targeted therapy (or one kind of personalized 
therapy) as illustrated by Guan et al. in 2012 [ 42 ]. Single-cell DNA genomics can 
defi nitely uncover mutant and fusion proteins by GWAS analysis. Now single-cell 
NGS-related GWAS analysis is being developed in the tumor cells from slides or 
from circulating blood of tumor disease.  

5.3.2     Network Related with Personalized Therapy 

 In clinical fi elds, besides GWAS-related personalized therapy as discussed in 
Sect.  5.3.1 , genomic (or proteomics) expression profi le, a second module of person-
alized medicine of special therapeutic strategies, is going to extend into different 
diseases. The personalized medicine is directly tailored for physicians to prevent 
and care individual patient relying on personal genomic expression profi les. It is 
often called as “the right treatment for the right person at the right time.” All exam-
ples of successful personalized treatments require a rational clinical genomic 
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expression analysis based on R&D of clinical genomic expression diagnosis, and 
we have successfully established a bioinformatics module from genomic expression 
profi le for personalized therapy in 2008 [ 43 ]. The module included mRNA genomic 
expression profi le mined from a specimen, genomic expression signature discov-
ered by quantitative network, and sensitive drugs uncovered from drug bank. Now, 
after Single-Molecule Real-Time (SMRT), a third-generation sequencing, is brought 
into the new fi elds, single-cell genomic diagnosis (such as single cell from slides or 
single cell from circulating blood) related with discovery of genomic expression 
signature will make great contribution for the personalized therapy.  

5.3.3     Network Related with Personalized Immunotherapy 

 Personalized immunotherapy is a major breakthrough in cancer immunotherapy 
including genetically engineered T cells by chimeric-antigen-receptor to kill own 
tumor cells, using own tumor cells to develop a personalized vaccine to kill own 
tumors, and activating T-cells quiescent network using own T-cells to kill own can-
cer cells. CD8 cells from tumor infi ltrating lymphocytes (TILs) can directly and 
specifi cally recognize and kill own tumor cells after they are activated and expanded 
ex vivo. If the cells, which have been attached to tumor cells and will recognize own 
specifi c tumor antigen, are harvested by single-cell technique, the single-cell 
genomic profi les will play an important role in a personalized immunotherapy. We 
have studied single-cell genomic profi les from TILs for more than 10 years. 
According to concepts of immunology and tumor immunotherapy, CD8 cell of TILs 
has two obvious advantages: (a) the CD8 T-cells have function of MHC class I to 
access tumor cells; (b) the CD8 T-cell is specifi cally recognizing tumor antigen to 
kill tumor cells. If we uncover genomic profi les related to the specifi c CD8 cell from 
TILs which has been specifi cally accessing tumor cells obtained by single-cell tech-
nique, the genomic profi les can decode CD8 cell quiescence. Under culturing the 
TILs ex vivo combined with dequiescence and with specifi c function activity by 
network analysis in silico, the cultured TILs have much stronger function to kill 
tumor cells. As we all know, CD8 T-cell is an earliest cell model to be developed by 
single-cell genomic technique. In order to develop personalized immunotherapy to 
treat tumor diseases, we have developed single-cell genomic techniques from single- 
cell differential display, single-cell microarray until single-cell NGS as reported by 
Zhang et al. in 2009 [ 44 ]. Now, single-cell NGS-related quantitative network is 
being developed in personalized immunotherapy to treat advanced tumor diseases.   

5.4     Tumorigenesis Related to Cancer Stem Cell 

 As discussed earlier, single-cell NGS can identify the earliest mutations and set 
phylogenetic tree of tumor cells. All of these pedigree trees can address clonal evo-
lution. The earliest mutation site is located at the root and then gradual extension 
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from the root to other sites in the tree. Eventually, the trees can be used to estimate 
the earliest mutation event of the tumor to the most recent common ancestor 
(MRCA) of the cells. Because very early CSCs have very few cells, the CSCs defi -
nitely require single-cell NGS to mine genomic change related with pedigree tree as 
described by Jiao et al. in 2014 [ 45 ]. If genomic profi les are discovered to the CSCs 
tumorigenesis, a new generation of therapeutic strategies including GWAS-based 
molecular therapy, personalized therapy, and personalized immunotherapy as all 
discussed earlier will appear in the treatment of tumor diseases.   

6     Conclusion 

 Single-cell techniques with downstream genomic analysis have emerged in applica-
tion of single-cell specimens from glass slides or circulating tumor cell and mixed 
cells tumor tissue. Recently, next-generation sequencing (NGS) has become an 
important tool in single-cell level. According to current R&D of single-cell NGS as 
given in Table  5 , single-cell RNA-Seq has same signifi cant advantages as routine 
RNA-Seq. As single-cell RNA-Seq is adopted to analyze transcriptome profi les, 
reported results include quantitative mRNA expression, RNA splicing, and new 
transcripts. Moreover, if RNA-Seq data using BWA platform mapping with GATK/
Samtool analysis, which compare DNA reference and SNP reference of genome, are 
utilized to analyze the genomic profi les, they also can uncover SNP, deletion, and 
insertion in the exome region, so that results of single-cell RNA-Seq are much better 

   Table 5    Comparison of single-cell genomic techniques   

 Genomic types  Methods  Advantages  Disadvantages 

 mRNA 
transcriptome 

 Single-cell NGS  Genomic expression with 
splicing and exome SNP, 
deletion, and insertion 

 Bias, dropouts, and 
contamination 

 Single-cell 
microarray 

 Genomic expression with 
good model for 
normalization 

 Bias, dropouts, and 
contamination 

 Single-cell 
differential display 

 Genomic expression with 
very good specifi city 

 Bias, dropouts, and 
contamination with lower 
sensitivity 

 DNA genomic 
change 

 Single-cell NGS  DNA level change with 
genetic tree discovery and 
new SNP discovery 

 Bias, dropouts, and 
contamination 

 Single-cell SNP 
microarray 

 DNA level change with 
good bioinformatics 
support 

 Bias, dropouts, and 
contamination with 
limiting known SNP 

 Single-cell ACGH  Chromosome level change 
with good SOP for clinical 
diagnosis 

 Resolution level only for 
chromosome and large 
deletion and insertion 
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than those from single-cell microarray. As most of single-cell genomic techniques, 
single-cell NGS still has three challenges: bias produced by amplifi cation, genetic 
material contamination caused by heterogeneous amplifi cation, and genomic drop-
outs caused by tiny DNA materials. In order to avoid the three problems, single- cell 
performance defi nitely requires a GMP regulation with QC monitor. Technically, 
several single cells such as 5–10 are minimal cell numbers for DNA-Seq and several 
single cells are optimal selection for RNA-Seq due to cell dropout from single-cell 
sampling process. The new genomic technique and its analysis will be developed 
into diagnosis of molecular pathology and cytogenetics of cancer diseases, discov-
ery of differentiation biomarkers of cancer stem cells, and inducing therapy for can-
cer stem cells; furthermore, clinical application of molecular therapy, personalized 
therapy, and personalized immunotherapy for cancer patients.
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    Abstract     Next-generation sequencing (NGS) has great potential to tailor the 
 treatment of patients to their cancer genome alterations. Case reports, retrospective 
analysis of phase I trials, open studies of targeted therapies in population enriched 
in particular genotypes, and series of breast and lung cancer patients have shown 
encouraging clinical outcome for the matching of drugs to specifi c molecular 
alterations. 

 Ongoing clinical trials are testing how NGS of tumors can guide individualiza-
tion of treatment and whether the integration of the NGS into patient care can trans-
late into superior patient outcome. The use of NGS comes with multiple challenges 
such as access to tumor material, data interpretation, and adaptation of regulatory 
frameworks for drugs targeting small population and for complex molecular diag-
nostics. Analytical validation of sequencing platforms and gene panels, access to 
multiple therapies addressing new targets and development of blood-based tests will 
support the expanding role of NGS in drug development and clinical trials.  

1          Introduction 

 The recent and often rapid registration of anticancer drugs that target specifi c pro-
teins from mutated cancer genes on the basis of superior activity in the only patients 
that have the corresponding alterations supports the value of precision medicine. In 
that context, next-generation sequencing (NGS) has great potential for providing 
data on cancer genes for targeting drug prescription to patient’s genetic abnormality 
and for guiding the development of new drugs. This review summarizes the current 
data on NGS in the settings of clinical trials and drug development in oncology.  
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2     Next-Generation Sequencing in the Clinical Setting 

2.1     Process and Interpretation 

 The ability of NGS to interrogate multiple gene sequences is likely to replace more 
standard technologies based on multiplex polymerase chain reaction (PCR) for 
tumor genotyping. The amount of information presently available on cancer 
genomes [ 1 ] and the need to better ascertain cancer genes to predict the activity of 
targeted therapies support the clinical development of NGS which comes with chal-
lenges. Core biopsies of tumors should provide suffi cient quantity of cancer cells. 
Dilution by stromal cells and tumor heterogeneity [ 2 ] requires sequencing with high 
coverage. Technologies for clinical applications must meet the attributes of diag-
nostic tests [ 3 ] and come with robust protocols from sample preparation to analysis. 
Validation of analytical performance metrics [ 4 ] is needed. Orthogonal technologies 
such as Sanger sequencing and high sensitivity PCR or comparison of sequence 
with known reference material should be used for that purpose [ 5 ]. Validation test-
ing has demonstrated false positive variant calls for certain genes with low variant 
frequency in some gene panels [ 6 ]. Quality control metrics need to be determined 
for each step of the process including sample library preparation, fragment amplifi -
cation, sequencing, and data analysis [ 7 ]. These requirements increase the cost of 
laboratory developed tests (LDT) when performed in clinical laboratory improve-
ment amendment (CLIA) certifi ed laboratories in the USA, a setting required when 
the molecular data are used for taking clinical decisions [ 3 ]. Certifi cation and 
accreditation under CLIA regulation ensure that clinical labs meet certain quality 
standards. LDT do not require premarket evaluation or clinical validity. 

 The multiple steps are associated with relatively long “turn around time” from 
tissue collection to data interpretation. High throughput, automation of preparation 
steps, and center experience are likely to reduce the time to results below 2–3 weeks, 
a timeframe acceptable for clinical use. 

 Determining the clinical correlation between genomic variations and alterations 
and phenotypes is a major issue for practical use [ 8 ]. Clinical interpretation is dif-
fi cult in an area where both technologies and scientifi c data are in very rapid fl ux. 
Well-characterized effects of genetic alterations are presently assessed by validated 
technologies that guide the treatment of registered targeted therapies [ 9 ] (Table  1 ), 
and potential therapeutic consequences are far less established for newly discovered 
mutations. The tyrosine kinase inhibitors (TKI) vemurafenib or dabrafenib regis-
tered for the treatment of  BRAF  V600E mutated metastatic melanoma have demon-
strated activity in other  BRAF -mutated tumors such as lung cancer [ 10 ] but not in 
colorectal cancer where the activation of the epidermal growth factor receptor 
(EGFR) pathway [ 11 ] is responsible for TKI resistance. Different mutations may 
activate a tyrosine kinase but available TKI may only work on some of them as it is 
the case for EGFR mutations [ 12 ]. Reports to clinicians need to present the strength 
of evidence for drugs and drug candidates available in clinical trials on top of the 
mutation effect on gene functions and pathways. The interpretation of adequately 
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processed data is an issue due to insuffi cient experience outside of very specialized 
centers. Some centers have set ad-hoc boards with members bringing complemen-
tary scientifi c skills to interpret data and suggest clinical strategies [ 13 ,  14 ], CLIA 
laboratories such as Foundation Medicine Inc. are providing NGS to a broad range 
of physicians such as US community oncologists who order 60 % of the test. The 
consequences of such data fl ow in terms of treatment consequences and patient 
outcome remain to be established by prospective and registry studies (Table  2 ).

     Table 1    US FDA-approved mol   ecularly targeted drugs for solid tumors   

 Drug  Primary molecular target(s)  Main indications 

 Ado-trastuzumab 
emtansine 

 HER2   HER-2  positive metastatic breast cancer (MBC) 

 Afatinib  EGFR, HER2, HER4   EGFR  mutated non-small cell lung cancer (NSCLC) 

 Axitinib  PDGFR, VEGFR  Renal cell carcinoma (RCC) 

 Cabozantinib  MET, RET, VEGFR, KIT, 
FLT3, TRKB, AXL 

 Medullary thyroid cancer (MTC) 

 Ceritinib  ALK   ALK  positive NSCLC 

 Cetuximab  EGFR   RAS  wild type colorectal cancer (CRC), advanced 
head and neck squamous cell carcinoma (HNSCC) 

 Crizotinib  ALK, ROS1, MET   ALK  positive NSCLC 

 Dabrafenib  BRAF  V600E  BRAF  melanoma 

 Dasatinib  BCR-ABL, SRC  Chronic myeloid leukemia (CML) 

 Erlotinib  EGFR   EGFR  mutated NSCLC 

 Everolimus  mTOR  RCC, MBC 

 Gefi tinib  EGFR   EGFR  mutated NSCLC 

 Imatinib  BCR-ABL, KIT, PDGFR  CML,  KIT  positive gastrointestinal stromal 
tumor (GIST) 

 Lapatinib  HER2, EGFR   HER-2  positive MBC 

 Panitumumab  EGFR   RAS  wild type colorectal cancer 

 Pazopanib  VEGFR, PDGFR, KIT  RCC 

 Pertuzumab  HER2  HER-2 positive MBC 

 Regorafenib  VEGFR, RET, KIT, 
PDGFR, RAF 

 Colorectal cancer; GIST 

 Sorafenib  RAF, VEGFR, PDGFR  Hepatocellular, thyroid carcinomas, RCC 

 Sunitinib  VEGFR, PDGFR, KIT, 
RET, FLT3 

 RCC, GIST and neuroendocrine tumors of the 
pancreas 

 Temsirolimus  mTOR  Mantle cell lymphoma 

 Trametinib  MEK  V600E  BRAF  melanoma 

 Trastuzumab  HER2   HER-2  positive breast cancer 

 Vandetanib  VEGFR, EGFR, RET  MTC 

 Vemurafenib  BRAF  V600E  BRAF  melanoma 

 Vismodegib  Smoothened 
(Hedgehog pathway) 

 Basal cell carcinoma of the skin 

   Sources :   http://fda.gov-cancer.gov     
 Texts in bold represent molecular marker for prescription  

Utility of Next-Generation Sequencing in Cancer Drug Development and Clinical Trials

http://fda.gov-cancer.gov/
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    Fixed costs are signifi cant in terms of investment and personnel, and come on top 
of variable tumor procurement and reagent costs. They can partly be addressed by 
infrastructure sharing and outsourcing. Reimbursement of NGS under test specifi c 
codes will require demonstration of clinical utility [ 15 ] including the ability to 
replace multiple single gene tests for the prescription of targeted therapies.  

2.2     The Different Types of Genome Sequencing 

 Sequencing of cancer specifi c gene panels is becoming common in academic cancer 
centers and molecular diagnostic service companies. The fi rst gene panels have 
been based on allele-based (genotyping) technologies. They cover a relatively nar-
row numbers of genes and actionable mutations (for example 19 genes and 238 
mutations studied by mass spectroscopy genotyping technology in Sequenom 
Oncocarta V1.0 [ 16 ]). Actionable mutations are mutations with potential clinical 
consequences of prognostic value (to modulate treatment intensity) or of predictive 
value (for the response to a drug). Actionable mutations with potential predictive 
value can be targeted by drugs or be in a pathway in which key other members can 
be targeted. Good examples are available for melanoma, breast and non-small cell 
lung cancers [ 17 ]. 

 The number of studied genes for solid or hematological malignancies in NGS 
panels may vary from about 50–400, or may be smaller with a particular focus on 
specifi c tumor types. In theory, there is no need to sequence the germ-line DNA to 
provide a control for known cancer genes. FFPE tumor material is adequate. Limited 
coverage breadth allows for high coverage depth to detect lower frequency somatic 
variant. Gene panels are supported by the relatively small number of cancer genes, 
being either oncogenes or tumor suppressor genes identifi ed so far [ 1 ,  18 ]. Detection 
of rearrangement is possible with some panels that provide intron baits to capture 
known rearrangement [ 5 ,  19 ]. 

 Whole-genome sequencing (WGS) remains expensive as high redundancy is 
needed to provide suffi cient coverage due to dilution by normal cells and genetic 
heterogeneity. The large body of data is diffi cult to store and to interpret in the clini-
cal setting. Furthermore, WGS should be performed on high-quality DNA that can-
not be obtained from FFPE tissues. WGS is unlikely to be used for clinical 
application in the short to mid-term, despite some pilot studies [ 13 ]. WGS of germ- 
line DNA raises the question whether, how, and which information on disease sus-
ceptibility genes of unclear consequences should be reported to patients [ 20 ]. 
Whole-exome sequencing (WES) requires parallel sequencing of the germ-line 
DNA, but can be performed on FFPE tissues. WES will likely be used for potential 
clinical applications in centers of excellence. The Boston groups recently identifi ed 
15 relevant alterations in 16 patients enrolled in a prospective study [ 21 ]. 

 Transcriptome sequencing provides data on gene rearrangement and splice vari-
ants on top of RNA abundance of mutated genes and drug targets [ 22 ]. RNA expres-
sion also provides information on the microenvironment that plays an important 
role in invasion/metastasis, and resistance to anticancer drugs.   
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3     Early Experience with Predictive Multiple Gene Testing 

3.1     Clinical Data Supporting Potential Value 

 Earlier generation genotyping has been tested on a large scale in multicentric stud-
ies (Table  2 ). The use of those platforms has provided very important information 
on the feasibility of genomic projects and has driven a larger acceptance of collect-
ing tumor material in the context of clinical trials. In the SAFIR 01 trial [ 23 ] that 
enrolled metastatic breast cancer (MBC) patients with metastases amenable to biop-
sies, about 46 % of patients had targetable alterations, but only 13 % receives 
matched targeted therapy emphasizing the needs to use more sensitive detection 
technologies and to access a suffi cient number of targeted drugs. 

 Several large genotyping studies support the value of patient triage to enrol 
patients in phase I or II protocols. The MD Anderson reported its phase I experience 
in 1,144 patients [ 24 ]. Patients who enrolled into a trial of a drug targeting a genetic 
abnormality in their tumor had a higher response rate than with their previous treat-
ment, longer time to treatment failure and survival than patients who enrolled into 
trials of agents for which molecular matching was not possible. The marked differ-
ence of outcome in the context of phase I studies should facilitate the enrolment of 
patients into phase I as more patients have access to molecular profi ling and benefi t 
from trial participation. 

 Phase II trials have tested different drugs with a treatment allocation based on 
molecular profi ling. Table  2  describes the study main characteristics (disease, line 
of treatment, biomarkers, drugs, end points). Nevertheless, protocols may evolve 
[ 25 ] incorporating new data emerging from outside of the trial, technologies and 
drug candidates in rapid fl ux. BATTLE in non-small cell lung cancer (NSCLC) used 
an adaptative design. Randomization to 4 drugs in the fi rst 97 patients was followed 
by an assignment based on multiplex genotyping in the next 158 patients [ 26 ]. This 
fi rst prospective trial has been followed by others in NSCLC due to the number of 
actionable mutations in that disease [ 16 ,  17 ,  24 ]. 

 Individual patients have benefi ted from sequencing information on actionable 
mutations and disease pathways. A case report showed superior sensitivity of NGS 
over cytogenetic techniques to identify the gene rearrangement typical of acute pro-
myelocytic leukemia, a rare leukemia that can be cured by targeted therapy [ 27 ]. In 
other cases [ 28 ], unpredicted and extraordinary activity of a targeted agent has been 
explained by specifi c gene mutations. These cases support what has been recently 
named phenotype to genotype “n of 1 studies” of individual cases. The US National 
Cancer Institute (NCI) is studying such outliers that provide hypotheses for pro-
spective clinical studies [ 29 ]. 

 The largest experience in performing NGS of cancer gene panels is that of 
Foundation Medicine Inc. (  www.foundationmedicine.com    ) in collaboration with 
several academic centers. Genomic DNA can be extracted from FFPE tumors with 
precise guidelines for eligibility [ 5 ]. The technology based on academic work [ 30 ] 
has been optimized and validated to detect more than 5 % of mutant allele frequency 
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of base substitutions and more than 10 % of indels with 99 % accuracy [ 5 ]. The 
company is rapidly increasing the number of captured sequences (from 183 then 236 
and now 343 genes). The platform has potential to discover new actionable muta-
tions, study the profi le of primary vs metastatic tumors or allocate genotype directed 
treatments [ 5 ,  19 ,  31 ]. Foundation Medicine has entered multiple agreements with 
pharmaceutical companies to use the test in clinical trials of targeted agents. 

 Iterative measurement can be provided by NGS of circulating tumor (ct) 
DNA. The low amount of tumor DNA in plasma DNA presently supports the 
sequencing with high redundancy of a limited set of genomic alterations [ 32 ]. 
ctDNA in plasma can be quantifi ed and allowed a more sensitive readout than cir-
culating tumor cells in a series of patients with metastatic breast cancer [ 33 ]. Access 
to ctDNA may provide an integrated view of the cancer genome landscape [ 34 ] in 
the context of tumor heterogeneity [ 2 ]. Serial analysis of ctDNA can track early 
genomic evolution [ 35 ] of metastatic cancer in response to therapy. Quantifi cations 
of allele fractions in plasma identifi ed increased representation of mutant alleles 
with emergence of drug resistance [ 36 ] and support the potential of plasma DNA 
sequencing to study clonal evolution. Of note, ctDNA has potential to detect mini-
mum residual disease and early relapse [ 37 ]. Analysis of circulating tumor cells 
(CTC) will be complementary with the improvements of technologies to isolate 
CTC. As of today, ctDNA has the greatest attribute of ease of collection and high 
throughput analysis [ 37 ].  

3.2     Challenges for Clinical Studies 

 Data on potentially actionable mutations are mostly valuable when targeted agents 
are available (Table  2 ). Those agents may be marketed and their use supported by 
safety data but cost and reimbursement are issues for off-label use (Table  1 ). Off-
label prescription is common (30 %) in the treatment of patients with metastatic 
cancer in the USA [ 38 ] and often reimbursed if supported by accepted (e.g., National 
Comprehensive Cancer Network, NCNN) guidelines. Observational studies using 
quality assured clinical registries are needed to evaluate both activity and safety in 
new indications. Temporary recommendation for use [ 39 ] can provide a framework 
to insure monitoring of activity and safety, and access to reimbursement. 

 Access to tumor material can be an issue for metastatic sites. Studies [ 40 ] have 
reported the risk of major complications (need for hospitalization or surgery) of 
0.8 % after core biopsies of thoracic and abdominal tumors. Improvements in both 
DNA purifi cation and sequencing technologies (“single cell” sequencing [ 7 ]) may 
in the future allow the analysis of cells from fi ne needle aspirates. 

 Tumor subclones (within a tumor and between primary and metastases) create 
challenges for predictive biomarkers. Spatial and temporal variability of validated 
biomarkers such as  HER-2 , hormone receptors,  EGFR  activating mutations and 
 KRAS  mutations is well known and supports deep sequencing of metachronous 
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metastases on top of primary tumors, despite the cost and morbidity of imaging- 
guided core biopsies. Analysis of the primary tumor in patients with metastases can 
presently provide suffi cient information, when the material has been recently and 
appropriately stored and the patient not treated by drugs that may select clonal evo-
lution. Repeated biopsies may be needed to predict and understand resistance to 
targeted therapies and will benefi t from the development of blood-based tests [ 32 –
 34 ].  KRAS  mutant alleles can be detected in the serum before clinical resistance to 
anti- EGFR  antibodies in colorectal cancer [ 41 ]. 

 The integration of the multistep process from genomic profi ling to patient man-
agement [ 8 ,  14 ,  17 ] raises organization issues [ 42 ]. The clinical experience with 
genomic studies has mainly been restricted so far to large academic centers. Smaller 
centers may either use CLIA laboratories with validated LDTs. The diffi culty of 
clinical interpretation and the access to a large pool of patients for clinical trials 
support the collaboration of the different providers. The developments of shared 
platforms as supported by the Institut National du Cancer in France [ 43 ]. Multicentric 
early clinical trials are needed.   

4     Design of Clinical Trials Incorporating NGS 

 Several designs have been proposed to investigate the related role of genetic predic-
tive biomarkers and drug candidates (Tables  2  and  3 ). Availability of well- 
characterized tumor material is mandatory [ 40 ] for patient enrolment. Biopsies 
require institutional review board (IRB) approval and patient consent. The designs 
of the trials are based on the information available on the predictive value of the test, 
and the availability and activity of drug candidates on different targets. Studies pro-
vide different answers on drug effect, biomarker effect, biomarker by treatment 
effect, and the strategic value of complex gene analysis [ 44 ].

4.1       Protocols to Support Drug Activity in Biomarker-Defi ned 
Populations 

 The development of therapies targeting a particular genetic alteration supports the 
inclusion of patients bearing that molecular alteration in enrichment trials [ 9 ,  45 , 
 46 ]. Only patients with a certain molecular-defi ned tumor type are enrolled. This 
strategy increases the power of the trial to demonstrate drug activity. The conse-
quences of selection are the needs to defi ne and develop early the predictive marker 
and to screen a larger population to select adequate patients. Fortunately, the larger 
treatment effect expected from the enrichment on biomarkers with strong credentials 
from early trials reduces the number of patients to be enrolled in a randomized trial. 
Strong activity in single arm trial may also support accelerated US approval, as for 
crizotinib in NSCLC with  ALK  rearrangements [ 16 ]. Enrichment trials have some 
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drawbacks such as limits to refi ne biomarker [e.g., format and cutoff for defi ning the 
biomarker-positive population, as illustrated by the value of fl uorescence in situ 
hybridization (FISH) and immunohistochemistry (IHC) threshold for HER-2 posi-
tivity for the prescription of trastuzumab], and to restrict information on drug effect 
and its label to the biomarker-positive group. 

 Aberration-specifi c but histology-independent trials are referred as basket trials. 
Such trials enrol patients with specifi c markers and not specifi c histologies. The 
activity may not be observed in all tumor types as the effect of molecular aberration 
is possibly disease specifi c. This basket design should ensure a suffi ciently broad 
inclusion of patients with different histologies followed by enrichment in tumor 
types for which early signs of antitumor activity have been shown. A good example 
of this design is provided by the Signature phase 2 studies of Novartis that link eight 
targeted therapies (  http://www.signaturetrial.com    ) to different pathways (alterations 
in more than 30 genes). Seventy patients previously profi led in CLIA laboratories 
will be treated in each trial by a drug for which safety data exist and phase 2 dose is 
defi ned. Protocols exclude indications for which drug activity or lack of activity has 
been demonstrated, or presently studied in phase 3 trials. 

 For more frequent tumors with unvalidated predictive markers, testing of multi-
ple agents in patients that had extensive molecular characterization, allows to vali-
date predictive markers in conjunction with the administration of drugs targeting 
specifi c pathways. Adaptative design strategy can match patients in a second phase 
(BATTLE1 trial in NSCLC [ 26 ]) and close early treatment arms with limited activ-
ity or add new experimental drugs (I-SPY-2 trial in high-risk breast cancer treated 
by neo-adjuvant chemotherapy [ 46 ]). The neo-adjuvant setting is of value to test 
drug combinations as illustrated by the registration of pertuzumab in addition to 
trastuzumab in HER -2  positive breast cancers [ 47 ,  48 ]. Two drugs, carboplatin and 
neritinib (HER-2 TKI) have graduated phase 2 in I-SPY-2 cohorts of triple negative 
and HER-2 positive breast cancer, respectively. 

 Analysis of treatment activity by gene alteration is becoming standard for early 
stage trial. Gene panels are extremely useful in this regard and explain the partner-
ship of pharmaceutical companies with CLIA providers of tests such as Foundation 
Medicine and Illumina. Retrospective analysis by marker is important in the analy-
sis of phase 2 trials of drug candidates with the risks of false positives with multiple 
biomarker testing (need to control the alpha error rate) and selection bias (adjust-
ment for confounders is useful) and false negatives with small trial size. The retro-
spective analysis by marker of randomized trials between two treatment strategies 
provides valuable information if assays can be performed in all or most patients. At 
least two positive studies, a strong biological rationale, access to quality material for 
most patients, a validated test are required to infer causality. These criteria were met 
to demonstrate the activity and restrict the license of anti-EGFR antibodies for the 
treatment of colorectal cancer patients with wild-type ( K ) RAS . 

 In “Randomize all patients stratifi ed by the biomarker” phase 3 trial, a new treat-
ment is compared to standard treatment in all patients and the drug effect is ana-
lyzed by marker presence. This design is used when the evidence for the predictive 
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marker is not suffi ciently compelling to rule out a clinically meaningful effect in 
biomarker negative patients. This design is usually not recommended if the effect of 
the drug is likely restricted to the biomarker positive patients and/or if the biomarker 
has low prevalence, in which cases an enrichment strategy is preferred. There are 
several ways to analyze such trials [ 49 ]: (1) separately in each biomarker positive 
and negative populations, (2) in the overall and in the biomarker positive patient 
population (sequentially or in parallel), (3) in the biomarker positive population and 
only in the negative population, if the drug is active in the biomarker positive group 
(sequential analysis). The statistical plan impacts the size of the trial (allocation of 
the overall false positive error rate) and risk of recommending an ineffective treat-
ment for the biomarker negative subgroup. 

 A particular design (US National Cancer Institute initiative) is the study of 
exceptional and excellent responders to a drug candidate and for whom adequate 
tumor tissue is available for WES [ 28 ,  50 ]. 

 In conclusion, aberration-specifi c histology-independent trials, testing of multi-
ple agents in patients having a particular disease with an adaptive strategy, retro-
spective analysis by biomarker of phase 2 trials, analysis of exceptional responders 
in otherwise negative trials, enrichment trials for biomarkers with very strong cre-
dentials are different and new strategies for early drug development. NGS of gene 
panels are very promising in most of the settings. For late stage (phase 3) trial, spon-
sors can use enrichment trials for biomarkers validated in phase 2, stratifi cation by 
biomarker in randomize all trials for biomarkers with reasonable credentials, or 
perform conventional randomized phase 3. Retrospective analysis of molecular 
alterations (e.g., by NGS) may be valuable to generate correlative data on biomarker 
to be confi rmed in another clinical trial.  

4.2     Protocols to Support the Value of Complex Biomarkers 

 So far, early experience or retrospective analysis of the use of large (Foundation 
Medicine) gene panels [ 4 ,  51 ,  52 ] suggest that about 70–80 % of patients will har-
bor at least one genetic alteration linked to potential treatment options and that 
20–30 % of patients will receive genotype-directed treatments, mostly in the con-
text of clinical trials, with few patients (less than 10 % of the total) achieving objec-
tive tumor regression. 

 Several trials compare the outcome of treatments guided or not by biomarkers 
(Table  2 ). The outcome will likely show a superiority of gene analysis, if a suffi cient 
number of active targeted therapies are available off-label (see Table  1  for a list of 
registered drugs) or through clinical trials, as it was the case in a large retrospective 
series of NSCLC patients [ 53 ]. The number of patients to be enrolled takes into 
account assumptions on the percentage of patients with targetable aberrations, the 
percentage of aberrations for which targeted therapies are already registered, and the 
percentage of aberrations for which drugs can be offered off-label or through clinical 
trials. One out of 4/5 screened patients may be eligible for randomization [ 54 ].   
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5     Development of Drug and Diagnostic Devices 

5.1     Molecular Tests for Drug Prescription 

 Pharmaceutical companies have reluctantly embraced disease segmentation due to 
initial concerns on market potential. The commercial success of orphan drugs, the 
high clinical failure rate of anticancer drug candidates in broadly defi ned population 
and the rapid registration of targeted drugs in biomarker-defi ned patient population 
with high medical needs has dramatically changed the picture. Phase 3 that used 
predictive biomarkers are able to produce the highest relative improvement of over-
all survival and progression-free survival (PFS) [ 55 ]. The new US Food and Drug 
Administration (FDA) legislation of breakthrough therapy [ 56 ] has further acceler-
ated the US development of innovative agents with early sign of clinical activity 
through industry communication with FDA on expedite development programs. 
Demonstrating cost effectiveness through health technology assessment is becom-
ing an important bottleneck beyond registration. High activity supporting high pric-
ing is unlikely to be demonstrated in non-selected patient populations. Regulatory 
authorities [ 57 ] are willing to consider new paradigms in order to facilitate access 
to active drugs for cancer patients with high medical needs, including access to non- 
registered drugs [ 39 ,  58 ] and accelerated or full registration on relatively small open 
trials if the drug candidate is associated with high quality response rates in cancers 
with specifi c gene alterations [ 56 ,  57 ]. 

 These regulatory changes are likely to have a signifi cant impact on the develop-
ment of precision medicine for the treatment of molecularly defi ned tumor subsets. 
The recent simultaneous registrations of drugs and of their companion diagnostics 
in the USA have emphasized the challenges involved in development execution 
which include the number of patients to be screened when few patients are eligible, 
the cost of diagnostic test development, the needed infrastructure to collect and 
process tumor samples and regulatory requirements. The latter in the USA includes 
the desirability to co-develop under investigational new drug (IND) and IDE (the 
equivalent of IND for diagnostic devices) regulations, the drug and the diagnostic 
[ 59 ]. Such predictive test is considered of signifi cant clinical risk [ 3 ] and requires 
premarket approval that comes with expensive analytical and clinical development 
to support the test performance for selecting patients for the corresponding drug. CE 
marking for marketing devices in EU only requires a manufacturer declaration that 
its product complies with regulations and there is not yet a requirement that a com-
panion diagnostic be approved by European Medicine Agency (EMA) before or 
after a corresponding drug is approved. For example, vemurafenib label in mela-
noma for patients with  BRAF  V600E mutation specifi es in the USA but not in EU 
the needs for detection with an approved (FDA) test. A diverse range of proprietary 
and “in-house” tests that are consistent with the marketing authorization are used in 
EU for that purpose. Nevertheless, the proposed new legal framework for CE mark-
ing for class C (high individual risk) in vitro diagnostic will support the checking by 
a notifi ed body of the analytical test and clinical performance and of utility [ 60 ]. 
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 Return on diagnostic investment is and will be supported by large volume of 
screening tests, as payers require a positive predictive test prior to approving reim-
bursement for certain expensive drugs.  

5.2     Registration of Multigene Tests 

 FDA is planning to regulate high risk LDT that guides clinical decisions for severe 
diseases and particularly in the context of personalized medicine [ 61 ]. FDA is con-
cerned that compliance with CLIA regulations alone does not ensure that diagnostic 
devices are safe and effective. CLIA labs do not have to assess quality manufactur-
ing of LDT, and to ensure their analytical validations before clinical use, and mostly 
to assure that LDT have been properly clinically validated. Interpretation of this 
guidance will restrict the number of providers and support the use for drug develop-
ment of the only high risk tests that passed regulatory oversight. Furthermore, mul-
tigene LDT with the same intended use as an approved companion diagnostic (e.g., 
for the testing of  BRAF ,  RAS ,  EGFR , …) will need premarket review. 

 NGS of gene panels raise the issues of validation of tests and molecular diagnos-
tic instruments that have initially been developed for research purposes [ 57 ]. The 
FDA approved in 2013 the fi rst diagnostics using NGS (to detect multiple mutations 
in the cystic fi brosis gene) as well as the Illumina MiSeqDx for development of 
NGS diagnostics, setting the stage for multiple developments [ 62 ]. Assay validation 
is key and should document sequence accuracy, variant accuracy, false positive and 
variant discrepancy rates [ 4 ]. Such requirements may apply to a relatively short list 
of targeted genes [ 63 ] but not to broad scope analysis such as large gene panels or 
WES because of the diffi culty to develop measures of acceptable performance [ 4 ]. 
Main barriers for validation include the absence of bioresources with a large collec-
tion of annotated variants, prohibitive costs, higher sensitivity of NGS compared to 
Sanger sequencing, and the artifacts caused by formalin fi xation in FFPE tumors. 
The latter requires validation in clinical specimens in an end-to-end setting [ 5 ,  63 ]. 
Even if a commercial panel has been extensively validated by its provider, the diag-
nostic laboratory must perform and document an in-house verifi cation procedure 
including third party bio-informatics resources [ 63 ]. 

 The validation by a CLIA laboratory of its panel of 287-cancer-related genes [ 5 ] 
provides a good example of procedures for the detection of base substitution, indel 
and copy number changes, measures of detection performance, comparison with 
other variant calling “approaches” and test platforms, and reproducibility. Analysis 
of 2,221 FFPE specimens provided an overall evaluation of the assay performance 
to detect genetic alterations, possibly targetable across multiple tumor types. 

 Leading US cancer centers are using NGS of gene panels instead of approved 
tests in order to avoid multiple testing. Targeted drugs so far have been developed 
and approved with single gene specifi c tests and the potential of NGS of broad gene 
panels to replace gold standards is presently unclear due to longer turnaround time, 
FDA enforcement on high risk and complex tests [ 57 ,  64 ] and reimbursement 
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 barriers. Nevertheless, FDA is willing to work with diagnostic sponsors to assure 
that NGS will represent the status of the biomarker in the same way as the standard 
technology, as it realizes that a test per drug will rapidly become impractical with 
multiple development efforts converging on the same target and multiple targets 
recognized within a disease entity. Clinical samples with associated outcome will be 
key for that validation [ 64 ]. At the present time, it is likely that companies will still 
develop specifi c gene tests selected out of larger panels used in the earlier phase of 
clinical development. 

 Reimbursement of complex molecular diagnostic tests is still unclear in most 
countries. US insurers often cover LDT performed in CLIA laboratories when they 
are endorsed by established medical organizations such as the American Association 
of Clinical Oncology (ASCO) or NCCN. They support the use of gene expression 
profi ling to guide the adjuvant treatment of breast cancer while cost impacts the 
lower and variable acceptance across European countries (from less than 20 % to up 
to 80 %). EU oncologists quote lack of reimbursement (51 %), price (31 %) but not 
lack of evidence (19 %) as the main reasons for non-utilization [ 65 ]. Cost effi ciency 
for NGS will depend on the number of sample gene tests needed for a particular 
indication and to a lesser extent on the benefi t of multiplexing over multiple single- 
gene tests in terms of sample quantity and to the lesser tolerance to suboptimal qual-
ity DNA. In that context, publicly funded laboratories may serve as regional hub for 
expert and cost effi cient molecular testing in countries like the UK (Cancer Research 
UK;   http://www.cancer.org.uk    ) or France [ 43 ]. The results of the characterization of 
six genes alterations in 10,000 NSCLC patients [ 66 ] illustrate the value of such 
coordination. Those platforms may solve issues of access and reimbursement.   

6     Conclusion 

 Tumor profi ling is changing the development of drugs that target specifi c molecular 
alterations. NGS by providing information on multiple genes is very promising in 
this setting, but comes with challenges in terms of analytical validation and medical 
interpretation. 

 The multiplicity of genomic alterations discovered by NGS supports clinical trials 
of multiple drugs and their combinations, whereas the development and commercial-
ization of those agents and NGS-based tests require new regulatory paradigms. 
Numerous studies are ongoing using recent designs such as enrichment and stratifi ca-
tion on biomarkers, adaptative change in treatment allocation, or study of exceptional 
responders. The recent introduction of Breakthrough Therapy status in the USA has 
already supported the registration of four drugs in 2014. A fi rst NGS platform was 
authorized by FDA for diagnostic use in 2013. Coming regulation of high risk LDT 
will insure higher quality and demonstration of clinical performance. 

 Recent data on the analysis of plasma DNA are very encouraging to detect and 
understand resistance to targeted therapies, and to provide an overall and iterative view 
of the cancer genome in the context of tumor heterogeneity and clonal evolution. As of 
today, cancer gene panels are likely to be the most useful tests for development.     
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    Abstract     During the last two decades, several efforts have resulted in the fruitful 
development of cancer-targeted therapies, which have been approved by the FDA for 
the treatment of solid tumours as well as haematological malignancies. However, the 
rapid emergence of drug resistance remains a fundamental obstacle that limits the 
effi cacy of targeted therapies. Understanding the molecular and biochemical mecha-
nisms underlying the development of acquired drug resistance and the identifi cation 
of predictive biomarkers of drug response and resistance would direct the selection 
of appropriate treatment regimens. Several experimental approaches have been uti-
lised to elucidate the mechanisms of acquired drug resistance. In fact, the rapid evo-
lution of the high-throughput genomics and proteomics technologies has provided 
novel insights into resistant mechanisms. This chapter provides the background of 
cancer-targeted therapies using the EGFR-targeted therapies as examples. It will fur-
ther highlight the most common mechanisms of acquired drug resistance and will 
explain the experimental approaches to studying such mechanisms using the conven-
tional biochemical and molecular techniques along with the high-throughput omics 
platforms. Although considerable challenges remain, the extraordinary insights into 
the biology of cancer therapies have led to the development of milestone combinato-
rial regimens towards more effi cient personalised therapeutic options.  
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1          Introduction 

 The bottleneck of cancer treatment remains a challenge particularly with patients 
presenting to clinical settings in late incurable cancer stages. The current treatment 
regimens to patients presenting with resectable cancer are mainly surgery in combi-
nation with pre- and/or post-operative chemotherapy. In some cases, however, 
patients may need to undergo triplet therapy where radiation therapy is also used in 
conjunction with the aforementioned treatment options. The unspecifi c targeting 
that occurs using these treatment regimens has led to the notion of developing effec-
tive targeted therapies. The modern technological revolution has helped to achieve 
such a goal. Indeed, next-generation sequencing, for example, makes it possible to 
assess mutation, DNA copy number, rearrangement, RNA editing, specifi c allele 
amplifi cation, methylation or transcription with high-throughput robotic platforms. 
This ultimate technology eases the characterisation for both patients and tumour 
genome to aid in developing potential effective targeted therapy.  

2     Next-Generation Sequencing Technologies 

 Identifi cation of widespread genomic alterations including mutations, methylation 
aberrations, chromosomal rearrangements, structural changes and gene expression 
alteration, which drives tumorigenesis, has been possible with recent advancements 
in genomics technologies, in particular, next-generation sequencing (NGS). 
Screening of cancer genome has signifi cantly improved our understanding on 
mechanisms that derive cancer initiation, progression, maintenance, resistance and 
clinical management [ 1 – 4 ]. The NGS technologies provide a comprehensive cata-
logue of genomic and transcriptome sequences within cancer cells. Moreover, 
genomic analyses can allow detection of interpatient and intratumoral heterogeneity 
facilitating treatment decisions for personalised cancer therapy hence improving 
clinical outcomes [ 5 ]. 

 NGS technologies are also known as massive parallel sequencing because of 
their ability to sequence hundreds of millions of DNA fragments simultaneously in 
parallel. The NGS technologies are commonly divided into two platforms: conven-
tional NGS platforms and desktop NGS platforms. The conventional NGS plat-
forms are used for large-scale sequencing studies, such as whole-genome sequencing 
(WGS), whole-transcriptome sequencing and whole-exome sequencing (WES), 
whereas the desktop NGS platforms are used for low-complexity and targeted gene 
sequencing [ 6 ]. The conventional NGS technologies include Roche 454 GS FLX, 
Illumina GA/HiSeq and Life Technologies SOLiD/5500 sequencing instruments. 
On the other hand, Roche 454 GS Junior, Ion Proton, Ion Torrent and Illumina 
MiSeq are examples of the desktop NGS platforms. The NGS technologies utilise 
different chemistries for sequencing, for instance, Illumina (GA/HiSeq/MiSeq) uses 
the reversible terminator chemistry; however, Life Technologies (SOLiD excluding 
Ion Torrent) utilise the DNA ligase enzyme to perform sequencing [ 6 ]. 
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 The increasing need of small panel sequencing of genes in clinical setting to 
identify patients with specifi c mutation has led to the development of many bench-
top NGS technologies. Several studies have evaluated the use of NGS technologies 
as diagnostic tools for Mendelian diseases and cancer [ 7 ,  8 ]. The sequencing 
throughput of benchtop NGS technologies is commonly ranging from 10 Mb to 
1 Gb and reads lengths ranging from 100 to 200 bp which are suitable for clinical 
applications [ 6 ,  9 ]. The benchtop NGS platforms can be exploited for clinical 
screening to identify patients for targeted therapies, monitor responses and disease 
management. Owing to their throughput and quick turnover time, benchtop NGS is 
becoming a powerful tool for targeted gene sequencing, in clinics.  

3     Targeted Therapies for Cancer 

 Despite the inconceivable passion prompted by the potential of personalised cancer 
therapy, several challenges need to be solved along the way before this type of regi-
men can benefi t at least the majority of cancer patients. The implementation of the 
targeted cancer treatment requires a link that connects the characterisation of the 
patient’s genome and changes occurring in their tumour. This connecting link will 
help in identifying biomarkers that refl ect which patients will respond to person-
alised therapeutics. Throughout the past two decades, promising advances have 
been achieved with the emergence of molecularly targeted agents to treatment para-
digms. These include, for example, therapeutic antibodies, small molecule inhibi-
tors and si/shRNA. In fact, some of these therapeutic tools have advanced in clinical 
trials, particularly antibodies and kinase inhibitors. 

 As an established class of pharmaceuticals, monoclonal antibodies (mAbs) have 
been well tolerated to treat a variety of diseases, although their large size (approxi-
mately 150 kDa) and the unavailability of a proper delivery system sometimes 
obscure their effectiveness. Also, the immunologic impact that occurs due to the 
administration of non-human Ab limits their potential use for treatment purposes. 
Obviously, this can be noted when mouse Abs are used where human develops 
human anti-mouse antibodies (HAMA). DeNardo and colleagues reported that 
50–75 % of patients treated with mouse Abs develop HAMA [ 10 ]. The development 
of HAMA led to the notion of reducing the contents of murine mAbs [ 11 ]. Enormous 
efforts have been made to achieve modifi cation, including the use of chimeric mAbs 
with human preserved region, human mAbs preserving only mouse complementar-
ity-determining regions (CDRs), and a trial of fully human mAbs. The progress of 
modifying these mAbs resulted in reducing the use of murine mAbs to nil. 

 From immunoediting of cancer, immunotherapy has progressed notably with 
special emphasis on monoclonal antibodies. It is now very well evident that cancer-
ous cells express distinguishable extracellular surface markers compared to normal 
cells. Obviously, these surface markers can potentially be used as a target for 
 specifi cally designed mAbs. The FDA has approved several mAb products where 
some of them are used specifi cally as cancer therapeutics. Indeed, the approval of 
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the anti-Her2-targeted mAb, trastuzumab, for the treatment of Her2-overexpressing 
breast cancer by the FDA in the late 1998 was a crucial milestone in the era of 
cancer-targeted therapies [ 12 ]. 

 Since then, molecular investigations have revolutionised our understanding of 
several cellular mechanisms occurring in cancer. One obvious key player that 
orchestrates cellular transduction pathways in normal and cancerous cells is the 
epidermal growth factor receptor (EGFR). The overexpression, amplifi cation or 
mutation of EGFR was found in several human malignancies including head and 
neck, breast, lung, colorectal, prostate, pancreas, ovary, brain and bladder carcino-
mas [ 13 ,  14 ]. Triggering EGFR can initiate several mechanistic pathways that may 
contribute to the cancerous transformation such as RAS/MAPK and PI3K/AKT 
pathway [ 15 ]. EGFR has also been reported to act as a transcription factor when it 
is translocated to the nucleus [ 16 ,  17 ]. 

 Because of its crucial role, EGFR has been studied extensively, and several com-
pounds have been used to hinder its activity in cancer cells, including mAbs and 
small molecule tyrosine kinase inhibitors. The specifi cally designed mAbs of EGFR 
bind to its extracellular domain while in an inactive state and, therefore, inhibit 
ligand-induced tyrosine activation [ 18 – 20 ]. The EGFR small molecule inhibitors, 
on the other hand, compete reversibly with the adenosine 5′ triphosphate to bind to 
the intracellular catalytic domain of the EGFR and, consequently, inhibit EGFR 
auto-phosphorylation and block further downstream signalling. However, due to the 
lack of high specifi city in these small molecule inhibitors and their possible interac-
tions with other targets, mAbs were decidedly favourable. There are several mAbs 
that antagonise EGFR function. However, two mAb compounds, cetuximab and 
panitumumab, are widely used as cancer therapies. 

3.1     Cetuximab (Anti-EGFR mAbs) 

 Also known as C225, Erbitux™ is an immunoglobulin G1 (IgG1) human-murine 
mAb. Erbitux mAbs bind to the EGFR ligand with about 2-log stronger affi nity 
compared to the natural ligands TGF-α and EGF [ 21 – 23 ]. Cetuximab binds to 
EGFR and promotes receptor degradation without phosphorylation and activation 
[ 24 ]. As a result, the availability of EGFR receptors will be reduced on the surface 
and subsequently prevents EGFR-associated downstream signalling pathways. It 
has also been reported that cetuximab binds to the mutant receptor EGFRVIII caus-
ing 80 % reductions in its phosphorylation state [ 25 ]. Due to downregulation of 
these essential pathways, cetuximab arrests the cell cycle at G0/G1 and increases 
the expression of the cell cycle regulator p27KIPI. This resulted in the induction of 
apoptosis through initiation of pro-apoptotic proteins such as Bax and/or caspase-3 
or by suppressing the functions of anti-apoptotic proteins such as Bcl-2 [ 26 ,  27 ]. 
Another remarkable effect of using cetuximab is the inhibition of pro-angiogenic 
factor production such as endothelial growth factor and interleukin-8. Inhibiting 
these factors decreases angiogenesis and the development of distal metastases in 
orthotopic cancer models [ 28 ]. 
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 The fi rst cetuximab clinical trials phase I and II illustrated the safety of the com-
pound alone or in combination with chemotherapeutic agents in several malignan-
cies including head and neck, colorectal and non-small cell lung carcinoma [ 29 ,  30 ]. 
In a randomised phase II clinical trial, cetuximab was tested alone and in combina-
tion with irinotecan in patients with refractory metastatic colon cancer. The response 
rate of combining cetuximab with irinotecan was signifi cantly higher (23 % where 
 n  = 218) compared to cetuximab alone (11 % where  n  = 111). The disease control 
was also higher in the combined group versus cetuximab alone, 56 and 32 %, 
respectively. These observations were confi rmed by another report, which investi-
gated the effi cacy and safety of cetuximab as therapeutic agent in metastatic colorec-
tal cancer [ 31 ]. Based on these phenomenal observations, cetuximab was approved 
for the treatment of patients with metastatic colorectal cancer expressing EGFR 
refractory to irinotecan-based chemotherapy. 

 Moreover, EGFR was found to be overexpressed in head and neck cancers. 
A phase III randomised clinical trial using cetuximab was performed on 424 
patients. Patients were categorised into two groups, one group receiving radiation 
therapy alone and the other group treated with radiotherapy supplemented with 
cetuximab. A signifi cant survival difference was obviously noticed at a median 
 follow-up of 54 months (49 vs. 29 months). This report was the fi rst of its kind to 
show a signifi cant difference between using the EGFR mAbs compared to current 
routinely used radiation therapy [ 32 ].  

3.2     Gefi tinib (EGFR Small Molecule Tyrosine Kinase 
Inhibitor, TKI) 

 Non-small cell lung carcinoma (NSCLC) counts for 80 % of lung cancer cases and 
remains the major cause of cancer-related death worldwide. The current treatment 
regimens for this neoplastic disorder remain to be surgery, chemotherapy and/or 
radiotherapy—or a combination of these therapeutic tools depending on the stage of 
the disease and age of the patient. The effi cacy of chemotherapy shows the same 
treatment patterns in a wide range of ages [ 33 ]. However, those who are older than 75 
years may present with more toxic profi les. Therefore, a mono-chemotherapy is pre-
ferred with vinorelbine, gemcitabine or docetaxel instead of platinum doublets, 
although a phase III clinical trial of using carboplatin (monthly) and paclitaxel 
(weekly) may be superior to gemcitabine or vinorelbine in this elderly age group [ 34 ]. 

 Gefi tinib is an orally administered small molecule inhibitor that targets EGFR, 
which has been used in treating NSCLC. In 2004, it was demonstrated that somatic 
mutation of EGFR correlated positively with the responsiveness rate of small 
 molecule inhibitor targeting EGFR in treating patients with NSCLC [ 35 ,  36 ]. In 
Japan, two randomised phase III clinical trials compared the use of gefi tinib with 
fi rst-line chemotherapy in patients presented with NSCLC. In the West Japan 
Oncology Group, gefi tinib-treated patients reported a median progression-free sur-
vival (PFS) of 9.2 months compared to patients treated with chemotherapy 
(6.3 months) [ 37 ]. Another group in north-east Japan demonstrated similar results 
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where patients treated with gefi tinib had PFS of 10.8 months compared to 5.4 months 
for those treated with chemotherapy [ 38 ]. Small molecule inhibitors that target 
EGFR are showing highly promising results and show the potential of using tar-
geted therapy for cancer patients.   

4     The Development of Acquired Cancer Drug Resistance 

 The development of cancer-targeted therapies has resulted in a remarkable relief to 
patients and introduced new treatment regimens to different malignancies. However, 
despite the extensive efforts to develop targeted therapies, the effi cacy of cancer che-
motherapies and targeted therapies is often limited by the rapid emergence of acquired 
resistance and patient relapse after initial response. Several mechanisms of acquired 
resistance have been identifi ed in different tumours as a result of different factors 
including individual factors as well as somatic variations between different tumours. 
One of the common mechanisms involves alterations in the oncogenic pathway that 
enables the cancerous cells to remain addictive to the original oncogene and evade the 
inhibition of the drug target. Moreover, acquisition of drug resistance could be due to 
bypass mechanisms that activate parallel oncogenic pathway(s), which provide an 
alternative survival mechanism to the cancerous cells. However, acquired resistance 
could emerge due to pathway-independent routes as well as the factors arising from 
the tumour microenvironment. Genetic alterations such as the development of sec-
ondary mutation in the drug target and/or mutations of downstream effectors, loss of 
the cell surface receptor, translocation of the receptor as well as epigenetic modifi ca-
tion have also been involved in the emergence of acquired resistance to cancer thera-
pies. Furthermore, cancer cells could develop a phenomenon known as a multidrug 
resistance in which cells acquire resistance to different structurally and functionally 
targeted therapies. This could be due to several mechanisms such as limiting drug 
uptake, enhancing drug effl ux or altering cell membrane lipid components and there-
fore limiting drug accumulation within the cells. Understanding the underlying 
molecular and biochemical mechanisms behind the development of the acquired 
drug resistance will aid in designing novel strategies to prevent the development of 
drug resistance, overcome resistance and improve the therapeutic outcomes.  

5     Experimental Approaches to Investigating the Underlying 
Mechanisms of Cancer Drug Resistance 

 Extensive efforts have been made during the last decade to investigate the mecha-
nisms of acquired resistance to different targeted therapies including the mAbs and 
TKIs in different cancers. Several approaches, including the use of both in vitro and 
in vivo preclinical models as well as profi ling of patient tumour samples, have been 
utilised to characterise the mechanisms of their resistance. 
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5.1     In Vitro Study of the Mechanisms of Acquired Drug 
Resistance in Tumour Cell Lines 

 Different methods have been used for the in vitro development of the acquired drug 
resistance (Fig.  1 ). One of the most common in vitro approaches involves the devel-
opment of acquired drug-resistant clones derived from their parental cell lines by 
the continuous exposure of parental drug-sensitive cells to increasing concentra-
tions of the drug until they become drug refractory and lose their sensitivity. This is 
followed by the comparison of the parental cells and the emerged drug- resistant 
subpopulations to identify the genetic, epigenetic, molecular or biochemical altera-
tions that might contribute to their resistance. Mutations or amplifi cation of the drug 
target is commonly involved in acquired drug resistance. For example, DNA 
sequencing of the EGFR coding region in both parental DiFi colorectal cancer cell 
line and the derived cetuximab-resistant clones revealed that a missense mutation 
(S492R) in the extracellular domain of EGFR prevented the binding of cetuximab 
to EGFR and conferred resistance to cetuximab [ 39 ].  

  Fig. 1    In vitro development and studies of acquired drug resistance. Development of acquired 
resistant cell lines by ( a ) continuous exposure of parental sensitive cells to the drug, ( b ) random 
mutation of the target protein followed by drug selection, ( c ) systematic gain of function screen 
using open reading frames (ORF) and ( d ) systematic loss of function screen using shRNA librar-
ies. This is followed by functional studies using different biochemical, molecular, proteomics, 
genomics, transcriptomics and epigenomics approaches to identify the mechanism(s) of acquired 
drug resistance       
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 Biochemical studies of the drug target protein or pathway have also been used to 
identify the mechanisms of acquired drug resistance. In a model of acquired 
cetuximab- resistant NSCLC, Wheeler et al. [ 40 ] have found an increase in steady- 
state EGFR expression in the acquired resistant NSCLC clones compared to their 
parental cells that was associated with the deregulation of EGFR internalisation and 
degradation. Furthermore, investigating the crosstalk between the target protein and 
other members of the same family of proteins or other related proteins and/or path-
ways has been used as another approach to identify the mechanisms of acquired 
resistance in vitro. The identifi cation of such crosstalk could be focused on a par-
ticular protein/pathway such as the study by Bianco et al. [ 41 ], which revealed that 
an overexpression of the VEGFR1 receptor in the acquired resistant cell lines to 
different EGFR inhibitors and the inhibition of VEGFR1 using either the multi- 
targeted inhibitor vandetanib or by knockdown VEGFR-1 in the resistant cells 
restored their sensitivity to EGFR inhibitors. A model of acquired trastuzumab- 
resistant cell lines also revealed the involvement of other receptor tyrosine kinases 
that interact directly with Her2, trastuzumab target, and induced their resistant 
trastuzumab treatment [ 42 ]. One of the most common methods is the phospho- 
proteomic profi ling of the human receptor tyrosine kinases and their downstream 
effectors using the commercially available kits such as the human phospho-RTK 
array kit from R&D Systems. The kit is designed to monitor the relative phosphory-
lation status of 49 different RTKs and therefore is a useful screening method to 
detect the activation of other signalling pathways in the resistant clones compared 
to their parental sensitive cells. Using this system, Wheeler et al. [ 40 ] have found an 
activation of different receptors including Her2, Her3 and cMet in acquired 
cetuximab- resistant NSCLC and HNSCC cell lines compared to their parental cells. 

 Another approach is to generate resistant clones by random in vitro mutagenesis 
screen of the drug target and identifi cation of the mutant variants that induce drug 
resistance such as the identifi ed  MEK1  mutations that confer resistance to MEK and 
BRAF inhibitions in BRAF-mutant melanoma cells and tumours obtained from 
relapsed melanoma patients following treatment with MEK inhibitor [ 43 ]. 

 Although such approaches have led to the identifi cation of several underlying 
mechanisms of acquired resistance to cancer-targeted therapies, such focused studies 
could be biased, and their interpretation might be straightforward. The use of high-
throughput profi ling unbiased omics approaches (genomic, transcriptomic, epig-
enomic and proteomic) could extend such studies to identify novel candidate genes 
and pathways that are associated with the acquired drug resistance. For  example, in a 
model of acquired tamoxifen-resistant breast cancer cell line, Huber-Keener et al. 
[ 44 ] have compared the expression profi ling of the resistant cells to their parental cells 
using next-generation RNA-seq. This allowed the identifi cation of the deregulated 
transcripts and their biological functions [ 44 ]. Similarly, the transcriptome profi ling 
of the acquired gefi tinib-resistant NSCLC cell lines using RNA-seq revealed the 
involvement of FGF and FGFR1 as a novel pathway of acquired gefi tinib resistance 
[ 45 ]. Furthermore, Engelman et al. [ 46 ] combined both genome- wide copy number 
analysis and expression profi ling of the acquired gefi tinib-resistant NSCLC cell lines. 
Their study has identifi ed an amplifi cation of the  MET  oncogene, which mediates 
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Her3 activation and subsequent development of gefi tinib resistance. Additionally, 
analysis of NSCLC patient tumours revealed the acquisition of  MET  amplifi cation in 
tumours that acquired resistance while receiving gefi tinib treatment [ 46 ]. 

 Functional genetic screens using systematic large-scale gain or loss of functions 
provide powerful unbiased tools to identify novel mechanisms of drug resistance in 
preclinical models. Loss of function using the genome-wide RNA interference 
(RNAi) screen approach has also been used to identify candidate genes whose sup-
pression could induce drug resistance. This approach involves generation of a 
genome-wide shRNA library targeting hundreds of genes, transfecting the drug- 
sensitive cells with the shRNA library followed by drug treatment, isolation of 
genomic DNA, recovery labelling and hybridisation to DNA microarrays. The use 
of this technique has led to the identifi cation of the role of PTEN tumour suppressor 
gene loss in the development of trastuzumab resistance in the Her2-positive breast 
cancer cell line [ 47 ]. Similarly, using the RNAi screen identifi ed that loss of  CDK10  
induces activation of MAPK pathway through ETS2-driven transcription of  c-RAF  
and loss of oestrogen signalling dependency in breast cancer cells and therefore 
resistance to tamoxifen treatment [ 48 ]. Recently, Huang et al. [ 49 ] have identifi ed 
MED12 as a determinant of response to different cancer drugs including chemo-
therapies as well as EGFR and ALK inhibitors using the RNAi screening approach. 
Loss of MED12 induces activation of TGF-beta signalling that mediates resistance 
to these different therapies through the activation of MEK/ERK pathway. 

 On the other hand, the gain of function by the expression of open reading frames 
(ORF) approach has also been used to identify gene(s) whose overexpression con-
fers resistance to cancer-targeted therapies. Genome-wide expression of about 600 
kinases and kinase-related ORFs in a  BRAF   V600E   melanoma cell line that is sensi-
tive to the RAF kinase inhibitor PLX4720 revealed that COT is a novel kinase that 
induces resistance to RAF inhibition [ 50 ]. Collectively, such systematic functional 
genetic approaches provide promising insights into the identifi cation of novel genes 
and/or pathways that are involved in the emergence of acquired resistance to differ-
ent targeted therapies that will have clinical relevance and lead to the identifi cation 
of alternative therapeutic strategies to overcome drug resistance.  

5.2     In Vivo Study of the Mechanisms of Acquired Drug 
Resistance in Animal Models 

 Investigating the molecular mechanisms underlying the development of acquired 
drug resistance to different cancer-targeted therapies using cancer cell lines has 
resulted in the identifi cation of several resistant mechanisms that have been vali-
dated in patient tumours. However, the non-cell-autonomous factors from the tumour 
microenvironment have been recently recognised as contributors to the development 
of drug resistance and cancer progression [ 51 ]. Therefore, using in vivo models has 
the advantage of identifying the non-cell-autonomous determinants of acquired drug 
resistance (Fig.  2 ). Development of in vivo acquired drug- resistant cells can be 
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induced by treatment of tumour-bearing mice with a drug until they show a mini-
mum response. This is followed by continuous transplantation of the tumour cells 
into new sets of mice and treating them with the drug until one tumour becomes 
refractory and this can be used as a model of drug resistance [ 52 ]. The derived 
in vivo acquired resistant cells can then be used, employing the previously described 
methods to identify the mechanisms of their resistance. Moreover, genetically engi-
neered mice have also been used to validate the fi ndings obtained from the in vitro 
studies. For example, the transgenic model that conditionally expresses 
 PIK3CA   H1047R   variant mammary tumour has been used to study the mechanism of 
resistance to PI3K inhibitors in tumours harbouring this mutational activation on 
PI3K. Genomic and molecular analyses of the recurrent tumours revealed an ampli-
fi cation of  MET  and  MYC  that maintain tumour survival via PI3K pathway-depen-
dent and PI3K pathway-independent mechanisms, respectively [ 53 ]. Using a 
genetically engineered mouse model of EGFR-mutant NSCLC, Politi et al. [ 54 ] 
have detected both  EGFR   T790M   mutation and  MET  amplifi cation in erlotinib- 
resistant tumours after multiple cycles of erlotinib treatment similar to the 

  Fig. 2    In vivo development and studies of acquired drug resistance. ( a ) Tumour-bearing mice are 
treated with drug followed by continuous transplantation into new mice until refractory tumours 
are generated. ( b ) Establishment of patient-derived tumour xenograft (PDTX) models in immune- 
compromised mice followed by drug treatment until the development of refractory tumours. 
Resistant tumours are excised and used for functional analyses as described previously in Fig.  1  to 
identify the acquired drug-resistant mechanisms       
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observations that have been found in erlotinib-resistant lung cancer patients [ 46 ,  54 , 
 55 ]. Overall, these in vivo models provided a powerful tool to investigate the mecha-
nisms of acquired drug resistance that have clinical relevance.  

 Patient-derived tumour xenografts (PDTXs) have recently emerged as preclinical 
models for cancer drug discovery. PDTX can be obtained by collecting fresh patient 
tumour tissue, sectioning it into pieces (about 5 mm 3 ) followed by implantation into 
immune-compromised rodents such as athymic nude or NOD/SCID mice [ 56 ]. The 
fi rst generation harbouring the patient-derived tumours is called F 0  with subsequent 
generations called (F 1 , F 2  … F  n  ). Several tumour-specifi c PDTXs that are biologically 
stable have been established and used as preclinical models with gene expression pat-
tern, mutational status, metastatic potential and drug responsiveness characteristics 
similar to the original tumours and thus provide a more reliable model over the stan-
dard cell line xenograft models [ 57 ]. These models offer a promising tool in the future 
for studying cancer drug resistance and the validation of in vitro data.  

5.3     Studies of Cancer Drug Resistance in Patient Tumours 

 As mentioned above, both in vitro and in vivo models have provided tools that 
uncovered several mechanisms behind the development of acquired resistance to 
different cancer-targeted therapies. However, the main goal of such studies is to 
confi rm such preclinical fi ndings in patient tumours. One of the most common 
translations of the preclinical studies is to confi rm the involvement of a candidate 
gene, protein or pathway in the clinical tumours from patients that were treated with 
a particular therapy using different techniques such as western blotting, PCR, FISH 
analysis and immunohistochemistry to study the changes in gene and protein 
expressions. Therefore, it is highly recommended to obtain both pre- and posttreat-
ment tumours, which will allow the determination of changes over the time of treat-
ment. However, several studies have been confi rmed in archival specimens 
(paraffi n-embedded tissues, fresh frozen tissues or tissue microarrays) that were 
collected posttreatment only. In this case, the expression pattern could be correlated 
with the clinical outcomes and clinicopathological features such as tumour size and 
grade. As mentioned above, the in vitro study of acquired cetuximab-resistant 
colorectal cancer cell lines has led to the identifi cation of  EGFR  mutation in the 
resistant cells but not the parental cells. Deep sequencing of DNA obtained pre- and 
post-cetuximab-treated colorectal cancer patient tumours and revealed that pro-
gressed patients acquired this mutation after treatment [ 39 ]. Similarly, preclinical 
studies of the trastuzumab-resistant Her2 breast cancer cells revealed an increase in 
ADAM10 expression. The ADAM10 expression was associated with decreased 
clinical response of the Her2-positive breast cancer patients treated with trastu-
zumab monotherapy and also correlated with poorer relapse-free survival in a 
cohort of Her2-positive breast cancer patients [ 58 ]. 

 In parallel, the advances in the omics and high-throughput technologies includ-
ing genomic and transcriptomic analyses coupled with high-throughput analyses of 
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gene functions might accelerate the identifi cation of the predictive biomarkers of 
response to a particular therapy as well as the identifi cation of novel resistant mech-
anisms in patient tumours that would guide the oncology treatment decisions. 
Therefore, collecting tumour samples pre- and post-relapse after treatment with a 
particular cancer therapeutic treatment has become an interesting and growing area 
of cancer research. Several prospective clinical trials are being designed to include 
the collection of multiple tumour specimens during the treatment as well as blood 
samples. Pre- and posttreated tumour lesions from a melanoma patient, who received 
RAF inhibitor and developed drug resistance, were subjected to targeted massively 
parallel sequencing of 138 known cancer genes [ 59 ]. Profi ling both pre- and post- 
lesions revealed an activation mutation in  MEK   1C121S  , a RAF downstream kinase, 
in the posttreatment tumour but not in the pretreatment one. Further in vitro valida-
tions confi rmed that  MEK   1C121S   was responsible for the increase in the kinase 
activity and development of resistance to RAF inhibition. In the phase II clinical 
trial (TBCRC001), triple-negative breast cancer patients have been randomised to 
receive cetuximab +/− carboplatin. Gene expression profi ling of pre- and post-
treated tumours revealed an activation of the EGFR pathway in the majority of the 
patients who received the combined treatment, and only a minority showed pathway 
inhibition [ 60 ]. Recently, comprehensive molecular profi ling of the residual tumours 
from 74 triple-negative breast cancer patients after neoadjuvant chemotherapy using 
RNA-seq and digital RNA expression has identifi ed alteration of several targetable 
genes/pathways in the chemotherapy-resistant lesions. This could provide biomark-
ers that guide the selection of adjuvant treatments in order to improve the response 
of triple-negative breast cancer patients to chemotherapy and prevent metastases 
[ 61 ]. Overall, these studies provided genome-wide changes that were associated 
with tumour relapse and illustrated the utilisation of emerging technologies for 
assessing the mechanisms of acquired drug resistance.   

6     Combinatorial Therapies to Overcome Drug Resistance 

 The development of acquired cancer drug resistance arises due to several underly-
ing mechanisms. Comprehensive knowledge of the tumour biology, drug pharma-
codynamics and pharmacokinetics and the underlying mechanisms of drug escape 
mechanisms provide rationales for combinatorial treatments to improve the initial 
response, prolong the duration of response to a particular therapy as well as to pro-
vide alternative therapeutic regimens after the relapse of the initial regimen. 

 Several combinations of targeted therapies or targeted therapies combined with 
chemotherapies have been approved or are under investigation in phase I, II and III 
clinical trials. Early elegant genomic studies of imatinib, ABL TKI, in chronic 
myeloid leukaemia patients identifi ed that a point mutation in the ABL kinase 
domain is associated with the acquisition of imatinib resistance by inducing a reac-
tivation of BCR-ABL signal transduction [ 62 ]. This led to the development of dasat-
inib, ABL kinase inhibitor, [ 63 ] which induced tumour responses in imatinib- resistant 
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chronic myeloid leukaemia patients in phase I clinical trial [ 64 ]. Similarly, studies 
of the mechanisms of resistance to Her2-targeted therapies in preclinical models 
and patient tumours have led to the approval of triple combination (pertuzumab + 
trastuzumab + docetaxel) (NCT00567190) for the treatment of Her2- positive breast 
cancer patients. Although such approaches have resulted in fruitful drug combina-
tions, a complementary approach of systematic high-throughput unbiased screening 
strategies would be highly effective in identifying effective drug combinations. This 
could be achieved by high-throughput screening of drug(s) combinations in large 
panels of cancer cell lines to identify novel regimens of drug combination that 
induce synergistic interaction. Moreover, understanding the mechanistic insights of 
such combinations would help in patient selection using predictive biomarkers. 

 Computational modelling of complex biochemical pathways and the molecular 
mechanisms of drug action by utilising the massive data inputs from the next- 
generation technologies are being used to explain drug resistance and predict poten-
tial drug combinations to overcome drug resistance [ 65 – 68 ]. Integration of a 
large-scale pan-omics approach (genomic, transcriptomic, epigenomic, proteomic, 
etc.) to analyse tumour specimens from clinical trials coupled with systematic func-
tional studies and computational modelling of gene-gene, protein-protein and 
genome-environment interactions and the identifi cation of predictive biomarkers of 
drug response will provide more insights into drug-resistant mechanisms and speed 
the advent of personalised cancer treatment.  

7     Conclusion 

 Advances in the high-throughput NGS technologies and functional genomics have 
accelerated our understanding of cancer biology. Furthermore, utilising these tech-
niques has uncovered several novel mechanisms behind the development of 
acquired resistance to different cancer therapies. However, there are still unex-
plained observations that need to be investigated in order to improve the effi cacy of 
cancer therapies and enhance the clinical outcomes. Achieving such goals requires 
collaborations between academia and the pharmaceutical and biotechnological 
companies as well as funding bodies to develop rationale studies based on strong 
preclinical data to identify the right treatment for every patient (tailored therapy) at 
the time of diagnosis, prolong the response and ultimately cure the patient.     
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    Abstract     Oncology and cancer research are based on the principle that cancers are 
regarded as organ- and tissue-specifi c diseases. One of the central aspects of histo-
pathological tumor diagnostics is to determine the tumor’s anatomic origin and 
other morphological features that are the basis for selecting the appropriate therapy. 
Similarly, research programs are usually also focused on particular cancer entities. 
However, mutational tumor profi ling performed with next-generation-sequencing 
techniques has made it possible to analyze whether this anatomical tumor classifi ca-
tion is valid also on the genetic level. Here, we review recent evidence that substan-
tial similarities exist among tumors across classical anatomic cancer entities on the 
mutational level. We furthermore discuss the implications of these complex muta-
tional profi les and similarity patterns across cancers for diagnostics, research, and 
clinical study design and explain why the comprehensive genomic data should be 
complemented by functional proteomic analyses.  

1          Introduction 

 The organ and tissue specifi city of tumors is the basis of histological diagnostics 
and cancer therapy [ 1 ]. On the one side, the fact that tumors are classifi ed based on 
their anatomic origin has historical reasons, because solid tumors were traditionally 
associated with certain body regions, which was the major diagnostic information 
pathologists provided to clinicians in the early days of cancer medicine. On the 
other hand, the anatomic approach is also supported by the microscopic observation 
that cells usually undergo a continuous transformation from benign to malignant 
morphological properties during oncogenesis. Moreover, tumors often retain mor-
phological features of their tissue origin even after the development of distant 
metastases [ 2 ]. But above all, relying on the identifi cation of the anatomic origin 
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and other histomorphological features, such as the tumor grade, has proven to be an 
effective means of assessing disease prognosis, stratifying patients, and choosing 
the appropriate (chemo-)therapy. Continuous improvement of this approach has led 
to substantial advances in oncology during the last decades and even with the advent 
of individualized precision oncology [ 3 ] has the anatomic cancer classifi cation not 
lost its importance. Molecular alterations that may be exploited therapeutically, so- 
called actionable or druggable mutations, are currently regarded as a refi nement and 
not a replacement of the established tumor classifi cation by the World Health 
Organization (WHO). However, such refi nements are currently based only on rela-
tively few and single genetic alterations [ 4 ], whereas comprehensive next-
generation- sequencing-based [ 5 ] mutational profi ling now allows to measure 
practically all mutations in individual tumors tieing in with the notion that cancer is 
a  genomic  disease, raised already by Theodor Boveri over a century ago when he 
proposed that cancer is caused by chromosomal derangements [ 6 ].  

2     Mutational Similarities Across Cancers 

 The mutational profi ling information obtained through next-generation sequencing 
has made it possible to address the question whether molecular profi les and, in par-
ticular, mutational signatures are in line with the conventional anatomic tumor clas-
sifi cation and whether the latter needs to continue to be refi ned by the additional 
molecular features or replaced by a novel genetics-only-based tumor classifi cation 
that no longer requires tumors to be classifi ed histologically, i.e., according to their 
organ- and tissue-origin (Fig.  1 ). Studies on selected cancer entities have already 
provided evidence that genetic similarities exist among certain breast, endometrial, 
and ovarian cancers [ 7 – 9 ]. The comprehensive molecular profi ling data now avail-
able for thousands of tumors [ 10 ] from different cancer entitites through projects 
such as The Cancer Genome Atlas (TCGA) or the International Cancer Genome 
Consortium (ICGC) allow for a more systematic evaluation of the mutational pat-
terns across all major cancers and several studies have recently investigated this 
issue from different perspectives. A study by Alexandrov et al. [ 11 ] has found 20 
distinct DNA sequence signatures that are defi ned by different patterns of nucleo-
tide substitutions that recur in 30 different cancer types including various carcino-
mas, brain tumors as well as hematological malignancies and melanoma. While 
some gene sequence signature compositions are enriched in certain cancer types 
and therefore refl ect the classical anatomic cancer classifi cation many tumors of the 
same type differ substantially with respect to these signatures.  

 Other studies do not consider alterations based on the detailed DNA sequence 
changes as in the above study by Alexandrov et al., but defi ne signatures based on 
sets of mutated genes. Ciriello et al. [ 12 ], for instance, analyze over 3,000 tumors 
from 12 cancer types available at TCGA and describe signatures based on genes 
with somatic mutations, copy number variations and methylation events and 
observe alterations enriched in either somatic mutations (M) or copy number varia-
tions (C) depending on the cancer type. Ovarian and breast cancer, for instance, are 
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characterized mainly by copy number variations tumors, whereas kidney cancer 
and colorectal cancers belong to the simple somatic mutation group. Based on these 
fi ndings they propose a novel genetic tumor classifi cation that divides tumors into 
the two top-level classes M (simple somatic mutations) and C (copy number varia-
tion) tumors and the subclasses M1–M8, M9–M14, M15, M16, M17 as well as 
C1–C6 and C7–C14 indicating different signaling pathway modules associated 
with the different mutational profi les. Classes M9–M14, for instance, correspond to 
different sets of genetic alterations in the Wnt and MAPK signaling pathways, 
whereas classes C9–C11 indicate enrichment in copy number variations affecting 
MYC- driven proliferation signaling. 

 In a complementary analysis [ 13 ,  14 ] of TCGA data we studied over 4,700 
tumors from 14 cancer types and computed a systematic similarity map on the level 
of simple somatic mutations (comprising non-silent insertions, deletions, and sub-
stitutions) to systematically explore to what extent mutational patterns are in line 
with the conventional organ- and tissue-based tumor classifi cation. For each of the 
over 4,700 tumors we searched for the most similar tumor in terms of the mutational 
profi les using a mutation concordance measure and found that, on average 43 % of 
all tumors of a given anatomic origin are genetically more similar to tumors arising 
at a different organ/tissue than to other tumors of the same anatomic site. Accordingly, 
only about 57 % of the tumors, on average, show cancer-type-specifi c mutational 
profi les. Interestingly, mutational profi le similarities do not only occur among 
tumors arising in the same organ, such as adenocarcinoma and squamous cell  cancer 
of the lung (about half of the lung squamous cell carcinomas are highly similar to 
adenocarcinomas of the lung) or among tumors of the same histological type, such 
as adenocarcinomas from different organs, where, for instance, about 13 % of the 
breast adenocarcinomas have their closest mutational relative among the ovarian 
adenocarcinomas and 3 % of breast tumors closely resemble gastric adenocarcinomas. 

  Fig. 1    Transition from a purely anatomic cancer classifi cation (past) to concepts of tumors that 
rely on the conventional tumor classifi cation but incorporate mutational information (present). 
Will the increasing molecular characterization of tumors lead to a purely genetic tumor classifi ca-
tion (in future)?       
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Interestingly, such similarity patterns are also present among tumors that neither 
share the same organ-origin nor the same tissue-origin, but that arise in completely 
unrelated anatomic structures, such as melanoma, glioblastoma, acute myeloid leu-
kemia and carcinomas. About 22 % of the acute myeloid leukemia cases, for 
instance, show highest mutational similarities to carinomas arising in ovaries, the 
breast, kidney, and thyroid as well as sporadically to glioblastoma, melanoma, colon 
and head and neck cancers. Equivalent observations can be made for glioblastomas 
that show substantial genetic similarities with carcinomas and even AML and mela-
nomas in about 54 % of the cases (Fig.  2 ). Of note, the results presented here are 

  Fig. 2    Mutational similarities of 4,796 tumors from 14 major cancers from the TCGA database 
for all 24,858 genes. Mutational profi les disagree with the established cancer classifi cation in 43 % 
of the cases on average. Chord connections between pairs of tumor types indicate the number of 
tumors of a particular type that are more similar to tumors from the other entity than to tumor of 
their own anatomic origin on the level of mutational profi les. As an example, about 13 % of the 
breast cancer cases are genetically more similar to ovarian cancers that to other breast tumors. Hill- 
like structures indicate tumors that resemble tumor of the same type most and are therefore in line 
with the conventional tumor classifi cation (55 % on average)       
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based on all 24,845 genes available in the TCGA data that—except for the fact that 
silent mutations were excluded—were not weighted with respect to their different 
oncogenetic relevance. Therefore, including all genes in the similarity analysis 
might potentially lead to similarity patterns that are pathologically irrelevant. To 
exclude such confounders, alternative scenarios were compared performing the 
same similarity analysis for (1) a set of 400 cancer-related genes (used in cancer 
panel sequencing), (2) the 1,000 most frequently mutated genes as well as (3) genes 
that were classifi ed as functionally relevant members of cancer-related cellular 
pathways in the Molecular Signatures Data Base (MsigDB) [ 15 ]. While minor 
quantitative differences are present among the different scenarios, the overall simi-
larty patterns are remarkably stable across the different assumptions indicating the 
biological relevance of the fi ndings [ 13 ]. The conclusion of this study is that the 
mutational profi les correspond to the established anatomic tumor classifi cation—
that is the basis of diagnostics and therapy—only in 57 % of the cases, on average, 
and that the remaining tumors are genetically more similar to tumors from other 
anatomic sites.   

3     Genetic vs. Histological Tumor Classifi cation 

 At fi rst glance, the results of the studies reviewed here might suggest that the current 
histological tumor classifi cation needs to be substantially amended if not replaced by 
a—yet to be defi ned—novel genetic tumor classifi cation. However, while it is 
unlikely that the established tumor classifi cation will remain unaffected by the 
molecular profi ling efforts in the coming years, the success of using histomorpho-
logical features in estimating disease prognosis and therefore therapy response 
should not be underestimated. Ultimately, the answer to this question will hinge on 
the clinical relevance of genetic tumor classifi cations. With novel precision medicine 
approaches that rely on the detection of actionable or druggable mutations indicating 
the effi cacy of a targeted therapy in individual patients, a central question is if muta-
tions known to be druggable in one cancer are also druggable in a cancer of a differ-
ent anatomic origin. Several cases with sometimes well-established and sometimes 
anecdotal evidence exists for and against the clinical utility of the same targeted 
therapy in different cancers that harbor the same druggable mutation. As an example, 
both patients with breast and gastric cancer, in which the growth factor receptor 
ERBB2/HER2 is amplifi ed, usually benefi t from HER2-inhibitory therapy although 
to a different extent. A strikingly different example are BRAF V600E mutations in 
melanoma and colorectal cancer. While mutated BRAF may (at least initially) be 
effectively treated by the inhibitor Vemurafenib, colorectal cancers with the same 
mutations are resistant [ 16 ]. These examples illustrate that the therapeutic benefi t of 
a targeted therapy against an actionable mutation shown in one cancer cannot neces-
sarily be transfered to another. Nevertheless, because of the potentially enormous 
benefi t of transferring targeted therapies across cancer types, so-called “basket tri-
als” have been designed to include patients based on the presence of druggable muta-
tions in their tumors irrespective of the anatomic origin of the tumor [ 17 – 19 ]. 
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 The different responses to targeted therapy of tumors with the same mutations 
but that arise at different anatomic sites show that identical mutations may have dif-
ferent functional effects in different cancers. This may be due to the often high 
number of mutations in tumors, where considering just single druggable mutations 
underestimates the biological complexity of the oncogenic mechanisms. The TCGA 
study on squamous cell lung cancer, for instance, has reported 360 exon mutations, 
165 genomic rearrangements, and 323 segments with copy number variations per 
tumor on average [ 20 ]. Although a substantial amount of these mutations is believed 
to be functionally irrelevant, it is obvious that different sets of accompanying muta-
tions exist that are likely to modulate the effect of the druggable mutations differ-
ently in different cancers. Additionally, other infl uences such as for instance the 
local tissue chemokine composition or metabolic features may modulate the func-
tional effects of certain mutations in a cancer-type dependent manner. It is therefore 
questionable not only if novel concepts such as basket trials will provide a solution 
but also whether NGS-driven approaches in precision medicine will live up to the 
high expectations unless complemented by histomorphological and more function-
ally oriented molecular analyses.  

4     Implications of Mutational Tumor Profi ling 
for Diagnostics and Clinical Trial Design 

 The observed discordance between observed mutational profi les and the established 
anatomic tumor classifi cation in combination with the complexity of the mutational 
profi les with often low mutation frequencies lead to substantial diffi culties in the 
design of clinical studies that evaluate targeted therapies. A prominent example is 
the clinical trial that showed the utility of Crizotinib in EML4-ALK positive lung 
cancer patients [ 21 ]. One hundred and fi ve study centers in 27 countries were 
required to recruit 347 patients with EML4-ALK-positive tumors for this trial. 
While it might be surprising at fi rst glance that so many centers had to collaborate, 
particularly given the relatively small number of patients in the trial, it becomes 
obvious when considering the fact that less than 5 % of lung adenocarcinomas har-
bor the EML4-ALK gene fusion [ 22 ]. 

 In the future, the situation is likely to become even more diffi cult as combination 
therapies will almost certainly replace or complement current targeted approaches 
using single drugs against which resistance develops in almost all cases. While the 
rapidly increasing number of known actionable mutations and available correspond-
ing targeted drugs makes such combination therapies technically feasible, the criti-
cal question how to select and test an appropriate drug combination remains open. 
Even if the majority of the 360 exon mutations in an average squamous cell lung 
cancer are not causally linked with cancer pathology as discussed above, genomic 
alterations such as EML4-ALK rearrangements or EGFR point mutations demon-
strate clearly that also low-frequency mutations may represent important drug tar-
gets and that not only the ten or so most frequently mutated genes are functionally 
involved in oncogenetic processes and therefore the only drug targets. 
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 Although the major cancer-related signaling pathways are well known conceptu-
ally, knowledge on the precise pathway dynamics, topology, and cross talk is incom-
plete. As a consequence of the lack of suffi cient knowledge to allow for a rigorous 
preselection of drug combinations, multiple drug combinations would need to be 
tested preclinically, but ultimately a substantial number would also remain to be 
evaluated in clinical trials. Here, we review data that we have published previously 
on a systematic evaluation of the combinatorial of cancer precision medicine [ 14 , 
 23 ]. As an illustration, in the case of a combination of two drugs selected out of a 
library against ten actionable mutations, 45 different combinations exist. While this 
may still be considered manageable, 190 possible 2-drug-combination therapies 
exist when the library has 20 components and 1,140 combinations need to be con-
sidered for a therapy of three drugs. Although a 5-drug combination selected out of 
a library of 50 drugs resulting in 2,118,760 possible alternatives may not seem clini-
cally relevant in the near future, these numbers illustrate the challenges that arise 
already with relatively conservative assumptions. And even if it may be possible to 
exclude 90 % of the theoretically possible combinations through knowledge on cel-
lular processes and preclinical experimental testing, where the combinatorial com-
plexity described here will also lead to a signifi cant increase in cost, a substantial 
number of alternative combination therapies remains to be tested in clinical trials. In 
this scenario, novel clinical trial concepts, such as the abovementioned basket trials 
will quickly reach their limits.  

5     Conclusion 

 Next-generation sequencing technologies have become widely available in the 
recent years and now allow a comprehensive characterization of the mutational 
profi les in individual tumors. This detailed knowledge has raised hope to gain also 
a deeper understanding of the molecular mechanisms responsible for the develop-
ment of cancer and to facilitate the development of novel targeted therapies in 
cancer precision medicine. The fact that despite the undoubtedly substantial gain in 
knowledge on the molecular properties of cancer the overall clinical utility of 
NGS- driven approaches has so far been limited, is due to the complexity and high 
variability of the mutational profi les also within defi ned tumor types. With respect 
to the genetic similarities across classical tumor types described here and the 
effects of actionable mutations on tumor cell function that are at least partially 
dependent on the organ- and tissue context and additional mutations present in the 
tumor, it becomes obvious that a static, exclusively genetic view of cancer without 
taking into account the functional implications of the mutational profi les is insuf-
fi cient. This also applies to the design of current clinical trials, which is not laid out 
to handle the combinatorial complexity of personalized combination therapies in 
cancer. A possible solution to this dilemma may lie in an integration of genomic 
with proteomic approaches. First steps in this direction have already been made 
recently by an integration of proteomic data into the TCGA database, which allows 
to directly relate mutational and proteomic profi les [ 24 – 26 ]. However, we believe 
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that these static data need to be complemented by dynamic analyses of tumor cell 
function to gain a better understanding of the processes relevant for the design of 
precision therapies in oncology in the future.     
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      Standardized Decision Support in NGS 
Reports of Somatic Cancer Variants 

             Rodrigo     Dienstmann    

    Abstract     With the advent of next-generation sequencing (NGS), we have the 
promise of a complete genetic description of patient tumors to optimally direct 
therapy. Of hundreds to thousands of somatic mutations that exist in each cancer 
genome, a large number are unique and nonrecurrent variants. Prioritizing and 
annotating genetic variants identifi ed via NGS technologies remains a major chal-
lenge. Some variants occur in tumor genes that have well- established biological and 
clinical relevance and are putative targets of therapy. However, most variants have 
limited evidence as predictive markers or are still of unknown signifi cance. 
Furthermore, how to prioritize therapy when multiple potentially targetable aberra-
tions and/or coexisting resistance mechanisms are identifi ed in a patient’s tumor 
still remains largely a heuristic task. In this context, there is a growing need for the 
biomedical research community to have access to curated and up-to-date cancer 
pharmacogenomic associations. In addition, the community needs to remain cogni-
zant of the potential consequences of misuse or overinterpretation of genomic data. 
Herein, I describe a systematic framework for variant annotation and prioritization 
and propose a structured molecular pathology report using standardized terminol-
ogy in order to best inform oncology clinical practice.  

1          Introduction 

 Clinical laboratories increasingly view large cancer gene panels and NGS as a cost- 
effective—and tissue-saving—alternative to running a series of multiple single- 
gene companion tests. Large amounts of genomic data are being generated as these 
assays enter the clinical realm, challenging molecular pathologists and cancer gen-
omicists in charge of interpreting and reporting the results. Manually annotating 
each single variant in terms of clinical signifi cance in every possible tumor type is a 
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daunting task. In addition, the strain on the turnaround time drives the need for pri-
oritization strategies for the identifi cation and reporting of clinically signifi cant 
genetic variants. 

 Routine testing of full gene sequences as opposed to hot spots frequently identi-
fi es mutations of low frequency and unknown functional consequences, most of 
which are likely to be neutral or passenger alterations. On the other hand, some 
variants occur in cancer genes that have well-established clinical utility, driving 
tumorigenesis, and tumor progression. The available scientifi c knowledge on these 
mutations should be presented in the report, so that physicians and patients can 
make evidence-based decisions in a responsible fashion. Genetic results may pro-
vide a strong rationale for treatment with matched targeted agents in clinical trials, 
with the potential of directly benefi tting the patient and accelerating the drug devel-
opment process [ 1 ]. Consolidating so much information into a very discrete report 
that emphasizes the clinical signifi cance while preserving observations that can be 
further looked into by the clinician is not an easy undertaking. As physicians trained 
in fi elds other than genetics are playing a more central role in the ordering and 
reviewing of genetic test results, the importance of translating genomic data into 
informative reports is further increased. 

 Performing NGS in the clinical laboratory is a multistep process that typically 
involves sample acquisition and quality control, DNA extraction, library prepara-
tion, sequencing, and genomic data generation. The process continues with three 
dynamic pipelines for data analysis: (1) bioinformatics tools for variant identifi ca-
tion, (2) variant annotation and prioritization, and (3) interpretation of clinical sig-
nifi cance and reporting to clinicians [ 2 ,  3 ]. In this chapter, I propose a framework 
for clinical interpretation of somatic cancer variants and describe how genomic data 
can be translated into structured evidence-based reports after a detailed variant 
annotation and prioritization process.  

2     Prioritizing Cancer Genomic Variants 

 Following variant identifi cation using bioinformatics pipelines, a computational 
engine is needed in order to parse the variants and suppress those that are irrelevant, 
highlight the ones which need manual curation, and identify pertinent “wild types” 
in each tumor sample. In the fi rst step of variant prioritization, as summarized in 
Fig.  1 , molecular pathologists have to defi ne what is considered a “reportable” vari-
ant. Several annotation and prioritization parameters are taken into consideration so 
as to provide a stronger estimation of the functional signifi cance of unknown and 
novel mutations. Useful tools include sequencing metric variables, external germ 
line single nucleotide polymorphisms (SNPs), and cancer databases for comparison 
of variants across populations, as well as prediction models for defi ning damaging/
deleterious or potentially driver mutations, as discussed below.  

R. Dienstmann



69

  Fig. 1    Variant analysis fl owchart of NGS tests performed in clinical laboratories. The bioinfor-
matics pipeline identifi es real and tumor-specifi c variants. During the variant annotation and pri-
oritization pipeline, curated databases, predefi ned thresholds, and functional prediction models 
serve as fi lters, with reportable variants as fi nal output. The clinical interpretation pipeline involves 
careful literature review and reporting of actionable variants       
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2.1     Upstream Filtering Tools 

 In the case of exome or whole genome sequencing, pairwise comparison with germ 
line DNA plays a pivotal role. Subtracting the genetic variation of a noncancerous 
“normal” genome from its cancerous counterpart allows the identifi cation of the 
somatic mutations. In parallel, eliminating known harmless variants that are present 
in public or in-house polymorphism databases is a very helpful strategy for reducing 
the candidate list of deleterious mutations. The next step involves prioritizing mis-
sense, nonsense, or splice-site mutations over synonymous and intronic variants. 
Different bioinformatic adjustments can be used in order to improve variant detec-
tion and deal with library preparation or sequencing artifacts along with sample 
characteristics, including tumor purity and heterogeneity. In order to consider the 
variant as real and reportable, it is also advised to establish a minimum threshold of 
mutant allele fraction (MAF), the number of alternate reads at the genomic position 
divided by the total number of reads—coverage—at the same site. This threshold 
should take into consideration tumor cellularity and also clinical context, as rare 
resistant subclones in the treatment-refractory setting might be of relevance. 
Therefore, known gene variants previously clinically annotated are generally priori-
tized irrespective of MAF. 

 The most useful annotation tool for somatic variant interpretation involves the 
assessment of published cancer databases. The software used for variant prioritiza-
tion should directly link genetic alterations to the Cancer Gene Census (  http://
cancer.sanger.ac.uk/cancergenome/projects/census/    ) or similar catalogues of genes 
for which mutations have been causally implicated in cancer [ 4 ], as well as the 
Catalogue of Somatic Mutations in Cancer (COSMIC) (  http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic/    ), International Cancer Genome Consortium (ICGC) 
(  https://dcc.icgc.org/    ), and The Cancer Genome Atlas (TCGA) (  http://cancerge-
nome.nih.gov/    ;   http://www.cbioportal.org/    ), large cancer databases that present 
prevalence of gene variants in different tumor types. Assessing whether a newly 
discovered alteration may be functionally relevant rests heavily on how many times 
it has been reported in these international cancer genomics studies, supporting fur-
ther clinical interpretation.  

2.2     Downstream Filtering Tools 

 Prediction of the putative functional effect of a mutation is a common problem 
already addressed in the context of germ line SNP association studies, and several 
tools have been used for this purpose. These models annotate variants specifi cally 
with respect to evolutionary conservation, biochemical deleteriousness, and func-
tional importance scores, thereby facilitating the differentiation between functional 
and nonfunctional variants [ 5 – 7 ]. At present, for alleles without prior functional 
analysis in genes that have been related to human cancer, such as non-hot spot/novel 
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variants in known oncogenes and tumor suppressor genes, prediction algorithms 
based on evolutionary conservation patterns are often used. Sorting Intolerant from 
Tolerant (SIFT) [ 8 ] and MutationAssessor [ 9 ] exploit the fact that sequences 
observed among living organisms are those that have not been removed by natural 
selection and sites with fewer observed substitutions are inferred to be under tighter 
constraints, having more deleterious effects when mutated. On the other hand, 
mutations in non-conserved residues are likely neutral. Other resources for predict-
ing the effects of protein-coding sequence changes typically exploit the physico-
chemical properties of amino acids and information about the role of amino acid 
side chains in protein structure. These in silico protein sequence-based algorithms, 
such as PolyPhen2 [ 10 ], are capable of leveraging both evolutionary and biochemi-
cal information. Despite having high sensitivity for the detection of damaging vari-
ants, prediction tools that rely on conservation and structure should be used with 
caution. In addition to the low specifi city, these methods generally have limited 
value in annotating gain-of-function or switch-of-function mutations [ 11 ]. 
Furthermore, most of these algorithms have been designed for research purposes 
with germ line variants, and very few databases present clinically oriented molecu-
lar annotation. As an alternative, machine learning scoring methods attempt to 
increase the predictive precision of somatic mutations in cancer. One example is the 
cancer-specifi c high-throughput annotation of somatic mutation (CHASM) tool, 
specifi cally designed to distinguish driver from passenger somatic missense vari-
ants [ 12 ]. It is trained on a positive class of drivers curated from the COSMIC 
database and a negative class of passenger variants generated in silico based on 
background base substitution in specifi c tumor types. Limitations include reduced 
coverage as compared to traditional algorithms—restriction to missense mutations—
and the understanding that driver and passenger mutations are tumor type and con-
text dependent, possibly changing roles during cancer evolution and therapy [ 7 ]. 
Whether cancer-trained methods outperform more general predictors still needs fur-
ther investigation. Recent studies suggest that no method or combination of meth-
ods exceeds ~80 % accuracy [ 13 ,  14 ], indicating that there is still signifi cant room 
for improvement in functional prediction, possibly with the development of specifi c 
algorithms for different classes of mutations. 

 To summarize, complex criteria involving multiple annotation sources should be 
used in order to select or fi lter out variants. Part of this process can be automated, 
although most of the work still needs to be done manually. As the most valuable tool 
consists in leveraging the cancer literature, either generated in-house or derived 
from publicly available databases, the genomic prioritization engine needs to be 
dynamic in nature, recognizing driver cancer mutations that have been previously 
annotated and reported. Additional tumor-specifi c variants with very low MAFs and 
those considered silent mutations are typically excluded from further clinical inter-
pretation. Novel variants in genes that have been causally implicated in cancer are 
prioritized when functional models predict damaging/deleterious scores, the altera-
tion is in the phosphorylation loop of an oncogenic kinase, or it alters the reading 
frame of a tumor suppressor gene.   
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3     Interpreting Results with Clinical Perspective 

 After narrowing down the list of candidate variants, the biggest challenge is to 
interpret the remaining genomic alterations within a biological context. Potentially 
“reportable” variants can be grouped in three categories: (1) those that may have a 
direct impact on patient care and are considered “actionable,” (2) those that may have 
“biological relevance” but are not clearly actionable, and (3) those that are of 
“unknown signifi cance.” Different groups have varying defi nitions for clinically 
“actionable.” This category can be restricted to variants matched to drugs that have 
been approved by regulatory agencies for the tumor that is being studied, but may 
also include those directing to off-label use of approved drugs, as well as variants that 
are matched to drugs being investigated in clinical trials. Academic laboratories 
should adopt the most inclusive defi nition of an actionable mutation—which accounts 
for variants that support treatment recommendation and enrollment in a particular 
clinical trial or have prognostic or diagnostic implications—even knowing that it 
may increase challenges in clinical decision-making, as the results sometimes lead to 
regulatory issues regarding the use of targeted drugs in unapproved indications. 

 Importantly, variants should not be reported in an uncategorized format, which 
can be confusing to clinicians and detrimental to patients. For actionable mutations 
to be fully curated, a team of experts with strong background in cancer biology and 
access to up-to-date knowledge resources is mandatory. Clinical interpretation of 
most variants identifi ed in NGS-based cancer diagnostic tests involves the burden-
some procedure of manually reviewing the published literature on four different 
layers: (1) gene, (2) specifi c variant, (3) drug or class-of-agent sensitivity/resistance 
patterns, and (4) tumor-type context. To facilitate this process, several groups have 
implemented “Sequencing Tumor Boards” or “Molecular Rounds” with up to 15 
faculty members that share expertise in cancer genomics, bioinformatics, pathol-
ogy, clinical genetics, bioethics, and clinical oncology as well as experimental ther-
apeutics. Rigorous analysis of comprehensive genomic data is a time-consuming 
and labor-intensive task, considering that not many mutations have been validated 
with a high enough level of evidence to predict for response to targeted treatment. 
Experts should prioritize the knowledge on mutations in tumor-specifi c contexts, 
but curation of data derived from other tumor types and preclinical experiments—
when clinical validation is under way—usually gives valuable information to clini-
cians. Unfortunately, most resources currently available cover information at 
limited levels: some focus on gene-tumor associations, others only on gene-drug or 
drug- target relationships. Moreover, databases originally developed to enable pre-
clinical research or annotate germ line variants are of limited applicability for clini-
cal oncology curation. Alternatively, associations on predictive, prognostic, or 
diagnostic variants in cancer can be retrieved in clinically oriented databases, such 
as My Cancer Genome (  http://www.mycancergenome.org/    ), Targeted Cancer Care 
(  http://www.targetedcancercare.org/    ), and Personalized Cancer Therapy (  https://
pct.mdanderson.org/    ). These websites are the result of large institutional efforts to 
provide information on cancer types, aberrant genes, and variants that are targeted 
by approved or experimental therapies. However, information available in these 
databases does not cover all genes, variants, and tumor types. In addition, it is not 
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accessible for download, mainly because it is presented in a descriptive format, 
without standardized terminology. 

 In order to deal with these limitations, some groups have developed internal 
knowledge databases with more comprehensive annotations on consensus and 
emerging clinical/preclinical predictive genomic markers linked to targeted thera-
pies. When integrated to the variant prioritization computational engine and report 
generation system, the curated information on somatic variants that have been clas-
sifi ed for clinical reporting is stored for future use. Maintenance of these databases 
involves a regular and systematic review of drug regulatory and approval status, 
consensus guidelines, peer-reviewed publications, and clinical trial databases. One 
example of detailed cancer genomics knowledge database is available for download 
through Synapse (  https://www.synapse.org/#!Synapse:syn2370773    ), the collabora-
tive cloud-based repository developed at Sage Bionetworks. As many academic 
groups are independently working on similar projects, an international consortium 
on curated cancer genomic data matching genomic aberrations to targeted therapies 
could have a huge clinical impact. Ideally, the information should be released as an 
interactive web-based tool, subjected to editing, validation, and critique from the 
medical community.  

4     Generating NGS Reports 

 Previous studies evaluating single-gene reports have suggested that patient care 
may be compromised as a consequence of poor communication between laborato-
ries and clinicians [ 15 ]. Developing a framework to content-rich NGS reports is 
complicated. The traditional “narrative” style reporting is too cumbersome for the 
amount of data generated by large cancer gene panels. In addition, medical oncolo-
gists prefer structured reports with results displayed in a more straightforward man-
ner rather than detailed descriptions of each genomic alteration. Consequently, 
web-enabled technologies are a good alternative to text reports as they enable 
dynamic and interactive display of the NGS results, which could be accessed by 
providers and patients in different formats. Embedding links to internal and external 
databases allows members of the team to further explore the results and the evi-
dence used to guide the interpretation, including more detailed information on the 
gene, the variant, the drug, or the clinical trial matched to a particular genomic 
alteration and tumor type, as well as records of PubMed identifi cation numbers for 
relevant clinical literature. Unfortunately, most laboratory information systems and 
electronic medical records (EMR) to date do not support data formatting and meta-
data (data associated with the result). Therefore, reports may need to be oversimpli-
fi ed to a static format for inclusion in the EMR. 

