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Abstract Modern medicine has been using imaging as a fundamental tool in a
wide range of applications. Consequently, the interest in automated registration of
images from either the same or different modalities has increased. In this chapter,
computer techniques of image registration are reviewed, and cover both their
classification and the main steps involved. Moreover, the more common geomet-
rical transforms, optimization and interpolation algorithms are described and dis-
cussed. The clinical applications examined emphases nuclear medicine.

1 Introduction

Modern medicine has been using imaging as a fundamental tool to assist in diag-
nostic procedures, monitoring the evolution of pathologies and planning treatments
and surgeries. However, in order to fully exploit digital medical images and their
efficient analyses, suitable semi- or full-automated methods of image registration
must be developed [1].

Computer techniques of image registration enable the fusion of different medical
image modalities and the detection of changes between images acquired from
different angles, at different acquisition times or even against an atlas that includes
anatomical and functional knowledge. This task of image analysis can also point out
changes in size, shape or image intensity over time and compare preoperative images
and surgical planned outcomes with the physical world during interventions [2].
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The aim of image registration techniques is to find the optimal transformation
that best aligns the structures of interest in the input images. Accordingly, the
techniques establish the spatial correspondence among features in the images or
minimize an error measure or a cost function. To accomplish such goals, optimi-
zation algorithms are usually used to find the most suitable geometrical transfor-
mations, and interpolators are employed to resample the images into the registered
discrete spaces.

The more usual applications of image registration techniques in nuclear medi-
cine include correlative image interpretation, attenuation correction, scatter cor-
rection, correction for limited resolution and improvement of the reconstruction
accuracy in emission tomography. These techniques have also been used in the
co-registration of functional studies, for the transformation of images into standard
spaces for their comparison against both normal cases and data from other
modalities, and in conformal radiotherapy treatment. Also, these methods have been
used to improve the interpretation of several functional studies based on static
images, including brain, breast, chest, liver, kidneys and colon images, or to assist
motion analyses as in cardiac and lung studies.

There have been previous reviews covering medical image registration in gen-
eral [3–9], medical image classification [10], mutual-information-based registration
methods [5], unsupervised registration methods [11], non-rigid image registration
[12, 13], image registration of nuclear medicine images [14], image registration
techniques for specific organs such as breast [15], brain [16, 17] and cardiac images
[18]. In this chapter, the classifications of the registration methods suggested by
several authors are reviewed. Then, techniques of image registration in general are
introduced, including the geometric transforms, similarity measures, optimizers and
interpolators. Finally, the main applications related to nuclear medicine imaging are
examined.

2 Registration Methods: Classification

There are different classification criteria for image registration techniques
depending on the authors. For example, image registration methods were classified
into four categories: point methods, edge methods, moment methods and “similarity
criterion optimization” methods [19]. Also, a classification based on: data dimen-
sionality, origin of image properties, domain of the transformation, elasticity of the
transformations, tightness of property coupling, parameter determination and type
of interaction (interactive, semi-automatic or automatic) was proposed [10].
Moreover, registration techniques were also divided into: stereotactic frame sys-
tems, point methods, curve and surface methods, moment and principal axes
methods, correlation methods, interactive methods, and atlas methods [19].

Registration methods can also be classified according to the subjects and the
image modalities involved. Hence, intra-subject and intra-modality applications
refer to the image registration of the same subject in images acquired using the
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same imaging modality. Intra-subject and inter-modality registration is the image
registration between images of the same subject but acquired using different
imaging modalities, which is a common case that involves Positron Emission
Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT)
images [20]. Inter-subject and intra-modality registration consists of aligning
images of different subjects but acquired by the same imaging modality. Finally,
inter-subject and inter-modality is related to the alignment of images from different
subjects and acquired by different imaging modalities.

Table 1 shows the classification of medical image registration methods that take
into account the data dimensionality, nature of the registration basis, the nature and
domain of the transformation, type of interaction, optimization procedure, imaging
modalities, subject and object involved.

Registration methods based on pixel (or voxels in 3D) intensity are known as
intensity based, while those based on the geometrical structures extracted from the
images as feature or geometrical based; furthermore, frequency or Fourier based
registration techniques use the image in the frequency domain and the Fourier
transform properties. Feature space information, or techniques based on the amount
of image information used, is another classification proposed in the literature [8].

