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Abstract. The descriptor fractional continuous-time linear systems with two
different fractional orders are considered. The Drazin inverse of matrices is
applied to find the solutions of the state equations. Some additional changes to
classical Drazin approach for finding solution of the state equation of descriptor
systems is proposed. An equality defining the set of admissible initial
conditions for given inputs is derived.
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1 Introduction

Descriptor (singular) linear systems have been considered in many papers and books
[1-3, 5, 6, 8, 10, 15, 16, 20, 28, 29]. The first definition of the fractional derivative
was introduced by Liouville and Riemann at the end of the 19" century [22, 23] and
another on was proposed in 20" century by Caputo [24]. This idea has been used by
engineers for modeling different processes [7, 9]. Mathematical fundamentals of
fractional calculus are given in the monographs [19, 21-24]. The positive fractional
linear systems have been investigated in [13, 14, 19].

The positive linear systems with different fractional orders have been addressed in
[17,18].

Stability of fractional continuous-time linear systems consisting of n subsystem
with different fractional orders [3]. The reachability and minimum energy control
problem for systems with two different fractional orders in [25-27].

Drazin inverse matrix method for fractional descriptor continuous-time and
discrete-time linear systems have been proposed in [11, 12].

In this paper solution to the state equation of descriptor fractional positive
continuous-time linear systems with two different fractional orders will be formulated
and solved.

The paper is organized as follows. In section 2 the basic definitions and theorems of
the descriptor fractional continuous-time linear systems are recalled. Section 3 gives the
problem formulation for systems with two different fractional orders. Solution to the state
equation is given in section 4. Concluding remarks are given in section 5.
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The following notation will be used: R - the set of real numbers, R - the set

of nXm real matrices, I - the nXn identity matrix.

n

2 Descriptor Fractional System
Consider the fractional descriptor continuous-time linear system

E ,Dfx(t)=Ax(t)+ Bu(t), n—1<a<n,neWw, (2.1

where a is fractional order, x(t)€ R" is the state vector u(r)€ R™ is the input
vector, E,Ae R, Be R™™ and

d%x(t) _ @

L=
DY x(t) =
o= F(n—a)g(t—r)““‘”

dr, f(”)(z') = M (2.2)
dr"

where n—1<a<n, ne W={1,2,...} is the Caputo definition of & € R order
derivative of x(¢) and

&)= j et ar (2.3)
0
is the Euler gamma function.
It is well known [19] that the Laplace transform (L) of (2.1) is given by the
formula

o @ o n
L{d ffﬂ:jd f(’)e‘s’dz=s“F(s)—Zs“"‘f<"‘“(0+), n—-l<a<n,new,
dt

0 dt “ k=1
2.4)
where F(s)=L[f(t)] and n—1<a<n, neW.
It is assumed that det £ = 0 but the pencil (E, A) of (2.1) is regular, i.e.
det[Es— A] # 0 for some se C (the field of complex numbers). 2.5)

Assuming that for some chosen ce C, det[Ec—A]#0 and premultiplying (2.1) by
[Ec— A]_1 we obtain
E oDx(t) = Ax(t)+ Bu(t) , (2.62)
where
E=[Ec—-AI"'E, A=[Ec—AT"'A, B=[Ec-A"'B. (2.6b)
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Note that the equations (2.1) and (2.6a) have the same solution X(?).

Definition 2.1. The smallest nonnegative integer ¢ is called the index of the matrix
E € R™ if [4, 16]
rank E? =rank E9*! . 2.7

Definition 2.1. [4, 16] A matrix E” is called the Drazin inverse of E € R™" if it
satisfies the conditions

EEP =EPE, (2.8a)
EPEEP =EP, (2.8b)
EPEI =E1, (2.8¢)

where ¢ is the index of E defined by (2.6).

The Drazin inverse E of a square matrix E always exists and is unique [4, 16].
If detE #0 then EP =E .