 Wagle et al. reported the fi rst framework to segregate genetic alterations derived 
from NGS tests on the basis of their predicted clinical utility [ 16 ]. The actionable 
category includes variants that predict tumor sensitivity or resistance to approved (tier 
1) or experimental therapies (tier 2). As shown in Fig.  2a , the mutational  categories 
are organized based on the strength of evidence supporting its predictive value. 
An alternative classifi cation is presented in Fig.  2b , which represents a simplifi ed 
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  Fig. 2    Examples of somatic variant classifi cation system for NGS reports. ( a ) Wagle et al. The 
actionable category includes variants that predict tumor sensitivity or resistance to approved (tier 
1) or experimental therapies (tier 2) and those that have prognostic/diagnostic implications. ( b ) 
Dienstmann et al. Reportable variants can be grouped in three categories: (1) actionable, which 
support treatment recommendation (therapeutic consensus) and enrollment in clinical trials (thera-
peutic emerging) and/or have prognostic or diagnostic implications; (2) biologically relevant but 
not clearly actionable; and (3) unknown signifi cance       
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gene-oriented approach developed to facilitate clinical decision-making [ 17 ]. Reports 
based on this framework provide the information in a hierarchical/categorical format, 
and results can be structured in tabular view. The content is formatted in such a way 
as to draw the clinician’s attention to associations with the highest level of evidence. 
As exemplifi ed in Fig.  3 , all actionable—predictive, prognostic, and diagnostic—
markers are displayed fi rst, followed by biologically relevant gene variants that warrant 
detailed annotation and pertinent negatives in the tumor being tested. Details are 
discussed in the following sections.   

  Fig. 3    Illustrative example of sequencing results describing somatic cancer variants with struc-
tured evidence-based classifi cation. Using the framework described in Fig.  2b , results are pre-
sented in a hierarchical and tabular format, drawing clinician’s attention to associations with 
different levels of actionability       
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4.1     Predictive Associations 

 Consensus predictive associations include those (1) linked to drugs approved or 
rejected by regulatory agencies in the context of a specifi c gene variant and tumor 
type or (2) described in national guidelines as predicting response or resistance to 
specifi c therapies. Emerging predictive associations were classifi ed in a hierarchical 
way based on the strength of evidence: (1) late trials, including evidence derived 
from trials that prospectively recruited patients based on genomic profi ling as well 
as large trials with robust data suggesting sensitivity/resistance to targeted therapies 
based on retrospective analysis of biomarkers; (2) early trials, referring to phase 1 
or 2 studies with genomically selected patients that show preliminary signs of effi -
cacy (or lack of effi cacy); (3) case reports of dramatic responses to targeted thera-
pies in a specifi c genomic context; and (4) strong preclinical data that is being 
explored in clinical trials. The magnitude of the biomarker-drug effects for clinical 
associations is classifi ed as “responsive,” “resistant,” or “not responsive” (when an 
expected responsive effect is not observed). In preclinical models, biomarker-drug 
associations are graded as “sensitive,” “reduced sensitivity,” or “resistant.” 

 Some of the questions that scientists involved in clinical interpretation of 
genomic data have to deal with include:

•    Is this an activating or inactivating mutation?  
•   Does this mutation engender sensitivity to targeted therapeutics—and what is the 

agent with highest potency?  
•   How to select therapy in case of multiple genomic alterations and/or coexisting 

resistance mechanisms?  
•   Is the association tumor type or context specifi c (treatment-naïve versus refrac-

tory setting) after exposure to which targeted agents?    

 Ideally, reports of NGS tests in oncology should include a list of clinical trials 
recruiting patients that harbor the specifi c genomic aberrations identifi ed in the 
 individual tumor sample. These are matched targeted therapies available either on-
site or as part of multi-institutional collaborations. A current limitation for matching 
a patient’s tumor genotype to clinical trials is the lack of molecular annotations in 
notices of national registries, such as the US National Cancer Institute clinical trial 
locator (  www.clinicalTrials.gov    ). As an example, the search term “PIK3R1” does 
not identify any matched trial, even though many PI3K pathway inhibitors in clini-
cal development have a clear rationale for testing in tumors that harbor  PIK3R1  
inactivating mutations.  

4.2     Prognostic and Diagnostic Associations 

 Medical oncologists are usually concerned about reporting detailed information on 
prognostic associations of genomic markers in cancer. First, the literature is full of 
inconsistent and even opposing results based on retrospective studies. Second, as 
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patients have access to the report, bad prognostic associations could lead to misin-
terpretation and anxiety, emphasizing the idea that this information should be dis-
cussed in person taking into consideration additional clinical parameters. Therefore, 
only prognostic markers with well-established associations in the same tumor type 
should be reported, preferably without description of the related outcome informa-
tion. Common diagnostic associations should also be described, mainly those favor-
ing a specifi c tumor subtype.  

4.3     Variants with Biological Relevance 

 Many variants in well-known cancer genes do not fall into the prior categories but still 
might be causally associated with the malignant phenotype. Their relevance is justi-
fi ed by known biological implications (pathway activation/inactivation) or by “theo-
retical” actionability, when agents potentially targeting novel activating mutations in 
oncogenes or the downstream effects of loss-of-function mutations in tumor suppres-
sor genes are available for clinical testing. Therefore, the expected effect of the vari-
ant on protein function (gain- or loss-of-function) is also presented in the report, as it 
might give insights to the ordering physician with regard to therapeutic interventions 
in the investigational setting. Nevertheless, until functionality is validated in preclini-
cal studies, it is appropriate to report these novel variants as non-actionable.  

4.4     Pertinent Negative Variants 

 Genes that have clear predictive, prognostic, or diagnostic associations in a specifi c 
tumor type and are found to be “wild type” in the NGS test should be described in 
the report.  

4.5     Variants of Unclear Signifi cance 

 The accelerated pace of advances in our understanding of cancer genomics justifi es 
the description of all “reportable” variants in the fi nal NGS report, even those not 
classifi ed as actionable or biologically relevant when the assay is performed. These 
variants may become biomarkers in the near future or may be of particular interest 
in research settings. The most practical approach to handle variants of unknown 
biological/clinical signifi cance is to present them according to the main pathway 
affected by the alteration. Key gene-pathway associations are increasingly being 
highlighted in the cancer genomics literature [ 18 ,  19 ]. As an example, in renal cell 
carcinomas, mutations in genes involved in histone modifi cation/chromatin remodel-
ing might dominate a report, warning the medical oncologist-translational researcher 
about the importance of aberrations in this pathway during cancer progression.  
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4.6     Germ Line Variants 

 The American College of Medical Genetics and Genomics (ACMG) recently 
published a minimum list of genes that should be reported to the patient when an 
incidental germ line mutation associated with heritable risk of cancer or other 
diseases is identifi ed and confi rmed [ 20 ]. The group prioritized disorders where 
preventive measures and/or treatments were available and those in which indi-
viduals with pathogenic mutations might be asymptomatic for long periods of time. 
Only pathogenic mutations should be reported, considering the challenges of 
interpreting variants of unknown signifi cance as incidental fi ndings. Notably, the 
group acknowledged the fact that insuffi cient data on penetrance and clinical utility 
support these recommendations. Considerable personnel resources, including 
genetic counselors with specialized training, may be needed to ensure that patients 
understand the potential benefi ts and risks of receiving somatic and germ line data 
and to support physicians in conveying such information.  

4.7     Performance Characteristics of the Test 

 Specifi c regions interrogated by the assay and the coverage metrics by sample and 
target—including median depth, uniformity, and percentage of target covered at the 
minimum level—should be described in every NGS assay, regardless of application 
or platform. Minimum depth of coverage should be established during the test vali-
dation process and will depend upon the required sensitivity of the assay as well as 
the targeting/sequencing method. Regions of sequence not meeting the required 
read depth, especially genes with highest priority (see “pertinent negatives” above), 
should be clearly reported as indeterminate. Importantly, medical oncologists still 
need to be educated for the proper interpretation of MAF counts. This information 
is very useful in the research setting, refl ecting clonal evolution and selection when 
NGS tests are performed in different samples and time points over the course of a 
disease and therapy. Of note, continued medical education is an important aspect in 
the process of implementing NGS reports in a clinical lab, so that physicians are 
trained to understand molecular profi le results.   

5     Conclusion 

 NGS tests were initially developed for research or investigational purposes but will 
eventually become part of cancer care. During the process of clinical implementa-
tion of these assays, many technical, legal, and ethical challenges have to be over-
come. Clinical Laboratory Improvement Amendment (CLIA) or Good Clinical 
Laboratory Practice (GCLP) certifi cation is required for clinical centers and 
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consulting biotechnology companies offering NGS-based cancer diagnostic tests. 
Several professional societies have generated guidelines for the implementation of 
NGS tests, with a focus on analytical validity or patient privacy rules. Nonetheless, 
recommendations for the use of computational tools and bioinformatics pipelines 
and reporting of somatic cancer variants are still missing. A major challenge is how 
to convey the amount of data obtained from NGS tests and all the information 
reviewed for interpretation within a reasonable time frame, so that it can be trans-
lated into a useful clinical tool. Effective communication of results with interactive 
reports can promote appropriate clinical decision-making and minimize the poten-
tial for patient harm. Unfortunately, at the present time, validated evidence on spe-
cifi c gene variants linked to predictive, prognostic, or diagnostic associations in 
cancer is limited. In addition, genomics knowledge is currently ahead of our ability 
to therapeutically target tumors, given that many mutations identifi ed by sequenc-
ing either are linked to unapproved drugs or are not targetable by currently available 
molecular therapy. 

 Importantly, while sequencing can identify druggable targets, clinicians are often 
left with the task of further interpretation, treatment prioritization, and decision- 
making in the context of additional clinical information. When the best option is to 
offer the patient genomic-driven clinical trials, additional logistical challenges need 
to be overcome, including too strict eligibility criteria in phase 1 trials or slots not 
available at the time of referral and geographical limitations to access drug develop-
ment units. These diffi culties explain why only a small number of patients are ulti-
mately enrolled in a specifi c trial based on the results of NGS assays, even when 
actionable genomic alterations are identifi ed in the majority of the tumor samples 
tested [ 21 ]. Multi-institutional trial networks assessing novel agents that target spe-
cifi c mutations are needed in order to deal with these issues. Alternatively, when 
physicians and patients agree on off-label use of targeted therapies, another aspects 
that go beyond reimbursement concerns need to be taken into consideration. There 
is an inherent bias to publish positive results—case reports showing that sequencing 
results are associated with responses to off-label use of a targeted agent—and mech-
anisms to annotate lack of response in this setting are missing. One option is to 
create national formularies of targeted agents against common aberrations, so that 
every patient receiving a matched therapy in the off-label setting can be tracked and 
become a “cancer information donor.” These pharmacy exchange programs could 
generate ever-growing data banks integrating the genomic information with thera-
peutic response and outcome [ 22 ]. The information derived from these registries 
should be added to knowledge databases such as My Cancer Genome or Personalized 
Cancer Therapy and become readily available to oncologists worldwide, providing 
annotated predictive genomic markers in cancer and potentially changing the para-
digm of drug approval process. 

 In conclusion, structured reporting of clinically relevant variants may help 
addressing the current limitations of NGS to directly guide patient care. With stan-
dardized terminology and an expanding knowledge database, variant annotation, 
prioritization, and clinical interpretation become a fl uid process with the potential to 
open new therapeutic options.     
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      Clinical Considerations in the Conduct 
of Cancer Next-Generation Sequencing 
Testing and Genetic Counseling 

             Heather     Fecteau      and     Tuya     Pal   

    Abstract     Over the last decade, there have been tremendous advances in genetic 
testing through the development of next-generation sequencing (NGS) technolo-
gies. This has led to plummeting costs of testing making it possible to test for mul-
tiple genes simultaneously at a cost comparable to testing for 1–2 genes through 
older Sanger sequencing technology. As a consequence, clinical practice has been 
greatly impacted resulting in the need to develop new models for genetic counseling 
and informed consent. This chapter will highlight clinical considerations when 
using NGS to evaluate for inherited cancer predisposition. Topics to be covered 
include factors to consider when conducting NGS tests, considerations of various 
multigene tests available, resulting paradigm shifts, and other clinical and labora-
tory considerations when testing is conducted. We will conclude with the evolving 
role of genetics health professionals given the emerging landscape and highlight the 
importance of education and outreach efforts.  

1          Introduction 

 With the completion of the Human Genome Project in 2003, it was widely acknowl-
edged that more information was needed before the genome could be translated into 
everyday clinical practice. During this time, DNA sequencing was performed using 
chain-termination method, now referred to as Sanger sequencing [ 1 ]. For over 30 
years, Sanger sequencing has been the “gold standard” to accurately obtain long 
sequence reads (about 200 nucleotides). However, drawbacks to Sanger sequencing 
included restrictions in scale, turnaround time, and cost of genetic testing. 
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 Next-Generation Sequencing (NGS) or massively parallel sequencing technol-
ogy was fi rst described in 2000 [ 2 ]. NGS results from running multiple reactions 
simultaneously to generate large quantities for sequence data in parallel [ 3 – 6 ]. Along 
with this technology, sequencers were developed that could run these reactions on a 
larger scale. It was not until 2008 that this technology was documented as having 
successfully sequenced a complete human genome [ 7 ]. Since then, this technology 
has revolutionized clinical genetics as costs of sequencing have plummeted. Since 
the introduction of NGS in 2008, the National Human Genome Research Institute’s 
(NHGRI) analysis shows the cost of sequencing one whole human genome was 
reduced from almost $10,000,000 to less than $10,000 [ 8 ]. Costs are expected to 
drop below $1,000 and take just days to complete; recognizing this does not take 
into account the time and cost for data interpretation of the results to the patient. 

 There are a plethora of NGS gene panels available for phenotypically targeting 
testing (e.g., deafness, cardiomyopathies, cancer) covering a handful to >100 genes 
and ranging in price from $1,500 to $10,000 ([ 9 ];   www.ncbi.nlm.nih.gov/gtr/; www.
genetests.org    ). In addition, several laboratories offer clinical WGS/WES ranging 
from $4,500 to $10,000 [ 10 ]. Compared to the average timeframe and cost of 
$1,000–2,000 for single gene Sanger sequencing, NGS has shifted the genetic test-
ing paradigm (Fig.  1 ). It is predicted “to become a central piece of routine healthcare 
management which can be practiced regularly by physicians from their offi ces” [ 11 ].  

 It is not clear how the genetic information provided by NGS should be integrated 
into current clinical practice. However, new models for providing genetic counsel-
ing and informed consent will clearly need to be developed and evaluated. The 
purpose of this chapter is to highlight issues to consider when utilizing NGS in a 
clinical cancer setting and to propose approaches to counseling patients about NGS 
genetic testing.  

  Fig. 1    The evolving paradigm of genetic testing for inherited cancer       
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2     Factors to Consider with Next-Generation 
Sequencing Testing 

 Clinical applications of NGS include multigene panels, whole-genome sequencing 
(WGS), and whole-exome sequencing (WES). All NGS technology utilizes the 
human genome reference sequence as a comparison in order to identify DNA varia-
tion in a sample. It is important to keep in mind that the reference genome is incom-
plete and inaccurate for some regions. The accuracy of NGS is usually measured by 
sequencing depth; this refers to the average number of times that a specifi c base/
nucleotide is sequenced. The greater the number of times the genome is sequenced, 
the greater the sequencing depth and the more accurate the individual base calls. 
WGS using NGS can routinely call base changes with greater than 99.9 % sensitiv-
ity and specifi city at a depth of 30-fold and greater than 95 % of genome is covered 
at an average sequencing depth of 30-fold [ 12 ]. 

 Currently, NGS may not consistently identify variations larger than a few base 
pairs in size like insertions and deletions, trinucleotide repeats, and copy number 
variations (CNVs) across all testing platforms. As a result, most labs supplement 
NGS test with other techniques, like Multiplex Ligation-dependent Probe 
Amplifi cation (MLPA) or array-based tests to provide evaluation of larger, struc-
tural genomic changes. Perhaps over time as the NGS technology and bioinformat-
ics advances, these limitations will be minimized and potentially overcome. 

 NGS analyzes a large number of genes, thus a large number of amino acid 
sequence changes (“missense” variants) called variants of uncertain signifi cance 
(VUS) may be identifi ed. For many of these genes, there are no means by which to 
determine whether a particular amino acid change impairs the function of the result-
ing protein. Although there are a number of computational tools to predict pathoge-
nicity, the clinical validity remains uncertain without a direct functional assay and 
familial segregation data [ 13 – 15 ]. The likelihood of detecting a VUS is directly 
related to the number of genes tested, thus multigene testing results in a higher VUS 
rate given that multiple genes are tested for simultaneously. WGS can generate 3–4 
million variants that differ from the human reference sequence, while WES gener-
ates 15,000–20,000 variants within the coding region [ 16 ]. Multigene panels have 
reported to average around 2.1 VUS per sample [ 17 ]. Given the increased likelihood 
for variants, the clinical challenge of accurately and effi ciently interpreting the sig-
nifi cance of the VUSs should be taken into consideration when using NGS. 

 It is challenging for genetic counselors and other members of the healthcare team 
to consistently advise patients on appropriate medical management following the 
detection of a VUS and this may add to patient distress [ 18 ]. VUS results add an 
additional layer of complexity to the conduct of cancer genetic risk assessment, as 
the result should be interpreted in the context of the family history and additional 
information available on the VUS. 

 Furthermore, the reporting of VUS results is not standardized between different 
genetic testing laboratories, thus familiarity and understanding of one laboratories 
classifi cation does not translate into the same interpretation at another laboratory, 
which may greatly impact clinical utility. Laboratories should classify variants 
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according to the American College of Medical Genetics (ACMG) guidelines and 
document supporting evidence regarding each variant’s known or possible role in 
disease [ 19 ]. Clinicians must have an understanding of methodology behind VUS 
classifi cation, where to obtain more information about a VUS, and how to utilize the 
information to better guide the management of their patients.  

3     Cancer Multigene Panel Testing 

 Next-generation sequencing can address the growing number of cancer susceptibil-
ity genes with overlapping phenotypes with potential time and cost savings with 
gene panel testing. Gene panels may improve the detection rate of hereditary cancer 
syndromes. They may also expand the range of phenotypes associated with muta-
tions in various genes and contribute to the understanding of the natural history of 
hereditary cancer syndromes. The traditional approach to genetic testing has 
involved analyzing a single gene or a few genes related to a single syndrome based 
on the pattern of cancers observed in a family. However, this method may have led 
to underrecognition of patients with mutations given 30 and 50 % of individuals 
with a mutation do not have a family history signifi cant enough to warrant genetic 
testing [ 20 ]. Gene panels allow for concurrent analysis of genes in which mutations 
confer variable levels of cancer risk and variable tumor spectrums, thus attending to 
syndromes with overlapping phenotypes and also addressing the limits of an unin-
formative family history. 

 Cancer panels can include genes of high, moderate, or unknown cancer risks as 
summarized in Table  1  [ 21 ]. High-penetrance genes are those genes that, when 
mutated, confer high cancer risks, with published managements guidelines for those 
with mutations. Moderate penetrance genes are genes that when mutated, confer 
moderate cancer risk, with no management guidelines for those with mutations. The 
last category for cancer genes included on panels is unknown penetrance; genes that 
when mutated are known to be prevalent within a certain cancer patient population; 
however, the degree of cancer risk and tumor spectrum are not well understood, and 
they have no management guidelines for those with mutations.

   As of August 2014, there are nine laboratories offering NGS cancer susceptibil-
ity gene panels. Each laboratory has a different approach as to the number of panels 
it offers and/or genes included on each panel. The panels offered fall into three 
categories: (1) cancer-specifi c high-penetrance gene panel; (2) cancer-specifi c gene 
panel with high, moderate, and unknown penetrance genes; and (3)  “comprehensive” 
cancer panels that include genes associated with multiple cancers or hereditary can-
cer syndromes [ 22 ]. This personalized approach using gene panels can provide a 
more objective risk and can parse out who is at risk for highly penetrant cancer 
syndrome, who is at moderate risk due to lower penetrance genes or multifactorial 
inheritance, and who is at average population risk [ 23 ,  24 ]. 

 When addressing cancer genetic panel testing, the fi rst challenge comes with 
defi ning the appropriate patients for this testing. There are no clear guidelines on 
when to order NGS cancer panels. The National Comprehensive Cancer Network 
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(NCCN) addressed the use of gene panels in their 2014 Guidelines for Risk 
Assessment [ 25 ]. The authors of the NCCN guidelines indicated that cancer gene 
panels could be considered after highly penetrant syndromes have been ruled out 
and there is still reason to believe the family history is suggestive of a hereditary 
cancer syndrome. Genetic counselors and health professionals can use these early 
guidelines to determine when to consider counseling for NGS cancer panels. The 
American College of Medical Genetics (ACMG) has developed a position statement 
for whole-exome and whole-genome sequencing (“Points to consider in the clinical 
application of genomic sequencing,” 2012) that can be adapted to apply to NGS 
cancer panels and be used by genetic counselors to guide their cancer risk assessments 
(Table  2 ). Most pediatric genetic panel testing is guided by this ACMG statement. 

     Table 1    Three categories of genes found on next-generation sequencing cancer panels   

 Syndrome 
penetrance 
(cancer risk) 

 Understanding 
of phenotype  Management guidelines  Examples of genes 

 Mutations 
found in 
category 1 

 High  Good to 
excellent 

 Published guidelines 
likely to exist, screening 
or prevention for many 
of associated cancer 
risks exist, mutation 
likely to change 
management 

  APC ,  BMPR1A , 
   BRCA1     , 
   BRCA2        CDH1     , 
 EPCAM ,    MLH1     , 
 MSH2 ,  MSH6 , 
 MUTYH ,  PMS2 , 
   PTEN     ,    SMAD4     , 
 STK11 ,  TP53  

 Mutations 
found in 
category 2 

 Moderate  Fair to good  Guidelines unlikely to 
be published, screening 
may exist for associated 
cancer risks, mutation 
may or may not change 
management 

  ATM ,  CHEK2 , 
 PALB2  

 Mutations 
found in 
category 3 

 Unknown  Poor  Guidelines do not exist, 
diffi cult to make 
recommendations and 
therefore unlikely to 
change management 

  BARD1 ,  BRIP1 , 
   MRE11     ,  NBN , 
   NBS1     ,    RAD50     , 
 RAD51C ,  RAD51D  

   Table 2    ACMG indications for diagnostic testing using next-generation sequencing   

  WGS/WES should be considered in the clinical diagnostic assessment of a phenotypically 
affected individual when : 
 • The phenotype or family history data strongly implicate a genetic etiology, but the phenotype 

does not correspond with a specifi c disorder for which a genetic test targeting a specifi c gene 
is available on a clinical basis 

 • A patient presents with a defi ned genetic disorder that demonstrates a high degree of genetic 
heterogeneity, making WES or WGS analysis of multiple genes simultaneously a more 
practical approach 

 • A patient presents with a likely genetic disorder but specifi c genetic tests available for that 
phenotype have failed to arrive at a diagnosis 
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The American Society of Clinical Oncology (ASCO) recently updated their recom-
mendations on genetic testing for cancer susceptibility in response to the advance-
ments in genetic testing technology. Initially ASCO recommended that clinical 
genetic testing only be offered to those with a personal or family history suggestive 
of an inherited cancer syndrome. ASCO has since updated this recommendation 
indicating that individuals without a family history may be appropriate candidates 
for cancer susceptibility testing if analytic and clinical utility has been established, 
meaning the results can be adequately interpreted, and can impact medical decision 
making and clinical outcomes [ 26 ]. Given this recommendation, gene panel testing 
could be offered to a wider patient population who do not meet the standard testing 
criteria [ 27 ]. It should be noted that of the few published studies looking at gene 
panel testing in a clinical setting, they all report most of the patients testing positive 
for a genetic mutation either had cancer or had a signifi cant family history [ 17 , 
 28 – 30 ]. Gene panels should be considered as a testing strategy when there is a 
particularly complicated personal or family history, a suspicion of multiple cancer 
syndromes, or other clinical scenarios described in Table  3  [ 22 ].

    Cancer panel testing may identify mutations in hereditary cancer genes that are 
both expected and unexpected by the personal and family history [ 22 ]. Research 
studies using panel testing have found mutations in genes that do not clearly match 
the family pedigree; this suggests that the current understanding of the cancer genotype–
phenotype may still be incomplete since the classic style of genetic testing selected 
only those meeting high-risk criteria for a particular syndrome [ 31 – 33 ]. 

 Thus, the interpretation of these incidental fi ndings in family cancer risk 
assessment and management is evolving. While some gene alterations may have 
a substantial impact on cancer risk recommendations, other mutations may be 
more diffi cult to interpret clinically because of a lack of correlation with family 
history (e.g., a  BRCA1  mutation in a family with hereditary colon cancer) or a 
lack of evidence- based recommendations for management (e.g.,  RAD50  mutation). 
Medical management guidelines do not exist for many of the genes tested and the 
appropriate clinical response remains unclear. In some cases, appropriate medical 
management will be based on a patient’s personal and family history more so 
than genetic test results. Another option is to extrapolate risk reduction strategies 
from more extensively studied genes (e.g.,  BRCA1 / 2 ) that impart cancer risk [ 34 ]. 

   Table 3    Possible clinical scenarios to consider offering gene panel and/or WES/WGS genetic 
testing   

 • Individual with multiple cancer diagnosis 
 • Personal and/or family history of cancer meets national criteria for more than one hereditary 

cancer syndrome 
 • Second-line workup for inherited cancer risk when fi rst-line evaluation has been 

noninformative 
 • Family history of cancer does not meet established testing guidelines due to limited or 

unknown family history 
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Data regarding cancer risks may not be available for all genes being tested, and 
risk estimates may be especially diffi cult for patients who carry variants and/or 
mutations in multiple genes. A prime example is the  PALB2  gene; it has been 
understood that  PALB2  is associated with a moderate risk for breast cancer but the 
exact breast cancer risk has been not well understood. A recent study examining 
the breast cancer risk in families with a  PALB2  mutation found a breast cancer 
risk eight to nine times greater among women younger than 40 with a  PALB2  
mutation compared to the general population [ 35 ]. 

 A fi nal factor to consider when utilizing cancer gene panels is the higher rates of 
VUS. VUS can be challenging clinically for several reasons, including that many 
patients and providers make the mistake of assuming that a VUS is responsible for 
disease risk in a family leading to misguided risk-reducing medical management. 
As discussed earlier, while it does take a great deal of time and resources, many 
VUS are reclassifi ed as benign. 

 However, genetic panel test results may still be benefi cial for excluding a diag-
nosis (in the case of a negative result) or allowing targeted testing for family mem-
bers (in the case of a positive result). It may be diffi cult to get the cost of family 
members testing covered for mutations in moderate-penetrant or unknown- penetrant 
genes. It is possible that more information will be discovered about the phenotype 
and cancer risks related to each syndrome as more patients are tested and a larger 
pool of patients with hereditary cancer syndromes are identifi ed. In much the same 
way that testing criteria and medical management guidelines have evolved for fami-
lies at high risk for hereditary breast and ovarian cancer syndrome, it is plausible 
that management guidelines for cancer syndromes with incomplete penetrance will 
be developed in the future.  

4     Exome and Genome Testing in a Cancer Setting 

 Further adding complexity to the genetic testing landscape is the concept of exome 
(i.e., the protein coding regions of the gene) and whole-genome testing. In the 
future, it is anticipated that multigene tests may be replaced by whole-exome or 
whole-genome sequencing, as sequencing costs continue to decrease. 

 In anticipation of these tremendous technologic advances, the American College 
of Medical Genetics (ACMG) recently issued guidelines pertaining to a minimal list 
of actionable genes (i.e., 56 genes related to roughly 25 genetic conditions) for 
which testing should be reported when performing exome or genome sequencing 
[ 36 ]. These constitute conditions that may be unrelated to the indication for order-
ing the sequencing, but of medical value for patient care (thus referred to as “inci-
dental fi ndings”). These conditions, determined by the ACMG to be well recognized 
and known to have a strong link of causation, were included on this list if preventa-
tive measures and treatments exist. Groups of conditions included on this list 
encompass cancer predisposing conditions, later-onset cardiac-related syndromes, 
and connective tissue syndromes. 
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 The initial guidelines were revised in 2014 to recommend an opt out clause for 
incidental fi ndings [ 37 ]. Furthermore, the ACMG guidelines recommended that 
seeking and reporting incidental fi ndings not be limited by the age of the person 
being sequenced. It is important to consider the ACMG incidental fi ndings guide-
lines in the context of ACMG guidelines pertaining to testing in children which 
indicate that predictive genetic testing of minors be considered only if effective 
medical interventions are available to treat, prevent, or retard the course of disease 
[ 38 ]. These guidelines are not contradictory, because incidental fi ndings, by defi ni-
tion, are outside of the indication for which testing was done in contrast to specifi -
cally testing a child for an adult-onset condition. 

 In addition to the debate surrounding return of incidental fi ndings from germline 
exome and whole-genome testing, there remain questions surrounding return of 
results in the setting of tumor-focused testing. Interestingly, the ACMG guidelines 
stated that “incidental variants should be reported for the normal sample of a tumor- 
normal sequenced dyad.” It is important to note that this guideline could have sig-
nifi cant implications for the fi eld of oncology [ 39 ]. Given that the vast majority of 
clinical sequencing tests ordered in the oncology setting are tumor exome or 
genome sequencing to identify somatic mutations to guide treatment decisions, 
germline results are not directly related to testing indication. Consequently, these 
guidelines have profound implications pertaining to initial and follow-up discus-
sions between patients and their oncologists. Specifi cally, a clear discussion 
between the oncologist and patient about the potential to include germline analysis 
as part of the tumor test would be required, which would include covering germ-
line-related issues such as risks and benefi ts of testing, risks to family member, as 
well as factors related to privacy and insurability. In fact, a recent study reported on 
the implementation of a whole-genome sequencing protocol of tumors and paired 
germline DNA, which included options for receiving incidental germline fi ndings 
[ 40 ]. In this study, genetic counselors documented patient family histories, secured 
informed consent, and actively participated in the multidisciplinary tumor board to 
provide clinical context of germline results and recommendations for results disclo-
sure. This study serves to highlight the future opportunities for genetic professional 
involvement in these types of efforts as use of whole-genome sequencing in oncol-
ogy treatment broadens.  

5     Impact on Paradigm Shift from Syndrome-Based 
to Multigene Testing 

 With the availability of new testing options, there will also be changes in the deliv-
ery of genetic risk assessment services. Traditionally, cancer genetic counseling has 
evaluated a patient’s risk based on personal and family history of cancer, age of 
diagnosis, and other phenotypic features. Both the ACMG and NCCN recommend 
that genetic counseling should be performed by a cancer genetic professional [ 19 ,  25 ]. 
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Genetic counselors and professionals have used their expert knowledge to choose 
which genes to test and then counseled the patient about the cancer risks and man-
agement options for mutations in those specifi c genes. Genes that are unlikely to be 
mutated are not analyzed in this model. However, plummeting costs of testing are 
resulting in many genes being tested simultaneously (either through panels of genes 
focused on a particular cancer type or WGS/WES sequencing). 

 As a result, the need to generate an extensive differential diagnosis and eliminate 
possible diagnoses using a stepwise genetic testing approach is lessening and clini-
cal practice paradigms appear to be shifting toward a model where a patient is 
“tested fi rst” (without the need to generate an extensive differential diagnosis based 
on clinical information) following broad consent. Once results are available, addi-
tional information is collected to put the diagnosis into proper clinical context. 
Many patients may not be adequately prepared for the possible outcomes and/or 
their perceived understanding or expectations may not align with the actual results 
[ 27 ]. This may result in a great need and time for posttest genetic counseling than 
pretest counseling [ 41 ]. 

 It is worth considering that although broad testing without the need to generate a 
differential diagnosis may make it easier to order comprehensive testing, it will still 
require profi ciency in genetics due to required familiarity with the various gene 
panel and WGS/WES options, choosing the one best suited for each patient, result 
interpretation, putting the result in proper clinical context, and making appropriate 
management recommendations. As such, it is anticipated that provision of care 
based on genetic testing results will become exponentially more complex resulting 
in an increased need for the involvement of genetic counselors and professionals in 
patient care, an issue already recognized as part of several best practices guidelines 
from numerous professional guidelines [ 25 ,  26 ,  42 – 45 ].  

6     Importance of Informed Consent 

 When genetic counseling for highly penetrant cancer syndromes was fi rst per-
formed, there were concerns about the lack of knowledge of the cancer risks associ-
ated with each syndrome, what early detection and/or risk-reducing options would 
be available for patients with mutations, and whether patients would experience 
signifi cant anxiety upon learning they carried a mutation. As an increasing number 
of individuals with hereditary cancer syndromes were identifi ed, the knowledge of 
highly penetrant cancer syndromes increased, improving the ability to create effec-
tive clinical guidelines for management. 

 Studies have shown that individuals receiving mutation-positive results describe 
an increase in anxiety, but that anxiety often returns to baseline with the passage of 
time [ 46 ,  47 ]. Organizations like the NCCN, American Society of Clinical 
Oncology, and the U.S. Preventive Services Task Force have acknowledged the 
research that shows the benefi ts of genetic counseling and testing for hereditary 
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cancer syndromes; they have written guidelines and recommendations for cancer 
predisposition testing, all of which include pretest counseling as part of the informed 
consent process [ 25 ,  26 ,  48 ]. 

 While existing genetic counseling models encourage in-depth discussion of the 
syndrome to be tested, these models do not address testing multiple syndromes, 
simultaneously [ 49 ]. Communicating the risks for NGS testing that is usually con-
veyed with single gene testing would likely lead to information overload, in which 
there is too much information to absorb in a short time, potentially impeding patient 
understanding and decision-making ability [ 22 ,  41 ,  49 ]. 

 The pretest genetic counseling model will need to involve a discussion of the 
range of information that could be learned from NGS genetic testing including 
risks, benefi ts, and limitations of testing and implications for both the patient and 
family members, such as the increased risk of discovering unanticipated results and 
VUSs [ 21 ,  49 ]. Along with the progress of genetic testing technology, genetic coun-
seling will also have to shift and adapt to ensure patients are educated about the 
unique benefi ts and risks of NGS genetic panel testing in order to facilitate informed 
consent.  

7     Suggested Genetic Counseling Approaches 
to Next- Generation Sequencing Tests 

 The paradigm shift in genetic testing practices will lead to changes in the approach 
to genetic counseling of patients, recognizing that the optimal approach is currently 
unknown [ 49 ]. Many of the genes on cancer panels and WGS/WES testing confer a 
risk for multiple different cancers. Most patients seeking genetic testing primarily 
based on risk for more common heritable adult malignancies (breast, colon), uncov-
ering additional cancer risks may be unanticipated outcome of the testing and should 
be discussed pretest [ 27 ]. 

 Patients should be informed of the option of single-gene, syndrome-specifi c test-
ing, or WGS/WES and which may more quickly identify actionable mutations, 
especially when pending a treatment decision [ 22 ]. For people of childbearing age, 
genes that have distinct monoallelic and biallellic expression should be covered in 
regards to risk of having a child with a more severe autosomal recessive cancer 
syndrome [ 50 ]. 

 While adapting the amount of information shared with the patient, it is important 
to maintain patient autonomy and the ability to make an informed decision. A sug-
gestion to help present this information in a timely and effective manner is to group 
the genes into the aforementioned three categories (Table  1 ) [ 21 ]. This technique 
could help patients understand that mutations in different genes are associated with 
different levels of risks for cancer and not all results have clear management 
guidelines. 
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 It may also be helpful to group the cancers associated with each panel test. The 
genetic professional could then broadly describe how the increased cancer risk for 
each organ may/could be managed. For example, some genes on the breast panels 
would put a patient at risk for breast and pancreatic cancer; the genetic counselor 
would explain increased breast cancer surveillance options and then explain the 
limited screening options for pancreatic cancer. Patients should know a deleterious 
mutation could mean a risk for multiple sites of cancer and understand the degree to 
which surveillance and management strategies exist and are effi cacious for each site 
of cancer. 

 One approach adopted by the Genetic Risk Assessment Service at the Moffi tt 
Cancer Center includes a pretest genetic counseling session during which the fol-
lowing is discussed: (1) a brief overview of multiple syndromes in general terms 
with discussion of specifi c conditions for which the patient may be at risk based on 
personal and/or family history, (2) discussion of high penetrance (“actionable”) ver-
sus moderate penetrance (“not likely actionable”) genes, and (3) communication of 
higher rates of variants of uncertain signifi cance (VUS) [ 51 ]. A detailed discussion 
of specifi c conditions is deferred to the posttest session, during the disclosure of 
genetic test results. 

 Another suggested genetic counseling approach utilized at Dana-Farber Cancer 
Institute’s Center for Cancer Genetics and Prevention is to present information in a 
framework linking function and phenotype in the pretest session. They encourage 
particular attention on the education of moderate-penetrance genes, the risk for vari-
ants of uncertain signifi cance, and emphasis on genes most likely to be mutated 
given the family history reported [ 41 ]. They also recommend focusing on high pen-
etrance genes associated with a severe phenotype where they defi ned risk-reducing 
strategies in order to reduce possible distress in the event an unexpected mutation is 
found [ 41 ] For example, if a patient were to test positive for a CDH1 mutation and 
the family history is negative for breast and/or gastric cancer, it could be called into 
question the appropriateness of a gastrectomy [ 22 ]. Posttest counseling is recom-
mended for all patients found to carry a mutation, a VUS, or for those who test 
negative and have a striking cancer family history in order to ensure proper interpre-
tation of results [ 41 ]. 

 As noted earlier, it is important that patients understand the chance of a VUS 
result and the limitations of such results. Genetic counselors should consider shar-
ing the VUS rate reported by the elected laboratory when considering NGS panels 
or WGS/WES testing. Patients should understand that VUSs will not be treated as 
deleterious nor causative of a cancer predisposition. Part of the posttest counseling 
session should cover expectation and plans for recontact should be discussed and 
patient should be encouraged to periodically check in and update contact  information 
[ 22 ]. This is particularly important to VUS reclassifi cation as many labs review 
their VUS data on a regular basis and will release updated results. 

 There currently remains a tremendous need to develop and refi ne new genetic 
counseling strategies to deliver genetic testing services to manage population needs 
particularly as use of genomic testing technologies continues to increase.  
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8     Documenting Genetic Testing 

 There are multiple NGS cancer panels with varying sets of genes, and more genes 
may be added to these panels as our knowledge about cancer susceptibility improves. 
While many genetic professionals document the type of genetic testing ordered, it 
will become more important to document which genes were tested for each patient 
and which lab was used [ 21 ]. It will also be helpful to document the testing plat-
form, depth of coverage, and presence of a deletion/duplication assay. As part of 
posttest genetic counseling, genetic counselors should continue to inform patients 
that updated testing may be available for them in the future. The protocol for patients 
to be notifi ed of such updates (e.g., who has the responsibility to follow up to dis-
cuss advances in testing options) should be clear.  

9     Laboratory Considerations 

 Organizations that have authority to regulate genetic testing include the U.S. Food 
and Drug Administration (FDA) and the Centers for Medicare and Medicaid 
Services through the Clinical Laboratory Improvement Amendments (CLIA) 
[ 52 ,  53 ]. A genetic test may be developed as a “test kit” or a “home brew.” Test kits 
are prepackaged with reagents and instructions and sold to laboratories, whereas 
home brews are assembled in house by the laboratory. Test kits are regulated by the 
FDA as medical devices, thus manufacturers must submit data on analytic and 
clinical validity and utility to the FDA for approval prior to marketing. Consequently, 
it is no surprise that the FDA has only approved four test kits to detect mutations in 
human DNA, of the hundreds of diseases for which genetic tests are currently 
available clinically [ 52 ]. In contrast, home brews are under CLIA oversight, which 
requires laboratories to perform profi ciency testing themselves to demonstrate 
their ability to accurately perform the test and interpret the results but they do not 
need to demonstrate clinical validity or utility. Thus, under CLIA, the decision to 
offer a new genetic test is within the sole discretion of each clinical laboratory 
director. As a result, most genetic testing is currently overseen by CLIA rather than 
the FDA, which illustrates that manufacturers prefer the less regulated status and 
that the regulatory regime allows them to avoid stringent FDA oversight. Ultimately, 
there are clear opportunities to develop a regulatory system to ensure that patients 
and providers receive greater assurance that genetic tests are accurate and reliable 
and provide information that they are relevant to healthcare decision making. At 
the present time, mutation detection strategies and detection rates for a given gene 
may vary by testing laboratory due to the techniques used, the patient’s mutation 
may be detected by one laboratory but not another. Consequently, practitioners 
who provide genetic testing services require familiarity with laboratory testing 
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approaches, as patients rely on them to research and select the laboratory best 
suited for their genetic needs. 

 Unlike many tests used in medicine, for many years there has been lack of FDA 
oversight for genetic testing, thus test validity and clinical utility may differ sub-
stantially between labs. Therefore, there has been heightened importance to under-
stand variations in laboratory practices and the meaning of terms, such as analytical 
sensitivity, reported range, coverage, and variant fi ltering, when determining 
whether to perform a disease-targeted gene panel, exome, or genome analysis and 
which laboratory to utilize. Not only is the quality of the result received be 
impacted by these factors, but also on the ability to interpret the result itself. This 
is particularly true for conditions, such as those associated with moderate pene-
trance genes, where national best practices guidelines do not currently exist due to 
paucity of data. 

 Recent developments suggest that the FDA is planning to increase its oversight 
of genetic testing. In November 2013, the FDA demanded that 23andMe immedi-
ately stop selling and marketing its DNA testing service until it receives clearance 
from the agency. This was a direct to consumer test sold through the company’s 
website through which saliva samples are analyzed to give clients information on 
risks of developing certain diseases. Subsequently, the FDA outlined plans to regu-
late thousands of diagnostic tests, including genetic tests. This new policy is likely 
to have a big impact on the increasingly common practice of using genetics to 
decide how to treat cancer patients [ 54 ]. 

 In addition to the increased regulation anticipated for genetic testing through 
FDA oversight, there remain several factors to consider when choosing a laboratory 
for genetic testing. Furthermore, although these tests did not initially include the 
 BRCA  genes given that a single U.S. lab held and enforced their gene patent, pre-
cluding other labs from offering clinical testing. This all changed in June 2013 fol-
lowing the Supreme Court decision that genes cannot be patented, which has 
resulted in an increasing number of labs offering  BRCA  testing. Consequently, the 
cost of the  BRCA  test has substantially decreased. For example, prior to the loss of 
the patent, the list price of complete  BRCA  testing was over $4,000; in contrast, 
since the fall of the patent, the cost has plummeted to as low as $1,500 through a lab 
that offers testing for 211 genes including  BRCA . As a result, navigating through the 
various testing options has become increasingly complicated for healthcare provid-
ers as they must now evaluate various factors when choosing the appropriate lab 
such as: (1) completeness of the testing; (2) quality of interpretation of complicated 
results such as variants of uncertain signifi cance (VUS) and openness in sharing 
how this is done with clinicians; (3) genes included on multigene tests which fi t the 
patient’s needs best; (4) practices regarding sharing of deidentifi ed data in public 
databases to enhance interpretation of genetic data worldwide rather than 
 maintaining it internally to protect commercial interests; and (5) testing laboratory 
billing practices whereby health insurers are billed a much higher amount than the 
published list price of the test (Table  4 ).
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   Table 4    Factors to consider when choosing a laboratory for next-generation sequencing   

 What technology is used  • Platform of the testing 
 • Depth of coverage 
 • Presence of deletion/duplication assay 

 Which genes are included  • Number of genes (larger panels may not be of any more 
benefi t to the patient) 

 • A cancer site-specifi c test (e.g., breast cancer susceptibility) 
versus a pan-cancer test (all cancer susceptibility) 

 • The proportion of genes that are considered “medically 
actionable,” meaning mutated genes will lead to a change in 
medical management that is supported by guidelines 

 • Option to exclude results per patient request 
 What is the cost of testing/
insurance coverage 

 • List price 
 • Billing options (e.g., insurance vs. institutional billing) 
 • “In network” or “out of network” 
 • Medicare or medicaid billing options 
 • Financial assistance or payment plans for uninsured patients 
 • Presence of a patient “cap” to control patient expense 
 • Requirements for letters of medical necessity 

 What is the turn around time 
(TAT) 

 • TAT for insurance preauthorization (if offered) and testing 
 • TAT for panels vs. single genes 
 • Importance of TAT may be dictated by whether or not a 

patient is using the information to make an immediate 
management decision (e.g., surgery for recent diagnosis) 

 Variants of unknown 
signifi cance (VUS) rate 

 • VUS rate for the panel under consideration 
 • How conservative is the laboratory in calling out a mutation 

versus VUS versus benign polymorphism 
 • VUS reclassifi cation process (Does the laboratory offer free 

VUS testing to affected family members? How are ordering 
providers notifi ed when reclassifi cations occur?) 

 • Supplementary data provided by the laboratory regarding the 
variant (e.g., cosegregation data, data from in silico models, 
population frequency, review of the literature, etc.) 

 • Patient’s level of anxiety about a VUS result (which may 
dictate the importance you place on a laboratory’s VUS rate) 

 How reliable is the 
laboratory 

 • Past experience with the laboratory for other cancer 
susceptibility genetic testing 

 • Laboratory’s experience with NGS technology 
 • Laboratory’s experience with the gene(s) of interest (e.g., lab 

may be able to better classify missense mutations, etc.) 
 • Accuracy of result interpretation 

 Ease of laboratory use  • Insurance preverifi cation process 
 • Reliable communication 
 • Sample submission process (workload to order a test) 
 • Readability of test report 
 • Availability and reliability of online reporting system 
 • Access to genetics professionals 
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10        Evolving Role of Genetics Professionals 

 As widely acknowledged, healthcare provider knowledge and training are insuffi -
cient to make optimal use of genetic testing services despite the general agreement 
that genetics competency is of high clinical relevance [ 55 ,  56 ]. In fact, a recent 
Florida-wide survey of healthcare providers who order  BRCA  testing indicated both 
the need for and an interest in ongoing educational opportunities and resources 
among community providers who order genetic testing [ 57 ]. 

 Within the United States, despite efforts to expand community-based best prac-
tices for provision of genetic counseling and testing services, market forces are 
compelling an increasing number of clinicians with limited training or experience 
in genetic risk assessment to order and interpret genetic tests [ 43 ,  58 – 61 ]. One of 
the most commonly cited reasons for encouraging genetic testing without the 
involvement of a genetics health professional is the perceived “severe shortage” of 
these professionals [ 62 ]. However, while historically this perception may have been 
accurate, the recent survey conducted by the National Society of Genetic Counselors 
demonstrated that access to certifi ed genetic counselors (CGC) is excellent and in 
line with physicians [ 63 ]. Moreover, in-person consultations are now supplemented 
with telegenetic services, particularly for patients in rural and underserved areas 
[ 64 ]. Furthermore, there has been tremendous growth with a 75 % increase since 
2006 and 4,000 CGCs currently, with an expected annual growth rate of approxi-
mately 10 % [ 65 ].  

11     Genetic Professional Issues 

 While the number of CGCs continues to increase, there remains a gap in reimburse-
ment for services rendered these masters-trained healthcare providers can often not 
bill insurers independently for services rendered. As the reimbursement scheme in 
the US is primarily focused on a fee for service model, most Cancer Genetic Risk 
Assessment Services cost more to administer than the direct revenue they generate 
[ 66 ]. This recognition of the lack of reimbursement for genetic services delivered 
by CGCs coupled with data to suggest that provision of genetic counseling through 
a trained genetics professional can lead to increased cost effectiveness and enhance 
quality of care [ 67 – 72 ] is beginning to infl uence policy shifts at the state and payer 
level [ 50 ,  73 ].  

12     Importance of Collaborative Research 

 Ultimately, given the limited profi ciency in genetics among the U.S. healthcare work-
force, there remain tremendous opportunities for genetics professionals to serve as a 
hub of information. This is particularly important with the tremendous advances in 

Clinical Considerations in the Conduct of Cancer Next-Generation Sequencing…



96

genetic testing technology through which multigene testing has become a feasible and 
widespread option [ 17 ,  29 ,  74 ]. Innovative approaches to delivering genetics services 
to an increasing number of patients in community settings have been demonstrated 
through establishing academic–community partnerships that focus on collaboration 
between genetics and nongenetics providers to offer genetic testing for hereditary 
cancers [ 58 ,  75 ,  76 ]. These collaborative partnerships leverage the expertise of genet-
ics professionals for challenging cases that enable patients to remain in their commu-
nity and to allow for better access to resources for long-term follow-up care. 

 Another example of this type of partnership is the Florida-based project (called 
the Inherited Cancer Research (ICARE) Initiative) for which external peer-reviewed 
funding was secured in 2010 to develop an infrastructure to support research, educa-
tion, and outreach initiatives focused on genetic counseling and testing for inherited 
cancer predisposition. Recognizing the limited number of genetics professionals 
across Florida [ 50 ], a statewide network of over 100 healthcare providers who offer 
genetic services was developed. These individuals are offered education and out-
reach about inherited cancer predisposition with the overarching goal of enhancing 
the provision of genetic services across the state and beyond. In addition to educa-
tional and outreach efforts, ICARE Partners refer high-risk patients to the research 
registry to provide the research link, which has in turn contributed to the tremen-
dous growth of the registry since initiation of the grant in summer 2010 with almost 
1,400 high-risk individuals recruited to date, including almost 900  BRCA  carriers. 

 Specifi c educational resources available to ICARE Partners include access to:

    1.     Bimonthly Case Conferences : 1 h web-based teleconferences during which brief 
educational updates are provided during the fi rst 15 min, after which 3–4 clinical 
cases are presented, including reason for referral, review of the pedigree includ-
ing differential diagnosis, risk assessment, testing options, and management 
plan. Each case includes discussion items and a take-home message.   

   2.     Inherited Cancer Registry newsletter : a biannual four page newsletter which 
briefl y outlines recent clinical and research updates pertaining to risk  assessment, 
testing options, and management of those with inherited cancer predisposition. 
Also included within the newsletter is a section on statewide clinical trials for 
those with inherited cancer, as personalized treatments based on germline muta-
tions are often only available at a small number of study sites. The newsletter is 
a means by which updated information is disseminated to healthcare providers 
and patients who participate in the research registry (newsletters are available at 
the ICARE website, which can be accessed through the following link:   http://
inheritedcancer.net    ).   

   3.     Access to ICARE-based experts for inquiries : A dedicated telephone line and 
e-mail address have been established to provide centralized access to healthcare 
providers requesting information about Florida genetic services. This infrastruc-
ture has facilitated access for providers across the state to seek input from genetic 
professionals, when faced with complicated patients. This service is provided 
through a board-certifi ed GC who is specifi cally available to give a description 
of resources available through Florida genetic services’ efforts and give general 
guidance pertaining to inherited cancer predisposition to ICARE partners.     
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 Another issue which has become increasingly important is the interpretation of 
genetic tests. As more data become available, the ability to interpret test results also 
increases, highlighting the importance for: (1) encouraging patient participation in 
research registries, (2) development of international consortia to increase sample 
sizes through pooling data [ 15 ,  77 – 79 ], and (3) the importance of submission of 
data to public databases [ 77 ,  80 ].  

13     Conclusion 

 While NGS-based technology is available and use of this technology is increasing, 
the understanding of how best to counsel patients for whom we recommend this 
testing is still evolving. It is essential that future research focuses on the outcomes 
of using this technology, with hope to limit the potential for harm and to maximize 
the benefi t to the patient [ 48 ]. This was the approach used to develop counseling 
models for highly penetrant cancer syndromes such as hereditary breast and ovarian 
cancer syndrome and Lynch syndrome. 

 As clinicians are faced with the decision of a single gene/syndrome test (e.g., 
BRCA1/BRCA2 test) versus a cancer panel test (e.g., breast and/or ovarian cancer 
panel), or WGS/WES genetic testing there are multiple factors that need to be consid-
ered. For example, NGS genetic tests may lead to an improved detection rate for the 
causative gene mutation; however, depending on the fi nding, there may not be suffi -
cient data in the medical literature to guide the clinician on how to medically manage 
that patient. Collaborative epidemiologic work will also be necessary to gather infor-
mation about genes included in the NGS panels; this will help provide more substan-
tial information about each gene’s associated tumor spectrums and cancer risks, 
which will lead to the development of appropriate clinical  management [ 81 ]. 

 In addition, the improved detection rate of a cancer panel or cancer WGS/WES 
testing should be weighed against a higher risk to fi nd a variant of unknown signifi -
cance (VUS). Lastly, each laboratories approach to a panel and WGS/WES testing 
may differ, and therefore the ordering clinician will have several factors to consider 
when choosing between tests/laboratories (Table  1 ). There is not enough published 
literature to establish guidelines regarding which patients are best suited for a single 
gene/syndrome test versus a cancer panel test versus WGS/WES testing. Until such 
guidelines are established, all the factors should be considered when presenting a 
patient with genetic testing options and choosing which test to recommend.     
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    Abstract     Cancer is a genetic disorder that arises from gene mutations as well as 
changes in transcriptional and epigenetic profi les. These genetic changes can serve 
as valuable biomarkers for early detection, staging, and detailed molecular charac-
terization of cancer for individualized therapy. Mutations in several known onco-
genes (e.g., EGFR, HER2, KRAS) and tumor suppressor genes (e.g., TP53, PTEN, 
PI3K) are already being used as biomarkers to guide therapy in breast cancer, ovar-
ian cancer, lung cancer, prostate cancer, etc. However, tumor heterogeneity and 
instability of cancer genomes poses a signifi cant challenge to reliable and reproduc-
ible detection of biomarkers. Moreover, cancer is a multigene disorder and compre-
hensive knowledge of the mutational landscape is extremely important for the most 
effective therapeutic intervention. 

 Next-Generation Sequencing (NGS) is a high-throughput genome sequencing 
technology that enables sequencing of entire genomes or thousands of mutations 
simultaneously in a cost effective manner and hence can serve as a very powerful 
tool in biomarker detection and discovery. Many NGS-based studies published in 
the last few years have identifi ed potential prognostic and predictive molecular sig-
natures. In this chapter, we discuss the impact of NGS on cancer biomarker detec-
tion as well as discovery and the resulting paradigm shift in cancer care.  

1          What Are Biomarkers? 

 Biomarkers are key molecular, chemical or cellular characteristics that can be 
objectively measured and used to describe biological processes, pathogenic state 
and response to therapy. Biomarkers can be either disease related or therapy 
related. Disease related biomarkers are diagnostic (used to establish the disease 
state), prognostic (provide information regarding potential clinical outcome 
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irrespective of the treatment), or predictive (provide information regarding potential 
clinical outcome in response to specifi c treatment) [ 1 – 3 ]. 

 Therapy related biomarkers provide information regarding the effectiveness of a 
particular drug in treating or managing a disease. Additionally, the Biomarkers and 
Surrogate End Point Working Group [ 4 ,  5 ] has classifi ed biomarkers as Type 0 bio-
markers that are markers of natural history of the disease and correlate with clinical 
indices (e.g., complete blood count), Type I biomarkers represent the effects of a 
therapeutic intervention in accordance with drug mechanism of action (e.g., decrease 
in urokinase-type plasminogen activator (uPA) gene expression upon dasatinib 
treatment in prostate cancer) and Type II biomarkers that are surrogate end points as 
a change in this marker indicates clinical benefi t (e.g., decrease in blood/urine glu-
cose level). 

 For a biomarker to become accepted for clinical application it has to have the 
following characteristics:

    1.    Readily and consistently detectable in biological fl uids, tissues, or other biologi-
cal specimens.   

   2.    Rapidly detectable and stable.   
   3.    High sensitivity and specifi city.   
   4.    Strong correlation with the phenotype or outcome of interest.   
   5.    Detectable via a simple, noninvasive, and cost-effective test.   
   6.    Consistent across genders.     

 In addition to the aforementioned properties, biomarkers to be used in cancer 
should be specifi c to the cancer subtype, provide information about the metastatic 
potential of the cancer, and should also be detectable in archived samples such as 
FFPE (Formalin-Fixed Paraffi n-Embedded) blocks. Biomarkers such as Cancer 
Antigen 125 (CA 125) are an example of blood biomarker for ovarian cancer [ 6 – 8 ] 
whereas Prostate Specifi c Antigen (PSA) is a marker specifi c to prostate cancer [ 9 ,  10 ]. 
Additionally, imaging techniques such as CT scan, mammography, and ultrasound 
are also widely used in cancer detection as well as characterization [ 11 ]. As cancer 
arises from genetic aberrations and is a heterogeneous disease, molecular biomark-
ers such as genetic variations, gene expression profi les, and in some cases the 
genome methylation status may provide more actionable insights than traditional 
markers.  

2     Limitation of Traditional Biomarkers 

 While the biomarkers mentioned in the previous section are very useful in establish-
ing diagnosis in many cases, they suffer from low specifi city and sensitivity. PSA 
which is an FDA approved marker for prostate cancer is also found to be elevated 
in other conditions such as benign prostate hyperplasia and prostatitis [ 12 ]. Another 
example is Nuclear Matrix Protein 22 (NMP22), a marker widely used in bladder 
cancer that is also elevated in pyuria, urolithiasis, or cystitis [ 13 ]. Moreover, it is 
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becoming increasingly obvious that even though blood biomarkers along with 
imaging and other techniques, may be useful in cancer diagnosis, these may not 
provide enough information for the best course of therapeutic intervention. With the 
advent of targeted therapy and more recently precision medicine, identifi cation of 
reliable, precise and clinically relevant biomarkers has become extremely critical. 
The term “precision medicine” is used to describe therapeutic interventions derived 
from better understanding of the genetic as well as mechanistic underpinnings of a 
disease [ 14 ]. 

 Therapy targeted to counter specifi c genetic aberrations has been used most suc-
cessfully in cancer as it is a genetic disease resulting from mutations in oncogenes 
and tumor suppressor genes [ 15 – 18 ]. Treatment of Chronic Myelogenous Leukemia 
(CML) patients carrying a BCR-ABL (Breakpoint Cluster Region—Abl Tyrosine 
Kinase) translocation with imatinib [ 19 ,  20 ] and of HER2/neu (ERBB2; v-erb-b2 
avian erythroblastic leukemia viral oncogene homolog 2) positive breast cancer 
patients with Trastuzumab [ 21 ,  22 ] are the most notable examples of cancer treat-
ment based on molecular characterization of the tumors. A number of cancer drugs 
approved by the FDA in the last decade have been against specifi c genetic aberra-
tions. For example, Gefi tinib has been approved for lung adenocarcinomas harbor-
ing EGFR (Epidermal Growth Factor Receptor) mutations [ 23 ] and Vemurafi nib 
has been approved for melanoma patients harboring the V600E BRAF (B-Raf 
proto-oncogene, serine/threonine kinase) mutation [ 24 ].  

3     NGS in Biomarker Discovery and Testing 

 Next-Generation Sequencing (NGS) is a collection of latest high-throughput 
sequencing technologies that enable performing millions of sequencing reactions in 
parallel. We and others [ 25 – 27 ] have previously discussed the details of NGS tech-
nology and its potential applications in clinic. With its unprecedented scale and 
rapidly declining cost, NGS brings within grasp the possibility of sequencing the 
entire cancer genomes or at the very least entire cancer exomes. Given the cancer 
heterogeneity and the rapidly changing genetic landscape in cancer, this provides a 
very powerful tool to get an unbiased view of the genome and signifi cantly improves 
the chances of identifying actionable genetic aberrations. In addition to detecting 
changes in DNA sequence, NGS can also be used in transcriptome profi ling as well 
as methylation detection. As has been shown in breast cancer, glioblastoma, and 
numerous other cancers, gene expression signatures are very important markers of 
cancer subtypes [ 28 ], metastatic potential [ 29 ,  30 ], response to therapy [ 31 ], and 
survival [ 29 ,  32 ]. Currently, NGS is being used most commonly for variant detec-
tion using a “panel-based” approach for known mutations (amplicon-based target 
enrichment) or known oncogenes. 

 The application of NGS technology in clinics, loosely known as clinical NGS, has 
begun to provide extraordinary insights into genetic mutations in a large set of genes 
[ 33 – 35 ], novel mutations in genes previously implicated in cancer [ 36 ,  37 ] and genes 
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previously not associated with particular cancer [ 38 ,  39 ]. Commercially  available 
NGS-based cancer panels are already being used in clinical practice to guide patients 
to most appropriate treatment [ 40 – 42 ].  

4     Types of Biomarkers That Can Be Identifi ed Using NGS 

4.1     Genetic Variants as Biomarkers 

 Mutations in the form of single nucleotide variants, insertions, deletions and other 
structural variants are commonly found to be associated with onset, progression, 
and metastatic potential of cancer as well as effectiveness of therapy. Mutations in 
BRCA1/2 (Breast Cancer 1/2) [ 43 ,  44 ], KRAS (Kirsten rat sarcoma viral oncogene 
homolog) [ 45 ], PTEN (Phosphatase and Tensin homolog) [ 46 ], etc. are already 
established as prognostic as well as predictive markers. Mutations in multiple genes 
are typically found in cancer cells and although genetic aberrations in a single gene 
can be useful in determining therapeutic intervention, a more detailed picture of the 
mutational landscape is of immense value. A recent study by Kurian et al. [ 47 ] used 
a 49-gene NGS-based panel for genome characterization of 198 breast cancer 
patients. A majority of patients carried BRCA1/2 mutation, however, among women 
that tested negative for BRCA1/2 mutations, 16 potentially pathogenic mutations in 
other genes were identifi ed, of which presence of 15 mutations indicated that the 
patients would benefi t from a change in care. 

 A very comprehensive analysis of sequencing and expression data from 12 tumor 
types in The Cancer Genome Atlas (TCGA) project has shown that genes such as 
ERBB2, FGFR1 (Fibroblast Growth Factor Receptor 1), KRAS, PIK3CA 
(Phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha), CDKN2A 
(Cyclin-Dependent Kinase inhibitor 2A), ATM (ATM serine/threonine kinase), and 
MDM4 are altered in multiple cancer types irrespective of the tissue of origin [ 48 ]. 
Moreover, the study showed that different genes were altered in patients with same 
type of cancer. For example, FGFR1, PIK3CA, CDKN2A, and TP53 (Tumor Protein 
p53) were selectively altered in patients with lung squamous cell carcinoma whereas 
ERBB2, PIK3CA, CCNE1 (Cyclin E1), AURKA (Aurora Kinase A), and TP53 
were selectively altered in serous uterine corpus endometrioid carcinoma. 

 These studies emphasize the complexity of genetic alterations in cancer and pro-
vide strong evidence to support the benefi ts of screening for mutations in multiple 
known oncogenes to arrive at optimum cancer management approach. As NGS 
allows for simultaneous detection of mutations in multiple genes and even whole 
genome, NGS-based tests can be used to detect the known as well as novel cancer 
mutations. As mentioned above, a number of commercial tests with panels of muta-
tions in known oncogenes are already available in market. An added advantage of 
using NGS for biomarker testing is that genetic material extracted from archived 
samples such as FFPE blocks can also be used.  
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4.2     Gene Expression Profi les as Biomarkers 

 Microarray, one of the fi rst high-throughput genomic technologies, engendered the 
use of gene expression profi les comprising of several thousand genes in diagnosis 
and classifi cation of cancer. Breast cancer [ 49 – 51 ], colon cancer [ 52 ,  53 ], and 
 glioblastoma [ 54 ] are examples of cancer types where gene expression profi les 
are extensively used. Oncotype DX ®  a RT-PCR-based gene expression profi ling 
test is available for breast cancer, colon cancer as well as prostate cancer [ 55 ]. 
Mammaprint ®  [ 56 ], BluePrint ® , and TargetPrint ® , offered by Agendia [ 57 ] are 
breast cancer tests assessing expression pattern of signature genes. However, 
almost all of the gene expression assays (except for those using exon arrays) report 
expression at “gene level.” In reality, there exist many isoforms of a gene and 
numerous studies have shown altered expression of specifi c gene isoforms in cancer 
[ 58 ,  59 ]. Using NGS to perform transcriptome profi ling offers a very distinct 
advantage, since the expression data is captured at the isoform level. Isoform level 
transcriptome profi ling can provide unique and important insight into cancer pro-
gression and metastasis.  

4.3     Epigenetic Modifi cations as Biomarkers 

 Epigenetic modifi cations are changes in DNA independent of variations in DNA 
sequence. Epigenetic modifi cations, such as DNA methylation, histone acetylation 
and methylation have profound impact on gene expression. Changes in histone 
modifi cation [ 60 ,  61 ] and DNA methylation [ 62 – 64 ] pattern of genes is one of the 
hallmarks of cancers and can act as biomarkers for cancer detection and therapeutic 
intervention. Examples of epigenetic modifi cations used as biomarkers include 
hypermethylation of GSTP1 (Glutathione S-Transferase pi 1) in prostate cancer 
patients [ 65 ,  66 ] and hypermethylation of DAPK (Death Associated Protein Kinase) 
as well as RASSF1A (Ras association (RalGDS/AF-6) domain family member 1) 
genes in bladder cancer [ 67 ,  68 ]. More recently, Wasserkort et al. [ 69 ] reported that 
the cytosine residues in the v2 region of the Septin9 gene are specifi cally methyl-
ated in colorectal cancer tissue but not in normal colon mucosa. Using a whole- 
genome methylation detection technology Mah et al. [ 70 ] were able to identify 
more than 500 differentially methylated genes in hepatocellular carcinoma (HCC). 
Moreover, they were able to use the differentially methylated regions to classify the 
HCC patients in three subgroups with one of the group showing extremely poor 
survival. This study and many others have suggested that methylation status of hun-
dreds of genes is altered in cancer and hence a high-throughput technology such as 
NGS is very well suited to identify epigenetic modifi cations as biomarkers in cancer. 
For an elaborate review of the role of epigenetic modifi cations in cancer and list of 
epigenetic biomarkers, please refer to Taby and Issa [ 71 ].  
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4.4     MicroRNA as Biomarkers 

 MicroRNAs are small (19–22 nucleotide long) single stranded RNA molecules that 
play a critical role in regulation of gene expression by targeting mRNA for degrada-
tion or by suppressing translation [ 72 ]. MicroRNA mediated regulation of gene 
expression is important in development, differentiation and cell growth, hence 
microRNAs could potentially play a key role in carcinogenesis. One of the earliest 
studies to demonstrate the role of microRNAs in cancer was in Chronic Lymphocytic 
Leukemia (CLL), where miR15 and miR16 located in a genomic region previously 
associated with CLL, were shown to be downregulated in 68 % of CLL cases [ 73 ]. 
Subsequently, many studies have shown that disruption of microRNA mediated 
regulation of gene expression leads to tumorigenesis and oncogenic transformation 
[ 74 – 77 ]. In a very recent study, miR206 was found to be downregulated in 93 % of 
breast cancer cases studied suggesting it be a good candidate as biomarker [ 78 ]. 
Similarly, elevated levels of miR-19A found in metastatic HER2 +ve infl ammatory 
breast cancer patients was associated with better clinical outcome (longer progres-
sion free and overall survival) [ 79 ]. The role of microRNAs in cancer is a very 
active fi eld of research and it is likely that many key molecules are yet to be discov-
ered. Hence, NGS-based approaches for deciphering the role of microRNAs in all 
aspects of cancer biology will prove very valuable.   

5     Examples of NGS Led Biomarker Detection 
in Various Cancers 

 In the last few years, many cancer studies have used NGS to glean very valuable 
information regarding different subtypes of cancer [ 54 ,  80 ,  81 ], molecular signa-
tures, novel mutations, and mutations associated with metastasis, progression as 
well as response to therapy [ 29 ,  30 ,  82 ,  83 ]. Most recently, integrated analysis of 
genomic data from multiple high-throughput technologies available in TCGA was 
used to identify markers to classify cancers irrespective of the tissue of origin [ 84 ]. 
Cancers such as breast cancer, lung cancer, colon cancer, ovarian cancer, and acute 
myeloid leukemia have benefi ted the most from using NGS. Table  1  summarizes a 
list of novel cancer genes identifi ed in various cancer types using the whole-genome 
or whole-exome sequencing methodology.

5.1       Breast Cancer 

 Breast cancer is the most common cancer in women in the USA, with nearly 235,030 
estimated cases as well as 40,430 estimated deaths in 2014 [ 85 ]. Like all cancers, 
breast cancer arises from genetic mutations and almost 20 % of breast cancer 
patients have family history of cancer [ 86 ]. Inherited genetic mutations in the BRCA1 
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and BRCA2 genes contribute towards 5–10 % of diagnosed breast cancer cases 
[ 86 ,  87 ] and mutations in TP53, PTEN, and STK11 (Serine/Threonine Kinase 11) 
contribute towards increased risk of breast cancer in the case of Li–Fraumeni syn-
drome [ 88 – 90 ], Cowden syndrome [ 91 ] and Peutz–Jeghers syndrome, respectively 
[ 92 ,  93 ]. Additionally, mutations in CHEK2 (Checkpoint Kinase 2), ATM, NBN 
(Nibrin), RAD50 (RAD50 Homolog), BRIP1 (BRCA1 interacting protein 
C-terminal helicase 1), and PALB2 (partner and localizer of BRCA2) are associated 
with increased risk of breast cancer [ 94 ,  95 ]. Table  2  provides a list of genes com-
monly mutated (obtained from COSMIC) in breast cancer, NGS-based tests avail-
able, and potential therapeutic intervention.

   Breast cancer is the most well-characterized cancer; however, approximately 
90 % of breast cancers arise from sporadic mutations in a few key cancer genes, and 
hence, it is important to have a biomarker assay that can in a single test provide 
information about potentially actionable mutations. Not surprisingly, breast cancer 
was one of the fi rst cancers for which a NGS-based multigene panel for mutation 
detection was developed [ 96 ]. Walsh et al. [ 96 ] developed a targeted sequencing 
panel of 21 genes associated with breast and ovarian cancer and sequenced the DNA 
of 20 female cancer patients with a known mutation in at least one of the genes 
responsible for inherited predisposition to these diseases. They were able to success-
fully detect all the point mutations and small indels (1–19 bp) that were part of the 
test and did not detect any false positives. Additionally, they were able to detect fi ve 
large deletions and one duplication event in the BRCA1 and BRCA2 genes. Thus, 
Walsh et al. [ 96 ] was the fi rst group to successfully demonstrate the applicability and 
benefi ts of using NGS panels in diagnostics. Since then several publications [ 97 –
 100 ] have demonstrated the applicability of NGS-based panels in detecting known 
and novel mutations as well as actionable therapeutic targets in cancer samples. 

   Table 1    Novel cancer genes identifi ed using next-generation sequencing   

 Gene name  Cancer type  References 

 SOX9, NAV2-TCF7L1 fusion, CDH10, FAT4, 
DOCK2 

 Colorectal cancer  [ 81 ,  132 ] 

 PRPS2, PRKCZ, PRKCQ, PRKG1, PRKCE, NRC31  Triple negative breast cancer  [ 128 ] 
 AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, 
MAP3K13, NCOR1, SMARCD1, TBX3 

 Breast cancer  [ 129 ] 

 LZTR1, SPTA1, ATRX, GABRA6, KEL  Glioblastoma multiforme  [ 130 ] 
 TSHR, ROCK1, ROCK2  Gastric adenocarcinoma  [ 131 ] 
 GRIN2A, TMEM132B, ZNF831, PLCB4, 
TAS2R60, KHDRBS2, C12orf63 

 Melanoma  [ 133 ] 

 ARID1A, PPP2R1A  Ovarian clear cell carcinoma  [ 134 ] 
 PBRM1, HIF1a, JARID1C, SETD2, PMS1  Renal cell carcinoma  [ 38 ,  61 ] 
 IDH1, ND4, CDC42, IMPG2, FREM2, 
ANKRD26, CEP170, CDH24, PCLKC, GPR1233, 
EBI2, KNDC1, SLC15A1, GRINL1B 

 Acute myeloid leukemia  [ 135 ,  136 ] 

 FUS-NCATc2 and CIC-FOXO4 fusions  Ewing sarcoma  [ 137 ] 
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   Table 2    List of genes mutated at high frequency in breast cancer and currently tested using NGS panels   

 Gene 
name 

 Mutation 
frequency a  
(%)  Available NGS panel cancer test  Potential therapeutic intervention b  

 AKAP9  2 
 AKT1  3  FoundationOne™ 
 APC  2  Ambry Genetics CancerNext 

 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 Perifosine [ 138 ,  139 ] MK2206 
[ 140 ], Cenisertib, Iatasertib, 
Afuresertib, Uprosertib 

 ARID1A  3  FoundationOne™ 
 ATM  2  Ambry Genetics BreastNext 

 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 Everolimus, Temsirolimus [ 141 ] 

 BRCA1  2  Ambry Genetics BreastNext 
 FoundationOne™ 

 Rucaparib [ 142 ], Niraparib 
[ 143 ], Veliparib, Olaprib [ 144 ] 

 BRCA2  Ambry Genetics BreastNext 
 FoundationOne™ 

 Rucaparib [ 142 ], Niraparib [ 143 ] 

 CHEK2  Ambry Genetics BreastNext 
 FoundationOne™ 

 CDH1  12  Ambry Genetics BreastNext 
 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 GATA3  7  FoundationOne™ 
 KMT2D  3  FoundationOne™ 
 MAP2K4  2  FoundationOne™ 
 MED12  3  FoundationOne™ 
 MLL3  7 
 MYH9  2 
 NF1  2  Ambry Genetics BreastNext 

 FoundationOne™ 
 PD325901 [ 147 ] 

 PALB2  Ambry Genetics BreastNext 
 Foundation One 

 PIK3CA  26  Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer panel 

 Buparlisib, BEZ235, BGT226, 
GSK2126458, GDC-0941 
Bismesylate 

 PTEN  4  Ambry Genetics BreastNext 
 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 Everolimus, Temsirolimus 

 RB1  3  Ambry Genetics Retinoblastoma 
 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 RUNX1  2  FoundationOne™ 
 TP53  23  Ambry Genetics BreastNext 

 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 Ad5CMV-p53 gene [ 145 ] 

 UBR5  2 

   a  Source : COSMIC [ 149 ] 

  b Unless mentioned otherwise, the source of information for potential therapeutic intervention is [ 150 ]  
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 Most recently, Chong et al. [ 40 ] have reported on development of BRCAPlus, a 
clinical diagnostic assay that detects mutations in six high risk breast cancer suscep-
tibility genes; BRCA1, BRCA2, CDH1 (Cadherin 1), PTEN, TP53, and STK11. In 
this fairly large study (250 previously characterized samples and 3,000 new clinical 
samples), the BRCAPlus test was able to identify all the 3,025 known germ-line 
mutations in the 250 previously characterized samples and was also able to detect 
pathogenic mutations in the BRCA2 gene in two clinical samples that had previ-
ously tested negative for mutations in BRCA1 and BRCA2. This study demon-
strates that NGS panels have high sensitivity and can be particularly useful in 
identifying low level complex mutations as well as heterozygous mutations that can 
be sometimes missed by Sanger sequencing. 

 In addition to targeted sequencing, whole-genome sequencing has also been used 
in identifying mutations in breast cancer, especially in the absence of mutations in 
BRCA1 and BRCA2. Link et al. [ 101 ] used the whole-genome sequencing approach 
to identify mutations in the genome of a patient with early onset breast and ovarian 
cancer who had also developed therapy-related acute myeloid leukemia. This 
patient had no family history of breast or ovarian cancer and tested negative for the 
conventional BRCA1 and BRCA2 mutations tested by commercial tests. Performing 
whole-genome sequencing on the skin (normal) and bone marrow (leukemia) 
genome of the patient revealed a novel 3 kb heterozygous deletion in the TP53 gene 
(exons 7–9) of the normal genome and a 17.6 mb region of uniparental disomy on 
chromosome 17 with resultant homozygous deletion of the same region (exons 7–9 
of TP53 gene) of the leukemia genome. The loss of exons 7–9 resulted in loss of 
DNA binding domain in the TP53 protein and thus produced a functionally defec-
tive protein. The authors concluded that this deletion mutation in the TP53 gene was 
most likely contributing to high cancer susceptibility in this patient.  

5.2     Lung Cancer 

 Lung cancer is the most common cancer worldwide and the most common cause of 
cancer-related death [ 102 ]. Lung cancer is usually divided into two broad catego-
ries: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). 
NSCLCs account for a majority (approximately 85 %) of lung cancers and are fur-
ther divided into three subtypes: squamous-cell carcinoma (SCC), adenocarcinoma, 
and large-cell lung cancer. Adenocarcinomas are considered to be the most common 
lung carcinoma subtype, constituting approximately 40 % of all NSCLC. The pri-
mary cause of lung cancer is cigarette smoking with about 75–90 % lung cancer 
patients being moderate to heavy smokers, whereas 10–25 % cases of lung cancer 
occur in nonsmokers [ 103 ,  104 ]. The proposed causes of lung cancer in nonsmokers 
is exposure to secondhand smoke, cooking fumes, exposure to carcinogenic agents 
such as asbestos, arsenic, radiation, and some air pollutants and even genetic aber-
rations [ 105 ,  106 ]. Genetic aberrations are found in lung cancer patients with or 
without smoking history; however, nonsmokers have fewer mutations as compared 
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to smokers [ 107 ,  108 ]. Hence, even though environmental factors play a critical role 
in precipitating lung cancer, genetic aberrations are probably important in tumor 
progression and metastasis. A number of studies in the last few years have generated 
a long list of genes mutated at very high frequency in different types of lung cancer 
and many of them (e.g., mutations in EGFR and ALK fusions) serve as biomarkers 
for choosing appropriate therapy. Table  3  provides a list of genes commonly mutated 
(obtained from COSMIC) in lung cancer, NGS-based tests available and potential 
therapeutic intervention.

   A small set of well characterized NSCLCs was recently subjected to integrated 
analysis of genome and transcriptome sequencing data by Govindan et al. [ 108 ] and 
they have reported several interesting fi ndings particularly with regard to potential 
therapeutic targets in this lung cancer type. The analysis of genome sequencing data 
not only revealed mutations in known lung cancer associated genes such as KRAS, 
TP53, EGFR, BRAF, JAK2 (Janus Kinase 2), JAK3 (Janus Kinase 3), and EPHA3 
(EPH receptor A3) but also identifi ed a few signifi cantly mutated genes not previ-
ously associated with lung cancer. Of these, DACH1 (Dachshund family transcrip-
tion factor 1) is reported in other cancers such as breast cancer, gliomas and prostate 
cancer. Moreover, using genetic variant and gene expression data, the authors were 
able to identify known (e.g., mutations in KRAS, EGFR and BRAF) as well as 
novel [mutations in PRKCB2 (Protein Kinase C beta), MET, JAK2, HGF (hepato-
cyte growth factor), and ERBB2] therapeutic targets. 

 The TCGA group recently published a thorough molecular characterization of 
lung adenocarcinoma [ 109 ] by performing integrative analysis of whole-exome, 
gene expression, and epigenetic data. Analysis of exome sequencing data from 230 
adenocarcinoma samples revealed that 62 % (143/230) samples carried known acti-
vating mutations in known driver oncogenes. Of these, 32 % samples harbored 
mutations in KRAS, 11 % in EGFR, 7 % in BRAF and a small fraction of samples 
had mutations in ERBB2, MAP2K1 (Mitogen Activated Protein Kinase Kinase 1), 
NRAS (Neuroblastoma RAS viral (v-ras) oncogene homolog), and HRAS (Harvey 
Rat Sarcoma viral oncogene homolog). In the remaining samples (38 %) which the 
authors have defi ned as oncogene negative tumors, the authors reported a signifi cant 
enrichment of TP53, KEAP1 (Kelch-like ECH-Associated Protein 1), NF1 
(Neurofi bromin 1), and RIT1 (Ras-like without CAAX 1) mutations. On further 
analysis of the data, the authors recommend amplifi cations in MET (MET proto-
oncogene, receptor tyrosine kinase) and ERBB2 as well as mutations in NF1 and 
RIT1 as drivers in the oncogene-negative lung adenocarcinomas. This comprehen-
sive study underscores the potential of the NGS technology to identify molecular 
subtypes within a tumor population and elucidate novel markers. 

 Lung squamous cell carcinoma (SQCC) a form of lung cancer that does not 
 typically harbor therapeutically relevant activating mutations in EGFR and ALK 
fusions were comprehensively studied by the TCGA group [ 83 ]. In this study, data 
from various high-throughput genomic technologies, especially NGS, was used to 
characterize the genomic and epigenomic landscape as well as to identify potential 
therapeutic targets. The group reported 22 genes [e.g., TP53, CDKN2A, PTEN, 
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   Table 3    List of gene mutated at high frequency in lung cancer and currently tested using NGS panel   

 Gene name 

 Mutation 
frequency a  
(%)  Available NGS panel cancer test  Potential therapeutic intervention b  

 AKAP9  5 
 ATM  5  Ambry Genetics CancerNext 

 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 ATRX  5  FoundationOne™ 
 CDKN2A  9  Ion AmpliSeq Cancer Hotspot v2 

 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 Olomoucine, Roscovitine [ 141 ], 
Roniciclib, Alvocidib, 
Dinaciclib, Seliciclib 

 CREBBP  5  FoundationOne™ 
 EGFR  28  Ion AmpliSeq Cancer Hotspot v2 

 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 Erlotinib, Gefi tinib [ 140 ], 
Vandetanib, Afatinib, Icotinib, 
Canertinib, Epitinib 

 KDR  5  Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 KMT2D  7  FoundationOne™ 
 KRAS  16  Ion AmpliSeq Cancer Hotspot v2 

 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 MLL3  11  FoundationOne™ 
 NF1  7  FoundationOne™  Everolimus, Temsirolimus [ 140 ] 
 NFE2L2  5  FoundationOne™ 
 PDE4DIP  5 
 RB1  5  Ambry Genetics Retinoblastoma 

 Ion AmpliSeq Cancer Hotspot v2 
 FoundationOne™ 
 TruSeq Amplicon Cancer Panel 

 SETBP1  5 
 SMARCA4  5  FoundationOne™ 
 STK11  7  Ambry Genetics CancerNext 

 FoundationOne™ 
 Ion AmpliSeq Cancer Hotspot v2 
 TruSeq Amplicon Cancer Panel 

 Everolimus and 
Temsirolimus [ 148 ] 

 TP53  34  Ambry Genetics CancerNext 
 FoundationOne™ 
 Ion AmpliSeq Cancer Hotspot v2 
 TruSeq Amplicon Cancer Panel 

 Ad5CMV-p53 gene [ 146 ] 

 TRRAP  5 
 ZNF521  6 

   a  Source : COSMIC [ 149 ] 

  b Unless mentioned otherwise, the source of information for potential therapeutic intervention is [ 150 ]  
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PIK3CA, KEAP1, HRAS, SMAD4 (SMAD family member 4)] most commonly 
mutated in SQCCs. The TP53 mutations were present in almost 93 % of samples 
whereas the CDKN2A gene was inactivated in 72 % of samples in the study. 
Moreover, 96 % of tumors were shown to have mutations in tyrosine kinases (e.g., 
ERBBs, FGFRs, and JAKs), serine/threonine kinases, PI3K, GPCRs (G protein 
coupled receptors), proteases, and tyrosine phosphatases, suggesting these to be 
potentially new therapeutic targets in lung SQCC. 

 In another fairly large study, Imielinski et al. [ 37 ] analyzed 183 lung adenocarci-
noma tumor/normal pairs using the whole-exome sequencing or whole-genome 
sequencing approach. The study reported the presence of mutations in a number of 
known as well as novel lung cancer genes at different frequencies; TP53 (50 %), 
KRAS (27 %), EGFR (17 %), STK11 (15 %), KEAP1 (12 %), NF1 (11 %), BRAF 
(8 %), RBM2 (RNA binding motif protein, Y-linked, family 1, member A1; 7 %), 
U2AF1 (U2 small nuclear RNA auxiliary factor 1; 4 %), and SMAD4 (3 %). In 
addition to single base mutation, the study also identifi ed large number of structural 
variations in the genomes of lung cancer patients. 

 It is clear from all the studies mentioned here that even though environmental 
factors appear to be primary drivers for lung cancer, it is a genetically heteroge-
neous disease. Many common as well as specifi c genome variations (single base 
and large structural variations) are found in different cohorts and different subtypes 
of lung cancer. Importantly, many of these identifi ed variants are of predictive 
value. Continued use of comprehensive genome as well as transcriptome sequenc-
ing in large number of lung cancer samples will enable discovery of many valuable 
biomarkers with application in therapeutics.  

5.3     Colorectal Cancer 

 Colorectal cancer is the fourth leading cause of cancer mortality worldwide with an 
estimated 694,000 deaths per year [ 102 ]. In the USA, until mid-2014, approxi-
mately 136,000 individuals were diagnosed with colon cancer and there were about 
50,000 deaths, contributing to 8.5 % of all cancer deaths [ 110 ]. The two most com-
mon inherited syndromes linked with colorectal cancers are familial adenomatous 
polyposis (FAP) and hereditary non-polyposis colorectal cancer (HNPCC). Only 
62 % individuals diagnosed with colon cancer survive for 5 years or more after 
diagnosis. Prognosis for patients with colorectal cancer is directly related to the tim-
ing of diagnosis. If detected early, colorectal cancer (CRC) can be managed by 
surgery. In the last decade there has been a steady decline in the number of CRC 
cases due to early detection and surgical removal of polyps. 

 Colorectal cancer results from accumulation of genetic mutations as well as epi-
genetic changes and about 5–10 % individuals that develop CRC have inherited 
genetic defects. In addition, a majority of sporadic CRCs harbor chromosomal 
instability characterized by aneuploidy, amplifi cations and deletions of genomic 
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regions, and loss of heterozygosity (LOH), microsatellite instability, and CpG 
Island Methylator Phenotype (CIMP) [ 111 ]. Specifi cally, somatic mutations in APC 
(Adenomatous Polyposis Coli), BRAF, KRAS, PIK3CA, TP53, and other genes 
have been frequently observed in CRC. 

 A comprehensive integrated analysis by the TCGA group [ 81 ] of 224 colorectal 
tumor/normal pairs using WGS and WES provides a number of insights into the 
biology of CRC and identifi es potential therapeutic targets. The group of samples 
studied had a signifi cant variation in the mutation rate between the tumor samples 
and the authors classifi ed the tumors as non-hypermutated (mutation rate ≪1/10 6  
bases) and hypermutated (mutations rates >100/10 6 ). Interestingly, the study also 
reported prevalence of mutations in different sets of genes between the two groups. 
In the non-hypermutated set of tumors, APC, TP53, KRAS, PIK3CA, FBXW7 
(F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase), SMAD4, 
TCF7L2 (Transcription Factor 7-Like 2), and NRAS were found to be most fre-
quently mutated. On the other hand, ACVR2A (Activin A receptor, type IIA), APC, 
TGFBR2 (Transforming Growth Factor, beta receptor II), MSH3 (MutS homolog 
3), MSH6 (MutS homolog 6), SLC9A9 (Solute Carrier family 9, subfamily A) and 
TCF7L2 were frequently mutated in hypermutated tumors. Though mutations in 
APC, TP53, TGFBR1 (Transforming Growth Factor, beta receptor 1), TGFBR2 
(Transforming Growth Factor, beta receptor 2), ACVR2A, ACVR1B (Activin A 
receptor, type IB), SMAD2 (SMAD family member 2), SMAD3 (SMAD family 
member 3), and SMAD4 were found in both groups of CRCs, there was a signifi -
cant difference in the frequency of mutations between the two groups. This study 
suggests that different molecular signatures can be used to identify different classes 
of CRCs and have potentially different therapeutic targets. 

 Han et al. [ 112 ] have also demonstrated the feasibility of using a NGS-based 
panel for identifying mutations in colorectal cancer samples in a clinical setting. 
They created a panel of 183 genes that had predictive as well as prognostic value and 
were found to have high mutation frequency in the Catalogue of Somatic Mutations 
in Cancer (COSMIC) database. They used this panel to sequence the target region in 
60 colorectal cancer patients representing different cancer stages as well as different 
levels of microsatellite instability. The authors reported 166 novel mutations, among 
which were two recurrent novel mutations, JAK1 (Janus Kinase 1) c.1595C>T 
(p.R532H) in two patients and EWSR1 (EWS RNA-binding protein 1) c.1769A>C 
(p.Q590P) in two patients. Point mutations were most frequently observed in genes 
well established to play a role in colorectal cancer; APC (32 mutations in 29 patients), 
followed by TP53 (27 in 27), KRAS (24 in 24), TTN (Titin; 36 in 21), and FBXW7 
(15 in 14). This study demonstrates the utility of NGS panel in detection of known 
as well as potentially actionable novel molecular markers in clinical practice. 

 Similar to breast cancer and lung cancer, the studies conducted in colorectal 
cancer so far indicate that it is a genetically complex disorder with many signifi cant 
genetic and epigenetic differences depending on the microsatellite stability status of 
the tumors. Moreover, very few patients benefi t from chemotherapy and hence it is 
important to identify biomarkers that can be used to identify such patients using 
NGS technology.   
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6     The Cancer Genome Atlas Project 

 Any publication about the phenomenal contribution of novel high-throughput 
genomic technologies to biomarker identifi cation and resultant impact on cancer 
characterization, treatment, and management would be incomplete without a brief 
discussion of The Cancer Genome Atlas project [ 113 ]. 

 The Cancer Genome Atlas (TCGA) project is a pan cancer initiative undertaken 
in 2006 as an exploratory three year project by the National Cancer Institute (NCI) 
and National Human Genome Research Institute (NHGRI). Currently, the TCGA 
project has genomic data for more than 30 cancer types with Glioblastoma 
Multiforme (GBM), Breast Cancer, Ovarian Cancer, and Lung Cancer being the 
most comprehensive datasets. The mission, strategy, and details of genomic data 
available for the various cancers studied under the TCGA are described in a recent 
paper by the TCGA Research Network [ 114 ]. The work done in TCGA has helped 
identify novel biomarkers for GBM [ 115 ,  116 ], lung cancer [ 117 ], and ovarian can-
cer [ 80 ,  118 ]. Most of the studies published by the TCGA group have used data 
from genome sequencing, transcriptome sequencing, and methylation profi ling to 
derive a very comprehensive landscape of cancer genomics. The TCGA and analy-
sis will substantially contribute towards the development of novel biomarker assays, 
drugs as well as cancer management regimen.  

7     Application of NGS-Based Tests in Therapeutic 
Intervention 

 In a very recent report Subbiah et al. [ 41 ] demonstrated the application of NGS tech-
nology to identify targeted therapy for a spindle cell neoplasm patient non- responsive 
to standard chemotherapy. A 55-year-old female patient diagnosed with malignant 
spindle cell neoplasm was initially treated with doxorubicin and ifosfamide followed 
by gemcitabine and docetaxel. However, the patient did not respond to this therapeu-
tic regimen and was put on a combination of sorafenib (BRAF inhibitor), temsiroli-
mus (mTOR inhibitor), and bevacizumab. This combination therapy resulted in a 
25 % reduction in tumor size and decrease in chest pain as well as dyspnea. Genomic 
profi ling of the patient using the NGS-based FoundationOne™ test revealed a 
KIAA1549-BRAF fusion for the fi rst time in spindle cell neoplasm. The KIAA1549-
BRAF fusion has a completely conserved kinase domain and the authors speculate 
that as sorafenib is a BRAF inhibitor that acts by binding to the ATP binding pocket 
in BRAF, the therapy was effective in this patient. Additionally, the authors suggest 
that as the KIAA1549-BRAF fusion has also been shown to hyperactivate the mTOR 
pathway in mouse models of pilocytic astrocytoma, the patient benefi ted from 
including temsirolimus, the mTOR inhibitor, in the combination therapy. This case 
highlights that genomic profi ling using NGS can uncover novel mutations in cancers 
that can be used for selecting appropriate targeted therapy. 
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 In addition to the aforementioned case study, several clinical trials are underway 
to test the potential of using NGS-based genomic screening to identify targeted 
therapies in cancer. For example, a clinical trial of CancerCode is underway to eval-
uate the effectiveness of targeted therapy chosen based on the genetic information 
in treating stage IIIB-IV NSCLC patients [ 119 ]. 

 CancerCode is a NGS-based test that determines genetic alterations in a select 
group of cancer genes. Some other examples of clinical trials evaluating the impact 
of NGS-based testing in selecting targeted therapy are trial of FoundationOne™ test 
in guiding therapy in recurrent or metastatic solid tumors [ 120 ] and trial of pro-
teomic and NGS-based genomic profi ling in metastatic breast cancer [ 121 ].  

8     Current Challenges 

     1.    Cost—NGS panels sequencing small genomic regions cost a few thousand dol-
lars unlike the traditional single gene tests which cost only a few hundred dol-
lars. For example, the FoundationOne™ cancer panel that tests for entire coding 
sequence of 315 known oncogenes and few introns from 28 genes often rear-
ranged or mutated in solid tumor cancers costs $5,800 per test 9 [ 122 ]. The NGS- 
based cancer tests (10–30 genes) from Ambry genetics costs about $4,000 per 
test [ 123 ]. On the other hand, the BRACAnalysis ®  Large Rearrangement Test 
(BART™) from Myriad Genetics that interrogates for mutations in BRCA1 and 
BRCA2 genes costs only $700 per test [ 124 ] and the single BRCA1 or BRCA2 
test by Ambry genetics costs about $500 [ 123 ]. However, what needs to be noted 
is that even though the per base cost for an NGS panel is lower than a traditional 
test, the total out of pocket cost is higher. Moreover, currently not all NGS-based 
tests are reimbursed by insurance providers and that poses a signifi cant chal-
lenge for widespread adoption.   

   2.    Turnaround time—Typical turnaround time for NGS-based tests is about 4–6 
weeks [ 125 ,  126 ] as opposed to 7–10 days for single gene tests [ 126 ]. The longer 
turnaround time is a signifi cant challenge in cases where decision about course 
of treatment needs to be made at the earliest. This is usually the case as NGS 
tests are ordered when mutations expected in the particular cancer (e.g., 
BRCA1/2 mutations in breast/ovarian cancer) are not detected or when a new 
line of treatment is being considered.   

   3.    Variants of unknown signifi cance—Variants of unknown signifi cance (VUS) are 
defi ned as DNA variants that have not been well characterized for their functional 
impact. On using NGS to sequence large portion of genome, a signifi cant number 
of VUS are likely to be identifi ed. Presence of VUS in genomic regions important 
for the disease under consideration could create substantial uncertainty in deciding 
future course of action and hence sometimes could be counterproductive. Tests 
used for biomarker identifi cation are expected to yield precise and specifi c infor-
mation that can be reliably used for guiding disease management and the VUS 
identifi ed by NGS pose a signifi cant challenge for its utility as a standard test.   
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   4.    Complex data analysis and interpretation—In traditional biomarker tests or single 
gene tests clear guidance with regard to the expected level of the biomarker or 
expected mutation are available. However, for NGS-based tests the likelihood of 
detecting a novel or unexpected mutation are high even though they often have 
an expected outcome. This requires that specially trained bioinformatics or med-
ical geneticists are available for data analysis and interpretation.   

   5.    No one test that fi ts all—One of the classic properties of biomarkers is that, it is 
detectable consistently and reliably in all tested samples. However, the biomark-
ers expected to be discovered and eventually used in clinic using NGS technology 
are likely to be such that they are found only in a specifi c subset of tested samples. 
This implies that for the same disease type (e.g., lung cancer), different markers 
will test positive depending on the cancer subtype. While this is not necessarily a 
limitation, it is certainly different from the current biomarker paradigm.      

9     Future Directions 

 Biomarker detection using NGS technology is likely to play a very crucial role in 
cancer diagnosis, prognosis and disease management in the very near future. 
Biomarkers detected using NGS-based tests will be very different from the traditional 
biomarkers in that the biomarkers may not be specifi c to a cancer type, but rather 
specifi c to a subset of cancer patients. The data from TCGA analysis is already sug-
gesting that many of the oncogenes that are associated with a particular cancer type 
are not mutated in all the patients diagnosed with that cancer. For example, associa-
tion between mutations in TP53 and lung cancer is well established; however, TP53 
mutations are not found in all the patients diagnosed with lung cancer. This phenom-
enon is not unique to lung cancer, but is prevalent in all forms of cancer. Apart from 
using NGS for detection of diagnostic and prognostic biomarkers, NGS-based tests 
can be used as a sensitive assay to predict the metastatic potential or probability of 
relapse. For example Fu et al. [ 127 ] recently used NGS to sequence genomes of CML 
patients who received allogeneic stem-cell transplant and demonstrated a higher inci-
dence of CML relapse in patients carrying mutations in ASXL1, CBL, TET2, or 
NRAS. Availability of this information early in the treatment cycle will enable inclu-
sion of preventive measures. Moreover, as metastasized tumors tend to acquire new 
mutations, sequencing can be performed serially on DNA obtained from blood. In 
this context, the recently demonstrated feasibility of detecting circulating tumor DNA 
and using it to perform molecular characterization of cancer is very exciting.  

10     Summary 

 In the last few years, NGS-based studies have made immense contribution towards 
discovering many novel and clinically relevant biomarkers. One of the most impor-
tant contribution of NGS in cancer research has been the capability to decipher 
individual cancer genome and truly unleash the potential of human genome in driv-
ing personalized cancer care.     
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      Validation and Implementation of 
Next- Generation Sequencing Technologies 
in a Clinical Molecular Diagnostic Laboratory 

             Rajesh     R.     Singh      and     Rajyalakshmi     Luthra    

    Abstract     Next-generation sequencing (NGS) technologies represent powerful tools 
capable of massive parallel sequencing of DNA. Their application has revolutionized 
characterization of genomic aberrations responsible for initiation and maintenance of 
cancers, resulting in a high discovery rate of therapeutic and prognostic markers. In 
a clinical molecular diagnostic laboratory, the high sequencing capacities of NGS 
technologies are well suited for routine screening of increasing number of markers 
using low inputs of DNA in high sample volumes. However, implementation of these 
technologies in the clinical environment needs thorough validation of their workfl ow 
suitability, their capability to detect a variety of genomic aberrations, and their effi -
ciency in comparison to other orthogonal sequencing platforms being routinely used. 
Here, using a targeted NGS panel to screen for mutational hot spots in 46 cancer-
related genes as an example, we have discussed various parameters which need to be 
established for validation and implementation of the NGS assays. We have high-
lighted various assay performance metrics which need to be established toward com-
plete validation of the NGS platform before implementation. The criteria for fi ltering, 
annotating, and clinical reporting of variants are also discussed.  

1          Introduction 

 Cancer is a heterogeneous disease characterized by the accumulation of stable DNA 
sequence abnormalities resulting in deregulation of multiple cell signaling path-
ways. Comprehensive profi ling of these genetic changes is valuable in diagnosis, in 
prognosis, and in selection of suitable treatment options, a hallmark of personalized 
cancer therapy that aims to maximize therapeutic benefi ts and minimize therapy-
associated risks. Thus, screening tumor DNA for mutations of diagnostic, prognos-
tic, and therapeutic signifi cance has now become an integral part of cancer patient 
management. Clinical molecular oncology laboratories strive to provide accurate 
and timely identifi cation of these mutations using a variety of mutation detection 
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technologies such as Sanger sequencing, pyrosequencing, fragment analysis by 
capillary electrophoresis, primer extension coupled with mass spectrometry, and 
allele-specifi c PCR approaches. Although these technologies have been very effi -
ciently implemented in clinical laboratories, comprehensive mutation analysis 
using these low-throughput technologies is diffi cult due to their limited ability to 
multiplex, especially when tissue is limited. 

 However, in the last decade, rapid advancements in sequencing technologies and 
computational methods have resulted in the emergence of the massively parallel 
next-generation sequencing (NGS) platforms that have drastically decreased the 
time and the cost associated with comprehensive genome analysis [ 1 – 3 ].    NGS rep-
resents a major departure from Sanger sequencing and pyrosequencing, the so- 
called fi rst-generation sequencing, by permitting whole genome or exome or 
targeted gene panel sequencing through multiplexing fl exibility. This is of high rel-
evance to clinical diagnostic laboratories where mutational screening, until the 
advent of NGS, has been restricted to few markers through singleplex analysis of 
mutational hot spot regions or coding region of an individual gene by “fi rst- 
generation” sequencing assays. The drawbacks of a single gene or exon approach 
are obvious and include high cost, more labor, and slower turnaround time. These 
limitations have been circumvented by the high multiplexing capacity of NGS plat-
forms, making comprehensive mutational screening of tumors achievable. 
Furthermore, NGS technologies facilitate screening of multiple genes with very 
limited starting material, a signifi cant advantage over conventional sequencing plat-
forms that require relatively larger DNA quantities. 

 Many clinical laboratories are opting to use massively parallel sequencing capa-
bility of NGS which allows simultaneous sequencing of multiple genes and multi-
ple patient samples in a single sequencing reaction as suitable alternative to 
traditional platforms for comprehensive mutation analysis. However, rigorous vali-
dation of the NGS technologies and multi-gene panels is warranted before they are 
applied for routine clinical screening of tumors. Parallel sequencing of large 
genomic areas and multiple genes in several multiplexed samples presents chal-
lenges not routinely faced by the laboratories using low- and medium-throughput 
sequencing platforms such as the selection of validation samples and the number 
and variety of mutations to be validated and reporting of the results [ 4 – 7 ]. Recently, 
several guidelines have been published addressing this issue [ 8 ,  9 ], which have 
helped to streamline these issues. 

 Here, using the example of a 46-gene hot spot NGS cancer panel (AmpliSeq 
Cancer Panel v1, Life Technologies, CA) that we have implemented in our molecu-
lar diagnostic laboratory utilizing Ion Torrent personal genome machine (IT-PGM) 
[ 10 ], we will summarize the different aspects involved in validation of an NGS- 
based test for clinical laboratory implementation. The IT-PGM platform performs 
sequencing-by-synthesis by monitoring the release of hydrogen ions or protons 
 during the complementary strand synthesis. The sequencing is interfaced with a 
semiconductor chip that measures the change in pH resulting from the released 
hydrogen ions [ 11 ]. The recent publications also describe the applications of 
IT-PGM for mutation screening in hereditary diseases and characterization of 
microbial genomes [ 12 – 14 ].  
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2     Validation 

2.1     Validation Sample 

 Samples for validation of a gene panel of interest should include diverse mutations, 
i.e., single nucleotide variants, insertions, and deletions in as many genes as possible 
since NGS panels are designed to screen multiple genes and multiple types of muta-
tions simultaneously. Cell lines with known mutations can also be included. For sam-
ple diversity, one should consider including different tumor types that will be tested 
on the NGS platform to have a suffi cient admixture of tumor-specifi c variants. 

 For the validation of the cancer panel covering 740 mutational hot spots in 46 
cancer-related genes, we used 70 formalin-fi xed paraffi n-embedded solid tumor 
specimens including 22 archival specimens with known mutations and 48 speci-
mens sequenced in parallel with alternate sequencing platforms. The 70 specimens 
consisted tumors of various tissue origins: melanoma ( n  = 36), colorectal adenocar-
cinoma ( n  = 16), lung ( n  = 5), gastrointestinal tract ( n  = 5), papillary thyroid ( n  = 4), 
endometrial serous adenocarcinomas ( n  = 3), and squamous cell carcinoma ( n  = 1). 
These specimens were tested for mutations by MassARRAY-based multiplex muta-
tion detection assay covering 82 hot spots in 11 genes or by individual Sanger 
sequencing assays developed in our laboratory.  