3 Image Registration

Methods of image registration aim to find the optimal transformation that best
aligns the structures of interest in the input images [21–23]. After the attribution of
a common coordinate system, the images are transformed into this system. Usually,
the registration methods are based on geometric approaches, known as feature-
based or intensity-based methods. Feature-based methods start by establishing the
correspondence between features in the input images and then compute the geo-
metrical transformation that aligns these features. Intensity-based methods itera-
tively adjust the transformation that aligns the input images taking into account the
intensity of the image pixels (or voxels in 3D), through the minimization of a cost
function. Usually, the cost function consists of a similarity measure, i.e. the reg-
istration algorithms try to minimize an error measure [24]. In such approaches,
optimization algorithms are needed to find the most suitable geometrical transfor-
mation, and interpolators are employed to resample the image data into the new
common discrete space.

Landmark-based registration methods are based on the identification of the
correspondence between landmarks in the two input images. These markers can be
distinguished as extrinsic, anatomical and geometrical landmarks. External land-
marks are well suited for validation studies; however, their routine application can
be impracticable, since patient studies may be realized on different days and the
location of the markers must not vary during a study. On the other hand, internal
anatomical landmarks do not need marker preparation, but in common cases it is
difficult to obtain a reliable and accurate localization; hence, they are not used in
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Table 1 Classification of medical image registration methods (adapted from [8])

Classification criteria Subdivision

Dimensionality Spatial dimension: 2D/2D, 2D/3D, 3D/3D

Temporal series

Nature of the registration
basis

Extrinsic

Invasive Stereotactic frames

Fiducials (screw markers)

Non-invasive Moulds, frames, dental adapters, etc.

Fiducials (skin markers)

Intrinsic

Landmark based Anatomical

Geometrical

Segmentation
based

Rigid models (points, curves, surfaces,
volumes)

Deformable models (snakes, nets)

Voxel property
based

Reduction to scalar/vectors (moments,
principal axes)

Using full image contents

Non-image based (calibrated coordinate systems)

Nature of transformation Rigid (only rotation and translation)

Affine (translation, rotation, scaling and shearing)

Projective

Curved

Domain of transformation Local

Global

Interaction Interactive Initialization supplied

No initialization supplied

Semi-automatic User initializing

User steering/correcting

Both

Automatic

Optimization procedure Parameters computed directly

Parameters searched (the transformation parameters are computed
iteratively using optimization algorithms)

Imaging modalities
involved

Monomodal

Multimodal

Modality to model (register the coordinate system of the imaging
equipment with a model coordinate system)

Patient to modality (register the patient with the coordinate system
of the imaging equipment)

Subject Intra-subject

Inter-subject

Atlas
(continued)
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routine nuclear medicine, but just to access the efficiency of the registration
methods. Geometrical landmarks consist of corners and other geometric features
that can be identified automatically in the images, however, these features usually
present low resolution and low signal-to-noise levels in nuclear medicine images
[14]. These problems can be partially overcome using image registration algorithms
based on different combinations of landmark-, surface-, attenuation- and intensity-
based registration approaches [25, 26].

Boundaries or surfaces are more distinct in medical images than the usual
simpler landmarks, and are therefore a valuable tool for registration methods based
on surfaces. These methods require the establishment of correspondence between
boundaries or surfaces that are defined in the input images, and they give good
results in inter-modality registration, where both images can have very different
pixel (or voxel) values [14]. There are four methods to carry out a surface regis-
tration, namely: feature, point, model and global similarity based methods. The
criterion for selecting one of these is application-specific. The size of the trans-
formation to be computed and its nature are also factors of choice [27].

Feature-based methods enable building explicit models of distinguishable ana-
tomical elements in each image such as surfaces, curves and point landmarks,
which can be aligned with their counterparts in the second image. The use of
feature-based methods is recommended for images that contain enough distinctive
and easily detectable features [15]. Figure 1 illustrates a typical feature-based
registration algorithm.

Hybrid registration, using combined surface and volumetric-based registration
methods, enables the extraction of relevant geometrical information from surface-
based morphing and its following diffusion into the volume [28]. Surface alignment
has been employed, for example, in image-guided surgery [29].

