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Abstract. The Weierstrass-Kronecker theorem on the decomposition of the
regular pencil is extended to the fractional descriptor time-varying discrete-time
linear systems. A method for computing the solutions of the fractional systems
is proposed. Necessary and sufficient conditions for the positivity of the
systems are established.
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1 Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative
initial condition state remains forever in the positive orthant for all nonnegative
inputs. An overview of state of the art in positive system theory is given in the
monographs [7, 8] and in the papers [9-12]. Models having positive behavior can be
found in engineering, economics, social sciences, biology and medicine, etc.

The Laypunov, Bohl and Perron exponents and stability of time-varying discrete-
time linear systems have been investigated in [1-6]. The positive standard and
descriptor systems and their stability have been analyzed in [8—11].The positive linear
systems with different fractional orders have been addressed in [9, 14] and the
singular discrete-time linear systems in [10].The switched discrete-time systems have
been considered in [16—18] and the extremal norms for positive linear inclusions in
[15].

The positivity and stability of time-varying discrete-time linear systems have been
investigated in [13].

In this paper the Weierstrass-Kronecker decomposition theorem will be applied to
fractional descriptor time-varying discrete-time linear systems with regular pencils to
find their solutions and necessary and sufficient conditions for the positivity of the
systems will be established.

The paper is organized as follows. In section 2 the Weierstrass-Kronecker
decomposition theorem is applied to find solutions to standard fractional descriptor
time-varying discrete-time linear systems. Necessary and sufficient conditions for the
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positivity of the descriptor systems are established in section 3. Concluding remarks
are given in section 4.

The following notation will be used: R - the set of real numbers, R _ the set

. X . . . .
of nxXm real matrices, ‘ﬁﬁ "M _ the set of nxm matrices with nonnegative entries

and K" =RV I~ the nxn identity matrix.

2 Standard Fractional Descriptor Systems
Consider the fractional descriptor time-varying discrete-time linear system

E()A%x;, = AGD)x; + Bl , i€ Z, ={0,1,...} (2.1a)

1

yi =CQ)x; (2.1b)

where x;e R", u; e R™, y;e RP are the state, input and output vectors and

A@)e R™", B(i)e R™™, C(@i)e RP" are matrices with entries depending on

i€ Z, and the fractional difference of the order a is defined by

i (o
Aaxl- = Z(—I)J( .Jxl-_j (210)
J=0 J
o 1 . for j=0
Jala-1..(a—-j+]) . (2.1d)
Jj it for j=12,...

It is assumed that det E(i) =0, ie Z, and
det[E()A—A(@)]#0 2.2)

for some A€ C (the field of complex numbers) and i€ Z, .
Substituting (2.1c) into (2.1a) we obtain

i+1
E@)%is1 =[EDa—ADW — ¢ E@xi_ 1+ Bl (2.32)
=2
where
¢;= (—1)1'”(0,’) . (2.3b)
j

It is well-known [11, 15] that if (2.2) holds then there exists a pair of nonsingular
matrices P(i),0()e R™" such that
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0 N 0 I

n,

A 0
P(i)[E(i)ﬂ—A(i)]Q(i){I"‘ 0}1{ 1) } icz, 2.4)

where u; =degdet[EG)A— A®i)], A(i)e R, Ne R™™™ is the nilpotent matrix
with the index 1 (i.e. N¥ =0 and N*7' #0).
The matrices P(i),Q(i), A (i) can be found by for example the use of elementary

row and column operations [15].
Premultiplying (2.1a) by the matrix P(i), introducing the new state vector

)_Cl 1,i )_CZI,i
-1, i~ [ %2 | - X,
x; =0 ()x; ZL_C } xp=| .} Xpi= . (2.5)
i :
ilnl,i ian,i
and using (2.4) we obtain
i+l
X1 = Al (DX = D¢ Xy i jur + B (D, (2.6a)
J=2
i+1
NXp i1 = (Ng +1, )3 = D¢ jNXp i juy + By (D (2.6b)
j=2

where

B ()