Lemma 2.1. [4, 16] The matrices E and A defined by (2.5b) satisfy the following
equalities

1. AE =EA and APE=EAP, EPA=AEP, APEP =EPAP, (2.9a)

2. ker A nkerE ={0}, (2.9b)
_ J 0 _ -1 —_ A0

3. E=T ' EP =7 Ot A= 77! (2.9¢)
0 N 0O 0 0 A

detT #0, J e R™™ | is nonsingular, N € R"™*" is nilpotent, n; +n, =n,

4. (1,-EEPYAAP =1, —EEP and (1, - EEP)EAP)? =0. (2.9d)

The solution to the equation (2.1) is given by

t q-1
x(t) = @y (VEE v+ EP [@(—)Bu()dr+(EE ~1,) Y (EAPY APBu® (1),

0 k=0
(2.10a)
where
oo (EDK)ktka oo (EDZ)kt(k-H)a—l
o)== 2.10b
o) EO Tharn o0 g;) Mk +Da] (2-100)
u*® ()= DFu(r) (2.10c)

and the vector ve R" is arbitrary [12].
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3 Systems with Two Different Fractional Orders

Consider a fractional linear system with two different fractional orders o # 3
described by the equation [18, 26]

d%x (1)
dr* :{Au Alz}{)q(t)} {31} 0. G.1)
dPxyt) | Ay Ay | n®] | B
drP
and p-l<a<pyq-1<f<q p,qeW where x()eR", x()eR™,
ut)e R and y()e R? are the state, input and output vectors respectively,

A,:]-GEK

n,xn

1 B e R j=12.

Initial conditions for (3.1) have the form

x,(0)=x,,, X,(0) = x,, and x, {xlo] (3.2)

X20

It is well-known [17, 18] that the solution of the equation (3.1) for
O<a<l; 0< <1 with initial conditions (3.2) has the form

1) (f) '*‘ICI)(f—)B1 (0)d +t‘D(f—)O (ndr  (3.3a)
(t) 0 gl TOMTT£2 TB2MTT .Ja

where

I, for k=1=0
A A
2120 for k=1,1=0
0 0
Tpy = 0 0 (3.3b)
{ } for k=0,/=1
Ay Ap
TlOTk—l,l +T01Tk,l—1 fOf k +l >0
tka+lﬁ
D)= | E=pramra—
kZ:‘)lZ(:) F(ka+l,3+l)
t(k+1)a+lﬁ -1 tka+(l+1)ﬁ—1
(I)l([)—zz klm 2(1‘) zz k.1 (3.3¢)

k=01=0 k=01=0 ke +d+npl°
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Now let consider the fractional descriptor continuous-time linear system with
different fractional orders

d%x (1)
Eod” oAl By (3.4)
dPx, (1) (1)
dtﬁ

E 0
and p-l<a<p;g-1<f<gq; p,ge W, where E={01 . }e‘ﬁ("ﬁnﬁ)x("ﬁnﬁ),
2

A= |:A11 A12:|€ EK(n,+nz)><(n,+n2) . B= |:B1:|€ EK(n,+n2)><m )
Ay Ay By

It is assumed that det E = 0 but the pencil (E, A) of (3.4) is regular, i.e.

E 0]s* Ay A
det { 1 } } ’ _{ y 12} #0 for some SO(,SﬂE C (3.5)
0 Eyf o sP| |A An

where C is the field of complex numbers.
Similar as for (2.1) assuming that for some chosen c;,c, € C,

det[E diag(cj,c;)—A]#0 and premultiplying (3.4) by [E diag(c,cy) —A]_1 we

obtain
d%x (1)
| | t _
E /;1;“ :A{xl()}+3u(t), (3.6a)
dPx,(t) X (1)
dtﬂ
where
E =[E diag(cj.c,)— Al 'E = iy 512},
| Ey1 Enp
_ o Ta. a1 - -
A =[E diag(c;,c,) - At A =| 2! _12}=T10+T01,
| Ao Ap
- (3.6b)
B =[E diag(c.c;)- AT 'B = El}ﬁmﬁop
L P2

— A A — 0 0 — B | — 0
L= At Alz’Tm:— - 731028173012— :
0 0 A1 Axp 0 B,

Note that the equations (3.4) and (3.6a) have the same solution x(z) .
In case of system with two different fractional order the Definition 2.1 takes the form:
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Definition 3.1. The smallest nonnegative integer ¢;, i =1,2 is called the index of the
matrix E; € R if

rank EJ =rank E4 ! 3.7)
12 12

and g =q; +q, is the index of E.