On the other hand, intensity based registration techniques align intensity patterns
using mathematical or statistical criteria over the whole image without considering
anatomical information. Combining geometric features and intensity features in
registration should result in a more robust method. Therefore, hybrid algorithms
involving intensity-based and model-based criteria allow the establishment of more
accurate alignments, since these methods tend to average the error caused by noise
or random fluctuations [12]. Figure 2 presents the general framework of the reg-
istration methods based on the minimization of a cost function. Image registration

Table 1 (continued)

Classification criteria Subdivision

Object Head (brain, eye, dental, etc.)

Thorax (entire, cardiac, breast, etc.)

Abdomen (general, kidney, liver, etc.)

Limbs

Pelvis and perineum

Spine and vertebrae
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algorithms can also perform image correction by using the intensities of pixels (or
voxels), locally or globally, in the two input images [30].

Image pre-processing is generally used before the registration to ensure that a
suitable registration solution is successfully achieved, since it provides an enhanced
definition of the object boundaries, and it enables intensity remapping in order to
modify the range of the intensities that are used by the registration algorithms.
However, it is fundamental that the pre-processing algorithms do not change the
original images excessively and are not too time-consuming [14].

Rigid and affine registrations can be found in seconds; contrarily, non-rigid
registrations can take minutes or hours [12]. Therefore, it is important to improve
the speed of image registration techniques. Coarse-to-fine methods are commonly
used, as they initially provide fast estimates and then gradually better-quality ones.
Another solution to reduce the required registration time consists in sub-sampling
the original images, involving spatial domain- or intensity-based procedures, and
increase the image resolutions as the registration algorithm gets closer to the final
solution [14].

3.1 Geometric Transformations

The goal of image registration algorithms is to find the transform involved between
the two input images by means of geometrical transformations, whose number of
parameters varies with the complexity of the transformation model used. The

Fixed image Moving image

Segmentation of features

Determine the “correspondence costs” between the features

Search for the matching that optimizes the corresponding costs

Geometric transformation found

Segmentation of features

Fixed image Moving image

Segmentation of features

Determine the “correspondence costs” between the features

Search for the matching that optimizes the corresponding costs

Geometric transformation found

Segmentation of features

Fig. 1 Diagram of a typical feature-based registration algorithm
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selection of the appropriate geometrical transformation model is crucial to the
success of the registration process.

The geometrical transformation model can lead to rigid or non-rigid registra-
tions. The simplest geometrical transformation model is based on a rigid transform
that only considers rotations and translations, which is applied to all elements of
one of the input images, usually known as moving images. Affine transform models
include translations, rotations, scaling and shearing so that the straight lines of one
image are kept as straight lines in a second image, and the parallel lines are
preserved parallel [4]. An identity transformation maintains all the elements of the
input image in their original configuration. Figure 3 illustrates these three types of
transformation using squares. It should be noted that, a more complex transfor-
mation model implies a higher number of degrees of freedom leading to non-rigid
transformations.

Image registration algorithms based on non-rigid transformations are required,
for example, when the alignment between images of one individual and an atlas
needs to be established [31], or when substantial anatomical variability among
individuals needs to be accommodated [12, 13, 32, 33]. When compared with rigid
transformations, non-rigid based registration algorithms have a higher number of
degrees of freedom [34, 35]. They are frequently used in image registration when

Fixed Image Moving Image

Determine initial 

transformation parameters

Transform

Update transformation 

parameters

Evaluate similarity measure

Registered image

Yes

Are the images
 best aligned?

No

Fig. 2 General scheme of the image registration methods based on the optimization of a cost
function (adapted from [14])
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the image acquisition parameters are not known [36], and usually include an initial
rigid body or affine transformation that provides an initial solution for the trans-
formation. Hence, a good pre-registration method is recommended to obtain an
initial position and orientation closer to the optima non-rigid registration solution.
However, a higher number of parameters in the transformation model can introduce
undesirable transformations and therefore, a regularization term must be taken into
account [37–39]. Non-rigid image transformations can be achieved using basis
functions such as a set of Fourier [40–43] or Wavelet basis functions [44].

Image registration using splines can be achieved with techniques based on the
assumption that a set of control points are mapped into the target image from their
corresponding counterparts in the source image [45], and a displacement field can
be established and interpolated [46]. Therefore, spline-based geometrical transfor-
mations either interpolate or approximate the displacements at control points. Thin-
plate splines (TPS) are based on radial basis functions and are used in surface
interpolation of scattered data [32, 33]. Each basis function contributes to the
transformation, and each control point has a global influence on the transformation.
The modelling of local deformations can be more difficult with these functions,
which requires the use of free-form transformations based on locally controlled
functions [47, 48]. B-splines deform an object through the manipulation of an
underlying mesh of control points generating a smooth continuous transformation.
Thin-Plate Spline Robust Point Matching (TPS-RPM) algorithms have been used
for non-rigid registration, showing robustness when aligning models with a large
number of outliers [46].