2.2     Establishing Assay Performance 

 As majority of the NGS assays are meant for research use only, and the primary 
intention of validation of NGS assays in a clinical diagnostic laboratory is to test 
their suitability as routine diagnostic tests for clinical use. Hence, it is imperative to 
evaluate if the interested regions in the designed panel are being captured and 
sequenced effi ciently and to establish analytical assay parameters such as accuracy, 
sensitivity, specifi city, and reproducibility as discussed below prior to an NGS-based 
mutation assay deemed ready for implementation in a clinical laboratory environ-
ment. Furthermore, it is important to develop alternate assays for confi rmation. 

2.2.1     Target Capture and Sequencing 

 Different technologies of target capture are available for isolation and amplifi cation 
of genomic areas of interest for sequencing on NGS platforms. The two major tech-
niques include high-capacity multiplexed PCR and probe-hybridization capture 
mechanisms. The 46-gene hot spot panel employs the former multiplexed PCR 
approach in a single tube where a set of 190 primer pairs amplify genomic areas of 
interest using low levels of DNA template (10 ng). In a multiplexed PCR, the ampli-
fi cation performance of the primers and the nucleotide sequence in areas of interest 
defi ne the effi ciency of target amplifi cation. This is eventually refl ected in the 
sequencing depth achieved by each amplicon in the panel. For a clinical test, it is 
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very important to establish a minimum sequencing depth that areas of interest 
should achieve in order to clearly defi ne those targeted areas that are consistently 
sequenced adequately and the areas that fail to meet the minimum cutoff. In our 
study, we defi ned a cutoff of minimum 300,000 AQ20 sequencing reads (one mis-
aligned base per 100 bases) and 250× sequencing depth to be adequate. Monitoring 
the overall performance of the amplicons in the sequencing runs for our validation 
study, we could identify amplicons which consistently reached sequencing depth 
of ≥ 250×. The mutational status of the genomic regions covered by the failed 
amplicons (<250×) was recorded as indeterminate during reporting. Using this cri-
terion, the validation studies showed that out of 190 amplicons, 11 amplicons 
were found to fail routinely due to inadequate sequencing depth. In the validation 
set of 70 samples, multiplexed sequencing using the 316 chip (4 samples) or 318 
chip (8 samples) resulted in each of the samples receiving >300,000 Aq20 reads 
(average 520,961 reads) with median coverage of >1,000× for each nucleotide. As 
IT-PGM provides the fl exibility of sequencing varying multiplexed samples by 
using chips of different capacities, we compared the sequencing performance of two 
chips (316-4 multiplexed samples, 318-8 multiplexed samples) and found the 
sequencing and variant detecting effi ciency to be comparable.  

2.2.2     Assay Sensitivity or Limit of Detection 

 This important parameter helps to establish the sensitivity or lower limit of mutation 
detection for the NGS platform being implemented. To establish this, we used DNA 
from two cancer cell lines (H2122 and DLD1) with known mutations in few genes 
included in the panel. H2122 harbored a homozygous  KRAS  p.G12D and a heterozy-
gous  MET  p.M375S mutation, and DLD1 harbored heterozygous mutations in  PIK3CA  
(p.D549N),  KRAS  (p.G13D),  TP53  (p.S241F), and  SMO  (p.P640A). These cell lines 
were fi xed in formalin and embedded in paraffi n to mimic the FFPE DNA of tumors. 
DNA extracted from each cell line was sequentially diluted into FFPE DNA from 
H460 cell line that did not harbor the mutations expected in either H2122 or DLD1 
DNA to provide different dilution levels (100 %, 20 %, 10 %, and 5 %). Sequencing of 
serial dilutions of H2122 resulted in consistent detection of expected  KRAS  p.G12D 
and  MET  p.375S mutations at each dilution. Five different sequencing runs of sequen-
tially diluted DNA of DLD1 (100 %, 25 %, 10 %, 5 %, and 2.5 %) showed consistent 
detection of expected mutations in 25 % dilution. At 10 % dilution, some mutations 
were not called by the variant caller software even though they were evident in the 
sequencing reads, which indicated the defi ciency of the variant caller software.  

2.2.3    Assay Reproducibility 

 Assessment of NGS assay reproducibility is important as it represents the perfor-
mance consistency of the assay across different runs and operators. To establish the 
inter-run reproducibility, i.e., to check whether the same sequence is derived in a 
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sample when sequenced on different sequencing runs, we sequenced an FFPE 
patient DNA sample with mutations in  TP53 ,  KRAS , and  MET  in 25 different runs. 
Our studies showed that each of the three mutations was consistently detected in 
each of the 25 runs with very minimal variation in the allelic fractions, establishing 
the inter-run reproducibility. 

 Establishing intra-run sequencing reproducibility, a measure of consistent 
sequencing within a sequencing run is also essential and vital to demonstrate that 
comparable sequencing effi ciency is obtained when samples are multiplexed on the 
same run. To this end, 10 aliquots of FFPE DNA from a single patient with seven 
mutations in fi ve different genes [ FGFR3  p.P796S ( EGFR  p.K708T, p.R98Q, 
p.D837N),  NRAS  p.Q61L,  TP53  p.S241T, and  RET  p.P613L] were used as a tem-
plate for library preparation with each aliquot labeled with a different barcode. The 
multiplexed libraries were sequenced and the consistent detection of the 7 mutations 
and the variation of their allelic fractions were assessed. We observed that in every 
barcoded sample, 5 of the 7 mutations were consistently detected. Inconsistent 
detection of  FGFR3  p.P796S that was present at low allelic frequency (<10 % and 
average of 6 %) and  RET  p.P613L that was in a region which that achieved low 
sequencing depth (<250×) were observed.    

3     Concordance of NGS with Orthogonal 
Sequencing Techniques 

 Out of the 70 samples used for validation, 22 samples with known mutations were 
retrospective samples that were previously tested in the laboratory using traditional 
sequencing platforms. The remaining 48 clinical samples were tested in parallel 
with 11-gene MassARRAY (Sequenom)-based multiplex assay. Sanger sequencing 
was used to confi rm mutations detected by IT-PGM and not covered by the 
Sequenom 11-gene panel. In the 22 samples sequenced in retrospective, 29 SNVs, 
fi ve deletions, and one insertion were expected. IT-PGM detected each of the 
expected SNVs and 4 deletions except for a 12 bp deletion in  KIT  and a 6 bp inser-
tion in  KIT . These were evident in the sequencing reads but were not detected and 
called by the variant caller software version used during our initial validation. In a 
set of 32 melanoma samples tested in parallel, 47 missense mutations and one inser-
tion were detected by IT-PGM. Each of these mutations was confi rmed by either 
11-gene panel (Sequenom MassARRAY) or Sanger sequencing except for an SNV 
in  RB1  that was detected by IT-PGM but was actually found to be a 16 bp deletion 
by Sanger sequencing. This deletion was evident in the IT-PGM sequencing reads 
but erroneously called as an SNV by the variant caller. In additional 16 samples of 
different tumor types, 18 substitution mutations were called by IT-PGM and each of 
them were confi rmed by the 11-gene panel or Sanger sequencing. Overall, we 
observed a high level of concordance of IT-PGM sequencing with the orthogonal- 
validated sequencing techniques in our laboratory.  
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4     False-Positive Calls Induced by Homopolymer 
Stretches of DNA 

 As IT-PGM involves sequencing-by-synthesis by sequential fl owing of single 
nucleotides, the presence of homopolymer stretches is a source of false-positive 
mutations. This occurs primarily due to lack of correlation of the extent of pH 
change to the nucleotides incorporated. This results mostly in calling of a false 
single bp deletion or false substitution mutations due to erroneous alignment. 
Attempt to confi rm a subset of these mutations by Sanger sequencing showed that 
they were of spurious nature induced by homopolymer nucleotide stretches. 
Reanalysis of these mutations with a later release of the software showed consider-
able decrease in the rate of false-positive calls at the homopolymer areas.  

5     Comparison of Manual and Automated Emulsion PCR 
Methods 

 Prior to sequencing, the barcoded-multiplexed DNA libraries are clonally amplifi ed 
on beads (ionospheres) by emulsion PCR (e-PCR) after which the beads are depos-
ited in wells on the surface of the semiconductor chips for sequencing. We com-
pared the two options available for e-PCR, the fi rst being a manual protocol and an 
automated option referred to as OneTouch. We compared the effi ciency of these 
methods by the levels of polyclonal ionospheres (which have more than one ampli-
con amplifi ed on them and hence do not give meaningful sequencing information) 
and the overall sequencing output. We found that the manual e-PCR methods per-
formed signifi cantly better in comparison to the automated option by providing 
lower polyclonal ionospheres and consequently better sequencing output. However, 
since then, better OneTouch instruments (OneTouch 2) have been released whose 
performance is comparable to the manual e-PCR and we have validated and imple-
mented OneTouch 2 in our laboratory.  

6     Interpretation and Clinical Reporting of NGS Results 

 This represents the most challenging aspect of the implementation of NGS technol-
ogy for routine use in diagnostic labs. This includes computing power to deal with 
large amount of data output, establishment of cutoffs, and fi ltering parameters to 
identify right mutations in the background of a large number of mutation calls. Once 
the correct mutations have been identifi ed, it is further challenging to decide which 
of these calls to be reported clinically and the most appropriate mode to be clear to 
the physicians and patients. To this end, we developed a fi ltering and annotating 
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software (OncoSeek) [ 10 ], which facilitates interfacing the patient information 
(tumor type, tumor percentage, patient identifi ers, etc.) along with the NGS results. 
This software also is used to fi lter the variant calls, link to the known databases 
(COSMIC and dbSNP databases) to show the reported frequency and signifi cance 
of the variants, and annotate them according to the recommended guidelines from 
Human Genome Variation Society (HGVS). OncoSeek also includes a capacity of 
visualizing each variant in the sequencing reads using the Integrated Genome 
Viewer (IGV) from Broad Institute, which is a very crucial step in distinguishing 
between the real and spurious mutations. OncoSeek also has a self-updating data-
base, which keeps track of the patient samples analyzed and the variants detected. 
This is very helpful in recognizing and fi ltering frequent variant calls due to sequenc-
ing artifacts (like homopolymer stretches) and fi lter them out. As a policy, we report 
all bona fi de somatic mutations detected in any gene covered by the panel with the 
mutations listed in ordered genes listed fi rst followed by mutations in other genes. 
We do not include silent and intronic mutations. In the report, the mutations in 
ordered genes are listed fi rst followed by mutations detected in the remaining genes 
of the panel.  

7     Conclusions 

 On the whole, by following the above described approach for validation, we estab-
lished that targeted sequencing of genomic regions harboring somatic cancer-related 
mutations in 46 genes using IT-PGM next-generation sequencer was accurate and 
on par with the orthogonal sequencing technologies used in our laboratory and 
could be implemented for routine diagnostic use for solid tumor FFPE samples 
(summarized in Fig.  1 ). It is also important to note that we designed Sanger sequenc-
ing assays to cover genomic areas interrogated by the 46-gene panel to use as con-
fi rmatory assays for NGS.    Using similar guidelines, we have also validated a 
50-gene hot spot panel for solid tumors (AmpliSeq Hotspot Panel V2, Life 
Technologies) (unpublished); a 409-gene panel (Comprehensive Cancer Panel, Life 
Technologies), which screens for mutations in all exons of 409 cancer-related genes 
using Ion Proton high-capacity sequencer [ 15 ]; and also a modifi ed 53-gene panel 
for acute myeloid leukemia (AML) samples using modifi ed TruSeq Amplicon Panel 
and MiSeq next-generation sequencer (Illumina Inc.) [ 16 ]. Furthermore, recently, 
several studies have been published from different clinical diagnostic labs regarding 
validation of several NGS panels, which provide insight in the approaches for vali-
dation and clinical reporting of NGS results [ 17 – 21 ]. This in addition to the guide-
lines published by the regulatory agencies has improved the clarity regarding the 
strategies for validation and implementation of the progressively evolving NGS 
technologies, which are very well suited to handle the increasing sequencing 
demands faced by a molecular diagnostic laboratory to screening large numbers of 
genes in steadily increasing sample volumes.      
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    Abstract     Billions of tissue samples are now archived by formalin fi xation paraffi n 
embedding (FFPE) in tissue banks and hospitals around the world. For those bio-
markers measured by immunohistochemistry and used today as a standard of care 
in cancer treatment, this method of preservation works well. However, the heteroge-
neous nature of the disease means that many patients do not respond or relapse 
under standard treatment. 

 Next-generation sequencing (NGS) technologies now provide extensive genome 
analyses at the level of gene expression, identifi cation of somatic copy number aber-
ration, somatic single nucleotide variants, fusion transcripts, and epigenetic modifi ca-
tion. Successful application of this technology to the large volumes of archival FFPE 
material with long-term follow-up data will be a hugely powerful tool in identifying 
new biomarkers of disease outcome, disease recurrence, and treatment response. 

 The major hurdle for NGS application to archival material is the effect of formalin 
fi xation on nucleic acids. The process results in chemical modifi cation, cross-linking, 
and fragmentation. Chemical modifi cation can result in false- positive mutation calls, 
and fragmentation can result in overrepresentation of the 3′ end of genes creating 
bias in gene expression. There are now a number of NGS kits and protocols which 
are marketed specifi cally for use with FFPE material. Laboratories are beginning to 
validate and apply these methods. In this chapter, we review the progress in the adap-
tion of NGS technologies to FFPE tissue for clinical cancer research. 

1           Introduction 

 The wealth of clinical data such as patient outcome and survival from large clinical 
trials is an invaluable tool in the successful application of genomic technologies. 
More than one billion samples are preserved with formalin-fi xed paraffi n 
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embedding (FFPE) in hospitals and tissue banks across the world [ 1 ]. Unfortunately, 
this method of preservation causes chemical modifi cation and degradation to RNA 
(Fig.  1 ) and DNA [ 2 – 8 ], compromising the use of next- generation sequencing tech-
nologies that measure and identify differences in gene expression, single nucleo-
tide variants (SNVs), and copy number variants/aberrations (CNVs/CNAs) and 
detection of gene fusion transcripts. In this chapter, we review the technical chal-
lenges and progress in the adaption of NGS technologies to FFPE tissue for clinical 
cancer research.   

2     Technical Challenges 

2.1     RNA 

 Our understanding of RNA complexity in the cell has changed dramatically in 
recent years. The composition of total human RNA has direct impact on clinical 
cancer research, the preferred techniques used to isolate and sequence the transcrip-
tome, and subsequently the preferred techniques for sequencing RNA from forma-
lin-fi xed material. Early transcriptome sequencing techniques focused on mRNA, 
the fraction of RNA that is translated into amino acids. mRNA accounts for ~1–3 % 
of total RNA, while ribosomal RNA (rRNA) accounts for ~80 % and transfer RNA 
(tRNA) accounts for ~15 %. Early RNA sequencing techniques relied on the pres-
ence of a polyA tail on mRNA molecules, using oligo dT beads to “pull down” 
mRNA transcripts from total RNA. These methods are suited only to high-quality, 
undegraded RNA because many mRNA transcripts from formalin-fi xed tissue will 
be missing their polyA tail due to fragmentation (Fig.  2 ). Further challenges in 
preparation of RNA from formalin-fi xed tissue arise from cross-linking between 
nucleic acids and proteins, which limit the reverse transcription of mRNA into 
cDNA, a key step in the process of library preparation for transcriptome sequencing 
(Fig.  2 ). Several commercially available kits and protocol adaptations now claim 

  Fig. 1    RNA profi les of RNA extracted from fresh-frozen breast tumor and formalin-fi xed breast 
tumor. Agilent profi les of RNA extracted from ( left ) fresh-frozen breast tumor and ( right ) formalin- 
fi xed breast tumor.  rRNA  ribosomal RNA,  RIN  RNA integrity score. RIN scores are calculated 
from the ratio of 18s and 28s rRNA present within the sample. A RIN score >7 is determined as 
suitable for RNA-Seq library preparation using mRNA “pull-down” methods, while RIN scores <7 
are considered too degraded       
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to remedy the technical challenges of whole-transcriptome sequencing from 
 formalin-fi xed tissue using an rRNA depletion technique rather than mRNA “pull 
down” [ 9 – 13 ] (Fig.  2 ).  

 Multiple studies employing these new methods have demonstrated that RNA 
expression from formalin-fi xed tumor samples can reliably quantify gene expres-
sion. In addition, techniques that are not dependent on polyA “pull down” have 
provided relevant fi ndings to clinical cancer research in relation to other RNA types 
such as microRNA (miRNA), long interspersed noncoding RNA (lincRNA), small    
nucleolar RNA (snoRNA), small Cajal body-specifi c RNA, and histone H1 cluster 
transcripts (which lack polyA tails), all of which can be detected and reliably quan-
tifi ed in formalin-fi xed material.  

2.2     DNA 

 Tumor purity, heterogeneity, and clonality make accurate variant calling challeng-
ing even with high-quality starting material. Formalin fi xation confounds single 
nucleotide variant (SNV) calling due to chemical modifi cation, predominantly 
through cytosine deamination to uracil which pairs with adenine, mimicking a C > T 
variant. This is clearly demonstrated by multiple studies reporting signifi cantly 
more SNVs in FFPE tumor samples compared to high-quality DNA from matched 

  Fig. 2    RNA-Seq library preparation methods. Comparison of RNA-Seq library preparation meth-
ods. rRNA depletion methods are more appropriate for enrichment of fragmented transcripts 
which lack the polyA tail.  rRNA  ribosomal RNA       
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fresh-frozen tumor tissue. In addition, formalin cross-linking between DNA and 
protein results in fragmentation and enzymatic inhibition, which reduces library 
fragment size and uniformity and compromises overall success rate of NGS library 
preparation. Many published studies comparing FFPE and fresh-frozen DNA 
sequencing focus on SNV concordance of those samples that produced libraries for 
sequencing, neglecting to mention the proportion of FFPE samples that did not 
produce libraries to begin with. These issues are being addressed with new protocol 
adaptations: fl ow cytometry-based methods to isolate pure populations of tumor cell 
nuclei from FFPE tissue prior to sequencing, deamination removal by uracil-DNA 
glycosylase, increased depth of sequencing, and improved variant-calling 
algorithms.   

3     Next-Generation RNA Sequencing from FFPE Material: 
Analytical Validation 

 The major challenge of any gene expression study is to differentiate between true 
biological differences and artifactual differences, but even with improved methods 
of whole-transcriptome sequencing, determination of what is artifact due to forma-
lin fi xation and what is artifact due to different protocols and platforms is equivocal. 
Norton et al. [ 14 ] systematically tested whole-transcriptome sequencing of archival 
material from breast tumor specifi cally for technical reproducibility and gene 
expression artifacts due to sample degradation, formalin fi xation, library prepara-
tion method (polyA pull down versus rRNA depletion), and orthogonal platform 
difference. This set of experiments is summarized below. 

3.1     RNA-Seq Protocol Comparison 

 RNA-Seq protocols employing ribosomal RNA depletion to enrich for mRNA are 
more appropriate for FFPE material than polyA pull-down methods. The goal of this 
experiment was to determine differences in gene expression due to protocol by com-
paring the same set of high-quality RNA samples with rRNA depletion (Ribo-Zero 
Gold/ScriptSeq V2, Epicentre) and polyA pull-down (TruSeq, Illumina) protocols. 
The number of reads mapping to the genome was almost identical regardless of pro-
tocol. However, the percentage of reads mapped within genes and to exon junctions 
was higher for the polyA pull-down protocol where the mean percentage of reads 
mapped to genes and exon junctions was 77.4 %, SD ± 0.74, and 15.8 %, SD ± 0.20, 
respectively. In the rRNA depletion protocol, the percentage of reads mapped within 
genes and to exon junctions was 50.6 %, SD ± 1.32, and 10.29 %, SD 0.36, suggest-
ing the polyA pull-down protocol yielded a higher percentage of reads mapping to 
coding genes and the rRNA depletion protocol yielded a greater proportion of reads 
mapping to intronic and intergenic regions, regardless of sample quality.  
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3.2     Fragment Degradation 

 The goal of this experiment was to assess the effect of fragment degradation on an 
rRNA depletion protocol for whole-transcriptome sequencing without the compli-
cation of formalin fi xation. The experiment used high-quality RNA from two com-
mercially available cell lines (MDA-MB-436 and UHRR). Initial RNA quality was 
determined by the RNA Integrity Score (RIN) which ranges from 1 to 10 and a score 
of 10 means that the RNA is completely intact. Whole-transcriptome protocols 
based on polyA pull down require samples to have RIN scores >7. In this experi-
ment, the undegraded cell line RNAs had RIN scores of 10 and 8.1, respectively. 
RNA from each cell line was manually degraded in the laboratory with heat or 
physical shearing to produce medium degradation (RIN scores ranging 4.7–6.8) and 
high degradation (RIN scores ranging 1.2–2.2). Whole- transcriptome sequencing 
was performed on both the high-quality (fully intact) sample and its manually 
degraded match. Correlation analyses were performed for each gene (23,498 RefSeq 
gene annotations) in each degraded sample and its undegraded match. Average 
Pearson correlation for MDA-MB-436 for pairs of undegraded versus degraded 
RNA was 0.945 under medium degradation and 0.922 when highly degraded (RIN 
1.2–2.2). For UHRR, average Pearson correlation for medium and high degradation 
were 0.809 and 0.805, respectively, demonstrating that under this rRNA depletion 
protocol, gene expression can be reliably quantifi ed in degraded RNA.  

3.3     Formalin Fixation 

 The goal of this experiment was to assess the effects of both degradation and for-
malin fi xation on gene expression when using the same rRNA depletion method as 
above. Reproducibility was assessed by correlation of gene expression in technical 
replicates of the same FFPE sample. Pearson correlation for technical replicates 
was 0.998 and in agreement with other studies summarized in Table  1 . Accuracy 
was assessed by correlation of gene expression across nine matched pairs of RNA 
from fresh-frozen (RIN scores >7) and FFPE tissue (RIN scores ranging 1.2–2.3). 
Pearson correlation for gene expression between FFPE and matched fresh-frozen 
RNA ranged from 0.598 to 0.830 (mean 0.783,  p  < 2 × 10 −16 ). These fi gures are in 
agreement with multiple studies and protocols (summarized in Table  2 ) and 

   Table 1    Reproducibility of RNA-Seq FFPE technical replicates   

 Pearson 
correlation  RNA-Seq library preparation method  References 

 0.947–0.985     rRNA depletion as per Morlan et al. [ 10 ]/ScriptSeq V1  Sinicropi et al. [ 11 ] 
 0.998  Ribo-Zero Gold/ScriptSeq V2  Norton et al. [ 14 ] 
 0.991  Ribo-Zero Gold/TruSeq and DSN/TruSeq  Zhao et al. [ 28 ] 
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demonstrate that reliable gene expression data can be generated from whole- 
transcriptome  studies using FFPE material. However, the study also highlighted 
differences in NGS mapping statistics between fresh- frozen and FFPE material. 
The total number of reads mapped to the genome for nine FFPE samples was 
79.2 %, similar to that of fresh-frozen material, but when comparing the same pro-
tocol across matched fresh-frozen and FFPE samples, Norton et al. observed a 
signifi cantly lower percentage of reads mapping to genes (fresh-frozen = 50.6 %, 
SD ± 3.95, and FFPE = 24.8 %, SD ± 2.8) and to exon junctions (fresh-fro-
zen = 10.29 %, SD ± 1.09, and FFPE = 3.98 %, SD ± 0.58) in FFPE samples, which 
infl uenced further downstream NGS applications such as single nucleotide variant 
and fusion transcript detection.

   Table 2    Correlation of RNA-Seq matched fresh-frozen and FFPE tissue pairs   

 Pearson 
correlation 

 RNA-Seq 
library 
preparation 
method 

 Type of 
RNA-Seq  Tissue type 

 Number 
matched 
pairs 

 Number 
differentially 
expressed 
genes  References 

 0.79  TruSeq 
small RNA 
protocol 
V1.5 

 microRNA 
deep 
sequencing 

 Clear cell 
renal cell 
carcinoma 
and benign 
kidney 

 6  Data not shown  Weng et al. 
[ 29 ] 

 0.78  Ribo-Zero 
Gold/
ScriptSeq 
V2 

 Whole 
transcriptome 

 Breast 
tumor 

 9  3,540 
genes > log2 
fold change in 
1 or more pairs 
 76 genes > log2 
fold change in 
5 or more pairs 

 Norton 
et al. [ 14 ] 

 0.90  Ribo-Zero 
Gold/
ScriptSeq 
V2 

 Whole 
transcriptome 

 Bladder, 
prostate, 
and colon 
carcinoma; 
liver and 
colon 
normal 
tissue; 
reactive 
tonsil 

 38  1,494 genes 
signifi cantly 
different 
expression 
across pairs 

 Hedegaard 
et al. [ 30 ] 

 0.896 
 0.924 

 Ribo-Zero 
Gold/
TruSeq and 
DSN/
TruSeq 

 Whole 
transcriptome 

 Breast 
tumor 

 1  Data not shown  Zhao et al. 
[ 28 ] 
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3.4         Long Interspersed Noncoding RNA (lincRNA) 

 Norton et al. also aligned RNA-Seq data from to 5,749 lincRNAs from the Havana 
group (  http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/    ) and 
performed correlation analyses of the nine fresh-frozen and FFPE pairs. The per-
centage of reads mapping to lincRNA from FFPE libraries ranged from 4.44 to 
6.32 % (mean 5.47 %), surprisingly better than that achieved in the matched fresh-
frozen libraries using the same protocol (range 2.63–4.89 %, mean 3.58 %). A high 
degree of correlation of lincRNA expression between matched FFPE and fresh-
frozen pairs was observed (Pearson correlation ranging 0.969–0.997, mean correla-
tion  r  = 0.989), suggesting studies of lincRNA expression are highly suitable for 
samples isolated from FFPE material.  

3.5     Expressed Single Nucleotide Variants (eSNVs) 

 The goal of this experiment was to assess sensitivity of eSNV detection in FFPE 
material. On average 52.2 % of SNVs that were detected with high confi dence in 
fresh-frozen samples were also detected in matched FFPE samples. Lower sensitiv-
ity correlated with smaller library insert size,  r  2  = 0.73, a parameter that could be 
used to predict performance of SNV detection specifi cally for each FFPE sample. 
Performance of gene expression from FFPE material has previously been correlated 
with time of fi xation rather than age of sample [ 8 ], although not with RNA-Seq or 
SNV detection, and in reality, for many available FFPE samples, fi xation time will 
be unknown. If the sensitivity can be predicted from parameters such as library 
insert size, this will enable power calculations on required sample size to identify 
genes with cancer-associated SNVs.  

3.6     Fusion Transcripts 

 The goal of this experiment was to assess sensitivity of fusion transcript detection 
in FFPE material. As demonstrated in (3.1), the rRNA depletion method used for 
FFPE material yielded a lower percentage of reads mapping to coding genes (even 
in high-quality RNA), and as demonstrated in (3.3), RNA from FFPE material 
showed a lower percentage of reads mapping to coding genes and exon junctions, 
both important parameters in detection of fusion genes. Only 24 % of high-confi -
dence fusion transcripts detected in fresh-frozen RNA were also detected in matched 
FFPE RNA samples, an issue that was not overcome by an increase in depth of 
sequencing up to threefold (increase from ~56 to ~159 million reads).  
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3.7     Orthogonal Platform Validation (Table  3 ) 

    Transcriptome studies in discovery samples will generate a high number of disease 
or disease-associated genes, requiring validation and further replication. Following 
replication, prognostic and/predictive molecular profi les will form the basis of 
widely used clinical diagnostic tests. For this reason, it is important to identify dis-
covery and replication platforms which achieve high correlation for gene expression 
in FFPE material. Norton et al. observed good correlation of gene expression of 236 
cancer-related genes in nine FFPE RNA samples between whole-transcriptome 
sequencing and the NanoString nCounter platform, Pearson correlation ranging 
0.468–0.923 (mean 0.839).   

4     Next-Generation RNA Sequencing 
from FFPE Material: Discovery Studies 

 With the advent of RNA sequencing protocols better suited to RNA extracted from 
FFPE material, the number of FFPE discovery-based studies will increase and iden-
tify new biomarkers in the fi eld of clinical cancer research. Table     4  highlights three 
FFPE RNA discovery studies: the fi rst was designed to validate an rRNA depletion, 
the second is the RNA-Seq protocol to identify known RNA biomarkers used to 
determine risk of recurrence of breast cancer [ 11 ], and the third is the discovery of 
new RNA biomarkers in the same FFPE-derived breast cancer cohort. This study 
used FFPE tumor blocks from 136 patients with breast cancer. The age of the tumor 
blocks ranged from 5 to 12.4 years (median 8.5 years). The cohort had previously 
been utilized by standard microarray and reverse transcriptase (RT)-PCR-based 
technologies resulting in a 21 gene-based RT-PCR- based test (Oncotype DX) now 
used in the clinical setting to guide treatment decisions for ER+ breast cancer 
patients [ 15 ]. Hazard ratios obtained with the RNA-Seq protocol for the known 
biomarkers in this cohort were highly correlated with the hazard ratios obtained 
with standard RT-PCR, Pearson correlation 0.813. The advantage of the RNA-Seq 

   Table 3    RNA-Seq orthogonal platform validation   

 Pearson 
correlation 

 RNA-Seq library 
preparation method 

 Validation 
platform  Note  References 

 0.813  rRNA depletion as per 
Morlan et al. 2012/
ScriptSeq V1 

 RT-PCR 14 genes 
in 136 patients 

 Correlation of 
hazard ratios 
across platforms 

 Sinicropi 
et al. [ 11 ] 

 0.838  Ribo-Zero Gold/
ScriptSeq V2 

 NanoString 
Cancer reference 
panel, 226 genes 

 Correlation of 
FFPE gene 
expression across 
platforms 

 Norton et al. 
[ 14 ] 
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protocol is the ability to assess risk of recurrence of thousands of transcripts 
 simultaneously, including non-protein-coding intronic and intergenic sequences 
such as microRNAs and lincRNAs. In total, the study identifi ed 1,307 protein-cod-
ing RNAs and 1,698 intronic RNAs that were signifi cantly associated with risk of 
recurrence, at a false discovery rate of <10 %. Interestingly, for most of the intronic 
RNAs identifi ed as prognostic, their related exons were not also identifi ed as prog-
nostic, suggesting that these intronic sequences carry biomarker information not 
captured in gene coding sequence.

   Table 4    FFPE NGS discovery studies in clinical cancer research   

 Method 
 Discovery sample 
description  Result  References 

 rRNA depletion as per 
Morlan et al. 2012/
ScriptSeq V1 (Epicentre), 
Illumina platform 

 RNA from Providence 
cohort of 136 breast 
cancer patients 

 >2,000 RNAs 
associated with breast 
cancer recurrence, 
many of which were 
intronic RNAs 

 Sincropi et al. 
[ 11 ] 

 rRNA depletion as per 
Morlan et al. 2012/
ScriptSeq V1 (Epicentre), 
Illumina platform 
 Developed algorithm for 
detection of fusion 
transcripts in FFPE 
material 

 RNA from Providence 
cohort of 136 breast 
cancer patients and 
Rush cohort of 76 breast 
cancer patients 

 High frequency of 
fusion transcripts 
correlated with poor 
outcome ( P  < 0.0005) 

 Ma et al. [ 16 ] 

 Laser capture 
microdissection, 
RNA-Seq/Ovation 
RNA-Seq FFPE, and 
Encore NGS Library 
system 1 kits (NuGEN), 
Illumina platform 

 RNA from normal, 
adenocarcinoma in situ, 
and invasive 
adenocarcinoma tissue 
from six patients with 
lung cancer 

 5 lincRNAs and 31 
mRNAs consistently 
associated with lung 
cancer progression 

 Morton et al. 
[ 18 ] 

 Whole-exome 
sequencing, SureSelect 
Human Whole exome kit 
(Agilent), SOLiD4 
platform (Applied 
Biosystems), somatic 
copy number detection 

 Paired/normal DNA 
samples from 5 
castration-resistant 
metastatic prostate 
cancer patients 

 Amplifi cation of 
 YWHAZ  and  PTK2  
genes in discovery 
cohort. Frequency of 
amplifi cations were 
associated with 
progression in a 
prostate cancer 
validation cohort 

 Menon et al. 
[ 24 ] 

 Targeted sequencing of 
182 known cancer- related 
genes 

 74 tumors (primary and 
recurrent) from 43 
patients with breast 
cancer (33 matched) 

 Increased frequency of 
CDK4/MDM2 
amplifi cations in 
recurrences 

 Meric- 
Bernstam 
et al. [ 25 ] 

 Targeted sequencing of 
236 cancer-related genes 
and 47 introns of 19 
genes commonly 
rearranged in cancer 

 29 adrenocortical 
carcinoma patients 

 At least one genomic 
alteration found in 
22/29 patients 

 Ross et al. 
[ 27 ] 
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   The previous section on analytical validation describes some of the diffi culties in 
identifi cation of gene fusion transcripts in FFPE material. Despite this, bioinformat-
ics methods to identify gene fusions in FFPE material have improved [ 16 ]. The 136 
and 76 FFPE breast cancer patient cohorts described in [ 11 ,  17 ] were recently used 
as discovery samples for gene fusion transcripts associated with poor outcome. One 
hundred eighteen candidate fusion events (100 unique) were detected. Using 
TaqMan assays, 47/77 (61 %) fusion events were validated. Of the 100 unique fusion 
junctions, only one had been previously    described and a high frequency of fusion 
transcripts correlated with poor outcome ( p  < 0.0005) highlighting the potential of 
FFPE cohorts with mature clinical records in the discovery of novel biomarkers. 

 Finally, the isolation techniques such as laser capture microdissection are being 
used in conjunction with RNA-Seq of FFPE material allowing researchers to iden-
tify differentially expressed genes between tightly juxtaposed cell and tissue types. 
In a discovery study of lung cancer progression, this combination of techniques 
allowed differential expression analyses of mRNAs and lincRNAs from normal, 
adenocarcinoma in situ (AIS) (an intermediate step in progression of normal lung 
tissue to invasive adenocarcinoma), and invasive adenoma carcinoma FFPE sam-
ples from the same six patients [ 18 ]. The study identifi ed fi ve lincRNAs and 31 
mRNAs that were consistently up- or downregulated from normal to AIS and more 
strongly to invasive carcinoma.  

5     Next-Generation DNA Sequencing from FFPE Material: 
Analytical Validation 

 The major goal of next-generation DNA sequencing in clinical cancer research is 
the identifi cation of somatic single nucleotide variants (SNVs), insertions/deletions, 
translocations, and copy number aberrations that are either prognostic of disease 
outcome or predictive of treatment response. To make any meaningful predictions 
from clinical trial datasets, variant calling must be both sensitive (low false-negative 
rate) and specifi c (low false-positive rate). Matched pairs of DNA extracted from 
FFPE tumor and fresh-frozen tumor tissue from the same patient are an extremely 
useful resource as a validation of genetic variant calling. Observations from these 
studies will determine subsequent experimental design and methodology in discov-
ery studies. 

5.1     Sensitivity 

 Concordance of SNV calls between fresh-frozen and FFPE material is not reported 
uniformly across studies. If we assume that all calls made in high-quality DNA 
extracted from fresh-frozen material are true and defi ne sensitivity within FFPE 
material as the percentage of SNV calls made from fresh-frozen material that were 
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also detected in matched FFPE material, the sensitivity of SNV calls from FFPE 
tissue (within current literature) ranges from ~70 to 98 % (Table  5 ). Other than 
comparison of variant calls in DNA extracted from matched fresh-frozen and FFPE 
tissue, no study listed in Table  5  uses the same protocol in either library preparation 
or variant detection. For the purpose of SNV detection, the factors that appear to 
give the highest sensitivity (>95 %) are overall increased depth of coverage and 
calls made with at least ≥50× coverage at the variant position in both fresh-frozen 
and FFPE samples. These levels of coverage and sensitivity are routinely achieved 
with targeted sequencing and much less so with whole- exome and whole-genome 
sequencing.

   We also note from these studies that the number of matched pairs is small (range: 
1–17 pairs), making separation of other potential confounding factors, such as FFPE 
sample age, diffi cult to determine systematically. The largest study in Table  5  [ 19 ] 
uses a targeted NGS approach covering 88 genes. The overall sensitivity of SNV 
calls across all 17 matched pairs is not reported in this study (for good reason), but 
based on our earlier observation of depth of coverage, sensitivity should be in the 
highest range. What this study demonstrates is that all FFPE samples are not equal: 
for 3/17 FFPE samples, sensitivity was less than 60 %, despite a targeted approach. 
In the same study, Bourgon et al. [ 19 ] developed a sample quality control (QC) 
measure of functional DNA copies using a qPCR- based amplifi cation assay at the 
 TRAK2  locus. Those three samples with lowest sensitivity also had the lowest num-
ber of functional DNA copies. However, even following this additional QC mea-
sure, correlation between functional copy number and sensitivity was poor, with 
some low functional copy number samples performing well within the range of 
those samples with high sensitivity. 

 Further observation in Table  5  is the lack of data of DNA copy number varia-
tion. Only two of eight studies report concordance of CNVs between matched 
fresh-frozen and FFPE pairs, likely refl ecting the diffi culty of these calls in FFPE 
material. The whole-genome study of Schweiger et al. reported perfect concor-
dance of somatic copy number aberrations in known breast cancer copy number 
loci, on chromosomes 8 and 20 [ 20 ]. The second report of CNV in Table  5  used an 
exome sequencing approach and only matched tissue pair, reporting a high degree 
of noise and poor concordance [ 21 ]. A third study [ 22 ] performed exome sequenc-
ing and CNV analysis on one matched fresh-frozen-FFPE pair. This study used 
fl ow cytometry to enrich tumor nuclei specifi cally from FFPE tissue (prior to 
sequencing), thus reducing contamination of DNA from non-tumor cells. 
Admixture of tumor and non-tumor DNA reduces sensitivity, for both SNV and 
CNV. However, CNV analysis from FFPE material in this study was estimated 
from comparative genomic hybridization (CGH) arrays of DNA from fl ow-sorted 
nuclei and was either not attempted or not reported based on analysis of exome 
sequence data.  
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5.2     Specifi city 

 The most consistent fi nding reported across NGS comparisons is the signifi cantly 
high number of SNVs called in DNA extracted from FFPE tissue that are not 
detected in matched fresh-frozen tissue, a problem that will be magnifi ed at the level 
of the exome and whole genome. In the whole-genome sequencing study of 
Schweiger et al., ~3,000 variants were unique to each FFPE sample when compared 
with DNA extracted from its fresh-frozen counterpart [ 20 ]. Kerick et al. [ 21 ] 
reported 100 % concordance in fi ve matched FF/FFPE pairs of tissue from radical 
prostatectomy, when comparing variant calls with ≥80× coverage at the level of the 
exome. Unfortunately, the typical average depth of coverage at the exome and whole 
genome (at this time) is often less than 80×, and the use of such high stringency will 
likely result in exclusion of true variants. Specifi city was greatly improved by 
implementation of two strategies in the targeted DNA sequencing study of Bourgon 
et al. [ 19 ]. Firstly, a QC measure of each FFPE sample (prior to target enrichment) 
showed strong association of the number of functional copies of DNA with sensitiv-
ity. Those FFPE samples with lower numbers of functional DNA copies generated 
the largest number of false-positives (determined as variants not called in the 
matched fresh-frozen sample), and samples with higher functional copies demon-
strated almost 100 % specifi city when using more stringent variant read frequency 
cutoffs. Secondly, following sample QC, Bourgon et al. selected four FFPE samples 
with different numbers of functional copy number, ranging from low to high, and 
treated these samples with uracil-DNA glycosylase (UDG) to remove uracil-con-
taining deaminated DNA molecules prior to target enrichment. Variant calls were 
compared for the same FFPE samples both treated and untreated with UDG. UDG 
treatment leads to 77 % and 94 % reduction in C > T and A > G variant calls, respec-
tively, without impacting sample sensitivity.   

6     Next-Generation DNA Sequencing from FFPE Material: 
Discovery Studies 

 Observations and protocol adaptations from the studies above are paving the way 
for the discovery of mutations and their correlation with outcome and treatment, 
although as we see from the example below, success will depend on multiple con-
verging strategies including variant prioritization, replication in independent sam-
ples, and functional validation. 

 In the previous section we noted the diffi culty in CNV detection in FFPE mate-
rial, particularly from exome sequence data. Menon et al. reported a high degree of 
noise and poor concordance between CNV calls in a single fresh-frozen and FFPE 
DNA pair from prostate tissue [ 23 ]. Castration-resistant prostate cancer (CRPC) is 
a lethal form of prostate cancer, and obtaining this type of tissue from fresh-frozen 
material is a major hurdle in identifying the underlying molecular alterations in an 
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aggressive disease. Exome sequencing of DNA extracted from FFPE tissue of fi ve 
CRPC patients and their corresponding non-tumor samples, by the same group, 
identifi ed somatic copy number alterations in  YWHAZ  and  PTK2  [ 24 ]. As with the 
initial FFPE study, noise levels were high. The number of putative copy number 
aberrations was reduced by prioritizing those present in three or more samples, 
identifying 928 amplifi ed genes and 647 deleted genes. This gene list was further 
reduced by focusing on a region already previously described to harbor the  cMYC  
amplifi cation in prostate cancer within this region, focusing on genes already known 
to play a role in cancer, genes with commercially available inhibitors, and genes 
already studied in prostate cancer. Within the fi ltered gene list of putative copy 
number aberration,  YWHAZ  and  PTK2  were amplifi ed at higher levels than  cMYC  
in the discovery sample and follow-up in a prostate cancer progression cohort con-
sisting of cases with clinically localized prostate cancer, patients with primary and 
corresponding lymph node metastasis, and samples with CRPC. Both  YWHAZ  and 
 PTK2  showed signifi cantly higher levels of amplifi cation in lymph node metastases 
and CRPC samples compared to localized prostate cancer, providing preliminary 
evidence for potential therapeutic targets in CRPC. 

 A second example of NGS discovery in FFPE material in clinical cancer research 
is illustrated from comparative studies of somatic variants in primary and metastatic 
tissue from the same breast cancer patients. Genomic characterization of paired 
primary and recurrent or metastatic lesions could identify novel biomarkers or 
potential therapeutic targets specifi cally relevant to patients with recurrent or meta-
static breast cancer, but metastatic tissue is often only available as archival material. 
Using a deep sequencing targeted NGS approach of 182 cancer- related genes (aver-
age depth of coverage of 380×), Meric-Bernstam et al. [ 25 ] showed overall high 
concordance between 33 matched primary and recurrent breast tumors preserved by 
FFPE but identifi ed 23/159 (14.4 %) of somatic CNAs that were discordant between 
matched primary and recurrent tissues, with an increased frequency of  CDK4 / MDM2  
amplifi cations in recurrences. 

 A third example of NGS discovery in FFPE material is taken from the adrenocor-
tical carcinoma (ACC) literature. AAC is a rare tumor (annual incidence 0.7–2.0 
cases per million people) with poor prognosis. Disease is treated with surgical 
resection and systemic cytotoxic therapies, with no targeted therapies used at pres-
ent. Comprehensive genomic analyses (exome sequencing and SNP arrays) of high-
quality DNA from fresh-frozen tissue of 45 ACC patients previously identifi ed 
mutations in driver genes both known and novel to ACC [ 26 ]. Despite this progress, 
the heterogeneous nature of disease will require sequencing of many more samples 
to determine the ACC genomic landscape. Accessing additional patient samples 
from archival material will aid in this task. Already this year, a further 29 patients, 
specifi cally with locally advanced or metastatic ACC refractory to their last time of 
cytotoxic chemotherapy, were characterized from FFPE material using a targeted 
deep sequencing approach (average coverage 734×) across 236 cancer-related genes 
and 47 introns of 19 genes commonly rearranged in cancer, identifying many addi-
tional mutations in genes [ 27 ]. 17/29 patients carried genomic alterations (SNVs, 
gene amplifi cations, or deletions) in genes with an available therapeutic or 
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 mechanism-based clinical trial. What the study did not do (likely due to small 
 sample size) is identify genomic alterations which are prognostic of outcome or 
predictive of outcome with treatment. These are analyses that may come with the 
accumulation of genomic data, leading to prospective clinical/translational trials.  

7     Summary 

7.1     RNA 

 Despite technical challenges, multiple studies have demonstrated that RNA expres-
sion from formalin-fi xed tumor samples can (1) reliably quantify gene expression 
and (2) provide relevant fi ndings to clinical cancer research in relation to both 
mRNA and other RNA types (microRNA (miRNA), long interspersed noncoding 
RNA (lincRNA), small nucleolar RNA (snoRNA), small Cajal body-specifi c RNA, 
and histone H1 cluster transcripts), but SNV calling and fusion transcript detection 
remains challenging.  

7.2     DNA 

 Sensitivity of SNV calls from FFPE tissue (within current literature) ranges from 
~70 to 98 % depending on depth of coverage and call criteria, but the highest esti-
mates of sensitivity use criteria that are currently unrealistic for whole- genome and 
whole-exome sequencing. All FFPE samples are not equal, even when accounting 
for age and sample fi xation time. However, SNV calls from FFPE material can be 
improved by (1) implementation of QC measures of the number of functional copies 
of DNA and (2) enzymatic removal of uracil-containing deaminated DNA mole-
cules prior to target enrichment. Observations and protocol adaptations from the 
studies described in this chapter are paving the way for discovery of mutations and 
their correlation with outcome and treatment.      
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      Applications of NGS to Screen FFPE Tumours 
for Detecting Fusion Transcripts 

             Kunbin     Qu     ,     Joffre     Baker     , and     Yan     Ma    

    Abstract     Fusion transcripts play an important role in a variety of human cancers. 
But bioinformatics algorithms that use RNA-Seq data to detect fusions tend to yield 
high false-positive rates due to both relatively short reads from next- generation 
sequencing (NGS) and the repetitive elements in human genome. The primary pur-
pose of this chapter is to discuss the design strategy of the bioinformatics methods 
used for detection of fusion transcripts and to compare their strengths and weak-
nesses, or “fi t for purpose,” on RNA-Seq data from non-fi xed or formalin-fi xed 
paraffi n-embedded (FFPE) tumor tissues. A large number of archival FFPE tumor 
tissue samples are associated with mature medical records including disease out-
come; these samples offer great potential for diagnostic and therapeutic target dis-
covery. However, the chemical treatment by formalin causes RNA degradation and 
base deamination, which lead to low library complexity and mapping quality. It is 
important that bioinformatics tools are designed to address these challenges. Here 
we illustrate a framework to address them, using gFuse as the example. We present 
results by comparing the fusion transcripts discovered from analysis of RNA from 
fresh and FFPE MCF-7 breast cancer cells. We also describe the application of gFuse 
to RNA-Seq data generated from two independent breast cancer cohorts with clinical 
outcomes and identify candidate fusion transcripts relevant to disease progression.  

1          Introduction 

 Chromosomal abnormalities occur frequently in human tumors. Chromosome 
translocations and gene fusions were initially discovered in hematological malig-
nancies, in which they defi ne disease subtypes [ 1 ]. More recently they have been in 
soft tissue sarcomas and a variety of solid tumors, including those of prostate [ 2 ], 
lung [ 3 ], and breast [ 4 ]. Certain recurrent gene fusions are used as cancer diagnostic 
markers and have been therapeutically targeted with substantial clinical success, for 
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example, in leukemia and lung cancer [ 5 ,  6 ]. The recent advances in sequencing 
technology have accelerated the identifi cation of these genetic aberrations. 

 The history of discovery of the fi rst gene fusion goes back to the 1960s, when 
Hungerford and Nowell characterized their initial observation that two patients with 
chronic myelogenous leukemia (CML) had a characteristic small chromosome [ 7 ]. 
This was named the “Philadelphia chromosome” after the city in which it was dis-
covered. The rearrangement is a translocation between chromosomes 9 and 22, 
resulting in the fusion at the breakpoint cluster region (BCR) gene on chromosome 
22 with the v-abl Abelson murine leukemia viral oncogene homolog (ABL1) gene 
on chromosome 9. In 1990 the BCR-ABL1 fusion protein was characterized as an 
active tyrosine kinase [ 8 ]. Understanding the molecular mechanism of BCR-ABL1 
led to the development at Novartis of imatinib (Gleevec), the fi rst targeted cancer 
therapeutic agent, which recieved FDA approval in 2001 [ 9 ]. The entire develop-
ment time took just 9 years, from small molecule screening to launch. Imatinib 
binds into the ATP-binding pocket of the fused kinase to inhibit the BCR- ABL1 
kinase activity. The mortality rate of CML dropped approximately 90 % after 
Gleevec became available to treat the disease [ 10 ]. 

 The success of treating CML with the specifi c inhibitor of the BCR-ABL1 fusion 
led to a strong interest in identifying more novel gene fusions in other cancer types 
to identify additional disease-specifi c targets for therapeutics. The discovery of 
EML4-ALK fusion in non-small cell lung cancer (NSCLC) led to the development 
of the therapeutic agent crizotinib (Xalkori) [ 11 ]. With a prevalence of approxi-
mately 5 % in NSCLC, the EML4-ALK fusion increases cellular growth and 
decreased apoptosis [ 3 ]. This fusion defi nes a subset of NSCLCs, which segregates 
from mutations in EGFR and appears more commonly in nonsmokers. Prior to the 
discovery of the ALK (anaplastic lymphoma kinase) fusion, Pfi zer had a drug dis-
covery program to inhibit MET for lung cancer. The chemical scaffold from the lead 
small molecule also showed inhibition to ALK’s enzyme activity. Pfi zer quickly 
optimized the chemical structure to be more ALK specifi c. Only in 3 years, FDA 
approved Pfi zer’s Xalkori to treat metastatic stage of NSCLC. 

 In addition to having therapeutic signifi cance, fusion transcripts can also serve as 
valuable diagnostic markers. Among various genomic aberrations in cancer, recur-
rent gene fusions have been identifi ed as a dominant class of mutation in hematologi-
cal malignancies; they follow a distinct pattern of occurrence based on their origin, 
lineage, tissue specifi city, structure, and function. Gene fusions in lymphomas are 
commonly associated with an immunoglobulin heavy chain (IGH) gene. Reciprocal 
translocation results in the overexpression of apparently normal transcripts at an 
abnormal level driven by the IGH gene regulatory elements [ 12 ]. Chromosome rear-
rangements in leukemia, however, result most commonly in the formation of novel 
gene fusion transcripts [ 13 ]. The molecular characterization of lymphomas and leu-
kemia is now an integral part of the diagnosis. Several molecular abnormalities have 
been included in the latest World Health Organization classifi cation of hematological 
malignancies. Similarly, molecular analysis is emerging as a tool for differential 
diagnosis of soft tissue sarcomas: for example, SS18-SSX fusions in synovial sarco-
mas, EWSR1 fusions in Ewing’s sarcoma, and PAX3/7- FKHR fusions in alveolar 
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rhabdomyosarcomas. The ETS (erythroblastosis virus E26 transformation-specifi c) 
family rearrangement with the androgen-regulated 5′ partner genes in prostate can-
cer, the EML4-ALK gene fusion in lung cancer, and the RAF family gene rearrange-
ment in a subset of different solid cancers all stratify disease. The selection of 
therapeutic agent targeting fusion products requires companion diagnostic assay 
(e.g., selection of NSCLC patients for the treatment with Xalkori requires assay of 
the EML4-ALK fusion sequence). To date, over 2,000 such tumor-specifi c gene 
fusions have been documented (  http://cgap.nci.nih.gov/Chromosomes/Mitelman    ). 
They are real or potential prognostic biomarkers or drug targets.  

2     Fusion Characterization Methods 

 There are many experimental and computational methods to detect fusion tran-
scripts. Prior to next-generation sequencing (NGS), fusion identifi cation in hemato-
logical malignancies depended on conventional cytogenetic karyotyping to detect 
relatively large chromosome rearrangements. Many more rearrangements have 
been discovered as a result of use of higher-resolution “molecular cytogenetics,” 
which include fl uorescent in situ hybridization (FISH), spectral karyotyping (SKY), 
multicolor FISH (M-FISH), comparative genomic hybridization (CGH), and high- 
density array comparative genomic hybridization (a-CGH). These technologies 
have been extensively applied to almost all cancer types. Non-cytogenetic methods, 
such as polymerase chain reaction (PCR) and Southern blotting, are also used in the 
research setting for screening and validation purposes [ 14 ]. 

 Both the traditional cytogenetic methods and the non-cytogenetic approaches are 
based on pre-defi ned fusion targets [ 15 ]. Therefore, they are limited due to the need 
of prior knowledge and are not suitable for large-scale de novo gene fusion discov-
ery. Also most of them can only be applied to DNA, not RNA. With the introduction 
of NGS technology, the high-throughput de novo gene fusion discovery is a reality. 
NGS can assay entire genomes and transcriptomes to exhaustively identify copy 
number alterations, somatic point mutations, structural rearrangements, and gene 
expression alterations. Large sample throughput and in-depth sequencing platforms 
are now widely used for cancer genome characterization. The “The Cancer Genome 
Atlas” (TCGA;   http://cancergenome.nih.gov/    ) initiative has used NGS to identify 
DNA and RNA sequence aberrations in at least 25 different cancer types on the 
whole genome level. Another cost-effective NGS method is to focus on the regions 
of interest with laboratory enrichment procedures such as Agilent SureSelect Target 
Enrichment (Agilent Technologies). Some cancer mutation screening panels have 
predefi ned fusions as a component of their enrichment targets [ 16 ,  17 ]. 
Experimentally, anchored multiplex PCR technique has been used to enrich fusion- 
specifi c targets at random start points (Enzymatics, Inc.). In conjunction with NGS, 
it provides potential to scale up fusion transcript screening with a reasonable cost. 
NGS relies on bioinformatics methods to analyze the massive data output in order 
to enable the discovery of gene fusions and other somatic sequence variations. 
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 Multiple events at the DNA level can generate fusion transcripts, e.g., chromo-
somal translocation, interstitial deletion, and chromosomal inversion. Several bioin-
formatics methods have been developed to detect fusion transcripts from RNA-Seq 
data (ChimeraScan, SnowShoes-FTD, TopHat-Fusion, FusionMap, and FusionSeq) 
[ 18 – 22 ]. The greatest computational challenge in identifying fusion transcript is the 
extraordinary frequency of false positives, which is caused by the direct application 
of short read mappers. This is due to a combination of numerous repetitive sequences 
in the genome and the short length of the NGS reads. Short reads make it challeng-
ing to map for repetitive regions unambiguously, because they can be aligned to 
multiple locations on the genome. Another challenge for fusion transcript discov-
ery, often less appreciated, is the occurrence of false negatives. This is evidenced by 
discordance in results provided by different bioinformatics methods, perhaps 
refl ecting, in part, over-stringent fi ltering and inaccurate mapping of sequence data. 

 The well-known problem of the high false-positive rate in de novo fusion discov-
ery makes experimental validation a necessity for the assessment of computational 
methods. The only FDA-approved fusion companion diagnostics is based on FISH 
[ 15 ]. However, FISH is unpractical to scale up to the level of the NGS’ throughput. 
Traditionally Sanger sequencing has also been used to validate the fusion junction 
site when sample quality is high. The major mechanism of fusion transcript genera-
tion in cancer is genome rearrangement, in which a DNA structural variation brings 
an mRNA donor site from one gene near an mRNA acceptor site of another gene, 
such that a consequent alternative splicing event can generate a fusion transcript 
(Fig.  1 ). Therefore, the existence of a DNA breakpoint consistent with the observed 
fusion transcript can provide cross validation of a detected fusion transcript [ 23 –
 28 ]. In the case of datasets in which FFPE tissue RNA is available but neither DNA 
nor fresh tissue RNA is, multiplexed RT-PCR can be used to verify the RNA-Seq- 
derived fusion candidates [ 4 ]. In the example shown in Fig.  2 , the RT reaction is 
multiplexed by using a pooled gene-specifi c primer set, and each tumor sample is 
tested with all fusion gene qPCR assays. False positives can be revealed by this 
multiplexed reverse transcription strategy, and the large number of true negatives 
serves as a clean background for ascertainment of true positives (Fig.  2 ). The use of 
an additional platform technology, such as Ion Torrent sequencing of amplicons 
derived from the same set of RT-PCR primers, can provide additional supporting 
evidence and confi rm the exact sequence [ 4 ].   

 Here we review three methods in some detail: SnowShoes-FTD, TopHat-Fusion, 
and gFuse [ 4 ,  19 ,  20 ]. These methods are selected as “fi t for purpose” depending on 
the goal of the user. ShowShoes-FTD and TopHat-Fusion are developed for high- 
quality samples, such as fresh tissue. gFuse is developed to analyze formalin-fi xed 
paraffi n-embedded (FFPE) tissue. We compare the performance of these three 
methods by examining the results obtained with fresh and FFPE RNA obtained 
from the breast tumor cell line MCF-7. Read pairs across a fusion junction are 
called bridging reads or encompassing reads; a read end that contains a fusion 
 junction is called a split read or a spanning read (Fig.  1 ). Bridging reads identifi ed 
from pair-end RNA-Seq data normally prompt nomination of fusion candidates, 
whereas split reads are used to identify exact junction sequences. 
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2.1     SnowShoes-FTD (Fusion Transcripts Detection) 

 SnowShoes-FTD was developed to predict the fusion transcripts using RefSeq 
genes as the fusion references. It starts with the creation of the exon-exon boundary 
database using the exon and gene defi nition fi les from University of California at 
Santa Cruz (UCSC). The database is an exhaustive unidirectional exon junction 
database that provides the potential fused exon-exon sequence for any pair of 
RefSeq genes. The FASTA fi les of exon-exon boundary sequences are compatible 
with different pair-end sequencing lengths which include 50, 75, and 100 bases. 

 The major steps of the SnowShoes-FTD package consist of the following: (1) 
mapping the reads to the reference genome and the exon junction database by BWA 
or Bowtie, (2) categorizing the aligned read pairs for potential fusion candidates, (3) 
cleaning the false-positive candidates by a variety of fi lters, and (4) generating a 

DNA genomic rearrangement 

mRNA transcription

Fusion Transcripts

Genomic DNA

Chimeric Genomic DNA

RNA-seq

DNA Breakpoint

Fusion Junctions

Split read
Bridging read

DNA-seq

  Fig. 1    DNA genomic rearrangement can produce fusion transcripts in cancer. The genomic level 
rearrangement during cancer development can bring two distant DNA pieces together to generate 
chimeric genomic DNA. If the DNA sequence around the breakpoint preserves mRNA splicing 
signals, fusion transcripts can be produced as a result. Two fusion isoforms are illustrated here to 
refl ect that multiple fusion transcripts can be generated from a single DNA rearrangement. DNA- 
Seq can be used to interrogate DNA breakpoints, and RNA-Seq can be used to interrogate fusion 
junctions. In RNA-Seq, split reads contain the splicing junction, and bridging reads map to two 
sides of chimeric transcripts       
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continuous sequence region spanning fusion junction points for PCR primer design 
for experimental validation. The software also suggests the fusion mechanism based 
on the ordering of the gene annotation and provides information about in-frame 
versus out-of-frame fusion products. 

  Fig. 2    The fl owchart of fusion candidate validation by multiplexed TaqMan RT-PCR assays in the 
Providence/Rush study [ 4 ]. Primers and probes were designed using the Primer3 program restrict-
ing amplicon sizes to 65–85 bps (  http://frodo.wi.mit.edu/    ). When Primer3 failed, primer and probe 
sequences were optimized manually to ensure optimal performance of the TaqMan assay design 
for the chimeric transcripts. Reverse transcription reaction in the absence of RNA template (i.e., 
water) was always used as a negative control in all assays. The samples that were previously identi-
fi ed as positive or negative for a particular fusion junction served as controls when needed       
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 SnowShoes-FTD identifi es the read pairs with ends mapping to two different 
genes. Then it uses the annotation of the those genes as the templates to align the 
unmapped read from the read pair whose one end can be mapped to either the 
genome or the exon junction, to identify the spanning reads. By requiring the exis-
tence of both the encompassing reads and spanning reads, and many other fi lters, it 
drastically reduces the false-positive rate. SnowShoes-FTD might be too conserva-
tive in calling fusion transcripts, for example, by fi ltering out read pairs of which 
neither end can be mapped. 

 SnowShoes-FTD has been widely used in the community. The original paper 
applied it to 22 breast cancer cell lines and 9 non-transformed cell lines. Fifty-fi ve 
fusion candidates were identifi ed from the cancer cell lines but none from the nor-
mal lines. All the candidates were confi rmed by quantitative RT-PCR (qRT-PCR) 
and some were further verifi ed by Sanger sequencing. The authors compared their 
results in MCF-7 cell line with other two previous publications which are com-
monly used for bench mark comparison [ 29 ,  30 ] and showed reasonable agreement. 
Discordances may be explained as false negatives.  

2.2     TopHat-Fusion 

 TopHat-Fusion was developed based on the RNA-Seq mapping tool TopHat [ 31 ]. 
TopHat can detect and quantify genes from RNA-Seq data without database anno-
tation. TopHat-Fusion has made several major modifi cations to the original TopHat 
algorithm, all intended to facilitate fusion transcript discovery. The focus is to iden-
tify the fusion junction through the “initially unmapped” (IUM) reads by splitting 
each IUM read into multiple segments, such as 25 bp a piece, then to map each 
segment to the different chromosomes or the same chromosome with certain dis-
tance threshold. This is the key difference from SnowShoes-FTD. The underlying 
alignment tool is Bowtie with parameter relaxation to allow the mapped segments 
to satisfy the characteristics of fusion transcripts, such as across chromosomes as 
well as inversions. In order to pinpoint the junction region in the fusion, TopHat- 
Fusion extracts 22 bp on each side of the fusion point and joins them to create 
44 bp “spliced fusion contigs,” which is similar to SnowShoes-FTD’s junction 
database approach. 

 TopHat-Fusion implements various strategies to reduce false positives. Similar 
to SnowShoes-FTD, it requires both the bridging reads and split reads. We discuss 
two among many of those. The fi rst is how it fi lters out the repeats; the program 
extracts the two 23 base sequences spanning each fusion point and then maps them 
against the entire human genome. The alignment result is kept as a list of pairs with 
chromosome name and genomic coordinate. For each 23-mer adjacent to a fusion 
point, the other 23-mer is mapped to determine if it is within 100,000 bp on the 
same chromosome. If so, then it is likely to be a false positive from the repeat 
region so that fusion candidate is removed. The second is that TopHat-Fusion tries 
to assess the uniformity of the reads mapped across the fusion junction. Real fusion 
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transcripts normally have reads mapped evenly in a wide range across the fusion 
junction, whereas false-positive fusions often cover much narrower range on 
the genome [ 30 ]. Thus, TopHat-Fusion scans a window of 600 bp around each 
fusion (300 bp each side) and discards fusion candidates for which the reads fail to 
span this gap. 

 TopHat-Fusion was applied to the similar RNA-Seq datasets used by the 
SnowShoes-FTD to benchmark its results: four breast cancer (including MCF-7) and 
one prostate cancer (VCaP) cell lines [ 29 ,  30 ]. Overall TopHat-Fusion found 76 
fusion transcripts from the four breast cancer cell lines and 19 from the prostate can-
cer cell line. Among them 25 fusions were previously published [ 20 ]. The remaining 
51 fusions identifi ed by TopHat-Fusion were not reported previously. To focus on 
MCF-7 specifi cally, TopHat-Fusion identifi ed more fusions overlapped with those 
identifi ed previously by Maher [ 29 ] and Edgren [ 30 ] than Snowshoes- FTD did. 

 TopHat-Fusion in general identifi es more candidates than SnowShoes-FTD and 
can perform de novo search without a gene annotation fi le. The design of TopHat- 
Fusion enables it to identify any chimeric sequences without examining the splicing 
signal, and therefore, it is suited for detection of break points in introns. On the 
other hand, it carries a higher risk to include false positives. TopHat-Fusion can also 
be applied to single-end read as well as paired-end data, whereas SnowShoes-FTD 
can only be used for paired-end data.  

2.3      gFuse 

 Both methods discussed above have shown good performance with RNA data gener-
ated from fresh tissue/cells, such as cell lines and fresh frozen tissues. However, 
standard clinical practice generates very large numbers of FFPE tissues from biopsies 
and surgical resections that have associated, metadata-rich, long-term clinical records. 
Therefore, analysis of FFPE tissues may reveal fusion transcripts of clinical rele-
vance. RNA from tissues fi xed in formalin is altered in a number of ways, including 
by extensive RNA fragmentation (which continues to worsen as block archival age 
increases), artifactually large fractions of precursor RNAs, and chemical modifi ca-
tions. As a result, FFPE RNA-Seq libraries have short insert sizes, low complexity 
(i.e., many short sequence segments with identical nucleotide composition), a large 
amount of intronic sequence, and randomly erroneous reads from base conversions 
(C/G → T/A) [ 32 ]. The gFuse pipeline was designed, to detect fusion transcripts in 
RNA-Seq data from archival FFPE samples, by addressing these challenges. 

 The fusion transcript detection pipeline gFuse uses two strategies, a  sample- based 
strategy and an optional cohort-based strategy (Fig.  3 ). The sample-based strategy 
interrogates each RNA-Seq sample individually and nominates candidate fusion 
junctions. The cohort-based strategy has two features that take advantage of multi-
ple patients/samples within the cohort. The fi rst feature is to combine the candidate 
fusion junctions in the beginning step of the cohort-based analysis, which increases 
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the chance of identifying recurrent fusion transcripts. The second feature is to con-
fi rm the presence of each fusion candidate in each individual sample across the 
entire cohort pool by examining read alignment and expression profi ling evidence.  

 gFuse uses GSNAP [ 33 ] as the underlying mapper, which can detect a distant 
splice junction within a split read. Distant spliced junctions include the following 
categories: (1) within the same gene, but in the opposite transcription direction, (2) 
across different genes, and (3) across different chromosomes. The major steps in 
gFuse are as follows: (1) map (by GSNAP) to detect split reads; (2) retest (by 
GSNAP) the read candidates from the previous step with preference of local align-
ment, to fi lter out false positives; (3) extract fusion candidates based on the retained 
reads from the previous step to build an annotated database for the next step; (4) 
build junction alignment templates based on the annotated candidates for the next 
step; (5) retrieve reads including split reads and bridging reads when in paired-end 
mode and realign them to the junction templates from step 4 to enhance sensitivity 
and specifi city; and (6) profi le expression to exploit the observation that if there is a 
fusion it is highly likely to exhibit a marked expression discontinuity between the 
preserved side and discarded side of a given fusion junction. In this step, candidates 
from multiple cohorts (if available) are pooled together to increase sensitivity. Since 
more than 50 % of RNA-Seq reads from older FFPE tissue samples map to introns 
[ 34 ], intron reads are also included to calculate the expression. The performance of 
gFuse is discussed in more detail in the following section.   

  Fig. 3    The schema of gFuse, illustrated for the Providence/Rush study. The sample- and cohort- 
based strategies are integrated in RNA-Seq fusion transcript detection. Each step of the pipeline is 
numbered in  shade  and explained in Sect.  2.3  [ 4 ]       
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3     The Effect of FFPE on Fusion Discovery 
in a Cell Line Model  

 The breast cancer cell line MCF-7 has been well studied with abundant knowledge 
about the genomic rearrangements and fusion transcripts [ 20 ,  30 ,  35 – 37 ]. This cell 
line has also been used as a benchmark to assess multiple fusion detection methods 
[ 19 ,  20 ]. We prepared FFPE MCF-7 and archived them at room temperature for 9 
years. This FFPE MCF-7 sample provides a model system to assess the impact of 
formalin treatment on fusion detection (Fig.  4a ). With the availability of paired fresh 
and FFPE MCF-7 samples, we compare the performance of the three fusion detec-
tion programs discussed above (Fig.  4b, c ), to illustrate the extent to which FFPE 
fi xation hampers fusion detection and to demonstrate how this can be mitigated.  

3.1     Fresh MCF-7 Cell Line 

 The RNA-Seq library was prepared using TruSeq RNA Sample Preparation Kit 
(Illumina Inc.) and sequenced in a HiSeq 2000 (Illumina Inc.) sequencer to a depth 
of 93 million by 2 × 50 bp read pairs. Three fusion detection algorithms including 
SnowShoes-FTD, TopHat-Fusion, and gFuse (sample-based approach only) were 
applied to this RNA-Seq dataset (Fig.  4b ). In order to compare the results across 
these three methods, fusion candidates annotated in the intron region from TopHat- 
Fusion were removed from the following analysis. 

 Recently 25 fusion transcripts have been reported and validated by quantitative 
RT-PCR in MCF-7 cell line, which is the biggest set so far [ 38 ]. In order to expand 
this “truth set,” we combined the 25 known fusion transcripts with the DNA-Seq 
breakpoint cross-validated fusion transcripts (Fig.  4a ). We took a fusion transcript- 
guided approach to manually assemble DNA breakpoints which could provide a 
mechanistic explanation for the fusion transcript. 

 MCF-7 was sequenced by both transcriptome and whole genome sequencing 
(WGS) methods in our laboratory. Starting from the 57 fusion transcripts identifi ed 
by gFuse from RNA-Seq data (Table  1 ), we identifi ed all WGS paired reads which 
bridge both donor and acceptor genes. Each of these paired reads was evaluated 
manually to identify the portion of DNA sequence that contains two genes and har-
bors the DNA breakpoint. Multiple reads covering this portion of DNA sequence 
were recovered and assembled manually. The assembled DNA sequence was 
 verifi ed by aligning to the genome with BLAT (  https://genome.ucsc.edu/index.
html    ) to confi rm the location of DNA breakpoints. Another feature we used to check 
the assembly result was to recognize the abrupt read coverage change at putative 
DNA breakpoints, which is very similar to the expression profi ling in gFuse and 
refl ects the discontinuous of the genome sequence at disturbed sites. After careful 
examination, we called 30 DNA breakpoints corresponding to 36 fusion transcripts, 
18 overlapping with the published 25 fusion transcripts. A full automatic systematic 
search of MCF-7 WGS dataset for DNA breakpoints didn’t confi rm additional 
fusion transcripts called by gFuse, or Snowshoes-FTD, or TopHat-Fusion beyond 
these 36 verifi ed fusion transcripts, suggesting that this manual assembly approach 
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  Fig. 4    Cross-platform comparisons of gene fusion transcript detection in fresh and FFPE MCF-7 
demonstrate the challenge of fusion detection in FFPE samples. ( a ) The fl owchart of seven com-
pared datasets. A true set consisting of 43 fusion transcripts are generated by combining 25 fusions 
validated by TaqMan [ 38 ] and 36 fusions validated by DNA breakpoints. ( b ) A Venn diagram of 
the results from three bioinformatics methods plus the true set in fresh MCF-7. ( c ) A Venn diagram 
of the results from three bioinformatics methods plus the true set in FFPE MCF-7. ( d ) The perfor-
mance of three bioinformatics methods is assessed by sensitivity, precision, and F1 score in fresh 
and MCF-7 samples when the 43 true set is used as the comparator. ( e ) The performance of three 
bioinformatics methods is assessed by sensitivity, precision, and F1 score in fresh and FFPE 
MCF-7 samples when 25 TaqMan is used as the comparator       
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was not biased towards gFuse results. We combined this set with the original 25 and 
defi ned the combined 43 fusion transcripts as the MCF-7 truth set (Fig.  4a ).

   Three statistical measures including sensitivity, precision, and F1 score are com-
pared across the three methods (Fig.  4d, e ). The F1 score is the geometric mean of 
sensitivity and precision, this providing an assessment of the accuracy of a test. 
TopHat-Fusion has the lowest scores in all assessed measures in both fresh and FFPE 
samples and therefore is the poorest performer among three methods (Fig.  4d ). 
Snowshoes-FTD has slightly higher precision than gFuse in fresh MCF-7 sample, but 
its sensitivity lags signifi cantly behind gFuse. gFuse has 1.5 times (90.7 % vs. 60.5 %) 
greater sensitivity than Snowshoes-FTD in fresh MCF-7. Overall, the accuracy of the 
methods measured by F1 scores is higher in gFuse than in Snowshoes- FTD (Fig.  4d ). 
Thus, the sample-based part of gFuse demonstrates an attractive balance between 
sensitivity and precision in discovering fusion transcripts in this sample.  

3.2     FFPE MCF7 

 We carried out RNA-Seq using RNA from the archival FFPE MCF-7 cells, sequenc-
ing to a depth of 250 million by 2 × 50 bp read pairs, and compared the results to 
those obtained using RNA from the unfi xed MCF-7 cells (Fig.  5a ).  

 Overall, fewer fusion transcripts were detected with FFPE RNA, regardless of 
bioinformatics pipeline: 40.4 %, 32.2 %, and 19.4 % of fusions identifi ed in unfi xed 
cells were rediscovered in FFPE cells, by gFuse, ShowShoes-FTD, and TopHat- 
Fusion, respectively (Fig.  5a ). Within the 43 truth set, the discovery rate in FFPE cells 
was 44.2 %, 18.6 %, and 18.6 % by gFuse, SnowShoes-FTD, and TopHat- Fusion, 
respectively. Thus, among the three methods compared here, gFuse exhibited supe-
rior performance for fusion transcript discovery from the archival FFPE cells. The 
primary reason of the general decrease in fusion discovery in FFPE cells, relative to 
unfi xed cells, might be the reduced library complexity caused by extensive RNA 
fragmentation. Although several features of gFuse compensate for certain features of 
RNA-Seq data generated from FFPE RNA, such as higher error rate and higher intron 
percentage, bioinformatics cannot offer a solution to the fragmentation issue. 

 When we use the 25 validated fusion transcript set as the comparator, the perfor-
mance difference between gFuse and SnowShoes-FTD is less obvious (Fig.  4e ). 
SnowShoes-FTD nominates fewer candidates which leads to low sensitivity and high 
specifi city for both fresh and FFPE MCF-7 cell lines. SnowShoes-FTD has higher 
F1 in fresh and slightly lower in FFPE, comparing with gFuse, whereas TopHat-
Fusion is still in the third place (Fig.  4e ). With the performance trade-off for each 
method, fi t for purpose becomes important when choosing which algorithm to use. 

 It is noteworthy that a small number of new fusion transcripts were detected by 
gFuse in the FFPE cells. Although this might be due to the deeper read coverage 
(2.7 times) in FFPE cells, the more likely explanation is that the low quality of the 
FFPE reads caused inaccurate mapping and that these new calls are false positives. 
The Circos plot representing gFuse-predicted MCF-7 fusion junctions is consistent 
with BAC library data (Fig.  5b ) [ 35 ].   
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4     Application to FFPE Cancer Tissue 

 We applied gFuse to detect fusion transcripts in two breast cancer clinical cohorts 
with records of clinical outcomes, namely, the Providence cohort of 136 patients 
(provided by Providence St. Joseph Medical Center, Burbank, CA) and the Rush 

  Fig. 5    ( a ) Venn diagrams of fresh and FFPE MCF-7 plus the 43 true set by each of the three bio-
informatics methods, respectively. ( b ) The gFuse-identifi ed fusion candidates represented by the 
Circos plot are from both fresh and FFPE samples, and the colors correspond to gFuse in ( a )       
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cohort of 76 patients (provided by Rush University Medical Center, Chicago, IL) 
with average FFPE block archive ages of 8.5 years and 13.4 years, respectively [ 34 , 
 39 ]. These two cohorts have been previously used by Genomic Health in the devel-
opment of the 21-gene qRT-PCR breast cancer recurrence risk assay. 

 Overall, 118 fusion events, representing 100 unique fusion junctions, were iden-
tifi ed across the two cohorts. A total of 60 fusion junction candidates were selected 
for confi rmation assay by qRT-PCR. A few of the candidate fusions selected for 
TaqMan assay were observed in multiple samples. By using 60 designs, 77 candi-
date fusion events were tested by qRT-PCR in amplifi ed RNA from those patients 
harboring the corresponding candidate fusions. A total of 47 of the 77 fusion events 
(61 %) were validated by TaqMan across the two cohorts. To further confi rm fusion 
junctions identifi ed by the TaqMan assays, 19 fusion events identifi ed by TaqMan 
were selected for Personal Genome Machine (PGM, Ion Torrent) sequencing. 
Fusion junctions were amplifi ed using TaqMan primers, and PCR products contain-
ing fusion amplicons were sequenced on the PGM. In all 19 PCR reactions, the PCR 
amplicons matched the predicted fusion junction sequences. 

 Using the cohort-based approach in gFuse, three recurrent fusion events including 
TFG → GPR128, ESR1 → AKAP12, and RABEP1 → DNAH9 were identifi ed and 
verifi ed in 6, 3, and 2 patients, respectively, in the two cohorts of 212 total patients. 
Among the three ESR1 → AKAP12 fusion events in three different patients, there are 
two unique fusion junctions with the same acceptor junction site but differing at the 
donor junction sites by one exon (Fig.  6 ). Since both of these ESR1 → AKAP12 
fusion junctions are in frame and the differing ESR1 exon doesn’t contain any known 
functional domains, these two fusion transcripts may function similarly. Both fusion 
protein isoforms replace the ESR1 ligand binding site with functional domains from 
AKAP12. The lost ligand binding site of ESR1 is documented to interact with 
AKAP13, another AKAP family member. AKAP12 is a scaffold protein present in 
the plasma membrane, cytosol, or endoplasmic reticulum for protein kinases A and 
C which regulates actin-cytoskeleton reorganization [ 40 ]. It has been reported that 
AKAP12 also is a tumor suppressor with recurrent loss in colorectal cancer and re-
expression of AKAP12 inhibits cancer progression and decreases metastasis poten-
tial [ 41 ]. Since the functional domains of AKAP12 are preserved in these fusion 
protein isoforms, we postulate that the fused AKAP12 protein might undergo func-
tional alteration, with the fused ER protein perhaps impacting its cellular localiza-
tion. In addition, both fusion protein isoforms may induce constitutive 
ligand-independent signaling. In consequence, the patients with ESR1 → AKAP12 
fusion may show different responses to breast cancer hormone therapy.  

 The patients from the two clinical cohorts were stratifi ed based on the number of 
fusion events identifi ed. The patients with more than two fusions demonstrated signifi -
cant increased recurrence risk compared to patients with fewer detected fusion genes 
[ 4 ]. To determine whether gene expression profi les can distinguish between the 82 
tumors without detected fusion transcripts and the 8 tumors with multiple gene fusion 
transcripts in the Providence cohort, the differentially expressed genes were analyzed 
by edgeR [ 42 ] based on gene tables tallied from GSNAP mapping results. Due to the 
strong infl uence of estrogen receptor (ER) status on gene expression patterns [ 43 ], the 
additive model of edgeR was used to obtain differentially expressed genes between 
multiple fusion cases versus cases with no fusions, adjusting for differences in ER 
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status. A set of 134 genes that were differentially expressed between tumors with no 
observed fusions and tumors with multiple observed fusions was uploaded to the 
Reactome FI (functional interaction) database via the Cytoscape Plugin [ 44 ]. This 
reveals a protein interaction network having 84 genes distributed in fi ve functional 
modules (Fig.  7a ). These 84 genes are all upregulated in the multiple fusion group 

Providence ESR1->AKAP12 Fusion Junction:+chr6:152265643->+chr6:151669846

5’GGCAGACAGGGAGCTGGTTCACATGATCAACTGGGCGAAGAGGGTGCCAG|TTGGACAGAGAGACTCTGAAGATGTGAGCAAAAGAGACTCCGATAAAGAG3’

5’ATGATCAACTGGGCGAAGAG3’Forward primer
5’GGTGCCAG|TTGGACAGAGAG3’Probe

3’CCGTCTGTCCCTCGACCAAGTGTACTAGTTGACCCGCTTCTCCCACGGTC|AACCTGTCTCTCTGAGACTTCTACACTCGTTTTCTCTGAGGCTATTTCTC5’
                               

Rush ESR1->AKAP12 Fusion Junction:+chr6:152201906->+chr6:151669846

CTGAAGATGTGAGCAAAAGAGACTCCGATAAAGAG3’

5’GCTCCGCAAATGCTACGAAG3’ Forward primer
3’GGTCCGGACGGCCGAGGCATTTACGATGCTTCACCCTTACTACTTTCCAC|AACCTGTCTCTCTGAGACTTCTACACTCGTTTTCTCTGAGGCTATTTCTC5’

3’CCCTTACTACTTTCCAC|AACCTGTCTCTCTGA5’Probe

Fusion template

First strand cDNA

Fusion template

First strand cDNA

Reverse primer 3’ACTTCTACACTCGTTTTCTCTGAG5’

a

b

1aa in-frame insertion

1aa in-frame insertion

Providence ESR1->AKAP12 Fusion Protein

Rush ESR1->AKAP12 Fusion Protein

RII-bindingAKAP 3AKAP 2AKAP 1

RII-bindingAKAP 3AKAP 2AKAP 1

DNA
binding

DNA
binding

AF-1

AF-1

Hinge

PKC-binding

PKC-binding

1aa

1aa

253aa

365aa 367aa 2041aa

255aa 1929aa

5’CCAGGCCTGCCGGCTCCGTAAATGCTACGAAGTGGGAATGATGAAAGGTG|TTGGACAGAGAGACT

Reverse primer3’ACACTCGTTTTCTCTGAGGC5’ 

  Fig. 6    Recurrent gene fusion ESR1 → AKAP12 has two predicted fusion protein isoforms [ 4 ]. ( a ) 
TaqMan designs for two predicted fusion junctions. ( b ) Protein domains of two protein isoforms 
ESR1 → AKAP12 are illustrated based on UniProt database (  www.uniprot.org    ). The protein 
domains of ESR1 are from protein P03372 (UniProt ID). The protein domains of AKAP12 are 
from protein Q02952 (UniProt ID). The  red vertical line  indicates the fusion position on the cor-
responding protein. The one amino acid insertion generated from the fusion event is labeled on 
each fusion protein. The amino acid length and amino acid positions of each fusion position are 
labeled on the  top  of each protein       

Fig. 7 (continued) Nodes are manually arranged to display the sub-modules properly. Edges 
 display FI direction attribute values as the following: “→” for activating/catalyzing, “-|” for inhibi-
tion, “-” for FIs extracted from complexes or inputs, and “---” for predicted FIs. ( b ) Fusion 
signature indexes are plotted for each of the fusion number categories in Providence and Rush 
datasets. The fusion signature index is the average expression level of 84 fusion gene signatures. 
The base counts of each signature gene are normalized by library size then scaled across the patient 
cohort before averaged in the signature index. The  p -values are derived from Wilcoxon tests       
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  Fig. 7    Fusion gene index level is associated with fusion frequency across patient cohorts. ( a ) The 
differentially expressed genes between multiple fusion samples versus no fusion samples in 
the Providence cohort are mapped to the Reactome FI database and clustered into fi ve core 
 sub- modules represented by different colors via linker proteins (in  gray-shaded rectangles ) by the 
Reactome FI Cytoscape Plugin. The connected 84 genes are referred as the fusion gene signature. 
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compared to no fusion group. Strikingly their functions are all carcinoma related, in 
pathways representing some of the prominent pathological hallmarks of cancer [ 45 ]. 
Therefore, we term this network of 84 genes the fusion gene signature. The fusion 
signature index is the average normalized expression of these 84 genes. The fusion 
signature index in Providence patient tumors was on average signifi cantly greater in 
patients with multiple fusions than in patients with 1 or 2 detected fusions (Fig.  7b ). 
Further, in the Rush cohort the expression of this signature is on average signifi cantly 
greater in tumors with identifi ed fusions (Fig.  7b ).  

 This study demonstrates the technical feasibility and potential biomedical value 
of being able to detect fusion transcripts in archival FFPE tumor specimens having 
attached clinical records. Although the average frequency of detected fusion tran-
scripts is relatively low per patient, plausibly attributable to the low quality of 
FFPE RNA-Seq libraries, the frequency of fusion events found in our cohort nev-
ertheless appears to have prognostic signifi cance. This is further supported by an 
identifi ed breast cancer fusion gene signature enriched with genes that have func-
tions associated with tumor progression. Many of the identifi ed fusion partner 
genes belong to the kinase, phosphatase, and ubiquitin ligase families, which are 
attractive pharmaceutical targets in oncology. The association of fusion frequency 
with disease prognosis likely refl ects the link between chromosome rearrangements 
and genome instability.  

5     Conclusion 

 Cancer arises from diverse genetic alterations, including gene fusions. Identifying 
recurrent gene fusions carries great potential to discover targets for both the diagno-
sis and treatment of various cancers. RNA-Seq provides a wealth of data for fusion 
transcripts discovery. However, because of the high frequency of repetitive 
sequences in human genome and the short length of NGS reads, false positives 
plague data mining for fusion transcripts. Many computational algorithms such as 
SnowShoes-FTD and TopHat-Fusion have been specifi cally designed to address 
these issues with great success in fresh tissues. RNA from archival FFPE tissues 
presents extra challenges as library complexity tends to be low, insert sizes short, 
and intron percentages high. With these in mind, gFuse was designed to work well 
with FFPE RNA. It is important to understand the methods’ performance trade-off 
so the best tool can be selected for a specifi c application. 

 Cancer gene fusions could be either disease drivers or passengers. If the fused 
genes are drivers, they tend to be recurrent and may represent therapeutic targets for 
disease intervention, such as BCR-ABL and EML4-ALK fusions. However, many 
fusions detected from multiple cancer types are rare or private, i.e., only appear within 
individual patients [ 24 – 28 ]. Such gene fusions are likely passengers, but they could 
still serve as biomarkers for diagnosis and disease monitoring. Our results show that 
the prognosis of breast cancer is associated with the number of fusion events, inde-
pendent of the identities of the fused sequences [ 4 ]. Furthermore, tumor volumes 
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are associated with the fusions detected in the plasma from lung cancer patients [ 17 ]. 
One big advantage of using gene fusions over single nucleotide variations (SNV) as 
biomarkers is that the sequence signature of the former is much less susceptible to 
sequencing errors. As the sequencing technology evolves, we anticipate that the 
 therapeutic and diagnostic importance of gene fusions will increase proportionally.     
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    Abstract     Signifi cant progress has been made in next-generation sequencing (NGS) 
of tumors from formalin-fi xed paraffi n-embedded (FFPE) tumors. In this chapter, 
we review some of the recent developments in RNA and DNA sequencing from 
FFPE. We highlight some of the current challenges and considerations that must be 
in place before using NGS in a clinical setting. We begin with a discussion of the 
technical challenges in dealing with FFPE tumors, including nucleic acid degrada-
tion and the potential utility of adding in dissection methods to the tumors. We then 
discuss bioinformatical and statistical considerations that must be employed when 
analyzing data obtained from FFPE tissues. We end with a brief discussion of 
ethical implications and other issues that will need to be addressed before translat-
ing discoveries into the clinic.  

1          Introduction 

 The use of formalin-fi xed and paraffi n-embedded (FFPE) tissue samples for next- 
generation sequencing (NGS), including both DNA sequencing (DNA-Seq) and 
RNA sequencing (RNA-Seq), has recently received increasing attention as a result 
of improved techniques for extracting DNA and RNA from these samples, which 
are often widely available to researchers and much less costly to obtain and store. 
Further, many of these samples not only carry extensive clinical data, including 
longer-term follow-up data, but also have well-preserved tissue architecture that is 
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amenable to dissection using techniques such as laser capture microdissection 
(LCM) [ 1 ,  2 ], allowing scientists to extract regions of interest and minimize noise 
due to unwanted tissue. 

 Further, sequencing allows for more comprehensive analysis of tumors. 
Traditionally, for example, chemotherapy targets have been tested only using a 
“candidate” approach. For example, trastuzumab has been shown to be an effective 
agent against breast tumors which have amplifi cations in the HER2 gene, and thus, 
its expression is typically measured in breast tumors. However, using sequencing 
allows not only for characterization of aberrations in HER2, but for every gene in 
the genome, and, unlike microarrays, can also identify novel mutations that are not 
captured in the microarray but may have signifi cant clinical implications. This com-
prehensive characterization also leads to the ability to identify aberrant pathways, 
which, as a whole, may be important even if the individual mutations are not signifi -
cant themselves [ 3 ].  

2     Use of Dissection Methods for Isolating Tumor and Normal 
Tissue from FFPE Samples 

 It is often helpful to take advantage of the tissue architecture available in FFPE 
tumors to isolate areas of interest. For research purposes, it may be of interest to 
isolate only areas of invasive tissue or areas that have yet to become invasive, for 
example. Further, by isolating specifi c areas of the FFPE tissue, we are also able to 
remove areas that do not contain tumor tissue and thus reduce noise due to contami-
nation from normal tissue. For example, in our recent study of gene expression 
aberrations associated with cancer initiation and invasion, we used laser capture 
microdissection (LCM) to successfully isolate areas of normal, preinvasive adeno-
carcinoma in situ, and invasive components of non-small cell lung cancer (NSCLC) 
tumors [ 4 ]. This allowed us to study gene expression in a cancer progression model, 
measuring how gene expression changes from normal lung to adenocarcinoma in 
situ to invasive carcinoma within the same patients. 

 One of the major disadvantages of LCM is that it requires an expensive piece of 
equipment that is not available to many researchers. Other techniques for isolation 
of areas of interests include macrodissection, typically just removing areas that are 
not useful, such as surrounding normal tissue, using a scalpel or similar instrument. 
These techniques may be useful for many studies, but are not as accurate as LCM, 
and their utility wanes as the area of interest becomes smaller. 

 Importantly, regardless of dissection technique, it is necessary to include a well- 
experienced pathologist who can assist with correctly identifying these areas of 
interest on the FFPE specimens. When LCM is utilized, including someone well 
trained on the equipment and areas of isolation is important to a rigorous study.  
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3     Developments and Challenges in Extraction of Nucleic 
Acids from FFPE 

 The use of FFPE samples for sequencing analyses requires overcoming several 
challenges. Formalin fi xation results in nucleic acid degradation and fragmentation, 
as well as modifi cation to nucleotides, all of which decrease the yield of good qual-
ity RNA or DNA extracted from such samples [ 5 ,  6 ]. These issues can be exacer-
bated in studies using small tumors where only small amounts of tissue may be 
available and every fragment counts. In a nice review and comparison of DNA 
extraction techniques from FFPE, Heydt et al. [ 7 ] demonstrated the variability in 
results using different methods. This highlights the needs to test the results of the 
DNA preparation for downstream analyses prior to those analyses. However, they 
also conclude that all methods are good for mutation identifi cation. 

 RNA can be particularly sensitive to degradation in FFPE. However, as a result 
of numerous recent technological advances in addressing these challenges, many 
products are available from a number of companies that can extract good quality 
RNA from FFPE for downstream sequencing. In fact, several new studies utilizing 
real-time PCR (RT-PCR) comparing fresh frozen samples to FFPE samples as old 
as 40 years have demonstrated the utility of RNA extracted from FFPE samples for 
mRNA and miRNA expression [ 8 – 12 ]. 

3.1     DNA Sequencing from FFPE 

 The sequencing of DNA from FFPE has come a long way in recent years. Indeed, a 
number of groups have successfully performed DNA sequencing from FFPE 
tumors. A recent comprehensive study comparing FFPE sequencing to sequencing 
from fresh frozen specimens with newer technology showed very comparable 
sequencing results [ 13 ]. In addition, a large-scale study using a panel of variants 
(including mutations, insertions-deletions, and fusions) found “actionable” vari-
ants, that is, variants with a potential drug target, in a vast majority of the cancer 
patients [ 14 ] using FFPE samples. This highlights the potential clinical utility of 
sequencing in FFPE.  

3.2     RNA Sequencing from FFPE 

 RNA-Seq from FFPE is an emerging area. RNA-Seq is highly desired as the gold 
standard for measure of RNA expression but also is not limited by arrays to known 
transcripts. RNA-Seq can also measure alternative splicing, identify gene fusions, 
and identify novel transcripts. It can also measure non-coding gene expression. 
Non-coding genes may represent a new avenue for treatment as our understanding 
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of this traditionally ignored part of our genome becomes better known. The role of 
non-coding genes in cancer is becoming established; thus, these genes should not be 
ignored [ 15 ]. 

 Traditionally, RNA-Seq in FFPE has been challenged by fragmented 
RNA. However, recent studies have utilized new technological developments and 
have been successful at retrieving good quality RNA-Seq data from FFPE [ 13 ,  16 ], 
with very good correlations to fresh frozen samples [ 13 ]. In our recent study, we 
were able to successfully perform RNA sequencing on FFPE samples with excellent 
reproducibility [ 4 ]. In this study, we performed whole transcriptome RNA-Seq in a 
total of 18 samples from six patients, representing normal, preinvasive, and invasive 
lung cancer specimens from the same tumor. RT-PCR confi rmed fi ndings of the top 
upregulated    mRNAs and lincRNAs, with excellent concordance. 

 Further, newer technologies are emerging with strong results. These new tech-
nologies hold promise for even higher-quality sequencing and/or ability to measure 
additional transcripts. Ribo-Zero-Seq eliminates the need for removal of non- 
polyadenylated RNA transcripts, which is typically done to remove all ribosomal 
RNAs. However, traditionally this process also removes all non-ribosomal RNAs 
that are not polyadenylated. Ribo-Zero-Seq was developed to overcome this and has 
been shown to have similar ribosomal RNA removal rates as well as coverage and 
sequencing effi ciency from FFPE-derived samples [ 17 ]. Norton et al. had similar 
success for RNA-Seq from FFPE using the Ribo-Zero Gold ScriptSeq V2    library 
preparation [ 18 ].   

4     Bioinformatic Considerations When Using Sequencing 
Data Derived from FFPE Specimens 

 The potential effect of nucleic acid degradation in FFPE tissues necessitates the 
adoption of more stringent quality control and statistical criteria in the bioinformat-
ics analyses of sequencing data. In this section, we outline some of the consider-
ations for both DNA and RNA sequencing data analyses that are typically performed 
on sequencing data and highlight the variations specifi c to the context of FFPE 
tissues. 

4.1     DNA Sequencing 

 The principal considerations for the analyses of DNA sequencing data are summa-
rized in Fig.  1 .  
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4.1.1     Quality Assurance of Raw Sequencing Data 

 Due to the inherent variability in sequence quality for FFPE-derived sequencing 
data, especially the likelihood of over-fragmentation of the sequenced DNA, com-
prehensive evaluation of read quality is necessary before further processing is 
performed on the data. A popular tool for sequencing data quality evaluation is 
FastQC (  http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/    ). FastQC allows 
evaluation of the distribution of per base quality scores across length of the reads, 
which helps evaluate the rate of degradation of sequence quality over long runs due 
to sequencing chemistry. Poor base quality along the length of the read and issues 
of adapter read-through need to be addressed using read-trimming. Additionally, 
FastQC also allows evaluation of the sequence diversity of the run and quantifi es 
overrepresented sequences that may arise due to contamination and high levels of 
sequence duplication that may indicate enrichment biases such as PCR over-
amplifi cation. Sequencing data that passes these quality control and assurance steps 
can then be aligned using a standard aligner [ 19 ].  

4.1.2     Evaluation of Sequencing Coverage and Depth 

 Subsequently, the sequencing depth and coverage of the sequenced genomic regions 
can be derived from the aligned reads using the HsMetrics component of the  picard  
package (  http://picard.sourceforge.net/    ). In particular, the capture effi ciency of the 
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  Fig. 1    Bioinformatics considerations for DNA-Seq data processing. This fi gure shows the sug-
gested pipeline for bioinformatics analysis of DNA-Seq data       
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exome or targeted sequencing panel can be evaluated using metrics such as the 
percentage of in-target and off-target reads that pass alignment quality fi lters, the 
median read depth and the percentage of bases covered by at least  N  reads. It is 
preferable that FFPE tumor samples are sequenced at a median depth of at least 
100×, with ≥80 % of targets with at least 20× coverage. These considerations will 
enable more robust mutation calling given the low amounts of input DNA typically 
available from FFPE tissues as well as due to the potential of normal tissue admix-
ture and intra-tumor heterogeneity. FFPE samples that pass these quality metrics 
can then be processed for genomic alteration detection.  

4.1.3     Somatic Mutation Detection 

 Given that the identifi cation of somatic mutations in tumor samples is the primary 
goal of most DNA sequencing endeavors, it is particularly important to consider and 
account for low allelic fraction nucleotide transition artifacts that are known to 
result from the FFPE fi xation process [ 20 ]. These artifacts, when present in FFPE- 
derived matched normal tissue, will lead to false-negative calls and conversely lead 
to false-positive calls when present in the tumor tissue. It is therefore useful to use 
both paired tumor-normal-based somatic mutation callers such as MuTect [ 21 ] and 
unpaired callers such as the Unifi ed Genotyper module in GATK. The union of the 
potentially somatic mutation calls from the independent detection approaches can 
then be further fi ltered using the 1,000 genomes and 6,500 exome databases to 
eliminate potential germ line variations. In addition, putative somatic mutations that 
are also found in FFPE-derived normal samples may be fi ltered as potential sequenc-
ing artifacts. The resulting high-confi dence somatic mutations can then be anno-
tated for their potential functional effects using the UCSC Variant Annotation 
Integrator (  http://genome.ucsc.edu/cgi-bin/hgVai    ). In addition, querying these 
mutations within the COSMIC [ 22 ] and TARGET [ 23 ] databases can help delineate 
the clinical relevance of these mutations.  

4.1.4     Copy Number Alteration Detection 

 Although the detection of somatic mutations using next-generation sequencing is 
increasingly becoming common, the simultaneous detection of somatic copy num-
ber alterations in FFPE samples is particularly challenging due to signifi cant cover-
age and read-depth variations across the genome. Copy number estimation 
algorithms using next-generation sequencing data can be generally classifi ed into 
three main approaches: read-depth-based CN estimation [ 24 ], combination of dis-
cordant read pairs and split reads to identify large structural variants [ 25 ], and 
assembly-based approaches that detect copy number alterations by mapping contigs 
to the reference genome [ 26 ,  27 ]. However, a recent comprehensive survey of copy 
number estimation algorithms from next-generation sequencing data reveals that 
there is a dearth of algorithms that can deal with sequencing data derived from 
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FFPE tissues [ 28 ]. This is primarily because signifi cant sequencing depth variations 
occur in FFPE samples, and we have recently shown that these effects occur even in 
FFPE normal samples (manuscript under preparation). While it is possible that 
genes targeted by large copy number alterations may be detectable [ 23 ], one needs 
to exercise caution while identifying sCNAs using FFPE whole-genome or whole- 
exome sequencing.   

4.2     RNA Sequencing 

 While signifi cant precautions need to be taken in analyzing DNA sequencing data 
derived from FFPE tissues, RNA sequencing data poses even more challenges, 
therefore requiring additional steps as summarized in Fig.  2 .  

4.2.1     Quality Assurance of Raw Sequencing Data 
and Transcriptome Coverage 

 Evaluation of read quality can be performed on the raw sequencing just as outlined 
for DNA sequencing from FFPE tissues. Here too, the presence of overrepresented 
sequences could help fl ag defi ciencies in sample or library quality and base quality 
distribution along the length of the read can identify the need for read trimming. The 
ENCODE project recommends at least 30 M paired-end reads per sample in order 
to evaluate transcriptional changes across samples. However, a minimum of 
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  Fig. 2    Bioinformatics considerations for RNA-Seq data processing. An example pipeline for the 
data processing and analysis of RNA-Seq data       
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100–200 M paired-end reads are recommended for more in-depth characterization 
of alterative splicing, gene fusion detection, or evaluation of expressed mutations. 
Transcriptome-specifi c alignment tools such as TopHat [ 29 ] or Trinity [ 30 ] can be 
used to estimate known transcript abundance as well as identify novel transcripts 
due to their de novo transcript assembly capabilities. After alignment, additional 
quality assurance checks [ 31 ] such as duplication rates, GC bias, 3′/5′ bias, ribo-
somal RNA contamination, and coverage statistics for exons, introns, and intragenic 
regions are particularly important as the fragmentation inherent in FFPE samples 
could signifi cantly bias the transcriptomic readout.  

4.2.2     Transcript Assembly and Quantifi cation 

 Transcript-level expression quantifi cation after alignment of the RNA-Seq data is 
typically performed using Cuffl inks/Cuffdiff [ 32 ] or DeSeq [ 33 ]. Since FFPE sam-
ples can suffer from excessive degradation of RNA that results in the attenuation of 
transcript abundance estimates, principal component analysis on the expression 
data can help determine if any samples in the cohort are particularly impacted, thus 
necessitating either exclusion or independent analysis of these samples. The poten-
tial for FFPE-induced degradation also impacts the estimation of differential tran-
script expression, and therefore, more stringent FDR and fold change thresholds 
need to be considered while analyzing such datasets.  

4.2.3    Gene Fusion Detection 

 Multiple computational approaches have been proposed in the literature to detect 
gene fusions using RNA-Seq data: TopHat-Fusion [ 34 ] generates an initial set of 
alignments using Bowtie [ 19 ] and focuses on the discordant read pairs to derive 
candidate gene fusions that are then fi ltered using multiple strategies to account for 
potential false positives. In a different strategy focusing on exonic regions, ShortFuse 
[ 35 ] applies a graphical model using reads mapping to exons of each potential 
fusion gene pair to determine the most likely fusion junction. FusionSeq [ 36 ] uses 
strict fi ltering strategy to eliminate false positives and therefore falls within the 
same category as TopHat-Fusion. One of the most comprehensive fusion-calling algo-
rithms developed is called deFuse [ 37 ] that fi rst uses read mate pairs that are discor-
dantly aligned to the genome to detect potential fusion candidates. Subsequently, 
deFuse comprehensively characterizes the sequences around each candidate fusion 
junction using BLAT [ 38 ] and builds a classifi er using these sequence summaries to 
derive the probability that a candidate fusion call is likely to be true. SplitSeek    [ 39 ] 
is a spliced aligner that uses ends of reads to identify fusion events, whereas Trans- 
ABySS [ 40 ] and ABySS [ 41 ] use de novo assembly to generate full-length tran-
scripts and then use the assembled transcripts to detect fusion events. Each of these 
algorithms suffers from signifi cant false-positive rates and is not easily translatable 
across studies due to the multiple parameters that need to be specifi ed by the user. 
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Therefore, it is essential that one employs at least two qualitatively different 
algorithms to reliably detect a fusion in a given sample. The fi nal list of candidate 
fusions can be determined by fi ltering based on whether an open reading frame is 
maintained in the fused transcript and if there is substantial coverage of the fusion 
junction. Furthermore, potential fi ltering strategies may include elimination of 
fusions between a gene and its pseudogene and fusions among paralogous genes as 
potential sequencing alignment artifacts. Such fi ltering strategies may be even more 
stringently applied in the context of FFPE tissue samples due to the higher potential 
of sequencing errors and artifacts. In summary, gene fusion detection using RNA-
Seq data derived from FFPE tissues presents a signifi cant challenge, and signifi cant 
improvements in specifi city of fusion-calling algorithms are needed before this 
technology can be widely used to screen for fusions.  