Remark 3.1. According to system (3.6), condition ¢ # £ and formulation of solution

(3.3) of the state equation (3.1) (case of the system (3.6) with detE #0), impose
additional conditions to Lemma 2.1.

4 Solution to the State Equation by the Use of Drazin Inverse
In this section the solution to the state equatlon (3.6) will be presented by the use of
the Drazin inverses of the matrices E and A .

Assumption 4.1. For system with two different fractional orders the first condition of
the Lemma 2.1 takes the form kaE:ETkJ and YT,(DZE:ETICDI ED]_}(J :]_“k’lED ,
TOEP =ET

Theorem 4.1. If the Assumption 4.1 is true then the solution to the equation (3.6) is

given by

t
x(t) = ®y()EEPv+ EP j [®,(r—7)By o + @y (1 — 7) By, u(7)d T

0 (4.1a)
q,-1q,-1 Kl vl
+(EEP -1, 1, ) > > EMMTHAPBu P (1)
k=0 1=0
where
_ In_for k=1=0
A A2l o ko120
— 0 0
Tk,l= 0 0 (41b)
{— — } for k=0,l=1
Ay A
TlOTk ll+TOlTkl 1 for k+[>0

ka+lf

(oo} (oo} _ _ t
(1) = (EPY T ——————,
kZ:%)Z(Z) "Tka+I1B+1)

N
Dy(1)= E) " Ty ————>
,(Z:%)Z(:) Tk +D)a+18]
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ka+(+1) B-1

o, =S SELYHT LT (4.1¢)
2(0) ,E)E)( S ka+ @ +1)B] ‘
(ka+lﬂ)(t) ka*'lﬁu(t) (4.1d)

v
and the vector v :{ l}e R™ 7™ is arbitrary.
V2

Proof. Proof will be accomplished by showing that (4.1a) satisfies the equation
(3.6a).
Since the system (4.1) is linear then we can split proof on two cases:

1) For u(1)=0 we have E o(DZx(r) = A[®y(1)EE V] since
E oDZx(1)=E (D[®o()EEPv]=

EoDf Py SIS EDHT, o
=E (Df| EEPv+ EYHMT ————— EEPv|=
' =5 T(ka+1B+1)
k+l21

tka+lﬂ

— E ED k+l+IT —E_EDV,
/;y;) (E™) k+1,1+1 TC(ka+18+1)

A[®y(EEPv=A EPyH L EEPy=
[Bo(®) ] gg)( " T T(ka+18+1)

k+l tka+lﬂ —p
= TIO (E | ————FEE"v+
%Z(:) F(ka+ 1B+1)
k+l ka+lﬁ ——p
+ To 1 (E ) —EE V=
kZ;‘)lZ(:) F(k()(+ 16+1)
tka+lﬁ

-~ Dkt ==D
—FFE"v+
gg Tt v g+

D k+l tke+lp =D
+ E — FEPy=
Z(:)ZZ(:)( Tern T(ka+1B+1)
= 4.2)
N Dk HAL T b
ZZE<E )T T EE"y
= T(ka+1B+1)

with
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oDYEEPv=0, E(EPY "™ Ty 141 = Teir gy EPYY, A =T+ Ty,
0o oo (k+D)a+ip-1
— — t
kz_:w;) " TIk + Do+ 15]
l(k+2)a+lﬂ—1

ad D k+l+1
kzozzo(E N T T} “3)

Shat(l+1) -1

16} — E k+l_ — =
2= kzwz(:)( ") S ke + (1+ D B]

_r<)

tka+(l+2)/3—1

+ ED k+l+1
F(,B) ,;WZ(:)( ) MY ke + (1+2) A1

and (2.9d) holds.