Elastic, deformable or curved registration methods enable deforming and
resampling similar to the stretching of an elastic material. Their limitations are
because of the highly localized deformations that cannot be modelled due to stress
deformation energy [45]. In the literature, there are reviews about the most
promising non-linear registration strategies currently used in medical imaging, such
as a novel curvature based registration technique that permits a faster image reg-
istration [51], the application of a deformable registration method in the automated
hexahedral meshing of anatomical structures [52, 53], symmetric non-rigid regis-
tration [54] and Brownian Warps, which is a diffeomorphism registration algorithm

Fig. 3 Three types of geometrical transformations applied to squares: identity transformation
(left), rigid transformation (middle) and affine transformation (right)
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[55]. Also fluid registration and registration using optical flow are approaches that
are equivalent to the equation of motion for incompressible flow [45].

3.2 Similarity Measures

The characteristics of the image modalities and the level of misregistration must be
taken into account on choosing the similarity measure. Similarity measures can be
classified into feature or intensity based metrics; however, some similarity metrics
can be included in both classes. The similarity measure used in deformable image
registration is commonly constituted by one term related to the pixel (or voxel in
3-D) intensity or to the matching between the structures in the images, and another
one related to the deformation. Then, the cost function built is a trade-off between
the pixel (or voxel) intensity or matching between the structures and the constraints
imposed on the deformation field.

Concerning the feature based measures; the similarity measure commonly used
represents the average distance between the corresponding features. Similarly,
surfaces or edges based measures quantify an average distance between the cor-
responding surfaces, or between a surface extracted in one image and its corre-
sponding set of points in the other image [9].

The simplest similarity measure compares the intensity values between the input
images directly [14]. To register intra-subject and intra-modality images, the Cor-
relation Coefficient (CC) has been an adequate similarity measure, since it involves
the multiplication of the corresponding image intensities assuming a linear rela-
tionship between the intensity values. However, it is possible to subtract the cor-
responding image intensities instead of multiplying them, thus the search for the
best alignment is based on the Smallest Sum of Squared Intensity Differences
(SSD). However, due to the sensitiveness of SSD to a small number of voxels that
have very large intensity differences between the input images [45], the Sum of
Absolute Differences (SAD) is usually employed instead, as shown in Fig. 4 [56].

Ratio Image Uniformity (RIU), also known as Variance of Intensity Ratios (VIR),
is an iterative technique similar to derived ratio images. The uniformity of the ratio
image is quantified as the normalized standard deviation of the respective pixels [45].
This technique is used to find the transform that maximizes that uniformity. These
similarity measures are used for intra-modality registration. Partitioned Intensity
Uniformity (PIU) seeks to maximize the uniformity by minimizing the normalized
standard deviation, and is usually used to register inter-modality images [4].

Image registration algorithms have also been developed based on information
theory to solve both inter- and intra-modality registration problems. This image
registration approach can be described as trying to maximize the amount of shared
information between the two input images, which means that information can be used
as a registration metric [57]. The joint entropy measures the amount of information
existing in the combined images, and it has been used for rigid and non-rigid image
registration [48, 49]. Mutual information can be given by the difference between the
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sum of entropies of the individual images at the overlap regions and the joint entropy
of the combined images [58]. Hence, it is the measure of how one image explains the
other [45, 58, 60] andmakes no assumptions about the functional form or relationship
between the image intensities. Changes in very low intensity overlapped regions, such
as those due to noise, can disproportionally contribute to artefacts [45] that affect the
registration accuracy when based onmutual information, so this method is commonly
used combined with the normalization of the joint entropy [45, 59].