4.2.4    Detection of Expressed Mutations 

 While mutations can be relatively easily detected using DNA sequencing as detailed 
above, identifi cation of mutations that are expressed can provide additional insights 
into their functional role in cancers. Specifi cally, potentially functional oncogenic 
mutations, such as missense mutations in tumor suppressors leading to high expres-
sion (e.g., TP53 mutations), activating mutations in oncogenes (e.g., PIK3CA) or 
mutations in therapeutically targeted genes (ESR1), can be detected using RNA-Seq 
data. However, not all expressed mutations may be detectable. This is often due to 
nonsense-mediated decay of the transcript, thus resulting in lack of suffi cient cover-
age for detection. Ideally, mutations in a particular sample would fi rst be identifi ed 
using DNA sequencing, and only the confi rmed somatic mutations would be evalu-
ated using RNA-Seq. De novo detection of expressed variants and mutations is also 
possible but requires stringent fi ltering due to frequent false-positive calls close to 
splice sites, homopolymeric regions, or duplicated regions [ 42 ]. Finally, the combi-
nation of expressed mutations with patterns of mono-allelic expression [ 43 ] would 
allow for the detection of potentially functional mutated alleles given that the wild- 
type allele has been silenced.    

5     Translating Discoveries into the Clinic 

 Ultimately the goal of medical research is to lead to improvements in clinical 
practice. Indeed, FFPE DNA sequencing is already in trials in some clinics, either 
internally or through external services, such as Foundation One [ 14 ]. Sequencing 
presents a unique opportunity to unveil a wealth of extremely important insight into 
tumor biology that has previously been unheard of. These insights are likely to drive 
physicians toward the most effi cacious treatments for that particular patient. 
However, using sequencing in the clinic is not without challenges as well. 
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 One important challenge is physician understanding of the technology. Most 
physicians were not trained in interpretation of sequencing studies in medical school 
and may only have a basic understanding of the technology, including limitations. 
Indeed, when faced with a sequencing report, many physicians would fi nd them 
very challenging to interpret. Some sequencing centers have opted to mitigate this 
issue by simplifying the report into “actionable” fi ndings. However, this is not with-
out loss of information which may be important, particularly in a rapidly evolving 
fi eld. At our institution, as well as others, we have established multidisciplinary 
genomic tumor boards (MGTB) to discuss patients whose tumor has been sequenced. 
Importantly, beyond the traditional ensemble of physicians representing the entire 
oncology treatment team, these boards include scientists, including bioinformati-
cians, basic scientists, bioethicists, and clinical researchers whose role is to help 
bridge this gap. 

 Physicians are constantly required to practice “evidence-based” medicine. This 
means that therapies must bring with them a specifi c trial. In the case of sequencing, 
often the “actionable” variants that are identifi ed do not have evidence supporting 
them as a therapeutic. For example, there may be a trial that suggests the effi cacy of 
a therapeutic for treating a given cancer, but if the variant is found in a patient with 
a different cancer, for which the drug was not specifi cally approved, it is not neces-
sarily clear if it is appropriate to treat that patient with that drug, and this can be a 
major struggle for oncologists [ 44 ], and thus, these treatments, while potentially the 
most effective, may be reserved for only those patients that fail other treatments. 
This issue will need to be addressed in clinical trials that take into account the com-
prehensive nature of NGS [ 45 ]. Some proposed sequencing technologies have lim-
ited the sequencing to known variants to alleviate some of this issue [ 46 ]. However, 
of course, this is at the expense of the comprehensive nature of NGS. 

5.1     Using FFPE Tumors for Clinical Applications 

 FFPE samples represent a huge archive of available clinical specimens. Thus, their 
utility for research is immense. However, the use of FFPE tumors for clinical care 
of cancer patients could potentially be very high as well. Freezing fresh tumors is 
the current gold standard. However, this is not routinely done in a vast majority of 
clinical settings, whereas the protocol for preserving tumor tissue via FFPE is well 
established and routinely done by most pathologists. Further, FFPE is easier, 
cheaper, and more feasible at most institutions. This is an especially important con-
sideration for resource-poor or remote areas, which are extremely important not to 
exclude from important medical advances. Thus, being able to use FFPE samples 
for clinical tests and decision making may make the tests more widely utilized and 
have a broader impact. 

 With any research that ultimately has the goal of being translated into a clinical 
application, it is important to replicate how the test would be used in a clinical setting. 
Thus, a rigorous study with the correct patient population, defi ned collection and 
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storage protocol, as well as a clearly defi ned processing and analysis pipeline, that 
is also feasible in a clinical setting, will be necessary in order to create a test that can 
be used to direct patient care.  

5.2     Bioethical Concerns for Using NGS in the Clinic or 
in Clinical Trials 

 Sequencing of tumors, be it DNA or RNA sequencing, also brings with it quite a 
number of ethical challenges. Among these challenges are informed consent, return 
of incidental fi ndings, and the potential to increase disparities. 

 Informed consent is an important concept in modern medical practice that 
requires all patients to have an understanding of any proposed medical test or pro-
cedure and only afterward provide consent to that test or procedure. Previously, we 
discussed the importance of consideration of incomplete physician knowledge of 
NGS. The understanding of basic genetic concepts, even less NGS, by the general 
public is very low. Thus, explaining NGS of a tumor to a patient and how it would 
be used for their treatment can be very challenging to physicians. Using persons 
trained in communication of genetic information to patients, such as genetic coun-
selors, and/or signifi cant training to oncologists may alleviate some of these com-
munication challenges. 

 Another important consideration is the return of incidental fi ndings. When we 
sequence a tumor, it is not common for “incidental” fi ndings to arise. These are not 
part of the intent of the test, but are as a result of this wealth of data on the patient 
that is returned through NGS. For example, when sequencing a non-breast tumor, 
one might discover a mutation in a BRCA1 or BRCA2, which predispose to breast 
or ovarian cancer. Should this be conveyed to the patient if not relevant for the cur-
rent cancer? What if the patient is a male, but has daughters? Another example is it 
might be discovered that the patient is a carrier for a mutation causing Tay-Sachs 
disease. If the patient is still in childbearing years, is it important to tell the patient 
about this mutation? What about a variant that causes a relatively small increase risk 
of developing a disease? Does it matter if the disease is potentially preventable 
(such as heart disease) or not (such as Alzheimer’s)? Further, it is unclear how best 
to convey these fi ndings to the patient. There may be differences, as well, in the 
context of a research study vs. clinical care [ 47 ]. Further, if a patient is a pediatric 
cancer patient, these may have entirely different meanings and consequences. These 
questions remain to be answered, and there is no consensus among professionals 
about what is the best policy [ 48 ]. 

 Through massive advances in sequencing technologies, the cost of exome 
sequencing and RNA-Seq has reduced dramatically over the past couple decades. 
However, even today, NGS is not inexpensive and is not often covered by insurance. 
In addition, we previously discussed the advantages of having an MGTB to interpret 
fi ndings from NGS. However, while MGTBs are relatively easy to develop at large 

Clinical Applications of Next-Generation Sequencing of Formalin-Fixed…



190

university-affi liated comprehensive cancer centers, MGTBs are not likely to be 
feasible for most patients, particularly those in more rural areas or resource-poor 
areas of the world. This limits the ability to bring this important new technology to 
these patients. As physicians and scientists, we need to fi nd ways to reduce dispari-
ties and not to advance science in a way that increases economic disparities.   

6     Conclusions 

 In conclusion, NGS from FFPE is currently feasible for research, and emerging 
technologies are improving the performance of the nucleic acid isolation as well as 
the sequencing itself. The large repositories of FFPE tumors could prove to be an 
extremely valuable resource to researchers investigating cancer genomics. However, 
there are still a number of considerations that must be made when doing NGS from 
FFPE. When completing the bioinformatical analyses, some precautions must be 
taken to ensure quality analysis, particularly for RNA-Seq, which is more prone to 
errors from nucleic acid degradation compared to DNA-Seq. Further, the goal of all 
research is to advance the clinical care of patients. However, before translating fi nd-
ings from sequencing from FFPE into the clinic, a number of validation studies as 
well as bioethical considerations must be made.     

   References 

    1.    Burgemeister R. Nucleic acids extraction from laser microdissected FFPE tissue sections. 
Methods Mol Biol. 2011;724:117–29.  

    2.    Joseph A, Gnanapragasam VJ. Laser-capture microdissection and transcriptional profi ling in 
archival FFPE tissue in prostate cancer. Methods Mol Biol. 2011;755:291–300.  

    3.    Park JY, Kricka LJ, Fortina P. Next-generation sequencing in the clinic. Nat Biotechnol. 
2013;31(11):990–2.  

     4.    Morton ML, Bai X, Merry CR, Linden PA, Khalil AM, Leidner RS, Thompson CL. Identifi cation 
of mRNAs and lincRNAs associated with lung cancer progression using next-generation RNA 
sequencing from laser micro-dissected archival FFPE tissue specimens. Lung Cancer. 
2014;85(1):31–9.  

    5.    Farragher SM, Tanney A, Kennedy RD, Paul Harkin D. RNA expression analysis from forma-
lin fi xed paraffi n embedded tissues. Histochem Cell Biol. 2008;130(3):435–45.  

    6.    Gnanapragasam VJ. Unlocking the molecular archive: the emerging use of formalin-fi xed 
paraffi n-embedded tissue for biomarker research in urological cancer. BJU Int. 
2010;105(2):274–8.  

    7.    Heydt C, Fassunke J, Kunstlinger H, Ihle MA, Konig K, Heukamp LC, Schildhaus HU, 
Odenthal M, Buttner R, Merkelbach-Bruse S. Comparison of pre-analytical FFPE sample 
preparation methods and their impact on massively parallel sequencing in routine diagnostics. 
PLoS One. 2014;9(8):e104566.  

    8.    Liu A, Xu X. MicroRNA isolation from formalin-fi xed, paraffi n-embedded tissues. Methods 
Mol Biol. 2011;724:259–67.  

   9.    Lu X, van der Straaten T, Tiller M, Li X. Evidence for qualifi ed quantitative mRNA analysis in 
formalin-fi xed and paraffi n-embedded colorectal carcinoma cells and tissue. J Clin Lab Anal. 
2011;25(3):166–73.  

C.L. Thompson and V. Varadan



191

   10.    Ludyga N, Grunwald B, Azimzadeh O, Englert S, Hofl er H, Tapio S, Aubele M. Nucleic acids 
from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch. 
2012;460(2):131–40.  

   11.    Stewart GD, Baird J, Rae F, Nanda J, Riddick AC, Harrison DJ. Utilizing mRNA extracted 
from small, archival formalin-fi xed paraffi n-embedded prostate samples for translational 
research: assessment of the effect of increasing sample age and storage temperature. Int Urol 
Nephrol. 2011;43(4):961–7.  

    12.    Waldron L, Simpson P, Parmigiani G, Huttenhower C. Report on emerging technologies for 
translational bioinformatics: a symposium on gene expression profi ling for archival tissues. 
BMC Cancer. 2012;12:124.  

      13.    Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, Nordentoft I, 
Birkenkamp-Demtroder K, Kruhoffer M, Hager H, et al. Next-generation sequencing of RNA 
and DNA isolated from paired fresh-frozen and formalin-fi xed paraffi n-embedded samples of 
human cancer and normal tissue. PLoS One. 2014;9(5):e98187.  

     14.    Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, 
White J, Sanford EM, An P, et al. Development and validation of a clinical cancer genomic 
profi ling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):
1023–31.  

    15.    Xue B, He L. An expanding universe of the non-coding genome in cancer biology. 
Carcinogenesis. 2014;35(6):1209–16.  

    16.    Guo X, Zhu SX, Brunner AL, van de Rijn M, West RB. Next generation sequencing-based 
expression profi ling identifi es signatures from benign stromal proliferations that defi ne stro-
mal components of breast cancer. Breast Cancer Res. 2013;15(6):R117.  

    17.    Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNA-Seq by 
poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profi ling. 
BMC Genomics. 2014;15(1):419.  

    18.    Norton N, Sun Z, Asmann YW, Serie DJ, Necela BM, Bhagwate A, Jen J, Eckloff BW, Kalari 
KR, Thompson KJ, et al. Gene expression, single nucleotide variant and fusion transcript dis-
covery in archival material from breast tumors. PLoS One. 2013;8(11):e81925.  

     19.    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-effi cient alignment of 
short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.  

    20.    Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M, Ponten J, Sitbon G, Lundeberg J. 
A high frequency of sequence alterations is due to formalin fi xation of archival specimens. Am 
J Pathol. 1999;155(5):1467–71.  

    21.    Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson 
M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heteroge-
neous cancer samples. Nat Biotechnol. 2013;31(3):213–9.  

    22.    Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, 
Futreal PA, Stratton MR, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) 
database and website. Br J Cancer. 2004;91(2):355–8.  

     23.    Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, 
Friedrich DC, Kryukov G, Carter SL, et al. Whole-exome sequencing and clinical interpreta-
tion of formalin-fi xed, paraffi n-embedded tumor samples to guide precision cancer medicine. 
Nat Med. 2014;20(6):682–8.  

    24.    Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, Janoueix-Lerosey I, 
Delattre O, Barillot E. Control-FREEC: a tool for assessing copy number and allelic content 
using next-generation sequencing data. Bioinformatics. 2012;28(3):423–5.  

    25.    Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl 
MC, Zhang Q, Locke DP, et al. BreakDancer: an algorithm for high-resolution mapping of 
genomic structural variation. Nat Methods. 2009;6(9):677–81.  

    26.    Nijkamp JF, van den Broek MA, Geertman JM, Reinders MJ, Daran JM, de Ridder D. De novo 
detection of copy number variation by co-assembly. Bioinformatics. 2012;28(24):3195–202.  

    27.    Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of vari-
ants using colored de Bruijn graphs. Nat Genet. 2012;44(2):226–32.  

Clinical Applications of Next-Generation Sequencing of Formalin-Fixed…



192

    28.    Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation 
(CNV) detection using next-generation sequencing data: features and perspectives. BMC 
Bioinformatics. 2013;14 Suppl 11:S1.  

    29.    Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. 
Bioinformatics. 2009;25(9):1105–11.  

    30.    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, 
Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data 
without a reference genome. Nat Biotechnol. 2011;29(7):644–52.  

    31.    DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, Reich M, Winckler 
W, Getz G. RNA-SeQC: RNA-seq metrics for quality control and process optimization. 
Bioinformatics. 2012;28(11):1530–2.  

    32.    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn 
JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments 
with TopHat and Cuffl inks. Nat Protoc. 2012;7(3):562–78.  

    33.    Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 
2010;11(10):R106.  

    34.    Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. 
Genome Biol. 2011;12(8):R72.  

    35.    Kinsella M, Harismendy O, Nakano M, Frazer KA, Bafna V. Sensitive gene fusion detection 
using ambiguously mapping RNA-Seq read pairs. Bioinformatics. 2011;27(8):1068–75.  

    36.    Sboner A, Habegger L, Pfl ueger D, Terry S, Chen DZ, Rozowsky JS, Tewari AK, Kitabayashi 
N, Moss BJ, Chee MS, et al. FusionSeq: a modular framework for fi nding gene fusions by 
analyzing paired-end RNA-sequencing data. Genome Biol. 2010;11(10):R104.  

    37.    McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, Griffi th M, Heravi 
Moussavi A, Senz J, Melnyk N, et al. deFuse: an algorithm for gene fusion discovery in tumor 
RNA-Seq data. PLoS Comput Biol. 2011;7(5):e1001138.  

    38.    Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.  
    39.    Ameur A, Wetterbom A, Feuk L, Gyllensten U. Global and unbiased detection of splice junc-

tions from RNA-seq data. Genome Biol. 2010;11(3):R34.  
    40.    Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada 

HM, Qian JQ, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 
2010;7(11):909–12.  

    41.    Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler 
for short read sequence data. Genome Res. 2009;19(6):1117–23.  

    42.    Piskol R, Ramaswami G, Li JB. Reliable identifi cation of genomic variants from RNA-seq 
data. Am J Hum Genet. 2013;93(4):641–51.  

    43.    Mayba O, Gilbert HN, Liu J, Haverty PM, Suchit J, Jiang Z, Watanabe Y, Zhang Z. MBASED: 
allele-specifi c expression detection in cancer tissues and cell lines. Genome Biol. 
2014;15(8):405.  

    44.    Garber K. Ready or not: personal tumor profi ling tests take off. J Natl Cancer Inst. 
2011;103(2):84–6.  

    45.    Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat 
Rev Drug Discov. 2013;12(5):358–69.  

    46.    Bourgon R, Lu S, Yan Y, Lackner MR, Wang W, Weigman V, Wang D, Guan Y, Ryner L, 
Koeppen H, et al. High-throughput detection of clinically relevant mutations in archived tumor 
samples by multiplexed PCR and next-generation sequencing. Clin Cancer Res. 
2014;20(8):2080–91.  

    47.    Jarvik GP, Amendola LM, Berg JS, Brothers K, Clayton EW, Chung W, Evans BJ, Evans JP, 
Fullerton SM, Gallego CJ, et al. Return of genomic results to research participants: the fl oor, 
the ceiling, and the choices in between. Am J Hum Genet. 2014;94(6):818–26.  

    48.    Yu JH, Harrell TM, Jamal SM, Tabor HK, Bamshad MJ. Attitudes of genetics professionals 
toward the return of incidental results from exome and whole-genome sequencing. Am J Hum 
Genet. 2014;95(1):77–84.    

C.L. Thompson and V. Varadan



193© Springer International Publishing Switzerland 2015
W. Wu, H. Choudhry (eds.), Next Generation Sequencing in Cancer Research, 
Volume 2, DOI 10.1007/978-3-319-15811-2_12

      ChIP-BS-Sequencing in Cancer Epigenomics 

             Karthikraj     Natarajan      and     Fei     Gao    

    Abstract     DNA methylation and histone modifi cations are crucial epigenetic modi-
fi cations that involved in transcriptional regulatory network. Due to environmen-
tal cues, distortion in epigenomic landscape—in DNA methylation and histone 
modifi cation—might be considered as a reason for aberrant gene expression in can-
cer. A confounding puzzle in cancer epigenetics is to decipher whether a signifi cant 
mechanism between DNA methylation and histone modifi cation triggers tumori-
genesis initiation and progression. ChIP-BS-seq is a technique that combines chro-
matin immunoprecipitation and bisulfi te conversion followed by high-throughput 
sequencing to study genome-wide cross talk between DNA methylation and histone 
modifi cation. In this chapter, we have explored background, technological advance-
ment in epigenomics research and its future developments. We also have summa-
rized our latest fi ndings on using ChIP-BS- seq in cancer cell lines.  

1          Introduction 

 After the discovery of DNA structure, the Human Genome Project was proposed 
to identify the role of long-coiled DNA sequences. With higher expectation, the 
Human Genome Project was successfully completed on 2004. However, research-
ers understood that the genome project provides only the read sequence of the 
entire genome, but it does not provide information on gene regulation, protein and 
mRNA function, and their relation. Subsequently, it led to development of OMICS 
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fi elds such as epigenomics, transcriptomics, and proteomics, which are believed 
to solve gene and genome mysteries. 

 Epigenomics is a booming hot spot, which is growing promisingly for a couple 
of decade to understand complex mechanism in gene regulatory system. The com-
plex network of DNA and proteins mass tangled inside a capsule-like structure 
called nucleus. It is diffi cult to understand comprehensive epigenomic network with 
available technology. The development of the fi eld is bottlenecked by lack of apt 
epigenetic tools or ineffi cient available techniques. To unravel molecular mecha-
nism either in normal biological processes or on understanding complex diseases—
cancer, diabetics, and Alzheimer’s—new effi cient interdisciplinary methods or 
tools are inevitably needed for the hour. 

 Epigenetic landscape of a genome is maintained by crucial mechanisms such as 
DNA methylation and histone modifi cation both structurally and functionally 
(Fig.  1 ) [ 1 ]. The malfunction of these mechanisms profoundly distorts the normal 
cellular function, which may lead to development of cancer. Aberrant hypermethyl-
ation at CpG island (CGI) is involved in gene silencing in X-inactivation, imprinting 
genes, aging process [ 2 ,  3 ], and frequent loss of tumor suppressor gene (TSG) func-
tion in cancer [ 4 ,  5 ]. Likewise, change in DNA methylation is also associated with 
aberrant histone modifi cation patterns [ 6 ,  7 ]. Generally, in normal cells, promoter CGI 
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  Fig. 1    Three primary epigenetic mechanisms: (1) DNA methylation, (2) histone posttranslational 
modifi cations, and (3) RNA-based mechanisms, including miRNAs and large noncoding RNAs 
(lncRNAs). [Reprinted with permission from Macmillan Publishers Ltd: Laboratory Investigation 
[ 81 ], copyright (2014)]       
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regions are not methylated; hence, the genes are transcribed without any  hindrance. 
But in the cancer cells, many genes are repressed by aberrant methylation at 
promoter CGI (Fig.  2 ) [ 8 ,  9 ]. An intriguing puzzle in cancer epigenetics is to under-
stand the underlying mechanism between DNA methylation and histone modifi ca-
tion alterations in tumorigenesis. In other words, what factor triggers the normal 
epigenomic function onto tumor initiation and progression?   

 The available techniques are limited to study mechanism between DNA meth-
ylation and diverse histone marks on its effect on gene regulation. The newly devel-
oped ChIP-BS-seq technique can help to better understanding the study of DNA 
methylation and histone modifi cation on cancer context [ 10 ,  11 ]. In this chapter, we 
aim to shed light on the advantage of ChIP-BS-seq in cancer epigenomics research 
and its future prospects.  

2     Chromatin Modifi cations 

 DNA is wrapped around histone octamer   , namely, H3, H4, H2A, and H2B to form 
nucleosome—a bead-on-string structure of length 147 bp [ 12 ,  13 ]. The histone pro-
teins consist of N-amino tails that are subject to posttranslational modifi cation 
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  Fig. 2    Aberrant DNA methylation patterns in tumorigenesis. Aberrant hypermethylation at CGI 
promoter of tumor suppressor genes in cancer cells leads to transcriptional repression of these 
genes (Table  1 ), whereas in normal cells, CGI promoter is free from methylation. Contrastingly, 
the genome undergoes global hypomethylation in cancer cells, which seems to contribute genomic 
instability. [Reprinted with permission from Macmillan Publishers Ltd: Nature review genetics 
[ 9 ], copyright (2007)]       
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which subsequently leads to gene activation or repression by alteration in chromatin 
structure. There are about 60 types of histone modifi cations that have been reported 
to be modifi ed at histone tails and main class of posttranslational modifi cation 
(PTMs) such as histone methylation, acetylation, phosphorylation, ubiquitination, 
sumoylation, and ADP ribosylation [ 14 ]. PTMs are carried by recruiting proteins 
and its complex to perform unique enzymatic activity for gene regulation. Apart 
from change in chromatin architecture, remodeling enzymes are also involved in 
nucleosome repositioning by ATP hydrolysis. Because of its diversity and modifi ca-
tion at multiple sites, histone modifi cations show high-level complexity on under-
standing its epigenetic regulation. Out of all modifi cations, histone methylation and 
acetylation are shown to be involved in tumor alterations [ 9 ,  15 ]. 

2.1     Histone Methylation and Demethylation 

 Histone methylation predominately modifi es at different sites of lysine and arginine 
amino chain of histone tails. Further, the methyl group at lysine may be mono-, di-, 
or tri-methylated, whereas arginine may be mono-, symmetrical, asymmetrical, or 
di-methylated [ 16 ]. In case of histone methylation, modifi cation doesn’t alter the 
charge of histones. Histone lysine methyltransferase (HKMT) is an enzyme which 
methylates lysine by transfer of methyl group at S-adenosylmethionine (SAM) to 
lysine’s ε-amino group. Most of the HKMTs contain SET domain for its enzymatic 
activity, and SET domain-containing HKMTs are considered to be controlling type 
of methylation. HKMT was fi rst identifi ed as SUV39H1 that methylates at H3K9 [ 17 ]. 
In case of arginine methylation, the addition of methylation is controlled by arginine 
methyltransferase by transfer of methyl group from SAM to arginine’s ω-guanidino 
group. A group of arginine methyltransferase is generally referred to as protein argi-
nine methyltransferases (PRMTs). PRMTs catalyze methylation at nitrogen of spe-
cifi c arginine residues, and the arginine methylation has three types: monomethylation 
and two types of dimethylation [ 18 ]. 

 Methylation of lysine residue at histone tail was considered to be an irreversible 
reaction. Histone lysine demethylase (KDM) is called as eraser enzyme, which 
removes methyl group from histone tails. LSD1 (lysine-specifi c demethylase 1) was 
the fi rst identifi ed KDM protein that demethylates mono-/di-lysine 4 at histone 3 
(H3K4me1/2) [ 19 ]. A second KDM was identifi ed as LSD2 which also demethyl-
ates H3K4me1/2 in mammals [ 20 ]. Later, a group of KDM eraser proteins has been 
identifi ed; they have structurally different JmjC domain than previously identifi ed 
proteins. LSD1 and LSD2 are related to DNMTs for de novo methylation at DNA 
imprinting stage, and a notion is that feasibility of connection between histone 
methylation and DNA methylation might exist [ 21 ]. Aberrant expression or muta-
tion in KDM has been reported in many types of cancer, and it is considered to be 
an implication of tumor development [ 22 ,  23 ]. Thus, the enzyme is not only consid-
ered as marker for cancer but also represents as targeting tool for novel anticancer 
therapeutic targets.   

K. Natarajan and F. Gao



197

3     DNA Methylation 

 DNA methylation is a covalent modifi cation, commonly called as cytosine methylation 
by addition of methyl (–CH 3 ) group at the fi fth position of the cytosine nucleotide 
base [ 3 ]. Addition of methyl group on the cytosine commonly occurs within CG 
dinucleotides (CpG), and in mammals, about 60–90 % of all the CpGs are methyl-
ated [ 24 ]. DNA methylation is a well-studied epigenetic mechanism, and it is essen-
tial for embryonic development, X-chromosome inactivation, genomic imprinting, 
tissue-specifi c differentiation, aging, and chromosomal instability. It plays vital 
roles in gene regulation and decides on-off gene expression which determines the 
activity of cells. DNA methylation is regulated by sophisticated machineries—DNA 
methyltransferase (DNMTs), which is responsible for establishing and maintaining 
methylation patterns, and methyl-CpG binding proteins (MBDs), which “read” 
DNA methylation marks. 

 The dynamic change in methylation pattern is considered as onset of cancer and 
its progression. Many fi ndings have reported that the interplay between DNA meth-
ylation and histone modifi cation malfunction related to onset of cancer [ 9 ,  25 ]. Our 
understanding of epigenetic information and its complexity has been signifi cantly 
enlightened with the help of high-throughput sequencing. Interestingly   , understand-
ing epigenetic regulation during mammalian development and stem cell differentia-
tion and applying the knowledge in parallel to unravel cancer alterations and also 
substantial evidence show that DNA methylation and histone modifi cations work 
together to regulate gene expression [ 25 ]. 

 DNA methylation pattern is unique among different types of cells and tissues; 
alteration in methylation pattern may affect the cell properties. The specifi city at 
DNA methylation could be due to tissue-dependent differentiated methylated 
regions    (T-DMRs) present in gene sequences and other regulatory elements in the 
genome [ 26 ]. T-DMRs are defi ned as C-DMRs if the patterns of T-DMR in cancer 
tissues are different from normal tissues [ 27 ]. 

3.1     CpG Island 

 A CpG island (CGI) is frequently present at gene promoter or exons, and it is 
unmethylated in normal cells [ 28 ]. The methylation of CGI promoters is essential 
for normal developmental in genomic imprinting, X-chromosome inactivation, and 
tissue-specifi c genes. In the mammalian genome, approximately 70 % of CpG dinu-
cleotides are methylated. The methylation of CGI at TSG retinoblastoma (RB) gene 
in human cancer was fi rst discovered in 1989 [ 29 ]. In human cancer, the inactivation 
of TSG p16 INK4a  by CGI hypermethylation was the fi rst epigenetic gene silencing 
mechanism that was shown by Stephen Baylin and Peter A. Jones [ 30 – 32 ]. After 
this discovery, aberrantly methylated TSG and other genes at a CGI were identifi ed 
(Table  1 ) [ 33 ]. Previous    works have shown that CGIs have been found located 
closer to the overlapping transcription starting site, and it enunciates the relation 
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between CGIs and transcriptional initiation [ 34 ,  35 ]. The density of CpG overlapped 
at promoters is varied from different gene promoters. A study has shown that low 
CpG-density promoters are associated with tissue-specifi c genes where high 

    Table 1    A    list of genes that are silenced by aberrant hypermethylation at CpG island in human cancer   

 Gene  Function  Tumor type 

 AR  Androgen receptor  Prostate 
 BRCA1  DNA repair, transcription  Breast, ovary 
 CRBP1  Retinol-binding protein  Colon, stomach, lymphoma 
 DAPK  Pro-apoptotic  Lymphoma, lung, colon 
 ER  Estrogen receptor  Breast 
 GATA4  Transcription factor  Colon, stomach 
 GATA5  Transcription factor  Colon, stomach 
 GSTP1  Conjugation to glutathione  Prostate, breast, kidney 
 HOXA9  Home box protein  Neuroblastoma 
 ID4  Transcription factor  Leukemia, stomach 
 IGFBP3  Growth-factor-binding protein  Lung, skin 
 Lamin A/C  Nuclear intermediate fi lament  Lymphoma, leukemia 
 LKB1/STK11  Serine-threonine kinase  Colon, breast, lung 
 MGMT  DNA repair of 06-alkyl-guanine  Multiple type mutations 
 MLH1  DNA mismatch repair  Colon, endometrium, stomach 
 NORE1A  Ras effector homologue  Lung 
 p14 ARF   MDM2 inhibitor  Colon, stomach, kidney 
 p15 INK4b   Cyclin-dependent kinase inhibitor  Leukemia 
 p16 INK4a   Cyclin-dependent kinase inhibitor  Multiple types 
 p73  p53 homologue  Lymphoma 
 PR  Progesterone receptor  Breast 
 PRLR  Prolactin receptor  Breast 
 RARβ2  Retinoic acid receptor-β2  Colon, lung, head and neck 
 RASSF1A  Ras effector homologue  Multiple types 
 Rb  Cell cycle inhibitor  Retinoblastoma 
 RIZ1  Histone/protein methyltransferase  Breast, liver 
 SLC5A8  Sodium transporter  Glioma, colon 
 SOCS1  Inhibitor of JAK-STAT pathway  Liver, myeloma 
 SOCS3  Inhibitor of JAK-STAT pathway  Lung 
 SRBC  BRCA1-binding protein  Breast, lung 
 SYK  Tyrosine kinase  Breast 
 THBS1  Thrombospondin-1, Anti-angiogenic  Glioma 
 TMS1  Pro-apoptotic  Breast 
 TPEF/HPP1  Transmembrane protein  Colon, bladder 
 TSHR  Thyroid-stimulating hormone receptor  Thyroid 
 VHL  Ubiquitin ligase component  Kidney, hemangioblastoma 
 WIF1  Wnt inhibitory factor  Colon, lung 
 WRN  DNA repair  Colon, stomach, sarcoma 

  (Adapted from Nature Review Genetics [ 9 ] 2007)  
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 CpG-density promoters are present in housekeeping and developmental genes [ 36 ]. 
During somatic cell reprogramming, the repressive mark H3K27me3 was replaced 
with activating mark H3K4me2 by Parp1 and Tet2 in pluripotency genes [ 37 ,  38 ]. 
Most of the studies have showed that DNA methylation alteration in promoters or 
CpG could be responsible for cancer initiation or progression (Fig.  2 ). In addition, 
a group has shown that methylation alterations are not only at promoter or CGI in 
colon cancer, but also at CGI shore, which is 2 kb distant from CGI [ 27 ].

4         Interplay Between DNA Methylation and Histone 
Modifi cations at CpG 

 The specifi c histone modifi cation H3K27me3 may associate with DNA methylation 
at CGI promoter and has higher H3K27me3 enrichment in cancer cells [ 39 ]. Also, 
in colon cancer cells, most of the promoter genes are enriched with higher 
H3K27me3, whereas in the controls, unmethylated CGI lacks H3K27me3 mark 
[ 40 ]. The similarity between DNA methylation and H3K27me3 are both repressive 
in function. But DNA methylation is a stable form of repression, whereas H3K27me3 
is not [ 41 ]. The coordination of these two marks also plays a critical role in early 
mammalian development and a model has been proposed [ 25 ]. In the early develop-
mental stage, the active promoters with high CG content are enriched with 
H3K27me3, which silence the non-expressing lineages [ 42 ]. Also, another group 
has shown that H3K7me3 enrichment sites exhibit higher methylation level in 
undifferentiated cells [ 43 ]. On the contrary, some groups have also argued that DNA 
methylation and H3K27me3 are mutually exclusive in normal and cancer cells [ 11 , 
 44 ]. Nevertheless, co-occurrence of DNA methylation and H3K27me3 has been 
shown to be involved in early mammalian development and tumor progression. The 
interplay between DNA methylation and H3K27me3 and/or other histone modifi ca-
tions is yet to be revealed.  

5     PRC-Mediated H3K27me3 Action: During Developmental 
Stages and in Cancer Cells 

 During developmental stages, embryonic cells are regulated by epigenetic factors 
such as DNA methylation and histone modifi cations by change in gene expression 
for cell differentiation and maintenance. Apart from these modifi cations, PcG pro-
teins also play a vital role in early mammalian development [ 45 ,  46 ]. PcG repressive 
complex was fi rst identifi ed in  Drosophila , which is involved in gene silencing to 
maintain cell fate [ 47 ]. PcG proteins function as two protein complexes into poly-
comb repressive complex 1 (PRC1) and polycomb repressive complex 2 (PRC2). 
EED, SUZ12, and EZH2 are the part of PRC2 which catalyzes H3K4me2/me3 [ 48 ]. 
SET domain of histone methyltransferase EZH2, as part of PRC2 complex, 
was shown to catalyze H3K27me3 [ 49 ], and the repressive mark H3K27me3 is 
considered as the hallmark for PcG-mediated silencing (Fig.  3 ) [ 50 – 52 ]. 

ChIP-BS-Sequencing in Cancer Epigenomics



200

  Fig. 3    Histone activation mark (H3K4me3) and repressive mark (H3K27me3) act as bivalent 
modifi cations in regulating developmental genes. Epigenetic repression of pro-differentiation 
genes is maintained by PRC1 and PRC2 complexes. H3K27me3 is catalyzed by EZH2 methyl-
transferase of PRC2 complex which leads to transcriptional repression of developmental genes. 
PRC1 is believed to coordinate with PRC2 during the process. CGI methylation is also contributed 
to gene expression regulation. Loss of H3K27me3 mark at specifi c promoter is considered to be 
transcriptional activation of genes. In cancer cells, H3K27me3 and DNA hypermethylation coexist 
together, and this PcG-mediated H3K27me3 silence machinery appears to be the hallmark of can-
cer. (The fi gure is adapted from the article [ 82 ])       
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PcG-mediated gene silencing plays an essential role in maintaining normal state of 
stem cells and progenitor cells and controlling specifi c-tissue types [ 51 ,  52 ].  

 Interestingly, other evidences are also suggested that PRC1 complex is also 
recruited along with PRC2 complex, which catalyze H3K27me3 for chromatin 
compaction [ 50 ,  53 ]. Chromatin landscape of ES cells revealed that PcG target 
sites contain large region of H3K27me3 repressive mark and activation mark 
H3K4me3 at transcriptional start site (TSS) [ 54 ,  55 ]. The genomic region that con-
sists of opposing modifi cations is called as “bivalent domains” that believed to 
drive potential genes either into active or inactive state (Fig.  3 ). The plasticity of 
chromatin is maintained by the bivalent histone marks with low gene expression in 
developmental genes and depends on the differentiation signal; shifting in mon-
ovalent state leads to transcriptional activation by open chromatin conformation 
[ 54 ]. In the case of PcG target genes   , CpG-containing promoter is protected from 
de novo methylation during implantation [ 56 ]. However, during the development 
process from stem cell to differentiated state, numbers of gene sequences undergo 
de novo methylation by PcG complex [ 57 ,  58 ]. Some groups showed that PcG-
defi cient ES cells enter differentiation stage but fail to maintain differentiated phe-
notypes [ 59 ,  60 ].  

6     Aberrant DNA Methylation: Hypermethylation 
and Hypomethylation 

 The rapidly growing evidences corroborate the notion that malfunction in epigene-
tic network may cause aberrant DNA methylation [ 9 ]. DNA hypermethylation and 
global hypomethylation alterations are associated with neoplastic transformation 
[ 61 ]. In    mouse ES cells, promoter region of some genes has a combination of repres-
sive mark H3K27me3 and active mark H3K4me2 [ 62 ], which is a bivalent state of 
these histone modifi cations in ES cells that have been observed before [ 54 ,  63 ]. 
A group has found that in adult cancer cells, aberrant DNA methylation was 
observed at an H3K27me3-enriched region. H3K27me3 is also associated with 
hypomethylation at DNA promoters. Aberrant promoter methylation was frequently 
observed in many types of cancers, and in some cancers such as gastric cancer, aber-
rant methylation was involved in silencing tumor suppressor genes [ 64 ]. Feinberg 
and colleagues have shown that global DNA hypomethylation might associate with 
cancer initiation just like DNA hypermethylation [ 65 ]. There are growing evidences 
that link global DNA hypomethylation with genomic instability, and it might have 
long-term consequences in cancer [ 66 ,  67 ]. Activation of oncogene (cMYC) is stim-
ulated by global hypomethylation [ 68 ]. Despite more results are reported on hyper-
methylation in cancer, hypomethylation is also considered to have strong correlation 
in many types of cancer (Fig.  2 ).  
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7     Technological Development in Cancer Epigenomics 

 A set of methodology is available for studying epigenetic modifi cations in normal 
and cancer cells (Fig.  4 ). The existing technologies can be used to assess different 
cells and tissues in either a gene-specifi c or genome-wide manner. Cancer epig-
enomics research is slowed down behind cancer genetics due to nonavailability of 
novel techniques and technical limitation to study epigenetic mechanism. The 
development of bisulfi te treatment is a boon to DNA methylation research, which 
converts unmethylated cytosine to uracil and leaves the methylated cytosine. The 
bisulfi te conversion then can be coupled with PCR amplifi cation to analyze DNA 
methylome [ 69 ]. A    challenging problem in conventional bisulfi te sequencing is 
how to measure repeated sequence region like CGI region or heterochromatin 
region. Genome-wide bisulfi te sequencing technologies can overcome this 

  Fig. 4    Technique in epigenomics research. A series of techniques are shown in the fi gure, which 
are used to study DNA methylation, DNA-protein interactions, and chromatin remodeling—bisul-
fi te sequencing (BS-seq), reduced representation bisulfi te sequencing (RRBS), methylated DNA 
immunoprecipitation sequencing (MeDIP-seq), whole-genome shotgun bisulfi te sequencing 
(MethylCap-seq), micrococcal nuclease digestion sequencing (MNase-seq), oxidative bisulfi te 
sequencing (oxBS-seq), chromatin immunoprecipitation sequencing (ChIP-seq), chromatin immu-
noprecipitation exonuclease digestion (ChIP-exo), assay for transposase-accessible chromatin 
sequencing (ATAC-seq), nucleosome occupancy and methylome sequencing (NOMe-seq), DNase 
I hypersensitive sites sequencing (DNase-seq), formaldehyde-assisted isolation of regulatory ele-
ments sequencing (FAIRE-seq)       
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obstacle, for instance, reduced representation bisulfi te sequencing (RRBS) was 
developed to mainly target high CpG genomic regions by combining MspI restric-
tion digestion and bisulfi te conversion [ 70 ]. RRBS method can be used to study 
aberrant hypermethylation and hypomethylation at CpG islands in different types 
of cancer cells [ 71 ]. To    study diverse histone modifi cation patterns, chromatin 
immunoprecipitation sequencing (ChIP-seq) method was developed to study 
DNA-protein interaction to decipher the role of histone mark, transcription factors, 
and other epigenetic regulators followed by high-throughput sequencing that pro-
vides genome-wide information. Bisulfi te sequencing and ChIP-seq are the mostly 
used techniques in epigenomics research to study DNA methylation and histone 
modifi cations. Moreover, other techniques were developed such as MNase-seq, 
ATAC-seq, and NOMe-seq to study nucleosome positioning, DNase-seq and 
FAIRE-seq to study chromatin accessibility, and RNA-seq and SAGE-seq to study 
RNA level. However, these techniques have its unique purpose to study different 
mechanism individually. Despite the  benefi ts of these robust techniques, studying 
the interaction between epigenetic  modifi cations such as DNA methylation and 
histone modifi cations is limited.   

8     ChIP-BS-seq and Summary 

 ChIP-BS-seq is a method to study DNA methylation directly at enriched histone 
marks region. ChIP-BS-seq is a fusion of chromatin immunoprecipitation and bisul-
fi te conversion techniques and coupling with high-throughput sequencer for epigen-
etic profi ling. The main advantage is that it can provide more information on DNA 
methylation at enriched histone marks in cell lines or tissues. Particularly it can be 
utilized to study interplay between DNA methylation and histone modifi cations fol-
lowed by epigenetic profi ling that can provide better insight on complex epigenetic 
regulation (Fig.  5 ).  

 ChIP-BS-seq can be carried out either in cells or tissues. First, cells or tissues are 
cross-linked with formaldehyde. Then, the input material is lysed and chromatin is 
sheared by sonication or MNase digestion method. The sheared chromatin is immo-
bilized with beads followed by immunoprecipitation for histone modifi cations or 
transcription factors of our interest. ChIPed DNA is purifi ed and bisulfi te reaction is 
carried out on ChIPed DNA. After bisulfi te conversion DNA library is prepared by 
addition of adapters and then purifi ed DNA is sent for high-throughput sequencing. 
The sequenced DNA is analyzed by bioinformatics tools for epigenomic profi ling. 

 In our study [ 72 ], we used ChIP-BS-seq to study H3K4me3 and H3K27me3 
marks in a normal cell line (YH lymphoblastoid) and three cancer cell lines (one 
cervical cancer cell line (HeLa) and two gastric cancer (GC) cell lines BGC-823 and 
AGS). One of our main goals was to study the cross talk between DNA methylation 
and histone modifi cation at CpG island—especially to compare aberrant methyla-
tion at CpG island in normal and cancer cell lines at different genomic elements. 
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 With ChIP-BS-seq, we fi rst determined H3K27me3-enriched regions for normal 
and three cancer cell lines. And we obtained the methylation status for these cell lines 
at an H3K27me3-enriched region by modifying ChIP protocol by using 50-bp pair-
end sequencing instead of regular single-end sequencing. One hundred million map-
ping reads were obtained for the individual cell lines, and reads were aligned in the 
SOAP genome analyzer. From the aligned mapping reads, we found that CpG sites, 
transcription sites (±500), and exon elements are enriched with H3K27me3 mark at 
gastric cancer (GC) cell line (BGC-823 and AGS), but in the case of YH cell line, CpG 
sites are enriched with H3K27me3 mark. In contrast, in HeLa cells, a reverse pattern 
was observed that is the highest H3K27me3 enrichment at the intergenic region. 
Similar to variable histone modifi cations patterns, we also observed the different DNA 
methylation patterns for different cell populations. To verify this result with different 
sets of cell populations, we used ChIP-BS-seq data profi ling of H3K27me3 marks in 
three different cell lines from TCGA database—a prostate cancer cell line LNCaP, a 
normal prostate epithelial cell line PrEC, and a colon cancer cell line HCT116. From 
the downloaded ChIP-BS-seq data, H3K27me3 pattern of HCT116 cell lines was 
similar to HeLa cell line, but it was different in LNCaP and PrEC. Hence, H3K27me3-
enriched regions have variable DNA methylation patterns. To emphasize further, we 
want to highlight our fi ndings concisely in the following sections. 

  Fig. 5    ChIP-BS-seq 
workfl ow .  ChIP-BS-seq is a 
method to study interplay 
between DNA methylation 
and histone modifi cation. 
In ChIP-BS-seq, DNA 
methylation is studied at 
enriched histone 
modifi cation. First, cells or 
tissues are cross-linked and 
lysed, and the chromatin is 
sheared and 
immunoprecipitated with 
antibody of our interest. 
Bisulfi te reaction is carried 
out on ChIPed DNA, DNA 
library is prepared by 
addition of adapters and 
then purifi ed DNA is sent 
for high- throughput 
sequencing. The sequenced 
DNA is analyzed by 
bioinformatics tools       
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8.1     Variable Patterns of H3K27me3 and DNA Methylation 
in Normal and Cancer Cell Lines 

 Because of variable patterns in H3K27me3 region and DNA methylation at enriched 
region, we raised an interesting question whether these variable patterns are due to 
cell-specifi c epigenetic signature. To    explore further, we focused on promoter over-
lapped CGI regions, because most of these regions are enriched with H3K27me3 
mark. We did cluster analysis for seven cell lines based on average values of meth-
ylation at H3K27me3-enriched regions. In cluster analysis, two normal cell lines 
(YH and PrEC) clustered together from the rest of the fi ve cancer cell lines. Even 
though these cells are orientated from a unique cellular pathway, these results 
 suggested that DNA methylation at an H3K27me3-enriched region might have 
onco- epigenomic signature.  

8.2     Co-occurrence of Hypermethylation and H3K27me3 
at CGI Promoter in Cancer Cell Lines 

 We    screened for an H3K27me3-enriched genomic region that is overlapped among 
seven cell lines, and we found 223 H3K27me3-enriched genes and 5143 H3K27me3-
defi cient genes. We categorized the genes further based on whether CGIs are pres-
ent in their promoter that 64 % of 228 H3K27me3-enriched genes containing CGI 
at promoter whereas only 45 % of 5143 H3K27me3-defi cient genes containing CGI 
at promoter. Next, a comparison among fi ve cancer cell lines and two normal cell 
lines shows that most of the CGI-containing promoter genes are hypermethylated in 
cancer lines than in normal cell lines. Most of these genes are highly methylated in 
HCT116 and AGS cell line, low methylation in LNCaP, and median methylation for 
BGC-823 and HeLa cell lines in the majority of these genes. Hence, the methylation 
at a CGI of H3K27me3 of enriched regions is varied among different cell popula-
tions. Because of cancer-specifi c methylation patterns, DNA- methylated region of 
an H3K27me3-enriched region could be an epigenetic signature for cancer studies.  

8.3     Hypermethylation at CGIs of an H3K27me3-Enriched 
Region but Not at H3K4me3 

 ChIP-BS-seq was performed for H3K4me3 (activating mark) in all three cell lines 
(AGS, BGC-823, and YH) to compare hypermethylation between H3K27me3- and 
H3K4me3-enriched regions. DNA methylation level is extremely low at H3K27me3 
(repressive mark)-enriched genomic region as expected. There are substantial evi-
dences that have shown the negative correlation between DNA methylation and 
H3K4me3 level. Our results also suggested that DNA methylation level is indirectly 
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proportional to H3K4me3 enrichment. H3K27me3 and H3K4me3 co-occurred as a 
bivalent mark in stem cells, in differentiated cells, and in cancer cells [ 73 ]. These 
marks are also present together in PcG-expressed genes [ 55 ,  74 ,  75 ]. To understand 
the bivalence nature of these marks in our cell lines, we categories the genes into 
four—H3K27me3 high enriched, H3K4me3 high enriched, H3K4me3 and 
H3K27me3 enriched (bivalent), and neither H3K4me3 nor H3K27me3 enriched. 
We found that DNA methylation level at TSS is hypomethylated for “H3K4me3 
high” or “bivalent” categories. But in cancer cells, “H3K27me3 high” shows a 
higher level of methylation than in two categories, whereas the methylation level is 
low in YH cells. 

 The H3K27me3-enriched region was categorized into CGI-containing promoter 
genes and CGI-defi cient promoter genes, and the methylation level was compared 
among normal and cancer cells. CGI-containing promoter genes are hypermethyl-
ated in cancer cells but hypomethylated in normal cells. Increased DNA methyla-
tion of H3K27me3 enrichment correlates with hypermethylation at a CGI in cancer 
cells but not in normal cells. Moreover, H3K27me3-bound genes with CGI pro-
moter hypermethylation in cell lines were also hypermethylated in primary cancer 
tissues. To sum it all, due to cancer heterogeneity, DNA methylation level was var-
ied among different cell population. By using ChIP-BS-seq technology, a correla-
tion between H3K27me3 histone mark and DNA methylation was revealed in 
different cancer cells, and it showed that some genes enriched with H3K27me3 
have hypermethylation at a CGI in cancer cells but not in normal cells (for detailed 
analysis and fi gures, please refer to our article [ 72 ]).   

9     Conclusion and Future Prospects 

 In this chapter, we have emphasized the relationship between DNA methylation and 
histone modifi cation and how it can be studied using ChIP-BS-seq on cancer con-
text. It is evident that both these modifi cations have its own function in regulating 
transcriptional network. For instance, histone modifi cations may have an effect on 
DNA methylation, and alternatively, DNA methyl-binding protein may also be con-
versed with histone modifi cation to maintain nucleosome function during gene 
regulation. Simply, this study was quite preliminary, and further analysis is to be 
done on different type of cancer tissues to understand mechanism/heterogeneity in 
tumor. However, a couple of group has shown that DNA methylation might also be 
mediated by microRNAs [ 76 ,  77 ]. It needs to be clarifi ed whether DNA methylation 
and histone modifi cations have direct or indirect mechanism. Nevertheless, there 
are many mechanistic details of this epigenetic mechanism that should be resolved 
either in normal developmental process or in tumorigenesis. 

 One key point could be quite obvious that available technology is “bottleneck” 
to understand complex mechanism or it may mislead the underlying mystery. 
To overcome this drawback, development of single-cell technology is maturing to 
study biological mechanism in single cell. Single-cell technology is to be  integrated 
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with epigenetic techniques to overcome technical limitation such as paucity of 
input material  especially in rare stem cells and cancer tissue biopsies and to study 
heterogeneity among cells and tissues [ 78 ]. Recently, single-cell technology is 
developed for genome- wide epigenetic profi ling to study DNA methylation and 
CpG island [ 79 ,  80 ]. To get a clear picture on DNA methylation, histone modifi ca-
tions and noncoding RNA mechanisms and their complex interactions and sophis-
ticated technologies are required to embellish precise knowledge on cancer 
misregulation. Without a fl inch of doubt, a load of work is to be done with the help 
of evolving new technologies, and novel strategies might question the prevailing 
dogma in epigenomics research.     
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    Abstract     DNA methylation is essential in the regulation of gene expression and its 
misregulation has been implicated in a vast array of cancer types. The causal rela-
tionships between DNA methylation, transcription factor binding, chromatin struc-
ture, and gene expression are not well elucidated. Regardless, recent research has 
shown DNA methylation to be a key component in these regulatory modules, sug-
gesting that dissecting the mechanisms underlying the formation of DNA methyla-
tion patterns can provide insight into cancer regulomes. In addition, DNA 
methylation information can potentially serve as novel biomarkers that indicate 
cancer type, predict patient prognosis, or be used to identify drug targets. Because 
transcription factors are key players in transcriptional regulation, there is reason to 
suspect they infl uence or are affected by genome-wide alterations in DNA methyla-
tion. This, coupled with the recent accumulation of large-scale genomic data, has 
allowed for high-resolution in silico dissection of transcription factor–DNA meth-
ylation relationships. In this chapter, we present an integrative analysis of ENCODE 
(Encyclopedia of DNA Elements) ChIP-seq and DNase I hypersensitivity data, 
coupled with TCGA (The Cancer Genome Atlas) breast cancer DNA methylation 
and gene expression data to study the interconnection between TFs with DNA meth-
ylation. Our results suggest that identifying DNA methylation patterning within 
transcription factor binding sites reveals information regarding transcription  factor 
binding activity in breast cancer patients. From this, we discuss the translational 
potential of these novel fi ndings and the power and fl exibility of in silico analysis.  

           M.  H.   Ung      •    S.   Lou      •    F.  S.   Varn     
  Department of Genetics ,  Geisel School of Medicine at Dartmouth ,   Hanover ,  NH   03755 ,  USA   
 e-mail: matthew.h.ung.gr@dartmouth.edu; shaoke.lou@dartmouth.edu; 
Frederick.S.Varn.JR.GR@dartmouth.edu   

    C.   Cheng      (*) 
  Department of Genetics ,  Geisel School of Medicine at Dartmouth ,   Hanover ,  NH   03755 ,  USA    

  Institute for Quantitative Biomedical Sciences ,  Geisel School of Medicine at Dartmouth , 
  Lebanon ,  NH   03766 ,  USA    

  Norris Cotton Cancer Center ,  Geisel School of Medicine at Dartmouth ,   Lebanon ,  NH   03766 ,  USA   
 e-mail: chao.cheng@dartmouth.edu  



212

1          Introduction 

    Carcinogenesis arises from the acquisition of genetic aberrations that corrupt the 
instructional program of the cell and confer upon it, a drastic and uncontrollable 
proliferative advantage [ 1 ]. Cancer development is a mechanistically complex pro-
cess that commences with an initial driver mutation(s) that causes further down-
stream genetic alterations (i.e., genomic instability, epigenetic alteration) with the 
majority of these being passenger mutations [ 1 ]. Alternatively, initial driver muta-
tions may capitalize on existing mutations that have accumulated over many cycles 
of cellular division as in the case of leukemia [ 2 ]. The human genome encodes 
approximately 20,000 protein products and a multitude of noncoding regulatory 
elements such as miRNA. Therefore, it is imaginable that there exists a plethora of 
different combinations of mutations that can result in tumorigenesis in multiple tis-
sue types. This heterogeneity presents a major obstacle in the development of can-
cer therapies because each cancer patient essentially suffers from a different disease 
[ 3 ]. In the clinic, subtyping of cancer into categories using molecular markers has 
yielded varied and partially effective results [ 4 ]. Thus, it is the goal of precision 
medicine to increase the customization of therapy to the level of individual patients. 

 To facilitate the discovery of new clinical technologies that could be used in 
precision medicine, there has recently been considerable interest and focus on 
understanding the epigenetic states of cancer. It has been postulated that alterations 
in epigenetic patterning contribute to and may accelerate the progression of cancer 
by perturbing normal transcriptional regulation. Ultimately, variation in epigenetic 
states among different cancer types introduces an additional layer of heterogeneity 
[ 5 ]. In general, DNA methylation is a biochemical process involving the addition of 
a methyl group to the 5th carbon of cytosine residues. Primarily, focus has been 
placed on DNA methylation that occurs in the context of CpG dinucleotides (CpGs). 
DNA methylation aberrations have been implicated in many cancer types; it has 
been observed that global hypomethylation accompanied by regional hypermethyl-
ation is a hallmark of many cancers [ 6 ]. The exact mechanisms by which changes in 
DNA methylation patterning contribute to dysfunctional transcriptional programs 
are not well elucidated. In most cases, DNA methylation is a passive process and is 
not the direct cause of misregulation, but is merely a consequence of transcription 
factor (TF) binding (i.e., CpGs not bound by transcription factors are methylated) 
[ 7 ,  8 ]. However, in some cases methylated CpGs possess functional relevance and 
may affect transcription factor binding or the three-dimensional conformation of 
chromatin [ 9 ]. Methylated CpGs can physically impede the binding of transcription 
factors or may actually be required for transcription factor binding [ 7 ,  10 – 13 ]. 
Furthermore, methylated CpGs may recruit docking proteins that facilitate site- 
specifi c binding of chromatin remodeling proteins such as histone deacetylases and 
histone methylases to modulate chromatin structure [ 14 ,  15 ]. Whether or not meth-
ylated CpGs play a causal role, identifying their patterns can serve as biomarkers in 
determining the transcriptional regulatory architecture of a cancer [ 16 ]. In sum-
mary, epigenetic markers can provide valuable information about the regulatory 
architecture of a biological system and provide new opportunities for developing 
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precision therapy in the clinic. In this chapter, we focus mainly on the relationships 
between transcription factors and the methylation states of their associated CpGs. 

 In order to interrogate CpG methylation and extract useful and interpretable data 
about genome-wide epigenetic states, advanced technology that exceeds that of 
basic molecular biology techniques is required. Fortunately, the postgenomic era has 
ushered in a new set of technologies that can probe the genome-wide molecular 
characteristics of a disease in a high-throughput and cost-effective manner. These 
ubiquitous genomic tools include, but are not limited to, DNA microarrays, protein 
arrays, DNA methylation arrays, and high-throughput sequencing (e.g., DNA-seq, 
RNA-seq, ChIP-seq). The data generated by these technologies have allowed for a 
data-driven approach to cancer biology. Much of these data are available in the pub-
lic domain for biomedical researchers to download and apply to their own research. 
First, The Cancer Genome Atlas (TCGA) [ 17 ] is the most comprehensive cancer 
data repository to date and provides mutation, gene expression, DNA methylation, 
protein expression, copy number, and clinical information for thousands of cancer 
patients encompassing 32 cancer types. These data allow researchers to identify the 
molecular features most relevant for determining patient outcome and treatment 
strategies. Second, the ENCODE [ 18 ] project has generated a plethora of data on the 
functional elements in the human genome. One important set of data includes ChIP-
seq data that is available for ~100 transcription factors in various cancer cell lines 
and treatment conditions. Furthermore, ENCODE provides data on the genomic 
coordinates of DNase I hypersensitive sites (DHS sites) which are regions of open 
chromatin most likely to be transcriptionally functional (high transcriptional activ-
ity) [ 8 ]. The applicability of these datasets increases signifi cantly when integrated 
since it allows for more statistical power and provides more information to extract. 
In this chapter, we describe the integration of ENCODE ChIP-seq, ENCODE DHS, 
and TCGA DNA methylation datasets to analyze the relationships    between tran-
scription factor activity (i.e., ERα) and CpG methylation. More specifi cally, this 
integrative approach allows us to identify the methylation statuses of CpGs within 
transcription factor binding sites and DHS regions, and characterize how they fl uctu-
ate with respect to transcriptional activity within these functional regions of the 
genome. Ultimately, this will provide key insight into TF–DNA methylation rela-
tionships that reveal how DNA methylation is linked to transcriptional regulation. 

 Understanding transcriptional regulation is essential for determining treatment 
regimens for cancer patients. For example, the expression of ERα is always mea-
sured for each incidence of breast cancer and the decision to provide the patient with 
hormone therapy is partially dependent on ER status. As more information regard-
ing the mechanisms of altered DNA methylation patterning becomes available, the 
relationship between epigenetics and transcription factor binding may facilitate the 
development of epigenetic testing in the clinic. Here, we present a proof of concept 
analysis that shows how integrative analysis can provide a high-resolution portrait 
of DNA methylation patterns within transcriptionally functional genomic regions. 
We present our analysis in breast cancer but this framework may also be applied to 
other cancer types or human diseases. In this study, we adopted breast cancer as a disease 
model because there are vast amounts of breast cancer data available in the public domain. 
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Additionally, breast cancer classifi cation is well established in the clinic compared 
to other cancers allowing us to explore subtype-specifi c epigenetic changes. To 
summarize, we integrate ENCODE ChIP-seq, ENCODE DHS, DNA methylation, 
and TCGA gene expression data to analyze methylation levels of CpGs located 
within transcriptionally active regions and show how functional CpGs are distrib-
uted spatially across genes.  

2     Results 

2.1     Overview 

 In this chapter, we present an analysis strategy involving the integration of TCGA 
and ENCODE datasets to computationally dissect the intricacies of DNA methyla-
tion in the regulation of cancer transcriptomes (Fig.  1 ). Our study attempts to address 

  Fig. 1    Overfl ow of our analysis procedure. We utilized TCGA breast cancer DNA methylation 
and gene expression data and ENCODE DNase I hypersensitivity data. Differentially methylated 
CpGs between ER+ and ER− breast cancer samples were identifi ed, and the correlation between 
their methylation levels and expression of their associated genes were calculated. We focused on 
addressing the question of whether genomic features of CpGs (bound by ER alpha or other TFs, or 
located in DNase I hypersensitive sites) impacted their differential methylation and their correla-
tion with gene expression [ 23 ]       
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several key biological questions related to transcriptional regulation and DNA 
methylation. First, we aim to decipher the causal relationships between ERα bind-
ing and DNA methylation. We also extend this analysis to identify the causal rela-
tionships between DNA methylation and other TFs. Second, we want to address the 
extent to which TF–DNA methylation relationships could be generalized across all 
TF–DNA methylation associations (i.e., is DNA methylation correlated or anticor-
related with TF binding). Third, we want to discover whether DNA methylation 
signals are stronger and more informative in DHS regions of the genome. Lastly, we 
strove to develop a sense of how CpGs that are correlated with transcriptional activ-
ity are spatially distributed across all genes and in what gene elements do they occur 
most frequently.  

 To address these questions, gene expression and DNA methylation data for 222 
breast cancer patients were downloaded from TCGA. Next, all ENCODE ChIP-seq 
data containing TF binding site information identifi ed by the peak-calling algorithm 
PeakSeq [ 19 ] were downloaded. Finally, we acquired all ENCODE DHS data from 
DNase-seq generated in T47d cell lines. All ENCODE data were downloaded from 
the UCSC Genome browser. Our strategy utilized two popular statistical methods: 
differential methylation analysis and Spearman’s rank correlation. We show that 
integrating these data sources allows for the identifi cation of each transcription fac-
tor’s relationship with CpG methylation in the context of its binding activity.  

2.2     Correlation Between CpG Methylation and ESR1 Expression 

 According to the passive DNA methylation model, if DNA methylation passively 
“fi lls in” the DNA regions that are not protected by TFs, we would expect to see an 
inverse correlation between CpG methylation within TF binding sites and TF abun-
dance. Thus, we investigated the relationship between CpG methylation in ERα 
binding sites and ERα activity in breast cancer samples. Specifi cally, we correlated 
the  β -values of each of the ~450,000 CpGs interrogated by Illumina’s 
HumanMethylation450K arrays (used by TCGA) with  ESR1  expression (gene 
encoding ERα) across 222 patient samples. This yielded an average Spearman’s 
correlation coeffi cient (SCC) of −0.056. This result suggests that methylation of the 
majority of CpGs have no statistically signifi cant association with ERα activity. 
Thus, to identify CpGs whose methylation levels do in fact exhibit functional rele-
vance, we repeat the analysis considering only CpGs located within ERα binding 
sites. To accomplish this, ENCODE ChIP-seq data for ERα was integrated into the 
analysis allowing CpGs to be stratifi ed into functional and nonfunctional subsets 
depending whether they fall within or out of ERα binding peaks, respectively 
(Fig.  1 ). Once this integration procedure was implemented, the average SCC of 
functional CpG methylation with  ESR1  expression of CpGs rose to −0.20 (Fig.  2a ). 
Conversely, the average SCC of nonfunctional CpG methylation with  ESR1  expres-
sion was −0.083 (Fig.  2a ). Furthermore, the percentage of functional CpGs yielding 
SCC < −0.4 is approximately 30 % (Fig.  2b ). As mentioned previously, ER-based 
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stratifi cation of breast cancer is standard protocol in the clinic so we analyzed CpG 
methylation within these classifi ed samples and determined that DNA methylation 
levels tend to be higher in ER− breast cancer compared to ER+ breast cancer, 
 presumably due to the lack of ERα activity (Fig.  2c ).   

2.3     Distribution of CpGs with Differential Methylation Levels 
Between ER+ and ER− Breast Samples 

 In this study, we also aimed to characterize where and how frequently differentially 
methylated CpGs between ER+ and ER− are located. Doing so would give us an idea 
about what genomic regions harbor informative CpGs and thus allow us to infer 
transcriptional activity in those regions. To approach this analysis, we stratifi ed breast 
cancer samples into ER+ and ER− samples to identify differentially methylated 
CpGs and determine how they are spatially distributed. After identifying differen-
tially methylated CpGs, using  P  < 0.001 as a cutoff, we then mapped each differen-
tially methylated CpG relative to the transcription start site (TSS) of its associated 
gene (included in TCGA dataset). We then calculated the fraction of differentially 
methylated CpGs to the number of CpGs present at that specifi c genomic location 
across all representative genes. We made the unexpected discovery that there is actu-
ally a higher fraction of differentially methylated CpGs located in regions distal to 
gene TSSs (Fig.  3b ). This suggests the effect of DNA methylation on gene regulation 
may have a more pronounced effect when it occurs in locations distal to the gene 
TSS. Additionally, these results show that there is an enrichment of CpGs proximal 
to gene TSSs (Fig.  3a ). In summary, these results indicate that the functional rele-
vance of CpG methylation is dependent on genomic context (i.e., location).   

  Fig. 2    Correlation between CpG methylation and ESR1 expression levels. ( a ) The methylation 
levels of CpGs located within ER binding peaks exhibit much more extreme negative correlations 
with ESR1 expression. ( b ) Comparison of the fraction of CpGs highly correlated with ESR1 
expression considering all CpGs and CpGs within and out of ER binding peaks. ( c ) CpGs in ER− 
samples have higher mean methylation values than those in ER+ samples.  SCC  Spearman correla-
tion coeffi cient [ 23 ]       
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2.4     Impact of ERα Binding on DNA Methylation 

 In order to understand the effect of ERα binding on DNA methylation, we tested 
whether or not CpGs within ERα binding sites tended to be more differentially 
methylated between ER+ and ER− samples. TCGA datasets provide immunohisto-
chemical subtyping of samples, which allows us to conduct a high-resolution analy-
sis of ERα binding since its activity can essentially be controlled for by stratifying 
patient samples on ER status. Thus, we fi rst identifi ed differentially methylated 
CpGs between ER+ and ER− CpGs and further classifi ed them into two CpG sets. 
The fi rst set consisted of CpGs that were located within ERα binding sites and the 
second set consisted of CpGs that were located out of ERα binding sites. The ratio-
nale behind this analysis was to determine if ERα activity had an effect on DNA 

  Fig. 3    Distribution of CpGs with differential methylation levels between ER+ and ER− breast 
samples. ( a ) Distribution of differentially methylated CpGs between ER+ and ER− samples 
( P  < 1 e  − 6). ( b ) Fraction of CpGs with signifi cant differential methylation levels at different posi-
tions. Fraction corresponds to the number of signifi cant CpGs to the total number of CpGs in a 
DNA window. Differentially methylated CpGs in ER+ ( red ) and in ER− ( green ) samples are exam-
ined separately. ( c ) The fraction of differentially methylated CpGs between ER+ and ER− samples. 
CpGs in ER binding regions have higher methylation levels in ER− samples, while CpGs not in ER 
binding regions tend to have higher methylation levels in ER+ samples. ( d ) Distribution of  t -scores 
(ER+ vs. ER−) of methylation levels for CpGs. Genes were categorized into three groups based on 
their relative mRNA expression levels in ER+ versus ER− samples: ER+ > ER− (up-regulated in 
ER+,  red ), ER+ < ER− (down-regulated in ER+,  green ) and ER + =ER− (nonsignifi cant differential 
expression between ER+ and ER−,  white ). Distributions of CpGs associated with the three gene 
classes are shown separately [ 23 ]       
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methylation near its binding sites. We determined that 31 % of CpGs located in ERα 
binding sites exhibited lower methylation levels in ER+ samples, whereas only 
1.1 % of CpGs showed higher methylation levels (Fig.  3c ). These results suggest 
that ERα activity causes hypomethylation within its binding sites. The novelty of 
this analysis lies in the fact that the effect of ERα binding on DNA methylation was 
determined purely by data integration and in silico calculation. In addition, we also 
aimed to understand the relationship between DNA methylation and gene expres-
sion. Our fi rst approach was to fi rst identify all differentially expressed genes 
between ER+ and ER− samples. We then further categorized these differentially 
expressed genes into up-regulated and down-regulated, and defi ned the remaining 
genes as nondifferentially expressed (Fig.  3d ). In other words, there will be genes 
whose expression will increase, decrease, or remain constant upon loss of ERα. 
Once we established the category of these genes, we calculated the change in meth-
ylation levels of CpGs that are associated or located vicinal to these genes upon 
ERα loss (Fig.  3d ). Our results show that CpGs in up-regulated genes had a ten-
dency to decrease in methylation upon loss of ERα and conversely, CpGs in down-
regulated genes tended to increase in methylation (Fig.  3d ). This suggests that DNA 
methylation, in most cases, is associated with gene silencing or decrease in gene 
expression. After showing the relationships between DNA methylation, transcrip-
tion factor binding activity, and gene expression in our breast cancer samples, we 
aimed to characterize the local effects of transcription factor binding. From our 
previous analysis of differential methylation, we calculated  t -scores for all CpGs 
which is a statistical metric indicating the magnitude of change in methylation 
intensity for each CpG between ER+ and ER− samples. If these  t -scores are plotted 
as a function of genomic coordinate, it is clear that  t -scores tend to be lower near the 
center of ERα binding locations (Fig.  4b ). These results are striking because they 
show a high-resolution DNA methylation “footprint” of ERα binding. To be clear, 
these footprints vary across different TFs. For example, in the case of SUZ12, the 
 t -scores of CpGs tend to increase near the center of SUZ12 binding sites (Fig.  4c ). 
From these observations, we were able to identify the local effects of transcription 
factor binding on DNA methylation for a variety of transcription factors.   

2.5     ERα Is Not the Only Transcription Factor That Leaves 
a DNA Methylation “Footprint” 

 We previously explored the impact of ERα binding on DNA methylation in ER+ 
and ER− patient samples. However, stratifying patient samples into ER+ and ER− 
subgroups also allows us to identify the DNA methylation footprint of other tran-
scription factors, especially those whose activity is highly correlated with that of 
ERα. In addition to ERα, we also identifi ed FOXA1 and GATA3 binding sites to be 
enriched in hypomethylated CpGs. In other words, CpG methylation levels in 
FOXA1 and GATA3 binding sites are signifi cantly lower in ER+ samples compared 
to ER− samples (Fig.  4a ). This is in accordance with previous experimental 
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literature reporting that the two transcription factors function upstream of ERα. The 
fact that FOXA1 and GATA3 were identifi ed to contain signifi cantly more hypo-
methylated CpGs is a testament to the power and versatility of in silico analyses of 
large- scale integrative analysis of genomic data. One essential concept when dis-
secting transcription factor–DNA methylation relationships is that each transcrip-
tion factor and its relationship with CpG methylation must be considered case by 
case. For instance, SUZ12 binding sites are hypermethylated in ER+ than in ER− 
samples, suggesting that binding of SUZ12 increases CpG methylation (Fig.  4c ).  

2.6     Correlation Between DNA Methylation and Gene Expression 

 Because the regulatory functions of DNA methylation are of considerable interest, 
understanding its association with gene expression is a major focus in the fi eld. 
It has been postulated that DNA methylation can silence, promote, or have no effect 

  Fig. 4    Relationship between differential methylation of CpGs and TF binding. ( a )  t -score distri-
bution of CpG methylation levels between ER+ and ER− samples. Binding of some TFs is associ-
ated with reduced CpG methylation, while binding of others (SUZ12 and CTBP2) is associated 
with increased methylation levels. ( b ) CpGs proximal to ER binding center exhibit lower methyla-
tion levels in ER+. ( c ) CpGs proximal to SUZ12 binding center have higher methylation levels in 
ER+ ( t -scores refl ect ER+ vs. ER− comparison) [ 23 ]       
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on gene expression depending on genomic context. Hence, we correlated DNA 
methylation levels of each CpG with the expression level of its associated gene 
across samples. Our results show that there are many more CpGs that are anticor-
related, rather than correlated, with gene expression (Fig.  5a ). We also analyzed the 
spatial distribution of correlated CpGs (those with  r  > 0.4 or <−0.4) and discovered 
that anticorrelated CpGs exhibited a peak in DNA regions upstream from the TSS, 
whereas correlated CpGs exhibited peaks in the promoter region and in the gene 
body (Fig.  5b ). However, the distribution of CpGs across genes is not uniform but 
exhibits greater density near gene promoters. Therefore, if the fraction of high cor-
relation CpGs ( r  > 0.4 or  r  < −0.4) is calculated relative to the overall number of 
CpGs at the site, then there exists a peak approximately 1,000 bp downstream of the 
TSS with a high percentage of strong correlation CpGs (Fig.  5c ). This striking result 
suggests that CpGs distal to gene TSSs may possess more important functional roles 
than previously thought. Furthermore, we correlated CpG methylation levels with 
gene expression for CpGs that lie within ERα binding sites and show that the frac-
tion of anticorrelated CpGs is much larger in these sites than in regions located 
outside of ERα binding sites (Fig.  5d ). Again, this suggests that restricting our anal-
ysis to transcription factor binding sites can drastically increase the informativeness 
of DNA methylation patterning.   

  Fig. 5    Correlation of CpG methylation level with expression level of the associated genes. ( a ) 
Correlation of CpG methylation with gene expression as a function of CpG position relative to 
transcription start site (from −1,500 upstream to 4,500 downstream of TSS). ( b ) Distribution of 
CpGs that exhibit strong correlations in their methylation levels with expression of associated 
genes across genomic region. Positive correlation ( red ,  r  > 0.4) and negative correlation ( green , 
 r  < −0.4) are examined separately. ( c ) Fraction of CpGs strongly correlated with expression of the 
associated genes at different positions. ( d ) CpG methylation in ER binding regions exhibit larger 
negative correlation with expression of their associated genes [ 23 ]       
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2.7     CpGs in DNase Hypersensitive Sites Are More Informative 

 DNase hypersensitive regions are sections of open chromatin that are amenable to 
transcription factor binding due to its physically open state. Based on this, we 
hypothesized that DNA methylation patterns identifi ed within these regions may be 
more informative and perhaps even functional in terms of their regulatory activity. 
Thus, we integrated ENCODE DNase I hypersensitivity data to identify differen-
tially methylated CpGs between ER+ and ER− breast cancers and correlated CpGs 
with gene expression levels in these regions. We fi nd that there is a depletion of 
differentially methylated CpGs in DNase hypersensitivity regions (Fig.  6a ). From 
this, it can be deduced that there is increased transcription factor binding events that 
occur in these regions that leads to hypomethylation, which suggests that these 
DNase hypersensitivity regions are enriched in regulatory elements (i.e., promoters 
and enhancers). In addition, we also conducted correlation analysis with CpGs and 
expression of their associated genes within and out of DNase hypersensitivity 

  Fig. 6    Comparison of CpGs in and not in DNase hypersensitive sites. ( a ) CpGs in DHS and non- 
DHS exhibit no signifi cant difference in differential methylation between ER+ and ER− breast 
cancer samples. ( b ) CpG methylation in DHS exhibits larger negative correlation with the expres-
sion of their associated genes [ 23 ]       
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regions and reported that highly anticorrelated CpGs are enriched in DNase 
 hypersensitive regions (Fig.  6b ). Conversely, highly correlated CpGs are depleted 
in DNase hypersensitivity regions (Fig.  6b ).   

2.8     Integrative Analysis of Biological Datasets Must Take into 
Account the Underlying Biology 

 Despite the power of integrative analysis, extracting information from different 
sources does come with limitations. One essential consideration that must be taken 
before integrating biological datasets is deciphering the biological overlap between 
the two data sources. To provide a specifi c example, take into consideration ChIP- 
seq data; in our analysis, we integrated ChIP-seq data for ERα in both T47d and 
Ecc1 cell lines. Interestingly, the difference in methylation between ER+ and ER− 
within ERα binding sets was much more pronounced when using ERα ChIP- seq 
data derived from T47d cell lines (Fig.  4a ). This is due to the fact that T47d cell lines 
are derived from breast epithelium whereas Ecc1 is derived from the epithelium of 
endometrium tissue. Since our DNA methylation datasets were derived from breast 
cancer patient samples, using a breast epithelium cell line provides much more pre-
cise and accurate results due to greater biological similarity. This example refl ects 
the importance of considering tissue specifi city when integrating datasets. Another 
consideration that must be taken into account is the treatment conditions under 
which ChIP-seq datasets were derived (Fig.  4a ). In our dataset, the T47d cell line 
was also treated under two different hormone conditions before ChIP- seq experi-
ments were performed. The fi rst was without 17β-estradiol and the second was with 
17β-estradiol. Since estradiol is an activating ligand of ERα, the hormone must be 
present for ERα to be active. Therefore, ChIP-seq experiments derived from T47d 
cell lines treated with estradiol provided the best results in our analysis. As more 
data becomes available, determining the biological overlap between datasets will 
become a major challenge. Since data is generated from a variety of technological 
platforms, in different labs, in different disease contexts, different conditions, etc., it 
is integral to a priori determine which datasets are appropriate for integration.   

3     Discussion 

3.1     Correlation Between DNA Methylation and Gene Expression 

 The association between DNA methylation and gene expression is highly complex, 
nuanced, and varies from case to case. In general, it has been suggested that DNA 
methylation in promoter regions represses gene expression [ 20 ]. Overall, there is a 
negative correlation between the expression of genes and the methylation levels in 
their promoter proximal regions. For example, we calculated the correlations 
between gene expression and promoter methylation (from TSS to 200 bp upstream) 
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across all transcribed genes in hESC and IMR90 cells using ENCODE data. 
In hESC, we observed a correlation coeffi cient of  r  = −0.37 and in IMR90  r  = −0.22. 
Consistently, a weak negative correlation ( r  = −0.24) between gene expression and 
promoter methylation has been reported in H1 cell lines [ 21 ]. More recent studies 
have shown that the across individual methylation-gene expression associations can 
be either positive or negative, even for DNA methylation sites in promoter regions 
[ 22 ,  23 ]. Overall, the correlation between DNA promoter methylation and gene 
expression is complex and nonlinear. For instance, gene body methylation was 
observed to positively correlate with gene expression in some cell types [ 24 ,  25 ], 
but not in others [ 26 ]. Previous reports have proposed different possible mecha-
nisms: the reduction of effi cacy of transcription elongation [ 27 ,  28 ], regulation of 
alternative promoters [ 29 ], and the blocking of transcriptional repressors [ 28 ,  30 –
 32 ]. In comparison with gene promoter regions, gene bodies have a relatively few 
number of CpG sites, but extremely high methylation levels. Quantitative models 
between DNA methylation and gene expression reveal that DNA methylation can 
partially determine gene expression, and only extremely high- and lowly expressed 
genes can be predicted well [ 33 ]. This study also found that gene body methylation 
is a stronger indicator of expression level than promoter methylation. Promoter 
methylation appears to affect a relatively small set of genes with extreme methyla-
tion levels by means of on/off switches, while the effect of gene body methylation 
on reducing transcriptional effi ciency may operate under a more general mecha-
nism; thus affecting more genes This provides a plausible explanation for the stron-
ger modeling power of gene body methylation features. To reiterate, it should be 
noted that despite the correlation between gene expression and DNA methylation, it 
remains unclear whether DNA methylation is the cause or the consequence of 
altered gene expression.  

3.2     DNA Methylation Within Distal Genetic Elements 

 One of the key fi ndings that arose from our study was that there was a high fraction 
of CpGs that were highly correlated with expression of their associated genes, 
enriched 1,000 bp downstream from gene TSSs. These results suggest that CpGs 
across gene regions other than TSS may play a profound role in gene expression. 
However, our study only analyzed DNA methylation in 2 kb bins and did not explore 
the potential effects of DNA methylation in distal elements such as enhancers. Since 
these genetic elements are essential players in transcriptional regulation, much 
insight would be provided if information from distal element methylation were to be 
incorporated. Indeed studies have suggested regulatory roles for CpGs in gene bod-
ies, intergenic regions, and in distal elements such as enhancers [ 26 ,  29 ,  34 – 36 ]. 
Ball et al. applied bisulfi te padlock probes (BSPPs) and methyl-sensitive cut count-
ing (MSCC) to profi le methylation levels of genomic sites and discovered that gene 
body methylation was correlated with gene expression [ 24 ]. In another large-scale 
analysis, Aran et al. applied reduced representation bisulfi te sequencing and 
Infi nium HumanMethylation 450 BeadChip arrays to study the relationships 
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between DNA methylation in distal elements and gene expression levels across 58 
human cancer cell types [ 34 ]. They analyzed 1911 distal methylation sites that 
showed a relationship with the expression levels of 486 genes between normal and 
cancer cell lines [ 34 ]. They determined that genes associated with hypermethylated 
enhancers exhibited decreased expression and conversely, genes associated with 
hypomethylated enhancers exhibited increased expression [ 34 ]. This comprehen-
sive analysis revealed that enhancer methylation has an effect on gene expression. 
Overall, these results imply that functional DNA methylation is not restricted to a 
single genomic region but is a ubiquitous regulatory player; thus, there is still much 
to explore with respect to transcriptional regulation and DNA methylation.  

3.3     Translational Potential of DNA Methylation Analysis 

 Recently, several attempts have been made to identify DNA methylation markers 
that can be used as biomarkers in the clinic to predict patient prognosis. For instance, 
a recent study Anjum et al. identifi ed a BRCA1-mutation-associated DNA methyla-
tion signature that was predictive of breast cancer incidence and survival [ 37 ]. 
Despite these preliminary results, the potential of DNA methylation markers is still 
not fully realized. Our study provides insight into the molecular activity that results 
in these “signatures.” By showing that transcription factors are intimately related to 
DNA methylation patterning in its binding sites, we demonstrate the potential use of 
these signatures to infer transcriptional activity in various disease contexts (i.e., ER+ 
and ER− breast cancer). As a result, we can identify the regulatory architecture 
underlying a specifi c disease and use that information to predict prognosis or treat-
ment. For example, in our study we show that, upon loss of ERα, the binding sites 
of transcription factors such as ERα, FOXA1, and GATA3 become hypermethyl-
ated. Hypothetically, DNA methylation signatures that refl ect the status of each 
transcription factor could be used to understand the drivers of disease. As a result, it 
is possible to develop drugs that target these regulators that exhibit altered activity 
in a disease. In addition, if a protein is known to contribute to oncogenesis, it may 
be possible to assess whether this protein’s DNA methylation “footprint” is present 
in a disease. This provides an interesting new approach to biomarker development 
for patient prognosis. In conclusion, understanding transcription factor–DNA meth-
ylation interactions provides high-resolution insight into the regulatory crosstalk 
that occurs in cancer and provides numerous avenues for biomarker and drug design.  

3.4     Computational Analysis in Modern Oncogenomics 

 In our study, we utilized data that was available in the public domain and integrated 
them to derive biological meaning. By properly integrating these datasets, we car-
ried out a large-scale analysis that provided a high-resolution view of the potential 
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effects transcription factor binding may have on DNA methylation. In addition, 
computational analysis allowed us to discern the physical distribution of functional 
CpGs across all genes. Additionally, carrying out analysis in TF binding sites and 
DHS regions we were able to increase the resolution of our study by pinpointing 
CpGs that occur in functional regions of the genome. As more genomic data is gen-
erated, large-scale data integration and analysis will become mainstay procedures in 
biomedical research.   

4     Methods 

4.1     Datasets 

 Gene expression and DNA methylation data for breast cancer patients were down-
loaded from TCGA’s data portal (accessed 30 May 2013). Gene expression data 
were derived from two-channel Agilent microarrays. Methylation levels of CpGs 
were measured with the Illumina HumanMethylation450 microarray technology. 
CpG intensities were outputted as  β  values which range from 0 (completely unmeth-
ylated) to 1 (completely methylated). 

 Genome-wide transcription factor binding data were generated from ChIP-seq 
experiments as part of the ENCODE project. Binding peaks for TFs are available 
from the UCSC Genome browser at   http://genome.ucsc.edu/ENCODE/downloads.
html    . Binding peaks were identifi ed using the PeakSeq software. Data from T47d 
and MCF7 breast epithelial cell lines were used in our analysis. 

 DNase hypersensitivity data were generated by the ENCODE project based on 
DNase-seq experiments and were downloaded from the UCSC genome browser. 
The data provide the genomic coordinates of DNA regions sensitive to DNase I 
treatment. Data from T47d and MCF7 cell lines were used in our analysis.  

4.2     Differential DNA Methylation Between ER+ 
and ER− Breast Cancer Samples 

 TCGA provides methylation data for 485,577 CpGs in 630 ER+ and 187 ER− breast 
cancer samples. The majority of interrogated CpGs can be assigned to a particular 
gene based on its location: in the transcribed region or vicinal to the transcription 
start site of a gene. To identify differentially methylated CpGs, the  β  values of each 
CpG were compared between ER+ and ER− breast cancer samples using the 
Student’s  t -test. A signifi cance cutoff of  P  < 0.001 was used to determine whether a 
CpG was differentially methylated. CpGs that exhibited a  t -statistic greater than 0 
(ER+ > ER−) were categorized into a hypermethylated set. Similarly, CpGs with a 
 t -statistic less than 0 were labeled as hypomethylated. Different signifi cance cutoffs 
were used and the results were stable.  
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4.3     Differential Gene Expression Between ER+ 
and ER− Breast Cancer Samples 

 To identify differentially expressed genes, we utilized the microarray gene expres-
sion profi les for 519 breast cancer samples. Samples were divided into ER+ (401) 
and ER− (118) samples, and the expression levels of genes between ER+ and ER− 
were compared using Student’s  t -test. Genes were considered differentially 
expressed if they yielded  P  < 0.001. Differentially expressed genes were categorized 
into up-regulated in ER+, down-regulated in ER−, and nondifferentially expressed 
based on their  t -statistics and  P -values.  

4.4     Relating CpGs with ER Binding, TF Binding, 
and DNase I Hypersensitive Sites 

 Given the genomic coordinates of ERα binding sites in a cell line, we can determine 
which CpGs fall within these regions. We defi ned ER binding CpGs as those falling 
directly within an ERα binding peak and non-ER binding CpGs as those that are not 
located in any ERα binding peaks but were located in genes that contain these peaks. 
By considering only CpGs within peak-containing CpGs, we can restrict our analy-
sis to a local genomic region. This procedure was used for all other TFs. When 
conducting analysis using DNase hypersensitivity data, we utilized the aforemen-
tioned procedure but instead limited it to DNase hypersensitive or non-DNase 
hypersensitive sites.  

4.5     Correlation of DNA Methylation with Gene Expression 

 Both gene expression and DNA methylation data were available for 222 of the 
TCGA breast cancer samples. We applied this data to study the correlation of DNA 
methylation with gene expression. For each CpG, we correlated its  β  values with the 
mRNA expression values of its associated gene using Spearman’s rank correlation. 
Fisher’s transformation was used to determine signifi cance of the outputted correla-
tion coeffi cient.      
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Differential Methylation Analysis  
with Next- Generation Sequencing

Hongyan Xu

Abstract DNA methylation is an important epigenetic modification of DNA 
sequences, which could potentially affect gene expression and final phenotypes. 
Abnormal methylation has been discovered in many types of cancers and other 
human diseases. Detecting differentially methylated loci (DML) and differentially 
methylated regions (DMRs) is critical in understanding the genetic mechanism of 
cancer and identifying biomarkers and treatment targets, which could be used for 
cancer diagnosis, prognosis, prevention, and treatment. Next- generation sequenc-
ing (NGS) has been widely used to generate genome-wide methylation data. These 
data provide unique challenges in the differential methylation analysis at genomic 
levels. In this paper, we discuss these challenges and some statistical and computa-
tional approaches for detecting DML and DMRs for NGS methylation data.

1  Introduction

With the completion of the Human Genome Project, we have a draft of the human 
genomic sequence. Yet we are far from fully understanding our genome. Genome-
wide association study has been a popular approach in recent years toward this goal. 
Although many disease-related loci have been identified, in total they only explain 
a small proportion of phenotypic variation [1]. With the availability of whole-
genome sequencing data through next-generation sequencing (NGS), many efforts 
have been put into sequence-based rare genetic variants association [2]. Besides rare 
genetic variants, epigenetic modifications, such as DNA methylation have been 
shown to be related to gene expression and therefore can affect phenotypic varia-
tions. Abnormal DNA methylation marks have been involved in many human dis-
eases especially cancer [3, 4].

H. Xu, Ph.D. (*) 
Department of Biostatistics and Epidemiology, Medical College of Georgia,  
Georgia Regents University, Augusta, GA 30912, USA
e-mail: hxu@gru.edu

mailto:hxu@gru.edu


230

1.1  DNA Methylation

At molecular level, DNA methylation is the covalent addition of a methyl group to 
the cytosine nucleotides. This process typically occurs at the 5′ of cytosine in CpG 
dinucleotides. DNA methylation plays an important role in various cellular pro-
cesses including X chromosome inactivation, genomic imprinting, and chromo-
some stability [5–7]. Several DNA methylation modifications involved in developing 
primordial germ cells and fertilized occytes are inheritable. Ultimately, these meth-
ylation modifications can produce stable alterations of gene expression. DNA 
methylation is also associated with histone modifications and plays a crucial role in 
the basis of chromatin structure [8, 9].

Aberrant DNA methylations, both hypermethylation (gain of methylation) and 
hypomethylation (loss of methylation) have been associated with human diseases 
such as cancer [10]. Hypermethylation within the promoter regions is commonly 
known to silence certain tumor suppressor genes. In many types of cancer, hyper-
methylation occurs in genomic regions with a high frequency of CpG sites (CpG 
Islands) [11, 12]. In contrast, hypomethylation frequently occurs in the early stages 
of neoplasm and is linked to chromosomal instability and loss of imprinting [13]. 
Further, methylation has been shown to be prognostic for tumor progression, dis-
ease severity, and metastatic potential [14].

1.2  DNA Methylation Profiling with NGS

Next-Generation Sequencing (NGS) is a major platform to extract methylation 
information from biological systems. NGS has the advantage of huge sequencing 
capacity, cost-effectiveness, and broad applications, all of which may enhance our 
knowledge of how genetics affects health and disease. Various sequencing methods 
based on bisulfite conversion have been applied to determine genomic methylation 
patterns [15]. Bisulfite Treatment of DNA converts unmethylated cytosines to ura-
cils, but leaves methylated cytosines intact. Therefore, after bisulfite conversion, 
methylated and unmethylated cytosines can be distinguished by DNA sequencing, 
with methylated sites appearing as cytosine and unmethylated sites appearing 
as thymine.

With NGS platforms, DNA methylation measurements are represented by the 
counts of methylated and unmethylated molecules. The total count of molecules 
that covers a CpG site is called read depth or coverage. There are considerable 
variations in coverage for CpG sites across the genome and between individuals. 
An important difference between methylation data from NGS platforms and the 
data from methylation array is that the methylation proportion, called β-value, has 
to be estimated from the methylation counts data and the accuracy of the estimate 
is affected by read depth.

H. Xu



231

2  Methods for Detecting Differentially Methylated Loci (DML)

2.1  Student’s t-Test

Student’s t-test is a simple statistical approach to detect differences in mean val-
ues of methylation levels using the estimated methylation proportions from NGS 
counts data [16, 17]. This approach converts methylation count information to 
an estimated proportion by taking the ratio of methylation count and read depth 
at a particular CpG site. Thus, it removes problems associated with the unequal 
read depth among individuals [18]. However, there are several disadvantages for 
this approach. First, since the methylation proportions are between 0 and 1 with 
unknown distributions, the normality assumption of t-test may not be valid for the 
methylation data, especially with small sample size or outliers. Second, the methyl-
ation proportion is estimated as the ratio of the count of methylated molecules over 
the read depth. This approach is different from microarray experiments where the 
methylation level is directly measured. The variation of estimated methylation pro-
portion is directly affected by the read depth and could easily be affected by factors 
such as sampling process, library preparation, and batch effect. Another complexity 
of the methylation study comes from the presence of other potential confounders 
such as age and sex. If the relationship between methylation level and potential 
confounders is substantial, Student’s t-test may lose power or be invalid in practice.

2.2  Cluster Analysis Approach

Xu et al. [18] proposed to use the adjusted chi-square test [19] for differential methyla-
tion analysis with NGS data. The key principle of this approach is to treat the NGS 
reads as clusters within each individual and to adjust the methylation levels for clus-
tered observations. Under this approach the overall methylation proportion for each 
group is estimated as the ratio of the total methylation count over the total read depth 
within group, and the overall variance of the estimated proportion for each group is 
estimated as the average of the squared difference of the methylation count and its 
expected values based on the calculated overall methylation proportion for all the indi-
vidual within groups. This step ignores the clustering effect within individuals. The 
clustering effect is adjusted with the cluster counts within individuals by dividing the 
estimated proportion and its variance for each group by the “design effect.” The 
adjusted proportions and their variances are used to derive a chi-square test statistic 
with one degree of freedom under the null hypothesis of no differential methylation. 
This approach takes the differences in reading depth into account so that it decreases 
the bias from the estimation of methylation proportion. However, this method suffers 
from potential bias and power loss from not considering the confounders.
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2.3  Logistic Regression

Logistic regression is a commonly used approach to detect differential methylation 
levels with NGS data [20–22]. This method models the odds of methylation at each 
CpG site through a logistic regression model with group as a predictor:
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where πi is the methylation probability for individual i and Xi denotes the treatment 
group indicator for individuals i. The parameter β0 denotes the log odds of the nor-
mal group and β1 denotes the log odds ratio between normal and disease group. The 
differential methylation can be decided by testing whether parameter β1 for the 
group variable is significantly different from zero. The standard inference procedure 
for testing these regression coefficients is based on the empirical likelihood func-
tion, which eliminates the assumption on the distribution of methylation values. As 
usual, the Wald test for β1 is calculated based on the maximum likelihood estimation 
and its estimated variance. Akalin et al. [23] provided an R package-methylKit for 
determining differential methylation across genomic regions through logistic regres-
sion model. Although the use of logistic regression offers great flexibility in the 
models that it can fit, the approach did not account for the differences in coverage 
between samples and the variability of the methylation proportion within a group.

2.4  Bayesian Framework

Bayesian models have been successfully applied in modeling NGS sequencing data, 
such as ChIP-Seq [24] and RNA-Seq data [25]. Bayesian hierarchical framework 
offers flexibility in modeling the complex process of generation sequencing counts. 
BayesPeak used a hidden Markov model (HMM) and modeled the counts with a 
Gamma-Poisson mixed distribution for ChIP-Seq data [24]. Markov chain Monte 
Carlo algorithm (MCMC) was performed for posterior samples to detect enriched 
locations in the genome. Wu et al. [26] proposed two methods for NGS data using 
methyl-seq approach and reduced representation bisulfite sequencing (RRBS) 
approach. One method is a maximum likelihood estimation and the other is a Bayesian 
estimation with Gamma-Poisson mixture distribution model. They demonstrated that 
the maximum likelihood method yielded biased estimation at extreme methylation lev-
els while Bayesian hierarchical model could adjust this bias flexibly. However, this 
paper just provided the statistical approach for parameters estimation without formal 
statistical approach for Bayesian hypothesis testing to detect differential methylation.

A number of empirical Bayesian models have been developed to analyze 
 differential DNA methylation proportion using microarrays. Down et al. developed 
a Bayesian tool for methylation analysis (Batman) with oligonucleotide arrays 
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(MeDIP-chip) data [27]. Batman modeled a group of CpGs in 50- or 100-bp 
 windows assuming same methylation state for the CpG sites and then used MCMC 
to derive posterior samples.

McCallum et al. [53] provided a Bayesian framework with a beta-binomial hier-
archical model to detect differentially methylation loci between normal group and 
disease group. The maximum likelihood estimated priors were chosen and the pos-
terior distribution of the methylation proportion was derived using MCMC from the 
combination of the likelihood function and the estimated priors. To test the hypoth-
esis, H0: β0 = β1 versus Ha: β0 ≠ β1, where β0 and β1 are the methylation proportions 
in the two groups respectively, they used the posterior log odds Δ. The null hypoth-
esis is rejected if D >sa, where σα is the cutoff value at significance level α. They 
demonstrated that this Bayesian framework approach is more powerful to handle 
small sample size than Fisher’s exact test at many sites across the genome and has a 
well control of false discovery rate (FDR).

Hardcastle and Kelly [28] developed an empirical Bayesian framework under the 
assumption that the data follows a Negative Binomial (NB) distribution to model 
paired data from high-throughput sequencing platforms. The same authors [29] 
developed another Bayesian framework based on the Beta-Binomial distribution. 
Comparison between Bayesian framework and generalized linear modeling 
approach indicates that Bayesian framework offers better performance on both sim-
ulated data and real data. Both Bayesian models are implemented in the baySeq R/
Bioconductor package.

Most of these Bayesian methods rely on MCMC. MCMC algorithm is a popular 
method to estimate the Bayesian posterior densities. This algorithm offers a sequence 
of samples whose stationary distribution is the target posterior distribution. Normally, 
the quality of the Markov chain improves as the number of iteration increases. 
However, it is difficult to determine how many iterations are needed for a Markov 
chain to converge to its stationary distribution. It is important to make sure that all 
parameters are converged in order to get accurate MCMC posterior samples. In a 
hierarchical model, we have high-dimensional posterior parameters. It is not easy to 
solve the convergence problem even if we choose very large number of “burn-in” 
iterations [30]. Currently, NGS offers methylation measurement at over 2 million 
CpG sites. It is impossible to check the convergence for each CpG site and the applica-
tion of MCMC methods in methylation analysis with over 2 million CpG sites imposes 
tremendously computational burden. A more efficient method is needed in this regard.

2.5  Nonparametric Methods

Nonparametric statistics are often used when certain distribution assumptions about 
the underlying population are unknown or questionable. These methods do not require 
a distribution assumption, thus they can be used when the data may deviate from 
the assumed distribution in parametric analysis, even for nominal or ordinal data. 
The lack of distribution assumption makes nonparametric methods very flexible. 
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In most cases, they are easy to compute and understand. They use less information 
than the parametric tests, such as sign test, which is based on the ranks of the observa-
tions. However, in the case where a distributional assumption is reasonable, nonpara-
metric methods are less powerful than their parametric counterparts.

Chen et al. [31] proposed an age-adjusted nonparametric method for detecting 
differential methylation for case–control designs. To adjust the age effect, this 
method divided the samples into several age groups and then combined the p-values 
from Student’s t-test in each group to generate a new test statistic. This new statistic 
was assumed to follow a chi-square distribution. Huang et al. [32] adjusted Chen’s 
method with p-value calculation based on Neuhaeuser’s one-sided test [33] for each 
age group. Both methods have been demonstrated to have improved detection 
power and a good control of the type I error for detecting differential methylation 
for case–control design.

3  Identifying Differentially Methylated Regions (DMRs)

When performing any test for differential methylation between two groups of sam-
ples, the null hypothesis is that the mean methylation level as a function of position 
is no different for two groups or that it is independent of some continuous covariate. 
This test can be carried out by either performing an individual test for each site and 
then using a correction for multiple comparisons, or it can be done via smoothing in 
conjunction with multiple testing correction. Site-by-site tests can offer better reso-
lution but will lead to correlated p-values and can miss functional differences that 
are large over a region but small at any individual site. Functional tests from 
smoothed data can better detect differences over a region that site-by-site tests may 
not be able to detect. The downside is deciding how to define regions and determin-
ing an appropriate functional test to detect different methylation profiles.

3.1  t-Test Like Approach

For microarray or next-generation sequencing methylation data, the simplest and 
crudest way to test for DMR are to logit-transform the beta values at each site for 
each sample and compute a t-statistic for each site. Wilcoxon rank-sum tests can 
also be performed [34]. A false discovery rate or Bonferroni correction can be used 
for multiple comparisons. These methods are not advisable because a type I error or 
false discovery that occurs at a given site can also occur in nearby sites. Having 
p-values that are correlated are problematic when attempting to compute a false 
discovery rate. This method is generally not used in practice. Some scientific publi-
cations have used the Wilcoxon Rank Sum Test [35]. Pei et al. [36] use bisulfite 
sequencing data and average methylation values for windows of length 200 bp and 
perform a t-test for each window. They identify genes lying in DMRs for chronic 
lymphocytic leukemia.
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3.2  Fisher’s Exact Test

The most basic way to test for DMR with next-generation sequencing data is 
Fisher’s Exact Test [37, 38]. This can be done on a site-by-site basis or can be used 
by pooling read counts for nearby sites together. Lister et al. [37] used a sliding 
window approach. Each window is 1 kb. If a region contained at least four differen-
tially methylated CpG sites, it was extended 1 kb at a time until a 1 kb region is 
reached that does not contain at least four differentially methylated sites. Use of 
Fisher’s Exact Test in this fashion is also not desirable because the results can be 
heavily affected by the variation in read depth/coverage.

3.3  Methods Based on Differential Variability

Another possible way to identify differentially methylated locations is to find either 
sites or regions that have more variability in methylation levels than would be 
expected when there is no differential methylation. Jaffe et al. [39] developed a 
method based on some smoothed measure of variation according to genomic posi-
tion. The authors chose a measure of mean absolute deviation as their measure of 
data spread.

Zhang et al. [40] also developed a method with this variability approach. They 
devised a test statistic for CpG sites within a region based upon Shannon entropy. 
Within a group of samples in one particular region where there was differential 
methylation, the value of the estimated entropy should be higher. A Monte Carlo 
estimate of the distribution of the test statistic was obtained from samples with uni-
form methylation. This is realized by simulating regions with uniform methylation 
level with small deviations about the average.

3.4  Smooth-Based Approach

Bsmooth [41] used a signal-to-noise ratio statistic similar to a function t-test to test 
for DMRs. The variance as a function of position was floored at the 75th percentile 
and then transformed as a running average. DMRs were defined as regions with the 
t-statistics above the critical value c, which was established from the empirical 
distribution.

Jaffe et al. [42] utilized a method for microarray data called bump hunting which 
can be used to possibly detect differential methylation with respect to a continuous 
covariate. For reach CpG site in the microarray, a regression model was fit with the 
covariate on the logit-transformed M-values to obtain the slope for each genomic 
location. The result was an estimate of the regression slope as a function of position. 
These values were smoothed using local polynomial regression fitting. The assump-
tion was that the slope function was zero except for certain “bumps” which indicated 
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regions containing sites where methylation was associated with the covariate. The 
sum of the absolute values of the regression coefficient over a given region can be 
the test for differential methylation with a continuous covariate. Permutation tests 
were performed by permuting the value of the covariate and estimating the distribu-
tion of the test statistic.

4  Summary

Various methods have been developed to identify DML or DMRs. The challenges 
for these methods come from the complexity of the NGS methylation data. Among 
them, how to make full use of the NGS information is a prominent one. Methods 
based on Bayesian frameworks have the potential of modeling the complex process 
involved in NGS. Yet, the standard MCMC algorithm poses big computational bur-
den for genome-wide analysis. An efficient algorithm has to be developed to use 
these methods for epigenomic analysis.

One key limitation with methods specifically designed for next-generation 
sequencing datasets is that the sample sizes are generally small due to the lack of 
availability of bisulfite sequencing data. Hebestreit et al. [43], for example, only 
uses two sets of six samples because that is a realistic number of samples in any 
kind of study. Next-generation sequencing data also has the complication of vari-
able coverage across different CpG sites. This can make smoothing more compli-
cated but can also cause some CpG sites to be removed from consideration because 
the coverage is low. Using Illumina Metylation microarray data could alleviate the 
problem with the sample sizes, but for many methods the microarray data are too 
sparse and read counts are required, which one cannot obtain from the microarray 
data because it only provides signal intensity values for methylated and unmethyl-
ated signal intensities for each CpG site that is covered in the microarray.