2) For v=0 we have

_ o . q,-1g,-1 _ _
E oDfx(t) - Ax=E"Bu(t)+(EE” -1, , ) > > EX'MTR, 1o Bu ke ()

k=0 [=0 (4-4)
o q,—1g,-1
~AEE® -1, ,) > > EMMTHAPBu* P (1) = Bu(r).
k=0 1=0

In general, substituting (4.1a) in the left side of the equation (3.6a), using (4.1b),
(4.1c), Definition 2.2 and Assumption 4.1 we obtain

t
d%x () A% | @yOEE v+ EP [[®)(1—)B;0 + Dt~y ()
B d* |_g d* 0
() a’ k+=D 5D, (kartif)
Y P +(EE —I,Hn)z ZE T DAPBu 0)
k=0 [=0
[ a+lﬁ a-1
—_ 1-7) -0P"
EEPv+ (EDYHT, ( o1 W(2)dT
kZ:l; “r(ka+1/3+1) j T oo %)
k+1>1
oo oo (k+2)o+1f-1
_ EDkHHT ! B
q kz(:yzo( P e e arg B0
- t
_p | gD k+H 21
=k aP .([ b k+l+l [k+D)prke-l u@dz
+ E T jy————— B
P ] kzazo( KT+ Bkl
k+l2>1
o Y
+EEP -1, 4,) > > EXMTHAPBU D) )
" k=0 1=0
oo oo i D _ ka+lp N — i
EPYHHIT T EEPvEPBu@)
;; ML T e r1B+1) (4.2)
(ka+lﬁ+1) .

+EP j (Tio®, (1~ 1) By + T @2 (=) Boy u()dT+(EEP - I, . )z ZE"*’“Tk
0 k=0 1=0
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Therefore, the solution (4.1a) satisfies the equation (3.6a). O
From (4.1a) for t = 0 we have

. . q, _lqz _1_ S
X0)=EE v+(EE" -1, .,) > > EFITDAPBu*e1A) () (4.6)
k=0 [=0

Therefore, for given admissible u(¢) the consistent initial conditions should satisfy
the equality (4.6). In particular case for u(f)=0 we have xozﬁD v and

X € Im(ﬁ b ) where Im denotes the image of EEP .

5 Concluding Remarks

The descriptor fractional continuous-time linear systems with two different fractional
orders has been considered. The Drazin inverse of matrices has been applied to find
the solutions of the state equations of the considered system. Some additional changes
to classical Drazin approach for finding the solution of the state equation of descriptor
systems is proposed. An equality defining the set of admissible initial conditions for
given inputs has been derived.

Acknowledgments. This work was supported by National Science Centre in Poland.

References

1. Bru, R., Coll, C., Romero-Vivo, S., Sanchez, E.: Some problems about structural
properties of positive descriptor systems. LNCIS, vol. 294, pp. 233-240. Springer, Berlin
(2003)

2. Bru, R., Coll, C., Sanchez, E.: About positively discrete-time singular systems, System and
Control: theory and applications. Electr. Comput. Eng. Ser. World Sci. Eng. Soc. Press,
Athens, 44-48 (2000)

3. Bustowicz, M.: Stability analysis of continuous-time linear systems consisting of n
subsystem with different fractional orders. Bull. Pol. Ac. Tech. 60(2), 279-284 (2012)

4. Campbell, S.L., Meyer, C.D., Rose, N.J.: Applications of the Drazin inverse to linear
systems of differential equations with singular constant coefficients. SIAMJ Appl.
Math. 31(3), 411-425 (1976)

5. Dai, L.: Singular control systems. LNCIS. Springer, Berlin (1989)

6. Dodig, M., Stosic, M.: Singular systems state feedbacks problems. Linear Algebra and its
Applications 431(8), 1267-1292 (2009)

7. Duzielinski, A., Sierociuk, D., Sarwas, G.: Ultracapacitor parameters identification based on
fractional order model. Proc ECC, Budapest (2009)

8. Fahmy, M.M., O’Reill, J.: Matrix pencil of closed-loop descriptor systems: infinite-
eigenvalues assignment. Int. J. Control 49(4), 1421-1431 (1989)



242

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.
22.
23.