A (i) = A () +ad, € R"™™ . P(i)B(i)= {B 0
2

}, B,(i)e R, B,(i)e R""".
(2.6¢)

The solution xj; of equation (2.6a) for known initial condition x;j€ R™ and

input u; € R™, ie Z, can be computed iteratively using the formula
i
X = A —DXy = D c;%;—j+Bi-Du;, ie Z, (2.7)
j=2

where ¢; is defined by (2.6b).
To simplify the notation it is assumed that the matrix N in (2.6b) has the form
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010 0
001 .. 0
N=[: 1 o e RW", (2.8)
000 .. 1
000 .. 0

From (2.6b) and (2.8) we have

—010"'0‘2 La 0 .. 0
001 .. of 2 lo1 a« . of
P s RS N N | X220
0 0 0 1 s 0O 0 0 .. « s
000 .. of ™M o0 0 .. 1™
- - - ot - ieZ, (2.9)
0 ¢; 0 . 0]
i+1 0 0 C]' 0 _21’l_'1+1 le(l)
.. : L *22,i- 41 .
i
+z R : . + : U;
.i:20 0 0 Cj 22 . anz(i)
0 0 0 ) S
and
O = iznz,l' + an2 (i)ul»,
i+l
Xon, il = Xom, —1,i + Oy i+ D€ %0y i i1 + Boy 1 (Du,
=2 i€ Z,.(2.10)
_ _ _ i+1 _
X001 = X1, + 0%y + €% i j1 + By (D
j=2

Solving the equations (2.10) with respect to the components of the vector x,; we
obtain

)7‘2n2,i = _Ban (Du;,

i+l
J?an —1,i = _BZnZ (l+ l)lth_l + ()d;znz (l)u, + ZCjBZnZ (l - ] +1)ul'*j+1 - BZnZ —1 (i)lztl',
=2
i+l
X21’l' = _BZnZ (i+n2 —l)ui+n271 +(){Bz(l.+n2 —Z)I/li + chanz (i+n2 —j—l)ui,jH +...—321(i)1/li.
=2

@2.11)

The admissible initial conditions for the system (2.6b) are given by (2.11) for i =0.
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The solution of the equation (2.6b) for known u; € R"™ and admissible initial

conditions Xq€ R™ is given by (2.11).
The considerations can be easily extended to the case when the matrix N in (2.6b)

has the form

N =blockdiag[ Ny,...,N

¢ a>1 (2.12)

and N for k=1, 2, ..., g has the form (2.7).

Example 2.1. Consider the fractional descriptor time-varying system described by the
equation (2.1a) with the matrices

2i
0 0 L
cos(i)+2
R ER GO e+
E®= i+1 cos(i)+2 |
i+2 0 0
i+1
i 0 0 0 0 |
_r 0
cos(i)+2
i e_’.+ 1 2i(i + 2)(cos(.i) +D(sin(@) +1) sin()(sin() +1)
B() = cos(i)+2 i+1 N . , (2.13)
0 sin(i) — 2i(i +2)(cos(@) +1)
i+l
0 2i(i+2)
L i+1 J
0 0 6113(i) 0
AG) = 021(1:) ay (i) a3 (i) 024(1:) ’
6131(1) 0 0 6134 (l)
0 0 0 a44(i)
where
o 1
a3(0)= cos(i) + 2’
(i) = (i +2)(i+2cos(i) + 2sin(i) + isin(i) + cos(i) sin(i) + 3)
2 (i+1)(sin(i) +2) ’
. =i 2i - . ..
(i) =1- 2, (i) =— e +1 iy (i) = e (i+2)(cos(i) + 1)(sin(i) +1) ’

cos(i)+2’ i+1
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i+2  X(i+2)(cos(i) +1) o ePi+2)
6134(1) = . 44(1) =,

az ()= ——2 2
3 sin(i)+ 2 i+1 i+1

The condition (2.2) is satisfied since

(i+2)22¢" + Ae' —1)(2A +i + Asin(i) + De?