Using functional data analysis methods appears to be a very good method to deal 
with the high dimensionality, the autocorrelation, and the missing values within 
both microarray and next-generation sequencing data. The use of functional data 
allows for smoothing to represent the data as being a Gaussian process in the clus-
tering, which can reveal categories within the high-dimensional data. Functional 
clustering seems to be a natural way to extend functional data methods such as the 
functional T tests and F tests.
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      Performance Comparison and Data 
Analysis Strategies for MicroRNA 
Profi ling in Cancer Research 

                   Erik     Knutsen     ,     Maria     Perander    ,     Tonje     Fiskaa    , and     Steinar     D.     Johansen   

    Abstract     MiRNA profi ling generates a global view of the miRNA expression pat-
tern in a biological or clinical sample, and there are currently several different pro-
fi ling platforms available. However, correct and accurate measurements of miRNA 
have turned out rather challenging, and performance comparisons of available pro-
fi ling technologies are of high importance in order to improve the correlation of 
results generated by different studies. In this chapter we discuss general consider-
ations of miRNA profi ling approaches and data analysis strategies, applied in can-
cer research. Performance comparisons of the SOLiD and Illumina high-throughput 
next-generation sequencing platforms, as well as hybridization-based methods and 
PCR-based methods are presented. Topics covered include platform sensitivity and 
accuracy, miRNA isoforms (isomiRs), and miRNA normalization procedures.  

1          Introduction to MicroRNA Profi ling 

1.1     MicroRNAs 

 MicroRNAs (miRNAs) were fi rst characterized in the early 1990s in  C. elegans  as 
small noncoding RNA (ncRNA) transcripts with the ability to regulate specifi c 
mRNAs by complementary base pairing [ 1 ]. Today, a number of small ncRNA 
classes and subgroups have been discovered, with the most studied classes being the 
miRNAs, the small interfering RNAs (siRNAs), and the piwi-interacting RNAs 
(piRNAs). These classes share important aspects in size, biogenesis, and associated 
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proteins, but differ in function and origin [ 2 ,  3 ]. MiRNAs are now recognized as 
important modulators of gene expression at a posttranscriptional level in a wide 
variety of organisms, and they play pivotal roles in many cellular processes by tar-
geting specifi c mRNAs for degradation and silencing. 

 The majority of miRNAs are processed from RNA polymerase II transcripts, 
named primary miRNAs (pri-miRNAs), that form characteristic hairpin structures 
(Fig.  1 ) [ 2 ]. The pri-miRNAs are cleaved by the RNase III endonuclease Drosha and 

  Fig. 1    Biogenesis of miRNAs. The majority of miRNAs are transcribed by RNA polymerase II (Pol 
II) into primary miRNA transcripts (pri-miRNAs). Pri-miRNAs are processed into precursor miR-
NAs (pre-miRNAs) by the enzyme Drosha and the double stranded RNA binding protein (dsRBP) 
DGCR8. Exportin-5 in complex with RanGTP recognizes pre-miRNAs and mirtrons, spliced-out 
introns sharing specifi c features of pre-miRNAs, and transports the transcript to the cytosol . Here 
they are further processed by Dicer and dsRBP TRBP into a miRNA duplex and loaded onto the 
RNA-Induced Silencing Complex (RISC). Maturation involves separation of one of the strands from 
the duplex, which directs posttranscriptional silencing. See main text for details and references       

 

E. Knutsen et al.



241

its cofactor DGCR8 into a 65–70 nt stem-loop precursor miRNAs (pre- miRNAs). 
Pre- miRNAs are then exported from the nucleus to the cytoplasm by Exportin 5 and 
Ran-GTP. In addition, a minor subset of miRNAs (mirtrons) is generated from 
spliced-out introns. Mirtrons share common features with pre-miRNAs and are 
therefore directly recognized by Exportin 5. Pre-miRNAs and mirtrons are further 
processed by Dicer, a cytoplasmic RNase III endonuclease, that in complex with 
TRBP generates a 22 nt duplex with 2-nt overhang at both 3′ ends. One of the 
strands of the duplex, often referred to as the guide strand, becomes the functional 
mature miRNA, and it is incorporated into the RNA Induced Silencing Complex 
(RISC). The other strand, referred to as the passenger strand, is in many cases 
degraded, but can under certain cellular circumstances be selected as the mature 
miRNA. This allows each miRNA hairpin structure to generate two distinct mature 
miRNAs with different target genes and presumable biological role. The two strands 
are named accordingly to their cleavage position at the 5′ end (miR-X-5p) or the 3′ 
end (miR-X-3p) of the hairpin. So far, 1881 precursors and 2588 mature miRNAs 
have been annotated in the human genome (miRBase v. 21, June 2014) ranging 
from 16 to 28 nt in length [ 4 – 8 ].  

 Mammalian miRNAs usually pair imperfectly with their mRNA targets at the 3′ 
untranslated region (UTR) [ 3 ]. Several computational and biochemical studies indi-
cate that their specifi city is dependent on position 2–8 of the guide strand, also 
known as the “seed” region. The mechanism used by miRNAs to regulate gene 
expression is still somewhat controversial. Some miRNAs destabilize their target 
mRNA by recruiting deadenylation factors that remove the poly-A tail, thereby 
making the mRNA susceptible to exonucleolytic degradation. Others suppress the 
initiation or elongation of protein synthesis, and some can promote posttranslational 
degradation of the newly synthesized peptide. Finally, a few miRNAs have even 
been shown to activate the expression of certain genes [ 3 ].  

1.2     MiRNAs in Cancer 

 MiRNAs have crucial roles in the regulation of cellular processes that are altered 
during cancer initiation and progression [ 9 – 11 ]. The fi rst link between miRNAs and 
cancer was established in 2002 when two miRNAs, miR-15 and -16, were found to 
be deleted in chronic lymphocytic leukemia [ 12 ]. Since then, whole- genome profi l-
ing of miRNAs in both solid and hematological tumors have demonstrated that 
abnormal miRNA expression signatures are a general trait of cancer [ 13 ,  14 ]. 
MiRNAs have been shown to negatively regulate the expression of both oncogenes 
and tumor suppressor genes, and thus can act as either tumor suppressors or onco-
genes (oncomiRs) [ 9 – 11 ]. Interestingly, downregulation of miRNAs represents a 
more frequent event in cancer pathogenesis, suggesting that most miRNAs act as 
tumor suppressors [ 13 ]. In breast cancer, miR-103/107, whose expression is associ-
ated with metastasis and poor outcome, directly targets Dicer and causes a global 
downregulation of the miRNA network [ 15 ]. Furthermore, tumor suppressing 
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miRNA genes are often located in loci subjected to deletions, mutations, or epigen-
etic silencing, leading to their loss of function [ 16 ]. MiR-21, on the other hand, is 
one of the most frequently upregulated miRNAs in solid tumors and act as an 
oncomiR by targeting tumor suppressor genes encoding the proteins Tropomyosin 
1 (TPM1), Phosphatase and tensin homolog (PTEN), and Programmed cell death 4 
PDCD4 [ 17 – 19 ]. 

 In general, specifi c cancer miRNA expression patterns are shown to be consis-
tent in tumor samples deriving from the same developmental lineage or differentia-
tion state, enabling a more precise classifi cation of the tumor [ 11 ,  13 ,  14 ,  17 ,  20 ]. 
Therefore, miRNA expression profi ling is not only important from a basic research 
point of view, but also in translational research as this can provide important infor-
mation for correct diagnosis, progression, and prognosis of the disease. In addition, 
miRNAs are easily detected in tumor biopsies [ 21 ], and they have also been shown 
to exist with remarkable stability in various types of body fl uids, including blood 
[ 22 ]. This has led to increased research focus on disease- related variations in serum 
and plasma miRNA expression and the possibility that such variations could serve 
as promising diagnostic, prognostic, and predictive cancer biomarkers in the future.  

1.3     Defi nition of miRNA Profi ling 

 MiRNA profi ling is the measurement of the abundance of all miRNA species in a 
single sample. In contrast, studies of only a few selected miRNA species should be 
referred to as “expression analyses” as this is a different discipline especially in 
regard to data management. Acquiring a global overview of the miRNA abundance 
in a biological or clinical sample is often instrumental to get a full picture of the 
disease, and to select interesting candidates for further functional studies. 

 Correct and accurate measurements of miRNA contents in cells and tissues have 
historically turned out rather challenging, and a lack of signifi cant agreement 
between different miRNA profi ling studies has been reported. Chen and coworkers 
compared published miRNA expression profi les in epithelial ovarian cancer across 
a 10-year span [ 23 ]. Eight papers were included in the comparison, and out of 17 
miRNAs that were reported in at least four profi ling studies, only one third had a 
consistent change in expression. The inability to validate miRNA expression pro-
fi les across different studies is due to several factors, including the use of different 
profi ling technologies, platforms, protocols, and methods for data analysis.  

1.4     MiRNA Profi ling Technologies 

 There are several methods used to investigate miRNA expression. In addition to 
traditional small-scale experiments using Northern blot analyses and in situ hybrid-
ization (ISH), developed methods for medium- or high-throughput analyses 
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including microarray analyses, quantitative real-time PCR (RT-qPCR), and 
 next-generation sequencing (NGS) are now commonly used both in research and 
medical diagnosis. All methods can be categorized into one out of three main tech-
nologies: hybridization-based, PCR-based, or sequencing-based. The choice of 
technology and method depends on several factors such as the starting material, 
number of samples, time restrictions, manpower, cost, and if the aim is to discover 
novel miRNA species or isoforms of known miRNAs (isomiRs). 

 Precise identifi cation and accurate quantifi cation of miRNAs is challenging due 
to their small sizes and frequent modifi cations like 2′- O -methylation and adenosine 
to inosine (A-I conversions) editing. Furthermore, the analyses have to discriminate 
between mature and primary forms of a miRNA, between highly similar miRNA 
families, and between isoforms of specifi c miRNAs. Also, variations in GC-contents 
between different miRNAs can infl uence the global analyses. 

1.4.1     Hybridization-Based Methods 

 Microarray analyses are widely used for miRNA profi ling, especially when the 
number of samples to be analyzed is high [ 24 ]. Here, quantifi cation implements 
fours steps: (1) Fluorescent labeling of miRNA; (2) hybridization to array of DNA- 
based capture probes; (3) washing and scanning of array; and (4) data extraction and 
processing. A major challenge for microarray in regard to miRNAs profi ling is that 
the DNA-based capture probes used for hybridization often will have to cover the 
entire sequence of the mature miRNA (about 20 base pairs), resulting in a wide Tm 
range for the entire miRNA population and thereby decreased binding effi cacy or 
fl uorescent distortion .  This is by some approaches corrected for by the addition of 
miRNA specifi c tags or single nucleotides to increase the melting temperature for 
each individual miRNA to a similar magnitude. Also the introduction of Locked 
Nucleic Acid (LNA)-modifi ed oligonucleotide probes can eliminate the distortion 
of Tm by enhancing binding affi nity for specifi c probes. Microarray will always 
face the issue of cross-hybridization of similar miRNAs, and this should be kept in 
mind as this can reduce the sensitivity. 

 In 2008 a novel hybridization-based technology, the NanoString nCounter sys-
tem, was introduced for miRNA profi ling [ 25 ]. This system has the advantage of 
detecting specifi c nucleic acid molecules from low amounts of starting material 
without the need for reverse transcription or cDNA amplifi cation. The technology 
captures and counts nucleic acids in a complex mixture using sequence-specifi c 
molecular barcodes and single molecule imaging. The NanoString nCounter system 
circumvents the problem of probe hybridization with the short miRNA sequence by 
bridge ligation of miRNA specifi c tags.  
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1.4.2     PCR-Based Methods 

 RT-qPCR is considered as the “gold standard” for expression analysis of miRNA 
using either TaqMan or SYBR green assays [ 26 ]. In the TaqMan assay, miRNA- 
specifi c stem–loop primers are used for cDNA synthesis, thereby increasing the 
length of the miRNA DNA template. Probe sequences that fl uoresce upon hydroly-
sis by a DNA polymerase with exonucleolytic activity are included in the amplifi ca-
tion and are used for quantifi cation. In the SYBR green assay, a poly(A) tail is added 
to all RNA transcripts before reverse transcription. MiRNA are detected by a spe-
cifi c forward primer and a reverse primer that anneals to both the 3′ miRNA 
sequence as well as to the poly(A) tail. The double stranded DNA-intercalating 
SYBR green dye is used for quantifi cation. MiRNA primer design, unspecifi c bind-
ing, and nonlinearity in PCR amplifi cation can be a challenge for RT-qPCR [ 27 ]. 
Synthesis of cDNA is also subject to errors with variations resulting from secondary 
structures, differences in priming effi ciencies, and biases caused by the reverse tran-
scriptase [ 28 ,  29 ]. As novel miRNAs are constantly discovered, the sizes of primer 
panels for RT-qPCR constantly need to be expanded, leading to an increase in the 
cost of the technology.  

1.4.3     Sequencing-Based Methods 

 NGS is the only technology that simultaneously allows for the discovery of new 
miRNAs and quantifi cation of annotated miRNAs. The technology includes some 
common library preparation steps: (1) Unspecifi c adaptor oligonucleotide RNA 
ligation; (2) reverse transcription through primer binding site included in adaptor; 
(3) size selection of fragments within the correct size range; and (4) PCR amplifi ca-
tion. The method circumvents many of the problems faced by microarray and 
RT-qPCR, like variability in melting temperatures, co-expression of nearly identical 
miRNA family members, or posttranscriptional modifi cations. However, NGS can 
suffer from laborious and inherent biases in library preparation and extensive and 
intricate data analysis [ 30 – 32 ]. Further research and development within this tech-
nology, including launching of new medium-throughput benchtop sequencing plat-
forms, might circumvent some of these challenges.    

2     Platform Comparison 

 Several reports have been published the last few years comparing the performance 
of different miRNA profi ling technologies (see Table  1  for an overview). All studies 
use different approaches both in regard to sample material, number of miRNAs 
profi led, normalization method, and statistical method to determine the sensitivity 
and accuracy of the technologies under investigation. Even though the overall cor-
relation of profi les generated by different technologies is in concordance, there are 
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several important discrepancies and pitfalls that have to be considered. Importantly, 
reports that compare different platforms within the same technology conclude that 
the type of technology is not the major variability factor. In fact it is the sample 
preparations and pre-quantifi cation steps that is most infl uential on the correlation 
of the results [ 38 ,  41 – 43 ].

2.1       Experimental Implications 

 Depending on the purpose of the study, miRNA expression profi ling can be per-
formed on different biological or pathological samples derived from cell cultures, 
fresh tissue, formalin-fi xed paraffi n-embedded (FFPE) tissue, or body fl uids like 
plasma or serum, saliva, and urine. Compared to longer RNA transcripts, miRNAs 
are stable molecules even in body fl uids that are known to contain substantial 
amounts of RNases [ 44 – 49 ]. This is probably because they are protected in either 
protein complexes or in membrane-enclosed exosomes [ 47 ,  49 ]. Also in FFPE sam-
ples, that display a varying degree of degraded RNA depending on fi xation effi ciency 
and storage time, miRNAs are relatively intact [ 36 ,  50 – 53 ]. MiRNA expression pro-
fi ling can therefore be performed on large cohorts of clinical samples from biobanks 
of stored blood or FFPE samples. Custom-made protocols for isolation of RNA from 
different sources followed by enrichment steps for small RNAs have been devel-
oped, both by research groups and life science manufacturers [ 24 ,  36 ]. 

 The abundance of mature miRNAs in clinical samples from both body fl uids and 
tissues is however often low. In many cancers, a global downregulation of miRNAs 
is observed that could be due to chromosomal deletions, epigenetic silencing, or 
genetic loss of proteins involved in the biogenesis of miRNAs [ 9 ,  10 ]. Also the 
amount of starting material from different cohorts might be limited. Intra-tumor 
genomic heterogeneity is a common phenomenon in solid cancer, raising the issue 
of doing profi ling in subsets of cells or even in single cells [ 54 – 58 ]. Therefore, 
miRNA profi ling technologies face the challenge of generating reliable expression 
data on low-input samples. In general, amplifi cation-based methods have a benefi t 
in this regard, and compared to microarray, RT-qPCR stands out as more sensitive 
for analyses with only minute input of miRNA from for instance blood plasma [ 59 ]. 
NGS platforms are constantly improving their library-preparation protocols adjust-
ing to low-input samples, and small RNA- sequencing is now performed on samples 
with a starting concentration as low as 1–100 ng small-RNA enriched RNA. 

 The number of samples, time, manpower, as well as the budget of the research 
project, will undoubtedly affect the choice of profi ling method. The microarray 
platforms are still the cheapest alternative for miRNA profi ling [ 24 ]. However, the 
new benchtop sequencers are getting within the range of the running cost of the 
microarray platforms [ 60 ]. RT-qPCR profi ling is typically expensive as multiplexed 
array panels should be run in triplicates. A single run on an NGS platform is costly, 
and the sequencing takes several days to complete [ 61 ]. In addition, the library 
preparation protocols are laborious. However, the depth of the sequencing allows 
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multiple samples to be analyzed in one experimental set-up by barcoded samples. 
This contrasts microarray and RT-qPCR platforms where only one sample can be 
analyzed at a time (two samples for some microarray platforms). 

 To conclude, the purpose of the study and available resources will ultimately 
decide which technology to choose. A broad understanding about both the advan-
tages and the pitfalls of the different technologies is essential for correct biological 
and clinical interpretation of the generated data.  

2.2     Technical Implications 

2.2.1     Platform Sensitivity 

 The sensitivity of a platform is defi ned as the ability of the platform to only detect 
miRNA species that are truly present in a sample, and not identifying true negatives. 
Sensitivity is best measured by profi ling of a synthetic sample where the identity and 
composition of the different species are known. This however is usually performed 
by companies and rarely by the scientifi c community since no biological informa-
tion is gained. Most sensitivity comparisons between platforms are for this reason 
performed on biological samples with unknown composition and concentration of 
specifi c miRNAs. In such analyses, a general assumption is that the likelihood for a 
detected miRNA to be a false positive decreases if other platforms also detects the 
same miRNA. This postulate can be hampered if most of the technologies under 
investigation in fact have a low sensitivity. Under such circumstances, the technol-
ogy with a true high sensitivity would easily be regarded as the one identifying a 
high number of false positives. This important notion will have to be taken into 
considerations when interpreting data from performance experiments. 

 A general assumption is that microarray has a lower sensitivity than both NGS 
and RT-qPCR platforms [ 24 ], even though both lower and higher sensitivities have 
been reported (Table  1 ) [ 36 ,  39 ,  40 ]. Different microarray platforms differ in terms 
of oligo probe design, sample labeling, probe immobilization chemistry, microarray 
chip signal-detection methods, and most importantly the amount of RNA used for 
profi ling and the inclusion of pre-amplifi cation steps. All these factors can poten-
tially infl uence on the sensitivity of the analyses. A major problem in microarray is 
cross-hybridization, both of similar miRNA species and of pre- miRNAs, generating 
false positive results, and thereby reducing the sensitivity of the technology. 

 The NanoString nCounter system has been reported to have a low sensitivity by 
two separate platform comparison studies (Table  1 ) [ 35 ,  36 ]. The fact that nCounter 
does not include any amplifi cation steps of the miRNA prior to detection may 
explain the observed low sensitivity, as this potentially can reduce the window 
between a true-positive miRNA expression and the background signal. Similar to 
other hybridization based technologies, nCounter has limitations in distinguishing 
between highly similar target sequences, especially heterogeneities at the 5′ end of 
the miRNA. Such limitation is important to note since a number of miRNA species 
differ in sequence with only a single nucleotide. 

Performance Comparison and Data Analysis Strategies…



254

 RT-qPCR is often referred to as the “gold-standard” in miRNA profi ling. In most 
platform comparison studies RT-qPCR is only included for verifi cation of result 
generated by other platforms (Table  1 ) [ 26 ,  33 ,  34 ,  36 ]. RT-qPCR is highly sensitive 
[ 35 ,  39 ] and represents the method of choice if the RNA input concentration is low. 

 NGS is regarded less sensitive compared to RT-qPCR [ 24 ]. We recently detected 
a slightly higher concordance in miRNA species between the SOLiD and Illumina 
platforms than by the combination of either NGS platforms with RT-qPCR [ 35 ]. 
However, the level of detection by NGS and RT-qPCR technologies is similar in two 
independent platform comparison studies, and thus diffi cult to rank (Table  1 ) [ 35 , 
 39 ]. Furthermore, the sequence depth of NGS will affect the technologies sensitiv-
ity since high depth will increase the numbers of miRNAs profi led. 

 The probability of a miRNA to be detected across the various platforms is higher 
for an extensively expressed miRNA than for a scarcely expressed miRNA. This 
was clearly visualized in our own platform comparison study, where the majority of 
miRNAs detected by only a single platform were expressed at low levels, whereas 
the majority of highly expressed miRNAs were detected by all four platforms [ 35 ]. 
As many of the platforms are dynamic in regard to the amount of starting material, 
pre-amplifi cation, and detection depth, the sensitivity can therefore be increased for 
the individual platforms. However, the detection of specifi c miRNAs should be veri-
fi ed by additional methods because of the presence of highly similar miRNA spe-
cies. Here, verifi cation will be affected by the abundance of the miRNA under 
investigation, and this should be kept in mind when selecting candidate miRNAs for 
verifi cation.  

2.2.2     Platform Accuracy 

 The accuracy of a platform is defi ned as the ability to correctly measure the exact 
concentration of a specifi c miRNA specie in a sample. The expression levels can be 
presented in two different, but equally important manners: (1) The absolute value 
presented as a count number for each individual miRNA species within a single 
sample, or (2) the relative values presented as a change in expression of a specifi c 
miRNA between two samples (Fig.  2a ). The two different presentations of expres-
sions are of equal importance in regard to platform performance, but the biological 
aspects of the results have to be interpreted differently.  

 Absolute values result in a ranked list of miRNAs present in a sample. However, 
correct estimation of absolute values is challenging [ 39 – 41 ]. Linsen and coworkers 
reported a profi ling study using two NGS platforms and RT-qPCR that included 473 
synthetic human miRNAs at equal molarity. Interestingly, for all platforms a non-
uniform distribution of miRNAs was observed with up to four orders of magnitude 
difference between the most and least frequently detected miRNA [ 41 ]. Furthermore, 
only about half of the miRNAs profi led varied within a single order of magnitude. 
For NGS, this discrepancy is probably due to library preparation methods, and not 
the different sequencing platforms. Several comparison studies have seen a higher 
concordance when the same library preparation has been subjected to profi ling by 
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different NGS platforms, than different type of libraries subjected to profi ling by the 
same NGS platforms [ 41 – 43 ]. We show that different profi ling approaches prefer-
entially capture a distinct set of miRNAs (Fig.  2b ), but as technical replicates are 
highly similar for each platform we infer that the biases are of a systematic nature. 

  Fig. 2    Effect of absolute and relative miRNA quantifi cation values for platform concordance. ( a ) 
Normal (Hs 578Bst) and breast tumor (Hs 578T) cell lines were sequenced by SOLiD small RNA- 
Seq, and top-ten upregulated miRNAs in tumor samples are displayed. Both relative values (fold 
change) and absolute values (RPM) are presented. ( b ) Comparison between SOLiD and Illumina 
NGS platforms for the 20 highest expressed miRNAs (absolute values) in Hs 578Bst. Disagreement 
between platforms in absolute values is clearly visualized. A similar trend is noted when compar-
ing the same dataset with RT-qPCR and NanoString. ( c ) Same miRNA data set as presented in  b  
visualized in a scatterplot. The absolute values ( left ) indicate that the data generated from SOLiD 
and Illumina platforms are not well correlated (Pearson’s correlation of −0.337). However, relative 
values ( right ) show a much better correlation between the two NGS platforms (Pearson’s correla-
tion of 0.705). RPM, Reads Per Million; NGS, Next-Generation Sequencing; N, Normal; T, Tumor       
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These biases complicate the comparison of miRNA absolute expression, which cur-
rently cannot be exactly determent by any technology. 

 Relative values are however not affected by library preparation protocols since 
identical biases are introduced for both the control and the test sample .  A higher 
platform correlation is usually observed in studies based on relative values com-
pared to absolute values (Fig.  2c ) [ 41 ,  42 ]. There are, however, important aspects of 
relative values that need to be addressed in order to better understand the data gener-
ated. First, relative values will be strongly affected by low expression levels in 
either one or both paired samples. This is clearly illustrated from our own data set 
of the ten most upregulated miRNAs detected from a comparison between normal 
and breast tumor cell lines (Fig.  2a ). Here, miR-182- 5p has a fold change of 90.9, 
but the difference in absolute values is only 1,912 reads per million (RPM). In com-
parison, miR-15b-5p has a fold change difference of only 8.0, but the absolute dif-
ference is 23,209 RPM. The second concern relates to which order of magnitudes 
calculated fold change values should have to confi dently claim that the observed 
difference in miRNA expression is signifi cant. As previously stated, agreement 
between different platforms implies that an observation has a higher likelihood of 
being a correct estimate. Importantly, if the fold change calculated for a specifi c 
miRNA between two samples is less than 2, the agreement between two platforms 
falls dramatically. This is clearly demonstrated in our study where the same direc-
tion of fold change values (upregulated or downregulated) is only observed for 
81 % of miRNAs that display less than twofold differences in relative expression 
[ 35 ]. These observations strongly suggest that because of technical discrepancies, 
fold change values should be above 2 to conclude that a specifi c miRNA is differ-
entially expressed in two samples. This notion does not take into consideration bio-
logical variations. Of note, agreement between different technologies on fold 
change directions is relatively constant across different miRNA concentrations [ 35 ]. 
This means that even though the expression level of a specifi c miRNA is low, 
observed differences in expression in paired samples can be trusted as correct as 
long as fold change values above 2 are obtained [ 35 ].   

2.3     MiRNA IsomiRs 

 NGS platforms offer genome-wide approaches for profi ling that are not restricted to 
known miRNA sequences provided by preestablished databases. This implies that 
novel miRNA species and variants can be discovered. Studies of miRNA popula-
tions in cells from different organisms have demonstrated that there exist several 
miRNA isoforms (Fig.  3a ) [ 62 – 66 ]. These  isomiRs  contain either deletions or exten-
sions at the 5′- or 3′-ends, or single nucleotide changes within the miRNA. IsomiRs 
might be a result of imprecise processing of the pri-miRNA and pre-miRNA, 
trimmed miRNA ends by exoribonucleases (“nibbling”), 3′ uridylatation or 3′ ade-
nylation by nucleotidyl transferases (“tailing”), or RNA editing enzymes [ 63 ]. 
There is currently a debate whether some of the miRNA variants observed by NGS 
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  Fig. 3    Identifi cation of isomiRs by SOLiD and Illumina NGS platforms. ( a ) Normal breast cell 
line (Hs 578Bst) was sequenced by SOLiD small RNA-Seq and the 15 highest expressed unique 
sequences mapping to two miRNAs species are displayed (let-7f-5p and miR-24-3p). While the 
most abundant sequence for let-7f-5p is the canonical miRNAs sequence, an isomiR containing a 
non-template U-nucleotide at the 3′ end is the most abundant miR-24-3p sequence. ( b ) The 
experiment above was extended to a total of thirteen human breast cell lines. Distribution of the 
same miRNA sequences and corresponding isomiRs is shown in bar plots. Identical color repre-
sents the same unique sequence in all cell lines. The expression has been scaled in order to 
accommodate for different expression levels in the cell lines. While let-7f-5p ( left ) shows a simi-
lar distribution pattern of canonical and isomiR sequences in all cell lines, miR-24-3p ( right ) 
variants varies among cell lines. ( c ) Comparison between SOLiD and Illumina platforms. Four of 
the cell lines were also profi led by the Illumina platform and let-7f-5p ( left ) and miR-24-3p 
( right ) variants are presented. Let-7f-5p shows a similar distribution of the canonical and isomiR 
variants in all cell lines in both platforms. miR-24-3p, however, shows signifi cant variation 
between platforms and cell lines. In general, a more uniformly distribution of variants is noted 
within a platform than between       

 

Performance Comparison and Data Analysis Strategies…



258

might be library preparation artifacts or sequencing errors. However, there are 
reports that clearly demonstrate that isomiR expression patterns differ between cell 
types and developmental stages [ 67 – 73 ].  

 To assess the relevancy of performing isomiR profi ling in cancer, we subjected 
14 breast cancer cell lines to SOLiD small RNA-seq and compared the expression 
patterns of miRNA variants. Intriguingly, the distribution of isomiRs differs consis-
tently and signifi cantly among cell lines (Fig.  3b ). We then compared isomiR pro-
fi les generated from two different NGS platforms, SOLiD and Illumina. The 
sensitivity and accuracy were found to be similar for isomiRs as for the canonical 
mature miRNAs in these experiments [ 35 ]. However, absolute values of the different 
isomiRs for a single miRNA are not constant between the two platforms (Fig.  3c ). 
Consequently, different isoforms appear as the most abundant canonical isoform in 
the two platforms. This is an important issue for the classifi cation of the true mature 
miRNA. If different isoform compositions in cancer cells affect the stability or 
mRNA targeting specifi city of certain miRNAs, remain to be unraveled.   

3     MiRNA Normalization 

3.1     Introduction 

 Data normalization is essential for obtaining accurate results in miRNA profi ling. The 
procedure adjusts data in order to reduce or remove technical biases introduced either 
by variations in input and quality of template, or during profi ling. Optimized normal-
ization allows for better identifi cation of true biological differences across samples. 
However, some of the discrepancies noted both between, but also within, miRNA-
profi ling studies are probably due to the different choices in normalization methods 
[ 35 ]. Here, there is an urgent need for more comparison studies to unravel the effect 
of applying different normalizations methods across different technologies. 

 Today there are several methods to choose from for normalization, and the meth-
ods can be divided into two main categories, either as reference normalization or as 
global expression normalization. Often a broad knowledge of statistics is needed in 
order to understand the methods and how they transform the data generated by pro-
fi ling. Here, we give a brief overview of the most common normalization methods, 
and also emphasizes some of the pitfalls that may accompany them.  

3.2     Normalization Methods 

3.2.1     Reference Normalization 

 The reference normalization strategy utilizes RNA species that are universally sta-
ble and do not vary in expression among the stages or tissues under investigation. 
A good reference RNA should be consistently stable and highly abundant 
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independent of tissue types or treatments. In addition, it should have  characteristics 
similar to miRNAs in respect to size, biogenesis, and stability. 

 If possible, authentic miRNA references should be used for normalization. 
MiRNA expression is highly cancer specifi c, and therefor miRNAs used for nor-
malization has to be established for each cancer type. For breast cancer, a few 
miRNA species have been proposed, including miR-16, miR-425, and let-7a [ 74 , 
 75 ]. However, it has proven diffi cult to fi nd suitable miRNA candidates that are 
stably expressed, and the method has to be used with caution. 

 Other alternatives include housekeeping gene transcripts as well as large stable 
RNAs such as ribosomal RNAs (rRNAs). In mRNA profi ling by RT-qPCR it has 
become a standard to use the geometric averaging of multiple internal control gene 
transcripts as a normalization factor [ 76 ]. This method could also be adapted for 
miRNA profi ling. Another option is to use the small nuclear RNAs (snRNAs) or 
small nucleolar RNAs (snoRNAs) for normalization of miRNA data sets [ 77 ]. The 
small RNAs RNU6B, RNU44, and RNU48 are some of the mostly described nor-
malization references in miRNA profi ling [ 78 ], and the snoRNAs are often included 
in pre-fabricated RT-qPCR panels. However, using large reference RNAs, including 
the snRNAs and snoRNAs, are not compatible when analyzing miRNA-enriched 
samples where larger RNA transcripts are absent, as for the NGS platforms. 

 Synthetic spike transcripts are good alternatives to endogenous expressed RNA 
references. Here, a spike RNA is pre-aliquoted in experimental samples according 
to for example total RNA concentration, cell number, or serum amount. Synthetic 
spikes that mimic miRNAs have important advantages in neutralizing technical 
biases introduced in library preparation. An option is to use synthetic miRNA from 
a heterologous species, like the  C. elegans  miRNAs  cel-miR-39 ,  cel-miR- 54  , and 
 cel-miR-238  [ 79 ]. However, estimating the correct amount of spike to use can be a 
challenge, especially for tissue samples where cell numbers are diffi cult to 
estimate.  

3.2.2     Global Expression Normalization 

 The global expression normalization strategy has become the preferred methods of 
choice for high-throughput profi ling based on microarray and NGS [ 80 ]. Global 
normalization is based on the assumption that the total expression of RNA species 
investigated does not change signifi cantly between samples. This assumption will 
only be valid if a large amount of genes are being investigates, if an equal number 
of genes in a sample are being upregulated as downregulated, and if only a small 
fraction of genes in a sample are regulated [ 81 ]. In human miRNA profi ling, how-
ever, several of these criteria are not well accommodated. The total number of miR-
NAs under investigation is less than 3000, and often the majority is weakly or even 
not expressed [ 82 ]. In addition, the total expression level of miRNAs has been 
shown to be signifi cantly reduced in cell lines and in cancer cells compared to nor-
mal tissue [ 13 ]. 
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 The global expression normalization strategy includes both straightforward 
approaches based on the total, mean, or median expression value [ 81 ,  83 ], and more 
complex algorithms such as Lowess normalization, quantile normalization, rank 
invariant normalization, or TMM [ 84 – 87 ]. Global expression normalization is the 
most common strategy in NGS (total linear count scaling). In total linear count scal-
ing each expression value is divided by the total expression value for the sample that 
is multiplied with a common factor (e.g., 1,000,000 for reads per million). For 
RT-qPCR, global mean normalization has been proposed as the method of choice 
[ 83 ]. In global mean normalization, the arithmetic average Cq value is calculated 
for each individual sample and subsequently subtracted from each individual Cq 
value for that sample. This procedure results in normalized expression values in the 
log2 scale. 

 Quantile normalization and Lowess normalization are popular methods in 
miRNA microarray-based profi ling. In quantile normalization, the data sets are fi rst 
sorted according to expression before normalized values are set accordingly to the 
arithmetical mean of the distributions. The highest value in all datasets is trans-
formed to the mean of the highest values, the second highest value is transformed to 
the mean of the second highest values, and so on. The Lowess (locally weighted 
scatter plot smooth) normalization transforms expression values based on a regres-
sion weight function for all neighboring miRNA data points within a predefi ned 
span in absolute values. Thus, Lowess does not include the entire dataset compared 
to most other global normalization methods.    

4     Conclusion 

 While miRNA profi ling studies are rapidly increasing in the scientifi c literature, 
miRNA signatures for specifi c diseases are lagging behind. It is therefore an urgent 
need for a better understanding in handling large dataset and how to interpret results 
obtained from different technologies. A major concern is the use of absolute values 
in miRNA profi ling studies, as apparently none of the existing platforms can cor-
rectly identify exact expression values. In addition, the complexity of NGS-based 
miRNA profi les is expanding due to the inclusion of isomiR variants. The biologi-
cal role of isomiRs in cells and tissue is still obscure and more basic research is 
needed to establish practical solutions on how to interpret the massive number of 
unique miRNAs sequences profi led. An important challenge in miRNA profi ling is 
to develop affordable high-throughput platforms, which are both highly sensitive, 
accurate, and with short handling time. The inclusion of the new benchtop sequenc-
ing platforms in miRNA performance comparisons studies will be an important 
step towards increasing their performance in regard to the more well-established 
methods.     
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    Abstract     Small noncoding RNAs are important transcriptional regulators implicated 
in several aspects of cell biology. Recent studies have demonstrated that qualitative 
and quantitative information on these molecules may be clinically useful for the can-
cer community. Next-Generation Sequencing is quickly becoming the technology of 
choice to study their role since a single equipment run may provide thorough infor-
mation on small RNA populations. Expression levels, mutational status, and the 
opportunity to identify novel molecules are among the resources of most sequencing 
platforms. However, challenges include sample processing and an appropriate data 
analysis pipeline. This chapter describes the workfl ow for small RNA sequencing 
analysis, discussing sample preparation, small RNA alignment for quantifi cation, dif-
ferential expression analysis, and novel small RNA molecule identifi cation. We are 
currently studying small noncoding RNAs in head and neck squamous cell carcinoma 
(HNSCC). Arising from epithelial cells in the lining of the upper aerodigestive tract 
and strongly associated with tobacco and alcohol consumption, HNSCC is among the 
leading cancers by incidence worldwide. Information on the relevance of small RNA 
molecules for this cancer type is still scarce but may become useful for diagnostic and 
prognostic purposes when comprehensive datasets become available.  
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1          Small Noncoding RNAs and the Contribution of  Next- 
Generation Sequencing for Studying Their Role in Cancer 

 Noncoding RNA molecules vary greatly in size, ranging from a diverse range of long 
noncoding RNAs, to smaller molecules currently called  small noncoding RNAs . 
Small noncoding RNAs are regulatory molecules of ~18–30 nucleotides in length. 
They have emerged as important players in several aspects of cellular biology, 
mostly acting through the inactivation of complementary sequences. MicroRNAs 
(miRNAs), small interfering RNAs (siRNAs), and PIWI interacting RNAs (piRNA), 
for instance, are all involved in sequence-specifi c posttranscriptional gene silencing 
as well as chromatin-dependent gene silencing, although they may vary in the sub-
cellular location where they act (for a review see ref. [ 1 ]). 

 The advent of Next-Generation Sequencing (NGS) technologies has greatly con-
tributed to speed up this research area [ 2 ]. Such efforts have allowed the identifi ca-
tion of several other classes of small RNAs, some already shown to participate in 
biological processes, while others are still not fully understood. Among these, 
tncRNA (tiny noncoding RNAs), rasiRNA (repeat-associated siRNA), hcRNA (het-
erochromatic small RNA), scnRNA (scan RNA), tiRNA (transcription initiation 
RNA), PASR/TASR (promoter/termini-associated sRNA), easRNA (exon- 
associated small RNA), rasRNA (repeat-associated small RNA), and tRFs (tRNA- 
derived RNA fragments) can be mentioned [ 3 – 5 ]. 

 The depth of the biological signifi cance of small RNA functional classes in can-
cer is also still unclear, but gene expression in cancer is known to be controlled by 
numerous regulatory molecules, including small regulatory RNAs. MiRNAs are 
currently the most studied class of small RNAs implicated in the pathogenesis of 
this disease [ 6 ,  7 ]. Experimental evidence points to the deregulation of miRNAs as 
consequence of cancer progression as well to their involvement in mechanisms 
leading to tumor initiation and progression. Additionally, miRNA profi les of human 
malignancies have been addressed as potential biomarkers in cancer patient man-
agement and as drug targets or therapeutics [ 8 ]. 

 Since 2006, small RNAs bound to PIWI proteins have been purifi ed and identi-
fi ed, the piRNAs [ 9 ]. PiRNAs are interacting RNAs ranging from 25 to 31 nt in 
length, thus longer than miRNAs and siRNAs. They interact with PIWI proteins, a 
subclass of the Argonaute family of proteins, originally found exclusively in germ-
line cells. Considering that cancer cells and germ cells share characteristics (e.g., 
rapid proliferation and self-renewal) it is expected that germ-line factors would also 
be implicated in oncogenesis. In spite of the study of PIWI in cancer being relatively 
new, the expression of PIWI has already been detected in a variety of cancers and 
even associated with cancer prognosis [ 10 ,  11 ]. On the other hand, studies on the 
contribution of piRNAs to tumorigenesis or their function in cancer cells are still rare, 
some of which addressing the epigenetic functions of PIWI/piRNA complexes [ 12 ]. 

 Recently, the human genome-wide analysis carried out by The Cancer Genome 
Atlas (  http://cancergenome.nih.gov/    ) showed that changes in the expression levels 
of small noncoding RNAs near the transcription start site of genes is associated with 
disease and could be considered for diagnostics purposes [ 13 ]. 

P. Severino et al.

http://cancergenome.nih.gov/


269

 Head and neck squamous cell carcinomas (HNSCC) arise from epithelial cells in 
the lining of the upper aerodigestive tract [ 14 ]. The most important risk factors are 
tobacco and alcohol consumption [ 15 ]. HNSCC is the sixth leading cancer by inci-
dence worldwide, with a 5-year survival rate of about 50 % and no prognostic bio-
markers or molecular markers for early diagnosis [ 16 ]. Among small RNA molecules, 
miRNAs have been evaluated as potential biomarkers with clinical application in 
HNSCC, with expression levels associated to survival rates or metastatic potential, 
as well as to tumorigenesis and tumor progression [ 17 ,  18 ]. To our knowledge there 
is currently no data on a possible role for other small RNAs for this cancer type. 

 We recently used NGS of small RNAs to study their potential role in HNSCC of 
the oral cavity and biological features targeted by miRNAs in cell models used for 
HNSCC research [ 19 ]. In this chapter we share our views on this research approach 
and describe a workfl ow for small RNA sequencing analysis, including sample 
preparation, small RNA quantifi cation, differential expression analysis, and novel 
small RNA molecule identifi cation.  

2     Sample Processing for Small RNA Sequencing 

 The fi rst step when looking to perform next-generation sequencing of small RNA 
libraries is choosing the appropriate method for RNA isolation. MicroRNAs range 
from 16 to 27 nucleotides, while PIWI interacting RNAs (piRNA) are about 30 
nucleotides long, thus a method for RNA isolation that allows for the sequencing of 
the two RNA classes must preserve molecules ranging from 16 to 30 nucleotides. 

 Commercially available column-based kits for total RNA isolation from tissues or 
cells claim to recover all RNA types, but recent research addressing small RNA 
molecules have demonstrated that this assumption is untrue. The majority of these 
methods are based on solutions containing guanidinium thiocyanate for cell lysis and 
protein denaturation, followed by phenol/chloroform extraction to isolate RNA mol-
ecules. In the particular case of HNSCC, we obtained satisfactory results with com-
mercially available kits, including miRNeasy Kit (Qiagen, USA), mirVana Kit (Life 
Technologies, USA), and mirVana PARIS Kit (Life Technologies, USA). However, 
in the general case, researchers should be aware of potential problems with other 
available solutions. First, in several of the column-based kits for RNA extraction the 
small RNA population is washed off the column during the washing steps. Second, 
the proper salt/alcohol ratio is an issue for small RNA precipitation. Third, the intrin-
sic characteristics of the tissue type, which can be more or less fi brous or lipid- rich, 
may demand adaptations throughout the procedures. Concentration and quality of 
the obtained RNA as well as the percentage of the small RNA population in the 
sample to be sequenced should always be assessed. Noteworthy is the fact that, 
despite similarities in the protocols and claims, the performance will vary between 
each kit and, for the purpose of a research project, all samples should be treated with 
the same procedure for the sake of minimizing variability in the results.  
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3     Small RNA Library Construction and Sequencing 

 Once RNA samples are obtained, library construction usually follows manufactur-
er’s protocols strictly for better standardization and reproducibility of sequencing 
results. In brief, for each small RNA sample it involves 3′ adapter ligation, 5′ RT 
primer annealing, 5′ adapter ligation, reverse transcription, and PCR amplifi cation. 
In one of our works [ 19 ] we aimed to access differences and similarities between 
cancer cell types used for functional studies in HNSCC and clinical samples. Three 
libraries were constructed for each cell type (i.e., technical replicates), and a single 
library was constructed for each clinical sample, constituting the biological repli-
cates of tumor and tumor-free samples. 

 The sequencing throughput of current NGS platforms greatly exceeds what is 
necessary to quantify the small RNA population of a single sample. A way of reduc-
ing costs is increasing scale by multiplexing multiple clinical samples in a single 
run. Multiplexing is achieved by attaching a specifi c sequence tag, a  barcode , to 
each sample before combining them for sequencing. Considering the library con-
struction protocol briefl y described above, the forward PCR primer is the same for 
every sample but a different, sample-specifi c, reverse PCR primer, containing a 
unique barcode, is used for each small RNA sample. Due to the small sizes of the 
RNA molecules and platform throughput, we chose the SOLiD platform ( Sequencing 
by Oligonucleotide Ligation and Detection , Applied Biosystems), generating 35 
nucleotides-long reads of for small RNA sequencing and an output of up to 30 Gb 
per run, and the SOLiD Total RNA-Seq Kit for Small RNA Libraries protocol 
(Ambion, Life Technologies, USA). For sample multiplexing we used the SOLiD 
RNA Barcoding System (Ambion, Life Technologies, USA), in which predefi ned 
sequence-tags present uniform melting temperature and are unique in  color-space.  1  
The barcodes are added to the 3′ end of the target sequence using a modifi ed adapter, 
assigning a unique identifi er to templates made from a single library. Multiple 
batches of templates are then pooled together for the PCR step and then sequenced. 

 Other sequencing platforms use similar workfl ows: Small RNA Sample 
Preparation Kit for Illumina; Ion Total RNA-Seq Kit for Ion PGM System or Ion 
Proton System, Life Technologies. However, library construction and/or multiplex-
ing can also be accomplished using reagents from independent companies. At the 
time of this publication, for example, KappaBiosystems produced Illumina and Ion 
compatible reagents, and BiooScientifi c was commercializing Illumina, SOLiD, 
and Ion compatible reagents, constituting important alternatives in terms of sample 
input, costs, timing, and optimization procedures.  

1   Color-space is a characteristic output format of the Applied Biosystems’ SOLiD sequencing plat-
form that is better characterized later in this chapter. 
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4     Investigation of miRNA Role in HNSCC: Identifi cation, 
Quantifi cation and Differential Expression 

 Sequence data analysis in our research study followed the workfl ow described in 
Fig.  1 . The initial material for data analysis is the  raw sequences  or  raw reads . The 
format for describing raw reads depends on the sequencing platform. Illumina and Ion 
Torrent or Proton sequencers, for example, generate traditional FASTA fi les, while 
SOLiD sequencers generate data in XSQ or CSFASTA formats. In particular, the 
SOLiD technology we used generates read data in  color-space . Color-space is a raw 
data type described as a sequence of colors where each color represents two possible 
nucleotides (i.e., a dinucleotide) and each nucleotide must be represented by two con-
secutive colors. The fact that each nucleotide is read twice leads to one of the advan-
tages of color-space data: the increased ability to distinguish polymorphisms from 
sequencing errors. Despite this advantage, this technology requires the development 
and implementation of specifi c algorithms to map the color-space reads to genomes.  

 For the detection of miRNAs in color-space sequences we used the Small RNA 
Analysis Tool (RNA2MAP; implemented within the LifeScope Genomic Analysis 
Software) [ 20 ]. RNA2MAP maps the reads from 5′ to 3′ end by extending an initial 

  Fig. 1    Data analysis workfl ow for small RNA sequencing results. MiRNAs were annotated using 
the most recent miRBAse database.  Report 1  provides data on differentially expressed miRNAs. 
 Report 2  reports data on putative novel miRNA molecules based on in silico prediction       
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aligned “seed sequence” using hypothetical reads made of concatenating genome 
fragments and adapter sequences. RNA2MAP does not prefi lter sequences based on 
quality values since color-space allows the identifi cation of errors in color calls. We 
used RNA2MAP default parameters, which worked well for our purposes: three 
color-space mismatches within the “seed sequence” (fi rst 18 bases of the reads), and 
six color-space mismatches on the following positions of the read as mapping 
parameters. 

 Adapters were trimmed out using a proprietary algorithm within LifeScope, but 
for other sequencing technologies algorithms such as AdapterRemoval [ 21 ], cut-
adapt [ 22 ], btrim [ 23 ] and ConDeTri [ 24 ] may be useful. Then, we fi ltered out rRNA 
and tRNA and repeated sequences using BLAST similarity search. To perform 
miRNA identifi cation we matched the reads against a .gff annotation fi le of the 
mature miRNA sequences deposited in the miRBase database (  http://www.mirbase.
org    ). It is important to note that the LifeScope analysis tools allow the use of other 
miRNA annotation fi les, provided they are described in the .gff format. 

 During miRNA identifi cation, reads may map uniquely to a miRNA sequence 
within miRBase or show multiple hits. We restricted multiple hits to hits within 
variations of a single miRNA family. For example, reads mapping identically to 
hsa-mir-103a-1 and hsa-mir-103a-2 were accepted and they were counted as “hsa-
mir- 103a” for the sake of facilitating quantifi cation and downstream functional 
analysis issues. 

 To compare the expression levels of miRNAs between our datasets we used the 
output  Report 1  depicted in Fig.  1 . It contains a list of miRNAs and the correspon-
dent read counts. The fi rst step for this analysis is normalization between samples. 
Several normalization procedures have been proposed in the literature so far, but no 
consensus has been reached [ 25 ,  26 ]. The normalized expression of each mature 
miRNA is then considered for the selection of differentially expressed miRNAs 
between datasets using statistical packages such as edgeR [ 27 ] and DESeq [ 28 ] 
implemented within the R-Project. 

 In our HNSCC study, we used three datasets: HNSCC-derived cell line, normal 
oral keratinocytes, and clinical samples. This analysis resulted in a set of miRNAs 
expressed in similar levels in the three datasets and in a set of miRNAs expressed in 
different levels. In order to evaluate the possible role of these miRNAs, functional 
analysis using Gene Ontology (GO) term enrichment analysis of miRNA targets is 
a valuable approach. MiRNA targets may be identifi ed using databases that report 
predicted targets such as TargetScan (  http://www.targetscan.org/    ) and PicTar (  http://
pictar.mdc-berlin.de/    ). Results for miRNA target prediction vary greatly in these 
databases due to the algorithms used for prediction. TarBase, for instance, is based 
mostly on target/miRNA complementarity and seed region conservation, while 
PicTar uses sequence thermodynamics for target/miRNA matching. There are data-
bases that focus on experimentally validated miRNA targets, such as TarBase 
(  http://mirtarbase.mbc.nctu.edu.tw/    ) or the commercially available databases such 
as Ingenuity (  http://www.ingenuity.com/    ) and MetaCore (  http://thomsonreuters.
com/metacore/    ). 
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 With the list of miRNA targets for the differentially expressed miRNAs in each 
dataset, and a GO enrichment analysis we can fi nd which GO terms are overrepre-
sented (or underrepresented) and discuss this functional result in the light of the 
disease under study. The annotations we used are part of structured vocabularies 
put together by the GO project (  http://geneontology.org    ) describing gene products 
in terms of their association with biological processes, cellular components, and 
molecular functions, in a species-independent manner. There are several tools 
freely available on the Internet to perform GO term enrichment analysis, such 
as: PANTHER (  http://pantherdb.org/    ), BiNGO (  http://www.psb.ugent.be/cbd/
papers/BiNGO/Home.html    ), gPROFILER (  http://biit.cs.ut.ee/gprofi ler/    ), and 
DAVID (  http://david.abcc.ncifcrf.gov/    ). 

 As a result of applying this workfl ow, we described the possible activity of miR-
NAs in terms of processes associated with the cancer phenotype. Several miRNAs 
previously described in cancer samples were shown to be ubiquitously expressed in 
squamous cells and mostly targeting processes associated with the biology of this 
cell type. Others seemed to be more associated with the cancer phenotype, with pos-
sible targets grouped under GO terms related to deregulated cell processes in cancer 
disease.  

5     Identifi cation of Putative New miRNA Molecules 

 The preparation of the sample submitted to sequencing ensures that most of the RNA 
molecules present are small RNAs. This means that those sequences that did not 
match known miRNAs could either be novel miRNA molecules or molecules that 
belong to other classes of small RNAs. So the next phase in our workfl ow was the 
discovery of new miRNAs, summarized in the lower left part of Fig.  1 . We based this 
discovery process on ab initio classifi cation, similarity search and structural search. 

 If our reads corresponded to mature miRNAs they should belong to precursor 
miRNAs that could be predicted by ab initio classifi cation and structural search 
both approaches highly infl uenced by the nucleotide sequence and its length. Since 
at the time of the publication of the study approximately 98 % of mature miRNA 
sequences deposited in miRBAse were less than 135 nucleotides in length [ 19 ], and 
since our reads could in fact be from any part of the precursor sequences, we mapped 
our reads in the genome and extracted three candidate sequences for each read: two 
135 nucleotide sequences that extended the original read an additional 100 nucleo-
tides either at the 3′ or 5′ end, and one that extended the original read 50 nucleotides 
at each side. These sequences were called  miRNA-candidates.  

 Prior to the miRNA discovery using ab initio classifi cation and structural search 
we used a conservative false positive detection approach by excluding all miRNA- 
candidates with good scores with snoRNA ab initio prediction from SnoScan [ 29 ] 
and SnoReport [ 30 ], and candidates mapping on known exons or matching other 
ncRNA in additional databases such as ASRP [ 31 ], CSRDB [ 32 ], fRNAdb [ 33 ], 
ncRNAdb [ 34 ], and NONCODE [ 35 ]. 
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 After false positive fi ltering, we performed structural search against the RFAM 
database [ 36 ] using the Infernal for RNA alignment (INFERence of RNA Alignment, 
  http://infernal.janelia.org/    ) and ab initio classifi cation using HHMMIR, an algo-
rithm for miRNA  de novo  prediction [ 37 ] based on the structural folding provided 
by RNAfold (  http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi    ). Structural and ab ini-
tio classifi cation searches are highly infl uenced by the nucleotide sequence and its 
length. Figure  2  illustrates this infl uence, presenting foldings of two candidate 
sequences resulting from different 5′ and 3′extensions of the same original read.  

 A total of 400  miRNA-candidates , constituting sequences that had not matched 
the miRBase, were submitted to this analysis approach. Of these, only 13 remained 
as putative candidates and, after careful manual curation, we were able to propose a 
single molecule as a possible novel miRNA molecule. The RNAfold structure of 
this molecule is depicted in Fig.  3 , it contains 2 of the 13 candidates initially 
selected, each one located on a side of the miRNA precursor stem, possibly indicat-
ing leading and star strands of the miRNA. An indication of a biological role for this 
molecule in HNSCC comes from the fact that both reads were more expressed in the 
HNSCC line and in HNSCC samples when compared to normal oral keratinocytes 
or cancer-free patient tissues, respectively.   

  Fig. 2    RNAfold structure prediction based on nucleotide sequences of two miRNA-candidate 
sequences. The 35 nt sequenced reads are located between arrows in the depicted structures and the 
5′ and 3′ ends of the sequenced reads are indicated by a  red circle .  a  and  b  structures include 
Candidate Sequence 1, either in a central position within the structure ( a ) or at the 5′ end ( b ).  c  and 
 d  contain Candidate Sequence 2 either in a central position ( c ) or at the 5′ end ( d )       
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6     Other Small Noncoding RNAs Annotation and Prediction 

 In the work described in this chapter [ 19 ] we did not include annotation of other 
small RNAs, since it was not the focus of the manuscript. However, we are currently 
using this approach for new studies. In order to search for small RNAs other than 
miRNAs we take the trimmed and fi ltered sequences that did not match miRBase 
(i.e., 35 nt long sequences) and match them to noncoding RNA databases such as 
the ones previously mentioned in this chapter. We look for 100 % similarity between 
our query and the deposited sequence, as well as identical coordinates in the genome 
in order to consider the annotation.  

7     Conclusions 

 In this chapter we describe a workfl ow for studying small RNAs using NGS. The 
approach has been recently used in a publication focusing on HNSCC, a prevalent 
cancer type for which little is known in terms of the contribution of these small 

  Fig. 3    RNAfold structure 
depicting the position of two 
sequenced reads (I and II 
selected regions in the fi gure) 
selected for miRNA 
discovery. Both reads mapped 
to neighboring regions of the 
genome and seem to make up 
the stem region of a miRNA 
precursor molecule       
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molecules for the disease phenotype. The workfl ow holds particularities associated 
with the sequencing platform of choice but it can be applied in other contexts when 
the research purpose is similar. The databases and bioinformatics tools mentioned 
in the text were useful and available at the time of this publication, but one must 
keep in mind that this is a new and rapidly growing research fi eld, so adaptations 
will be necessary at each new research initiative.     
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    Abstract     Next-generation sequencing technologies are revolutionizing the study 
of genomic variation. Although whole-genome sequencing is the most comprehen-
sive strategy for genome-wide variant detection, this approach is still expensive for 
routine clinical use. The targeted sequencing of all coding regions, approximately 
2 % of the human genome, is termed whole-exome sequencing, and it has emerged 
as an indispensable tool for clinical research, particularly cancer research. Indeed, 
the application of whole-exome sequencing in cancer, a disease of the genome, has 
transformed our knowledge about this disease. In this chapter, we review exome-
capture methods and technologies and their application in cancer research.  

1          Introduction 

 Theodor Boveri was the fi rst to propose the connection between cancer and chro-
mosomal anomalies [ 1 ], and Stehelin et al. fi rst demonstrated the relationship 
between genes and cancer in 1976 [ 2 ]. By the mid-1980s, researchers had estab-
lished two main types of cancer-causing genes, oncogenes and tumor suppressor 
genes. For example, in 1982, the MYC gene was shown to be affected by a chromo-
somal translocation observed in Burkitt’s lymphoma [ 3 ]. While studying retinoblas-
toma, Knudson et al. discovered the fi rst tumor suppressor gene, RB1 [ 4 ]. These 
studies and others began to unravel the mutational complexity of cancer, i.e., the 
variability of cancer-causing genes across and within cancer types. Intensive 
research has established that cancer often originates as the result of somatic altera-
tions to a cell’s genome. These changes include single-nucleotide variations, small 
insertions and deletions, and large and complex structural changes that can affect 

        C.  S.  R.   Chilamakuri      (*) •    L.  A.   Meza-Zepeda      
  Department of Tumor Biology ,  Norwegian Radium Hospital, Oslo University Hospital , 
  Oslo ,  Norway    

  Norwegian Cancer Genomics Consortium (cancergenomics.no) ,   Oslo ,  Norway   
 e-mail: chichi@rr-research.no; Leonardo.A.Meza-Zepeda@rr-research.no  

mailto:chichi@rr-research.no
mailto:Leonardo.A.Meza-Zepeda@rr-research.no


280

entire chromosomes. These somatic alterations eventually give rise to uncontrolled 
cell growth and division. In the late 1980s, there were several calls to sequence the 
human genome, a step that is essential for systematically discovering all of the 
genes responsible for cancer development [ 5 ]. The Human Genome Project was 
launched in the year 1990 and was completed in 2004 [ 1 ,  6 ]. Furthermore, rapid 
advances in sequencing technologies have dramatically decreased the cost of 
sequencing, and next-generation sequencing instrumentation, available since 2005, 
has altered our approach to sequencing genomes. 

 The identifi cation of the genetic basis of a human disease is an important area of 
research, particularly with regard to cancer research, and a good approach is to 
sequence the entire genome at high resolution. Although rapid advances in next- 
generation sequencing technologies have dramatically reduced the cost of DNA 
sequencing, the cost of whole-genome sequencing remains signifi cantly high when 
applied to large numbers of individual samples. Alternatively, targeted sequencing 
strategies have been developed to reduce the associated costs. The protein-coding por-
tion of the human genome, the “exome,” which is approximately 1–2 % of the human 
genome, is an attractive target for targeted resequencing. In fact, exome sequencing 
has emerged as an indispensable tool in the era of predictive and precision medicine, 
and much research has been performed on the clinical benefi ts and risks of sequencing 
to screen healthy persons [ 2 ,  7 ]. Exome sequencing (Exome- seq) has certain advan-
tages over whole-genome sequencing: Exome-seq is signifi cantly less expensive, and 
the protein-coding regions of the genome are well studied. Therefore, the functional 
interpretation of exome variants is relatively easy, and the time required for the analy-
sis of Exome-seq data is signifi cantly lower. One important objective of cancer 
genomics is to identify driver genes, which requires the sequencing of large numbers 
of samples at very high coverage; whole-genome sequencing is currently still expen-
sive, whereas exome sequencing is a very attractive tool for cancer researchers. 

 Although exome sequencing has certain advantages with regard to cost and ease 
of data handling and analysis, there are certain limitations to this approach, espe-
cially when investigating complex genomes such as cancer genomes. Specifi cally, 
even at a very high sequencing depth, a small proportion of the exome will not be 
covered, and the non-covered exome sequences often contain a very high GC con-
tent [ 3 ,  8 ]. Regardless, exome sequencing is very useful for the detection of single- 
nucleotide variations and small insertions and deletions. However, it is less accurate 
for other types of genetic variations: exome sequencing cannot detect large struc-
tural alterations and has limited ability to detect copy-number changes. Exome 
sequencing also requires complex library-preparation procedures that normally 
demand several days to complete, including a hybridization step. In general, exome 
sequencing cannot cover the functional elements outside of exons, such as promot-
ers, transcription factor binding sites, and enhancers. Nonetheless, Exome-seq is of 
great interest to clinical and translational researchers; in particular, signifi cant 
efforts have been applied to cancer research. The relationship between cancer and 
genomic mutations, especially mutations in protein-coding regions, is well estab-
lished, yet studying the complexity and heterogeneity of cancer genomes often 
requires sequencing at very high coverage rates. Therefore, the Exome-seq strategy 
is a natural choice for cancer researchers. 
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 In this chapter, we fi rst provide a brief overview of exome-capture strategies and 
a brief comparison of popular commercial exome-capture technologies. Then, we 
provide an overview of the application of exome sequencing in cancer research.  

2     The Exome 

 The exome is defi ned as the protein-coding and RNA-coding regions of known 
human genes. There are many different databases available for human coding genes, 
such as RefSeq [ 4 ,  9 ] and Ensembl [ 5 ,  10 ], which differ in the total number of non-
coding RNAs and the total number of exons present as well as the start and end 
coordinates of the exons. However, the majority of sequences are in common among 
the different databases. The consensus coding DNA sequence (CCDS) database 
contains protein-coding sequences with high-quality annotations [ 11 ]. RefSeq and 
CCDS share a greater proportion of sequences in common, whereas Ensembl has 
more unique bases compared with the other two databases (Fig.  1 ).   

3     Capture Strategies 

 During the next-generation sequencing process, genomic DNA is fi rst fragmented, 
and these DNA segments are then sequenced simultaneously. Without selectively 
targeting genomic regions of interest, any of the genomic fragments has an equal 
chance of being sequenced. To sequence a subset of regions from the human 
genome, one needs to fi rst extract the regions of interest from a genomic DNA 
library, and there are different ways that this outcome can be achieved. The princi-
ples of target-capture strategies have been comprehensively discussed in other 
reviews [ 12 – 15 ]; various target-capture methods are depicted in Fig.  2 .  

  Fig. 1    Comparison of coding databases. Overlap of exon bases among the RefSeq, CCDS, and 
Ensembl exon databases. 32.11 MB (megabase pairs) shared by all three databases. 2.19 MB 
unique to Ensembl database       
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3.1     Polymerase Chain Reaction (PCR)-Based Enrichment 

 PCR has been extensively used as a pre-sequencing sample preparation method for the 
last few decades [ 16 ], and this method is highly suitable for a Sanger sequencing- based 
approach. PCR-based capture is also potentially suitable for any next- generation 
sequencing approach to make use of its throughput capacity when a large number of 
amplicons must be sequenced. Nevertheless, as the target size and number of amplicons 
increase, the effi ciency, as measured in terms of cost, feasibility, and input requirements, 

  Fig. 2    Different exome capture technologies. ( a ) PCR-based exome enrichment. ( b ) Molecular 
inversion probes (MIPs) in exome capture: probes ( blue ) fl anking a region of interest hybridize to 
their target ( brown ). Polymerase and ligase reactions allow the surrounded region to be fi lled in 
and effectively circularize the probe. ( c ) Microarray-based exome capture: a microarray with 
probes ( black ) corresponding to regions of interest is exposed to a pool of fragments ( brown ). 
Target fragments hybridize to the probes on the microarray, and the hybridized fragments are then 
eluted for downstream sequencing. ( d ) Solution-based exome capture: oligonucleotide probes 
( red ) in a single test tube capture DNA fragments ( blue ). The oligonucleotide probes can be selec-
tively extracted by the use of affi nity beads ( green )       
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rapidly decreases. Despite its limitations, some of the initial large-scale sequencing 
projects used PCR for selective amplifi cation [ 17 ,  18 ]. The sequencing of targeted 
regions of the genome by next-generation sequencing instruments necessitates a mas-
sively parallel enrichment method for the targets to be sequenced. A number of tech-
nologies are currently available that allow the selective amplifi cation of tens to hundreds 
of targeted regions. These methods are widely used for focused gene or hot spot can-
cer panels and allow the detection of low allele-frequency mutations by sequencing at 
very high coverage. PCR-based methods are easy to implement in a clinical diagnostic 
setting yet are limited by the number of amplicons that can simultaneously be amplifi ed. 
To overcome this limitation, other methods that allow a higher number of parallel 
 reactions have been developed to enrich for larger segments of the genome.  

3.2     Molecular Inversion Probes (MIPs) 

 MIPs are single-stranded DNA molecules that contain two regions complementary 
to regions in the target genomic DNA. Successful binding to a target sequence 
results in a conformational change that allows the molecules to be directly selected 
by amplifi cation methods. After successful hybridization to a target, MIPs are elon-
gated along the region of interest and closed by ligation to generate a circular mol-
ecule, which is protected against exonucleases. Treatment with restriction enzymes 
linearizes the circular molecules, which can then be directly sequenced. Unlike 
shotgun-based library preparations, MIP-based capturing procedures do not require 
a library-preparation step; because of the two enzymatic steps, the specifi city is very 
high, and the DNA input requirements are low. The disadvantage of MIPs for target 
enrichment is that capture uniformity is poor compared with capture by hybridiza-
tion. Moreover, MIP oligonucleotides can be expensive, and a large number of oli-
gonucleotides are required to cover a large number of targets.  

3.3     Hybridization-Based Capture 

 Enrichment by hybridization entails the incubation of oligonucleotide probes that 
are complementary to target regions with a genomic DNA library; nonbinding frag-
ments are removed, and the bound, enriched DNA is then eluted for sequencing. 
However, due to nonspecifi c binding, hybridization-based capture methods gener-
ally have a lower capture specifi city compared with other approaches. 

3.3.1     Array-Based Capture 

 Array-based hybridization methods typically use probes that are complimentary to 
the sequence of a target fi xed to a solid support such as a microarray. A genomic 
library of interest is hybridized; after incubation, nonbinding fragments are removed, 
and the hybridized fragments are eluted for sequencing. This method can enrich 
regions of interest by approximately 1,000–2,000-fold in one round of hybridization. 
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Utilizing multiple enrichment cycles can further enhance the enrichment effi ciency, 
and microarray-based hybridization platforms are essentially reusable. As a mature 
technology, oligonucleotide microarrays are also relatively inexpensive compared 
with other targeted sequencing strategies. Array-based capture offers greater fl exibil-
ity and can be used to capture either a contiguous region or many short, dis-contigu-
ous regions, and by varying the probe spacing, the target size of an array can be 
changed from hundreds of kilobases to tens of megabases using the same protocol. 
The throughput of array-based target capture, nevertheless, is dependent on the spa-
tial resolution of the oligonucleotide probe array; therefore, the number of targets 
that can be captured is limited. Another disadvantage is that scaling array-based cap-
ture for hundreds of samples can be more diffi cult compared with solution capture. 
Although array capture is relatively inexpensive, the cost of the arrays is still high 
when considering a large number of samples.  

3.3.2     Solution-Based Capture 

 Bashiardes et al. described a modifi ed DNA-based genomic DNA selection protocol 
for performing hybridization-based targeted capture of shotgun fragments corre-
sponding to bacterial artifi cial chromosome (BAC)-sized genomic regions [ 19 ]. In 
this method, a shotgun library is generated from the genomic DNA of interest, and 
adaptors are ligated. The library is then hybridized in solution to biotinylated DNA 
that is derived from the regions of interest. The target-probe hybrids are pulled 
down by streptavidin beads followed by washing to reduce nonspecifi c hybridiza-
tion. The captured target regions are eluted, PCR amplifi ed, and sequenced. In solu-
tion hybridization, the probe molecules can be either DNA or RNA; for instance, 
Gnirke et al. implemented this procedure using RNA as the probe molecule [ 20 ], 
whereas others have used DNA as the probe [ 21 ]. An important advantage of using 
RNA as the probe is that RNA molecules are single-stranded and present only one 
orientation, and a high concentration of RNA can drive the hybridization kinetics. 

 The following are some of the notable advantages of solution-based hybridiza-
tion over array-based capture. First, a relatively low input of genomic DNA is 
required. Second, solution-based capture is more automatable than array-based 
hybridization capture. Third, systematic bias can be reduced by using longer cap-
ture probes compared with the short probes used in array-based capture. Finally, 
solution-based capture has higher specifi city compared with array-based capture.    

4     Overview of Commercial Exome Capture Technologies 

 The majority of commercially available exome-capture kits employ a solution 
hybridization strategy to capture exomes. Although the sample preparation methods 
are similar across different platforms, there are differences in the choice of their 
target regions, probe lengths, bait density, molecule used for target region capture, 
and genome fragmentation method (Table  1 ). There are currently four major 
solution- based exome-capture kits available: Agilent SureSelect Human All Exon, 
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NimbleGen SeqCap EZ Exome Library, Illumina TruSeq Exome Enrichment Kit, 
and Illumina Nextera Exome Enrichment Kit. Prior studies have reported compari-
sons of the different exome-capturing systems. For instance, Clark et al. compared 
three capture technologies and showed that the NimbleGen technology required the 
least number of reads to sensitively detect small variants; in contrast, the Agilent and 
Illumina technologies were able to detect a higher total number of variants with 
additional reads [ 22 ]. In another study, Sulonen et al. compared the NimbleGen and 
Agilent technologies and demonstrated that there were no signifi cant differences 
between the two except that NimbleGen platform showed a greater effi ciency in 
covering the exome, with a minimum of 20X coverage [ 23 ]. Asan et al. compared 
NimbleGen Sequence Capture Array, NimbleGen SeqCap EZ, and Agilent 
SureSelect and showed that all three platforms achieved a similar accuracy of geno-
type assignment and single-nucleotide polymorphism (SNP) detection and similar 
levels of reproducibility and GC bias [ 8 ]. In another exome-capture comparison 
study, Parla et al. demonstrated that both NimbleGen SeqCap EZ Exome Library SR 
and Agilent SureSelect All Exon were similar to each other and captured most of the 
human exons that were targeted by their probe sets; nevertheless, these kits failed to 
cover a noteworthy percentage of the exons in the CCDS annotations compared with 
high-coverage, whole-genome sequencing [ 24 ]. In a very recent comparative study 
looking at four exome-capture kits, Chilamakuri et al. demonstrated that the Agilent 
kit provided higher coverage for a given number of reads and that the Illumina 
Nextera kit showed bias toward targeted regions with a high GC content [ 25 ].

5        Strategies for Cancer Exome Sequencing Data Analysis 

 Exome sequencing data are processed in different steps (Fig.  3 ). The fi rst step in iden-
tifying variants from exome sequencing is to align short reads to a reference genome. 
There are many different short-read aligners, and Ruffalo et al. comprehensively 

   Table 1    Comparison of commercial exome-capturing platforms   

 NimbleGen  Agilent  Illumina TruSeq  Illumina Nextera 

 Probe type  DNA  RNA  DNA  DNA 
 Probe length range (bp)  55–105  114–126  95  95 
 Number of probes  2,100,000 a   554,079  347,517  347,517 
 Total probe length (Mb)  NA  66.48  33.01  33.01 
 Target length range (bp)  59–742  114–21,747  2–37,917  2–37,917 
 Median target length (bp)  171  200  135  135 
 Number of targets  368,146  185,636  201,071  201,071 
 Total target length (Mb)  64.19  51.18  62.08  62.08 
 Fragmentation method  Ultrasonication  Ultrasonication  Ultrasonication  Transposomes 

   NA , not available 
 The comparisons are based on Agilent SureSelect Human All Exon v4.0, NimbleGen SeqCap EZ 
Exome Library V3.0, Illumina TruSeq Exome Enrichment Kit, and Illumina Nextera Exome 
Enrichment Kit 
  a The number of probes for the NimbleGen platform was obtained from a previous report [ 22 ]  
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compared the pros and cons of different aligners [ 26 ]. PCR is generally used to add 
adapters and to amplify the genomic library for sequencing. If the starting DNA sample 
is small, an increase in the number of PCR cycles is used to overcome this limitation, 
but additional PCR cycles increase the number of duplicates, signifi cantly affecting 
the randomness of the sequencing process. Some parts of the genome result in very 
high coverage compared with others. Amplifi cation errors in early PCR cycles could 
then be present in multiple reads, and these errors are diffi cult to distinguish from 
real genomic variations; therefore, it is essential to remove duplicate reads. Filtered 
normal and tumor BAM fi les are used for somatic variant calling, and some of the 
popular somatic variant callers include MuTect [ 27 ], VarScan2 [ 28 ], and SomaticSniper 
[ 29 ]. Xu et al. systematically compared somatic mutation-calling methods [ 30 ]. 

  Fig. 3    Overview of somatic variant calling       
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Variant callers generally identify tens of thousands of variants, and different computa-
tional algorithms, such as Sorting Intolerant from Tolerant (SIFT) [ 31 ] and PolyPhen 
[ 32 ], are used to predict the potential effect of a variant on protein function.   

6     Exome Sequencing in Cancer Research 

 The gradual accumulation of mutations during the lifespan can lead to cancer. 
Because human cancers are very heterogeneous entities, multiple gene tests should 
be performed to determine the underlying mutations, and the application of deep- 
sequencing technologies has allowed signifi cant advances in cancer genomics 
research. Indeed, advances in deep-sequencing technologies, coupled with advances 
in capturing technologies, have made the systematic identifi cation of somatic muta-
tions in a particular cancer feasible. Because whole-exome sequencing targets all of 
the coding regions of the genome, the use of this approach avoids the requirement 
for multiple genetic tests. Additionally, the total cost of exome sequencing has 
fallen sharply such that it is now within the budgets of many cancer-related research 
projects. The applications of whole-exome sequencing have been comprehensively 
reviewed [ 33 – 35 ]. One limitation of targeted exome sequencing is that researchers 
should know the targets prior to the experiments; however, whole-exome sequenc-
ing removes this bias by targeting all exonic regions. Another limitation of exome 
sequencing is that it cannot be used to detect structural variations. Despite these 
technical limitations, exome sequencing has emerged as a popular tool for discover-
ing clinically relevant mutations, such as those involved in cancer. 

 The human genome project was launched in 1990, and the initial draft sequence 
was fi nished by 2001 [ 36 ,  37 ]. With the availability of the public human genome 
sequence, rapid progress has been achieved in cancer genomics, and genome 
sequencing, especially targeted resequencing, has attained widespread use in cancer 
research. Initial attempts at the large-scale DNA sequencing of cancer samples faced 
limitations such as the high cost and extensive infrastructure required, which placed 
tight constraints on the amount of data that could be collected. By analyzing exome 
sequencing from 13,023 genes in 11 breast and 11 colorectal cancers, Sjöblom et al. 
showed in 2007 that 189 were mutated at a signifi cant frequency [ 18 ]. In the same 
year, based on an analysis of exons representing 20,857 transcripts from 18,191 
genes in 11 breast and 11 colorectal tumors, Wood et al. concluded that the genomic 
landscapes of breast and colorectal cancers are composed of a handful of commonly 
mutated gene “mountains” and a much larger number of gene “hills” mutated at 
lower frequencies [ 38 ]. By analyzing exome sequencing from 623 candidate cancer 
genes in 188 lung adenocarcinomas, in 2008, Ding et al. discovered somatic muta-
tions in the coding exons of those genes [ 39 ]. In 2007, Greenman et al. reported 
more than 1,000 somatic mutations in the coding exons of 518 protein kinase genes 
in 210 diverse human cancers [ 40 ]. As the cost of sequencing started to fall sharply 
beginning in 2008, the application of exome sequencing largely increased in cancer 
research, resulting in the discovery of important factors in various cancers (Table  2 ). 
Whole-exome sequencing, despite its technical challenges, has emerged as a popu-
lar tool for identifying clinically relevant somatic mutations in cancer.
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7        Conclusions 

 The application of next-generation sequencing has become a powerful tool for can-
cer research, yielding important biological insights and enabling systematic profi l-
ing based on genomic information. Although sequencing entire cancer genomes 
provides a comprehensive picture of the genome, resequencing an entire genome 
with high coverage is expensive and also generates enormous amounts of data that 
are diffi cult to process; it is also diffi cult to interpret variants found in noncoding 
portions of the genome. Exome sequencing offers a cost-effective and viable alter-
native for cancer genomic applications, which demand sequencing with high cover-
age from a large number of cancer samples. The major limitations of exome 
sequencing are that exome capture requires complex library-preparation procedures 
that are laborious and time consuming and that regions of interest with high or low 
GC content are diffi cult to capture. As the cost of sequencing continues to decrease 
markedly, advances in capturing technologies will simultaneously allow the 
sequencing of a large number of different cancer samples and thereby advance our 
knowledge of cancer genomics.     
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    Abstract     The human cancer viruses have been found to cause 10–15 % of all 
human malignancies. High-risk human papillomaviruses (HPV-16 and HPV-18), 
hepatitis B virus (HBV), and Epstein–Barr virus (EBV) contribute directly to can-
cer development, including cervical squamous cell cancer, hepatocellular carci-
noma, Burkitt’s lymphoma, nasopharyngeal carcinoma, adult T cell leukemia, and 
Kaposi’s sarcoma. The role of human cancer viruses in cancer pathogenesis is medi-
ated through various mechanisms, including mutagenic integration into the host 
genome and expression of oncogenic viral proteins. The elucidation of such mecha-
nisms has played a key role in enhancing our understanding of cancer pathogenesis 
even as novel aspects of DNA virus biology continue to be unraveled. In this chap-
ter, we give an insight of the main events responsible for the development of malig-
nant tumors upon viral infection. With the availability of high-throughput sequencing 
and robust bioinformatics tools, it is possible to establish a landscape of viral inte-
gration into human cancer genome. Thus, we highlight the utility of RNA-Seq in 
detecting tumor-associated DNA viruses and identifying viral integration sites that 
may unravel novel mechanisms of cancer pathogenesis. And we also describe a 
robust bioinformatics tool VirusSeq and its advantages in this fi eld of study.  

1          Introduction 

 The human cancer viruses have been found to cause 10–15 % of all human malig-
nancies [ 1 ,  2 ]. Seven human viruses, high-risk human papillomaviruses (HPV-16 
and HPV-18), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus 
(EBV), human T-lymphotropic virus-I (HTLV-I), Kaposi’s sarcoma herpesvirus 
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(KSHV), and Merkel cell polyomavirus (MCV), contribute signifi cantly to cancer 
development worldwide, including cervical cancer, hepatocellular carcinoma, 
Burkitt’s lymphoma, nasopharyngeal carcinoma, adult T cell Leukemia, Kaposi’s 
sarcoma, and Merkel cell carcinoma [ 2 – 10 ]. The role of human cancer viruses in 
cancer pathogenesis is mediated through various mechanisms, including, for exam-
ple, mutagenic integration into the host genome and expression of oncogenic viral 
proteins [ 11 ,  12 ]. The elucidation of such mechanisms has played a key role in 
enhancing our understanding of cancer pathogenesis even as novel aspects of DNA 
virus biology continue to be unraveled [ 13 ]. 

 Viral etiology is particularly evident in cervical squamous cell carcinoma 
(CESC), which is almost exclusively caused by high-risk human papillomaviruses 
(HPV), and in hepatocellular carcinoma (HCC), where infection with hepatitis B 
virus (HBV) or hepatitis C virus (HCV) is the predominant cause in some countries 
[ 14 ]. In addition, several rare cancers have a strong viral component, including 
Epstein–Barr virus (EBV)/human herpesvirus (HHV) four in most Burkitt’s lym-
phomas [ 1 ]. Huge advances in the prevention of virus-associated cancer have been 
made through vaccination programs against HPV and HBV, second only to smoke 
cessation in the number of yearly cancer cases prevented worldwide [ 15 ]. 

 One of the best understood causal relationships is between human papillomavi-
rus (HPV) infection and squamous neoplasia of the anogenital and head-and-neck 
regions [ 1 ]. Infection with HPV generally gives rise to warts. Certain types have a 
strong association with cervical intraepithelial neoplasia (types 6 and 11) whereas 
other types (principally, types 16 and 18) are present in over 90 % of tumors. There 
are many reports of different papillomavirus types being detected in cancers of the 
head, neck, and mouth [ 1 ]. Although initially it was thought that HPV16 was con-
fi ned to the genital tract there are reports of HPV16 being found in the other tumors. 
Genital strains are closely associated with cervical intraepithelial neoplasia and cer-
vical, vulval, and anogenital cancer, diagnosed by abnormal cytology and pathol-
ogy. It is on the cervical and anogenital cancers that work has concentrated although 
cancers of the head, neck, and oral cavity have also a strong association with certain 
HPV strains, including HP16. HPV can immortalize keratinocytes, but another step 
is required for full transformation to an oncogenic phenotype. HPV does not code 
for a virus-encoded oncogene. Oncogenesis is associated with the two early proteins 
E6 and E7 which, respectively, bind to cell cycle control gene products, the Rb and 
p53 proteins. In epidermodysplasia verruciformis, host-mediated immunity is sig-
nifi cantly impaired. This disease is mainly associated with human papillomavirus 
types 5 and 8. The exact role of the host immune response in patients with cervical 
intraepithelial neoplasia and cervical carcinoma is not clear but increases in both. 
Precancerous lesions and cervical cancer occur in immunosuppressed patients. 
Proliferation of peripheral blood lymphocytes is observed after stimulation with 
HPV16 L1, and E6 and E7 proteins. Rodents immunized with L1, E6, or E7 are 
protected against syngeneic tumor transplants transfected with L1, E6, or E7 by 
CD8+ lymphocytes. In cervical carcinoma, the human papillomavirus genome is 
usually detected as an integrated fragment. Deletions do occur but E1, E6, and E7 
are retained and can be expressed. Recommendations for prevention include the use 
of condoms and avoidance of early age of fi rst intercourse and of multiple sexual 
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partners. Vaccine production is currently under consideration as Bovine papillomavirus 
type 4 (BPV-4) vaccine has been useful in controlling cancer of the bovine alimen-
tary tract. Several suitable T cell recognition epitopes have been located in E6 and 
E7 and may be suitable for peptide vaccines. 

 HCC is one of the leading causes of cancer-related mortality in the world and is 
strongly associated with chronic HBV or HCV infection [ 16 ]. Hepatitis virus infec-
tion causes chronic liver injury and subsequent progression to severe fi brosis and 
cirrhosis. The presence of cirrhosis is a major risk factor for the development of 
HCC. However, HCC can occur in the absence of cirrhosis, suggesting that both 
HBV and HCV may be directly involved in hepatocarcinogenesis. Chronic HBV 
infection accounts for approximately 50 % of all cases of hepatocellular carcinoma 
and virtually all childhood cases. The HBV genome was frequently detected in 
chronic hepatitis B carriers and patients with HCC [ 17 ,  18 ]. The integration of HBV 
into the host genome induces DNA deletions, translocations, and mutations in vari-
ous chromosome positions. In contrast to HBV, HCV is an RNA virus that is unable 
to reverse transcribe to DNA. Various HCV proteins, including the core, envelope, 
and nonstructural protein, have been shown to possess oncogenic properties [ 19 ]. 
It has been reported that proteins encoded by HCV RNA are involved in the manip-
ulation of diverse cellular functions, including apoptosis, proliferation, endoplasmic 
reticulum (ER) stress, etc. 

 The Epstein–Barr virus (EBV) (also known as human herpesvirus 4; HHV4) is a 
DNA virus that infects over 90 % of the world’s population before adolescence. 
It has been associated with a wide variety of human malignancies of epithelial, 
hematolymphoid, and mesenchymal derivation [ 11 ,  20 ,  21 ]. Gastric carcinoma 
associated with EBV appears to comprise a distinct entity that is predominant in 
younger male individuals [ 22 ,  23 ]. This subset of gastric carcinoma, 8–10 % of 
cases, is more prevalent in Caucasian and Hispanic patients than Asians, and it 
shows no association with  Helicobacter pylori  infection [ 22 ]. In these cases, EBV 
appears to play a direct oncogenic role through genome-wide alteration of promoter 
methylation [ 24 ], microRNA (miRNA) expression, and expression of genes involved 
in cell motility and transformation pathways [ 25 ]. The integration status of EBV in 
gastric carcinoma remains poorly understood. 

 Our current knowledge of virus–tumor associations is based largely on data gath-
ered with low-throughput methodologies in the pregenomic era. However, massively 
parallel sequencing is now showing promise for effi cient unbiased detection of 
viruses in tumor tissue. This recently led to the discovery of a new polyomavirus as 
the cause of most Merkel cell carcinomas [ 9 ], where essential virus–host interactions 
are currently being targeted in clinical drug trials [ 26 ]. Recent studies describe tech-
niques for detection of viruses using high-throughput RNA or DNA sequencing 
[ 27 ,  28 ], and massively parallel sequencing has been used to survey sites of genomic 
integration of HBV in hepatocellular carcinoma [ 17 ,  18 ]. Recently, viral integration 
sites were mapped in 17 hepatocellular carcinoma (HCC) and 239 head and neck 
carcinomas by detecting host–virus fusions in transcriptome sequencing (RNA-seq) 
data from The Cancer Genome Atlas (TCGA) [ 29 ]. These studies provided important 
insights and clearly demonstrate the potential of the methodology and motivate a 
broad unbiased survey of viral expression and integration in human cancer.  
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2     Human Papillomavirus in Malignant Cancers 

 HPV is a small, 50- to 55-nm-diameter, nonenveloped, double-stranded DNA virus 
that carries out its life cycle in either mucosal or cutaneous stratifi ed squamous 
epithelia [ 30 ]. The viral genome (8 kb in size) is amplifi ed initially as extrachromo-
somal circular elements (episomes) but may eventually integrate into the host 
genome. Over 120 types of HPV have been identifi ed, of which those capable of 
infecting humans are designated high risk or low risk on the basis of their associa-
tion with human neoplasms and oncogenic potential. The oncoproteins E5, E6, and 
E7 are the primary agents responsible for initiation and progression of HPV- 
associated cancers, and they operate primarily by abrogating negative growth regu-
lators and inducing genomic instability. The integration of HPV DNA into the host 
cell genome is considered an important step in malignant progression and is com-
monly identifi ed in noninvasive and invasive carcinomas associated with high-risk 
types HPV16 and HPV18 [ 31 – 33 ]. HPV integration sites, with a predilection for 
sites of known genomic fragility, have been found to be distributed randomly over 
the whole genome in one study [ 34 ], and the majority of integrated HPV genomes 
appear to be actively transcribed [ 35 ,  36 ]. 

 Two hundred and thirty-nine squamous cell carcinomas of the head-and-neck 
region (HNSCC) available in the TCGA database were analyzed [ 37 ]. HPV tran-
scripts were detected in 36 tumors as the following: 30 tumors with HPV16, fi ve 
tumors with HPV33, and one tumor with HPV35. Among all cases with HPV tran-
scripts, E7 was expressed in 22, E6 in 20, E1 in 17, and E4 in eight tumors. In 24 
tumors, HPV transcripts encoding key viral proteins/oncoproteins were integrated 
in the tumor genome, with the majority in association with known genes (Figs.  1  
and  2 ). Tumors with HPV integration harbored the following types: 19 HPV16, 4 
HPV33, and 1 HPV35. Of the tumors with HPV integration, 18 have both E6 and 
E7 integration sites, four have only E7 integration sites, and two have only E6 inte-
gration sites. The detected HPV status correlated with perfect sensitivity and speci-
fi city with known clinicopathologic variables and with established methods for 
HPV detection (colorimetric in situ hybridization and/or p16ink4a expression) [ 38 ]. 
For this HNSCC data set, the sensitivity for HPV16 detection was 100 %, with 95 % 
confi dence intervals (CI) of 67.6–100 %, and specifi city for HPV16 detection was 
100 %, with 95 % CI of 90.4–100 %, as reported previously [ 39 ].   

 HPV16 was also detected in two tumors of histologic types rarely associated 
with this virus. From a group of 219 lung squamous cell carcinoma tumors, one case 
harbored HPV16, where E1, E6, and E7 transcripts were highly expressed and inte-
grated in NROB1 (also known as DAX1), a gene involved in steroidogenesis and 
cell cycle regulation. In this case, no E2, E4, E5, L1, or L2 transcripts were detected. 
Additionally, one of 253 endometrial carcinoma tumors harbored HPV16, where 
E1, E2, E4, E5, E6, and E7 transcripts were highly expressed, and no L1 or L2 tran-
scripts were detected. 
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 Recently, a large survey also showed that 96.6 % of Cervical Squamous Cell 
Carcinomas (CESC) is associated with HPV [ 40 ]. Twelve HPV types, all previously 
described as associated, were found in 84 positive cervical tumors, with HPV16 and 
HPV18 expectedly being predominant (65.5 and 13.1 % of positive cases, respec-
tively). Head and neck squamous cell carcinoma showed 14.1 % HPV association, 
with 83.7 and 14.0 % of positive tumors attributed to HPV16 and HPV33, respec-
tively. Less common but previously observed associations included HPV6b and 
high-risk types in bladder urothelial carcinoma (BLCA) and uterine endometroid 
carcinoma (UCEC) [ 40 ].  

  Fig. 1    Visualization of HPV16 integration breakpoints in the HPV16 genome. The frequency of 
integration breakpoints at different loci in the HPV16 genome is shown as a  blue  histogram. The 
scale bar indicates the number of tumors. The locations of the genes encoding HPV16 E6 ( red ), E7 
( dark green ), E1 ( orange ), E2 ( purple ), E4 ( green ), E5 ( gray ), L2 ( light orange ), and L1 ( yellow ) 
proteins are shown. Genomic positions are numbered       
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3     HBV in HCC 

 The incidence of HCC is rising at an alarming rate in the United States and world-
wide; it is predicted to be the cause of 100 million deaths through the twenty-fi rst 
century (GLOBOCAN 2012 updated June 18, 2014: Estimated Cancer Incidence, 
Mortality and Prevalence Worldwide in 2012   http://globocan.iarc.fr/Pages/fact_
sheets_population.aspx    ). Chronic viral hepatitis and cirrhosis are major risk factors 
for HCC. An estimated two billion people worldwide are infected with Hepatitis B, 
and a further 3 % of the world’s population is infected with Hepatitis C Virus 
(HCV). Identifying a small manageable subset of high-risk patients and developing 

  Fig. 2    Integration sites of HPV16 in head-and-neck squamous cell carcinoma tumors in the 
human genome (hg19). Chromosome numbers are shown (*, detected in two cases)       

 

J. Chen et al.

http://globocan.iarc.fr/Pages/fact_sheets_population.aspx
http://globocan.iarc.fr/Pages/fact_sheets_population.aspx


309

nontoxic chemopreventive strategies is urgent. The current lack of translational 
progress in HCC can be attributed mainly to the diffi culty of recruiting a large 
number of HCC patients, a factor of natural history, and clinical features of 
the disease. 

 The HBV virion consists of partially double-stranded DNA packaged with a 
core protein (HBcAg) and DNA polymerase within envelope proteins (HBsAg) [ 41 ]. 
Integration of viral DNA into the genome of HCC cells has been demonstrated in 
several studies, and insertional mutagenesis has been identifi ed as a critical step 
in HBV-mediated HCC pathogenesis [ 17 ,  42 ]. Integration sites were initially 
thought to be distributed randomly throughout the host genome, but data support-
ing a more deliberate process that preferentially involves transcribed regions of 
critical genes have been reported [ 43 – 48 ]. A genome-wide association study iden-
tifi ed 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in 
chronic hepatitis B virus carriers [ 49 ]. Most recently, it was reported that genetic 
variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related 
hepatocellular carcinoma [ 50 ]. 

 Recently, we analyzed 69 HCC tumors available in the TCGA database and 
detected HBV transcripts in 16 (23 %) tumors [ 37 ]. Eight of these patients had 
serologic evidence of HBV infection, and one patient was HBV (and hepatitis C 
virus) seronegative. Serologic data on the remaining patients were either negative 
or not available. Virus integration was identifi ed in 15 (94 %) of these tumors. Our 
data demonstrate frequent HBV integration within previously identifi ed genes, 
namely, TERT (5 tumors) and MLL4 (3 tumors), suggesting that these sites are 
particularly susceptible to HBV insertion. Integration of two or more HBV genes 
was detected in eight tumors, whereas in the remaining seven tumors integration of 
only one HBV gene was detected. Interestingly, the latter group included the three 
tumors with MLL4 involvement and two with TERT involvement. Several HBV 
factors have also been implicated in hepatocarcinogenesis, including the HBx gene, 
the pre-S2/S gene, and the HBV spliced protein [ 17 ]. HBx is indispensable in hepa-
tocarcinogenesis and only promotes persistent viral infection by enhancing HBV 
gene expression and replication, but also leads to genome instability through sup-
pression of p53-regulated DNA repair [ 51 ]. Other insertion sites were restricted to 
single cases. Of the tumors with HBV integration, 11 have X protein integration 
sites, eight have S protein integration sites, six have core/E antigen integration sites, 
four have pre-S protein integration sites, four have polymerase I integration sites, 
and three have polymerase two integration sites. Integration of two or more HBV 
genes was detected in eight tumors, whereas in the remaining seven tumors integra-
tion of only one HBV gene was detected. Interestingly, the latter group included the 
three tumors with MLL4 involvement and two with TERT involvement. We addi-
tionally identifi ed HBV transcripts in one case among 460 clear-cell renal cell car-
cinoma tumors analyzed. In this tumor, as well as in one HCC tumor, we detected 
HBV S protein transcripts integrated into GLI2, generally considered a marker of 
activation of the sonic hedgehog signaling pathway, which has been shown to play 
a role in HCC [ 51 ,  52 ].  
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4     EBV in Gastric Carcinoma 

 The Epstein–Barr virus (EBV) (also known as human herpesvirus 4; HHV4) is a 
double-stranded DNA virus that infects over 90 % of the world population before 
adolescence. This virus has been associated with a wide variety of human cancers: 
undifferentiated nasopharyngeal cancer, gastric carcinoma, Burkitt’s lymphoma, 
and Hodgkin’s disease, wherein the virus persists in latent phase usually in episomal 
form. It remains unclear whether EBV integration into the host genome plays a role 
in cancer. A subset of gastric carcinomas is associated with EBV, and in such tumors 
the virus has been associated with genome-wide alteration of host promoter meth-
ylation, miRNA expression, and expression of genes involved in cell motility and 
transformation pathways. 

 We recently analyzed 71 cases of gastric carcinoma in the TCGA database and 
detected EBV transcripts in four (5.6 %) tumors [ 37 ]. Of the four tumors with 
unequivocal EBV association, all harbored transcripts encoding A73, RPMS1, 
BARF0, BALF3, BALF4, BALF5, LF1, LF2, and BILF1. In the single head and 
neck squamous cell carcinoma tumor associated with EBV, the most abundant tran-
scripts included those that encode BARF1/2, BdRF1, BMRF2, BLF1, BNLF2b, 
BBLF1, BMRF1, BLRF2, and BNLF2a. None of the tumors analyzed in this study 
had evidence of EBV integration into the host genome.  

5     Detection of DNA Viruses and Their Integration Sites 
by Next-Generation Sequencing 

 About 12 % of all human cancers are known to be caused by viruses [ 53 ], thus, the 
detection of viruses in human cancer tissue has signifi cant clinical implications in 
oncology. The advent of next-generation sequencing (NGS) technologies using 
paired-end reads allows for the detection of viruses in human cancer tissue at 
unprecedented levels of effi ciency and precision. Several groups have developed 
computational tools for pathogen/virus discovery by exploiting the great amount of 
NGS data obtained from human tissue [ 27 ,  54 ]. These groups have implemented a 
computational subtraction analysis, which has also been used to discover a new 
polyomavirus associated with most cases of Merkel cell carcinoma [ 9 ]. Although 
detecting viruses in human tissue is important in clinical oncology, investigating 
virus integration sites in host cell chromosomes is equally valuable since insertional 
mutagenesis is one of the most critical steps in the pathogenesis of HBV-mediated 
HCC [ 47 ]. NGS data have been used to map the HBV integration sites in HCC 
samples [ 17 ,  18 ]. 

 We developed VirusSeq (Fig.  3 ) for detection of DNA viruses and their integra-
tion sites using next-generation sequencing of human cancer tissues [ 29 ,  37 ]. 
VirusSeq starts with computational subtraction of human sequences followed 
by generation of a set of nonhuman sequences (e.g., viruses, etc.) on NGS data. 
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Once raw PE reads from whole genome/transcriptome resequencing are aligned/
mapped to human genome reference, any read with more than half read length 
mapped to the human reference genome is removed along with its paired mate in 
this subtraction step. Thus, a set of nonhuman sequences is generated after human 
sequence subtraction. In the second step, VirusSeq determines whether the nonhu-
man sequences match any known viral sequences by searching a comprehensive 
database that includes all known viral sequences (Genome Information Broker for 
Viruses; GIB- V,   http://gib-v.genes.nig.ac.jp/    ) and quantifi es virus representation by 
a measure of the virus genome coverage (or overall count of mapped reads) to deter-
mine the existence of viruses in human samples. Furthermore, VirusSeq excludes 
nontranscribed viral genome elements to eliminate/reduce the potential of nonsense 
reads or inclusion of nontranscribed viral genomic elements. The expression level 
of each viral transcript is measured by the normalized depth of coverage within each 
viral transcript. The cutoff of viral gene expression detection is empirically deter-
mined by profi ling the distribution of viral gene expression levels across multiple 
cancer- associated viruses (e.g., HPV16, HPV33, EBV) and multiple patient sam-
ples. Any viral expression level below cutoff is treated as no expression.  

 VirusSeq is also able to detect virus integration sites: The genomes of viruses 
with detectable expression level detected in previous steps are concatenated into a 
single genome named chrVirus with related annotation of each virus in refFlat for-
mat [ 29 ]. A new hybrid reference genome named hg19Virus is built by combining 

Subtract human sequences by
aligning to human genome (hg19)

Align non-human reads to virus
database (GIB-V) and determine the

viral transcripts

PE reads

Integration site list

Align all PE reads to hybrid
genome hg19Virus

Detection of discordant read pairs
and clustering by a greedy

algorithm

Candidate viruses

  Fig. 3    VirusSeq workfl ow        
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hg19 and chrVirus. All paired-end reads without computational subtraction are again 
mapped to this reference (hg19Virus). If the paired-end reads are uniquely mapped 
with one end to hg19 and with the other end to chrVirus, it is reported as a discordant 
read pair. All discordant reads are annotated by using the genes and viruses defi ned 
in the curated refFlat fi le. VirusSeq then clusters the remaining discordant read pairs 
that support the same integration (fusion) event (e.g., HBV- MLL4) and selects them 
as fusion candidates. VirusSeq implements a greedy search-based dynamic cluster-
ing process to accurately determine the exact fusion junction between human gene 
and virus. Specifi cally, the boundary for each discordant read cluster of candidate 
fusion is estimated on the basis of discordant read mapping locations and orienta-
tions with fragment length distribution as a constraint of cluster size, which is mea-
sured by using reads’ genomic location excluding intronic sizes if mapped reads are 
located across adjacent exons in a candidate fusion. For the forward-aligned discor-
dant reads in a fusion candidate, the clustering process starts with the most right 
read, and the genomic coordinate for the most right read is used to defi ne the in silico 
fusion junction excluding the outliers within the discordant read cluster. In order to 
remove outliers within a cluster, VirusSeq implements the robust “extreme studen-
tized deviate” (ESD) multiple-outlier procedure. If the outliers come from right end 
of cluster, the outliers are removed and the clustering process restarts with new in 
silico fusion junction after exclusion of outliers. If the outliers come from left end of 
cluster, the cluster size is reset with in silico fusion junction intact by excluding the 
outlier reads. For the reverse-aligned discordant reads, the clustering process starts 
with the most left read, and the genomic coordinate for the most left read is used to 
defi ne the in silico fusion junction with same outlier detection/removal processing 
step. For either side of candidate fusion partner (gene vs. virus), this clustering pro-
cess is performed independently. This greedy search-based dynamic clustering pro-
cess accurately determines the exact fusion junction between human gene and virus. 
Meanwhile, an in silico sequence by using the consensus of reads within discordant 
read clusters for each fusion candidate is generated to help PCR primer design, 
which facilitates quick PCR validation. 

 VirusSeq was used to analyze RNA-Seq data of 239 cases of HNSCC available 
in the TCGA database with the sensitivity at 100 % (8/8) with a 95 % CI of 
67.6–100 %, and the specifi city at 100 % (36/36) with a 95 % CI of 90.4–100 %.  

6     Discussions 

 The pathogenetic role of DNA viruses has been well established in some cancers, 
particularly in squamous cell neoplasms of the anogenital and head-and-neck regions 
and hepatocellular carcinoma. The quest to identify similar associations in other 
malignant cancers has consumed signifi cant efforts over the past decades. One of the 
key fi ndings so far by next-generation sequencing of TCGA tumor samples [ 37 ,  40 ] 
is the absence of an association between all known DNA viruses and some of the most 
prevalent human cancers, including acute myeloid leukemia; cutaneous melanoma; 
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low- and high-grade gliomas of the brain; and adenocarcinomas of the breast, colon 
and rectum, lung, prostate, ovary, kidney, and thyroid. Based on these results and 
unless novel pathogenic DNA viruses are discovered, we believe that the yield of 
future searches for DNA viruses in these types of cancers is likely to be very low. 

 The capacity of our algorithm VirusSeq [ 29 ] to detect viral integration points 
within the host genome is a signifi cant advantage that might alter the manner by 
which tumor–virus associations are studied in the future. The value of this capacity 
might be best illustrated in the rare cases of urothelial carcinoma with HPV. Our 
approach provides a discovery framework to identify tumors whose pathogenesis 
might be driven, at least in part, by virus-mediated/induced genomic perturbations. 

 Next-generation sequencing has paved the way to a greater understanding of 
virus-associated tumors, thanks to the study of the molecular complexity of multi-
centric lesions and intratumoral heterogeneity in whole tumor genomes. It already 
helps to better understand epidemiology in highlighting relevant associations 
between viruses and cancers. Detailed analysis of somatic mutation signatures and 
DNA virus genome integration sites will clarify the molecular basis of carcinogen-
esis. Integration of large genomic data sets with functional annotation will provide 
a new horizon for human cancer diagnosis, prognosis, and treatment in the near 
future. At an individual scale, identifi cation of molecular oncogenic events is lean-
ing toward a molecular-level personalized medicine.     
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    Abstract     Oral verrucous carcinoma is considered to be a histological subtype of 
oral squamous cell carcinoma, which generally follows a more indolent clinical 
course. It presents a specifi c clinical challenge in that it can be diffi cult to reach a 
defi nitive diagnosis and harbours the potential to transform into the more aggressive 
squamous cell carcinoma. In this chapter, we will discuss the background of this 
disease and the potential and previous role of next-generation sequencing (NGS) in 
head and neck cancer. The use of low coverage NGS to produce copy number varia-
tion (CNV) data and demonstrate how different computational methods can be 
applied to that data to analyse patterns and identify targets of interest. The applica-
tion of NGS to detect and determine the prevalence of human papillomavirus in this 
disease will also be discussed.  

1          Introduction 

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common can-
cer in the world, with an occurrence incidence of ~600,000 cases in each year and a 
5-year survival rate of only ~50 % [ 1 ]. They are a heterogeneous group of tumours 
occurring anywhere from the lips to the trachea. These are biologically similar 
tumours in that the vast majority (>90 %) are squamous cell carcinoma, but clini-
cally different in their presentation and complications of the disease. Oral cavity 
squamous cell carcinoma (OSCC) is found mainly in older men who are exposed to 
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known risk factors such as tobacco and alcohol [ 2 ]. OSCC remains a challenging 
disease to treat, with disease-free survival rates of 58 % [ 3 ]. Oral verrucous carci-
noma is considered a histological subtype of oral carcinoma with a relatively indo-
lent clinical course [ 4 – 6 ]. 