24.
25.

26.

217.

28.

29.

L. Sajewski

Ferreira, N.M.F., Machado, J.A.T.: Fractional-order hybrid control of robotic
manipulators. In: Proc. 11th Int. Conf. Advanced Robotics, Coimbra, Portugal. ICAR,
pp- 393-398 (2003)

Guang-Ren, D.: Analysis and Design of Descriptor Linear Systems. Springer, New York
(2010)

Kaczorek, T.: Application of Drazin inverse to analysis of descriptor fractional discrete-
time linear systems with regular pencils. Int. J. Appl. Math. Comput. Sci. 23(1), 29-33
(2013)

Kaczorek, T.: Drazin inverse matrix method for fractional descriptor continuous-time
linear systems. Bull 62(3), 409-412 (2014), doi:10.2478/bpasts-2014-0042.

Kaczorek, T.: Fractional positive continuous-time systems and their reachability. Int. J.
Appl. Math. Comput. Sci. 18(2), 223-228 (2008)

Kaczorek, T.: Fractional positive linear systems. Kybernetes: The International Journal of
Systems & Cybernetics 38(7/8), 1059-1078 (2009)

Kaczorek, T.: Infinite eigenvalue assignment by output-feedbacks for singular systems.
Int. J. Appl. Math. Comput. Sci. 14(1), 19-23 (2004)

Kaczorek, T.: Research Studies Press J, vol. 1. Wiley, New York (1992)

Kaczorek, T.: Positive linear systems consisting of n subsystems with different fractional
orders. IEEE Trans. Circuits and Systems 58(6), 1203-1210 (2011)

Kaczorek, T.: Positive linear systems with different fractional orders. Bull. Pol. Ac.
Tech. 58(3), 453-458 (2010)

Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Berlin (2011)
Kucera, V., Zagalak, P.: Fundamental theorem of state feedback for singular systems.
Automatica 24(5), 653—-658 (1988)

Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional
Differenctial Equations. Willey, New York (1993)

Nishimoto. K., Fractional Calculus. Decartess Press, Koriama (1984)

Oldham, K.B., Spanier, J.: The Fractional Calculus. Academmic Press, New York (1974)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Sajewski, L.: Reachability of fractional positive continuous-time linear systems with two
different fractional orders. In: Szewczyk, R., Zielinski, C., Kaliczynska, M. (eds.) Recent
Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 239-250.
Springer, Heidelberg (2014)

Sajewski, L.: Reachability, observability and minimum energy control of fractional
positive continuous-time linear systems with two different fractional orders. Multidim.
Syst. Sign. Process 25, doi:10.1007/s11045-014-0287-2

Sajewski, L.: Minimum energy control of fractional positive continuous-time linear
systems with two different fractional orders and bounded inputs. In: Latawiec, K.J.,
Lukaniszyn, M., Stanistawski, R. (eds.) Advances in Modeling and Control of Non-integer
Order Systems. LNEE, vol. 320, pp. 171-181. Springer, Heidelberg (2015)

Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil.
Linear Algebra and its Applications 27, 103-140 (1979)

Virnik, E.: Stability analysis of positive descriptor systems. Linear Algebra and its
Applications 429, 2640-2659 (2008)



	Solution of the State Equation of Descriptor Fractional Continuous-Time Linear Systems with Two Different Fractional
	1 Introduction
	2 Descriptor Fractional System
	3 Systems with Two Different Fractional Orders
	4 Solution to the State Equation by the Use of Drazin Inverse
	5 Concluding Remarks
	References