det[ E()A— A(i)] = #0
(i +1)%(cos(i) + 2)(sin(i) + 2) - (214
In this case
l+e” 1 1+sin(i) 0 o Loy o
. 0 0 1 1+ cos(i) L i+2
PO=l24cosi) 0 0 o | eo=je 00 0 @l5
i+1 0 0 1 0
0 0 0 ) 0 0 0 %
and
1 000
T 0 PHEGQ() 0100
! =rQ 1 )= s
0 N 000 1
0000
e'=2 l+cos@) 0 0
: i +1
M) 0 0 -——_ 00
1 = P()A(Q() = 2+sin(i) :
U 0 0 10 (2.16)
0 0 0 1
e 0
B b . o
{ l(l.)}:P(i)B(i): 0 sm(z)’
B, (i) 1 0
0 2
(n=ny =2).

The equations (2.6) have the form

_ =i _ : _ . _ .
X 1,i+1 e -2 1+Cfos(l) | I Xni—je | et 0 || w
_ = i+1 D il = +
. _—— . E x . . . . .
X12,i+1 2+ sin(i) X12,i =2 12,i—j+1 0  sin(Q) || 42,i
(2.17a)
and
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{0 1} X21,i4+1 {1 0!} X | M {0 1} X 1im j41 {1 0} U
_ = D _ + . .

0 Of ¥2ir1] [0 1 f%0,] 55 7[0 Of%2—js1] [0 2i]uz;
(2.17b)

The solution of (2.17a) is given by (2.7) with the matrices A;(i) and B;(i) defined

by (2.16).
From (2.17b) we have

X, = =2ilty
- . . a8 .. . (2.18)
X1, = —2(1 +1)u2,i+l + 0(21142’1- + ZC] 2(1 -] +1)u2,i—j+l —Up;, LE Z+.

=)

The solution of the equation (2.1a) with (2.13) is given by

xp (D) X1,

= 2D 20| 12|, ez, (2.19)
x3(7) X1,
x4(0) X2

where Q(i) is defined by (2.14) and the components of the state vector x(i) by (2.7)
with A;(i) and B;(i) defined by (2.16).

3 Positive Systems

Definition 3.1. The fractional descriptor time-varying discrete-time linear system
(2.1) is called the (internally) positive if and only if x; € R’} and y; e R?, ie Z, for
any admissible initial conditions x; e R’} and all inputs u; € RY, ie Z, .

The matrix Q@i)e R™", ie Z, 1is called monomial if in each row and column
only one entry is positive and the remaining entries are zero for ie Z, .

It is well-known [8] that Q™ '(i)e RP", ie Z, if and only if the matrix is
monomial.

It is assumed that for the positive system (2.1) the decomposition (2.4) is positive
for the monomial matrix Q(i) . In this case

x; = Q@i)x; € R} ifand only if x;e R, ie Z, . (3.1)

It is also well-known that premultiplication of the equation (2.1a) by the matrix
P(i) does not change its solution x;, i€ Z, .

From (2.11) it follows that X, ; € R , i€ Z, for u;e RY', ie Z, if and only if
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—- B,y (i) e R for ie Z, . (3.2)

Therefore, the following theorem has been proved.

Theorem 3.1. Let the decomposition (2.4) of the system be possible for a monomial
matrix Q(i)e RT7", ie Z, . The substitution (2.6b) is positive if and only if the
condition (3.2) is satisfied.