 Similarly to Fearon and Vogelstein’s description of colorectal carcinogenesis, oral 
cancer has been demonstrated to occur with the stepwise accumulation of genetic 
abnormalities [ 7 ]. Alterations in genes regulating DNA synthesis and repair, cell 
cycle progression, and cell division are fundamental to this process [ 8 ]. The conse-
quences of these genetic and molecular alterations are changes in the epithelial tissue 
phenotype, which may be histologically recognised as epithelial dysplasia, and even-
tually representing cell proliferation and differentiation dysregulation [ 9 ,  10 ]. 
However, precise, predictive assessments of individual oral cancers and precancers 
clinical behaviour and progression still remain indefi nable in clinical practice [ 8 ]. 
Some oral squamous cell carcinomas arise in obvious normal mucosa, but many are 
preceded by clinically apparent premalignant lesions, mainly leukoplakia (white 
patch), erythroplakia (red patch), or speckled leukoplakia (white and red patches) [ 5 ]. 

 Oral leukoplakia clinical phenotypes can range from thin homogeneous well- 
defi ned bordered white plaques to thick verrucous lesions [ 4 ]. In 1980, the term 
verrucous hyperplasia of the oral mucosa was coined by Shear and Pindborg [ 11 ]. 
Oral verrucous hyperplasia (OVH) is a whitish or pink mass or an oral mucosal 
plaque with a papillary or verrucous surface [ 12 ]. Shear and Pindborg, they described 
that 29 % of OVH lesions also showed histological features of OVC. Very few stud-
ies have been published on OVH, and the malignant transformation potential of 
verrucous hyperplasia lesions has not been inspected in detail [ 11 ]. In 2007, a fol-
low- up study based in a Taiwanese hospital indicated that ten out of 324 patients 
with OVH developed oral cancers (two progressed to OVC and eight progressed to 
OSCC) in an average time of 54.6 months [ 13 ]. Similarly, a retrospective study that 
was conducted in 2009 in Taiwan hospital clinics reported that the annual malignant 
transformation rate of oral verrucous hyperplasia to OSCC is around 5.2 per 100 
patient-years [ 14 ]. OVH is therefore considered a histological precursor of oral ver-
rucous carcinoma (OVC) [ 6 ] that may transform into either an OVC or an OSCC 
[ 12 ]. OVH lesions are more common in 4th to 5th decade male patients; they occur 
mostly on the buccal mucosa and the tongue and are usually highly associated with 
cigarette smoking, alcohol drinking, and the areca quid chewing habits [ 6 ,  12 ]. 

 In 1948, Ackerman defi ned OVC; it is also known as Ackerman’s tumour or ver-
rucous carcinoma of Ackerman [ 15 ]. OVC has been described as a low grade, slow 
growing, non-metastasizing, rare variant of OSCC [ 16 ]. It constitutes 2–10 % of 
OSCC [ 17 ]. Generally speaking, OVC clinico-histopathological diagnosis is usu-
ally exclusionary and extremely diffi cult, though it has a better prognosis compared 
to other carcinomas [ 18 ]. Histologically, OVC consists of thickened, club-shaped 
papillae and blunt stromal invaginations of well-differentiated squamous epithelium 
with marked keratinization,    with the squamous epithelium lacking cytological criteria 
of malignancy. OVC invades underlying stroma with a pushing, rather than infi l-
trating front [ 16 ]. 
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 The aetiology of OVC is not well known [ 18 ], though it has been suggested that 
OVC develops from premalignant lesion [ 11 ,  19 ]. Smoking appears to be highly 
associated with the development of OVC [ 20 ]. In Asia, bidis and cigarettes smoking 
is known to be associated with leukoplakia, and areca quid, paan, and miang chew-
ing habits have also been found [ 21 ]. Since a verrucous appearance is suggestive of 
viral aetiology, a number of investigations to study the putative association between 
HPV and OVC have been undertaken [ 22 ,  23 ]. These have reported a wide range in 
the incidence of HPV in OVC (30–100 %) leading to its actual role in OVC patho-
genesis being controversial and inconclusive. This variation can be attributed to the 
defi ciency of standardised detection procedures and the diffi culty in defi ning com-
plete histological criteria for OVH and OVC cases. Furthermore, the rarity of these 
types of lesions makes it diffi cult to study and investigate, and most previous studies 
or case reports have been made on small number of cases. 

 Another challenge in the establishing the diagnosis in this disease is that OVH 
resembles OVC both histologically and clinically. Routine histological examination 
of haematoxylin and eosin (H&E) stained sections is currently the most reliable 
method to distinguish between these entities, which is based on determining the 
endophytic and invasive growth pattern of OVC, from the exophytic growth pattern 
associated with OVH [ 24 ]. In1980, Shear and Pindborg described the histopatho-
logical key point features of oral verrucous lesions [ 11 ]. However, the differentiation 
of these lesions is often diffi cult with poorly orientated specimens, small biopsies, 
and, particularly, with biopsies that fail to show the margin of the lesion [ 24 ]. 
Therefore a more discriminatory method of distinguishing OVC from OVH as well 
as OSCC is needed. 

 During the past half-decade, the development of next-generation sequencing 
(NGS) technologies has enabled high sensitivity and resolution studies of cancer 
genomes through whole-exome and whole-genome sequencing approaches [ 25 ]. In 
head and neck cancer, three studies have collectively performed whole-exome 
sequencing on 151 tumours from multiple subsites. These studies confi rmed that in 
HPV-negative tumours,  TP53  is almost universally aberrant and discovered 
 NOTCH1  to be the second most commonly mutated gene in head and neck cancer 
[ 26 – 28 ]. In addition these studies revealed a relatively low level of overlap in recur-
rently mutated genes between tumours, though they did discover that 31 % of their 
cohort contained phosphoinositide 3-kinase ( PI3K ) pathway mutations. NGS has 
also been established to be an effective, sensitive method for testing for HPV with 
the advantage that it can test for all subtypes of HPV in a sample [ 29 ]. 

 Furthermore, NGS techniques offer considerable benefi ts for copy number varia-
tion (CNV) analysis, including precise delineation of the genomic breakpoints and 
higher resolution (can detect single-base insertions or deletions) of copy number 
changes [ 30 ]. It enables the estimation of tumour-to-normal copy number ratio at a 
genomic locus through counting the number of reads at this locus in normal and 
tumour samples [ 30 ]. Nevertheless, sequencing data can be produced even with 
nanogram amounts of DNA extracted from formalin-fi xed paraffi n-embedded 
(FFPE) materials [ 31 ]. 
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 Since OVC reveals minimal cytological atypia, besides the nuclear 
 hyperchromatism of focal basal cells, distinction of OVC from OVH cannot only 
rely on the cytological features [ 32 ,  33 ]. For this reason, new experimental 
approaches are needed to improve the pathological diagnostic criteria for OVH and 
OVC and for better understanding of the development and progression of those 
lesions. We will present the methodology and analysis of NGS copy number data to 
distinguish between the genomic damage pattern in OVH and OVC and to analyse 
a subset of oral verrucous lesions (including VC and VH cases) for the presence of 
HPV subtypes and all characterised human viral genomes.  

2     Sample Selection and Characteristics of OVH and OVC 

 The rarity of OVC and OVH lesions is an obstacle to studying this disease. 
Therefore, only by collaborating with several international cancer centres were we 
able to obtain the largest cohort of OVC and OVH samples. These included the 
Leeds Teaching Hospitals Pathology Archive; the Pathology Division, University of 
Torino; the Department of Pathology and Laboratory Medicine, at National Guard 
Hospital, Saudi Arabia; and the Department of Histopathology, Queen Victoria 
Hospital, East Grinstead, UK. All pathological materials used for this from each 
case were available in the form of archival formalin-fi xed paraffi n-embedded 
(FFPE) tumour blocks. Samples from Turin, Italy, were taken as sections on glass 
slides (10 μm sections onto 10 plain glass slides from each block). 

 In total, 92 OVC and OVH samples were obtained, making this the largest cohort 
in the literature. The original diagnoses were confi rmed by Dr. Alec High (reference 
head and neck pathologist). World Health Organisation (WHO) defi nition and crite-
ria were used for the histological diagnosis of OVH and OVC [ 16 ]. Verrucous 
appearing, but clearly “invasive” squamous lesions were classifi ed as verrucous 
SCC and excluded [ 16 ]. Because of different reasons such as low yields of the 
extracted DNA and failed library preparations, 73 cases out of 92 succeeded for 
NGS copy number analysis. From the 73 cases, a total of 16 OVH patients were 
identifi ed, ranging from 52 to 80 years old, and a total of 57 OVC patients were 
identifi ed, ranging from 46 to 96 years old.  

3     Nucleic Acid Extraction 

 A head and neck pathologist, on a single 5 μm H & E slide created from each tumour 
FFPE block, identifi ed the areas of the highest tumour cell purity. This area was then 
microdissected from seven consecutive 10 μm slides. The nucleic acid was extracted 
from this tissue using the Qiagen AllPrep kit. The DNA was sonically sheared to 
ensure no fragments larger than 200bo were present in each sample, and the 
NEBNext Library Prep Master Mix Set for Illumina was used to create sequencing 
libraries. These were then multiplexed at 40 per lane on the Illumina HiSeq 2000.  
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4     Generation of Digital Karyograms 

 High-resolution mapping of CNV involves sequenced reads aligned to a reference 
genome [ 34 ]. The distribution of the aligned reads is then analysed on a genomic 
segmental window-by-window basis to defi ne alterations in read depth between the 
reference genomes and tests [ 35 ]. When compared to the control sample, a reduc-
tion in sample read depth across a window suggests a loss in genomic component; 
an increase in read depth represents a gain [ 36 ]. The threshold of ploidy at which a 
signifi cant copy number alteration is to be “called” needs to be set, and in the fol-
lowing analyses, this was set at 0.05. 

 Here, DNA was sequenced at a coverage between 0.1 and 0.5, and the copy 
 number (CN) was calculated and analysed. Briefl y, sample reads were arranged 
and organised by chromosome and position. The ratio of test to control reads was 
calculated across the genome in equal sized windows averaging 200 reads in some 
cases and 400 reads in others. A control sample was pooled from a group of 20 
British normal individuals downloaded from the 1000 Genomes Project 38  (  ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp    , last accessed 3rd March 2011). For all sam-
ples, suffi cient sequencing reads were obtained, and hence, digital karyograms were 
constructed from these data using the CNAnorm programme in which CNV can be 
analysed [ 37 ]. 

 Generally speaking, sequence variations are usually not distributed uniformly 
within genomes [ 38 ]. Nonetheless, CNVs that are enriched in simple tandem repeats 
occur more often towards centromeres and telomeres and are not elevated in guanine 
and cytosine content or SNPs [ 38 ]. For the purposes of this analysis, copy number 
alterations in all centromere and telomere chromosomal regions were excluded [ 39 ].  

5     Analysing CNV Data 

5.1     Visual Inspection 

5.1.1     Comparison of Individual Karyograms 

 Visual inspection of the 73 patient (OVHs and OVCs) genomic copy number karyo-
grams demonstrated regions of gain and loss along the whole genome in OVC cases. 
In general, OVC karyograms showed different types of copy number patterns, in 
terms of both, complexity of the damage, and the proportion of genomes involved. 
This pattern ranged from whole chromosome gain to amplifi ed or lost chromosome 
arms and regions. As an illustration, Fig.  1  below demonstrates a CN karyogram for 
a histologically normal oral epithelium tissue with no chromosomal gain or loss.  

 An example of a typical digital karyogram generated from an OVH sample 
(Fig.  2 ) is shown below. The blue arrow points to gain in Chr7. Horizontal lines 
above the centre demonstrate regions of gain, and those below the centre demonstrate 
regions of loss. In general, little gain and loss were found in OVH cases. Visual 
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examination of the 16 individual patient genomic copy number traces revealed a very 
low level of genomic damage in OVH samples compared to oral verrucous tumours 
(N: 57), indicating that the genomic profi le of these cases has minimal chromosomal 
abnormalities and is more similar to normal.  

 These fi ndings are surprising since it has been well known that OVH shares simi-
lar clinical and histological morphology to OVC, and the clinical differentiation of 
the verrucous hyperplastic lesions from OVC is often diffi cult [ 6 ,  11 ,  40 ]. From 
what has been found here and despite the similar clinical and histological features 
that OVH and OVC share, the analysis of OVH individual CN karyograms showed 
that these lesions have different genomic profi le from OVC with very low, narrow 
levels of DNA aneuploidy. 

 Figure  3  shows an example of the karyogram profi le generated from an OVC 
sample. Blue arrows point at gains in Chr2, Chr7, Chr10, Chr16, and Chr17. 
Horizontal lines above the centre demonstrate regions of gain, and those below the 
centre demonstrate regions of loss. OVC karyograms appear in an early stage of DNA 
near-diploid aneuploidy. In addition, gains at 7q, 16q, and 17q (represented by red 
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with black lines) were detected frequently in OVC cohort, suggesting that these CN 
alterations may be involved in the development of OVC. On the other hand, deletion 
trends were minimally found in OVCs, suggesting that overexpression of oncogenes 
is most likely to be involved in the development of OVC.   

5.1.2      Comparison of Cumulative Frequency Karyograms 

 Frequency karyograms were produced using an in-house built programme that takes 
all BED fi les (.bed) from the CN analysed sample lists. The selected CN threshold 
was of 0.05 above or below and was considered a gain or loss. In general, visual 
examination of OVH (N: 16) genomic CN frequency karyogram (Fig.  4a ) notice-
ably illustrates the very low level of CN alterations in OVHs compared to OVCs, 
indicating that the genomic profi le of these cases has minimal chromosomal abnor-
malities and is most similar to normal. In addition to a genome-wide view, the indi-
vidual chromosome cumulative frequency plots can be viewed to enable a higher 
resolution examination. Visual examination was performed on chromosome plots in 
order to investigate the genomic locations of chromosomal segments with altered 
CN in OVHs. Gains mapped at chromosome 7q11.2 and 7q22 (represented by red 
colour) were noticed in OVHs at a frequency of ~50 %, suggesting that this CN 
alteration may be related to development of OVH. These results are different from 
a study in 2001, which reported high frequency of allelic loss in 20/25 OVH cases 
at loci on 3p, 9p, 4q, 8p, 11q, 13q, and 17p chromosome arms (one or more than one 
arm) and then suggested that loss of heterozygosity (LOH) on these arms may 
explain the malignant potential of OVH lesions [ 40 ]. Allelic loss without CN loss is 
possible; however, it is unlikely not to identify any in OVH cohort here at all these 
loci. Nonetheless, it is important to keep in mind the inability of LOH techniques to 
identify chromosomal gains, which differ from array-based comparative genomic 
hybridization (aCGH) or NGS CN analysis capabilities in detecting both chromo-
somal losses and gains [ 41 ]. Consequently, these CN approaches are preferable to LOH 
if gene amplifi cations and chromosomal gains are to be assessed alongside losses.  
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 Visual examination of OVC (N: 57) genomic CN frequency karyogram (Fig.  4b ) 
revealed a higher level of CNA compared to OVH. In OVCs, there is no loss at 
chromosome 3p and gain at 3q and a lower frequency of gain of 5p and 8q. 
Furthermore, gains mapped at chromosome 7p22, 7q11.2, and 7q22 (represented by 
red colour) were observed in OVCs at a frequency of ~50 %, in addition to gains 
mapped at chromosomes 3p21 (at a frequency of ~30 %), 15q15 (at a frequency of 
~30 %), 16q22 (at a frequency of ~25 %), and 17q23 (at a frequency of ~25 %) as 
well as losses on chromosomes 6p21 (at a frequency of ~25 %) and 17q12 (at a 
frequency of ~50 %) represented by green colour, suggesting that these CN altera-
tions may be involved in the development of OVC. 

 Gains at chromosome arms 7q, 16q, and 17q were detected in OVCs at a frequency 
of 50 % and have not been previously identifi ed as a common CN altered chromo-
some lesions in oral cancer. Nevertheless, deletion trends were minimally found in 
OVC’s frequency karyogram, suggesting that overexpression of oncogenes is most 
likely to be involved in the development of OVC. However, in 2001, a study was 
conducted to investigate the frequency of allelic loss in oral verrucous lesions, includ-
ing 17 OVC samples [ 40 ]. They reported high frequency of allelic loss at loci on 3p, 
9p, 4q, 8p, 11q, 13q, and 17p chromosome arms (one or more than one arm) then 
suggested that LOH on these arms may explain the malignant potential of OVCs [ 40 ]. 
From their fi ndings, two chromosomal regions were comparable here to CN 
 aberrations outcome in OVC cohort (losses in chromosomes 8p23.3 and 9p21). 
Though, loss of chromosome 8p23.3 (which is a telomere region as well) was at a 
frequency of ~10 %, and loss of chromosome 9p21 was at a frequency of ~5 % in this 
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OVC study cohort. In addition, the previous study included 17 OVC samples, while 
here, 57 OVC samples were included. Again, it is important to keep in mind the 
inability of LOH techniques to identify chromosomal gains, which differ from aCGH 
or NGS CN analysis capabilities in detecting chromosomal losses and gains [ 41 ].   

5.2     Computational Approaches 

5.2.1    Genomic Identifi cation of Signifi cant Targets in Cancer (GISTIC) 2.0 

 The GISTIC algorithm identifi es likely somatic driver CN alterations through eval-
uating the amplitude and frequency of amplifi ed or deleted observed events [ 42 ]. 
GISTIC has been used and applied to many cancer types, including lung and esoph-
ageal squamous carcinoma [ 43 ], colorectal carcinoma [ 44 ], melanoma [ 45 ], and 
ovarian carcinoma [ 46 ] and has facilitated the identifi cation of several new amplifi -
cation targets (including  SOX2  [ 43 ],  CDK8  [ 44 ],  NKX2-1  [ 47 ], and  VEGFA  [ 48 ], 
besides deletions ( EHMT1  [ 49 ]). 

 Here, the CN profi les of OVH and OVC were characterised by several approaches 
using the GISTIC2.0 algorithm including amplifi cation and deletion plots of 
CNAs, the identifi cation of amplifi cation and deletion genes within CN altered 
regions, and segmented CN heat maps. The default parameters were used in the 
GISTIC analysis.    A number of regions of recurrent CN gains and losses were evi-
dent in the GISTIC analysis in OVH and OVC cohorts and matched the generated 
frequency karyograms CN aberrations described above. Genomic positions of the 
most signifi cant amplifi cation and deletion peaks (from the GISTIC analysis) 
including the list of genes contained in them for OVH and OVC samples were iden-
tifi ed in Tables  1  and  2 . The results were then further analysed by running the gene 

    Table 1    Lists of genes located in the most common regions of recurrent DNA copy number 
change in OVH   

 Focal events  Genomic position  Genes mapping within region 

 Focal 
deletion 
( q -value: 
0.032774) 

 5q31.1, wide peak 
boundaries: 
 chr5:133200002- 
137600000  

 CAMLG, IL9, LECT2, SMAD5, NEUROG1, NPY6R, 
PITX1, PPP2CA, SKP1, SPOCK1, TCF7, TGFBI, UBE2B, 
VDAC1, WNT8A, NME5, CDC23, MYOT, CXCL14, 
H2AFY, SMAD5-AS1, DDX46, KIF20A, SEC24A, BRD8, 
HNRNPA0, PHF15, FBXL21, KLHL3, PKD2L2, SAR1B, 
CDKL3, FAM13B, C5orf15, TRPC7, TXNDC15, PCBD2, 
CDKN2AIPNL, C5orf24, C5orf20, SLC25A48, 
LOC340073, LOC340074, CATSPER3, LOC389332, 
TIFAB, VTRNA2-1, MIR874, MIR3661, MIR4461 

 Focal 
deletion 
( q -value: 
0.015741) 

 17q11.2, wide peak 
boundaries: chr17:
30000002- 33600000  

 hsa-mir-632, ACCN1, LIG3, MYO1D, PSMD11, 
RAD51D, CCL1, CCL2, CCL7, CCL8, CCL11, CCL13, 
SH3GL1P1, ZNF207, CDK5R1, CCT6B, SUZ12, 
TMEM98, NLE1, FNDC8, RHOT1, C17orf79, UTP6, 
C17orf75, ZNF830, LRRC37B, RFFL, TMEM132E, 
SPACA3, SLC35G3, UNC45B, SLFN5, RHBDL3, 
C17orf102, ARGFXP2, MIR632, AA06, RAD51L3-RFFL 
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lists against 13 enriched Kyoto encyclopaedia of gene and genomes (KEGG) path-
ways, which are more related to head and neck cancers, as well as cancer gene 
census and Stransky mutation list (76 previously identifi ed genes in HNSCCs har-
bouring high statistically signifi cant mutations) [ 27 ].

5.2.2        Applying GISTIC to OVH CNV Data 

 Regions of signifi cant gains or losses were identifi ed using GISTIC algorithm. Two 
chromosomal regions (deletions) from the CNAs identifi ed by GISTIC analysis 
were signifi cantly altered in OVH patients’ genomes according to this analysis 
(orange highlighted chromosomal positions in Fig.  5b ). These two deletion regions 
that surpass the signifi cance threshold are in chr 5q31.1 and 17q12 with a frequency 
less than 20 %. Surprisingly, no signifi cant amplifi cation regions were detected by 
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  Fig. 5    Genome-wide amplifi cation and deletion plots of CNAs in OVH. Genomic positions are 
indicated along the  y -axis with centromere locations showed by  dotted lines . Amplifi cation ( red ) 
and deletion ( blue ) GISTIC plots show  q -values ( bottom  on the  x -axis), the G-scores that consider 
the frequency of the aberration occurrence as well as its amplitude across samples ( top ), and the 
signifi cance threshold is indicated by the  green line  at 0.25, with respect to amplifi cations and 
deletions for all markers over the entire analysed region.  Blue arrows  and  circles  point to regions 
with signifi cant gain, and  orange arrows  and  circles  point to regions with signifi cant loss       
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GISTIC analysis, and the chromosomal regions shown in the amplifi cation plot 
below are centromeres (e.g. Chr 7q11.1). In general, visual examination of OVH 
genomic CN plots noticeably illustrates the very low level of CN alterations in 
OVHs compared to OVC genomic CN plots.   

5.2.3    Applying GISTIC to OVC CNV Data 

  Again , regions of signifi cant gains or losses were identifi ed using GISTIC algo-
rithm. Ten chromosomal regions (seven amplifi cations and three deletions) from the 
CNAs identifi ed by GISTIC analysis were signifi cantly altered in OVC genomes 
(Fig.  6a, b ). The seven most signifi cant amplifi cations from GISTIC peaks (Fig.  6a , 
blue circles) that also surpass the signifi cance threshold include chromosomes 
3p21.31, 7p22.2, 7q11.23, 7q22.1, 15q15.2, 16q22.1, and 17q23.2. Gains mapped 
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  Fig. 6    Genome-wide amplifi cation and deletion plots of CNAs in OVC. Genomic positions are 
indicated along the  y -axis with centromere locations showed by  dotted lines . Amplifi cation ( red ) 
and deletion ( blue ) GISTIC plots show  q -values ( bottom  on the  x -axis), the G-scores that consider 
the frequency the aberration occurrence as well as its amplitude across samples ( top ), and the 
signifi cance threshold is indicated by the  green line  at 0.25, with respect to amplifi cations and 
deletions for all markers over the entire analysed region.  Blue arrows  and  circles  point to regions 
with signifi cant gain, and  orange arrows  and  circles  point to regions with signifi cant loss       
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at chromosome 3p21 (at a frequency of ~50 %), 7p22 (at a frequency of ~75 %), 
7q11.2 (at a frequency of ~70 %), 7q22 (at a frequency of ~35 %), 15q15 (at a fre-
quency of ~40 %), 16q22 (at a frequency of ~40 %), and 17q23 (at a frequency of 
~45 %) were observed as well in OVC frequency karyograms although with differ-
ent frequencies (described above). The variation in the frequencies between GISTIC 
analyses CN plots and the frequency karyograms generated from OVC individual 
CN karyograms can be attributed to the non-specifi c visual examination method and 
human eye errors, as there was no algorithm to give the exact frequency percentage 
at the time of my analysis.  

 The three most signifi cant deletions from GISTIC peaks (Fig.  6b , orange circles) 
that also surpass the signifi cance threshold include chromosomes 5q31.1 (at a fre-
quency of ~15 %), 6p21.2 (at a frequency of ~25 %), and 17q12 (at a frequency of 
~15 %). Losses on chromosomes 6p21 and 17q12 were also observed in OVC fre-
quency karyograms but with different frequencies (refer to Sect.  5.1.2 ).    Again, the 
variation in the frequencies between GISTIC analyses CN plots and the frequency 
karyograms generated from OVC individual CN karyograms can be attributed to the 
inaccurate visual estimation and human eye errors, as there was no algorithm to give 
the exact frequency percentage at the time of this analysis. 

 A number of regions of recurrent CN gain and loss were evident in the GISTIC 
analysis (Figs.  5  and  6 ). Genomic positions of amplifi cation and deletion peaks 
(identifi ed in the GISTIC analysis) are listed below (Tables  1  and  2 ) in order to 
explain the next step, including the list of genes contained in them. Focal event 
regions were selected from the highlighted deletion circles in Fig.  5  and the high-
lighted amplifi cations and deletions circled in Fig.  6 . The threshold for q-values is 
0.25; regions with q-values lower than this number were considered signifi cant, and 
genes within those regions were further investigated.  

5.2.4    Assessment of the List of Genes Identifi ed via GISTIC 

 The GISTIC method was used to identify the most signifi cant amplifi cations and 
deletions as described previously. Two deletion peaks were identifi ed in OVH, and 
these regions had a large gene lists. The results were then further analysed by run-
ning the gene lists against 13 enriched KEGG pathways (a large database project for 
metabolic pathways), including KEGG P13K, KEGG WNT signalling pathway, 
KEGG cell cycle, KEGG calcium signalling pathway, KEGG VEGF signalling 
pathway, KEGG MAPK pathway, KEGG DNA replication pathway, KEGG phos-
phatidylinositol signalling system, KEGG P53 signalling pathway, KEGG NOTCH 
signalling pathway, KEGG JAK-STAT signalling pathway, KEGG ERBB signal-
ling, and KEGG hedgehog, which are more related to head and neck cancers, as 
well as cancer gene census and Stransky mutation list (76 previously identifi ed 
genes in HNSCCs harbouring high statistically signifi cant mutations) [ 27 ]. 

 Out of eight key genes hits (refer to Fig.  7 ), four genes were involved in KEGG 
WNT signalling pathway (36 % of the CN altered genes in OVH cohort were 
involved in this pathway). In addition, two genes were involved in KEGG cell cycle 
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pathway (18 % of the CN altered genes in OVH cohort were involved in this 
 pathway), and one cancer gene was located as well among the eleven genes list 
( SUZ12 ). Table  3  lists all key genes founded to be in CN altered regions with the 
highest signifi cant losses in OVH cohort. OVH illustrates very low level of CNAs, 
and as a result, a low number of genes were identifi ed. 
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  Fig. 7    A graphical representation of 13 enriched KEGG pathways, cancer gene census, and 
Stransky mutation list [ 27 ] on the  x -axis ranked by the number of genes with CNAs from OVH 
samples in each pathway and list on the  y -axis       
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      Table 3    Lists of all key 
genes founded to be CN 
altered within regions with 
the highest signifi cant gains 
and losses in OVH, OVC, 
and OSCC cohorts   

 Genes 

 OVH  OVC 

 KEGG WNT 
signalling pathway 

  PPP2CA  
  SKP1  
  TCF7  
  WNT8A  

  RAC1  
  RHOA  
  NFATC3  
  NFAT5  
  PLCB2  
  CHP  
  DAAM2  
  PPP2CA  
  SKP1  
  TCF7  
  WNT8A  

 KEGG JAK-STAT 
signalling pathway 

  IL9    EPO  
  IL9  

 KEGG MAPK   RAC1  
  JMJD7-PLA2G4B  
  CHP  
  PLA2G4E  
  PLA2G4B  
  CACNA1G  

 KEGG DNA 
replication 

  RFC2  
  MCM7  

 KEGG NOTCH 
signalling pathway 

  DTX2  
  DLL4  

 KEGG 
phosphatidylinositol 
signalling system 

  ITPKA  
  PLCB2  
  DGKE  

 KEGG P13K   PPP2CA    RAC1  
  YWHAG  
  LAMB2  
  RPS6KB1  
  EPO  
  GNB2  
  CHAD  
  PPP2CA  

 KEGG hedgehog   WNT8A    WNT8A  
 KEGG calcium 
signalling pathway 

  VDAC1    FZD9  
  ITPKA  
  PLCB2  
  CHP  
  CACNA1G  
  VDAC1  

 KEGG ERBB 
signalling 

  RPS6KB1  
  PAK6  

 KEGG cell cycle   SKP1  
  CDC23  

  YWHAG  
  CDC25A  
  E2F4  
  BUB1B  
  MCM7  
  SKP1  
  CDC23  

(continued)
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   Many WNTs are frequently overexpressed in head and neck cancers [ 50 ]. 
However, in OVH cohort, genes involved in WNT signalling pathway were in CN 
loss regions.  SUZ12  gene is located at chromosome 17q11.2, which has been deleted 
at a frequency of ~15 % in OVH GISTIC deletion plot. The role of  SUZ12  has been 
investigated previously in epithelial ovarian cancer cells and revealed high signifi -
cant expression levels when compared with either fallopian tube epithelium or nor-
mal human ovarian surface epithelium, as it inhibits apoptosis by stimulating the 
proliferation of human epithelial ovarian cancer cells [ 51 ]. However, no reports 
were found to illustrate the role of  SUZ12  when down regulated. 

 Additionally, twelve peaks were identifi ed in OVC cohort, and these regions had 
a large gene lists. The results were then further analysed by running the gene lists 
against KEGG pathways, cancer gene census, and Stransky mutation list. Out of 49 
key genes hits (refer to Fig.  8 ), thirteen genes were cancer genes (17 % of the CN 
altered genes in OVC cohort were found to be related with cancer). Furthermore, 
eleven genes were involved in KEGG WNT signalling pathway (15 % of the CN 
altered genes were involved in this pathway) and eight genes in P13K pathway 
(10 % of the CN altered genes were involved in this pathway). Seven genes were 
in KEGG cell cycle pathway and seven genes as well in KEGG VEGF signalling 
pathway (9 % of the CN altered genes are in these pathways). Similarly, six genes 
were in the KEGG MAPK pathway, and six genes were involved in KEGG calcium 

 Genes 

 OVH  OVC 

 KEGG P53 signalling 
pathway 

  SHISA5  
  PPM1D  
  SERPINE1  

 KEGG VEGF 
signalling pathway 

  RAC1  
  NFATC3  
  NFAT5  
  JMJD7-PLA2G4B  
  CHP  
  PLA2G4E  
  PLA2G4B  

 Stransky mutation list 
 Cancer gene census   SUZ12    PMS2  

  RAC1  
  ELN  
  HIP1  
  SETD2  
  CLTC  
  RNF43  
  BRIP1  
  CBFB  
  CDH1  
  BUB1B  
  HLF  
  SUZ12  

  Genes    in italics are genes within amplifi cation regions. 
Genes in bold italics are genes within deletion regions  

Table 3 (continued)
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signalling pathway (8 % of the CN altered genes are in these pathways). Table  3  lists 
all key genes founded to be in CN altered regions with the highest signifi cant gains 
and losses in OVC cohort. OVC showed a lower degree of CN alterations compared 
to OSCCs, and consequently, fewer genes were identifi ed (Table  3 ).  
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  Fig. 8    A graphical representation of 13 enriched KEGG pathways, cancer gene census, and 
Stransky mutation list [ 27 ] on the  x -axis ranked by the number of genes with CNAs from OVC 
samples in each pathway and list on the  y -axis       
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 As can be seen from Table  3 , all signifi cant gene hits in OVH group were present 
in OVC signifi cant gene hit lists, which confi rm that OVH is a (histological) precur-
sor for OVCs. In the analysis of OVC gene hit lists, I focused on genes that had a 
role in head and neck cancers.  CDH1  or epithelial-cadherin gene, located on chro-
mosome 16q22.1, was in a gain chromosomal region and, therefore, is probable to 
be overexpressed in OVC cohort. The function of E-cadherins has been well estab-
lished in maintaining junctions. E-cadherin loss enables the disaggregation of 
malignant cells from one another and promotes metastasis [ 52 ,  53 ]. In human can-
cers, reduction or loss of E-cadherin expression can be triggered by silencing of the 
CDH1 promoter, chromosomal deletions, and somatic mutations [ 52 ,  53 ]. However, 
and in light of the possibility of overexpression of  CDH1  in OVC group, I therefore 
suggest that this might be a reason behind the fact that OVCs do not metastasise, 
unlike OSCCs, where the CN data of this cohort showed deletion in chromosome 
18q21.3 that harbour  CDH20  gene, which has been reported previously to be 
involved in tumour invasion regulation [ 54 ]. 

 In addition,  MCM7  gene located in chromosome 7q22.1 was in a gain chromo-
somal region at a frequency of ~50 % according to OVC frequency karyogram (See 
Fig.  4b ) and is therefore probable to be overexpressed in OVC cohort. It has been 
demonstrated in a previous study that  MCM7  gene is expressed in normal oral 
mucosa and variably overexpressed in dysplasias and OSCCs [ 55 ]. Likewise, 
 SERPINE1  gene located as well in chromosome 7q22.1 arm that presented a gain is 
probable to be overexpressed in OVC cohort. In 2005, a study revealed that expres-
sion of  SERPINE1  gene in primary head and neck tumours was upregulated com-
pared to normal mucosa [ 56 ].  SERPINE1  overexpression was shown to be essential 
for the progression of HNSCC and was suggested to play a key role in chromosome 
7q21.3–22 karyotypic changes and in oral oncogenesis [ 57 ].  

5.2.5    Generation of GISTIC Heat Maps for OVH and OVC 

 Chromosomal alteration regions based on DNA CN changes in OVH and OVC 
groups are illustrated in the heat maps below generated from GISTIC G-scores 
analysis (Fig.  9 ). Visual examination of OVH heat map (Fig.  9a ) and OVCs (Fig.  9b ) 
noticeably illustrates the very low level of CNAs in OVHs compared to OVCs, 
indicating that the genomic profi le of these cases has minimal chromosomal abnor-
malities and is most similar to normal. Nevertheless, gain at chromosome 7q (rep-
resented by a lineage red colour) was noticed in OVHs at a frequency of more than 
50 %. In addition, as shown in Fig. 4b, gains at chromosome arms 7q, 16q, and 17q 
(represented by a lineage red colour) and loss at chromosome 5p (represented by a 
lineage blue colour) were detected in OVCs at a frequency of 50 %. Moreover, dele-
tion trends were minimally found in OVC’s heat map. In addition, the thickened, 
club- shaped papillae and blunt stromal invaginations of well-differentiated squa-
mous epithelium with marked keratinization with the squamous epithelium lacking 
cytological atypia and histological features of malignancy could be another reason 
behind the lower level of chromosomal instability in OVCs.     
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  Fig. 9       Heat map images of OVH and OVC based on total segmented DNA copy number variation 
profi les. Images were analysed using (GISTIC2.0). In each heat map, the samples are arranged 
from  left  to  right , and chromosomes are arranged vertically from  top  to  bottom. Red  represents CN 
gain and  blue  represents CN loss       
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6     HPV Detection by NGS 

 Viral load was measured as described in [ 58 ]. Briefl y, this involved counting the 
number of reads uniquely aligning to viral genomes. This was scaled to the read 
depth for the individual sample to calculate the number of KB of viral sequence 
present per human genome and therefore extrapolates the number of viral genomes 
per human genome (viral load). 

 HPV sequencing data from a previous study published by Conway et al. was 
used to provide positive and negative controls [ 29 ]. This technique has been found 
to have good sensitivity and specifi city and has the advantage that it provides HPV 
subtype, viral load and can be obtained from the same sequencing run which is 
performed to obtain genomic copy number data. The verrucous cohort was matched 
with 16 oral and oropharyngeal (OP) cases from the previous study. In Conway 
et al. data 9, positive HPV cases were detected out of 16 successfully sequenced 
samples [ 29 ]. Sequencing libraries were prepared from all 73 verrucous samples 
(57 OVC and 16 OVH). HPV-16 sequence was identifi ed in one OVH and one 
OVC, and HPV-2 sequence was detected in one OVC out of 73 oral verrucous 
samples at 95 % confi dence level with 2.24, 8.16, and 0.33 viral genomes per cell, 
respectively.  

7     Presences of Herpes Virus in Verrucous Samples 

 Patient tumour DNAs were scanned for all characterised human virus sequences. 
Human herpesvirus sequences were detected in 21 of 73 verrucous DNA samples, 
seven OVHs, and 14 OVCs, with viral loads ranging from 0.01 to 0.58 viral genomes 
per cell. Eleven samples were positive for herpesviruses 1, fi ve were positive for 
herpesviruses 6B, four were positive for herpesviruses 5, three were positive for 
herpesviruses 6A, one was positive for herpesviruses 7, and one was positive for 
herpesviruses 4. Four cases had double herpesviruses infections for herpesviruses 
6A and herpesviruses 1, herpesviruses 1 and herpesviruses 6B, herpesviruses 5 and 
herpesviruses 1, and herpesviruses6A and herpesviruses 6B. 

 To investigate whether the prevalence of Herpes virus detected was specifi c to 
VC cohort in this study, sequencing data from 23 head and neck tumour samples 
from a previous study published by pre-cancer genomics group [ 29 ] were scanned 
for all characterised human virus sequences. Human herpesvirus sequences were 
detected in eight out of 23 cases (seven oral and one pharyngeal), with viral loads 
ranging from 0.0024 to 0.0362 viral genomes per cell and with 0.00702 viral loads 
standard deviation. From the eight positive samples, four were positive for herpes-
viruses 1, three were positive for herpesviruses 5, and two were positive for herpes-
viruses 4. One case had a double herpesviruses infection for herpesviruses 1 and 
herpesviruses 5.  
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8     Advantages and Limitations of NGS Copy Number 
Analysis Technique Used in This Study 

 It has been previously demonstrated that NGS can provide genomic CN gain and 
loss details in a cost-effective manner from DNA isolated from different sources, 
including FFPE tissue blocks stored after histopathological diagnosis, frozen tumour 
samples, and cell lines [ 31 ,  35 ]. It has been also shown that the resolution of NGS 
copy number analysis method has a high degree of correlation and comparable with 
aCGH but gave more information for less money when applied at low multiplexing 
levels, and it is extremely adjustable [ 31 ]. It is also important to keep in mind that 
aCGH technique has shown diffi culty to use with DNA extracted from FFPE materi-
als [ 31 ]. Additionally, aCGH requires microgram DNA quantities while NGS can 
produce CN genomic karyograms from nanogram quantities of DNA (less than 
100 ng) [ 31 ]. When compared to PCR-based methods such as LOH analysis, NGS 
produces much more data when performed at high multiplexing levels [ 31 ]. 

 The CN analysis method applied in this study provided a digital readout of viral 
subtypes, loads, as well as tumour karyograms in a single test. It has been also 
revealed here that good quality CN data can be attained when multiplexing 40 sam-
ples on one single lane of an Illumina HiSeq 2500. Multiplexing is an essential 
aspect in designing research studies according to the required selected resolution, 
available resources, and accessible sample numbers. Another key point, copy num-
ber libraries can be used for several times after being aliquoted. Accordingly, fur-
ther examination of previously prepared and low-resolution screened libraries can 
be obtained without the need of additional preparation steps, and hence, data from 
both screenings on the same sample can be compound to provide a double coverage 
[ 31 ]. Despite the proven utility of next-generation sequencing copy number aberra-
tions detection [ 31 ,  35 ], it cannot detect neutral CN variations (genomic variations 
that do not cause changes in the amount of the genetic material), such as inversions 
and balanced translocations [ 59 ]. Balanced translocations and inversions that occur 
in coding region breakpoints can result in a disease phenotype [ 59 ]. One of the limi-
tations here was the lack of technical replicates. Though, pre-cancer genomics 
group previously validated the reproducibility of the same methodology I used here 
for CN analysis as they did technical replicates back when they fi rst developed the 
technique [ 31 ]. They sequenced the same DNA libraries twice and made libraries 
from the same DNA twice, and all times, the produced CN karyograms were virtu-
ally identical [ 31 ]. 

 Another limitation in this study was that we did not check the effect of the fi xa-
tion procedure on the produced CN genomic profi les by comparing the generated 
karyograms for DNA extracted from FFPE materials with CN karyograms for DNA 
extracted from fresh frozen tissue from the same OVC samples. Nevertheless, the 
rarity of oral verrucous lesions made it really hard to get any fresh frozen OVC 
samples. DNA is susceptible to degradation in fi xative solutions used for tissue 
preservation in histopathology labs [ 60 ], and again, pre-cancer genomics group has 
previously investigated the effect of fi xation on CN karyograms produced from 
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DNA extracted from FFPE materials when they fi rst developed the method. They 
compared the CN genomic profi les for DNA extracted from fresh frozen against 
FFPE materials from the same lung carcinomas [ 31 ]. They have shown that the cor-
responding fi xed and fresh CN karyograms for DNA extracted from the same sam-
ples were nearly identical [ 31 ]. The slight differences were in the magnitude of 
same CN variants and were attributed to macrodissection of non-cancerous cells in 
fi xed samples, such as infl ammatory and stroma cells [ 31 ]. Additionally, the lack of 
paired tumour and normal samples was again another limitation in the current study 
which if were available would reduce the noise usually associated with CN profi les 
produced from DNA extracted from FFPE materials [ 61 ]. 

 Furthermore, next-generation sequencing was described here as a novel but vali-
dated, powerful, high-throughput method to investigate the presence of HPV and all 
characterised human viral genome loads and subtypes in the largest oral verrucous 
sample cohort described to date, following careful histological defi nition for OVC 
and OVH lesions. Although it is diffi cult to accurately predict the exact viral load 
with only a very small number of aligning viral reads, viral loads obtained in this 
study were clearly much lower than the viral loads obtained in the previously pub-
lished study of HNSCC by pre-cancer genomics group [ 29 ], in which the standard 
deviation of the viral loads obtained was 37.75 suggesting that the virus was not 
contributing to disease aetiology. Also, the applied method in the current study was 
validated before (on the control sample set) by detecting HPV sequences using PCR 
and by evaluating P16 expression as a marker for HPV infection. It has been shown 
from the assessment of HPV screening results of the three approaches that NGS 
method has a high specifi city and sensitivity for HPV detection when compared to 
the two other techniques [ 29 ]. Furthermore, it has been previously suggested that 
PCR methods can be oversensitive [ 62 ], while the method used here can provide a 
better specifi city, as demonstrated by the observation that all p16 positive samples 
were also positive for HPV-16 by sequencing [ 29 ]. Moreover, and from the same 
previous study, HPV-61 was detected in one oral tumour by sequencing and was not 
detected by any other method, which again shows the ability of this method in 
detecting all HPV subtypes and loads [ 29 ]. 

 Previous studies have relied mostly on PCR and ISH to investigate the presence 
of HPV subtypes in verrucous lesions without quantitating HPV viral loads [ 63 ]. 
Furthermore, HPV DNA may degrade in paraffi n-embedded tissues. Sequencing 
may be less affected by this than PCR. The standard PCR test for HPV requires a 
120-bp fragment to be amplifi ed. DNA libraries are size selected here to be around 
200 bp to ensure that enough fragments of <100 bp are sequenced. If an HPV 
sequence is in one of these, it would be picked up by sequencing but not by 
PCR. Besides, PCR methods for viral detection are specifi c to certain subtypes per 
test. One of the main advantages of using NGS is the fact that sequencing is blind. 
All known viral subtypes can be quantifi ed in a single test. The method provides a 
digital readout of viral subtypes and loads with high sensitivity and specifi city [ 29 ], 
and the same sequence data can also be reanalysed to produce tumour karyograms. 
These data are extremely cheap to produce compared to many NGS methods and 
can be multiplexed to over 40 samples per lane of an Illumina HiSeq. 
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 The power of this method was also shown through the detection of other viruses 
by screening all verrucous samples for all other known virus sequence genomes. 
Human herpesviruses were identifi ed in 21/73 of the oral verrucous lesions 
(28.77 %), although these results have not been confi rmed using any other diagnos-
tic test. In addition, the control samples were scanned for all human virus sequences, 
and eight positive cases were identifi ed out of 23 head and neck samples (34.78 %). 
In general, Herpes simplex viruses-related infections are among the highest wide-
spread diseases, affecting approximately 60 to 95 % of adult human population 
[ 64 ]. The two human herpesviruses known to be associated with cancer are Kaposi’s 
sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) [ 65 ], and 
these were not detected in oral verrucous samples here. Nonetheless, it is important 
to point out that the detection of virus DNA in patients’ samples does not essentially 
indicate a viral pathogenic role in a disease. NGS tells nothing about transcriptional 
activity, so it is not possible to speculate further on the clinical signifi cance of this 
fi nding. However, by infecting defence cells, many herpesviruses can persistently 
arise in different human tissues in the event of infl ammation [ 66 ], and accordingly, 
viral genomes accumulate till they become detectable in these infected cells [ 64 ]. 
The fi nding that herpes sequence could be detected in 28.77 % of oral verrucous 
lesions while those lesions did not harbour any HPV infection shows further the 
value of this method. Herpes infection may not be the cause of this disease, but 
future studies of a similar nature may reveal previously unsuspected oncoviruses to 
be common in a different tumour type.  

9     Summary 

 In    this study, NGS was used on nanogram quantities of DNA isolated from FFPE 
tissue, in the largest oral verrucous sample cohort described to date. The aim was to 
identify OVH and OVC genomic characteristic features and distinguish between the 
genomic damage pattern in OVH and OVC. The current study has demonstrated that 
NGS CN analysis can be used for more specifi c assessment and evaluation of OVH 
and OVC heterogeneity based on the analysis of the whole-genome CN karyograms. 
The results of this study also suggest that oral verrucous lesions are not associated 
with HPV or any other human virus.     
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    Abstract     Viruses cause approximately 30 % of all human cancers. New viruses are 
discovered weekly, as are novel, putative associations between viruses and cancers. 
Next Generation Sequencing (NGS) has evolved as a new tool to fi nd viruses in 
cancer and to support virus–cancer associations. Importantly, NGS-based 
approaches can be applied to clinical samples without the need for intermediate 
culture of the agent, and the approach is agnostic with regard to the target sequence. 
This allows for the discovery of entirely novel, as well as novel but evolutionary 
related viral agents. Since viral genomes are so much smaller than the human 
genome, they offer unique opportunities and challenges in NGS. Here, we outline 
some of these challenges and potential bioinformatics solutions using Kaposi 
Sarcoma-associated herpesvirus (KSHV) as an example. We provide an abbreviated 
overview about viral cancers as well as NextGen sequencing platforms. This is fol-
lowed by a summary of open source computing tools as they apply to the bioinfor-
matics analysis of viral contributions to cancer, as well as a virus-specifi c case study 
mapping open chromatin regions in KSHV.  
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1          Introduction 

1.1     Motivations and Expectations 

 It is very diffi cult to write for a modern book in bioinformatics. On the one hand the 
publishing tradition in molecular biology and cancer biology is almost exclusively 
focused on publishing in high impact journals and on producing “minimally pub-
lishable units” as quickly as possible. Only journal articles have an impact factor 
and count towards promotion and funding. Cancer biology and cancer bioinformat-
ics is driven almost entirely by the production of novel data and access to novel 
samples. The majority of time is spent on “wetlab” work and the production of raw 
reads. On the other hand, most informatics work has migrated to open source biore-
positories, github    [ 1 ], blogs, wikis, or open access, online-only publications such as 
the “BMC” or “PLoS” series. Almost all information is gleaned from the Web and 
almost all data are available in the cloud, or more specifi cally the short read archives 
(SRA) and db GaP data repositories [ 2 ]. Few bioinformaticians spend time reading 
printed works. 

 What then is the purpose and utility of this chapter? An edited, peer-reviewed 
book chapter is better organized than the Web and the authors would argue that the 
information presented here, can be accessed more timely and be digested more eas-
ily than bits and pieces gathered from various websites. We hope that this chapter 
would save you, the reader, many “clicks.” 

 Writing this book chapter provided us with an opportunity to present scientifi c 
details of analysis that are not found in journal articles. Journal articles, because of 
their word limitation policies, are focused on the end result, not the path towards 
this end. In this chapter the reader can trace the steps, which we used to obtain a 
nucleotide resolution map of open chromatin in Kaposi sarcoma associated herpes-
virus (KSHV) [ 3 ]. We present the tools, commercial and open source, and examples 
of code.  

1.2     Viruses Cause Cancer 

 Viruses cause 20–30 % of all human cancers [ 4 ]. If we can recognize, understand, 
and eradicate these “oncoviruses,” we can cure the corresponding virus-dependent 
cancers. Because only the tumor cells carry the oncovirus, targeting viral genes will 
yield drugs and interventions of superior specifi city compared to traditional thera-
pies. Vaccination against human papilloma virus (HPV) prevents cervical cancer 
and has led to a signifi cant reduction in disease burden in the USA, Europe, and 
Australia [ 5 ]. Vaccination against hepatitis B virus (HBV) has led to a signifi cant 
reduction in liver cancer in all areas where the vaccine has been introduced. New 
drugs against hepatitis C virus (HCV), which were introduced last year, prevent 
liver cancer and will replace surgical liver transplants as the standard of care for this 
disease [ 6 ]. 
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 In order to develop these interventions, the virus had to be identifi ed in the fi rst 
place and associated with a specifi c disease. The discovery of human papilloma 
virus (HPV), before the introduction of sequencing earned Harald zur Hausen the 
2008 Nobel Prize in medicine. His Nobel lecture provides an interesting historical 
perspective [ 7 ]. Once discovered, viral biology has to be explored. Because viruses 
are extremely multifaceted, the NGS approaches to cancer-associated viruses are 
very diverse indeed. DNA-based viral genomes (HPV, KSHV) can be analyzed by 
the same means as the human genome. RNA-based viruses almost always present as 
a quasi-species with extreme nucleotide variation [ 8 ], even a swarm of viruses cir-
culating within the same person. Here, more specialized approaches are needed.  

1.3     Aspects of Viral Genomics or “Vironomics” 

 The twentieth century revolution in molecular biology started with viral genomics. 
The fi rst restriction map was that of simian virus 40 (SV40). SV40 was also the fi rst 
completely sequenced genome [ 9 ,  10 ]. Genome-wide transcription mapping was fi rst 
completed for Adenovirus, and transcriptional analyses of any kind would not be 
possible without Moloney murine leukemia virus (MMLV) or avian leukosis virus 
(ALV) reverse transcriptase. The twenty-fi rst century witnessed tremendous advances 
in host genomics such as polymerase chain reaction (PCR), hybridization- based 
glass microarrays, bioinformatics, and automated Sanger sequencing that cumulated 
in the release of the draft human genome sequence. NGS promises to accelerate 
genomic approaches to cancer virology even further [ 11 ]. The $100 viral genome is 
a reality today and most of the cost is due to viral DNA/RNA isolation and bioinfor-
matics analysis. How do we harness these methods for virus research? What are the 
specifi cs of viral genomes and virus lifestyles that we need to consider before blindly 
transferring tools that were developed and optimized for multi-megabase genomes? 

 All viruses have small genomes. With few exceptions a virus genome is less than 
a Megabase (10 6  bp); the HPV genome is less than 10,000 bp and its initial sequence 
was still printed on paper for the reader to look at by hand [ 12 ]. In the early days, 
the yellow highlighter was the predominant bioinformatics tool, and investigators 
searched for restriction enzyme sites by reading the printed sequence. Today, GUI- 
driven visualization tools have replaced the highlighter. 

 The small genomes of viruses have a distinct advantage for bioinformatics. The 
entire sequence can be loaded into memory and presented at nucleotide resolution 
on a desktop computer. This facilitates a visual and interactive approach to viral 
genomics. Alignments and computer predictions can be verifi ed by biologists, and 
if need be, corrected manually. Also, because of the small genome, exhaustive, but 
complete algorithms can be applied. Graph-based de novo assemblers, such as 
 Newbler , work as well as de Bruijn graphs-based assemblers for viral genomes 
[ 13 – 15 ]. For viral genomics, there is no immediate need for heuristic/probabilistic 
algorithms and the programming overhead that is associated with “big data” is not 
needed, neither is the “cloud.” 

VIRONOMICS: The Study of Viral Genomics in Human Cancer and Disease



348

 The small genomes of viruses mandate a higher standard of genome fi nishing. 
In order to submit a viral genome, the assembly has to be 100 % complete and 
represented as a single continuous sequence [ 16 ]. It is expected that all gaps be 
closed by targeted sequencing. This is in contrast to larger genomes, including the 
human genome, which was declared fi nished in 2004, but is not fully sequenced 
even today [ 17 ,  18 ]. A more recent example of an incomplete draft genome is the 
panda genome [ 19 ,  20 ]. 

 For viruses, whole genome de novo sequencing efforts can easily be completed 
on a desktop computer [ 21 ,  22 ]. The devil, however, is in the details. Even today, 
where personal NGS machines are present in midsize labs, the larger genome cen-
ters employ teams of “genome fi nishers,” who have in-depth knowledge of the 
peculiarities of different hardware used, of each assembly algorithm, and ideally of 
the biology of their sequencing target. Though the viral genomes are comparatively 
small, this does not diminish the time and effort needed for “post production.” 
“Post-production” genome fi nishing easily accounts for ten times the time and effort 
than what is needed to submit raw sequence reads or a number of unconnected scaf-
folds. We would emphasize that because viral genomes are small, every nucleotide 
counts and the accuracy needed to deliver useful genomic information is higher than 
for eukaryotic genomes. 

 The ends of the viral genome present a unique problem for viral sequencing. 
Many viral genomes are linear and the ends may be blocked by unique modifi ca-
tions to the DNA/RNA or by associated proteins [ 23 ]. The easiest case is that of 
circular viral genomes, e.g., episomal herpesvirus genomes maintained as extra-
chromosomal plasmids in Burkitt Lymphoma, or by integrated viruses, e.g., onco-
genic retroviruses. Those can be sequenced easily after adjusting parameters to 
account for end-to-end connectivity or to detect virus–host DNA fusion events. 
Neither of those scenarios is found in viral DNA/RNA isolated from virions circu-
lating in body fl uids. Sampling body fl uids such as blood or saliva, however, is 
much more applicable than the collection of tumor biopsies, which for many can-
cers are associated with a small but not infi nite risk to the patient. Most packaged 
viral genomes adopt a strictly linear form. Sanger sequencing as well as NGS needs 
a free 3′-hydroxyl group to extend and a primer. Only Maxim-Gilbert sequencing 
can determine free ends of linear DNA genomes [ 24 ,  25 ]. Most viral termini do not 
represent new sequence information, but are derived from the fi rst consensus 
sequence that was deposited into GenBank and used to make the sequencing primer. 
Few studies make the effort to preserve the authentic ends and anneal primers by 
RNA–DNA or DNA–DNA linker ligation.   

2     NextGen Sequencing Platforms 

 Because the viral genomes are small, often contain unbalanced GC ratios and vari-
ous repeats, different NGS technologies should be combined for the fi nal assembly. 
In many cases viral DNA can be amplifi ed by physical means and a fraction of the 
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reads needed for human genome coverage are needed to cover viral genomes. For a 
10,000 base pair (bp) genome, 10,000–100,000 reads can provide appropriate cov-
erage depending on the read length. Viral genome assembly places a premium on 
read length because of the many repeats within a typical viral genome. 

 All of the current next-generation sequencers work off of the same basic 
requirement; sequencing is dependent on high-quality samples to begin with. The 
enzymatic reactions and sequencing technology will work best when optimal 
samples are input into the system. Samples must be assessed for quality and quan-
tity before anything can be done. For economic reasons the samples should be as 
pure as possible. NGS enzymes and sequencing reaction are very sensitive to con-
tamination and concentration, and therefore, this requires different technology 
than one would use for cloning or polymerase-chain-reaction (PCR). Nanodrop 
technology is not accepted for next-generation sequencing when assessing DNA 
quantity. Real-time quantitative PCR, digital PCR, or fl uorescent-dye based 
assays, like Picogreen, are required. 

 All of the next-generation sequencing begins at the same point: sample prepara-
tion. This is commonly referred to as library preparation. It does not matter what 
platform is used eventually, each requires double-stranded DNA (dsDNA) to be 
fragmented, the ends repaired, and then sequencing platform specifi c adapters to be 
added. Although the basic steps of the library preparation are the same between 
platforms, the individual reagents are specifi c to the starting material and sequencing 
platform. Many platforms are capable of sequencing genomic, cDNA, RNA, BAC, 
plasmid, and other types of samples, but before the library preparation can take 
place, all input material must be converted to double-stranded DNA. Many platform 
kits, such as the RNA-seq kits, include these reagents. After library preparation, dif-
ferent technologies approach NGS differently. Several use amplifi cation in order for 
the platform to easily read each DNA fragment. Illumina uses “bridge amplifi ca-
tion,” while Ion Torrent and 454/Roche use emulsion polymerase-chain- reaction 
(emPCR). Emulsion PCR takes DNA fragments and PCR amplifi cation within an oil 
bubble (emulsion), afterwards all the amplifi ed fragments are then attached to a bead 
via hybridization to a biotin–streptavidin-linked oligonucleotide. Success at library 
preparation and overall NGS depends on several parameters: (1) concentration of 
starting material (sample), (2) base pair length of original material, (3) desired length 
of sequencing reads, (4) desired depth of sequencing, and (5) turnaround time. No 
one approach is optimal with respect to all of these parameters. 

2.1     Roche/454 Life Sciences 2008: “One Fragment = One 
Bead = One Read” 

 454 Life Sciences produced the fi rst commercially available next-generation 
sequencer. The best-known version, the FLX (pronounced fl ex), was available for 
purchase starting in 2005. The next one, the GS Junior, was available in 2009. 
It became the fi rst “desktop” sequencer; it was small and fi t easily in lab spaces. 
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The GS Junior still has the longest read length of any of the “personal” sequencers. 
The workfl ow for both Roche instruments starts with library preparation, followed 
by emulsion PCR (emPCR), and fi nally the sample (and enzymes) end up in indi-
vidual wells on a plate/chip. 454 sequencing technology is based on one bead into 
one well. One nucleotide at a time, T, A, C, or G, is passed over the plate and if the 
complementary nucleotide is incorporated, a pyrophosphate (luciferase) is released 
and light is detected. The niche for this platform is the ability for long-read lengths, 
high call accuracy, and “short” NGS run time. Typical read length averages 400–
600, with the new “plus” technology increasing averages to 800–1,000 bps. Single 
run time varies from 10 to 23 h depending on application, with longer time for 
longer reads.  

2.2     Illumina 2009: “Sequencing by Synthesis” 

 Illumina fi rst started in 2009 with the Genome Analyzer. Since then, Illumina has 
released several platforms, including new ones released in 2013/2014. Current 
machines include the MiSeq, HiSeq, and NextSeq, as well as HiSeqX Ten, an 
expansion of Hiseq. All of the platforms use sequencing by synthesis (SBS) tech-
nology. Basically, chips have lanes (as opposed to wells like the other NGS tech-
nologies) with two types of oligonucleotides attached. Sample fragments anneal to 
the fi rst oligonucleotide and are clonally amplifi ed by “bridge amplifi cation” as the 
other end of the fragment anneals to the second oligo. Post amplifi cation, all four 
fl uorescently labeled nucleotides are passed over the lane for each cycle and com-
petitively incorporated by complementary nucleotide, which elicits a specifi c fl uo-
rescence signal. Fragments can be sequenced in one direction, single-end (SE), or 
the reverse strand can also be sequenced, paired-end (PE). This produces twice as 
many reads per fragment. Note that Illumina uses the term “paired-end,” whereas 
Ion Torrent and 454/Roche use the term “mate-pair” to describe sequencing longer 
than read-length fragment from both ends with potentially unknown sequence of 
5–20,000 nucleotides in between. Depending on the platform and single-end vs. 
paired-end, the read length is limited to 48–200 nucleotides, with only the MiSeq 
capable of 300 nucleotides. Illumina machines produce around 25–4,000 million 
reads. Actual sequencing time on the popular HiSeq for a paired-end sequencing 
can take up to 11 days. On the MiSeq newer “rapid run” parameters will decrease 
this time to 7 h.  

2.3     Life Technologies Ion Torrent (PGM and Proton) 2011: 
“Ion Semiconductor Chip” 

 Ion Torrent Sequencers are based on ion semiconductor chip technology. They have 
two platforms available, the Personal Genome Machine (PGM) and the “Proton.” 
Both rely on the DNA fragments being attached to beads, amplifi ed, and then one 
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bead is randomly distributed into the sequencing chip well. Instead of fl uorescence 
detection like 454, these platforms depend on a hydrogen ion (H+) being released 
each time a complementary nucleotide is incorporated, causing a pH change, and 
thus a voltage change. The instrument records this. Both the PGM and Proton have 
a typical read length of 200 bp. Recent upgrades to the PGM extend the read-length 
to 400 nucleotides. Sequencing is completed within 7 h.  

2.4     PacBio 2011: “Single Molecule Real Time Sequencing” 

 Pacifi c Biosystems (PacBio) released their next-generation sequencer in 2011. 
PacBio does not use an amplifi cation of the DNA fragments based approach. Instead 
it uses single molecule real time sequencing (SMRT) technology. Libraries include 
a hairpin adapter attached to the template and each single library fragment on the 
SMRT cell ends up in a “zero mode wave guide.” This “guide” is essentially a long 
single well with polymerase immobilized at the bottom. The DNA template feeds 
through the polymerase and as a complementary phosphor-linked nucleotide is 
incorporated, the specifi c fl uorophore is released and the sequencer records the spe-
cifi c nucleotide. This technology enables read lengths of 500–20,000 bp, depending 
on the quality of the original sample and fragmentation settings. The instrument 
generally only reads the long library strands once, while short fragments are read on 
multiple passes. The PacBio is one of the quickest next-generation sequencing plat-
forms with a minimum of 30 min on the sequencer. It has the longest read-length, 
but until recently was plagued by a very high error rate.   

3     Bioinformatics of NextGen Sequencing 

3.1     Step 1 Alignment to a Reference Genome 

 There are various open source software tools for NGS data analysis. For any bioin-
formatics analysis, the fi rst step is to decide which tools to choose. We usually rely 
only on software that has a large user base and thus community support; it should 
be under active improvement with new releases on an annual or biannual basis. The 
fi rst step of the data analysis is to do quality assessment [ 26 ]. FastX- Toolkit [ 27 ] has 
a set of tools for data preprocessing including quality statistics, reads fi ltering and 
trimming, etc. 

 After cleaning the raw data, the next step is to align the cleaned NGS reads to the 
reference genome. Bowtie2 [ 28 ,  29 ] is the most widely used alignment tool due to 
its speed and accuracy; another one is VELVET [ 30 ].  Appendix 1  provides for a 
short introduction to its command line version and how it can be used to subtract out 
human genome sequences when the overall goal is to assembler a viral genome. 
It is regularly released with new features, bug fi xes and improvements. There are 
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large sets of parameters that users can manipulate depending what the targets are. In 
order to use a reference genome,  bowtie2-build  is used to build the Bowtie index. 
Then  bowtie2  is used to align the reads to the indexed reference genome. 

 The output from Bowtie2 is in SAM format [ 31 ,  32 ]. Hence, the next step is to 
use SAMtools/BCFtools [ 32 ] to analyze the alignment or use the unaligned reads 
for further analysis. The samtools  view  function converts SAM format to BAM 
format, then  sort  function sorts the BAM fi le. The resultant .bam fi le is compressed 
and sorted, which is convenient for both storage and variant discovery. Samtools 
 mpileup  function calls on the sorted .bam fi le and generates a bcf fi le that stores the 
likelihood given each possible genotype, then the BCFtools is applied to the bcf fi le 
and reports the variants in VCF (variant call format). VCF is a standard format for 
storing variant data.  

3.2     Variant Detection 

 In order to discover rare mutations for cancer causative genes, the GATK program 
has become the standard for cancer genomics research [ 33 ,  34 ]. GATK is an abbre-
viation for “Genome Analysis Toolkit.” The typical workfl ow for variant analysis 
on NGS data starts with the data preprocessing to make it suitable for variant calling 
analysis. The fi rst step is to map the raw reads to the reference using Bowtie2 or 
BWA to generate the alignment in SAM format, then to use PICARD to sort (by 
coordinates) and convert the SAM to a BAM fi le, the Picard  MarkDuplicates  func-
tion marks the duplicates reads (dedupping), then calls on  BuildBamIndex  to index 
the dedupped BAM to a BAI fi le. All mapping algorithms from Bowtie2 or BWA 
tend to generate artifacts, especially for the alignment on the edges of indels. So 
GATK provides additional tools that realign the reads to clean up these artifacts. 
The last step of data preprocessing is to do base quality score recalibration. All the 
GATK variant calling algorithm use the base quality score, the quality score recali-
bration (BQSR) uses machine-learning method to eliminate systematic errors and 
gives more accurate base quality score. All in all a larger number of quality control 
and quality improvement steps are needed for accurate analysis. Variations of these 
open source tools are incorporated into most commercial software packages and 
provide the same functionality with an easy to use GUI. 

 Once the data is ready for variant analysis, we use the GATK variant discovery 
toolset to discover the meaningful variants. One big challenge for variant discovery 
is to balance the sensitivity (false negatives) and the specifi city (the false positives). 
In order to achieve the high sensitivity and specifi city, GATK variant discovery 
takes three steps: (1) variant calling (per-sample) (2) joint genotyping (per-cohort) 
(3) variant fi ltering (per-cohort). 

 The HaplotypeCaller [ 35 ] is also commonly used for variant calling including 
SNPs and indels; it is designed to achieve high sensitivity to avoid missing real 
v ariants, but the same time, it introduces a certain amount of false positives. GATK 
uses variant quality score recalibration (VQSR) to fi lter out the “bad” variants. 
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Of relevance to cancer virus variant detection, VQSR applies a machine learning 
method, which does not work well on small datasets and targeted sequencing data. 
To overcome this limitation we tend to apply hard-fi ltering using related public 
databases and in-house generated database. For the joint genotyping step, the initial 
GATK joint discovery workfl ow was quite computational intensive. With the new 
release of GATK version 3.0, there is an enhanced workfl ow that signifi cantly 
reduces computational burden. For targeted sequencing projects, we apply instead 
statistical computing using R code and bioconductor [ 36 ] modules to conduct joint 
genotyping on multiple samples per cohort. 

 In the variant calling pipeline, it is very important to use known sites to help 
distinguish true variants from false positives. For cancer genomics, GATK provides 
sets of known sites as a resource bundle for human genomes. For instance, we typi-
cally use SNP data from HapMap as known sites, because the HapMap SNP call set 
has been validated to a very high degree of confi dence [ 37 ]. 

 Once the fi nal set of variants is generated, we generally perform preliminary 
analyses before validating an individual single nucleotide variant (SNV) experi-
mentally through targeted Sanger-based resequencing. Functional annotation is 
very important to fi nd out if the variants and genotypes are biologically relevant. 
A popular tool that performs functional annotation is SnpEff [ 38 ], which conducts 
a comprehensive functional analyses and reports effects by type (SNPs, INDELs, 
etc.), functional class (missense, nonsense, silent), region (exon, intron, intergenic, 
downstream, upstream, splice-site acceptor, splice-site donor, etc.). The most bio-
logically interesting SNVs based on the SnpEff annotation are subjected to further 
experimental testing and validation.  

3.3     RNAseq, ChIPseq, and Related Techniques 

 The pipeline for RNA-seq variant analysis is similar to the one for DNA-seq. For 
differential expression analysis based on RNA-seq, the fi rst step is also an align-
ment. Both Bowtie2 and BWA can be used for aligning unspliced RNA-seq data. 
TopHat [ 39 ] and STAR [ 40 ] are the popular aligners taking spliced messages into 
account. Some recent commercial alternatives are CLC genomics workbench by 
Qiagen Inc. or Genious [ 41 ] as used in the following examples. By-and-large these 
programs are simple GUI wrappers for the same open source programs. They pro-
vide value because they eliminate the barrier of having to learn command line and 
to maintain open source installations. After sequence alignment, quantitative analy-
sis and differential expression analysis are conducted. Cuffl inks [ 42 ,  43 ] and DESeq 
(bioconductor package) are the leading tools [ 44 ]. RNAseq and ChIPseq follow a 
similar analyses paradigm, except that for ChIPseq, where there exists an a priori 
expectation of discrete peaks. Here, additional compensation and aggregations 
algorithms are employed. This will be discussed in detail below using FAIRE on a 
human tumor virus as example.   
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4     Sequence Read Alignment for All Possible Viruses 

 There is only one human genome and one genome reference as the target for 
NGS. There are, however, many viruses and multiple can be present in the same 
sample. Often, the goal is to enumerate just which viruses are present and to 
determine the so-called “Vironome” [ 45 ]. Sometimes this will yield to the dis-
covery of an entirely new cancer virus [ 46 ,  47 ]. Almost always it is a necessary 
step to “bioinformatically” sieve out all nonviral sequences, human and bacte-
ria, prior to further mapping and assembly. For de-novo assembly of viral 
genomes cloned into bacterial artifi cial chromosomes (BAC) bioinformatically 
subtracting out  E. coli  K12 sequences prior to de novo assembly yielded great 
improvements in our experience. 

  Vivonatev  is a program written by us, with the goal to manage the mapping of 
NGS reads to large numbers of reference genomes. With the advance of NGS, the 
quantity of reference genomes has increased; as has the number of completely 
sequences strains available in GenBank. This has made mapping NGS reads to all 
known viral genomes a very diffi cult task. The purpose of Vivonatev is to automati-
cally generate such a mapping. It uses bowtie2 as the mapping tool and a list of 
reference/target genomes is provided as input. The program is also capable of 
extracting, fi ltering, and/or generating a coverage vector for each reference genome. 
These coverage vectors can be visualized using R, or even excel, since viral genomes 
are small. This may be useful for further analysis of the NGS reads. In order to save 
computing time, Vivonatev is also able to decide whether additional actions are 
necessary, depending on the mapping ratio. 

 For each reference in the input list, Vivonatev runs the alignment tool bowtie2. 
Bowtie2 determines the mapping ratio of the NGS to the reference genome. If the 
mapping is above a certain ratio (determined by the user, default = 0), Vivonatev 
performs the following actions (again, determined by the user):

•    Filtering: If a read mapped to the reference, it is taken out of the original set of 
reads. At the end of the run a new fi ltered set is created in a new fi le.  

•   Extracting: If a read maps to the reference, it is copied into a separate fi le, spe-
cifi c for each reference.  

•   Covering: A coverage vector of the reference genome is created.    

 If none of these actions are specifi ed, the output of bowtie2 is printed to a log (the 
 Log  action can also be specifi ed by the user). All actions are compatible with each 
other, for example, the user can fi lter-out the reference genome while extracting the 
mapped reads to a separate fi le and generating the coverage vector in the same run. 

 The list of reference Vivonatev accepts as input must have a specifi c format. 
The fi le is organized as a table, each line corresponding to one reference, with 
three space-delimited columns: the fi rst item is the name of the reference (usu-
ally the latin name of the species, using an underscore to join the two parts of the 
name); the second item is the location of the fasta fi le containing the genetic 
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sequence of the reference genome (either local path or absolute path); the last 
item is the length of the genome. The last two items are only used by the  cover-
age  function, therefore, if only extracting or fi ltering the genome, linking to  /dev/
null  and 0 would not be harmful to the functioning of the program. Vivonatev 
also take as (optional) input a directory, containing all the bowtie2 indexes of the 
references. For example, if the bowtie2 index fi les for  Escherichia_coli  are 
placed in  ~/genomes/indexes/ , the user must specify  ~/genomes/indexes/  as the 
genome directory. By default, Vivonatev searches for the references in the cur-
rent working directory. 

 Vivonatev is available freely under the GNU GPL License. More features are 
under development. The current version is available at its github repository:   http://
github.com/jrtex/vivonatev    .  

5     A Case Study: FAIRE (Formaldehyde-Assisted Isolation 
of Regulatory Elements) Analysis of Open Chromatin 
in KSHV 

5.1     Molecular Biology 

 One of the most effective means to discover transcriptional regulatory elements is 
by identifi cation of nucleosome-depleted regions, also called “open chromatin.” 
Historically this has been achieved by exploiting regional hypersensitivity to nucle-
ases, such as DNase I. Recently, in the laboratory of J. Lieb, at the University of 
North Carolina, was developed a new methodology to detect regions of open chro-
matin, termed Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) 
[ 48 ,  49 ]. It is based on the different effi ciency of cross-linking between DNA 
nucleosome-depleted and sequence-specifi c DNA-binding proteins; specifi cally, 
nucleosome-depleted regions are much less effi ciently cross-linked to proteins. 
Cells or tissues are briefl y cross-linked with formaldehyde, then lysed and soni-
cated. Sheared chromatin is subjected to phenol/chloroform extraction: during this 
step, DNA cross-linked with proteins is trapped in the organic phase while DNA 
that is nucleosome-depleted is partitioned into the aqueous phase.  

5.2     Next Gen Sequencing Set-Up 

 First, the transcriptional regulatory elements are purifi ed and used to create librar-
ies, which are then sequenced as described above. Both paired and unpaired librar-
ies can be used.  
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5.3     Data Cleaning and Deposition into Short Reads 
Archive (SRA)  

 We used FAIRE to investigate chromatin organization of KSHV during latency, in par-
ticular to identify regions of open chromatin [ 3 ]. In this part of our review we will go 
into further details about the bioinformatics analysis of this data set. The data is available 
from the short reads archive (SRA) at GenBank under accession number: GSE50581.  

5.4     Bioinformatics: MACS2 and CLC Genomic Workbench 

 We performed FAIRE-seq on the KSHV-infected PEL cell lines BCBL1 and aligned 
the resulting sequence reads to the KSHV reference genome (NC_009333). We 
used two different programs. First, we used the open source program MACS2 [ 50 ] 
to derive statistically signifi cant nucleosome depletion (FAIRE peaks) at single- 
nucleotide resolution. Regions of increased coverage density correspond to regions 
of KSHV open chromatin. Second, we used the commercial program CLC Genomics 
Workbench (Qiagen Inc.), which has one of the best interfaces for this type of analy-
sis. An alternative to CLC is the recently released Genious software. FAIRE enrich-
ment identifi ed upstream sequences of the constitutively expressed open reading 
(orf) frame for LANA (Fig.  1 ), at the constitutively active LANA promoter [ 51 ,  52 ].   

5.5     Bioinformatics: Statistical Analysis in R 

 To expand our observations and to determine if there were differences in chromatin 
organization in different cell lines, we performed FAIRE-seq on multiple latently 
cancer cell lines: three B-cells lines (BC1, BCBL1, and BJAB carrying latent KSHV) 
and two endothelial cell lines (HUVEC carrying latent KSHV and L1-TIVE, also 
carrying the complete KSHV genome as an extrachromosomal plasmid). We found 
that regions of open chromatin are conserved across all latent KSHV-infected endo-
thelial and B-cells (Fig.  2 ) and that the majority of viral promoters and viral genes are 
populated by closed chromatin and thus inaccessible to transcription factors and RNA 
polymerase II. The approach used to generate Fig.  2  takes the aligned reads, the 

  Fig. 1    FAIRE-seq analysis of PEL (BCBL1). Read coverage data for FAIRE across the KSHV 
genome (BCBL1) is shown on the vertical axis. Genome position/40 is indicated on  bottom , i.e., a 
sliding window of 40 is used to aggregate the signal. This is using the traditional plot function in 
R (see  Appendix 2 )       
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so-called “coverage vectors” and seeks to identify patterns of similarity of coverage. 
Since all reads are aligned to the same target sequence the nucleotide positions form 
a consistent base, the  x -axis, where as the samples constitute the  y -axis in a  x * y  
matrix. We used CLC genomic workbench for the alignment and exported the cover-
age at each nucleotide position as an excel fi le. Interestingly excel was able to work 
with this amount of information, i.e., a spreadsheet with ~120,000 rows. In hindsight, 
we would have used .cvs or .txt fi le and import directly into R. All in all, the input fi le 
had 127,696 rows and 6 columns. The reader should be aware of GenBank changing 
nomenclature and individual nucleotide sequences as well as nucleotide numbers of 
its reference genomes intermittently as these are manually curated and updated. 
Nucleotide positions recorded in earlier work do not necessarily correspond to nucle-
otide positions in the current reference genome release. If the goal of the project is to 
incorporate both existing and novel NGS information, it is preferable to start from 
raw reads wherever these are available through the SRA archives.  

  Appendix 2  presents the R code that was used to produce Fig.  2 . Of note, for fi nal 
publication we applied a nonlinear adjustment of color values using Adobe 
Photoshop. The R program requires a number of standard libraries and defi nes a 
function for reading in one or more excel fi les, which are the merged using rbind. 
Note that the nucleotide position is recorded both as numeric value and as ordered 
factor for the purpose of visualization. 

 Key to further analysis is appropriate normalization. DNAseq, ChIPSeq, and 
RNAseq data follow a Poisson distribution, not a normal distribution, as slide array data 
[ 53 ]. Few statistics and few visualization methods use this type of data. Before and after 
each normalization step we assessed the distribution using the R functions  fi tdistr 
(rain.melt$value, "Poisson")  and  fi tdistr (rain.melt$value, 
"normal") , as well as graphically. First, we took the cube root of each count data 
point. As an alternative, the Ascombe transformation may be used. Second, we centered 

  Fig. 2    ( a ) Stacked graph of average coverage across fi ve cells lines. The sum of relative coverages 
is shown on the vertical and genome position/40 on the horizontal axis, i.e., a sliding window of 40 
is used to aggregate the signal. Different cell lines are indicated by different colors. This uses the 
ggplot function in R (see  Appendix 1 ). ( b ) Heat map of normalized coverage counts across fi ve cell 
lines is shown.  Darker hues  indicate nucleosome-covered regions; the  lighter colors  regions of 
nucleosome depletion. The cell lines are indicated as row labels; the columns ( x -axis) indicate 
nucleotide position/40       
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by median for each experiment and then divided by the IQR/1.349. This adjusts for the 
different total number of aligned hits and sequencing reads in each experiment. It is 
commonly called normalization or blocking by biological replicate. Using IQR/1.349 
and median provides a more robust measure than mean and standard deviation. Lastly, 
all negative values were replaced with “0”, to establish a biologically signifi cant fl oor 
and to eliminate low-level noise. To reduce complexity further and to add visualization, 
we used a 40 nucleotide sliding window with  rollapply  from the “zoo” package:  m2 
<- rollapply(rain[,1], width  =  40, FUN  =  mean, by  =  40).  
Lastly, we coerced ggplot into reproducing the coverage diagram.      
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       Appendix 1: Using Bowtie2 to Subtract Out Human 
Genome Sequences 

  Bowtie2  is a great aligner. Like all great programs it is available from the command 
line, which is both a curse and a blessing. So how do we get started? Let us take 
apart some sample code (Please make sure to remove the line breaks in any com-
mand line as unix does not recognize them)   . 

  dirkdittmer$ bowtie2 -U ../neisseria_gonorrhoeae/Raw_Reads/140728_
UNC14- SN744_0473_BHAFV9ADXX/AD-GC7_14P_CGTACG_L002_R2_001.fastq  -x 
hg19 -k 2 -p 8 -5 10 -3 10 --very-fast --end-to-end --un  AD-Gc7- 14p2.
fa --met-stderr -S output.sam  

 I am the user  dirkdittmer$ . We start in the directory where the bowtie2 
target libraries are. More about how to create those is given below. Yet our input fi les 
are in a different library. So we are thrown into UNIX path name mudd. If you do 
not know this, now is a good time to review. 

    Defi ne the Target Library 

 Step 1 is to defi ne the target library. The target library is easily defi ned in our example 
as such:  -x hg19  Of note, there are many fi les in the folder hg19 that were created 
by bowtie. Hg19 refers to the human genome build Chr38. It was downloaded prefor-
matted from Illumina’s iGenomes collection at   http://support.illumina.com/sequenc-
ing/sequencing_software/igenome.html    . After download the directory looks like this: 

  dirkdittmer$ ls -ltotal 7950496-rw-r--r--@ 1 dirkdittmer  wheel  960018873 May
2  2012 hg19.1.bt2-rw-r--r--@ 1 dirkdittmer  wheel  716863572 May  2  2012
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hg19.2.bt2-rw-r--r--@ 1 dirkdittmer  wheel       3833 May  2  2012 hg19.3.bt2-
rw-r--r--@ 1 dirkdittmer  wheel  716863565 May  2  2012 hg19.4.bt2-rw-r--r--@ 1
dirkdittmer  wheel  960018873 May  2  2012 hg19.rev.1.bt2-rw-r--r--@ 1
dirkdittmer  wheel  716863572 May  2  2012 hg19.rev.2.bt2-rwxr-xr-x@ 1
dirkdittmer  wheel      3189 May  2  2012 make_hg19.sh  

 The important thing to remember is that in order to defi ne the target library/data-
base the bowtie2 tries to match the name before any dot, i.e.,  -x hg19 . This is the 
Index fi lename prefi x (minus the trailing .X.bt2). Note: you need to specify the full 
or relative path. We can use the abbreviated form, because we start the bowtie2 
command from within the target library folder.  

    Defi ne the Reads to Be Aligned 

 Because we start bowtie2 from within the library folder, also called index folder, we 
need to specify the complete path for the reads we want to align. In our case they are 
in a different folder and the pathname reads as such: 

   -U../neisseria_gonorrhoeae/Raw_Reads/140728_UNC14- SN744_0473_
BHAFV9ADXX/AD-GC7_14P_CGTACG_L002_R2_001.fastq  

 This is the fi rst argument and is required. It can be one fi le or multiple fi les sepa-
rated by comma. The -U fl ag precedes the input sequence(s) if the input is one or 
more fi les containing unpaired reads. For paired reads the fi rst input fi le needs to be 
preceded by -1 and the second by -2 as in the following example: 

  dirkdittmer$ bowtie2 -1 ../neisseria_gonorrhoeae/Raw_Reads/140728_
UNC14- SN744_0473_BHAFV9ADXX/AD-GC7_14P_CGTACG_L002_R1_001.fastq 
-2 ../neisseria_gonorrhoeae/Raw_Reads/140728_UNC14- SN744_0473_
BHAFV9ADXX/AD-GC7_14P_CGTACG_L002_R2_001.fastq -x hg19 -k 1 -p 8 
-5 10 -3 10 --very-fast --end-to-end --un AD-Gc7-14.fa --met- 
stderr -S output.sam   

    Setting Flags/Parameters 

 What other fl ags do we need to or want to set? Typing  bowtie2 -h  will pull up the 
manual in the terminal or you can go to their truly excellent website at   http://
bowtie- bio.sourceforge.net/bowtie2/manual.shtml    . In our example we set: “-k 2”. 
This fl ag defi nes how many matches bowtie will search for, i.e., the fi rst or the best 
 N  alignments. An alternative to setting  -k  is setting  -a . Setting  -a  will report all 
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alignments with no upper limit. “-p 8” This defi nes the number of cores the pro-
gram will use. “-5 10 -3 10” This defi nes the number of nucleotides to be trimmed 
before alignment --very-fast We wanted it fast and as a result slightly less precise. 
“--end-to-end” This forces the reads to be aligned completely; one end to the other. 
Not setting this option will align the best central part of the read and allow any 
number of prefacing or trailing misalignments. “--un AS-Gc7-14p2.fa” This will 
output unaligned reads as a fastafi le to “AS-Gc7–14p2.fa” for further processing. 
In our examples this was the goal of running bowtie. “-- met -stderr” This outputs 
the metrices tp stderr, i.e., in most cases the terminal. “-S output.sam.” This is the 
output fi le in sam-tools format  

    Further Examples 

 This is another example, where we are primarily interested in obtaining unaligned 
reads, i.e., deplete or fi lter out reads that align to the human genome. Note the code 
is using 12 cores -p 12. 

  dittmerrg5:hg19 dirkdittmer$ bowtie2 -U ../neisseria_gonorrhoeae/
Raw_Reads/140728_UNC14-SN744_0473_BHAFV9ADXX/AD- GC7_14P_CGTACG_
L002_R1_001.fastq -x ../hg19/hg19 -k 1 -p 12 -5 10 -3 5 --very-fast 
--end-to-end --un AD-Gc7-14.fa --met-stderr -S output.sam  

 The result looks as follows in sterr, i.e., the terminal using the following trim-
ming parameters -5 10 -3 5. The input was 105543931 reads; of 
these 105543931 (100.00 %) were unpaired; of these: 
13752261 (13.03 %) aligned 0 times 91791670 (86.97 %) 
aligned exactly 1 time 0 (0.00 %) aligned >1 times with 
an 86.97 % overall alignment rate. Note that we do not count reads 
that aligned >1 times because of -k 1. Let us see how this changes if we trim less 
from the ends -5 5 -3 5. 105543931 reads; of these: 105543931 
(100.00 %) were unpaired; of these: 14459602 (13.70 %) 
aligned 0 times, 91084329 (86.30 %) aligned exactly 1 
time 0 (0.00 %) aligned >1 times 86.30 % overall align-
ment rate. What if we do not trim at all, i.e., set -5 0 -3 0, which is also the 
default setting. This certainly speeds up the run, and the results are: 105543931 
reads; of these: 105543931 (100.00 %) were unpaired; of 
these: 15013710 (14.23 %) aligned 0 times, 90530221 
(85.77 %) aligned exactly 1 time, 0 (0.00 %) aligned >1 
times, 85.77 % overall alignment rate, Time searching: 
00:36:02, Overall time: 00:36:02. So a little less, but not signifi -
cantly. To get the time estimate set the time fl ag --time.   
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      Appendix 2: R Code to Generate Figures 

         
(continued)
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    Abstract     Adenocarcinoma (AdC) is the most common subtype of lung cancer, the 
leading tumor worldwide for incidence and mortality. In the majority of cases, a 
diagnosis is achieved only in advanced inoperable disease on cytological material 
obtained from pleural effusion, bronchoalveolar lavage, brushing, or fi ne- needle 
aspiration. Current recommendations provide for AdC to be tested for molecular 
alterations for which are already available targeted agents and many others are in 
clinical trials. However, conventional sequencing lacks of the necessary sensitivity 
to detect such molecular alterations in the scant cytological material and produces 
too many false negative results. Moreover, the number of therapeutically impacting 
markers that will need to be assessed is expected to rapidly increase. Thus, the 
application of highly sensitive and multigene probing methods, such as those 
 developed in the context of next- generation sequencing (NGS), has been recently 
introduced into clinical practice. NGS is able to detect and quantitate multiple 
gene alterations from limited amounts of DNA, thus improving the diagnostic and 
prognostic stratifi cation of lung cancer patients, which is essential for personalized 
cancer therapy. This chapter yields the available data about NGS in this fi eld.  
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1          Introduction 

 Lung cancer is the leading tumor worldwide for incidence and mortality [ 1 ]. 
According to the World Health Classifi cation, lung cancer histologically encom-
passes two major entities: the small cell lung carcinoma (SCLC) and the more com-
mon non-small-cell lung carcinoma (NSCLC) [ 2 ]. The latter represents a 
heterogeneous group of tumors and is subdivided in adenocarcinoma (AdC), squa-
mous cell carcinoma, and large cell carcinoma [ 2 ]. Among these subtypes, AdC is 
the most frequent, may develop in nonsmoker individuals, particularly in women, 
and is usually located at the periphery of the lung [ 2 ]. 

 This site of origin accounts for the common association of this tumor type with 
pleural effusion and, most of all, for the diagnostic delay. The large majority of 
AdCs have a poor prognosis because are diagnosed at an advanced inoperable stage. 
This is mainly due to the lack of symptoms at the beginning of the disease as well 
as of effective screening methods to date.  

2     The Role of Cytology in the Diagnostic Workout 
of Lung Adenocarcinomas 

 Cytology is a quick, low-cost, minimally invasive, and repeatable analysis widely 
employed to achieve a diagnosis of AdC, mainly in patients with advanced diseases 
or with low performance status that are unable to undergo an open biopsy [ 3 ]. 

 In the AdC setting, cytology encompasses different diagnostic applications vary-
ing from analysis of the exfoliated cells in fl uids contained in the pleural cavities or 
in bronchoalveolar lavage (BAL) to examination of cells obtained from mass lesions 
by brushing or fi ne-needle aspiration (FNA). 

 In the fi rst case, the excessive fl uid accumulated into a pleural cavity is drawn out 
by thoracentesis and collected for the cytological analysis. If the pleural effusion is 
due to an AdC that infi ltrates the mesothelial lining of the lung, the exfoliated tumor 
cells can be identifi ed in the fl uid. However, AdC cells are usually scant in this kind 
of specimen and may be much diluted since effusion may range from a volume of 
about 300 ml to more than 1 l, thus a preliminary cytocentrifugation is mandatory. 

 BAL usually provides a more adequate and selective specimen to be analyzed. 
The bronchoscope is introduced into a selected part of the lung where the lavage 
fl uid (100–300 ml) is squirted out in the terminal bronchioles and then recol-
lected for the analysis. During bronchoscopy, cytological samples may be also 
collected from visible lesions by brushing (including mainly, if not only, superfi -
cial tumor cells) and from centrally located deep nodules by ultrasound-guided 
FNA (i.e., trans-bronchial FNA). 

 Finally, computed tomography assists the correct targeting of peripheral tumors 
by fi ne needles through the thorax (i.e., trans-thoracic FNA). Compared to the pre-
viously presented techniques of cell collection, FNA usually provides the largest 
amount of tumor cells (Fig.  1 ). It has to be noted that in little or heterogeneous 
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tumors FNA cytology can be even more informative than a core biopsy, since fi ne 
needle movements allow to sample different neoplastic areas [ 4 ,  5 ]. Moreover, a 
rapid on-site evaluation (ROSE) of the aspirates allows to assess cytological mate-
rial amount and adequacy (revealing if a second FNA pass is needed) and often to 
reach a cytological diagnosis [ 4 ,  6 ,  7 ].  

 The recent advent of AdC-targeting therapies has extremely revolutionized the 
diagnostic and therapeutic impact of cytology in lung cancer patients. The adequate 
pre-analytic management of the cytological specimens became of key importance 
for subsequent—today mandatory—molecular characterization of the tumors. 
Indeed, all the international recommendations for good practice on lung cancer 
clearly state the absolute need for an acceptable acquisition and preservation of any 
residual cytological material for molecular studies [ 8 ,  9 ]. As a result, residual aspi-
rates and needle rinses are usually stock in preservatives or in cell-blocks for further 
analyses in current clinical practice [ 3 ,  10 ]. 

 However, all these different cytological sampling methods share a common 
restriction: a low amount of collected cells. Indeed, if a morphological diagnosis of 
AdC can be based on the alterations of few neoplastic cells, these could not be suf-
fi cient to achieve also a comprehensive molecular profi ling by using conventional 
methods. Of note, the number of the molecular determinations to be tested is des-
tined to grow, as explained below.  

  Fig. 1    Representative examples of trans-bronchial ultrasound-guided ( a  and  b ) and trans-thoracic 
computed tomography-guided ( c  and  d ) fi ne-needle aspirations of lung adenocarcinomas. May- 
Grünwald Giemsa stain, original magnifi cations 40× ( a  and  c ) and 200× ( b  and  d )       
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3     Lung Adenocarcinoma Molecular Scenario 
and New Targeted Therapies 

 Recent efforts have been made in order to discovery new biomarkers suitable for the 
development of novel effective therapies for lung AdC. Such approaches led to the 
introduction into clinical practice of AdC-specifi c targeting therapeutics (Table  1 ).

   Among the others, the most important are the tyrosine kinase inhibitors (TKIs) 
directed against epidermal growth factor receptor (EGFR). Indeed, about 15–20 % 
of AdC cases harbors mutations involving the tyrosine kinase domain of this recep-
tor [ 11 – 14 ]. Such molecular alterations are represented in approximately 90 % of 
cases by in-frame deletions in exon 19 or missense mutations in exon 21, such as the 
common leucine to arginine substitution at codon 858 (L858R), both resulting in a 
constitutive activation of the receptor [ 15 ]. More rarely, activating mutation affects 
 EGFR  exon 18 [ 15 ]. All these molecular alterations confer to AdC a signifi cant 
sensitivity to EGFR-TKI. Indeed, patients with advanced disease treated with such 
therapy showed an increase of the overall survival of about 6 months and of the 
progression free survival of more than 1 month [ 16 ]. 

 However, during the treatment can arise drug resistance, usually determined by 
the occurrence of a second mutation in  EGFR  exon 20, mainly a threonine to methi-
onine substitution at codon 790 (T790M), or, more rarely, due to a mutation in the 
downstream effector V-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue 
( KRAS ) [ 15 ]. 

 More recently, the echinoderm microtubule protein like-4/anaplastic lymphoma 
kinase ( EML4-ALK ) fusion gene has been detected in about 7 % of patients with 
EGFR-TKI resistance, and thus, crizotinib was added to the therapy of these patients 
[ 17 – 19 ]. As a result, the current recommendations provide for AdC to be fi rstly 
screened for  EGFR  mutations and then for the  EML4-ALK  rearrangement (Fig.  2 ) [ 20 ].  

 Recent whole-exome and whole-genome sequencing studies revealed new mol-
ecules and mechanisms that are involved in AdC (Fig.  3 ), some of which seems to 
be therapeutically targetable [ 12 ,  21 ,  22 ]. In fact, clinical trials are ongoing in 
 subgroups of patients harboring activating mutations of v-Raf murine sarcoma viral 
oncogene homolog B ( BRAF ), phosphatidylinositol-4,5-bisphosphate 3-kinase cat-
alytic subunit alpha ( PIK3CA ), or  KRAS  [ 23 – 25 ]. Thus, the number of predictive 
biomarkers to be assessed for novel targeted agents entering into the clinical prac-
tice is expected to rapidly increase.   

   Table 1    Targeted agents 
currently approved by Food 
and Drug Administration 
(FDA) for lung 
adenocarcinoma treatment   

 Drug  Target 
 Mechanism 
of action 

 Erlotinib  EGFR with activating mutation  EGFR-TKI 
 Gefi tinib  EGFR with activating mutation  EGFR-TKI 
 Afatinib  EGFR with activating mutation  EGFR-TKI 
 Crizotinib  ALK rearrangement  ALK-TKI 
 Ceritinib  ALK rearrangement  ALK-TKI 

   ALK  anaplastic lymphoma,  EGFR  epidermal growth factor 
receptor,  TKI  tyrosine kinase inhibitor  
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  Fig. 2    The current molecular diagnostic workfl ow for the management of lung adenocarcinoma cyto-
logical samples (modifi ed from Cheng et al. [ 20 ]).  ALK  anaplastic lymphoma,  BRAF  v-raf murine 
sarcoma viral oncogene homolog B1,  EGFR  epidermal growth factor receptor,  EML4  echinoderm 
microtubule protein like-4,  HER2  human epidermal growth factor receptor-2,  KRAS  v-Ki- ras2 Kirsten 
rat sarcoma viral oncogene homolog,  MEK1  mitogen-activated protein kinase kinase 1,  MET  hepato-
cyte growth factor receptor,  NRAS  neuroblastoma RAS viral oncogene homolog,  PIK3CA  phosphati-
dylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha,  TKI  tyrosine kinase inhibitor       

  Fig. 3    Driver molecular alterations in lung adenocarcinomas [ 12 – 14 ]. Of note, in a large proportion 
of cases no driver alteration has been discovered yet.  ALK  anaplastic lymphoma kinase fusion gene, 
 BRAF  v-raf murine sarcoma viral oncogene homolog B1,  EGFR  epidermal growth factor receptor, 
 HER2  human epidermal growth factor receptor-2,  KRAS  v-Ki-ras2 Kirsten rat sarcoma viral onco-
gene homolog,  MEK1  mitogen-activated protein kinase kinase 1,  MET  hepatocyte growth factor 
receptor,  NRAS  neuroblastoma RAS viral oncogene homolog,  PIK3CA  phosphatidylinositol- 4,5-
bisphosphate 3-kinase catalytic subunit alpha       
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4     Role of Next-Generation Sequencing in the Molecular 
Profi ling of Lung Adenocarcinomas 

 Conventional Sanger sequencing is the most common and widely employed tech-
nique for AdC mutational status assessment. However, effectiveness of this method 
is affected by its low sensitivity, resulting in high false negative rates when applied 
to cytological samples [ 3 ]. Indeed, despite it has been reported that FNA samples 
and small biopsies usually yield comparable amounts of DNA for molecular testing, 
this may not be the case for cytological material obtained from pleural effusion, 
BAL, or brushing [ 26 ]. 

 To clear (at least partially) this hurdle, cytological specimens are always checked 
for relative amount of neoplastic cells and in many cases microdissection is per-
formed to discard the nonneoplastic fraction (mainly infl ammatory cells and 
necrotic debris) and to enrich the tumor cell component. It has been stated that 
cytological specimens must present at least 25 % of tumor cells to ensure adequate 
Sanger sequencing [ 27 ]. However, this method could be signifi cantly affected also 
from the low absolute number of neoplastic cells and the presence of a small pro-
portion of mutated cells among the considered tumor cell population. 

 For these reasons, an increasing number of more sensitive techniques for muta-
tional detection has been developed and are currently used on cytological specimens 
to molecular characterize lung AdCs. These include restriction fragment length 
polymorphism (RFLP) and high-resolution melting (HRM) analyses. These types 
of methods, however, only indirectly highlight mutations and require a subsequent 
sequencing to confi rm and identify the precise identifi ed mutation. On the other 
hand, techniques such as ARMS-scorpion (TheraScreen), peptide nucleic acid 
(PNA)-locked PCR clamping, and allele-specifi c quantitative real-time PCR are 
based on multiple DNA consuming PCRs to detect only determined specifi c muta-
tions [ 11 ,  28 – 32 ]. 

 Thus, all the efforts made ended in procedures guaranteeing only little improve-
ments and that are affected, even if to a lesser degree, by the same limits of Sanger 
sequencing when they face cytological samples. Indeed, none ensured to detect 
molecular alterations present only in few tumor cells and exhibited the possibility to 
analyze a huge number of markers at once. 

 Next-generation sequencing (NGS) represents the answer to these issues. In fact, 
NGS allows performing multiple gene analyses from a minute amount of DNA by 
parallelizing the sequencing process and producing up to millions of sequences con-
currently (Fig.  4 ). Moreover, different NGS panels easily covers all the range of 
genomic alterations, such as base substitutions, short insertions and deletions, 
amplifi cations, homozygous deletions, and gene rearrangements (Fig.  5 ). The con-
current analysis of multiple gene alterations allows a signifi cant curtailment of time 
and money to be spent into the analysis [ 33 ,  34 ]. To date, only few pioneer studies 
tested NGS technology on AdC cytological specimens (Table  2 ). However, the 
available data are very promising.  
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   In their seminal work, Buttitta and colleagues fi rst compared NGS performances 
in detecting  EGFR  mutations in cytological samples (BAL and pleural effusion) 
with those of Sanger sequencing [ 35 ]. In particular, the author analyzed a series of 
33 BALs and 15 pleural effusions corresponding to histologically confi rmed AdCs 
with documented  EGFR  mutations (considered as references). At the cytological 
evaluation, in 12 cases neoplastic cells were totally absent and in the remaining 36 
cases they did not exceed 10 % of cellularity. Mutational analyses were restricted 
to  EGFR  exons 19 and 21. NGS revealed a greater accuracy compared with Sanger 

  Fig. 4    A representative example of the common  EGFR  deletion E746-A750 in exon 19 as appears 
in chromatograms using Sanger sequencing ( a ) and in parallel reads aligned to the reference 
genome using a next-generation sequencing method ( b )       
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sequencing testing these cytological specimens. Indeed, NGS was able to detect 
molecular alteration, corresponding to those observed in the matching resected 
 tissues, in 32 out of 48 cases, included 5 cases without morphologic evidence of 
malignancy. Sanger sequencing, instead, only confi rmed 5 cases, all belonging to 
the cytologically positive group. The detection by NGS of  EGFR  mutations in 
samples lacking malignant cells could be ascribed to the possible presence of DNA 
free molecules or microvesicles. On the other hand, negative NGS results in the 
specimens with morphologically confi rmed neoplastic cells could be attributed to 
defi ciencies of the sampling method or to cancer heterogeneity. Indeed, in a tumor 

  Fig. 5    The proposed NGS molecular diagnostic workfl ow for the management of lung adenocar-
cinoma cytological samples. Both DNA and RNA are extracted from the same specimen (with 
limited amount of material) and are concurrently processed for multiple gene testing       

   Table 2    Available articles about next-generation sequencing technology in lung adenocarcinoma 
cytological specimens   

 Article  Instrument  Method  Specimen 

 Buttitta et al. [ 35 ]  454 GS Junior System  Pyrosequencing  BAL and PE 
 Karnes et al. [ 43 ]  Illumina HiSeq 2000  Sequencing by synthesis  FNA 
 De Biase et al. [ 39 ]  454 GS Junior System  Pyrosequencing  FNA 
 Moskalev et al. [ 38 ]  454 GS Junior System  Pyrosequencing  PE and FNA 
 Scarpa et al. [ 42 ]  Ion Torrent  Ion semiconductor  FNA 
 Young et al. [ 41 ]  Illumina HiSeq 2000  Sequencing by synthesis  FNA 

   BAL  bronchoalveolar lavage,  FNA  fi ne-needle aspiration,  PE  pleural effusion  
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mass may coexist several cell clones harboring different molecular alterations, 
even in the same gene [ 33 ,  36 ,  37 ]. Thus, it is not a coincidence that in two cases 
Buttitta et al., in addition to the known molecular alterations, found through NGS 
analysis mutations that did not have been previously highlighted by Sanger 
sequencing in the surgical specimens [ 35 ]. 

 Similar results were achieved by Moskalev and De Biase [ 38 ,  39 ]. Moskalev and 
colleagues assessed the mutational status of the  EGFR  (exons 18, 19, 20, and 21) and 
the  KRAS  (exons 2 and 3) genes in a series of 21 AdC samples including 4 pleural 
effusions and 3 FNAs. NGS identifi ed  EGFR  mutation not only in the tumor cell rich 
(cell content >40 %) pleural effusion and FNA samples resulted mutated with Sanger 
sequencing too, but also in two FNA and in one pleural effusion specimens with low 
neoplastic cell rate (less than 10 %) previously labeled as wild type. Moreover, NGS 
detected a  KRAS  mutation in a pleural effusion sample with tumor cell content of 
5 % that was negative for Sanger sequencing. The remaining cytological specimen 
with 35 % of neoplastic cells resulted wild type with both tested methods. 

 De Biase and colleagues defi ned a novel NGS protocol targeted to  EGFR  exons 
18–21 suitable for the routine diagnosis of cytology/small biopsies samples and 
tested this protocol on 80 samples obtained from three referral medical centers in 
Italy. In six cases NGS identifi ed exon 19 deletions or the L858R mutation not seen 
after Sanger sequencing, allowing the patient to be treated with TKIs. In one addi-
tional case the R831H mutation associated with treatment resistance was identifi ed 
in an  EGFR  wild type tumor after Sanger sequencing. 