3.3 Optimization

All the registration algorithms based on optimization require an iterative approach,
whose initial estimate of the transformation is gradually refined by trial and error,
by calculating the similarity measure, or cost function, at each iteration. So, the
optimization process consists of both estimating the transformation and evaluating
the similarity measure till the algorithm converges to a point when no new trans-
formation can be found with a better similarity measure value [4]. Hence, the
optimization algorithm evaluates the value of the similarity measure, searching for

Image #1 Image #2
SAD values between   

images #1 and #2

Fig. 4 Application of SAD to highlight the differences between the two images, before
registration (top) and after registration (bottom). Before the registration, the original images present
large absolute differences (top-right image), while after the registration, the aligned images present
low or zero absolute differences (bottom-right image). Thus, the similarity measure indicates how
well the images are aligned
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the subsequent alignment transformations that will end the registration process if an
optimal value is reached. In other words, the registration is achieved by searching
the transformation that increases or decreases the cost function until a maximum or
minimum is found, depending on the type of the cost function used.

The optimization process is based on the fact that the quality of the matching of
two images is balanced against some constraint. This constraint has the purpose of
prohibiting implausible deformations and may be provided, for example, by some
estimate of the energy required to physically induce the deformation [45].

One of the major difficulties of the registration methods is that the optimization
algorithms can converge to an incorrect local optimum, because multiple optima can
exist within the space of the transformation parameters [60–62]. The erroneous
optima can be due to interpolation artefacts or good local matches between features
or intensities; however it can be avoided by smoothing the original images. Also, the
position and orientation associated to the two input images must be sufficiently close
so the algorithm converges to the best solution within its functional range [45]. To
choose the solution that has the best function cost value, a multi-start optimization
can be used to get the global optimal solution [45, 60]. Additionally, the images can
be initially registered at low resolution and then the transformation obtained is used
as the starting transformation for registration at a higher resolution [63, 64].

3.4 Interpolation

A process of interpolation is commonly applied to transform an image space into
the space of another image in order to register them; i.e. when it is necessary to
estimate the values of the transformed image [14]. Thus, its goal is to estimate the
intensity at the new position [8] and depends on the motivation for registering the
images. The accuracy and speed of the registration process can be improved
through the use of suitable interpolation solutions.

Nearest neighbour, linear interpolation or trilinear interpolation are the simplest
interpolation methods, and consist of curve fitting, using linear polynomials. The
interpolated image will be smoother than the original. When the interpolation
complexity increases, the number of polynomial variables also increases and the
smoothing effect can be more severe or even generate artefacts [14]. Recent
interpolation methods between neighbouring image slices in grey-scale are based
on B-splines [65], geometric multi-grid [66], using a modified control grid inter-
polation algorithm [67] or adaptive 2D autoregressive modelling and soft-decision
estimation [68].

The interpolation error can introduce modulations in the similarity measure used
in the registration process, since the transformations involve pure translations of
images with equal sampling spacing, and the period of the modulation is the same
as the sampling spacing. Interpolation methods must be used with a practicable
computational cost; for example, by using a low cost interpolation as trilinear or
nearest neighbour first. Hence, it is a good practice to employ a more expensive
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interpolation approach just in the last iterations of the registration process or even
take advantage of the spatial-frequency dependence of the interpolation error, by
using, for example, cubic B-splines or windowed sinc interpolators. Finally, the use
of a more robust interpolation solution in the optimization step may be imposed if
the level of smoothness and robustness of the similarity measure is affected by
interpolation imperfections [69].

4 Accuracy Assessment and Validation

The image registration methods must be validated, especially in medical applica-
tions. A verification process based on the comparison of the results obtained against
a gold standard must be applied. Additionally, any process of accuracy assessment
and validation should have a very low failure rate and be very accurate.

The visual assessment of registered images has been used as a standard method;
however, this depends heavily on the clinical experience of the observers, besides
being subject to inter- and intra-observer variability. To overcome this disadvantage,
the software industry has already developed standards, protocols and quality
assessment procedures [70]. The validation usually follows a sequence of mea-
surements using computer-generated models, known as software generated phan-
toms [71], and the comparison of patients’ images against the registration algorithms
must be efficient. In order to extend the experimental validation of an image reg-
istration system to a clinical situation [72], the target registration error (TRE), which
is a measure of error, is recommended to be used to monitor the clinical validation
process [55], since it evaluates a target feature [73]. However, this can vary
depending on the application, since there are different image modalities, anatomical
structures and pathologies, and distinct positions within a view [74]. Several fiducial
features can be used as registration cues, indicating the registration accuracy; this is a
desirable method for rigid-body registration. Validation is accomplished by estab-
lishing statistical relationships between fiducial localization error (FLE) and TRE
[75] to translate self-consistency into accuracy [74]. Furthermore, based on regis-
tration circuits, another self-consistency method [74] has also been considered,
where a set of three or more images are registered in pairs.