 These three studies agree in concluding that mutations can be reliably identifi ed 
by NGS even in a minority (up to the 0.2 %) of DNA molecules [ 35 ,  38 ]. Of interest, 
the above mentioned PCR-based methods that should have superseded Sanger 
sequencing do not exceed a sensitivity of 1:100 in dilution experiments, whereas 
NGS reach a value of 1:10,000 [ 35 ,  40 ]. Thus, NGS achieves frontiers of sensitivity 
unconceivable before. 

 The other concern about cytological specimens in the AdC setting is the possibil-
ity to obtain adequate marker coverage. Indeed, just now multiple different molecu-
lar alterations need to be tested in a single cytological sample for selecting the 
appropriate therapy, and the number of determinations is destined to grow. The 
works of Young et al., Karnes et al., and Scarpa et al. were designed to explore this 
opportunity by applying NGS technology [ 41 – 43 ]. 

 Young and colleagues analyzed a broad panel of genes comprehending 4,561 
exons of 287 cancer-related genes and 47 introns of 19 genes in a series of 16 lung 
cancer FNA specimens [ 41 ]. The series included six AdC, fi ve squamous cell 
 carcinoma, three NSCLC not otherwise specifi ed (NOS), and two SCLC cases. The 
NGS analysis required a small amount of DNA (50 ng) extracted from at least 
15,000 cells (regardless of the relative amount of the neoplastic component) of each 
sample. As for AdC specimens, each case showed more than a single molecular 
alteration (mean = 5.6; range = 3–9). The most common affected genes were  TP53  
(6/6 cases),  RB1  (2/6 cases),  FGF4  (2/6 cases),  FGF3  (2/6 cases),  FGF19  (2/6 
cases),  EGFR  (2/6 cases),  CCND1  (2/6 cases), and  MCL1  (2/6 cases).  EMSY , 
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 STKI1 ,  SMAD4 ,  NF1 ,  NF2 ,  SETD2 ,  MYC ,  KEAP1 ,  SMARCA4 ,  SMARCB1 ,  ASXL1 , 
 APC , and  ATRX  were altered in single cases. NSCLC-NOS samples displayed a 
lower number of molecular alterations (three in a case and two in the remaining 
cases). Again  TP53  was the most frequently involved gene (in two out of three 
specimens). The other hit genes were  EGFR ,  KRAS ,  NOTCH2 ,  APC , and  NF1 . 

 In their studies Karnes and Scarpa tested the feasibility and reliability of two NGS 
panels targeting hot-spot regions of commonly mutated genes in cancer [ 42 ,  43 ]. 
Karnes analyzed fi ve FNA smears (both trans-bronchial and trans-thoracic) of lung 
AdC and the matched histological samples, demonstrating that there were not sig-
nifi cant differences among these kinds of specimens [ 43 ]. Indeed, the concordance 
of total reads and of single-nucleotide variants across specimens were both higher 
than 99 %. Moreover, the authors found that the total reads generated, the percent-
ages of mapped (i.e., on target) and unique reads (i.e., read pairs with unique start 
coordinates), and the depth of sequencing coverage were virtually identical between 
cytological and histological samples. 

 Our group examined 504 mutational hotspots of the 22 genes included in the 
panel using barely 10 ng of DNA extracted from each of the 38 trans-thoracic AdC 
FNAs [ 42 ]. In this relatively large series of cytological specimens, we did not 
achieve library amplifi cation only in two scraped slides. However, 9 out of 36 cases 
showed multiple molecular alterations and in 24 cases at least one mutated gene was 
observed. These included  EGFR ,  KRAS ,  PIK3CA ,  BRAF ,  TP53 ,  PTEN ,  MET , 
 SMAD4 ,  FGFR3 ,  STK11 ,  MAP2K1 . Of interest, in this series  EGFR  and  KRAS  
mutations resulted mutually exclusive.  

5     Conclusions 

 Overall these fi ndings underlie that the shortage of diagnostic material available in 
most cytological AdC specimens does not represent a limit in obtaining a sensitive, 
specifi c, and comprehensive molecular characterization of the tumor by using NGS. 

 Since the overwhelming superiority of NGS in comparison with Sanger sequenc-
ing is clear, a possible obstacle to its wide and routine application in the AdC cyto-
logical setting could be represented by its procedure that is relatively labor-intensive 
and therefore unpractical for the ad hoc analysis of individual specimens as soon as 
they arrive to the cytopathology laboratory. However, many samples can be ana-
lyzed at the same time, even for a considerable number of different genes. As a 
result, both costs and timing of NGS analysis are signifi cantly lower in comparison 
to more “traditional” methods. 

 The application of NGS in routine cytopathology molecular diagnostics needs 
validation in larger series of cases. However, its performances in detecting a wide 
range of genetic alterations with an extremely high sensitivity and specifi city can 
help to assess tumor-specifi c therapeutic susceptibility and individual prognosis. 
The upcoming challenge lies in the reliable identifi cation of an ultimate AdC- 
specifi c multigene panel to signifi cantly improve the care of lung cancer patients.     
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    Abstract     Acute leukemia is characterized by abnormal proliferation of hematopoi-
etic cells. Development of new technologies, including whole-genome sequencing 
(WGS) and whole-exome sequencing (WES), now allows the deciphering of acute 
leukemia genomes in ever greater detail. WGS and WES have proven their capacity 
to identify novel, clinically relevant genetic abnormalities (driver mutations). 
Although these driver mutations occur in a large number of genes, their encoded 
proteins belong principally to a few classes. They also show preferential associa-
tions and mutual exclusions. Furthermore, the results indicate that most acute leu-
kemias are a mosaic of multiple genomes and that their clonal architecture evolves 
during disease progression. However, many questions and diffi culties remain. 
Indeed, the clinical application of WGS/WES will demand high levels of accuracy, 
sensitivity and specifi city to align the genome and differentiate the signifi cant fi nd-
ings among the huge amounts of data generated. WGS/WES remains expensive and 
the infrastructure, expertise, notably in bioinformatics, and time necessary to com-
plete analysis are signifi cant barriers to a routine use in the clinical setting. A major 
challenge would be to determine, among all the mutations identifi ed, which ones are 
clinically relevant and really confer prognostic information. Therefore, one alterna-
tive could be to develop targeted resequencing of genes that have proven prognostic 
information. It is probable that the full determination by WGS/WES studies of the 
mutational landscape will lead to a more refi ned classifi cation of acute leukemia. 
This could also lead to a more rational use of the chemotherapeutic drugs (personal-
ized treatment) and even the development of new drugs.  
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1          Introduction 

 Acute leukemia is characterized by abnormal proliferation of hematopoietic cells. 
As in other tumors, the number and complexity of genetic aberrations tend to 
increase during disease evolution. As for other cancers that are mostly associated 
with gene mutations, copy number variations (deletions and/or amplifi cations), and 
loss of heterozygosity (LOH), acute leukemia is also characterized by the generation 
of fusion genes due to chromosomal translocations, inversions, or insertions [  http://
AtlasGeneticsOncology.org    ;   http://cgap.nci.nih.gov/Chromosomes/Mitelman    ]. 

 Since 1960, when the fi rst specifi c chromosomal abnormality was identifi ed in 
chronic myeloid leukemia, a large number of fusion genes due to chromosomal 
translocations have been identifi ed [see, for example, [ 1 – 3 ]]. The number of fusion 
genes identifi ed in acute leukemia is still increasing [see, for example, [ 4 ,  5 ]]. 
However, it was soon evident that other genetic abnormalities, such as gene 
 mutations, were involved in leukemogenesis and/or progression of acute leukemia 
[see, for example, [ 6 – 8 ]]. 

 In the meantime, technology has much evolved, now allowing the deciphering of 
cancer genomes in ever greater detail [ 9 ]. Several techniques, referred to as next- 
generation sequencing (NGS), have now been developed [ 10 – 12 ]. Among them, 
whole-exome sequencing (WES) was designed to selectively sequence the coding 
regions of the genome (about 1 % of the human genome) and whole-genome 
sequencing (WGS) was developed to cover the entire genome [ 12 ,  13 ]. 

 In 2008, Ley et al. fi rst applied WGS to an acute myeloid leukemia genome and 
its matched normal counterpart obtained from the same patient’s skin [ 14 ]. Since 
this princeps report, several cases of acute leukemia (myeloid and lymphoid) were 
subjected to WES/WGS. We review the literature, discuss the benefi ts and diffi cul-
ties, and examine how these technologies can be moved from the research labora-
tory to the clinical setting.  

2     WES/WGS in Acute Myeloid Leukemia 

2.1     WES/WGS in Cytogenetically Normal (CN) AML 

 As a normal karyotype is frequently observed in blast cells of AML patients, several 
attempts have been made to fi nd new genetic abnormalities. Ley et al. (2008) per-
formed WGS in a patient with CN-AML without maturation (FAB AML-M1) asso-
ciated with a normal karyotype. Among the 181 single nucleotide variations (SNVs) 
predicted to alter gene function, 14 were validated as germ line and 152 as wild type 
(false positives). Eight SNVs were validated as somatic (acquired mutations), 
whereas two indels (small insertions or deletions) were detected in  FLT3  and  NPM1 , 
already known to be recurrently implicated in AML [ 14 ]. 

 Because of improvements in sequencing techniques, they reevaluated this case 
with deeper sequence coverage [ 15 ]. Coverage of 99.6 % of the genome instead of 
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91.2 % allowed them to identify several nonsynonymous mutations that were missed 
in their initial sequencing analysis, including a somatic mutation in  DNMT3A . 
Sequencing of all 24 exons of  DNMT3A  in 281 patients showed that 62 (22.1 %) had 
mutations. Mutations in  FLT3 ,  NPM1 , and  IDH1  were enriched in samples with 
 DNMT3A  mutations. None of the 11 patients with structural variations involving 
11q23 ( MLL ) had  DNMT3A  mutations [ 15 ]. 

 Mardis et al. (2009) performed WGS in a patient with AML-M1 associated with 
a normal karyotype. They identifi ed 12 acquired mutations within the coding 
sequences of genes, including  NRAS ,  NPM1 , and  IDH1 . Mutations in  IDH1  were 
also found in 16 of 188 AML patients (8.5 %), most of them having a normal karyo-
type or a trisomy 8 [ 16 ]. In a subsequent analysis on 358 AML patients associated 
with a normal karyotype,  IDH1  and  IDH2  mutations were identifi ed in 14 % and 
19 %, respectively [ 17 ]. 

 Studying a case of AML with maturation that carry both wild type  NPM1 , 
 CEBPA ,  FLT3 , and  MLL  genes by WES, Grossmann et al. (2011) identifi ed muta-
tions in 11 genes, including  DNMT3A  and  BCOR . Mutations in the  BCOR  gene 
were found in 13 of 81 AML patients carrying the same genotype as the index case 
(16 %). No  BCOR  mutation was found among 131 AML cases carrying various 
cytogenetic abnormalities such as tMLL, t(8;21), t(15;17), inv(16). More studies 
determined that  BCOR  mutations were mutually exclusive of  NPM1  mutations but 
associated with  DNMT3A  mutations [ 18 ]. 

 WES was performed on fi ve CN-AML with biallelic  CEBPA  gene mutations 
(biCEPBA) [ 19 ]. Tumor-specifi c nonsense and missense mutations were found in a 
total of 21 genes, among which  IKZF1 ,  STAG2 , and  KRAS. DNMT3A  and  GATA2  
mutations were identifi ed in two of the fi ve cases. More mutational screening 
detected  GATA2  mutations in 13 of 33 biCEBPA-positive AML patients (39.4 %) 
but none among 38 CN-AML patients with a monoallelic  CEBPA  mutation or in 89 
CN-AML patients with wild-type  CEBPA  gene. Furthermore, the mutual exclusive-
ness of  GATA2  mutations and  FLT3-ITD  within biCEBPA-mutated patients sug-
gested alternative mechanisms of leukemogenesis in these genetic subgroups [ 19 ].  

2.2     WES/WGS in Specifi c AML Subtypes 

 Greif et al. (2011) performed WES of three patients diagnosed with  PML/RARA - 
positive  acute promyelocytic leukemia (APL—AML-M3) to identify somatic muta-
tions. They identifi ed three to six nonsynonymous coding mutations per patient. 
A mutation was found in  WT1  and  KRAS  in one patient each. Furthermore, no overlap 
between mutations in the three APL patients was found, indicating that the spectrum 
of mutations that may cooperate with  PML/RARA  might be large and diverse [ 20 ]. 

 Welch et al. (2012) used WGS to compare 12 genomes from patients with APL 
associated with a t(15;17) to 12 genomes from patients with AML-M1 with normal 
cytogenetics [ 21 ]. Both AML subtypes had approximately the same number of 
overall mutations in their genomes. Nine recurrently mutated genes, including 
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 FLT3 ,  NRAS , and  WT1 , were found in both the AML-M1 and M3 genomes. This 
suggested that these mutations may cooperate with a variety of initiating events to 
produce the disease. Thirteen genes were recurrently mutated only in AML-M1 
genomes. They included three genes members of the cohesin complex ( STAG2 , 
 SMC3 , and  SMC1A ),  NPM1 ,  DNMT3A ,  IDH1 ,  TET2 ,  IDH2 ,  RUNX1 ,  ASXL1 , 
 PTPN11 ,  DIS3 , and  KIT , suggesting that they might be involved with AML initia-
tion. It is worth noting that mutations in  NPM1 ,  DNMT3A , and  IDH1  occur only 
rarely in AML-M3 genomes. Furthermore, nonrandom associations of  NPM1 , 
 DNMT3A ,  IDH1 , and  FLT3  mutations were observed in AML-M1 cases [ 21 ]. 

 The WES of nine paired samples of acute monocytic leukemia (AML-M5) cases 
allowed the identifi cation of 58 somatic mutations (including  CEBPA ,  FLT3 , 
 GATA2 ,  NRAS ,  NSD1 ,  RUNX1 , and  WT1 ) and 8 indels [ 22 ]. A mutation in  DNMT3A  
was found in one case. Another patient in a second set of fi ve AML-M5 was also 
found to have a  DNMT3A  mutation. Extending the search for  DNMT3A  mutations 
in a AML-M5 series revealed 23 patients out of 112 (20.5 %) to be carriers. 
 DNMT3A  mutations were also identifi ed in 9 of 66 (13.6 %) AML-M4 but in none 
of 177 AML types M1, M2, and M3. Furthermore,  DNMT3A  mutations were pref-
erentially associated with  NPM1  mutations [ 22 ]. 

 Children with Down syndrome (DS) have a 10–50-fold higher incidence of leu-
kemias than euploid children. This is particularly true for acute megakaryoblastic 
leukemia (AMKL), which is preceded by transient myeloproliferative disorder 
(TMD) [ 23 ]. Mutations in  GATA1  are always observed in cell expansions of TMD 
and AMKL associated with Down syndrome [ 24 ]. Nikolaev et al. (2013) performed 
WES on fi ve TMD and three AMKL. They confi rmed the presence of  GATA1  muta-
tions in all samples. Additional mutations in genes affecting WNT, JAK-STAT, or 
MAPK/PI3K were identifi ed in two of fi ve TMD cases, including one that evolved 
to AMKL, and in all AMKL cases [ 25 ]. 

 Yoshida et al. (2013) performed WGS in four patients with Down syndrome at 
the TMD and AMKL stages [ 26 ]. The mean number of validated somatic mutations 
was much higher in AMKL samples than in TAM samples. WES on 11 TAM and 10 
AMKL samples detected  GATA1  mutations in all cases.  GATA1  was the only recur-
rent mutational target in TAM samples while an additional eight genes were recur-
rently mutated in AMKL samples, including  RAD21 ,  STAG2 ,  NRAS ,  CTCF ,  DCAF7 , 
 EZH2 ,  KANSL1 , and  TP53. EZH2  is one of the most frequently mutated and deleted 
genes in childhood AMKL, as mutations or deletions were identifi ed in 16 of 49 
AMKL associated with Down syndrome (33 %) and in 3 of 19 AMKL not associ-
ated with Down syndrome (16 %) [ 26 ]. Interestingly, AMKL in children with or 
without Down syndrome are characterized by distinctive genetic features [ 27 ,  28 ]. 

 Herold et al. (2014) performed WES in 34 patients with AML associated with an 
isolated trisomy 13. They identifi ed mutations not only in genes already known to 
be involved in leukemia ( RUNX1 ,  SRSF2 ,  ASXL1 ,  BCOR ) but also in  CEBPZ , a 
novel recurrently mutated gene. The analysis revealed a striking clustering of lesions 
in a few genes, defi ning trisomy 13-associated AML as a genetically homogenous 
leukemia subgroup [ 29 ]. 
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 The larger series of adult de novo AML was analyzed in a collaborative effort to 
identify mutations involved in leukemogenesis [ 30 ]. Two hundred samples were stud-
ied using WGS (50 patients) or WES (150 patients). Samples with  MLL  fusion or 
 PML/RARA  fusion had a lower mean number of somatic mutations while samples 
containing a  RUNX1/RUNX1T1  fusion or a  TP53  mutation associated with a high- risk 
cytogenetic profi le had a higher mean number of mutations. This suggests that AML 
initiating events require different numbers of cooperating mutations to achieve full 
leukemia picture. Twenty-three genes had a higher than expected mutation preva-
lence, having already been implicated in AML pathogenesis. Each sample contained 
evidence of a single founding clone, and more than half had one or more subclones 
derived from the founding clone, showing the heterogeneity. These mutated genes 
could be grouped in sets according to biologic function or pathways: transcription fac-
tor fusions (18 %),  NPM1  (27 %), tumor-suppressor genes (16 %), DNA-methylation 
genes (44 %), signaling genes (59 %), chromatin-modifying genes (30 %), myeloid 
transcription factor genes (22 %), cohesion complex genes (13 %), and spliceosome 
complex genes (14 %). This study also confi rmed the strong association or the mutual 
exclusivity of some genes. For example, there was a strong association between muta-
tions in  NPM1 ,  FLT3 , and  DNMT3A  but a strong mutual exclusivity between  PML/
RARA ,  MYH11/CBFB ,  MLL  fusions and mutations in  NPM1  and  DNMT3A  or between 
 RUNX1  and  TP53  mutations and  FLT3  and  NPM1  mutations [ 30 ].  

2.3     WES/WGS in Secondary AML Following Myelodysplasia 

 In a study on 28 patients with myelodysplastic syndrome using WES, Yoshida et al. 
(2011) found that frequent spliceosome mutations were uniquely associated with 
myelodysplasia phenotypes [ 31 ]. A closer inspection of an updated list of muta-
tions, including newly validated single-nucleotide variants, allowed Kon et al. 
(2013) to identify mutations in genes involved in the cohesin complex (recurrent 
mutations in  STAG2  and mutations in  STAG1  and  PDS5B  in single specimens) [ 32 ]. 
They examined 157 AML specimens for mutations in nine cohesin or cohesin- 
related genes using high-throughput sequencing. A total of 19 samples (12.1 %) 
were found to have a mutation or deletion in  STAG2 ,  RAD21 ,  SMC1A , or  SMC3  in 
a mostly mutually exclusive manner. Cohesin mutations frequently coexisted with 
other mutations common in myeloid neoplasms and were signifi cantly associated 
with mutations in  TET2 ,  ASXL1 , and  EZH2  [ 32 ]. 

  SETBP1  mutations were identifi ed in two cases of refractory anemia with excess 
of blasts II (RAEB-2) among 20 patients with myeloid hemopathies subjected to 
WES by Makishima et al. [ 33 ]. Further studies showed that  SETBP1  mutations were 
present in 52 out of 727 cases (7.2 %), including 19 of 113 (16.8 %) secondary 
AML, but only one of 144 de novo AML.  CBL  mutations were signifi cantly associ-
ated with  SETBP1  mutations while  FLT3  and  NPM1  mutations were exclusive of 
 SETBP1  mutations. This suggests that  CBL  and  SETBP1  mutations potentially 
cooperate in leukemia progression [ 33 ]. 
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 Li et al. (2011) performed WES in eight patients with secondary AML 
 associated or not with cytogenetic abnormalities following myelodysplastic syn-
drome. They identifi ed mutations in fi ve genes, including  BCORL1 ,  NRAS ,  IDH1 , 
 DNMT3A , and RUNX1, in two patients and in  IDH2  and  TP53  in one patient each. 
Sequencing all exons of  BCORL1  in a set of 173 AML patients showed 10 patients 
(5.8 %) to carry a mutation [ 34 ]. 

 Walter et al. (2012) performed WGS of seven patients who developed AML fol-
lowing a myelodysplastic syndrome. They compared the mutation burden both at 
the leukemic and the myelodysplastic stage. There were 17–32 somatic point muta-
tions or indels per secondary AML genome in 168 genes among the seven samples. 
Two recurrently mutated genes,  RUNX1  and  UMODL1 , were detected in two sam-
ples each. In the samples from all seven subjects, the secondary AML genomes 
were oligoclonal. The preexisting myelodysplastic syndrome founding clone always 
persisted in secondary AML, although it was outcompeted by daughter subclones in 
some cases. With the acquisition of each new set of mutations, all the preexisting 
mutations were carried forward, resulting in subclones that contained increasing 
numbers of mutations during evolution. Mutations in new clones must confer a 
growth advantage for them to successfully compete with ancestral clones. The result 
is that these secondary AML samples are not monoclonal but are instead a mosaic 
of several genomes with unique sets of mutations; this mosaic is shaped by the 
acquisition of serial mutations and clonal diversifi cation [ 35 ]. 

 Fernandez-Mercado et al. (2013) performed WES on paired samples from one 
MDS case with del(7)(q21) before and after progression to AML to investigate the 
molecular events associated with disease progression in MDS. They identifi ed 15 
acquired nonsynonymous exonic variations, of which 9 were present at both the 
MDS and AML stages while 6, involving notably  SETBP1 , were exclusively pres-
ent after AML transformation. Subsequent analyses revealed mutations in the 
 SETBP1  gene in 14 of 328 patients with myeloid hemopathies (4.3 %) [ 36 ]. 

 Studying by WES three patients with AML that evolved from MDS, Pellagatti 
et al. (2014) identifi ed a number of somatic SNVs that appeared during progression 
to AML. Several ( RLF ,  TET2 ,  CECR2 ) are recurrently observed in AML. It is inter-
esting to note that  TP53  mutations were identifi ed in both cases evolving from MDS 
associated with a deletion of the long arm of chromosome 5 [del(5q)] [ 37 ].  

2.4     Sequential WES/WGS in AML 

 Ding et al. (2012) performed WGS in eight AML patients at diagnosis and relapse 
to investigate the genetic changes associated with relapse. The number of coding 
mutations was higher at relapse than at diagnosis in seven patients. A large number 
of somatic mutations were shared between the primary tumor and relapse samples 
while fewer mutations were specifi cally found at relapse only. These data demon-
strate that AML cells routinely acquire a small number of additional mutations at 
relapse, and suggest that some of these mutations may contribute to clonal selection 
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and chemotherapy resistance. Several clusters of mutations (clones) were present at 
diagnosis in four patients, signing the clonal heterogeneity at diagnosis. Furthermore, 
these authors identifi ed two evolution patterns during relapse. The unique clone 
present at diagnosis gains mutations and evolves into the relapse clone, or one or 
several subclones at diagnosis survive initial therapy, gain additional mutations and 
expand at relapse [ 38 ].  

2.5     Targeted Resequencing of Genes in AML 

 Several groups have used a targeted resequencing approach to detect mutations in 
genes already known to be involved in leukemia and/or cancer. However, the nature 
and number of genes analyzed varies greatly between studies. 

 Duncavage et al. (2012) used targeted next-generation sequencing (exons and 
introns) for detecting translocations, somatic mutations and indels in 20 genes 
implicated in leukemia prognosis [ 39 ]. Spencer et al. (2013) used targeted next- 
generation sequencing-based panel for detecting somatic mutations in 27 genes that 
are frequently mutated in cancer [ 40 ]. 

 Yamashita et al. (2010) performed large-scale resequencing of exons or exon–
intron boundaries of 5,648 protein-coding genes in 19 AML samples. They identi-
fi ed nonsynoymous somatic mutations in 11 genes, including  DNMT3A ,  NRAS , and 
 JAK3 . Sequencing the entire coding region of  JAK3  in 83 AML samples revealed 
 JAK3  sequence changes in 8 samples [ 41 ]. 

 Van Vlierberghe et al. (2011) used an X-chromosome-targeted mutational analy-
sis approach of T-cell acute lymphoblastic leukemia male patients. They found the 
 PHF6  gene to be recurrently involved through loss of function mutations or dele-
tions [ 42 ]. DNA sequencing analysis of all coding exons of  PHF6  identifi ed muta-
tions in 10 of 353 AML patients (3 %). Sequencing all codons of the  IDH1 ,  IDH2 , 
 TET2 ,  ASXL1 ,  FLT3 ,  NPM1 ,  CEBPA ,  WT1 ,  KRAS , and  NRAS  genes revealed 
 additional mutations in  IDH2 ,  ASXL1 ,  CEBPA , and  NRAS  in patients with mutated 
 PHF6  [ 43 ]. 

 Patel et al. (2012) performed mutational analysis of the entire coding regions of 
 TET2 ,  ASXL1 ,  DNMT3A ,  PHF6 ,  WT1 ,  TP53 ,  EZH2 ,  RUNX1 , and  PTEN  and of 
coding exons with known somatic mutations of  FLT3 ,  HRAS ,  KRAS ,  NRAS ,  KIT , 
 IDH1 , and  IDH2  using bidirectional Sanger sequencing. They also performed 
pooled amplicon resequencing of  NPM1  and  CEBPA . They identifi ed frequently 
co-occurring mutations and mutations that were mutually exclusive in a cohort of 
454 patients. Their results also suggested that mutational profi ling could potentially 
be used for risk stratifi cation and to inform prognostic and therapeutic decisions 
regarding patients with AML [ 44 ]. 

 Dolnik et al. (2012) used a targeted resequencing approach to identify mutations 
in a set of 50 AML patients. First, they identifi ed genomic regions affected by recur-
rent genomic gains and losses by array-based comparative genomic hybridization 
and single nucleotide polymorphism array-based analyses of 391 AML cases. 
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Then, they selected 1,000 candidate genes located in these regions and sequenced 
all the coding exons in 50 paired diagnosis and remission AML samples. This set 
included AML with a normal karyotype associated or not with known mutations 
( CEBPA ,  NPM1 ,  FLT3 , or  WT1 ), AML with a complex karyotype or with specifi c 
chromosomal abnormalities (t(8;21) or inv(16)). They identifi ed 120 tumor-specifi c 
missense or nonsense mutations and 60 indels in 73 genes, most of them in a nonre-
current manner. Mutations in genes already known to be affected in AML ( GATA2 , 
 IDH1 ,  KIT ,  KRAS ,  NRAS ) were found. Most importantly, mutations affecting at 
least one gene linked to epigenetic regulation of transcription ( TET2 ,  TET1 , 
 DNMT3A ,  DNMT1 ,  NSD1 ,  EZH2 , and  MLL3 ) were observed in 40 % of the patients. 
They also reported for the fi rst time mutations in the  RAD21  gene, affecting about 
4 % of the patients [ 45 ].   

3     WES/WGS in Acute Lymphoblastic Leukemia 

 The majority of chromosomal abnormalities described in ALL are considered to be 
primary genetic changes driving leukemia initiation, with additional genetic events 
required for the development of overt ALL [ 46 ]. Furthermore, it has been demon-
strated that the majority of ALL cases show changes in the patterns of structural 
genomic alterations from diagnosis to relapse [ 47 ]. Many acquired lesions at relapse 
are present at low levels at diagnosis, suggesting that genetically determined tumor 
heterogeneity is a key determinant of treatment failure and relapse [ 48 ,  49 ]. 
However, next-generation sequencing (targeted and genome wide) has revealed the 
presence of many additional genetic abnormalities and added a new dimension by 
identifying new genetic alterations. 

3.1     T-Cell Acute Lymphoblastic Leukemia 

 T-cell ALL is an aggressive malignancy in which multiple genetic defects collabo-
rate in the transformation of T-cell progenitors. Van Vlierberghe et al. (2010) per-
formed an X chromosome-targeted exome sequencing in tumor DNA samples from 
12 males with T-cell ALL. They identifi ed somatic mutations and an insertion in the 
 PHF6  gene in three patients. Mutational analysis of  PHF6  in an extended panel of 
pediatric and adult T-cell ALL samples at diagnosis identifi ed mutations in 38 % 
(16/42) of adult and 16 % (14/89) of pediatric samples [ 42 ]. 

 Using WES on 67 T-cell ALL children and adults, De Keersmaercker et al. 
(2013) found that adults (age >15 years) had 2.5 times more somatic mutations than 
children (21.0 versus 8.2,  P  < 0.0001); furthermore, there was a correlation between 
the age of the affected individual and the number of mutations. They identifi ed 15 
candidate driver genes, 8 already known and 7 new. Again, adult samples showed 
2.7 times more mutations in candidate driver genes than children (1.9 versus 0.7, 
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 P  = 0.0034). Moreover, mutations in  CNOT3  and  PHF6  were mainly observed in 
adults, whereas  RPL10  mutations were almost exclusively found in children [ 50 ]. 

 Tsoneva et al. (2013) performed WES of matched diagnosis, remission and 
relapse DNA samples from fi ve pediatric patients with T-cell ALL. This analysis 
identifi ed a mean mutation load of 13 somatic mutations per sample. Sixty somatic 
mutations were identifi ed, 17 being present at diagnosis and relapse, 24 at relapse 
only, notably in the  NT5C2  gene, and 19 only at diagnosis. In some relapse samples, 
at least one somatic mutation present at diagnosis was still present with secondary 
mutations acquired at relapse.  NT5C2  mutation analysis of an extended panel of 
relapse T-cell ALL and B-cell ALL samples identifi ed mutations in 19 % (20/103) 
of relapse T-cell ALL and 3 % (1/35) of relapse B-cell ALL. No  NT5C2  mutation 
was identifi ed in patients at diagnosis [ 51 ]. This result supports that relapsed ALL 
can originate as derivate of ancestral subclones related to, but distinct from, the 
main leukemic population present at diagnosis. 

 Early T-cell precursor (ETP) acute lymphoblastic leukemia is a very aggressive 
leukemia. Zhang et al. (2012) performed WGS of 12 ETP ALL children. The major-
ity of cases harbored alterations in three pathways: loss-of-function mutations in 
genes encoding regulators of hematopoietic development ( ETV6 ,  GATA3 ,  IKZF1 , 
 RUNX1 ), activating mutations in cytokine receptor and Ras signaling ( NRAS ,  KRAS , 
 FLT3 ,  JAK1 ,  JAK3 , and  IL7R ), and inactivating mutations targeting epigenetic regu-
lators, most commonly components of the polycomb repressor complex 2 ( EZH2 , 
 SUZ12 ,  EED ),  SETD2 , and  EP300 . The spectrum of mutations indicates that ETP 
ALL is distinct from non-ETP ALL [ 52 ]. Neumann et al. (2013) performed WES in 
fi ve adult patients with ETP ALL. They identifi ed mutations in genes already known 
to be involved in leukemogenesis ( ETV6 ,  NOTCH1 ,  JAK1 , and  NF1 ) but also novel 
recurrent mutations in  FAT1 ,  FAT3 ,  DNM2 ,  MLL2 ,  BMI1 , and  DNMT3A . Further 
studies revealed a high rate of  DNMT3A  mutations (16 %) in a cohort of 68 patients 
[ 53 ]. These results also suggested that ETP ALL represented a neoplasm of a less 
mature hematopoietic progenitor or stem cell, with arrest at a very early  maturational 
stage that retained the capacity for myeloid differentiation. Furthermore, the muta-
tion spectrum was different for pediatric and adult patients, pointing toward distinct 
molecular alterations in pediatric and adult ETP ALL.  

3.2     B-Cell Acute Lymphoblastic Leukemia 

 The genome of  ETV6/RUNX1 -positive ALL has been well characterized at the copy 
number and cytogenetic level. Deletions affecting genes involved in B-lymphocyte 
development and differentiation, such as  CDKN2A ,  PAX5 ,  RAG1/2 , and the wild- type 
copy of  ETV6 , are already well known. Lilljebjörn et al. (2012) performed WES of 
two cases of pediatric ALL carrying the  ETV6/RUNX1  ( TEL/AML1 ) fusion gene. 
They identifi ed 14 somatic mutations, none of them recurrent. None of the identifi ed 
mutations was present in an extended collection of  ETV6/RUNX1 -positive ALL but 
13 of them affected genes previously implicated in cancer, or speculated to be 
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important in carcinogenesis [ 54 ]. Papaemmanuil et al. (2014) performed WGS on 
leukemic samples of 51 cases of  ETV6/RUNX1 -positive ALL. They identifi ed an 
average of 11 structural variations and 14 coding point mutations per case. Few recur-
rent coding-region mutations were observed but genomic rearrangements were fre-
quent and appeared to be the predominant driver of  ETV6/RUNX1 -positive ALL [ 55 ]. 

 Andersson et al. (2011) performed WGS on diagnostic leukemia blasts samples 
from 22 infants (less than 1-year-old) with  MLL  rearranged ALL. A mean of only 
two somatic structural variations and two single nucleotide variations affecting the 
coding region of genes were detected per case. Mutations leading to activation of 
signaling through the PI3K/RAS pathway were observed in 45 % of the cases 
( KRAS ,  NRAS ,  NF1 ,  PTPN11 ,  PIK3R1 , and  ARHGAP32 ). B cell differentiation was 
also altered ( PAX5  and  CDKN2A/B ). WES performed on 13  MLL  acute leukemia 
(8 ALL and 5 AML) in older children (7–19 years of age) showed a mean of eight 
single nucleotide variations per case [ 56 ]. 

 Philadelphia ( BCR/ABL1 )-like ALL is a novel subgroup of childhood ALL that 
shows a gene expression profi le similar to that of the Philadelphia (Ph)-positive 
ALL and shares the same high-risk of relapse and poor outcome. Up to half of 
Ph-like ALL cases have a rearrangement of  CRLF2  ( IGH/CRLF2  or  P2RY8/
CRLF2 ). WGS of 15 Ph-like ALL cases, including 12 without  CRLF2  rearrange-
ment, identifi ed a strikingly diverse array of genetic alterations (notably  IKZF1 , 
 PAX5 ,  CDKN2A/CDKN2B ,  JAK2 ,  SH2B3 , and  IL7R ) activating cytokine receptor 
and tyrosine signaling in all cases [ 57 ]. 

 Hypodiploid ALL may be subclassifi ed by degree of aneuploidy into near hap-
loid (NH-ALL, 23–31 chromosomes) and low hypodiploid (LH-ALL, 32–44 chro-
mosomes) cases. NH-ALL is associated with particularly poor outcome, contrary to 
high hyperdiploidy (51–67 chromosomes) that has a favorable prognosis. WES of 
the “pseudo high hyperdiploid” cell line MHH-CALL-2, derived from a near hap-
loid clone, showed homozygous nonsynonymous mutations in 63 genes, including 
CDKN2A/CDKN2B,  FANCA, NF1, TCF7L2 ,  CARD11 ,  EP400 ,  KDM6B ,  KDM1A , 
and  PRDM11  [ 58 ]. Interestingly, using WGS, only 8 of these 63 genes were also 
mutated, but heterozygously, in a set of high hyperdiploid ALL patients [ 58 ]. 
Holmfeld et al. (2013) performed a detailed genomic analysis of more than 120 
hypodiploid ALL cases, including WGS or WES of more than 40 cases. NH-ALL 
was found to harbor alterations targeting receptor tyrosine kinase signaling and Ras 
signaling (71 %), including recurring novel alterations of  NF1  and IKZF3 (13 %). 
In contrast, LH-ALL had alterations in  TP53  (91.2 %), with the mutations present in 
the germ line in approximately half the cases,  IKZF2  (53 %) and  RB1  (41 %) [ 59 ]. 

 Chang et al. (2013) performed WES in four patients with congenital ALL (diag-
nosis within the fi rst month of life). One to three nonsynonymous somatic mutations 
were found in each tumor sample (including  FLT3  in two samples). Germ-line 
mutations in several genes known to be associated with cancer predisposition or 
involved in DNA repair were also identifi ed in each sample [ 60 ]. 

 Zhang et al. (2011) sequenced all exons and fl anking splice site junctions of 120 
candidate cancer genes in samples from 187 children and adolescents with high-risk 
B-cell ALL. Of the 680 putative novel variants, 179 were identifi ed to be somatic 
mutations in 31 genes, 19 of which being recurrently mutated. They included genes 
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involved in four known cancer signaling pathways: B-cell development/ 
differentiation, Ras signaling, JAK/STAT signaling, and the TP53/RB1 tumor sup-
pressor pathway. Despite the low background mutational rate, multiple genes within 
the four individual signaling pathways were mutated in a subset of cases, suggest-
ing a strong selection for mutations within these specifi c signaling pathways [ 61 ]. 

 Although chemotherapy is very effective in obtaining remission in ALL (espe-
cially in children), relapse remains a real concern and even those patients with 
favorable cytogenetic abnormalities will eventually relapse. To identify novel 
sequence mutations in relapsed ALL, Mullighan et al. (2011) resequenced 300 genes 
in matched diagnosis-relapse samples from 23 children with B-cell ALL. They iden-
tifi ed 52 somatic mutations in 32 genes in 20 cases [ 62 ]. Many deleterious mutations 
present at diagnosis were no longer evident at relapse. However, deletions/ mutations 
of  IKZF1  were preserved at relapse or acquired as new lesions. Furthermore, analy-
sis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukemia 
cases without relapse found that 18.3 % of relapse cases had sequence or deletion 
mutations of  CREBBP . In contrast,  CREBBP  alterations in cases of childhood acute 
leukemia that did not relapse were rare [ 62 ]. Transcriptome sequencing of speci-
mens from ten children with B-cell ALL was performed at diagnosis and relapse. 
Twenty missense mutations, including two mutations in the  NT5C2 , were specifi -
cally found at relapse but absent at diagnosis. Full-exon resequencing of  NT5C2  
was completed in an additional 61 relapse specimens and fi ve further somatic muta-
tions were identifi ed. Amplicon resequencing of DNA from diagnosis and relapse 
specimens identifi ed two cases where a rare clone indeed existed at diagnosis. In the 
remaining fi ve cases, no mutation could be detected at diagnosis [ 63 ]. These data 
suggested that the emergence of clones containing mutations in  NT5C2  is driven by 
powerful selective pressures presumably due to drug resistance [ 63 ]. 

 Although each tumor type is characterized by a unique genomic landscape, sev-
eral cellular pathways are mutated in multiple tumor types. They include signaling 
transcriptional regulation of development/differentiation, antigen receptor signal-
ing, tyrosine kinase and Ras signaling, JAK/STAT signaling pathways [ 64 ,  65 ]. 

 The rather low number of mutations suggests that ALL is more genetically stable 
than previously anticipated [ 54 ]. However, the nature and frequency of genetic lesions 
is subtype dependent and could also be age dependent, as shown for t(4;11)(q21;q23)-
associated ALL [ 66 ]. For example,  MLL -rearranged leukemia harbors very few addi-
tional structural or sequence alterations, in contrast to  BCR/ABL1  and  ETV6/RUNX1  
subtypes that harbor more alterations. Such fi ndings indicate the more aggressive 
nature of the  MLL  translocation in ALL, requiring fewer additional genetic alterations 
for induction of leukemogenesis than the  BCR/ABL1  and  ETV6/RUNX1  subtypes [ 67 ].   

4     Research Lessons from WGS/WES 

 The application of various new high-throughput technologies over the past decade, 
including next-generation sequencing, to the study of acute leukemia has resulted in 
the identifi cation of a host of genes that are recurrently mutated. It is now widely 
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anticipated that NGS will enable the in-depth characterization of the leukemia cell 
genome and further advance the fi elds of molecular pathology. Still, WGS/WES has 
raised many questions but few answers have been provided. 

 In the studies thus far published, a large number of somatic mutations have been 
identifi ed. A major question addresses the issue of determining which mutations are 
important for leukemia initiation and progression. Indeed, with each cell division, 
there is a fi nite probability of somatic mutations secondary to errors in DNA repli-
cation. During their lifetime, hematopoietic stem cells, since they have self-renewal 
capacity, accumulate somatic mutations that are transferred to daughter hematopoi-
etic stem cells. Thus, it is predicted that hematopoietic stem cells will accumulate 
mutations as a function of age [ 21 ]. As a consequence, the majority of mutations in 
acute leukemia represents random mutations that were acquired during normal 
aging of hematopoietic stem cells (called “background” or “passenger” mutations), 
the majority of these generally being irrelevant for AML pathogenesis [ 68 ]. 

 Therefore, a current challenge is to identify those mutations present in a leuke-
mia genome that contribute to leukemogenesis (called “driver” mutations) and to 
discriminate them from passenger mutations. This can be achieved by identifying 
those genes mutated in multiple samples. Some of the driver mutations are highly 
recurrent (>30 % of patients), but there seems to be a continuum of mutation fre-
quency down to rare (<5 %) or even singleton mutations. Recurring mutations in a 
gene, or at an individual nucleotide position in the genome, are likely to be impor-
tant for pathogenesis. However, nonrecurrent mutations that impact common bio-
logical pathways may also be important for leukemogenesis [ 69 – 71 ]. 

 Because many genes, each of which being mutated infrequently, seem to contribute 
to leukemia development in only a small fraction of patients, large sample sets will 
have to be analyzed (  https://tcga-data.nci.nih.gov/tcga/    ). It is likely that many more 
driver mutations are still to be discovered (  http://cancer.sanger.ac.uk/cosmic/census    ). 

 WGS/WES studies have revealed that acute leukemia usually harbors few driver 
mutations. Many questions emerge from their results. Are there preferential asso-
ciations and mutual exclusions among mutations? What are the gene classes tar-
geted by these mutations? Is acute leukemia monoclonal or oligoclonal at diagnosis? 
How acute leukemia does evolve? 

 There is growing evidence that more than one hit is necessary to trigger acute 
leukemia [ 72 ]. A fi rst step in leukemogenesis driven by a genetic alteration is likely 
to represent just a clonal expansion. However, this fi rst hit could drive the fate of the 
following steps [ 73 ]. Indeed, two driver mutations may never occur together, being 
mutually exclusive, in the same cell because of redundancy (no growth advantage if 
both hits occur in the same pathway) or synthetic lethality (cell survival compro-
mised because of counterselection of two hits). Association and cooperation can 
occur in all other cases [ 30 ,  74 ]. 

 Although driver mutations occur in a large number of genes, their encoded 
proteins belong principally to a few classes [ 73 ]. Table  1  shows the main genes 
that are recurrently mutated and the major classes to which they belong. There is 
no doubt that the combination of mutations associated with a given leukemia is 
extremely large; although the pathways affected by these mutations may be limited. 
Mutational profi ling of acute leukemia will undoubtedly provide insights into com-
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mon pathways involved in leukemia transformation and possibly enhance disease 
classifi cation.

   The results obtained by WGS/WES studies indicate that acute leukemia develop-
ment may be a more complex process than previously thought. They revealed that 
most acute leukemias are oligoclonal. In fact, they are a mosaic of multiple genomes 
(Fig.  1 ). Indeed, once a driver mutation that gives an advantage has occurred in a 
hematopoietic stem cell, an expanding clone (primary or founding clone) can 

   Table 1    Distribution of the main genes recurrently mutated in acute leukemia   

 Signaling 
proteins 

 Transcription 
factors 

 Epigenetic regulators 

 Tumor 
suppressors 

 Spliceosome 
complex 

 Cohesin 
complex 

 DNA 
methylation 

 Chromatin 
remodeling 

 CBL  CEBPA  DNMT3A  ASXL1  CDKN2A  SF3A1  SMC1A 
 FLT3  ETV6  TET2  BCOR  CDKN2B  SF3B1  SMC3 
 JAK2  GATA1  IDH1  BCORL1  TP53  SRSF2  STAG2 
 KIT  GATA2  IDH2  CREBBP  WT1  U2AF1 
 KRAS  NPM1  EZH2  ZRSR2 
 NF1  RARA  IKZF1 
 NRAS  RUNX1  IKZF2 
 PTPN11  IKZF3 
 SH2B3  MLL 

 PHF6 
 SUZ12 

HSC Cell deathPrimary clone

Subclones

  Fig. 1    Schematic picture of the clonal genetic architecture of acute leukemia       
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develop. Additional cooperating driver mutation(s) can occur in some cells of the 
clone, leading to subclones in which some cells can also harbor new driver muta-
tions, resulting in genetic heterogeneity [ 64 ,  73 ,  75 ,  76 ]. All passenger mutations 
that have already been accumulated in the hematopoietic stem cell are carried to the 
founding clone; additional passenger mutations occurring in that founding clone or 
in subclones are also captured, thus increasing the genetic heterogeneity of acute 
leukemia. Furthermore, the magnitude of clonal diversity could even be more 
important as WGS/WES can only detect clones that are present at 5 % or greater. 
It is likely that subclonal diversity varies continuously with the development and 
progression of disease. One or more subclones can gain selective advantage, com-
pete with others for survival and outgrowth them [ 75 ].  

 Although a complete remission can be achieved by chemotherapy in most cases 
of acute leukemia, early or late relapse occurs in the majority of patients. WGS/
WES studies have shown that the clonal architecture at relapse was different from 
that at diagnosis. Sequential studies at diagnosis and relapse demonstrated that the 
founding clone and/or subclone(s) present at diagnosis may gain a small number of 
additional mutations that could contribute to clonal selection and result in relapse. 
Furthermore, while some subclones may be eradicated by chemotherapy, one or 
more others could be selected, because they are resistant to treatment, and be the 
starting point of relapse [ 38 ,  71 ,  75 ].  

5     How WGS/WES Can Move from Research to Clinics? 

 WGS/WES has allowed us to start deciphering the complexity of leukemia genomes. 
Now that it has proven its capacity to identify novel, clinically relevant genetic abnor-
malities, time has come to start moving from research laboratories to the hospital set-
ting. However, many questions and diffi culties remain. Indeed, its clinical application 
will demand high levels of accuracy, sensitivity, and specifi city to align the genome 
and differentiate the signifi cant fi ndings among the huge amounts of data generated. 

 One diffi culty is the ability of WGS/WES to detect some sequence variants, 
which is dependent upon the number of unique times a single nucleotide is sampled 
(“read-depth”). Even with a high number of reads (30–40), a number of sequence 
variants identifi ed are in fact false positives, due notably to mapping or polymerase 
errors. Therefore, validation with another method is a must. Some rearrangements 
such as medium-sized indels could be diffi cult to be identifi ed. The limit of sensitiv-
ity also remains to be determined for cases in which pathogenic genetic aberrations 
in leukemic cells are diluted by a larger population of normal cells [ 39 ]. 

 WGS/WES remains expensive and the infrastructure, expertise, and time neces-
sary to complete sequence analysis are signifi cant barriers to its routine use in the 
clinical setting [ 11 ,  39 ,  77 ,  78 ]. There is no doubt that its cost will continue to 
decrease, therefore making it more accessible to academic and, possibly, nonaca-
demic hospitals. However, the expertise in bioinformatics required to analyze 
sequencing data could remain a limiting factor in its expansion in the clinical setting. 
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Indeed, WGS/WES is highly dependent on software tools, which can handle large 
amounts of data, and faces interpretation challenges. Several software tools are used 
but they still need to be validated. 

 Another challenge will be to generate reports that can be used by hematologists. 
At present, most of the somatic mutations detected by WGS/WES are of uncertain 
biological and clinical signifi cance. Correlation of these fi ndings with leukemia 
evolution and prognosis will be necessary to provide clinicians with clinically use-
ful information [ 77 ,  79 ]. 

 All the studies thus far reported have used WGS or WES indistinctly. However, 
these two methods are interchangeable. In WGS, the entire genome is surveyed and 
structural variants, including deletions, amplifi cations, chromosomal transloca-
tions, and uniparental disomy can be identifi ed. In WES, only 1–2 % of the genome 
containing coding genes is sequenced but relatively deep sequence coverage can be 
achieved. However, it does not detect mutations in regions outside of the exome, nor 
does it detect structural variants, such as chromosomal translocations with intronic 
breakpoints [ 12 ].  

6     Clinical Applications of WGS/WES 

 When the leukemia genome of a patient is compared to his normal genome (usually 
obtained at remission or from skin DNA), hundreds of copy number alterations and 
single nucleotide variants are identifi ed in each case. The vast majority of these vari-
ants are inherited. Some of these variants will be associated with unsuspected 
genetic diseases (notably mutations in genes associated with autosomal recessive 
disorders such as cystic fi brosis, hemochromatosis). Other inherited variants that 
contribute to cancer susceptibility will also be discovered using WGS/WES. 

 Two examples can illustrate this. Link et al. (2011) performed WGS in bone mar-
row and skin DNA from a patient with early-onset breast and ovarian cancer and 
therapy-related AML. Besides identifying several mutations in the leukemia 
genome, they also detected a 3 kb heterozygous deletion of  TP53 , encompassing 
exons 7–9, in the skin genome. Sequence analysis of leukemia DNA revealed a 
17.6 Mb region of uniparental disomy on chromosome 17 that resulted in homozy-
gous deletion of exons 7–9 of  TP53  in the leukemia genome [ 80 ]. Inherited muta-
tions in  TP53  are known to be associated with the Li–Fraumeni syndrome, a 
hereditary cancer predisposition syndrome. Shah et al. (2013) identifi ed a heterozy-
gous germ-line  PAX5  variant that was found to segregate with disease in two unre-
lated kindred with autosomal dominant B-cell ALL [ 81 ]. 

 With the development of WGS/WES analyses, it is likely that more germ-line 
variants contributing to cancer susceptibility will be discovered. This could lead to 
approaches for earlier cancer detection and even cancer prevention. However, sev-
eral ethical issues need to be addressed, notably what should be done with this infor-
mation, should it be communicated to patients and their relatives, and how should it 
be communicated. There is an urgent need to establish guidelines [ 60 ,  68 ,  70 ,  80 ]. 
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 Given its power to identify structural rearrangements, WGS could be used to 
help solving diagnostic diffi culties. This is best illustrated by Welch et al. (2011) 
who analyzed leukemic blasts of a patient with acute promyelocytic leukemia lack-
ing cytogenetic evidence of a rearrangement involving  RARA . They found a 77-kb 
sequence from chromosome 15 to be inserted into the second intron of the  RARA  
gene on chromosome 17. As a consequence, the medical care was modifi ed and the 
patient then received all- trans  retinoic acid (ATRA) treatment [ 82 ]. 

 Because the phenotype and, at least in part, the clinical behavior of acute leuke-
mia is the result of a combination of mutations, it is probable that the full determina-
tion by WGS/WES studies of the mutational landscape will lead to a more refi ned 
classifi cation of AML and ALL. This could also lead to a more rational use of the 
chemotherapeutic drugs and even the development of new drugs. Indeed, as it is 
now evident that several pathways are affected in leukemogenesis, the strategy 
could be to target these pathways by specifi c drug regimens, which will lead to per-
sonalized medicine. However, a major challenge would be to target genetic altera-
tions present in the founding clone and subclones, involving those minor subclones 
that could escape detection by WGS/WES, but be resistant to “conventional” 
 chemotherapy and trigger relapse [ 78 ,  83 ,  84 ]. Another major challenge would be to 
determine, among all the mutations identifi ed, which ones are clinically relevant 
and really confer prognostic information [ 85 ]. 

 One alternative, at least in the near term, is to develop targeted resequencing of 
genes that have proven prognostic information [ 71 ,  77 ,  86 ]. This method offers 
greatly increased scalability, requires less technician labor, and is less expensive 
[ 39 ]. The potential of this approach has been highlighted in a study by Patel et al. 
(2012) in which a panel of 18 genes was screened using a high-throughput sequenc-
ing approach in a cohort of 398 patients with AML [ 44 ]. 

 Rapidly advancing next-generation sequencing technology, including WGS/
WES, bisulfi te sequencing (to provide information about epigenetic modifi cations), 
transcriptome sequencing (to measure RNA expression), and microRNA profi ling, 
may be required to comprehensively study cancer cells and will be, in the near 
future, part of a personalized approach of acute leukemia [ 12 ].     
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    Abstract     Head and neck cancer remains a major medical problem with signifi cant 
morbidity, mortality and quality of life issues. Over the recent past there has been 
an increase in incidence, a shift in etiological factors, a growing proportion of 
tumours in younger cohorts, and a greater realisation of the heterogeneity of this 
group of tumours particularly within head and neck squamous cell carcinomas. 

 The arrival of high-throughput massively parallel sequencing technologies in 
diagnostic laboratories heralds an opportunity for uncovering driver mutations in 
head and neck cancer, understanding of disease stratifi cation, personalisation of 
treatment strategies within the framework of genomic medicine, and discovery of 
potential druggable targets for disease-specifi c treatment. 

 Next-generation sequencing (NGS) is a powerful tool and has the potential to 
transform the reactive and treatment-based nature of cancer care, to actively pre-
dict the risk for disease and aim to prevent it. The underlying goal of NGS applica-
tion is to achieve the concept of “genome-informed personalised medicine”. An 
important factor in harnessing NGS technologies in personalised management of 
head and neck oncology lies in the feedback between scientists and clinicians 
involved in cancer care. A genuine diagnosis and appropriate aetiology-matched 
treatment is only possible if our decisions are based on both the genotype and phe-
notype of our patients.  
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1          Introduction 

 Cancer remains a leading cause of mortality and morbidity. In the United States, 
cancer is estimated to be the fi rst cause of death of those between the ages of 40 
and 79, with 1 in every 4 deaths predicted to be directly related to cancer [ 1 ]. Siegel 
et al. have estimated that in the United States in 2014, 73,240 new cases of head 
and neck cancer (including tongue, mouth, pharynx, other oral cavity, larynx 
and oesophagus) will be diagnosed, and 27,450 deaths would occur due to 
head and neck cancer (HNC) [ 1 ]. According to an Australian Institute of Health 
and Welfare report, there were 4,134 new cases of HNC in 2010, with an age- 
standardised mortality rate of 4.3 per 100,000 persons [ 2 ], where cancer of the lip, 
oral cavity and oropharynx represents 2.9 % of the total cancer load in Australia 
and 1.6 % of all cancer deaths [ 3 ]. 

 Head and neck squamous cell carcinoma (HNSCC) comprises a great majority 
of HNC cases. Environmental risk factors, namely tobacco use and alcohol 
 consumption have been suggested to contribute signifi cantly to carcinogenesis of 
HNSCC [ 4 ]. HNSCC is traditionally considered to arise in older populations; how-
ever during recent years, a growing proportion of younger patients with poor prog-
nosis and a distinctive clinical and histopathological pattern have been diagnosed 
with HNSCC [ 5 ,  6 ]. The increasing incidence of HNSCC in younger patients could 
be partially explained by a shift in social behaviours and the role of genetic factors 
contributing to carcinogenesis of these tumours [ 7 ]. As a temporal summation of 
immunological, biochemical and molecular changes which may or may not be trig-
gered by environmental factors, HNSCC is a tumour with a highly heterogeneous 
nature [ 8 ]. 

 Normal oral mucosa and oral potentially malignant lesions (OPML) which may 
precede malignancy in the oral cavity have been shown to have a low (less than 
7 %) prevalence of infection with human papillomavirus (HPV)[ 9 ,  10 ], in compari-
son with the relatively higher rate of 35 % seen in oropharyngeal SCC [ 11 ]. Owing 
to differences in sampling, laboratory methods for detection of HPV, geographic 
location, ethnicity, sample size and most importantly inconsistencies in grouping of 
lesions in different anatomical regions of the upper aerodigestive tract, prevalence 
of HPV infection has been reported between 0 and 100 % in HNSCC [ 10 ,  12 ]. 

 Regardless of the diagnostic method, genetic characteristics and prognosis of 
HPV-positive and negative HNSCC patients have been shown to signifi cantly differ 
[ 13 ]. In addition, the heterogeneous nature of this cancer which is refl ected in prog-
nosis and recurrence rates [ 5 ] warrants the need for refi nement of the current tumour 
classifi cation system. A heterogeneous tumour with an ever changing profi le neces-
sitates clinicians to consider and evaluate each case with special attention to an 
individual’s circumstances. Careful consideration of an individual’s unique clinical, 
environmental and genetic profi le prior to formulating a treatment plan is referred 
to as personalised medicine. Until recently, the genetics of a patient was only a 
contributing factor when the phenotype of an individual was affected. Progress 
made in our technical abilities coupled with improvements in our knowledge of the 
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human genome has facilitated involvement of the individual’s genotype in clinical 
decision making. In light of these advancements, modifi cation of cancer care solely 
based on patient clinical features no longer constitutes best practice. 

 A main contributor to the fast paced transformation of cancer care is the large 
quantities of data produced by high-throughput molecular profi ling technologies. 
Next-generation sequencing (NGS) technologies, otherwise known as massively 
parallel sequencing platforms, produce a large amount of data in a very short period 
of time. To a great extent, these platforms have been used to answer fundamental 
research questions about the genetics and pathogenesis of various diseases [ 14 ]. 
First commercialised in 2005, NGS platforms have changed the face of cancer 
research as we know it for ever.  

2     Applications of Next-Generation Sequencing in Head 
and Neck Oncology 

 The fi rst two reports of application of NGS in studying HNSCC were published 
simultaneously in  Science  in August 2011 [ 15 ,  16 ]. To date, they remain the most 
comprehensive studies of the HNSCC exome through NGS. Stransky et al. 
sequenced the whole exome of 74 HNSCC tumours and their matched normal in 
addition to the whole exome of an oropharyngeal and a hypopharyngeal tumour to 
study the mutational profi le of these cancers. They found an average of 130 muta-
tions per tumour of which 25 % were synonymous. When spectrometric genotyping 
was used to query these mutations, 89.75 % (288 out of 321 mutations were vali-
dated). Although a widely varied number of base mutations was reported in this 
study, the general mutation rate and the nature of mutations in non-CpG sites were 
similar to that of other smoking-related malignancies such as small-cell lung cancer 
and lung adenocarcinoma [ 17 ,  18 ]. A higher number of mutations was reported in 
HPV negative tumours which was more apparent [ 15 ]. Similar fi ndings were 
reported by Agrawal et al. from whole-exome sequencing of 32 HNSCC tumours 
with neoplastic cellularity of over 60 % and their matched non-neoplastic tissue 
[ 16 ]. Although the general coverage of the exome was lower than that of Stransky 
et al. [ 15 ], they also found HPV negative tumours to have higher mutation rates, and 
the difference was independent of patients’ smoking status [ 16 ]. Although both 
studies found a higher number of mutations in smokers, unlike Stransky et al. [ 15 ], 
Agrawal did not fi nd the mutation profi le to be similar to that of smoking related 
tumours which show G:C>T:A transversion enrichment [ 16 ]. Despite their differ-
ences in the number of samples, platforms used and the general mutation trends 
reported, both studies found TP53 to harbour the highest number of mutations in 
HPV negative tumours. In addition both studies found frequent mutations in cyclin- 
dependent kinase inhibitor 2A (CDKN2A), phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA) and Notch homolog 1 translocation- 
associated (NOTCH1) to be a common finding in HNSCC tumours [ 15 ,  16 ]. 
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The role and importance of TP53 mutations in carcinogenesis of HNSCC was well 
established prior to its validation through NGS [ 19 – 23 ], although to a lesser extent 
compared to TP53, the importance of CDKN2A and PIK3CA was also shown in 
HNSCC carcinogenesis prior to 2011 [ 24 ,  25 ]. Contrarily, although immunoexpres-
sion of NOTCH1 had been shown to correlate with cisplatin resistance in HNSCC 
[ 26 ], it was not until these two NGS studies of the HNSCC exome that NOTCH1 
was considered a potential contributor to pathogenesis of these tumours [ 15 ,  16 ]. 
Brakenhoff emphasised this fi nding by an essay published in the cancer section of 
 Perspectives on Science  in September 2011[ 27 ]. Undoubtedly discovery of muta-
tions in NOTCH1 that result in truncated proteins in HNSCC tumours remains the 
most discussed fi nding of parallel sequencing of HNSCC to date. Song et al. 
sequenced the whole coding region and intron–exon boundaries of TP53 and 
NOTCH1 in 13 HNSCC cell lines and 51 oral squamous cell carcinoma (OSCC) 
tumours [ 28 ] and found 43 % of the tumours to harbour non-synonymous mutations 
in NOTCH1 with only 7 % of the mutations showing a G:C>T:A transversion [ 28 ]. 
Although the number of mutations in TP53 was reported to be approximately the 
same as NOTCH1(non-synonymous SNP in 41 % of tumours), the G:C>T:A trans-
version rate was approximately threefold higher for TP53 [ 28 ]. 

 Recently, NOTCH1 was sequenced in 37 HNSCC tumours and their matched 
lymphocytes; following the removal of putative germ-line variants or sample spe-
cifi c systematic error (defi ned as the variants present in both tumour and matched 
normal), a total of 5 NOTCH1 mutations were reported in 4 tumours [ 29 ]. Following 
a similar concept, the targeted exon of 51 highly actionable cancer-related genes 
from 37 primary HNSCC tumours and their matched lymphocytes were deep- 
sequenced [ 29 ]. Expectedly, with 13 mutations in 11 patients (29.7 % of the studied 
population), TP53 was the highest mutated gene in HNSCC samples; in addition 
NOTCH1 exomic alterations were reported in 8.1 % of the samples [ 29 ].  

3     Translational Research 

 In studying and understanding NGS applications in treatment and care of HNSCC, 
there are two important observations to make: (a) there was a 5-year gap between 
commercialisation of NGS platforms and publication of the fi rst [two] articles that 
used these platforms for studying the genetics of HNSCC and (b) since 2011, to our 
knowledge, application of NGS in analysis of the HNSCC genome has been limited 
to target enriched areas of the human exome. These two observations can be partly 
explained in light of the inherent limitations of NGS; NGS is costly and time con-
suming, requires highly skilled technicians, and the fi nal result is diffi cult to inter-
pret. To these limitations one should add the ethical dilemma of handling NGS 
information, small number of samples that qualify for inclusion in these studies, and 
the high attrition rate of samples due to technical diffi culties faced during library 
preparation, sequencing and bioinformatics analysis. However, acknowledging 
these limitations should not distract from the potential of NGS to further the fi eld of 
head and neck oncology. 
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 Translational research can be defi ned as an engineering research question which 
aims to make fi ndings benefi cial and relevant to improving human health and well- 
being. This concept is particularly important in conducting research that is demand-
ing of high level skills and scarce resources. Needless to note that this is inclusive 
of the feedback provided by clinicians and those who implement research fi ndings 
in the “real world”. This loop helps research to stay relevant and clinical practice to 
be as effective as possible. 

 By this defi nition, designing the future questions to be addressed by NGS seems 
to be infl uenced by the heterogeneous nature of HNSCC and the need to address 
both the biology and anatomy of this group of tumours. Translational research 
necessitates a focus on traditional clinical principles. Early diagnosis is the key to 
management of head and neck cancers [ 30 ]. The importance of improving diagnos-
tic markers, screening of OPMLs and the discriminative factors that determine their 
malignant transformation are well justifi ed in this regard. The heterogeneous nature 
of HNSCC has long been overlooked in classifi cation of these tumours. The assumed 
polyclonal HNSCC means that the best course of action for one patient may prove 
harmful to another, and patients with similar clinical manifestations may have vari-
able prognoses. 

 Head and neck oncology is currently at a turning point; although limitations of 
NGS are refl ected within targeted sequencing of candidate genes as opposed to a 
more thorough approach to the cancer genome, we have reached a point where 
sequencing the whole exome is cost-effective. Our understanding of carcinogenesis 
of HNSCC has the potential to transform the idealised world of personalised medi-
cine into a reality.  

4     NGS in Personalised Medicine 

 Although intriguing, understanding the genetic mechanisms contributing to devel-
opment and progression of disease is not the fi nal answer to oncology questions. 
From a clinical viewpoint, the ultimate goal should be prevention and improvement 
of therapeutic outcomes for patients. At this stage, scarce resources, technical con-
siderations and high cost have limited NGS to identifi cation of highly mutated 
genes in different types of cancer, including HNSCC. Diagnostic laboratories still 
rely on low-throughput techniques such as Sanger sequencing, real-time PCR and 
fragment analysis for mutation detection and analysis. With improvement of knowl-
edge of cancer through NGS, the number of actionable or druggable targets for each 
cancer increases. As Berger concluded, current routine low-throughput methods 
complicate the workfl ow for diagnosis of tumours with limited tissue [ 31 ]. 
Multiplexed mutational technologies such as Sequenom (CA, USA) and PCR based 
assays are considered an improvement; yet their throughput is negligible compared 
to that of NGS platforms. However despite their enormous promise, NGS platforms 
have certain limitations; the high sensitivity of these platforms entails the majority 

Next-Generation Sequencing Applications in Head and Neck Oncology



406

of the reported mutations to be limited in only a small number of tumours or a small 
fraction of the tumour [ 32 ]. This, in addition to the dynamic nature of most cancers 
has brought forth the need for personalised use of NGS platforms in the care of 
HNSCC patients in order to manage the physiological effects of each genomic alter-
ation [ 33 ]. 

 As the most extreme result of accumulation of genetic alterations, it comes as no 
surprise that only the HNSCC exome has been subject to NGS investigation, and to 
our knowledge, genomic alterations of OPMLs have not been studied in any detail. 
However as discussed above, personalised medicine in cancer care is at its best if it 
can prevent onset of cancer and assist with early diagnosis. Information regarding 
progression of OPML to cancer would help clinicians tailor management of these 
lesions for each patient. 

 Personalised treatment of cancer through NGS studies of the cancer genome has 
already been adopted in non-small-cell lung cancer with epidermal growth factor 
receptor (EGFR) deletions. Evidence points to improvement of patients with muta-
tions in EGFR by targeting the corresponding genetic alteration [ 34 ]. However sys-
tematic pharmacogenomic analysis of a whole genome from a Malay male volunteer 
for targeted therapy remains the best example of personalised care using NGS [ 35 ]. 
A total of 3,375 genes involved in the metabolism and transformation of 6,707 
drugs/therapeutic agents were mapped and their potential effect on transport, 
metabolism and drug end targets were included [ 35 ]. 

 Although there are examples of application of NGS in individualising treatment 
of cancer patients, their true functionality in clinical oncology is still progressing 
slowly. Nonetheless, NGS platforms are revolutionising genome analysis and an 
important improvement incorporated into their design is the attempt to make them 
more user-friendly and facilitate data analysis. We are nearing a new era in head and 
neck oncology when designing personalised treatments for each patient based on 
their comprehensive molecular profi le is becoming more clinically feasible. 
However identifi cation of clinically relevant or “driver” mutations in a heteroge-
neous tumour with high mutation rates is challenging. Overlying multiple comple-
mentary data sets is amongst the approaches taken to overcome this problem. Before 
NGS platforms can fi nd their place in routine patient care, issues such as overall 
cost, clinical utility, relevance, bioinformatics analysis and timeline requirements 
need to be resolved. 

 Although the massive throughput of these platforms is a potential benefi t to 
p ersonalising care, in real world scenarios it could act as a hindrance. Extensive 
processing of NGS generated data is required to make biological and clinical sense, 
as the computational skill needed for deciphering the raw data is beyond the scope 
of clinicians and molecular biology researchers. In addition, despite the precision of 
these platforms and complicated algorithms involved in processing NGS data, the 
detected mutations need to be further validated.  
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5     Validation of Targets 

 Mutations, be they (single nucleotide polymorphisms, insertions, deletions, copy 
number variations, gene fusions, chromosomal rearrangements), whether germ line 
or somatic, found by NGS technologies in cancer samples should be compared to a 
clinical control sample originating from the same patient where possible. In clinical 
cancer pharmacogenetics trials, germ-line DNA samples are typically collected 
from blood or buccal mucosa [ 36 ]. For HNC, patient control samples (reference 
DNA) must be collected via blood as buccal mucosa samples are unsuitable due to 
fi eld cancerization [ 37 ]. If patient control samples are not available, a reference 
sequence such as 1000 Genomes Project, dbSNP, HapMap Project, NHLBI Grand 
Opportunity Exome Sequencing Project, GATK Resource Bundle, NCBI RefSeq, 
NCBI ClinVar is needed [ 38 ]. 

 Considering that thousands of variants can be discovered from a relatively small 
panel of targeted genes [ 39 ], confi rmation of all is not clinically plausible nor fi nan-
cially realistic. Confi rmation also depends on the specifi c NGS assay (single vs 
multiple gene panel) and perceived clinical relevance of specifi c variations high-
lighted in NGS data. Regardless of whether the genetic foundation of disease is 
monogenic (e.g. cystic fi brosis) or polygenic (e.g. cancer), at present the gold stan-
dard for variant confi rmation is done using Sanger sequencing. This approach 
negates the signifi cant number of false-positives currently generated by NGS [ 40 ]. 
An alternative NGS platform can be utilised for confi rmation but fi nancial con-
straints will most-likely shape this decision. In future, Sanger sequencing or alterna-
tive platform confi rmation processes may be eliminated as NGS technologies 
improve, error rates decrease and as quality control and profi ciency testing systems 
are implemented and made mandatory. Improvement of current variant-calling 
algorithms and pipelines are also critical in this arena. A variant, highlighted as 
being a potential cancer driving variant (pCDV), is more likely to be correctly iden-
tifi ed if called by multiple algorithms than any one caller [ 41 ]. Using multiple vari-
ant caller algorithms is a broadly used approach which attempts to mitigate false 
negative and/or false positive errors [ 42 ,  43 ]. Although optimal combinations of 
variant calling algorithms with respect to specifi c variant types are not currently 
known, they would make a welcomed addition to the fi eld [ 41 ]. 

 Nucleic acid sequence variations can potentially be targeted or labelled as a 
disease biomarker. Variation exists in the genome (sequence variant, structural 
alteration), the transcriptome (splice variant, relative expression) and the methy-
lome (variable methylation signature). Irrespective of their nature, biomarkers 
need to be readily detectable (with robust technology and validated methods), cor-
relate with a specifi c tumour or clinical response (have clinical validity and func-
tional relevance), and be exploitable for improved patient survival (have clinical 
utility via therapeutics) [ 44 ]. It has been surmised that sequence variations in cancer 
can be loosely categorised as either “drivers” (i.e. cancer causing) or “passengers” 
(i.e. secondary mutations caused by genome instability) [ 45 ]. Nonetheless, disease 
progression and treatment regimens may alter the roles of individual variants [ 46 ]. 
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Further  sub- classifi cation of “drivers” into a deleterious impact scale (i.e. most 
important target/s), combined with confi dence of clinically relevant interpretation, 
and application of known druggable targets confound the true value of NGS data. 
Variant confi rmation is important and complex but it does not exist in isolation. For 
reporting purposes all observed pCDVs in processed data should be declared, but 
only some observed pCDVs will progress to the confi rmation phase while others 
will be eliminated. Justifying the selection process is diffi cult when considering 
the potential clinical impact on the cancer patient. Nonetheless, as confi dence 
within variant- calling algorithms improves interpretation, and increased knowl-
edge of variant impact improves target allocation, coupled with expansion of the 
pool of therapeutic utilities, diffi culties associated with this process will most 
likely subside.  

6     Cancer Druggable Genome 

 The druggable genome is defi ned as the altered genes or gene products that can 
interact with molecules containing therapeutic properties [ 47 ,  48 ]. Genomic alter-
ations include gene deletions and amplifi cations that change the abundance of the 
gene and its downstream products, alternative splicing or translocations that can 
create novel proteins, and mutations such as single base changes that may modify 
protein activity [ 49 ,  50 ]. Passenger mutations, which are the product of carcino-
gens and genomic instability do not appear to be involved in cancer progression, 
while driver mutations are known to contribute to tumour development or pro-
gression [ 51 – 53 ]. The distinction between driver and passenger mutations can 
change throughout the course of disease [ 54 ]. Driver mutations and their associ-
ated cellular pathways may have signifi cant diagnostic, prognostic, or therapeutic 
implications and are branded as “actionable”. A subset of actionable events may 
also be “druggable” which designates them as valuable targets for therapeutic 
development [ 53 ,  55 ] 

 In the past decade, massively parallel sequencing has enabled unbiased cancer 
genome sequencing in order to search and screen for new cancer genes at an unprec-
edented rate and scale. NGS technologies have been widely implemented for de 
novo whole genome, exome and transcriptome sequencing for assessment of DNA 
copy number, re-arrangements, loss of heterozygosity, allele specifi c amplifi cation, 
methylation, transcription, aberrant splicing and RNA editing at rates that are 
 dramatically faster and more cost-effective than traditional methods including 
Sanger- based sequencing [ 44 ,  46 ,  56 ]. 

 To date, studies of driver mutations in cancer genes with protein altering muta-
tions have yielded partial cancer genome data sets such as The Cancer Genome 
Atlas (TCGA,   http://cancergenome.nih.gov    ) and the International Cancer Genome 
Consortium (ICGC,   http://www.icgc.org    ) that are available for several types of can-
cers for more than 7,500 genes [ 56 ,  57 ]. The availability of these large cancer data 
sets has led to the validation of many new driver mutations, clinically useful 
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 biomarkers and drug developments. Most of these known cancer genes were found 
through primary cytogenetic analyses; however, introducing systematic sequencing 
of cancer genomes has revealed new cancer genes including BRAF, EGFR, ERBB2, 
PIK3CA, PPP2R1A and JAK2 [ 58 – 63 ]. 

 NGS has begun to replace existing Sanger sequencing, microarrays and PCR- 
based assays for cancer genome research. Not only has applying NGS in cancer 
genomic research revealed new cancer genes, but has also provided further insight 
of intra-tumour heterogeneity [ 54 ]. Recently a number of targeted therapies have 
become available for various cancers including melanoma, breast and lung cancer. 

 In 2011, Wagle et al. used a targeted resequencing approach to identify a previ-
ously unknown mechanism of resistance to the BRAF inhibitor, vemurafi nib, in 
melanoma [ 64 ]. Analysis of 138 cancer genes in tumour samples from a single 
patient before and after relapse revealed the presence of a p. Cys121Ser mutation in 
MEK1 kinase in the relapse sample only. This was the fi rst report of an activating 
mutation occurring downstream of BRAF kinase, adding to a growing list of other 
known mechanisms of acquired resistance to BRAF inhibition [ 65 – 67 ]. 

 New studies of whole-genome analysis of breast cancer patients has resulted in 
new fi ndings in copy-number variations, new descriptions of driver and other muta-
tions, and elevated mutation rates in treatment-resistant tumours [ 68 ]. In 2012, 
Banerji et al. showed recurrent somatic mutations in fi ve genes (PIK3CA, TP53, 
AKT1, GATA3 and MAP3K1), and new recurrent mutations and deletions were 
discovered for CBFB and RUNX1 [ 69 ]. Other studies have revealed that only 36 % 
of gene mutations are detected as transcribed [ 70 ] and that many mutations encode 
truncated proteins [ 71 ]. It would seem unlikely that these novel fi ndings would have 
been discovered using conventional sequencing or genotyping approaches.  

7     Druggable Targets for Head and Neck Cancer 

 Despite the numerous and growing number of studies on cancer biomarkers, only a 
few reports are available for head and neck cancer biomarkers and therapies. 
HNSCC has been considered an environmental tumour mostly caused by tobacco 
and alcohol consumption and more recently human papilloma virus (HPV) infec-
tion in Western populations [ 4 ]. However, a growing proportion of younger low- 
risk patients with a poor prognosis and a distinctive clinical and histopathological 
pattern [ 5 ] [ 6 ] in addition to genetic and prognostic differences between HPV- 
positive and -negative HNSCC [ 13 ] as well as the heterogeneous nature of this 
cancer, suggests a critical role for genetic alterations contributing to the carcinogen-
esis of HNSCC tumours [ 7 ]. 

 Prior to utilisation of NGS in HNSCC, studies on cellular signalling pathway 
alterations (i.e. TP53 and CDK2NA) [ 72 ] and chromosomal abnormalities (ampli-
fi cation of region 11q13, cyclin D1 gene and region 7p11, EGFR gene) [ 73 ] had 
revealed a few HNSCC biomarkers. In 2011, the fi rst reports of applying NGS to 
HNSCC were published simultaneously [ 15 ,  16 ], and both confi rmed the previously 
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known HNSCC genome alterations such as mutations in TP53, CDKN2A, 
PIK3CA, PTEN and HRAS as well as introducing a new gene, NOTCH1 (an 
important tumour suppressor gene), which has been shown to be the second most 
common gene involved in HNSCC [ 74 ]. Although NOTCH1 has been shown to be 
important in skin squamous cell carcinoma through functional studies [ 75 ], it had 
not been identifi ed by classic (Sanger) sequencing techniques due to its large size 
(34 coding exons). 

 Taking a more targeted approach, Mahjabeen et al. sequenced 17 exons of 
XRCC1 in 300 head and neck cancer cases and 150 matched normal controls and 
found two silent mutations in 45 % and two missense mutations in 55 % of cases, 
accounting for a total mutation frequency of 87 %. Both silent mutations were dis-
tributed equally among males and females and smokers vs. non-smokers [ 76 ]. In 
another study, sequencing all exons and adjacent introns of RAD51C revealed fi ve 
distinct heterozygous sequence alterations in 5.8 % of HNSCC cases [ 77 ]. Moreover, 
Laborde et al. performed whole-transcriptome sequencing of ten matched tumour 
and cancer-free tissue samples from patients with previously untreated oropharyn-
geal carcinoma. Their results showed elevated levels of expression for two gene 
targets (CHEK2 and ATR) in p53 DNA damage repair pathway in HPV-negative 
current smoker patients compared with past smokers or non-smokers [ 78 ]. 

 So far, among all the known frequently mutated genes in head and neck cancers, 
EGFR has been a good candidate for developing cancer therapies. Over-expression 
and mutation of EGFR has been associated with a variety of human tumours includ-
ing breast, lung, colorectal, ovary and prostate [ 79 – 81 ]. EGFR is a transmembrane 
receptor belonging to a family of four related proteins, human epidermal receptor 
(HER) family of growth factor receptors (HER2, HER3 and HER4). Formation of 
either EGFR-EGFR homodimers or heterodimers (i.e. EGFR-HER2) trigger a 
series of intracellular pathways that may result in cancer cell proliferation, blocking 
apoptosis, activation of invasion and metastasis, and stimulating tumour-induced 
neovascularisation. [ 82 ,  83 ]. Two classes of anti-EGFR drugs including anti-EGFR 
monoclonal antibodies and EGFR tyrosine kinase inhibitors have been developed 
since 1980. 

 Anti-EGFR monoclonal antibodies, such as cetuximab and panitumumab, recog-
nise EGFR exclusively and bind to its extracellular domain in the inactive confi gu-
ration, compete for receptor binding and block ligand-induced EGFR tyrosine 
kinase activation. Small-molecule EGFR tyrosine kinase inhibitors, such as erlo-
tinib and gefi tinib, compete reversibly with ATP to bind to the intracellular catalytic 
domain of EGFR tyrosine kinase and, thus, inhibit EGFR autophosphorylation and 
downstream signalling. Moreover, small-molecule EGFR tyrosine kinase inhibitors 
can block different growth factor receptor tyrosine kinases, including other mem-
bers of the EGFR family, or the vascular endothelial growth factor receptor. In 
February 2006, FDA approved cetuximab to be used in combination with radio-
therapy to treat HNSCC patients with locally advanced, unresectable tumours. It 
was also approved as mono-therapy for metastatic disease in patients who have not 
had a response to chemotherapy. In March 2006, the EMEA approved cetuximab in 
combination with radiotherapy for the treatment of locally advanced disease. 
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 Head and neck cancers and their treatment can result in cosmetic deformity 
with impairment of vital functions such as breathing, taste, swallowing, speech, 
hearing and smell. Patients are often diagnosed at advanced stages (stage IV) 
with serious lymph node involvement. Therefore, the diagnosis of HNC at pre- 
and early cancerous stages has become vitally important. To date, the optimal 
treatment for HNSCC patients involves a multidisciplinary approach including 
coordination of surgery, chemotherapy, radiation therapy and systemic therapies 
such as anti-EGFR molecules. However, the current targeted treatments have 
benefi tted only a small subgroup of cancer patients due to intrinsic (primary) and 
extrinsic (secondary) drug resistance with limited drug effi cacy [ 84 ] which 
decreases with long-term follow-up [ 85 ]. Therefore, identifi cation of new molec-
ular targets and novel therapies, as well as selecting patients for existing com-
mercial drugs calls for new methods of identifi cation and clinical validation of 
biomarkers. 

 Binding of EGFR to its ligands triggers two main signalling pathways: PI3K-
Akt and MAPK/ERK. These downstream signalling pathways can be switched 
on by mutations in intermediate molecules. Mellinghoff et al. showed that only 
10–20 % of glioblastoma patients are responsive to EGFR kinase inhibitor treat-
ments which is associated with co-expression of EGFR vIII and PTEN [ 80 ]. In 
addition, activating mutations in KRAS results in EGFR-independent signalling 
pathway activation and has been seen in almost 15–30 % and 40–45 % of 
patients diagnosed with small-cell lung cancer and colorectal cancer, respec-
tively, all with a history of tobacco use [ 86 ,  87 ]. These patients showed resis-
tance or limited effi cacy to cetuximab and panitumumab therapy [ 88 ,  89 ]. MET 
amplifi cation also leads to EGFR- independent activation of PI3K-AKT pathway 
through activation of HER3-dependent pathway. It has been shown that inhibi-
tion of MET signalling can restore the sensitivity of lung cancer cell lines to 
gefi tinib [ 90 ]. 

 Some actionable mutations are altered in several common cancers, and it is rea-
sonable to assume that a therapy effective for one may indeed be useful for another. 
BRAF V600E is a gene marker for vemurafenib therapy in melanoma [ 91 ], which 
could be used for similar mutations detected in ovarian cancer [ 92 ]. On the other 
hand, a specifi c genetic abnormality may not confer the same sensitivity to an agent 
across all cancers. As a case in point, trastuzumab has been shown to benefi t breast 
and gastric cancer patients with HER2-amplifi cation, but not those with ovarian or 
endometrial cancer [ 93 – 95 ]. 

 In recent years, NGS has been bridging the gap between molecular screening and 
clinical applications with 96.1 % accuracy in comparison to Sanger sequencing. In 
addition, it can reveal gene alterations at very low allelic frequencies [ 96 ]. Not only 
can NGS identify new altered genes for new biomarker development [ 15 ,  16 ], but 
by revealing specifi c gene alterations it may help to identify patients whose cancers 
are either sensitive or resistant to a certain therapy [ 97 ]. Moreover, tumour-specifi c 
alterations could be detected in patient plasma. Put together, NGS can be used to 
personalise disease monitoring in clinical practice.  
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8     Possible Future Therapies 

 To date, cetuximab is the only molecular targeted therapy approved by FDA for 
HNSCC patients. However, many factors have been identifi ed to be associated with 
resistance to EGFR targeted therapies. As a case in point, EGFRvIII is a constitu-
tively active ligand independent EGFR that has been observed in about 40 % of 
HNSCC [ 98 ] and has been shown to lower the effect of cetuximab and cisplatin on 
tumour responsiveness [ 98 ,  99 ]. 

 Alternative EGFR activation pathways such as HER2, HER3, Auroa (a family of 
protein kinases that play a critical role in the mitotic process) and MET have been 
implicated in cetuximab resistance in head and neck cancers [ 100 – 102 ]. Regarding 
EGFR targeted therapies, although, panitumumab is currently being investigated in 
a Phase III trial (SPECTRUM) and positive outcomes may replace it with cetux-
imab in a few years, clinical development of TKIs have been less promising as 
gefi tinib is no longer in active development for HNSCC and erlotinib is not being 
further studied in a Phase III trial. As a biological approach, targeting other regula-
tory pathways including angiogenesis using FDA approved agents such as bevaci-
zumab, which is currently under Phase III investigation in HNSCC, might fi nd use 
as monotherapy or combined targeted chemotherapy. Therefore, development of 
prognostic tests, discovering new biomarkers, elucidation of mechanisms of resis-
tance to targeted therapies and associated drug side effects are matters that need 
further research. 

 Not only are different genetic aberrations involved in head and neck tumours, but 
also various environmental factors including clinical and epidemiological effects 
such as HPV infection and tobacco and alcohol exposure have been associated with 
HNSCC tumours. Moreover, HNSCC is a high heterogeneous tumour and therefore 
individual management should be based on both patient and tumour characteristics. 
In the last decade, NGS has allowed the identifi cation of numerous genes in a time- 
and cost-effective manner. Additionally, the availability of NGS investigated 
genomic alterations collected by the International Cancer Genome Consortium 
(ICGC) (  https://dcc.icgc.org    ) [ 103 ] and The Cancer Genome Atlas (TCGA) (  http://
cancergenome.nih.gov    ) projects in addition to Catalog of Somatic Mutations in 
Cancer (COSMIC) database (Welcome trust Sanger Institute) (  http://cancer.sanger.
ac.uk/cancergenome/projects/cosmic    ) provide the most comprehensive source of 
somatic mutations in cancer. However, like all other techniques, NGS has been 
linked to both challenges and promises. The challenges involve the scarcity of sam-
ples, collection of high quality test samples (e.g. FFPE and contamination with 
other cell types) [ 54 ] as well as their matching negative/normal controls, disease 
heterogeneity and the complexity and infl uence of the epigenome. The importance 
of data interpretation which involves both computational analysis and making bio-
logical and clinical sense of an enormous amount of produced data cannot be 
neglected. Furthermore, not all mutations are driver mutations and the importance 
of loss of tumour suppressors as well as germ-line mutations and compensating 
pathways cannot be overlooked. In addition to utilising NGS as a rapid gene 
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 screening tool, the forthcoming third generation of NGS platforms promise the ability 
of utilising a single tumour cell for such purposes, further extending the reach of 
NGS in clinical practice. 

 In addition to DNA sequencing including selective exome- and whole-genome 
sequencing, transcriptome sequencing allows the identifi cation of unique genes and 
pathways being expressed as a result of patient exposure to environmental factors 
as well as revealing critically important genetic mutations and rearrangements 
refl ected at the transcriptome level and can therefore be used as diagnostic and 
prognostic indicators. As an example, transcriptional profi ling using mRNA 
sequencing from ten oropharyngeal cancer patients with SCC and matching normal 
samples, showed  TP53  mutation and  CHEK2  and  ATR  increased expression in HPV 
negative current smokers compared to past or non-smokers [ 78 ]. We are currently 
undertaking whole-transcriptome sequencing of a variety of pre-malignant and 
malignant oral lesions in order to identify new classes of druggable target genes as 
well as developing diagnostic tools for early head and neck cancer detection. 

 All together, the promises for NGS are tremendous. The underlying goal of NGS 
application is to achieve the concept of “genome-informed personalised medicine” 
where a family-based disease history, geographically and epigenetically variant 
gene expression pathways, and drug resistance and toxicity can be considered in 
formulating a patient management plan (see Fig.  1 ).   

9     Ethical Considerations 

 Transition in application of NGS from a research tool to clinical settings necessi-
tates further ethical considerations. The foremost question in application of NGS in 
clinical settings is based on patient selection. With new advances in massively par-
allel sequencing platforms and the attempts to facilitate the use and analysis of data, 
many research groups choose to use these platforms and as a result the volume of 
the produced data is overwhelming for clinicians. Clinicians of the future will be 
treating patients who are aware of the possibilities and options that NGS platforms 
offer, and they should decide when to benefi t from these platforms in formulating a 
treatment plan. Furthermore, the decision on what percentage of the genome should 
be studied by NGS should be based on clinical need rather than the availability and 
the ever decreasing cost of whole-exome sequencing. 

 The second issue would be handling the data and the likely fi ndings. In research 
settings when a cohort of volunteers are sequenced to answer a question, providing 
the participants with the research fi ndings is both uncontroversial and a welcome 
practice [ 104 ]. Contrary to research data, the feedback on the fi ndings of individu-
alised sequencing for clinical purposes is more complex. This is more apparent in 
whole-exome/genome sequencing which provides clinicians with an unabridged set 
of data in regard to their patients. Still a highly debated issue, the safest approach 
should be taken applying the same standards used in MRI or CT studies where only 

Next-Generation Sequencing Applications in Head and Neck Oncology



414

  Fig. 1    Genome-informed personalised medicine in head and neck oncology: role of NGS pipeline 
in informing clinical decision making and therapeutic druggable pathway determination.  Clinical 
setting : (1) Patient presents with primary tumour; (2) Primary biopsy assessed by pathologist; 
(3) Pathologist and oncologist consider possible treatment options; (4) Oncologist and/or patholo-
gist select genetic targets for analysis.  Laboratory setting : (5) Sample from primary biopsy sent to 
pathology/diagnostics laboratory; (6) Extraction process specifi c to nucleic acid targets, good 
laboratory practices and regulatory guidelines; (7) Library preparation guided by nature of 
extracted material and selected targets, good laboratory practices and regulatory guidelines; 
(8) NGS platform considerations related to target size and required coverage, sequence coverage 
relevant to platform data capabilities, error rates, read lengths; (9) Bioinformatics pipeline shaped 
by data source, data quality, specifi c targets, clinical purpose of test, good laboratory practices and 
regulatory guidelines; (10) NGS data storage requires large volumes of HDD space, data dupli-
cated as a minimum, duplicated data stored at different sites, regular monitoring of storage systems 
and data integrity; (11) NGS report contains all non-synonomous variants whether known to be 
clinically relevant or not, citations of supporting peer-reviewed literature, analysis pipeline meth-
ods, statements explaining limitations of methods and clinical interpretations; (12) Physicians 
making therapeutic regimen decisions must consider the NGS report in combination with all other 
clinical and diagnostic information.  Drug development setting : (13) Genetic analysis results in 
druggable target gene discovery; (14) Development of targeted drug; (15) Drug passes the labora-
tory test settings on in vitro and animal models; (16) Evaluation of safety and effi ciency of the drug 
in late phase clinical trials; (17) Drug receives FDA approval for a certain treatment condition/
disease; (18) The application of the drug for the same FDA approved condition/disease; (19) The 
administration of the drug to the patient with similar or relevant condition/disease to the original 
FDA approved agreement; (20) The oncologist recommends the drug as a possible treatment for 
either intended or off label use       
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reliable fi ndings with signifi cant relevance are shared with research participants 
[ 105 ,  106 ]. In clinical settings, however, the decision lies with clinicians and the 
appropriate ethical boards. 

 Data management and sharing is another important issue to be considered. 
Research groups tend to share their information and upload databases for public 
access. Although all personal information is normally removed from the data, join-
ing the dots and identifying participants could potentially infringe the privacy of 
research participants. Moreover, despite precise regulations and rules that govern 
NGS data, scientists tend to share information through informal routes or deposition 
in cloud-based databases which can compromise participant privacy [ 107 ]. 

 In general, fundamental ethical requirements not only for research but also the 
clinical aspect of NGS applications in cancer care should be re-evaluated. Obtaining 
“informed” consent, regulation of patients’ access to their data, treatment plans and 
genomic profi le are amongst the issues that need to be resolved before more perva-
sive application of NGS technologies occur in clinical oncology.  

10     Concerns and Conclusions 

 The new generation of NGS platforms accommodate research and clinical needs 
with their higher accuracy, time-effi ciency and cost-effectiveness. This assists with 
the ongoing attempt to profi le different types of cancers best refl ected in projects 
such as The Cancer Genome Atlas (  http://cancergenome.nih.gov    ) and the 
International Cancer Genome Consortium (  http://icgc.org    ). This is a new era for 
both scientists and clinicians: we have the ability to produce more than one billion 
base pairs in a 4-day run. At the same time interpretation of NGS data in order to 
make this relevant to clinical decision making requires sophisticated bioinformatics 
methods. Bioinformatics approaches still struggle with inevitable challenges such 
as stromal contamination of tumour samples and tumour heterogeneity. Needless to 
mention, high cost, demanding laboratory and computational skills, complexity of 
data output and scarcity of samples with high integrity nucleic acid currently limit 
the practical use of NGS in clinical scenarios. 

 Despite these limitations it is expected that in the near future, NGS will trans-
form from a research focused technique to a more clinically oriented one. With 
more clinicians embracing the concepts of evidence-based and minimal interven-
tion medicine [ 108 ], there is a need for removing the language barrier between 
research and clinical settings. The fi nal product of bioinformatic analysis of NGS 
data is not straightforward to understand, and clinicians will need some assistance 
before they can use these fi ndings in clinical practice (see Fig.  1 ). 

 In the world of oral health care, head and neck oncology is the main benefi ciary 
of NGS fi ndings by real world patients. Applying these fi ndings in routine clinical 
practice requires overcoming a number of obstacles [ 46 ]. Clinicians need to under-
stand the differences between “driver” and “passenger” mutations and acknowledge 
that identifi ed mutations are not necessarily relevant to clinical manifestations. 
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In addition, identifi cation of a mutation does not make it preventable nor defi nitely 
treatable as silencing mutations is a complex task which may even prove futile [ 27 ]. 
Silencing or altering mutations may interfere with crucial cellular pathways as the 
majority of cancer-related mutations are components of important cellular pathways 
[ 109 ]. Finally, any attempts to modify the human genome would put the patient at 
risk of resistance and toxicity [ 110 ]. 

 We have learnt valuable lessons from the fi rst forays into studying HNSCC by 
NGS; the most signifi cant of which is that we are only beginning to understand the 
complex landscape of this heterogeneous group of malignancies. Although treat-
ment regimens for this group of tumours vary based on anatomical location, the 
inevitable molecular differences introduced by lesion site is often still overlooked. 
In addition, racial and geographical differences in the human genome [ 111 ] neces-
sitate extreme attention to detail in designing NGS studies particularly in regard to 
normal controls. Removing the common mutations between the tumour and matched 
normal sample, is helpful in removing false positive data but at the same time 
removes the chance of discovery of germ-line mutations. 

 NGS is a powerful tool and has the potential to transform the reactive and 
treatment- based nature of cancer care, to actively predict the risk for disease and 
aim to prevent it. To advance personalised care in head and neck oncology, there is 
a need for NGS platforms to continue to decrease in cost, while concurrently solv-
ing their technical shortcomings while there is an ongoing effort to connect the 
generated data to meaningful clinical fi ndings. An important factor in harnessing 
NGS technologies in management of HNSCC lies in the feedback between scien-
tists and clinicians involved in cancer care (see Fig.  1 ). A genuine diagnosis and 
appropriate aetiology-matched treatment are only possible if our decisions are based 
on both the genotype and phenotype of our patients.     
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      CIC Mutation as Signature Alteration 
in Oligodendroglioma 

             Shiekh     Tanveer     Ahmad    ,     Wei     Wu    , and     Jennifer     A.     Chan    

    Abstract     Oligodendroglioma (ODG) is a type brain tumor that predominantly 
affects young adults and that is characterized by unique clinical, morphological, 
genetic, and molecular features. Molecular characterization of ODGs has identifi ed 
concurrent 1p and 19q whole-arm chromosomal losses and  IDH  mutations as signa-
ture alterations in ODG. More recently, mutations in the gene  CIC  on chromosome 
19q13.2 have been found to be present in the majority of ODGs.  CIC  mutations 
occur nearly exclusively in the context of 1p/19q co- deletion, and it is likely that the 
 CIC  mutation on the remaining 19q allele is integral to the disease pathogenesis. In 
contrast to ODGs, where >70 % of cases harbor CIC mutations,  CIC  mutations are 
found at a low frequency across diverse tumor types. To date, little is known how 
CIC mutation contributes to development of ODGs or other cancers. Most of litera-
ture on CIC has been based on studies in  Drosophila , where CIC has spatiotemporal 
effects in regulating RTK signaling for normal embryonic development. In this 
chapter, we provide a brief introduction to oligodendrogliomas, review CIC’s role 
as a transcriptional repressor and functions in development, and discuss the poten-
tial role(s) of CIC mutation in the pathogenesis of human cancer.  
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  HMG    High mobility group   
  IDH    Isocitrate dehydrogenase   
  IZ    Intermediate zone   
  MMP    Metallomatrix protein   
  NSC    Neural stem cell   
  ODG    Oligodendroglioma   
  OPC    Oligodendrocyte precursor cell   
  PDGFR    Platelet derived growth factor receptor   
  PEA3    Polyoma enhancer activator 3   
  PTEN    Phosphatase and tensin homolog   
  RTK    Receptor tyrosine kinase   
  SVZ    Subventricular zone   
  VZ    Ventricular zone   

1           Introduction 

 Oligodendrogliomas (ODGs) are clinically, pathologically, and genetically distinc-
tive gliomas that are composed of neoplastic cells resembling oligodendrocytes. 
Histologically, the tumors are composed of densely packed cells that have round, 
regular nuclei and clearing of the cytoplasm and are associated with fi ne branching 
vasculature [ 1 ]. In the past, the diagnosis of ODG has suffered from inter-observer 
variation, as the diagnosis was solely based on histology. Over the past two decades, 
however, several molecular alterations have been discovered that, together, charac-
terize this distinctive tumor type. The fi rst of these was the observation that whole- 
arm 1p and 19q chromosomal co-deletions are a signature alteration in ODGs [ 2 ,  3 ]. 
As one of the fi rst known diagnostic, prognostic, and predictive genetic markers in 
neuro-oncology, 1p/19q testing quickly became a diagnostic standard-of-care that 
continues to be used clinically today. With that discovery, the hunt for potential 
causative ODG gene(s) on 1p and 19q began. A decade later, it was found that virtu-
ally all ODGs also harbor gain-of-function mutations in isocitrate dehydrogenase 
( IDH )—in either  IDH1  on chromosome 2 or  IDH2  on chromosome 15 [ 4 ]. But IDH 
mutations, although characteristic, were not specifi c to ODG, and the suspected 
ODG genes remained elusive. Recently, Capicua ( CIC ) on chromosome 19q13 has 
been identifi ed as a gene mutated in the majority of ODGs [ 5 ,  6 ]. CIC mutations are 
unique to ODGs, and  CIC  mutation in the setting of concurrent 1p/19q loss and 
 IDH1/2  mutation constitutes the prototypical genetic signature of ODG [ 5 – 8 ]. 

 The challenge now is to move from the genetic characterization of ODG to 
understanding how these genes contribute to the initiation and progression of 
ODG. CIC is a known transcriptional repressor whose default repressor activities 
are normally relieved upon RAS/MAPK signaling. We postulate that loss of CIC 
function de-represses critical transcriptional programs either to bias neural progeni-
tor cells to an oligodendrocyte precursor cell (OPC)-like cell fate and/or to promote 
aberrant proliferation of OPCs. In a background of  IDH  mutation, inactivation of 
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 CIC  may deregulate cellular responses specifi cally controlling OPC differentiation 
and proliferation, contributing to ODG genesis. In this chapter we summarize the 
current knowledge about CIC as a transcriptional repressor, touch on its roles during 
development and normal tissue maintenance, and focus on its associations with 
human disease, in particular with oligodendrogliomas.  

2     Clinical and Molecular Characteristics 
of Oligodendroglioma 

2.1     Clinical Overview of Oligodendroglioma 

 ODG is a type of malignant brain tumor that occurs most frequently in the frontal 
and temporal lobes, and is composed of oligodendroglial-like cells [ 3 ,  9 ,  10 ]. ODGs 
represent ~10 % of gliomas [ 9 ]. Tragically, new ODG diagnoses peak in young 
adulthood, burdening patients with seizures, cognitive diffi culties, headaches, and 
personality changes among other problems [ 9 ,  11 ]. Furthermore, although slowly 
growing and more responsive to therapy than other gliomas, ODGs infi ltrate brain 
tissue diffusely, progress in malignancy, and are eventually fatal [ 9 ,  11 ,  12 ]. Unlike 
other gliomas such as astrocytomas and ependymomas, oligodendrogliomas are 
chemosensitive and often progress in a slow and predictable manner [ 13 ]. While 
median survival for ODGs treated with surgery and radiotherapy is 4–7 years, and 
those treated with surgery, radiotherapy, and chemotherapy is 13–15 years [ 12 ,  14 ], 
tumor recurrences are common and many patients die of their disease. To improve 
outcome for ODG patients, more work is needed to understand the molecular and 
cellular events behind ODG genesis and progression.  

2.2     Molecular Characterization of ODGs 

  IDH mutation:  IDH mutations most commonly affect  IDH1  but are occasionally 
seen in  IDH2 . The most common  IDH1  mutations in glioma (>95 %) result in an 
amino acid substitution at arginine 132 (R132), which resides in the enzyme’s active 
site.  IDH1  and  IDH2  mutations affect a single amino acid (either amino acid 132 of 
Idh1 or the analogous amino acid 172 of Idh2) [ 4 ,  15 ], creating gain-of-function 
alleles. Mutation of both of the IDHs impart the ability to produce 2- hydroxyglutarate 
(2-HG), a potential oncometabolite [ 16 ] that may promote neoplasia by altering the 
epigenetic landscape and activating hypoxic responses [ 15 ]. In gliomas, a distinc-
tive CpG island methylator phenotype (G-CIMP) is seen in  IDH -mutant tumors 
[ 17 ], and in vitro experiments indicate that  IDH  mutations are suffi cient to establish 
the methylator phenotype and alter cellular differentiation [ 18 ,  19 ].  IDH  mutations 
may also alter cellular differentiation via modifi cation of histone methylation 
patterns. Although present in >85 % of ODGs,  IDH  mutations are not unique to ODG. 
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Other types of diffuse gliomas (e.g., WHO grade II and III diffuse astrocytomas) as 
well as some non-nervous system tumors such as chondrosarcoma, myelodysplastic 
syndrome, acute myelogenous leukemia, and cholangiocarcinoma also harbor 
mutations in  IDH1/2  [ 20 ]. 

  1p/19q co-deletion:  The combined whole-arm losses of 1p and 19q are perhaps the 
most distinctive of molecular alterations in ODG. Such 1p/19q co-deletion is medi-
ated by an unbalanced translocation of 19p to 1q [ 21 ,  22 ]—most likely the result of 
a centrosomal or pericentrosomal translocation of chromosomes 1 and 19 results in 
two derivative chromosomes, der(1,19)(p10;q10) and der(1,19)(q10;p10), after 
which the derivative chromosome with the short arm of chromosome 1 and the long 
arm of chromosome 19 is lost. A possible explanation for this translocation is the 
strong homology of the centromeric regions of chromosomes 1 and 19. With respect 
to 1p loss, it is the loss of the entire short arm of chromosome 1 that is defi ning for 
ODG, as partial 1p deletions that are not associated with 19q loss may occur in other 
glioma types such as glioblastoma [ 23 ]. Of note, some ODGs possess polysomy of 
1q and 19p in the context of relative 1p/19q co-deletion [ 24 ]. Such co- polysomy is 
independently associated with shorter overall survival in 1p/19q co-deleted ODGs, 
irrespective of tumor grade. 

 1p/19q co-deleted ODGs are associated with the constellation of positive 
prognostic markers including methylation of the  MGMT  promoter,  IDH  muta-
tions and G-CIMP. ODGs with 1p/19q co-deletion have also been shown to be 
enriched with a proneural gene expression signature [ 25 ]. Although MGMT 
promoter methylation, IDH mutations, and G-CIMP are also present in diffuse 
astrocytomas and in glioblastomas that arise from lower-grade astrocytomas, 
important differences in the molecular signature of ODGs and lower-grade dif-
fuse astrocytomas is 1p/19q co-deletion in the former and ATRX loss in the 
latter [ 26 ,  27 ]. The mutual exclusivity of these events underscores the distinct 
molecular characteristics of ODGs. 