The efforts to improve the registration validation methods have been focussed
more on rigid registration than on non-rigid registration [74]. Improvement in these
methods is fundamental for novel registration models to be accepted as a clinical
tool, which is impossible without an optimal validation method.

5 Registration in Nuclear Medical Imaging

Nuclear image modalities have been widely used in healthcare diagnostics. They
provide physiological diagnoses through the use of radiotracers to map the
metabolism and fluid flow in tissues, organs or organ systems [76]. Nuclear
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medicine benefits from such integration and image registration plays a central role
in this integration [18, 77–79].

In oncology, the completion of the medical Positron Emission Tomography
(PET) examination, usually hybrid Positron Emission Tomography/Computed
Tomography (PET/CT) [80, 81] enables the detection of tumours at early stages, As
this exam is capable of detecting the development of a cancer it can help in the
proper choice for the treatment and the later evaluation of the therapeutic response.

In cardiology, several studies have been developed, particularly in the study of
chronic ischemia [20, 82–85], myocardial perfusion [18–20, 86–96], atherosclerosis
rate [85, 97], post-transplantation [18] and cardiac nervous system. Registration of
cardiac images is more complex than the registration of images of static organs, since
it is a non-rigid moving organ inside a non-static body, and exhibits few easily
distinguishable and accurate landmarks [18]. Non-rigid registration is, for example, a
key requirement for the application of cardiac function biomechanical models,
through the building of a generic cardiac model that is instantiated by linear elastic
registration with cardiac images of a subject acquired using different modalities [12].

As regards the neurological and psychiatric disorders, molecular imaging regis-
tration has the ability to reveal non-detectable lesions by other imaging methods [98],
and provides information on the physiological and biochemical properties and sub-
sequent functional integrity of brain damaged adjacent regions [99]. The pre-surgical
evaluation of epilepsy [14, 57] and guided biopsy in brain tumours [19], evaluation of
primary brain tumours, dementia diagnosis and selection of stroke patients for sur-
gical treatment [99] are usually based on the quantification of regions of interest in
nuclear medicine images. Such quantification can be automated using techniques of
image processing and analysis; such as image registration techniques for image
correction. These techniques also allow the study of Parkinson’s disease [85, 99],
Alzheimer [100, 101], and movement disorders [102]. Monitoring changes in the
individual by acquiring series of imaging scans and highlighting differences using
image registration is a common practice and it is particularly useful in dementia where
fluid registration is a cue to visualize patterns of regional atrophies [12].

Fully automatic multimodality image registration algorithms are also employed
for aligning functional data with anatomic information, such as Magnetic Reso-
nance/PET (MR/PET), Computerized Tomography/PET (CT/PET), and MR/
SPECT inter-modality registrations.

6 Conclusions

Most current algorithms for medical image registration use rigid body transfor-
mations or affine transformations, and are restricted to parts of the body where the
tissue deformations are small compared with the desired registration accuracy.
Algorithms based on optimizing of a similarity measure and based on information
theory can be applied automatically to a variety of imaging modality combinations,
without the need of pre-segmenting the images, and can be extended to non-affine
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transformations. However, it is recommended to pre-register the input images with
an image registration technique based on rigid transformation, and then finalize the
process using another image registration technique based on deformable
transformations.

Fully-automated inter-modality registration is still unusual in normal clinical
practice, but this kind of image registration is being used in medical research,
especially in neurosciences, where it is used in functional studies, in cohort studies
and to quantify changes in structures during ageing and the development of dis-
eases. However, its clinical use has logistical difficulties due to the need to acquire
and register a large number of images in a reduced period, requiring advanced
computational infrastructures as well as the storing of vast amounts of image data.

Due to the functional diagnosis that molecular imaging provides, computer
techniques to register SPECT and PET images have been applied in clinical
diagnosis, in order to assess the response to treatments and the delivery of targeted
therapies. Image registration has proved its potential to aid the medical diagnosis,
surgery and therapy. Examples include the combination of functional and high
anatomical information to assist the localization and determination of abnormalities
and the planning of their treatment. Besides, differences between two medical
exams can be directly quantified, providing more objective evidences of the effects
of intervention or responses to therapy in successive studies.
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