  CIC mutations:  Although 1p/19q loss had been known as a signature alteration in 
ODGs for nearly two decades, the causative gene(s) on 1p or 19q remained unknown 
until more recently. Next-generation sequencing enabled the discovery that  CIC  
located on chromosome 19q is mutated in most ODGs [ 5 ,  6 ]. These  CIC  mutations 
are present nearly exclusively together with  IDH  mutation and single copy 1p/19q 
loss [ 5 ,  6 ]. Furthermore, the type and distribution of  CIC  mutations includes frame-
shifting insertions/deletions and frequent truncations that are distributed across the 
gene, albeit with some increased frequency in exons 5 and 20 [ 5 ,  6 ]. Though such 
hemizygous  CIC  mutations on the retained 19q allele are thought to be functionally 
important in ODG, the mechanism of action is as yet undetermined. Nevertheless, 
considering the patterns of mutations and copy number alterations,  CIC  is likely a 
tumor suppressor gene [ 28 ]. 

 The prototypical genetic signature of ODG is now recognized as a trifecta of 
 IDH  mutation, 1p/19q chromosomal co-deletion, and  CIC  mutation [ 3 ,  5 – 8 ,  25 ]. 
The majority of classic ODGs carry the constellation of 1p/19q loss,  IDH  and  CIC  
mutation is now well documented. Beyond these changes, few recurrent genetic 
alterations are known. Mutations of  FUBP1  on chr1p have also been identifi ed in 
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some ODG, but these are much less frequent than  CIC  mutations and all occur in 
ODGs with  CIC  mutations [ 6 ,  8 ].  FUBP1  mutations may be a later change related 
to anaplastic progression rather than ODG initiation.  PTEN  loss and  CDKN2A/B  
loss are also seen in some cases, and are more frequently present in higher grade 
ODG than lower grade ODG. Another recognized event associated with higher 
grade ODG is silencing of  RB1  by promoter methylation [ 9 ,  29 – 31 ]. It is worth 
mentioning that some tumors can resemble oligodendroglioma histologically but 
behave very differently from typical ODG. Lesions that bear some ODG-like histol-
ogy include glioblastoma with oligodendroglial component and oligoastrocytoma. 
These tumors have a different mutational spectrum than classic ODG and are more 
frequently characterized by  EGFR  amplifi cation and/or  TP53  mutation [ 30 ,  32 ] 
rather than the constellation of 1p/19q loss,  CIC  mutation, and  IDH  mutation. 

 As we know that the  CIC  mutations occur concurrently with  IDH  mutations in 
ODGs, mutant  IDH  may be a prerequisite that alters the cell’s epigenetic state such 
that Cic’s tumor suppressive role is unmasked. Carefully designed functional stud-
ies taking into account genomic context (such as 1p/19q loss and  IDH  mutations) 
are necessary to delineate the role of  CIC  in the pathogenesis of ODG.   

3     CIC Structure and Function 

3.1     CIC is a Default Transcriptional Repressor Downstream 
of RAS/MAPK Signaling 

 CIC was discovered in several developmental contexts in  Drosophila  [ 33 ]. Activation 
of specifi c receptor tyrosine kinase/Ras/Raf/MAPK pathways relieves repression of 
target genes that are normally suppressed by CIC, leading to the transcription of 
genes that are involved in important developmental processes. In  Drosophila  these 
processes include patterning and differentiation in wing veins, eye imaginal discs, 
and head and tail regions [ 33 – 37 ] (the latter inspiring the gene name “capicua” 
meaning head-and-tail in Catalan). Torso signaling is relayed through the MAPK 
(mitogen-activated protein kinase) signal transduction pathway in which signals are 
propagated through sequential phosphorylation of Ras, Raf, DSOR, and Rolled 
(Drosophila homologs of mammalian Ras, Raf, Mek, and Erk, respectively) to 
result in activation of Tailless ( tll ) and Huckebein ( hkb ). Loss-of-function mutations 
in CIC lead to increased expression of  tll  and  hkb  as well as alteration of tissue pat-
terning, suggesting its role as a default transcriptional repressor regulating genes 
downstream of RTK/MAPK signaling in fl ies [ 36 ,  38 ].  Drosophila  CIC is known to 
act downstream of both Torso and the epidermal growth factor receptor (EGFR), 
both of which promulgate their signals through the Ras–Raf–MAPK set of interme-
diate signaling proteins. Thus, CIC acts as a common transcriptional repressor, nor-
mally silencing the targets of these two RTKs. 

 As in the case with Drosophila, RTK/MAPK signaling in other systems includ-
ing humans, is a core pathway that regulates diverse cellular processes such as 
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growth, proliferation, apoptosis, migration, metabolism and differentiation [ 39 ]. 
Aberrations in RTK signaling may lead to a variety of human diseases, including 
cancer. Binding of a growth factor to its cognate RTK initiates activation of the 
canonical RTK pathway during which the auto-phosphorylated and active RTK sig-
nals through a complex of Grb/Gab/Shc/Shp to convert inactive Ras-GDP to active 
Ras-GTP (Fig.  1 ). From Ras activation, the signal transduction cascade proceeds 
largely (albeit not exclusively) through phosphorylation and activation of Raf, Mek, 
and Erk kinases. Erk kinases subsequently phosphorylate several cytoplasmic and 
nuclear substrates. The nuclear factors that are downstream of RTK/MAPK path-
way fl ux have key roles in dictating the ultimate changes in gene expression and, 
hence, eliciting of the appropriate biological responses [ 39 ]. Studies in human cells 
suggest that CIC regulates RTK-dependent responses that are important in to decide 
the fate of a cell whether to proliferate or differentiate, providing a plausible link to 
cancer [ 6 ,  40 – 43 ]. In human cells, among the best characterized downstream effec-
tors of MAPK signaling that have been found to be regulated by CIC are transcrip-
tion factors of the ETS superfamily such as ETV1, ETV4, and ETV5 [ 39 ,  44 ,  45 ].  

 Subsequent work has delineated several structural elements and other require-
ments for positive RTK/MAPK signaling to relieve CIC repression of target genes. 
In the following sections we highlight some important domains in CIC and then 
discuss biological processes that may be impacted by CIC dysregulation in the con-
text of human disease.  

3.2     Structural Elements in CIC Important for Function 

 Human CIC is present on chromosome 19q13.2 and consists of 20 exons. It is mem-
ber of a SOX-related HMG subfamily [ 39 ], and is conserved across evolution, from 
fl ies and worms to mammals. There are two known major isoforms of CIC recog-
nized in fl ies as well as in mammals, a short form (CIC-S) and a long form (CIC-L). 
The CIC-S is ~160 kD and CIC-L is ~250 kD and both differ in their N-terminal 
regions [ 5 ,  42 ] (Fig.  2 ). At the N-terminal CIC-L isoform has an extended segment 
(N1) with a highly conserved domain of unknown cellular function [ 39 ]. There is a 
nuclear localization signal domain present in human CIC that is not conserved and 
is involved in nuclear transport of CIC (Fig.  2 ). Recently the CIC-L form has been 
shown to localize to nucleus while as CIC-S form in cytoplasm, and the two iso-
forms may have distinct functions [ 46 ]. CIC-L is the predominant form expressed 
in the brain and in ODG.  

 CIC contains two highly conserved domains—the HMG-box that binds to DNA, 
and a C-terminal Groucho-like (Gro-L) domain that may be important in mediating 
protein–protein interactions [ 33 ,  40 ,  41 ,  47 ] (Fig.  2 ). Human CIC cDNA exhibits 
92 % identity with the mouse gene, with 100 % identity in the HMG DNA binding 
domain. Through the HMG-box, CIC binds the octameric sequence T(G/C)
AATG(G/A)A in target enhancers and promoters, leading to transcriptional repres-
sion of the target genes [ 36 ,  38 ,  40 ,  42 ,  45 ]. This default repression is relieved upon 
induction of RTK signaling to allow transcription of RTK-dependent target genes. 
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 Aside from binding to DNA, the interaction of Cic with other proteins, possibly 
through its C1 motif, also appears important [ 34 ,  40 ,  47 ]. Cic requires co-repressors 
such as Groucho (GRO), ATXN1, ATAXN1L that have been implicated in its 
repressive activities during the development. Maintenance of repression of Cic’s 
target genes tll and hkb in  Drosophila  embryonic development requires the presence 
of co-repressor GRO in the enhancer region of these genes to create a state of tran-
scriptional inactivation, but in vivo studies have failed to show physical interaction 
between GRO and Cic [ 38 ,  48 ,  49 ]. In contrast, studied in mammalian cells have 
indicated that the Cic requires physical interaction to form repressor complexes 
with co-repressors ATAXN1 and its related factor ATAXN1-Like protein [ 42 ]. 

 CIC has conserved (pS/T)P Erk phospho-acceptor sites in the C-terminal region 
and region adjacent to the HMG box, which affect nuclear localization and binding 
to partner transcriptional regulators in response to RTK activation [ 43 ]. In mam-
mals, activation of EGFR signaling is directly proportionate to CIC degradation [ 50 , 
 51 ]. EGFR activation phosphorylates CIC at several sites directly through MAPK/
Erk as well as ribosomal protein S6 kinase II (p90RSK), which is itself a down-
stream target of activated MAPK [ 56 ]. 

 Following MAPK activation, CIC is phosphorylated and downregulated either 
via degradation or export to cytoplasm [ 33 ,  34 ,  37 – 39 ,  47 ,  52 ], thus relieving repres-
sion of target genes (Fig.  1 ). MAPK-dependent phosphorylation can prevent CIC 
binding to importin-α4 (or KPNA3), a nuclear import protein. CIC phosphorylation 
by p90RSK can also promote its binding to 14-3-3 regulatory proteins [ 43 ,  53 ]. 
Importantly, this interaction alters CIC binding to its target consensus DNA binding 
sequence, ultimately resulting in transcriptional upregulation of CIC targets, such as 
the PEA3 subfamily of ETS transcription factors including  ETV1 ,  ETV4 , and  ETV5  

HMG

HMG

N1

ATXN1 BD14-3-3 BD MAPK BD NLS

CIC-S

CIC-L

ATXN1 BD14-3-3 BD MAPK BD Groucho-L DomainNLSExon 1

Groucho-L Domain

Exon 5

Exon 5 Exon 20

Exon 20

1608

2510

  Fig. 2    Schematic of general mechanism of CIC regulation by RTK–Ras–MAPK signaling. In the 
absence of active RTK signaling, the CIC behaves as transcriptional repressor of its target genes by 
binding to their regulatory elements. But in the presence of RTK signaling, the ligand binds to its 
cognate receptor, the later gets auto-phosphorylated. The auto-phosphorylated and active RTK 
then signals through a complex of Grb/Gab/Shc/Shp to convert inactive Ras-GDP to active Ras- 
GTP. The signal transduction cascade proceeds through phosphorylation and activation of Raf1, 
Mek, and MAPK. MAP kinase subsequently phosphorylates several cytoplasmic and nuclear sub-
strates. With respect to CIC, conserved (pS/T)P Erk phosphorylation sites are present in the 
C-terminal region and adjacent to the HMG box, which have been found to affect nuclear localiza-
tion and binding to partner transcriptional regulators, thus relieving repression of target genes that 
include the PEA3 subfamily of ETS transcription factors such as  ETV1 ,  ETV4 , and  ETV5  [ 43 ]       
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(Fig.  1 ) [ 43 ]. Thus, the possible mechanisms by which Cic activity is repressed 
include phosphorylation-dependent changes in subcellular localization, protein sta-
bility/degradation, and alteration in DNA binding properties or interactions with 
other proteins. Of note, although canonical RTK signaling largely has effects through 
the Ras/MAPK cascade, other Ras effector pathways are recognized, including 
PI3K and Ral pathways. The phosphorylation of CIC and the transcriptional 
responses of  ETV  genes, however, appear to be predominantly a result of MAPK-
mediated phosphorylation, and not activation of other effector pathways [ 43 ]. 
Recently studies have also suggested that CIC may be an important modulator and 
integrator of RTK signals, functionally interpreting different intensities and/or dura-
tion of signals as a result of competition between various MAPK substrates [ 54 ,  55 ].   

4     CIC from the Perspective of Cancer: From Default 
Repressor to Tumor Suppressor 

 Analyses of protein coding genes for types of mutations and mutational frequencies 
in cancer has led to the identifi cation of CIC as a cancer driver gene with likely 
tumor suppressor functions [ 28 ,  56 ]. Compiling data from the Cancer Genome 
Atlas (TCGA), International Cancer Genome Consortium (ICGC) and other online 
cancer genomic databases, we see that CIC alterations (including mutations, dele-
tions, and copy number variations) are present in diverse cancer types, but are most 
highly represented among gliomas (Fig.  3 ). Notably, although the frequency of CIC 
mutation in the fi gure suggests its mutation in only about 1/5 of gliomas in general, 
as discussed above, CIC alterations are highly specifi c to oligodendrogliomas in 
particular, where they are found the in the majority of cases.  

 In considering CIC’s potential role in pathogenesis of cancer and particularly 
oligodendrogliomas, it is worthwhile briefl y reviewing our knowledge of CIC’s bio-
logic functions in normal developmental contexts. Most of our current understand-
ing of CIC’s biologic functions stems from work in  Drosophila ; however, CIC and 
the pathways that regulate it are highly conserved from fl ies to mammals. In 
 Drosophila , Cic is important in embryonic patterning, as its loss results in abnormal 
boundaries for the head and tail regions at the embryonic poles. Patterning functions 
are also evident in wing development where abnormal wing vein pattern and vein 
cell determination downstream of EGFR signaling are effects of Cic loss [ 33 ,  38 , 
 47 ,  57 ,  58 ]. Cell fate and differentiation functions have been discerned in neuro-
blasts of the embryonic neuroectoderm and in the dorsoventral specifi cation of fol-
licle cells during oogenesis [ 34 ,  38 ,  59 ]. Finally, roles in regulating cell proliferation 
are evident in the drosophila eye and intestine, where mutations that disrupt Cic 
function increase proliferation without affecting cell size, differentiation, or pattern-
ing of the eye [ 52 ], and cause proliferation of ectopic intestinal stem cells [ 60 ]. All 
of these processes—tissue patterning, cell fate determination, and regulation of pro-
liferation—are dysregulated in the pathogenesis of cancer. 
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the database sources. The  height of the bars  represents the relative percentage frequency of each 
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 In ODGs, mutations are present throughout CIC gene, but are most highly con-
centrated in exon 5 encoding the HMG-box, and exon 20 in the Gro-L domain 
(Fig.  4 ). With respect to potential effects of CIC loss of function, some effects may 
be due to loss of its repressor activity; it is possible that loss of Cic-DNA binding or 
loss of Cic interactions with normal partner proteins in ODG due to mutation or 
other alterations may lead to constitutive de-repression of cancer-promoting genes. 
PEA3 Ets transcription factors such as Etv4 and 5 are candidates in this respect, as 
there are several lines of evidence that point to dysregulation of PEA3 Ets proteins 
as oncogenic in other cancer types [ 61 ,  62 ]. Evidence that PEA genes are important 
mediators of oncogenic effects related to CIC come from the fi ndings in a subset of 
Ewing-like sarcomas in which a t(4;19) chromosomal translocation results in the 
creation of a  CIC-DUX4  fusion protein that results in transcriptional activation of 
ETV1, ETV4, and ETV5 instead of transcriptional repression [ 40 ,  63 ,  64 ]. 
Kawamura-Saito et al. demonstrated binding of the HMG box of  CIC  to a DNA 
sequence within the promoter of PEA genes  ETV1  and  ETV5  and further revealed 
that fusion of DUX4 to CIC sequence provides strong transcriptional activity, 
resulting in mostly upregulated gene expression, with minimal downregulated 
genes [ 40 ]. Aside from the few recognized target genes such as  ETV s, however, the 

  Fig. 4    Schematic of distribution of recurrent mutations across the human CIC gene. Most frequent 
mutations in 1p/19q co-deleted oligodendroglioma (IDH1/2 mutated) are found within the highly 
conserved DNA-interacting HMG domain (exon 5) and protein–protein interacting GRO-L homol-
ogy domain (exon 20) [ 5 ]. Somatic mutations are identifi ed with  arrows  and amino acid changes. 
(Reproduced with prior permission from publisher)       
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transcriptional repressive repertoire of CIC that may be responsible for various 
aspects of oncogenicity is not well known. In addition, there may be some CIC 
functions that are independent of its repressor activity that are relevant to cancer, 
including gliomas.  

  Extracelllular matrix remodeling:  CIC–PEA3 transcriptional circuits appear to 
affect extracellular matrix (ECM) remodeling in both development and cancer. In 
the mammals,  Cic  interacts with Ataxin1, the causative gene in the neurodegenera-
tive disease Spinocerebellar Ataxia type 1 [ 42 ]. Molecular and genetic analyses 
have identifi ed a crucial role for  CIC–ATXN1  and  CIC–ATAXNL1  complexes in 
mediating direct transcriptional repression of PEA3 genes during lung development 
[ 45 ]. Mutant mice that lack  Cic  or  Atxn1  and  Ataxnl1  activities present several 
defects, including abnormal alveolarization in developing lungs and de-repression 
of PEA3 subfamily genes, particularly of ETV4. Increased activity of  Etv4  in the 
mutant mice upregulates expression of the matrix metalloproteinase 9 ( Mmp9 ) gene 
which is known for their role in ECM remodeling and lung alveolarization [ 45 ]. The 
oncogenic activities of PEA3 transcription factors are found in several types of 
tumor, such as Ewing sarcoma, melanoma or prostate cancer, lead to the upregula-
tion of MMP family genes and other targets involved in ECM remodeling—which 
contributes to invasive and metastatic behavior [ 65 ,  66 ]. 

  Proliferation/cell cycle control:  CIC is known to affect proliferation and cell cycle 
control in model organisms during development [ 67 ]. During the development of 
 Drosophila  eye, Cic restricts the rate of proliferation in response to EGFR/Ras sig-
naling, and the functional loss of Cic bypasses the requirement for EGFR/Ras activ-
ity in proliferation thus hinting at its role in cell cycle regulation [ 52 ]. Cic in 
 Drosophila  has also been shown to synergize with RBF1 ( Drosophila  functional 
homologue of the human RB tumor suppressor protein) to restrict Cyclin E expres-
sion to maintain G1 arrest and not allow it to cross the threshold necessary for the cell 
to enter into S phase. Moreover, the proliferative effects of Cic loss of function muta-
tion has been linked to regulation to reactive oxygen species levels [ 67 ]. With respect 
to oligodendroglioma biology, the question of whether and how Cic might regulate 
proliferation in neural stem cells or OPCs is an area of active investigation. 

  Cell metabolism:  Interestingly, a recent study reported for the fi rst time non- nuclear 
function of  CIC-S , and indicated it to be involved in cell metabolism [ 46 ]. This 
study found human  CIC-S  localized in the cytoplasm in proximity to mitochondria 
where it seems to interact with the enzyme ATP-citrate lyase ( ACLY ). This enzyme 
converts the cytosolic citrate into oxaloacetate and Acetyl Co-A in an ATP depen-
dent manner. As we know that, there is a correlation between the levels of ACLY/
pACLY and tumorigenicity in gliomas [ 68 ], increased levels of ACLY and pACLY 
have been found to be associated with proliferation in other types of aggressive 
cancers [ 69 – 71 ]. In glioma cells, increased pACLY is observed to be associated 
with increased clonogenicity and cell migration [ 68 ] while as other studies indicate, 
inhibition or reduction of ACLY suppresses cell proliferation [ 72 ,  73 ]. Consistent 
with these fi ndings, Dr. Marco Marra and colleagues found mutant  CIC-S  to be 
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involved in reducing ACLY/pACLY levels in brain tumor cell lines and in human 
tumor samples and correlated this reduction with reduced clonogenicity in vitro 
[ 46 ]. This study has provided a hint that the  CIC  may be involved in diverse biologi-
cal functions that may ultimately converge into tumorigenic pathways upon its loss 
than simply being a transcriptional repressor. 

  Response to hypoxia:  Recently, Udpa and colleagues in a population-based study 
using whole-genome sequencing to identify genes involved in high-altitude adapta-
tion identifi ed genetic regions with signifi cant loss of diversity, including a region 
on chromosome 19 that contains 8 genes, including CIC, LIPE, and PAFAH1B3 
[ 74 ]. They evaluated the roles of these genes in hypoxia tolerance by using loss of 
function approach in  Drosophila . Most importantly the knockdown of Cic resulted 
in increased tolerance and survival of fl ies in hypoxic environments [ 74 ]. Further 
studies could determine whether Cic loss-of-function might similarly aid tumor 
cells in surviving the hypoxic intratumoral environment. 

  A role for alteration of cell fate in neural progenitors?  Although there is no current 
evidence that Cic loss of function can alter cell fate choices in neural stem or pro-
genitors to promote the formation of oligodendrogliomas, that Cic could have such 
a developmental and oncogenic role is an intriguing possibility. Events during cere-
bral cortical development may represent a temporal window for ODG genesis. 
Although most of the ODGs are diagnosed during the early to mid-adulthood, the 
initial transformative events likely occur years before clinical presentation. 
Considering their indolent growth, younger demographic, and substantial tumor 
size at diagnosis, we postulate that there is a temporal window of susceptibility for 
ODG development that occurs while the brain is not yet fully mature. 

 During brain development, the tissue adjacent to the ventricles (the ventricular 
zone, VZ) constitutes a transient zone of proliferating neural precursors. The biol-
ogy of these neural precursors has been reviewed extensively elsewhere [ 75 ] and is 
briefl y summarized here. Early nestin +  neural stem cells called neuroepithelial cells 
fi rst expand by symmetric cell divisions to increase the progenitor pool. These neu-
roepithelial cells later either transform into radial glial cells or give rise to interme-
diate neural progenitors. Radial glia continue to express nestin, but the transition is 
marked by increased expression of glial markers (e.g., GFAP, vimentin, BLBP, 
GLAST, S100b) and a change in ultrastructure (e.g., glycogen granules, vascular 
end feet). Radial glia have potential to give rise to all lineages, i.e., neurons, astro-
cytes, and oligodendrocytes in a temporally dependent manner. In the mouse, OPC 
specifi cation and proliferation in the forebrain begins in utero, with the bulk of oli-
godendrocyte production occurring in the fi rst 2 postnatal weeks, before it declines 
in adulthood [ 76 ,  77 ]. Although most radial glia terminally differentiate into astro-
cytes and oligodendrocytes [ 75 ], some persist in adulthood as specialized neural 
stem cells,[ 78 – 81 ]. In humans, neuronogenesis and gliogenesis similarly unfolds 
over an extended period from mid-gestation through the fi rst two decades before 
declining [ 76 ,  77 ]. It is possible that during this period of pre-adult glial  specifi cation, 
proliferation, and differentiation, acquired mutations in  IDH  and  CIC  initiate 
molecular and cellular events that lead to ODG formation. 
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 Several lines of evidence highlight similarities between ODG and OPCs, and 
either implicate OPCs as a cell-of-origin for ODG, or suggest that OPC-like lineage 
restriction is a prerequisite step in the formation of ODGs from earlier progenitors. 
Oligodendrocytes arise from actively proliferating OPCs that are found in the stem- 
cell rich SVZ and white matter of brain of mammalian brain [ 82 ,  83 ]. An OPC fate 
is specifi ed by the transcription factors Ascl1 and Olig2, which are also highly 
expressed in ODGs [ 84 – 88 ]. Moreover, both OPCs and ODGs express platelet- 
derived growth factor (PDGF), PDGF receptor (PDGFR), and neural/glial antigen 2 
(NG2), which control OPC differentiation [ 3 ,  89 ]. In a transgenic model in which 
EGFR is activated in glial cells, ODG-like tumors arise from NG2 +  OPCs [ 90 ]. 
NG2 +  cells in both human ODG and this mouse model of also show increased 
tumorigenicity compared to NG2 −  cells, all suggesting that the biology of OPC 
specifi cation or regulation of OPC proliferation are intimately linked to the genesis 
of ODGs. 

 Our work and that of others further supports a unique role for RAS/ERK signal-
ing as a determinant of OPC specifi cation and modulator of OPC proliferation [ 91 , 
 92 ]. In addition, our fi ndings and others’ suggest that ETV5 is an important down-
stream mediator of RAS/ERK-induced glial/OPC specifi cation and proliferation in 
the mammalian brain [ 91 ,  92 ]. Thus, in the brain, loss of CIC-mediated transcrip-
tional repression on ETV5 or other targets may deregulate cellular responses spe-
cifi cally controlling OPC differentiation and proliferation, leading to ODG initiation. 
Studies investigating the biological functions of CIC in the context of normal brain 
development thus have potential to provide mechanistic insights regarding the 
importance of CIC loss in ODG genesis.  

5     Conclusion and Future Perspectives 

 A growing body of evidence suggests that CIC is a tumor suppressor and its loss is 
one of the potential drivers of cancer development and progression in distinctive 
subset of human malignancies. The recent discovery of  CIC  and  IDH  as recurrently 
mutated genes in ODG brings new hope for understanding the origin and therapeu-
tic vulnerabilities of ODG. At present, there are no targeted therapies for ODG, and 
the relative dearth of representative in vivo models for ODG has been a limitation 
for basic investigations into ODG biology and for translational and therapeutic drug 
discovery studies [ 93 ]. Investigating further the functions of  CIC  in the setting of 
wild-type and mutant IDH in neural progenitors would begin to address these needs 
and build the foundational knowledge necessary for the development of more tar-
geted therapies. Finally, although we focus on ODG, the Ras/ERK signaling path-
way is one of the most commonly dysregulated pathways in human cancer. The 
knowledge gained from the work on  CIC  as downstream repressor of RTK pathway 
may extend well beyond ODG and neural progenitors, and could ultimately be 
 relevant to a broad range of cancers in the brain and beyond.     
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      Isocitrate Dehydrogenase (IDH) Mutation 
in Gliomas 

             Charles     Chesnelong    

    Abstract     First identifi ed in 2006 in a colorectal cancer sequencing effort, Isocitrate 
Dehydrogenase (IDH) mutations were later reported in secondary glioblastomas by 
Parsons et al. leading the way for further studies which have revealed the presence 
of mutations in either IDH1 or IDH2 in over 70 % of grade II–III gliomas and sec-
ondary glioblastomas. In the clinic, IDH1 and IDH2 mutations are important prog-
nostic factors associated with prolonged survival and enhanced radio- and 
chemo-sensitivity. At the benchside, IDH mutations are a major focus of glioma 
research. Signifi cant progresses have been made elucidating the roles of IDH muta-
tions in tumorigenesis. IDH mutations were shown to confer a neomorphic enzy-
matic activity: the reduction of α-Ketoglutarate (αKG) to 2-hydroxyglutarate 
(2HG). 2HG was further shown to be the main mediator of the oncogenic effects of 
IDH mutation leading to epigenetic alterations, extracellular matrix remodeling, 
and hypoxia-inducible factor 1α (HIF1a) degradation. However, many aspects 
remain unclear such as the potential infl uence of IDH mutations on cancer cell 
metabolism and whether IDH mutations, despite increasingly well-characterized 
oncogenic mechanisms, may also trigger pro-survival effects. Elucidating the roles 
of mutant IDH enzymes in tumorigenesis will signifi cantly improve our understand-
ing of glioma biology and will lead to novel therapeutic strategies that should aim 
to disrupt the oncogenic properties of IDH mutations while promoting properties 
that may contribute to the slower growth, enhanced sensitivity to conventional ther-
apies and overall longer survival characteristic of IDH mutant gliomas.  

1          Introduction 

 Gliomas are the most common form of brain tumor. The World Health Organization 
(WHO) classifi es gliomas into three subtypes according to tumor cell morphology. 
They consist of astrocytomas, oligodendrogliomas, and mixed oligoastrocytomas. 
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Histological grading further stratifi es those subtypes. Indolent gliomas are 
 considered grade I–II, while gliomas featuring nuclear atypia, dense cellularity, and 
elevated mitotic activity are classifi ed as grade III. Grade III are invasive tumors that 
often progress to grade IV tumors (Glioblastomas: GBM) characterized by micro-
vascular proliferation and necrosis. Importantly, primary GBM arising de novo 
have to be distinguished from secondary GBM arising from the malignant progres-
sion of lower grade tumors since these two subtypes appear to have a very distinct 
evolution based on their respective genetic alterations. 

 Although the WHO classifi cation system has proven considerably useful in the 
clinic, a striking clinical heterogeneity is still found within WHO subtypes and 
especially within GBMs. The development of high-throughput genomic technology 
and large-scale profi ling efforts like those of The Cancer Genome Atlas (TCGA) 
has dramatically helped the characterization of molecular alterations in gliomas and 
increased our understanding of the biology behind gliomagenesis (Fig.  1 ). Recent 
studies have also highlighted the notion that “molecular subclasses” exist in glio-
mas. These subclasses may be biologically relevant and may better characterize the 
clinical behavior of these tumors [ 1 ,  2 ]. These fi ndings suggest that each glioma 
subclass may represent a distinct oncogenic mechanism arising in distinct pools of 
precursor cells. Most importantly, these studies also suggest that the different gli-
oma subclasses may need to be treated with different targeted therapies in order to 
improve clinical outcome.  

 Amongst all the genetic alterations found in gliomas, IDH mutations stand out. 
Clinically, glioma patients bearing an IDH mutation tend to be younger and have a 
much better prognosis [ 3 ]. Indeed, unlike IDH wild type gliomas, which are typi-
cally treatment-resistant and fast-growing cancers, gliomas harboring IDH muta-
tions have a better prognosis and grow relatively slowly [ 4 ]. As an extreme example, 
oligodendrogliomas, also characterized by 1p/19q co-deletion and frequent muta-
tions of FUBP1 and CIC [ 5 ,  6 ], could be considered as the prototypical IDH mutant 
cancer since virtually 100 % are IDH mutant. Interestingly oligodendrogliomas dis-
play longer survival and enhanced radio- and chemo-sensitivity [ 7 ]. 

 Mutations of IDH1 and IDH2 are mutually exclusive and strictly heterozygous. 
IDH mutations are present in over 70 % of grade II–III gliomas and secondary glio-
blastomas [ 8 ,  9 ]. IDH1 mutation is much more frequent than IDH2 mutation in glio-
mas and unlike TP53 mutations and 1p/19q loss, IDH mutations are found in tumors 
of both astrocytic and oligodendroglial lineages. Moreover, there is no report of an 
IDH mutation occurring after the acquisition of TP53 mutation or loss of 1p/19q 
suggesting that IDH1 and IDH2 mutations are early events that probably arise in a 
common precursor cell of astrocytic and oligodendroglia tumors (i.e., “glioma cell 
of origin”) [ 10 ]. Interestingly, it is currently argued that virtually every lower grade 
glioma and secondary GBM may in fact be IDH mutant while none of the primary 
GBM would be [ 11 ]. The discrepancies could be due to misdiagnosis of primary 
GBM, secondary GBM and grade III astrocytomas. This school of thought is coher-
ent with the evolution of the disease based on genomic alterations (Fig.  1 ). Noteworthy, 
IDH mutations have also been identifi ed in ~17 % of patients with Acute Myeloid 
Leukemia (AML) where it does not predict better survival but is instead associated 
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with worse prognosis in a subset of patients [ 12 – 16 ]. Of note, IDH mutations are 
also detected at high frequency in several cartilaginous tumors [ 17 ,  18 ] and in many 
other cancers, albeit at much lower frequencies [ 19 – 25 ]. It is now clear that IDH 
mutations are key events in gliomagenesis and in the development of AML. 

  Fig. 1    Glioma subtypes and molecular alterations. Representation of glioma subtypes and the 
major associated molecular alterations. IDH mutation is the earliest genetic event found in lower 
grade gliomas and secondary GBMs. IDH mutation is thought to arise in the glioma cell of origin 
and be the initial event promoting tumorigenesis       
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However, it remains unknown why they are associated with prolonged survival in 
glioma but not in AML. 

 In this chapter, we will discuss IDH mutations, their roles in tumorigenesis, their 
potential pro-survival effects in gliomas and the therapeutic strategies being devel-
oped for IDH mutant gliomas.  

2     IDH Mutation 

 The most common IDH mutations affect residue R132 (IDH1), its analogous resi-
due R172 (IDH2) and the non-analogous R140 (IDH2). Several IDH1 R132  variants 
have been identifi ed (R132H, R132C, R132G, R132S, and R132L), R132H being 
the most common (~90 % in gliomas, 50 % in AML). Likewise, three IDH2 R140  vari-
ants have been identifi ed (R140Q, R140L, and R140W), R140Q being the predomi-
nant one in AML (~95 %). Finally, different IDH2 R172  variants have also been 
detected, R172K representing the large majority of cases. These mutated arginine 
residues fall within the catalytic domain involved in isocitrate binding, leading to 
the initial assumption that these mutations affect IDH enzymatic activity and result 
in loss of function. Further biochemical studies established that mutant IDH1 and 
IDH2 enzymes are unable to effi ciently catalyze the oxidative decarboxylation of 
isocitrate [ 26 ]. It was then quickly hypothesized that IDH mutations may induce a 
disruption of the TCA Cycle, promoting the metabolic shift toward aerobic glycoly-
sis as proposed by Otto Warburg over 80 years ago (Warburg effect). This created a 
lot of enthusiasm in the glioma research community and more globally in the fi eld 
of cancer metabolism and energetics, a fi eld that had barely progressed since 
Warburg [ 27 – 29 ] and the more recent discovery of mutations affecting the Fumarate 
Hydratase (FH) and Succinate Dehydrogenase (SDH) in cancer [ 30 – 32 ]. However, 
unlike FH and SDH, IDH1 and 2 are not directly involved in the TCA cycle. The 
IDH family consists of IDH1, 2, and 3. All catalyze the same oxidative decarboxyl-
ation of isocitrate to produce CO 2  and α-ketoglutarate (αKG), using NADP+ (IDH1 
and IDH2) or NAD+ (IDH3) as electron acceptors and generating NADPH or 
NADH, respectively. Furthermore, while IDH1 and IDH2 are similar homodimeric 
enzymes, IDH3 is a heterotetrameric enzyme. Another fundamental difference 
between the three enzymes resides in their subcellular localization. IDH1 is local-
ized in both peroxisomes and the cytosol, whereas IDH2 and IDH3 localize to mito-
chondria. Although IDH3 is well characterized and is the isocitrate dehydrogenase 
directly involved in the TCA cycle, the exact roles of IDH1 and 2 in cellular metab-
olism remains unclear. Importantly, while IDH1 and IDH2 mutations converge 
functionally, there is no report to date of mutations in any genes encoding IDH3 
subunits, suggesting that IDH mutations do not directly affect the TCA cycle. 

 Despite the fact that these mutations were fi rst recognized as loss of function 
mutations, a pivotal study reported soon afterwards that substitutions of IDH1 R132  or 
IDH2 R172  results in a loss of affi nity for isocitrate along with an increased affi nity for 
αKG and NADPH leading to a neomorphic enzymatic activity of the mutated 
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enzyme; the reduction of αKG to 2-hydroxyglutarate (2HG) coupled with the oxi-
dation of NADPH to NADP (Fig.  2 ) [ 33 ]. This neo-activity of the mutant enzyme 
has since been very well documented. With the exception of extremely rare IDH 
mutations in thyroid cancer that do not result in 2HG production, but can result in 
loss-of-function [ 34 ], IDH mutations affecting IDH1 R132 , IDH2 R172 , and IDH2 R140 , as 
well as other less common mutations, were all shown to produce 2HG. All 
2HG-producing IDH mutant enzymes were interestingly shown to exclusively pro-
duce the  D -enantiomeric isoform of 2HG. However, these mutations are not neces-
sarily equivalent. First, different diseases have varying frequencies of different IDH 
mutations. For example IDH1 mutation is predominant in gliomas while mutation 
of IDH2 is prevalent in AML. Moreover, IDH2 R140  is the residue most commonly 
mutated in AML, while mutations affecting IDH2 R140  remains to be reported in glio-
mas, which are more frequently mutated at IDH2 R172 . Interestingly, it was recently 
shown that the different subcellular localization of IDH1 and IDH2 is extremely 
important for the production of 2HG and may infl uence the function of IDH muta-
tion in various types of cancer. Indeed, αKG is present abundantly in the mitochon-
dria allowing mutated IDH2 to produce 2HG effi ciently and independently of the 
presence of the wild type enzyme. This is coherent with the rare but reported 

  Fig. 2    IDH mutation. Representation of IDH1 and IDH2 mutant enzymes, their subcellular 
localization and enzymatic activity. IDH mutations confer a neomorphic enzyme activity: the 
reduction of αKG to 2-hydroxyglutarate (2HG) coupled with the oxidation of NADPH to NADP       
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 homozygosity of mutant IDH2 [ 35 ]. On the contrary, IDH1 mutant enzyme is 
 substrate-limited. Indeed, αKG is not abundant in the cytoplasm forcing mutated 
IDH1 to completely rely on its wild type counterpart to produce 2HG explaining 
why IDH1 mutation is strictly heterozygous [ 36 ,  37 ]. Moreover, it was shown that 
different mutations vary in their ability to produce 2HG. As an example, IDH2 R172  
mutations consistently lead to greater 2HG production than IDH2 R140  mutations 
[ 36 ]. Thus, IDH subcellular localization and specifi c mutation can affect 2HG pro-
duction and may explain differences in mechanisms, roles, and impact on prognosis 
in various IDH mutant cancers.   

3     Role of IDH Mutation in Tumorigenesis 

3.1     NADPH/NADP+ Balance 

 IDH enzymes are the most important producers of NADPH. As such, IDH muta-
tions may alter the cellular NADPH/NADP+ ratio, which can lead to mitochondrial 
dysfunction and disruption of metabolic pathways dependent on a specifi c NADPH/
NADP+ ratio. The alteration of the NADPH/NADP+ balance also causes a disrup-
tion of the potential of reduction of Reactive Oxygen Species (ROS) leading to 
increased oxidative stress (Fig.  3 ), causing DNA damage further promoting malig-
nant transformation [ 38 ,  39 ]. Interestingly, it was also suggested that 2HG itself 
may promote oxidative stress and contribute to this effect [ 40 ,  41 ].   

  Fig. 3    IDH mutant enzymes promote oxidative stress. IDH mutant enzymes alter the cellular 
NADPH/NADP+ balance, causing a disruption of the potential of reduction of Reactive Oxygen 
Species (ROS) leading to increased oxidative stress. This can lead to the promotion of DNA dam-
age but also sensitization to therapy       
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3.2     α-Ketoglutarate (αKG) 

 While wild type IDH enzyme produces αKG, the mutant enzyme consumes 
αKG. Interestingly, decreased αKG levels may impact the activity of several αKG- 
dependent dioxygenases; dioxygenases use αKG as substrate to catalyze many reac-
tions involved in essential processes such as DNA repair, epigenetics, oxygen 
sensing, hypoxia adaptation, extracellular matrix remodeling, and fatty-acid metab-
olism [ 42 ]. Importantly, αKG is also an essential intermediary metabolite of the 
TCA cycle. Decreased αKG levels could thus result in disruption of the TCA cycle 
and promotion of the glycolytic shift. However, no decrease in αKG levels has been 
confi rmed in IDH mutant cells. Instead, IDH mutant cells were shown to maintain 
αKG levels by increasing glutamine degradation. This has been proposed to trigger 
an addiction of the IDH mutant cells to glutamine, offering interesting therapeutic 
strategies for IDH mutant gliomas, which are illustrated by the increased sensitivity 
of IDH mutant cells toward Glutaminase inhibitors [ 43 ].  

3.3     2-Hydroxyglutarate (2HG), an “Onco-Metabolite” 

 2HG is a direct product of mutant IDH enzymes, which can be detected in patients’ 
blood, urine and brain with noninvasive methods [ 44 – 46 ]. As such, 2HG is an 
important biomarker for IDH mutant cancer and is under investigation for clinical 
purposes. More importantly, 2HG is directly linked to disease development. 2HG is 
a metabolite normally produced from αKG in a reaction coupled with the oxidation 
of γ-hydroxybutyrate into succinic semi-aldehyde by the hydroxyacid oxoacid tran-
shydrogenase (HOT). Under physiological conditions, cellular levels of 2HG are 
maintained by hydroxyglutarate dehydrogenase (HGDH), producing αKG from 
2HG. There are two enantiomers of 2HG:  D -2HG and  L -2HG. Alterations in the 
metabolism of both enantiomers are associated with pathological acidurias. 
Elevated  D -2HG and  L -2HG in urine, plasma, and CSF characterize rare neurometa-
bolic disorders (2-hydroxyglutarate aciduria:  D  or  L -2HGA) most often caused by 
mutations in  d - 2HGDH  (or  l - 2HGDH ) [ 47 ]. Interestingly,  L -2HGA is associated 
with a higher risk of developing malignant brain tumors [ 48 ], suggesting that 2HG 
has oncogenic properties. 

 Recently, 2HG has been proposed to be an “onco-metabolite.” The fi rst evi-
dence of a potential role of 2HG in cancer came from studies in primary neurons, 
in which 2HG activates the  N -methyl- D -aspartic acid receptors, thereby disrupting 
Ca 2+  homeostasis and increasing reactive oxygen species. In the same model, 2HG 
has been shown to inhibit the ATP synthase complex, resulting in mitochondrial 
dysfunction [ 49 ,  50 ]. More recently, several studies have shown that 2HG com-
petitively inhibits several αKG-dependent enzymes [ 51 ]. 2HG and αKG being 
structurally very similar, it has been proposed that 2HG could competitively 
inhibit αKG-dependent enzymes. Interestingly, this converges toward our current 
understanding of the impact of alterations in SDH and FH [ 52 ,  53 ], which result 
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in elevated levels of succinate and fumarate, interfering with the activity of 
 αKG-dependent  dioxygenases. Via inhibition of αKG-dependent dioxygenases, 
2HG may alter matrix remodeling, epigenetic regulation and metabolism. 

3.3.1     Matrix Remodeling 

 The extracellular matrix (ECM) is an essential part of the tumor microenvironment. 
Disruption and/or modifi cations of the ECM structure and composition are essential 
for tumorigenesis and affect proliferation, differentiation and invasion. Interestingly, 
2HG has been shown to inhibit collagen hydroxylases that are essential for collagen 
maturation potentially resulting in disturbed ECM. Interestingly, it was also pro-
posed that 2HG, like lactate, may induce acidifi cation of the extracellular environ-
ment causing ECM disturbance and promoting invasion. However, the importance 
and relevance of an ECM remodeling dependent on IDH mutation remains to be 
established.  

3.3.2     Epigenetic Alterations 

 The most interesting and most described conseuence of IDH mutation to date is its 
impact on epigenetic regulation. Alteration of DNA methylation is a hallmark of 
human cancers. Typically, cancers present a global DNA hypomethylation and more 
local hypermethylated foci. Promoter CpG island hypermethylation is often 
observed in cancer and leads to transcriptional silencing of associated genes, typi-
cally tumor suppressors. A large-scale analysis of the epigenome from TCGA sam-
ples has identifi ed glioma samples with DNA hypermethylated loci characterizing a 
Glioma CpG Island Methylator Phenotype (G-CIMP) [ 54 ]. G-CIMP-positive sam-
ples were tightly associated with IDH1 mutation and further studies have shown 
that IDH mutation is in fact directly responsible the establishment of G-CIMP. Indeed, 
it was shown that 2HG competitively inhibits α-KG-dependent 5-methylcytosine 
hydroxylases involved in DNA demethylation [ 55 – 57 ], resulting in promoter CpG 
island hypermethylation. 

 2HG also competitively inhibits αKG-dependent Jumonji-C domain Histone 
Demethylases (JHDMs) [ 58 ,  59 ], essential regulators of posttranslational histone 
tail methylation, necessary for proper regulation of chromatin organization and 
gene expression. Thus, through alterations of histones and DNA methylation, IDH 
mutation affects global and/or local DNA and histone methylation patterns, poten-
tially altering the expression of oncogenes, tumor suppressors and metabolic genes. 
Consequently, via 2HG-dependent epigenetic alterations, IDH mutation may inter-
fere with differentiation, proliferation, survival, and metabolism (Fig.  4 ). As an 
example, 2HG-dependent inhibition of histone demethylases was reported to be 
suffi cient to block cell differentiation [ 58 ]. In addition, via promoter methylation, 
IDH is involved in the repression of essential metabolic genes, tumor suppressor 
and DNA repair genes affecting proliferation and survival [ 3 ,  60 ].   
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3.3.3     Metabolism 

 IDH mutations were fi rst hypothesized to directly impact energy metabolism and 
promote aerobic glycolysis, which is the metabolic pathway favored by cancer cells 
to support rapid proliferation [ 61 ]. However, IDH mutation has recently been shown 
to downregulate the hypoxia inducible factor-1α (HIF1α) pathway, leading to the 
repression of important glycolytic genes typically overexpressed in cancer. Indeed, 
EGLN prolyl 4-hydroxylase, which is responsible for the oxygen-dependent degra-
dation of HIF1α, is an αKG-dependent enzyme whose activity was shown to be 
affected by 2HG. Although stabilization of HIF1α by 2HG was fi rst reported 
(Fig.  5a ) [ 26 ,  51 ], more recent studies have clarifi ed that 2HG activates EGLN pro-
moting HIF1α degradation [ 61 – 64 ] and downregulating HIF1α target genes [ 60 ], 
including many essential for aerobic glycolysis (Fig.  5b ).  

 Interestingly, a HIF1α target gene essential for aerobic glycolysis, Lactate 
Dehydrogenase A (LDHA), was reported as silenced in IDH mutant glioma. 
Silencing of LDHA was shown to be associated with increased methylation of its 
promoter. The global downregulation of the HIF1α pathway through 2HG-dependent 
promotion of HIF1α degradation [ 62 ], in conjunction with the silencing of LDHA, 
was suggested to limit the glycolytic capacity of IDH mutant cells. Moreover, an 
α-ketoglutarate-dependent histone demethylase (JMJD2C), also potentially inhib-
ited by 2HG, is required for the expression of several glycolysis essential genes 
downstream of HIF1α [ 65 ]. It thus appears that several mechanisms triggered by 
IDH mutant enzyme may act in concert to suppress glycolytic genes, suggesting 

  Fig. 4    IDH mutation leads to epigenetic alterations. 2HG competitively inhibits 5-methylcytosine 
hydroxylases (5McH) and Jumonji-C domain histone demethylases (HDM) leading to disorgani-
zation of chromatin structure and overall deregulation of gene expression. 2HG-dependent epigen-
etic alterations may promote tumorigenesis via deregulation of differentiation, proliferation, 
survival, and metabolism       
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  Fig. 5    IDH mutation and metabolism. ( a ) 2HG was fi rst reported to inhibit EGLN prolyl 
4-hydroxylase, resulting in stabilization of HIF1α and promotion of the Warburg effect. ( b ) 
However, more recent studies have clarifi ed that 2HG activates EGLN, promoting HIF1α degrada-
tion and potentially preventing the glycolytic shift towards aerobic glycolysis       
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that IDH mutant gliomas may have selected defects in glycolysis. Consequently, 
IDH mutant gliomas may rely on oxidative phosphorylation for energy production 
although, to date, few elements support this [ 66 ,  67 ]. 

 Downregulation of glycolytic genes in IDH mutant gliomas is counterintuitive. 
Indeed, IDH mutation playing a role in the prevention of the glycolytic switch 
would be contrary to classical steps toward tumorigenesis. This unique feature may 
help explain the slow disease progression and better survival of this subgroup of 
gliomas. However, one may ask how the downregulation of the HIF1α pathway 
makes sense in IDH mutant gliomas. Interestingly, although the  L -enantiomer of 
2HG ( L -2HG) is a more potent inhibitor of αKG-dependent enzymes, 2HG-dependent 
transformation is specifi c to the  D -enantiomer ( D -2HG). The fact that only  D -2HG 
induces transformation may be explained by differential effects of these two enan-
tiomers on EGLN. Indeed, while  D -2HG acts as an agonist of EGLN,  L -2HG is an 
antagonist [ 64 ]. Moreover, a key experiment recently demonstrated that knockdown 
of EGLN blocks IDH mutant-dependent leukemogenesis [ 64 ]. Downregulation of 
the HIF1α pathway may thus be an essential characteristic of IDH mutant cancers. 
Furthermore, several studies have shown that HIF1α can inhibit hematopoietic stem 
cells (HSC) and leukemic cell proliferation [ 68 – 73 ], suggesting that the inhibition 
of HIF1α may be essential for the IDH mutant-dependent tumorigenic process. 
However, in gliomas, this may have the unique consequence of limiting the funda-
mental ability of cancer cells to undergo a metabolic shift towards aerobic 
glycolysis. 

 Noteworthy, IDH mutations may also promote other metabolic pathways and 
trigger dependence on specifi c fuel sources offering therapeutic opportunities (glu-
taminolysis, fatty acid metabolism, oxidative phosphorylations). Identifying and 
disrupting certain components of these metabolic pathways will provide interven-
tion points for the discovery and development of novel therapeutics.    

4     Pro-survival Effects of IDH Mutation 

 Glioma patients bearing an IDH mutation demonstrate longer survival indepen-
dently of age and clinical performance status. Whether IDH mutations are directly 
responsible for this better prognosis remains an open question. However, several 
intriguing elements are raising the possibility that IDH mutation may carry pro- 
survival and sensitizing effects in glioma. 

 IDH mutant gliomas are less necrotic and show less frequent vascular abnormal-
ity. In addition, IDH mutant gliomas have less edema and present less enhancing 
lesions. IDH mutations could be directly involved in those favorable prognostic 
factors via its action on the HIF1α pathway. Indeed, downregulation of the HIF1α 
pathway could directly impact vascularization, edema, blood–brain barrier perme-
ability and necrosis. 

 The impact of IDH mutation on growth and proliferation is uncertain. Indeed, 
engineering of several IDH mutant cell lines via overexpression of mutant 
IDH1 and 2 have shown contradictory results reporting both reduced and enhanced 
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proliferation and growth in vitro and in vivo. However, it is worth mentioning that 
patient-derived cells with endogenous expression of IDH mutant enzyme are typi-
cally refractory to in vitro culture conditions [ 74 ]. Moreover, several reported IDH1 
mutant-derived cell lines present a loss of one of the IDH1 alleles. Two lines derived 
from IDH mutant gliomas were reported to present a loss of heterozygosity at the 
IDH1 locus affecting the mutant allele [ 60 ]. Another study reported an IDH mutant 
line [ 75 ] presenting a loss of the wild type IDH1 allele [ 76 ]. Interestingly, loss of 
IDH1 wild type allele has also been reported in vivo and may result in decreased 
2HG [ 36 ,  37 ]. These reports, although not conclusive, argue for a selection pres-
sure against the IDH mutant phenotype at least in vitro. 

 Finally, IDH mutations in gliomas predict response to Temozolomide (TMZ) and 
Ionizing Radiation (IR) [ 4 ,  77 ,  78 ]. Whether IDH mutation directly sensitizes glio-
mas to alkylating drugs (TMZ) and IR is an extremely important question that is 
being answered. As mentioned previously, IDH mutation triggers global hyper-
methylation leading to  promoter methylation and silencing of O6-methylguanine-
DNA methyltransferase (MGMT), a DNA repair protein involved in repairing 
alkylated DNA such as those produced by TMZ. IDH mutation thus sensitize gli-
oma cells to TMZ, improving patient survival [ 54 ,  55 ,  58 ,  79 ]. Experimentally, 
in vitro overexpression of IDH1 R132H  and IDH2 R172K  has been shown to promote 
apoptosis of cells treated with IR or TMZ while IDH1 wild type overexpression 
appears protective [ 80 ,  81 ]. Moreover, IDH1 is the main producer of NADPH, 
while IDH1 mutation results in a strong reduction of this production. Thus, IDH1 
mutation limit the reduction of the ROS generated by radio- chemotherapies there-
fore sensitizing glioma cells to current standard of care and prolonging survival 
(Fig.  3 ) [ 82 ]. Noteworthy, in AML, Glucose-6-phosphate Dehydrogenase (G6PDH) 
is the predominant NADPH generator, not IDH. Furthermore, AML treatment does 
not typically include IR, which may help explain why IDH mutations do not predict 
enhanced treatment sensitivity and  longer survival in AML. 

 Of note, these pro-survival effects of IDH mutation may highlight therapeutic 
opportunities for IDH wild type gliomas. Although a deeper understanding of IDH 
mutation is still needed, it may be possible to recreate certain pro-survival effect 
conferred by IDH mutations. For example, inhibitors of NADPH production may 
induce some of these pro-survival effects in IDH wild type gliomas via sensitization 
to current standard of care.  

5     Therapeutic Opportunities 

 Considerable effort has been recently directed toward the synthesis of IDH mutant 
selective inhibitors to disrupt the production of 2HG [ 83 ,  84 ]. To date, two selective 
IDH1 and IDH2 mutant inhibitors have been reported and well documented. AGI- 
6780 reduces 2HG production in a dose-dependent manner, inducing the differen-
tiation of IDH2 R140Q  primary AML cells [ 85 ]. A second compound, AGI-5198, also 
decreases 2HG levels and induces differentiation of an IDH1 R132H  oligodendroglioma 
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cell line [ 86 ]. Interestingly, induction of differentiation by both inhibitors is associated 
in a dose-dependent manner with loss of the repressive histone marks, H3K9me3 and 
H3K27me3. However, AGI-5198 did not reverse DNA hypermethylation associated 
with IDH mutation. These studies demonstrate that IDH mutant enzymes are targeta-
ble by small molecules with positive effects on proliferation and differentiation. These 
inhibitors are able to reverse certain epigenetic marks triggered by IDH mutation and 
promote differentiation. Interestingly, the effi cacy of these inhibitors may not be lim-
ited to their effects on histone epigenetic marks as illustrated by some interesting 
results showing that AGI-5198 doses that were insuffi cient to reverse histone meth-
ylation still suppressed tumor growth. The strategy aiming to inhibit IDH mutant 
enzymes thus holds promising therapeutic opportunities for the treatment of IDH 
mutant gliomas and other IDH mutant cancers. 

 Based on the idea that reversing IDH mutant-dependent epigenetic changes may 
be an interesting therapeutic option, several groups started to evaluate the effi cacy 
of DNMT inhibitors in IDH mutant gliomas. Decitabine and 5-azacytidine are two 
very interesting DNMT inhibitors because they are well known FDA approved 
drugs that can pass the blood–brain barrier.  Turcan  et al. observed that decitabine 
treatment promotes changes in methylation markers leading to the re-expression of 
differentiation genes, and long lasting differentiation effects [ 87 ]. Another group 
examined the impact of 5-azacytidine and a reported reversion of the G-CIMP state 
concomitant with the upregulation of differentiation genes and decreased tumor 
growth in vivo [ 88 ]. 

 Finally, since IDH mutations may directly confer vulnerabilities to oxidative 
stress, increasing this stress may represent an interesting therapeutic strategy for 
IDH mutant gliomas.  

6     Conclusion 

 Although IDH mutations were fi rst hypothesized to directly impact energy metabo-
lism and promote aerobic glycolysis, which is the metabolic pathway typically 
favored by cancer cells to support rapid proliferation, the hypothesis that IDH 
mutations directly alter cancer cell metabolism remains unproven. IDH mutation is 
the earliest genetic event found in IDH mutant gliomas and is presumed to arise in 
the glioma cell of origin. This genetic alteration and the subsequent production of 
2HG appear to drive tumorigenesis by blocking cancer cells in an immature prolif-
erative state. According to the most recent studies, the main oncogenic properties of 
IDH mutations may be dependent on alterations of the epigenetic state via 
2HG-dependent inhibition of histone demethylases and 5-methylcytosine hydroxy-
lases. The occurrence of IDH mutations in a progenitor cell may hence maintain an 
undifferentiated, proliferative state through remodeling of epigenetic marks. These 
epigenetic alterations may be the initial event leading to tumorigenesis, which may 
be further promoted by secondary mutations and genetic alterations (Fig.  6 ). 
According to most recent studies, inhibition of IDH mutant enzymes appears 
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 effective in reversing some epigenetic marks and inducing differentiation as well as 
cytostatic effects. However, one has to keep in mind the intriguing possibility that 
even though IDH mutation is essential for tumor initiation it may be dispensable 
once a durable transformed state is acquired through the acquisition of additional 
mutations. Certain pro-survival effects of IDH mutations may even limit tumor 
progression beyond a certain stage and sensitize those tumors to current therapies, 
for example, IDH mutation via regulation of HIF1α and though epigenetic altera-
tions deregulates expression of key genes essential for aerobic glycolysis prevent-
ing the glycolytic shift in IDH mutant gliomas, thus limiting the rapid growth 
typical of IDH wild type gliomas. Furthermore, IDH mutant enzymes alter the pro-
duction of NADPH, limiting the reduction of Reactive Oxygen Species (ROS) and 
potentially leading to sensitization effects to therapy. Although such phenomena 

  Fig. 6    IDH mutation: earliest genetic event in IDH mutant gliomas. IDH mutation is an early 
genetic event that may arise in an early progenitor cell. This genetic alteration and the subsequent 
production of 2HG appear to drive tumorigenesis by blocking cancer cells in an immature prolif-
erative state. IDH mutation lead to epigenetic alterations, deregulation of the HIF1α pathway, 
ECM alterations, and increased oxidative stress, which may help maintain an undifferentiated, 
proliferative state. IDH mutation may be the initial event leading to tumorigenesis, which may be 
further promoted by secondary mutations and genetic alterations       
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may help explain the better prognosis and slow disease progression of IDH mutant 
gliomas, they also highlight unexpected consequences of IDH mutation that will 
infl uence our therapeutic strategies to control IDH mutant gliomas. One could 
indeed wonder if the axis of research aiming to inhibit IDH mutant enzyme is wise 
when it could, paradoxically, represent a step toward increased aggressiveness and 
resistance to current therapies. A better understanding of the roles and impact of 
IDH mutation in gliomas is thus paramount in order to develop therapeutic strate-
gies that disrupt the oncogenic properties of IDH mutations while promoting prop-
erties that may contribute to the slower growth, enhanced sensitivity, and overall 
longer survival characteristic of IDH mutant gliomas.      
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    Abstract     Hereditary cancer diagnostics is rapidly evolving with the increased 
availability and uptake of next-generation sequencing (NGS)-based multigene pan-
els. Multigene panels offer several advantages such as time- and cost-effectiveness, 
and have been shown to be a useful diagnostic tool, particularly for cases suggestive 
of multiple different hereditary cancer conditions and for atypical phenotypes. 
However, there are many important considerations in the clinical use of multigene 
panels in hereditary cancer predisposition testing, from both clinic and laboratory 
perspectives. There are currently limited resources to guide clinicians in ordering 
multigene panels and managing patients with signifi cant fi ndings in lesser known 
genes. In addition, the development of clinical grade NGS-based panels is complex, 
and laboratories differ in various aspects of testing methodology. In this chapter, we 
review the various aspects of multigene panel workfl ow including target enrich-
ment, NGS, bioinformatics, and interpretation of results. Results from our labora-
tory’s experience with over 20,000 hereditary cancer panel cases are also 
summarized, with a focus on frequently mutated moderate penetrance genes, atypical 
phenotypes, and mosaic results.  
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1          Introduction 

 Next-generation sequencing (NGS)-based multigene panel testing is becoming 
increasingly utilized in hereditary cancer diagnostics, with a number of labs now 
offering this type of testing [ 1 ]. It is well known that NGS is more time-effi cient and 
cost-effective than conventional sequencing methods [ 2 ,  3 ]. The ability to sequence 
multiple genes simultaneously gives the clinician information that would previously 
have required extensive time and resources to collect. As such, the introduction of 
NGS into the realm of hereditary cancer predisposition testing is transforming the 
way that we assess patients who are at risk for hereditary cancer. Several groups 
have validated NGS multigene cancer panels and have shown complete concordance 
with results from conventional testing methods [ 2 – 7 ]. Validations have included a 
variety of alteration types ranging from point mutations to genomic rearrangements. 
There are multiple important considerations in designing NGS panels for use in 
clinical practice to ensure the necessary clinical sensitivity and specifi city, for exam-
ple confi rming results with Sanger sequencing to rule out false positives and follow-
up analysis of no/low coverage regions with conventional testing methods. In this 
chapter, we review various aspects of multigene panel workfl ow in hereditary cancer 
diagnosis, with a focus on medical interpretation of variants, and present our clinical 
diagnostic laboratory’s experience with multigene panel testing.  

2     Workfl ow Considerations for Clinical Hereditary 
Cancer Panels 

 With the popularity of NGS increasing and the multitude of labs currently offering 
NGS-based multigene panel testing, it is important to have a good understanding of 
the various technologies and their limitations. NGS tests are more complex than 
Sanger sequencing-based testing methods, with very few labs employing similar 
workfl ows. Labs may differ in the target enrichment strategies, NGS platforms, and 
bioinformatics pipelines used for data analysis, each signifi cantly impacting the 
accuracy and reliability of a test. Labs may choose a specifi c method and workfl ow 
based on sample volume, turn-around-time, cost or experience. 

2.1     Target Enrichment 

 DNA target enrichment for NGS is performed either with polymerase chain reaction 
(PCR) primers or probes, each having unique advantages and disadvantages for 
variant detection. Primers, due to their small size (18–25 base pairs), have very high 
specifi city enabling the selective enrichment of highly homologous and GC-rich 
regions. For diagnostic testing, this is extremely important as most targeted regions 
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can be covered 100 %, avoiding labor intensive Sanger sequencing to “fi ll-in” low 
coverage regions. In addition, the high on target specifi city (typically 80–90 %) 
allows more samples to be multiplexed per sequencing run, bringing down the costs 
and turn-around-time of high volume testing [ 5 ]. The extremely high coverage 
achieved using primer based enrichment also enables the detection of low level 
mosaicism, which could be missed when using other approaches. Unfortunately, to 
perform in high-throughput, most primer based target enrichment technologies 
require expensive instrumentation which can limit those users without the sample 
volume or resources to support this type of investment. In addition, primer based 
target enrichment can produce false negatives when a variant is located underneath 
a primer binding site, affecting hybridization and resulting in allele drop-out [ 8 ,  9 ]. 
False negatives can be limited by designing primers away from common variants or 
known mutations and tiling amplicons to provide redundancy and sequence under 
other amplicon primer binding sites. These approaches were used in the design of 
our laboratory’s cancer NGS tests, which have been shown to detect several muta-
tions missed with previous testing methods [ 5 ]. 

 By comparison, probe based target enrichment uses long oligonucleotides (100–
120 base pairs) to hybridize and pull down regions of interest. Allele drop-out is 
reduced with this method as the hybridization properties of long probes allow toler-
ance to mismatched nucleotides. However, allelic ratios could be skewed as less 
effi cient probe binding on one allele can cause bias. This method also results in less 
target enrichment derived false positives than primer-based methods due to the use 
of fragmented DNA and the removal of PCR duplicates during data analysis. 
Therefore, false positives are randomly distributed throughout the dataset with 
numerous unique reads used to make a call. Unlike primer based enrichment, where 
panels over ~100 genes becomes very cumbersome and expensive to process, there 
is no size limitation for probe based enrichment. For example, exome enrichment is 
performed using a probe library. Although the length of probes provides some 
advantages over primer based enrichment, it also results in several disadvantages. 
The main disadvantage is target specifi city. Typically only ~50–60 % of reads are 
on target as the probes also pull down homologous regions in the genome [ 10 ]. This 
also makes capturing genes with highly homologous pseudogenes such as  PMS2  
and  CHEK2  extremely challenging and unreliable, requiring labs to perform Sanger 
sequencing for these regions for full coverage. In addition, high GC-rich regions 
can be diffi cult to target with probe based enrichment. For these reasons, most probe 
based enrichment methods are only able to capture ~90–95 % of regions of interest, 
resulting in labs having to perform Sanger sequencing to fi ll-in the gaps.  

2.2     Next-Generation Sequence Analysis 

 Currently the majority of diagnostic labs use Illumina sequencing instruments for testing 
due to the high accuracy and numerous throughput options which can accommodate any 
lab’s testing volume (Illumina, San Diego, CA). The consistent use of the same 
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sequencing platform between labs removes some variability in the workfl ow as the 
base-calling error rates and sequencing related artifacts should be similar between 
assays interrogating the same genes. A small number of labs have implemented Ion 
Torrent or Ion Proton sequencing platforms as the instrument of choice for panel testing 
(Thermo Fisher Scientifi c, Waltham, MA). Unlike Illumina’s sequencing by synthe-
sis technology which utilizes reversible terminators to ensure only one nucleotide is 
incorporated at a time, Ion Torrent semiconductor technology uses fl ow based chemistry 
with the signal intensity proportional to the number of hydrogen ions released during 
nucleotide incorporation. As a result, similar to Roche 454 sequencing, there is a high 
error rate in homopolymer stretches making it diffi cult to accurately detect insertions 
and deletions in these regions (454 Life Sciences, Branford, CT) [ 11 ]. Importantly, 
homopolymers comprise a signifi cant percentage of a gene’s sequence and are hotspots 
for true mutations. For example, homopolymers (≥4 base pairs) account for 7.5 % of 
reportable  BRCA1  sequence and 11 % of  BRCA2  sequence. Therefore, to reliably call 
mutations in these regions Sanger sequencing would have to be performed.  

2.3     Deletion/Duplication Analysis 

 Variability also exists in the methods used for gross deletion/duplication analysis. 
One approach involves normalized depth of coverage and split read analysis of 
NGS data to assess for deletion/duplications [ 12 ]. Software such as CNVseq can 
also be used to facilitate deletion/duplication analysis from NGS data [ 13 ]. This 
method is cost-effective since it does not require a separate testing method to be 
utilized; however, there are limitations depending on methods used for capture. 
Nonlinear PCR amplifi cation can bias read depth coverage, and novel breakpoints 
can challenge alignment algorithms. Another option for concurrent deletion/dupli-
cation analysis of multiple genes is a targeted chromosomal microarray. Typically 
these rely on array-based comparative genomic hybridization as a methodology to 
compare copy number in patient DNA with control DNA following fl uorescent 
labelling and hybridization. Exon-level coverage may not be achievable across all 
promoter and coding regions due to technical limitations of the DNA sequence such 
as high GC-content and/or sequence specifi city and tandem repeats. Conventional 
deletion/duplication methods such as Multiplex Ligation-Dependent Probe 
Amplifi cation (MLPA), or quantitative-PCR are not cost-effective for testing a large 
number of genes in parallel.  

2.4     Bioinformatics 

 Finally, a signifi cant amount of variability between different labs’ panel NGS tests 
occurs in the bioinformatics and software employed for data analysis. There are a 
multitude of commercial software programs available to aid in the fi ltering and 
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analysis of sequencing data. However, many of these off the shelf programs are not 
fl exible and cannot be tailored to analyze select genes or complex sequence regions 
on a panel independently. It is important for an analysis pipeline to be tailored for 
each gene on the panel based on its sequencing profi le and account for the methods 
used in target enrichment and sequencing. For example, our approach has been to 
develop a custom pipeline where the primer sequences of tiled amplicons are 
trimmed off to avoid diluting out variants underneath the primer binding sites. 
Data from the analysis of our fi rst 3,000 BRCAplus™ patients illustrated that we 
would have missed two pathogenic mutations in  BRCA1  and  BRCA2  if primer 
trimming was not incorporated into our pipeline [ 5 ]. Labs without extensive bioin-
formatics expertise and a tailored bioinformatics pipeline will compromise assay 
sensitivity and specifi city resulting in missed mutations. Current algorithms for 
variant calling in clinical laboratory settings typically aim to maximize variant 
detection sensitivity. Because this may be achieved at the expense of false positive 
results, accuracy of results reporting may depend on Sanger sequencing confi rma-
tion of reported variants for some time as chemistries and bioinformatics algo-
rithms continue to improve.   

3     Medical Interpretation 

 A key component of any molecular diagnostic testing is accurate interpretation of 
detected variants. Various organizations such as the American College of Medical 
Genetics and Genomics (ACMG) and the International Agency for Research and 
Cancer (IARC) have developed guidelines for the interpretation and reporting of 
sequence variants to help standardize the interpretation and presentation of genetic 
testing results [ 14 ,  15 ]. While these guidelines provide a basic framework for 
assessment of variants that can be used for a wide range of autosomal dominant 
genes, variant assessment should occur in a gene-specifi c context, with disease phe-
notype, inheritance pattern, mechanism, and prevalence being considered, along 
with protein structure and function. Examples of other gene-specifi c nuances that 
should be considered include additional tests such as tumor studies, variation in 
nonsense-mediated decay, and alternate splicing. Several groups such as the 
International Society for Gastrointestinal Hereditary Tumours (InSiGHT) and 
IARC have developed more specifi c guidelines for mismatch repair genes ( MLH1 , 
 MSH2 ,  MSH6 , and  PMS2 ) and  BRCA1 / 2 , respectively [ 16 ,  17 ]. 

 A common theme in published variant assessment guidelines is the reliance on 
multiple lines of evidence when interpreting the signifi cance of sequence variation 
including published functional and splicing studies, case reports and case–control 
studies, information from locus-specifi c and population frequency databases, co- 
segregation, co-occurrence, and results from in silico prediction models. When 
reviewing any literature pertaining to variant assessment, the methods and study 
design should be carefully vetted for the strength and signifi cance of the results. 
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3.1     Functional Studies 

 Functional studies aim to evaluate the effect of an alteration in vitro. They can be used 
as a strong line of evidence when results from multiple independent researchers are 
concordant. However, the study design should be carefully evaluated on a gene-by-
gene basis. A review of the available functional literature and correlation with in vivo 
pathogenicity is highly advised. For example, the model organism can have a major 
impact on how well the results correlate with disease in vivo. Thompson et al. com-
pared the results of in vitro studies in yeast and mammalian cells for mismatch repair 
genes [ 17 ]. For variants considered benign (class 1) based on multifactorial analysis 
or having a general population frequency >1 %, they found discordant results in 8/19 
(42 %) yeast based assays and in 1/18 (5.5 %) mammalian cell assays. It should also 
be noted that normal functional and/or expression studies do not always correlate with 
pathogenicity as some mutations might not affect protein function but could affect 
other factors such as stability, expression, cellular localization, or binding.  

3.2     Case–Control Studies 

 Case–control studies can be used to estimate the associated risk of a variant with 
disease. In these studies the allele or genotype frequency of a variant is compared 
between affected and unaffected populations or control cohorts. These controls gen-
erally consist of healthy individuals and are ideally matched for age, sex and ethnic-
ity. Case–control data can be particularly helpful for classifi cation of variants in 
high penetrance genes that are not rare (i.e., >0.1 %), as statistically signifi cant odds 
ratios can then be defi ned in reasonably sized cohorts. However, rare variants and 
variants in moderate penetrance genes require much larger data sets to reach statisti-
cal signifi cance. For rare variants the number of controls necessary to achieve the 
power of 90 % with the signifi cance level of 0.05 would be generally greater than 
15,000 if the allele frequency is ~0.1 % and greater than 30,000 if the allele fre-
quency is ~0.05 % [ 18 ].  

3.3     Phenotype Data 

 When evaluated in the context of penetrance and variability, phenotype data can be 
a powerful piece of evidence for classifying variants in genes associated with rare 
diseases (affecting < 1/2,000) and well-defi ned clinical diagnostic criteria [ 19 ]. 
Phenotype data is available from multiple sources such as published literature, 
online databases, and internal laboratory data. Clinical history information provided 
by clinicians on test requisition forms may not be complete; therefore, this informa-
tion should be confi rmed with clinicians if phenotype data is being used in variant 
classifi cation. 
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 Careful consideration should also be given to selection biases potentially infl u-
encing phenotype data. For example, phenotype data for patients tested for single 
genes, or a small panel of genes is typically biased, as genetic testing in this scenario 
was prompted based on the patient meeting clinical criteria for the disease. As such, 
use of phenotype data for variant classifi cation in this context has limitations. 
History-weighing algorithms have been established for the use of such data; how-
ever, these analyses require very large datasets and are limited to high penetrance 
genes and alleles [ 20 ]. With NGS multigene panels for hereditary cancer syndromes, 
phenotype data is less biased. For example, if an alteration in a gene with a well- 
defi ned clinical presentation is observed in a large number of individuals without 
that phenotype (e.g., absence of diffuse gastric cancer or lobular breast cancer in 
carriers of  CDH1  variants), the likelihood of pathogenicity is decreased, although 
association of the variant with a “non-classic” phenotype cannot be ruled out. 
Statistical analysis of patterns of co-segregation with disease or family history can 
be performed and provide an extra line of evidence; the power of such analysis, 
however, depends on the accuracy of the penetrance estimation and may require 
sampling of additional individuals in the pedigree.  

3.4     Population Frequency and Prevalence in Healthy Controls 

 In general, detection of a variant in control populations argues against its role in 
genetic disease. However, variants in less penetrant disease related genes may be 
found in both control and experimental populations. Online databases such as the 
Single Nucleotide Polymorphism Database (dbSNP), 1000 Genomes, and the 
Exome Sequencing Project (ESP) provide data on the frequency of a variant in gen-
eral/control populations [ 21 – 24 ]. When drawing conclusions based on allele fre-
quency the size of the cohort should be considered and statistical signifi cance 
established. Although this was previously somewhat diffi cult to achieve and required 
pooling of cohorts, databases such as the ESP provide large general population fre-
quencies for European Americans and African Americans. While the 1000 Genomes 
database genotyped a smaller cohort, it provides allele frequencies for a wider range 
of ethnicities. Statistical methods can be used to defi ne thresholds for signifi cance 
within smaller cohorts. 

 In our laboratory variants with a frequency >1 % in a large general population 
cohort such as ESP or a large negative control group are considered benign poly-
morphisms as they are too frequent to cause disease compared with the prevalence 
of hereditary cancer syndromes; however, this threshold varies between laborato-
ries. Likewise, variants with allele frequency > 1 % at statistical signifi cance in sub-
populations can be considered benign polymorphisms, providing that the lower 
95 % confi dence interval is also >1 %. Rarely there are pathogenic founder muta-
tions found in >1 % within an ethnic group, such as the  BRCA1  c.68_69delAG (also 
known as 187delAG) and  BRCA2  c.5946delT (also known as 6174delT); however, 
these are usually well-characterized [ 25 ,  26 ].  
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3.5     Co-segregation Analysis 

 Segregation analysis measures the degree to which a variant segregates with disease 
in one or more families. Typically segregation analysis relies on determining the like-
lihood a given variant is causing disease within large families with multiple affected 
and unaffected family members as measured by a logarithm of odds (LOD) score 
(base 10) [ 27 ]. Additional approaches to segregation analysis have been published 
that allow for analysis of smaller families, which can be used to determine odds of 
causality and can be combined from small families sharing the same variant [ 28 ]. 
Segregation analysis can be confounded by phenocopies within the family, particu-
larly when investigating common disease. Analysis of a large number of individuals 
in a single family may be required to accurately associate the variant with hereditary 
disease. For rare, well-characterized hereditary cancer syndromes with classic pheno-
types (e.g., Li–Fraumeni syndrome), fewer observations are needed to reach statistical 
signifi cance as phenocopies are rare. Caution should be used when interpreting 
co-segregation data, as the possibility may exist that the alteration in question is in 
linkage disequilibrium with an unidentifi ed causal mutation.  

3.6     Co-occurrence 

 Mutation co-occurrence is the observation of a variant in conjunction with a known 
pathogenic mutation either in the same gene ( in cis  or  in trans ) or in another gene 
that at least in part explains the clinical phenotypes in the family. For some genes 
such as  BRCA1 , with few exceptions, homozygous and compound heterozygous 
loss-of-function mutations are embryonic lethal [ 29 ,  30 ]. For other genes, such as 
the mismatch repair genes and  BRCA2 , homozygous and compound heterozygous 
loss-of-function mutations lead to a severe phenotype such as constitutional mis-
match repair defi ciency syndrome and Fanconi Anemia, respectively [ 31 – 34 ]. For 
these genes, if a variant of unknown signifi cance is confi rmed to be  in trans  with a 
known deleterious mutation in the same gene, the likelihood that the variant is 
pathogenic is signifi cantly reduced in the absence of a severe phenotype. In addi-
tion, variants found in the presence of known pathogenic mutations in other genes 
of the same pathway, or other genes that clearly explain the clinical phenotypes 
found in that family can also be used as evidence against pathogenicity. Cases have 
been reported, however, of families and individuals with mutations in more than 
one gene with or without overlapping phenotypes [ 35 ]. Therefore, co- occurrence 
with a mutation in another gene should be used cautiously and requires larger 
empirical data sets. Co-occurrence in some moderate penetrance genes such as 
 CHEK2  is not uncommon. While biallelic mutation carriers tend to have more 
severe phenotypes, co-occurrence in this setting is not as informative as evidence 
against pathogenicity [ 36 ,  37 ].  
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3.7     Evolutionary Conservation 

 Evolutionary conservation describes how well a nucleotide or amino acid position 
has been preserved throughout evolution in various species. In general, the degree 
of conservation can refl ect functional signifi cance; where highly conserved amino 
acid positions in highly conserved domains are more likely to have functional sig-
nifi cance and less conserved amino acid positions are less likely to be functionally 
signifi cant [ 16 ,  38 ]. In addition, observation of a specifi c amino acid change as the 
reference allele in many species suggests that the change is tolerated and therefore 
less likely to be signifi cant. The depth of conservation should also be considered as 
some genes may not be as relevant in lower species and therefore not under strict 
evolutionary constraints. In this example, looking too deeply might underestimate 
the signifi cance of conservation at that position. Interpretation of conservation data 
should be gene and context specifi c. 

 Multiple computational algorithms such as Sorting Intolerant from Tolerant 
(SIFT) [ 39 ], Polymorphism Phenotyping (PolyPhen) [ 40 ] and Combined Annotation 
Dependent Depletion (CADD) [ 41 ] as well as gene specifi c algorithms such as 
Align-GVGD (A-GVGD) [ 42 ,  43 ] and MAPP-MMR [ 44 ] have been developed to 
evaluate the evolutionary and functional signifi cance of amino acid changes. These 
algorithms yield varying degrees of false positive rates and should not be used alone 
to classify variants. However, once their limitations are taken into consideration, 
they can be used to refl ect evolutionary conservation as part of a classifi cation 
scheme that relies on multiple lines of evidence.   

4     Our Clinical Diagnostic Laboratory’s Multigene Panel 
Experience 

4.1     Methods 

4.1.1     Study Subjects 

 Study subjects included 21,151 patients who had hereditary cancer multigene panel 
testing (BreastNext™, OvaNext™, ColoNext™, CancerNext™, and BRCAPlus™) 
through our clinical diagnostic laboratory. All patients were clinician-referred, with 
demographic information supplied by ordering clinicians on test requisition forms 
(TRFs) submitted at the time of testing. For the fi rst 2,079 patients who underwent 
panel testing, clinical history information was also obtained from TRFs as well as 
any other clinical documentation (e.g., pedigrees, clinic notes) submitted by clini-
cians at the time of testing [ 35 ].  
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4.1.2     Gene Selection 

 Four panels were initially designed (BreastNext, OvaNext, ColoNext, and 
CancerNext) to target 14–22 genes associated with hereditary cancer susceptibility. 
Genes were selected if medical literature and database review supported a minimum 
of a twofold increased risk for the cancer type(s) targeted by the panel (breast cancer 
for BreastNext; breast, ovarian, and uterine cancers for OvaNext; colorectal cancer 
for ColoNext; breast, ovarian, colorectal, and uterine cancers for CancerNext). The 
well-known hereditary breast and ovarian cancer genes,  BRCA1  and  BRCA2 , were 
initially excluded from BreastNext, OvaNext, and CancerNext due to patents held 
by Myriad Genetics Laboratories, Inc.; however, these genes were added to the 
appropriate panels following the Supreme Court’s ruling in June 2013 that naturally 
occurring DNA is not patent eligible merely because it has been isolated [ 45 ]. The 
ability to analyze  BRCA1  and  BRCA2  also enabled our design of a high risk breast 
cancer gene panel (BRCAplus) [ 5 ]. Continuous medical literature and database 
review has resulted in the addition of multiple genes to various panels. For example, 
 RAD51D  was added to the appropriate panels after multiple large studies confi rmed 
its association with hereditary ovarian cancer [ 46 – 50 ]. Genes included in the afore-
mentioned panels are summarized in Table  1 , along with the number of patients who 
underwent sequencing of each gene as part of a multigene panel.

4.1.3        Target Enrichment and Next-Generation Sequencing Analysis 

 For all submitted blood and saliva samples, DNA was isolated using a QIAsymphony 
instrument (Qiagen, Valencia, CA) and then quantifi ed using a UV spectrophotome-
ter (NanoDrop, Thermo Scientifi c, Pittsburgh) or Infi nite F200 (TECAN, San Jose, 
CA). Custom primers were designed to target regions of interest and also include 
sequences corresponding to the Illumina NGS adapters. Primers were heavily tiled in 
regions of interest to limit allele drop-out. Sequence enrichment was carried out by 
incorporating gDNA into emulsion microdroplets along with primer pairs followed 
by polymerase chain reaction (PCR) (RainDance Technologies, Billerica, MA). The 
enriched libraries were then applied to the solid surface fl ow cell for clonal amplifi ca-
tion and sequencing using 150 bp paired-end conditions on the HiSeq2500 (Illumina, 
San Diego, CA). For all OvaNext, ColoNext, and CancerNext panels,  PMS2  sequence 
analysis was performed via Sanger sequencing due to pseudogene interference. 

 Initial data processing and base calling, including extraction of cluster intensities, 
was done using RTA 1.17.21.3 (Real Time Analysis, HiSeq Control Software version 
2.0.10). Sequence quality fi ltering was executed with the Illumina CASAVA software 
(ver 1.8.2, Illumina, Hayward, CA). A custom bioinformatics pipeline utilized 
Novoalign V3.00.05 to align sequence data to the reference human genome (GRCh37) 
and GATK V2013.1-2.4.9 to generate variant and no/low coverage reports. During 
variant calling, primer sequences were trimmed off to avoid these sequences being 
included in the analysis and diluting out true sample sequence under primer sites. For 
fi ltering, a minimum quality threshold of Q20 was applied and no/low coverage 
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regions that are <50 × coverage. Additional Sanger sequencing was performed for 
any no/low coverage regions (<50×). Variant calls other than known non-pathogenic 
alterations were verifi ed by Sanger sequencing in sense and antisense directions prior 
to reporting. The complete multigene panel workfl ow is depicted in Fig.  1 .   

4.1.4     Deletion/Duplication Analysis 

 A custom, highly tiled chromosomal microarray (CMA) consisting of approximately 
60,000 oligonucleotide probes was developed for gross deletion/duplication analy-
sis using eArray software (Agilent Technologies,   https://earray.chem.agilent.com/
earray/    ) and was run concurrently with NGS analysis for all multigene panels. 

   Table 1       Genes included on each multigene cancer panel   

 Gene (# of patients 
sequenced)  BRCAplus™  BreastNext™  OvaNext™  ColoNext™  CancerNext™ 

  APC  (4,748)  •  • 
  ATM  (10,417)  •  •  • 
  BARD1  (10,417)  •  •  • 
  BRCA1  (16,430)  •  •  •  • 
  BRCA2  (16,430)  •  •  •  • 
  BRIP1  (10,417)  •  •  • 
  BMPR1A  (4,748)  •  • 
  CDH1  (21,151)  •  •  •  •  • 
  CDK4  (1,108)  • 
  CDKN2A  (1,108)  • 
  CHEK2  (12,433)  •  •  •  • 
  EPCAM  (7,110)  •  •  • 
  MLH1  (7,110)  •  •  • 
  MRE11A  (10,417)  •  •  • 
  MSH2  (7,110)  •  •  • 
  MSH6  (7,110)  •  •  • 
  MUTYH  (12,433)  •  •  •  • 
  NBN  (10,417)  •  •  • 
  NF1  (4,886)  •  •  • 
  PALB2  (10,417)  •  •  • 
  PMS2  (7,110)  •  •  • 
  PTEN  (21,151)  •  •  •  •  • 
  RAD50  (10,417)  •  •  • 
  RAD51C  (10,417)  •  •  • 
  RAD51D  (4,886)  •  •  • 
  SMAD4  (4,748)  •  • 
  STK11  (21,151)  •  •  •  •  • 
  TP53  (21,151)  •  •  •  •  • 
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Probes were placed every 2.5 Kb of intronic sequence, with increased probe density 
in exons (average 13 probes per exon), fl anking intronic sequences and promoter 
regions. Pathogenic gross deletions/duplications were confi rmed using MLPA anal-
ysis (MRC-Holland).  PMS2  deletion/duplication analysis was carried out using 
MLPA due to pseudogene interference. Follow-up double stranded sequencing of 
the appropriate pseudogene exons was performed in the event of a deletion in exons 
12–15 of  PMS2  [ 51 ].  

4.1.5     Variant Assessment 

 All variants, with the exception of previously characterized benign alterations, 
underwent thorough assessment and review of available evidence by a team of 
highly trained scientists. Our proprietary fi ve-tier variant classifi cation protocol, 
based on the ACMG and IARC guidelines, was used to arrive at fi nal variant clas-
sifi cations [ 14 ,  15 ,  35 ].  

  Fig. 1    Multigene panel workfl ow. After preparing genomic DNA, samples undergo concurrent NGS 
and gross deletion/duplication analysis. All no/low coverage regions on NGS are subsequently ana-
lyzed with Sanger sequencing and all clinically relevant variants are confi rmed with conventional 
testing methods (Sanger sequencing or MLPA) prior to medical interpretation and reporting [ 5 ]       
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4.1.6     Results Reporting 

 All confi rmed variants in coding exons ±5 base pairs into fl anking introns and 
untranslated regions were reported for genes on the panel ordered, with the excep-
tion of benign alterations. Known mutations beyond ±5 base pairs were also 
reported. Four results categories were utilized on test reports: positive (one or more 
pathogenic mutations or likely pathogenic variants were detected), inconclusive 
(only variants of uncertain signifi cance (VUS) were detected), negative (no variants 
or only benign or likely benign variants were detected), and carrier (monoallelic 
 MUTYH  pathogenic mutation or likely pathogenic variant carrier). For all reports 
containing pathogenic mutations, likely pathogenic variants, and variants of 
unknown signifi cance, detailed alteration and gene information was included to 
support the reported classifi cation and interpretation.   

4.2     Results 

 This cohort consisted of 21,151 individuals who underwent BRCAplus ( n  = 8,718), 
BreastNext ( n  = 5,323), OvaNext ( n  = 2,362), ColoNext ( n  = 2,016), or CancerNext 
( n  = 2,732) testing through our clinical diagnostic laboratory. The majority of 
patients were reported to be Caucasian (70.0 %) and female (93.8 %), with an aver-
age age at testing of 51.9 years (range birth to 97 years) (Table  2 ).

   A total of 1,691 total mutations and likely pathogenic variants were detected 
among 1,616 probands with positive results, including 28 biallelic  MUTYH  muta-
tion carriers and 47 probands with two mutations. The majority of mutations were 
sequence mutations ( n  = 1,574, 93.1 %), and the remainder were gross deletions/
duplications/triplication ( n  = 117, 6.9 %). 

4.2.1     Factors Infl uencing Positive and Inconclusive Rates 

 Positive, inconclusive, and negative results rates for each panel are shown in Fig.  2 . 
CancerNext yielded the highest percentage of positive results (11.4 %) and 
BRCAplus yielded the lowest percentage of positive results (4.8 %), which is refl ec-
tive of the number of genes included on the panel (6 genes on BRCAplus compared 
to 28 genes on CancerNext). Generally speaking, the mutation detection rate 
increases with the number of genes included that are relevant to the referring diag-
nosis, and the inconclusive rate is directly related to the number of genes included 
on the panel and consequently the number of base pairs sequenced (Fig.  3 ). The 
amount of published literature (e.g., functional studies and large case–control stud-
ies) on any given gene may also impact the classifi cation of variants as pathogenic, 
uncertain signifi cance, or benign.   

 The clinical history of the patient being tested is another factor that infl uences 
mutation detection rate. Previous detailed analysis of clinical data from our fi rst 
2,079 cancer panel cases demonstrated varying detection by clinical history (Table  3 ). 
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For example, ColoNext cases with ≥10 cumulative adenomatous polyps were almost 
twice as likely to test positive for a mutation than cases with <10 cumulative adeno-
matous polyps. The impact of clinical history on VUS rate is not as well explored.

4.2.2        Frequently Mutated Moderate-Penetrance Genes 

 The multigene panels included in our analysis contain genes that are known to con-
fer both high and intermediate risk for cancer [ 35 ]. The intermediate risk genes 
(relative risk two to fourfold) were identifi ed as candidates for hereditary predispo-
sition based on an understanding of cellular pathways important to the integrity of 
the genome such as DNA repair (genes of Fanconi Anemia-BRCA pathway), signal 
transduction (e.g.,  PTEN ), and cell cycle checkpoints (e.g.,  CHEK2 ) [ 52 ]. Variants 
in some of the genes may be found with high frequency in the population, making 
it diffi cult to study the association of these variants with disease, as large cohorts are 

  Table 2    Patient 
demographics  

 Overall  n  (%) 

 Total patients  21,151 (100) 
 Age 
 ≤30 years  1,074 (5.1) 
 31–40 years  3,339 (15.8) 
 41–50 years  5,591 (26.4) 
 51–64 years  7,004 (33.1) 
 ≥65 years  4,143 (19.6) 
 Test performed 
 BRCAplus  8,718 (41.2) 
 BreastNext  5,323 (25.2) 
 CancerNext  2,732 (12.9) 
 ColoNext  2,016 (9.5) 
 OvaNext  2,362 (11.2) 
 Ethnicity 
 African American/Black  1,167 (5.5) 
 Ashkenazi Jewish  1,165 (5.5) 
 Asian  669 (3.2) 
 Caucasian  14,805 (70.0) 
 Hispanic  940 (4.4) 
 Middle Eastern  115 (0.5) 
 Multiple Ethnicities  679 (3.2) 
 Native American  24 (0.1) 
 Unknown/blank  1,535 (7.3) 
 Gender 
 Female  19,836 (93.8) 
 Male  1,272 (6.0) 
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  Fig. 2    Result rates by multigene panel. Positive, inconclusive, and negative result rates are shown 
for each multigene panel. Positive and inconclusive rates were highest for CancerNext, which 
includes the most genes and were lowest for BRCAplus, which includes the least number of genes. 
Individuals whose molecular fi ndings only included a monoallelic  MUTYH  mutation were 
excluded from calculations       
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  Fig. 3    Number of unique sequence VUS identifi ed compared to number of coding base pairs 
sequenced. The percentage of unique VUS identifi ed per patients sequenced is directly related to 
the number of coding base pairs sequenced, with VUS rates highest for larger genes and lowest for 
smaller genes. Each dot represents a gene on the multigene panels.  EPCAM  is the only gene not 
represented in this fi gure, as only deletion/duplication analysis is performed for this gene       
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required to show statistical signifi cance. We observed three intermediate risk genes 
that were mutated in ≥ 1 % of individuals tested:  CHEK2 ,  ATM , and  PALB2  (Fig.  4 ). 
The BreastNext panel yielded the highest mutation frequency for all three of these 
genes with frequencies of 2.7 %, 1.2 %, and 1.3 %, respectively (data not shown).  

 Our observed mutation frequencies for  ATM ,  CHEK2 , and  PALB2  are higher than 
in other published multigene panel cohorts (Table  4 ). The differences in detection 
rates among study populations may be explained by differing study cohorts, variable 
methods of variant classifi cation or the possibility of false negatives due to inconsis-
tencies in analysis for deletions and duplications. Walsh et al. did not detect any 
 ATM  mutations in their cohort of 360 ovarian cancer patients unselected for age or 
family history, which may refl ect our current understanding that  ATM  mutations are 
not associated with ovarian cancer risk [ 53 ]. Castera et al. included only mutations 
inducing premature termination codons and considered missense mutations with an 
A-GVGD score > C45 and a MAF in ESP samples >0.01 as potentially deleterious 
[ 4 ]. Pathogenic mutations exist that have an A-GVGD score of <C45 and a MAF of 
>0.1 %, for example, the p.S428F mutation in  CHEK2  which has an A-GVGD score 
of C15 and is seen in 0.02 % of the population. Furthermore, gross deletion/duplica-
tion analysis was not performed for any genes other than  BRCA1 / 2  in their study.

   In our study, the likelihood of identifying mutations in moderate penetrance 
genes exceeds that of identifying mutations in high penetrance genes. Currently, 
there are limited resources to guide clinicians in managing patients with mutations 
in moderate penetrance genes, leaving clinicians to extrapolate from published 

   Table 3    Positive and inconclusive rates by clinician-reported clinical history [ 35 ]   

 Characteristic ( n )  % Positive results  % Inconclusive results 

 BreastNext ( n  = 874) 
 High-risk breast/ovarian criteria (239)  10.9  20.9 
 Triple negative breast cancer (76)  5.3  30.3 
 Multiple breast cancer primaries (148)  8.8  23.6 
 Breast cancer diagnosed <35 years (136)  7.4  24.3 
 Breast cancer diagnosed <50 years (528)  9.3  19.9 
 OvaNext ( n  = 223) 
 High-risk breast/ovarian criteria (37)  5.4  16.2 
 Breast cancer diagnosed <50 years (43)  11.6  23.3 
 Ovarian cancer at any age (111)  6.3  30.6 
 ColoNext ( n  = 557) 
 Colorectal cancer diagnosed <50 years (168)  13.1  13.7 
 2–9 Cumulative adenomas (120)  7.5  20.8 
 10+ Cumulative adenomas (90)  14.4  12.2 
 CancerNext ( n  = 425) 
 High-risk breast/ovarian criteria (47)  12.8  21.3 
 Breast cancer diagnosed <50 years (90)  10.0  25.6 
 Ovarian cancer at any age (32)  9.4  25.0 
 Colorectal cancer diagnosed <50 years (23)  8.7  21.7 
 Multiple primary tumors (160)  7.5  21.9 
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gene-specifi c risk estimates, guidelines for other genes conferring similar risks, and 
patient clinical history. As additional information emerges in published literature, 
one can anticipate the development of additional guidelines for management of 
families with mutations in moderate penetrance genes, including but not limited to 
specifi c guidelines for surveillance and recommendations for or against risk- 
reducing surgeries. Genetic testing is already being used to guide targeted cancer 
therapy in the case of the  BRCA1 / 2  genes [ 54 ]. It has been postulated that carriers 
of mutations in other genes in the Fanconi Anemia/Homologous recombination 
DNA repair pathway may also be responsive to similar targeted therapies, i.e., Poly 
(ADP-ribose) polymerase (PARP) inhibitors [ 55 ]. Additional support for this 
hypothesis might be expected to emerge over time as clinical trials are ongoing [ 56 ].  
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  Fig. 4    Mutation and VUS 
rates by gene. The mutation 
and VUS rates were 
calculated based on the 
number of times each gene 
was sequenced in our cohort. 
Moderate penetrance cancer 
genes are indicated with a *. 
Aside from  BRCA1/2 , the 
most frequently mutated 
genes were  ATM, CHEK2, 
PALB2 , and  APC . Of note, 21 
of 47 (44.7 %) APC 
mutations reported were the 
moderate risk allele, p.
I1307K, which confers a 
two-fold increased risk of 
colorectal cancer but is not 
causative of the classic or 
attenuated familial 
adenomatous polyposis 
phenotype [ 70 ]. Therefore, 
the rate for  APC  mutations 
causative of FAP/AFAP was 
0.55 %       
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4.2.3     Atypical Phenotypes 

 We previously analyzed clinical histories of 46 ColoNext probands with mutations 
in genes with well-established diagnostic criteria and treatment guidelines ( CDH1 , 
 PTEN ,  SMAD4 ,  STK11 ,  TP53 ,  APC ,  MLH1 ,  MSH2 ,  MSH6 ,  PMS2 ,  EPCAM , and 
biallelic  MUTYH ) to determine whether they met diagnostic/testing criteria for the 
corresponding hereditary cancer syndrome [ 35 ]. Thirty percent of these probands 
did not meet criteria for the corresponding syndrome, and in several of these cases, 
the clinical history was suggestive of multiple different hereditary cancer syn-
dromes. Subsequent analysis of clinical histories for other gene mutation carriers 
such as  TP53 ,  PTEN , and  CDH1  has also revealed a number of patients not meeting 
diagnostic/testing criteria for the respective syndrome (unpublished data). 

 Our results demonstrate that current syndrome-specifi c testing guidelines are 
missing a number of patients with hereditary cancer susceptibility and do not 
address the signifi cant overlap between phenotypes. Historically, research on hered-
itary cancer syndromes was limited to clinical observation of patients with strong 
similar phenotypes. Cancer risks and testing guidelines were subsequently devel-
oped based on highly penetrant families. Our results also indicate that further 
research in prospective cohorts is needed to better defi ne phenotypes and penetrance 
for cancer susceptibility genes. These fi ndings also have implications for the use of 
phenotype data in variant assessment for well-characterized high penetrance genes. 
While the identifi cation of a rare variant in a patient with classic disease is a factor 
in support of pathogenicity, the lack of a classic disease phenotype no longer carries 
as much weight in support of nonpathogenicity.  

   Table 4    Frequency of  ATM ,  CHEK2 , and  PALB2  mutations in multigene panel cohorts   

 Author  Study population 

 Carrier frequency a  

  ATM    CHEK2    PALB2  

 Kurian 
et al. [ 7 ] 

 141 women referred for  BRCA1 / 2  testing, with 
negative results 

 1.42 %  ND  ND 

 Castera 
et al. [ 4 ] 

 708 consecutive patients with clinical histories 
suspicious for hereditary breast and/or ovarian 
cancer 

 0.71 %  0.71 %  0.99 % 

 Walsh 
et al. [ 53 ] 

 360 ovarian cancer, fallopian tube, and primary 
peritoneal cancer patients unselected for age or 
family history 

 ND  1.39 %  0.56 % 

 Tung 
et al. [ 71 ] 

 1,781 patients referred for  BRCA1 / 2  testing and 
377  BRCA1 / 2  negative breast cancer patients 

 0.60 %  1.58 %  0.60 % 

 LaDuca et al. 
(this study) 

 21,151 patients clinician-referred for hereditary 
cancer panel testing b  

 1.77 %  1.64 %  1.31 % 

   a ND: not detected 
  b  CHEK2  was sequenced for 12,433 patients and  ATM  and  PALB2  were sequenced for 10,417 
patients included in the study  
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4.2.4     Mosaic Results 

 NGS is more sensitive in detection of mosaicism than conventional testing meth-
ods. There have been multiple reports of NGS identifying low level mosaicism in 
hereditary cancer genes [ 53 ,  57 – 60 ]. In this study, 20 alterations among 19 patients 
were detected in a signifi cant portion of DNA from the provided sample but at a 
lower frequency than expected for heterozygous carriers by both NGS and Sanger 
sequencing (Fig.  5 ; all data not shown). For these cases, an alternate pair of primers 
was used in Sanger confi rmation to rule out low heterozygous ratio due to allele 
bias. The majority of these alterations were in  TP53  ( n  = 13) and the remaining calls 
were in  ATM  ( n  = 1),  BRCA2  (1),  CHEK2  ( n  = 4), and  NF1  ( n  = 1). Explanations for 
lower-than-expected heterozygous ratio include the presence of mosaicism.  

 Counseling can be challenging in this situation, as there is no easy way to deter-
mine which tissues are affected, including gonadal tissue, and so the risks to off-
spring cannot be clearly delineated. It is also possible that different tissues within 

  Fig. 5    Mosaic  TP53  results. The  TP53  p.G245D pathogenic mutation was detected on NGS with 
an allele ratio of 10.7 % ( left ) and subsequently confi rmed via Sanger sequencing ( right )       
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the body may be affected to different degrees and so cancer risks may vary depend-
ing on the tissue distribution of the mutation. Another explanation is that the 
detected mutation is somatic in origin and detection refl ects the presence of malig-
nant tissue within the provided patient sample. When the sample is blood or saliva, 
this is most likely due to the presence of hematologic disease. For this reason, saliva 
and peripheral blood are not acceptable sample types for patients with active or 
recent hematologic disease, with cultured fi broblasts or fresh, frozen tissue pre-
ferred. Experience suggests that for some patients, however, positive NGS results 
may be the fi rst indication of an undiagnosed hematologic disease. In such cases our 
laboratory advises that clinicians correlate results where heterozygous variant read 
ratios are lower than expected with the patient’s clinical history and perform any 
follow-up analyses that may help to clarify the origin of the reported result such as 
offering testing to family members, evaluating for potential hematologic disease, 
and performing testing on additional tissue types such as cultured fi broblasts.  

4.2.5     Testing Guidelines for NGS Panels 

 The multigene panels offered by our laboratory and others, include genes that have 
not yet been individually evaluated for clinical utility of testing. It is, however, well- 
established that a molecular diagnosis in individuals diagnosed with cancer has 
potential implications for future surveillance, risk reduction and potentially treat-
ment [ 61 – 63 ]. Available guidelines for the routine use of genetic testing in oncology 
include those of the National Comprehensive Cancer Network (NCCN) and 
American Society of Clinical Oncology (ASCO) [ 54 ,  64 ,  65 ]. The components of 
informed consent for genetic testing are also readily available [ 65 ,  66 ]. The NCCN 
addressed the use of multigene testing in the 2014 updates to their Genetic/Familial 
High-Risk Assessment: Breast and Ovarian clinical practice guideline, but specifi c 
procedures were not recommended. 

 In our initial study of 2,079 cases of multigene testing, the majority of subjects 
had previously undergone some genetic testing which proved to be uninformative 
[ 35 ]. As multigene testing has been incorporated into the clinical care of a larger 
number of patients, the approach is now used as a fi rst line genetic test challenging 
the convention of sequential gene testing. Individual groups have published their 
experience and approaches to the use of multigene testing [ 67 ,  68 ]. However, sys-
tematic investigation of the personal and societal implications of choosing a multi-
gene approach to genetic testing is needed and studies are underway.    

5     Summary and Future Directions 

 Historically, the identifi cation of patients and families at risk for hereditary cancer 
predisposition was based on syndrome identifi cation through careful attention to 
family history and clinical presentation of disease. Limitations to this approach 
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included the lack of information about the family due to limited communication of 
diagnoses among family members, small family sizes and variable penetrance of 
disease-causing genes. Gene discovery relied on the participation of large families 
in research and the detailed description of disease over three to four generations. 
With the introduction of a rapid and cost-effective method such as NGS, the 
approach to gene discovery and identifi cation of at-risk families now may be guided 
by molecular data (the genotype) as often as it is guided by the phenotypic presenta-
tion. The success of this approach is dependent on the reliability of molecular data 
assemblage and interpretation. 

 The clinical application of NGS and a multigene approach to testing presents 
challenges such as the assessment of sequence variants for pathogenicity, the dis-
covery of atypical phenotypes and germ-line mosaicism and a lack of data defi ning 
the penetrance of lesser known genes. Clinical recommendations and guidelines are 
yet to be published regarding the use of multigene testing. More research investigat-
ing the utility of the multigene approach is needed and is addressed by working 
groups such as the  E vidence-based  N etwork for the  I nterpretation of  G ermline 
 M utant  A lleles (ENIGMA) [ 69 ]. Our presentation here of a NGS workfl ow and 
strategies for the interpretation of NGS data adds to the growing body of literature 
needed to translate laboratory innovation to clinical care.     
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