Theorem 3.2. Let the decomposition (2.4) of the system be possible for a monomial
matrix Q(i)e RY", ie Z, . The substitution (2.6a) for 0 < e <1 is positive if and only
if

A (e RN, Bliye R, ieZ, . (3.3)

Proof. Sufficiency. If 0 < <1 then from (2.3b) and (2.1d) we have

¢ =(-1)? a(az Do (3.42)
and
Cj+!=(_1)j+l(jilj (]]Jr(f)c <0, j=2,3,.. (3.4b)

From (2.7) and (3.4) it follows that x;; € R}, i€ Z, for xye R} and u; € RY,
ie Z, if the condition (3.3) is satisfied.

The necessity can be shown in a similar way as for standard descriptor systems in
[11]. [

Theorem 3.3. Let the decomposition (2.4) of the system be possible for a monomial

matrix Q(i)e RY", ie Z, . The system (2.1) for 0<a <1 is positive if and only if:

1) the conditions (3.3) are satisfied,
2) (3.2) holds,

3) C(i)e R for ie Z, .

Proof. By Theorem 3.2 and 3.1 the solutions (2.6a) and (2.6b) are positive if and only
if the conditions (3.2) and (3.3) are met. From (2.1b) and (2.5a) we have

= C(i)Q(i)Q_l(i)xl- = 5(1’))?1- ,ieZ, . (3.5a)
where

E(l) =CHO®M) . (3.5b)
For monomial matrix Q(i)e RY"* from (3.3) we have

C(i)ye R, ie Z, ifand only if C(i)e R, ie Z, (3.6)
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and

y;e RY, ie Z, ifand only if C(i)e RP", ie Z, .

Example 3.1. Consider the frac
equation (2.1) with the matrices

(3.7)

[
tional descriptor time-varying system described by the

0 0 _r
2sin(i) + 4
—i
EG)=|—cos()—-1 — 1 ¢ ——¢*2 |
cos(i)+2 2sin(i)+4
1 0 0 0
0 0 0 o |
B 0
sin(i)+ 2
e 42 j
B(i)=|e'+———— —(cos(i)+1)(e”" +sin(i)+2) |, (3.8)
sin(i) + 2
0 e ' +sin(i)+2
- O _1 .
;2 0.5
Ciy=| , cos(i) + . ’
1+ O e. O
i+1 e+l
0 0 6113(i) 0
AG) = a21(’:) ay (i) ay3z(i) 024(1:) ’
6131(1) 0 0 6134 (l)
0 0 0 a44(i)
where
ay3(i) = ay, (i) =—e " —cos(i) —sin(i) — e~ cos(i),

a (i) = :

a4 (i)

(sin())+2)(e~ +1)

(i +2)(cos(i) +2)’ “

42
(sin(i) +2)(e " +1)
(i +2)(cos(D) + (e +1)
B 23 +1) ’

+1

23(1) =
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2 +]) danli) = i+2
2+ MY o0y

ay () =e" +1, ay(i)=

The condition (2.2) is satisfied since

(= A+D(i-24-Ai+1)

det{ EG)A — A(i)] = oz 30
2(i +1)(cos(i) + 2)(sin(i) + 2)(e " +1) (3.9)
In this case
2+ 1 1+ cos(i) 0 0 1 0 0
0 0 b et fkeos@) 00 0 0
P=l2tsiniy 0 0 0 P27 o 0 14t o GO
o 0 0 i+l o 0 0 2
i+2
and
1000
b Y pwemon=0 L 00
! =P 1 1) = s
0 N 0001
0000
Hl dn@) 0 0
Al 0 =+ »
{1() }:P(i)A(i)Q(i)z 0 I+ 0 0}
0o I,
: 0 0 10 1)
0 0 01 (3.
e 0
B, (i) 0 1+sin(i)
:P'B': y
Bo) P07 o
l
O —
i+2

_ 1 0 0o 1
C(i)=C(i)Q(i)=[O i+2 o 0}
i+1
The descriptor system is positive since the tree conditions of Theorem 3 are
satisfied. The matrix Q(i) defined by (3.10) is monomial, the conditions (3.2) and
(3.3) are met
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1
-By ()=, i+1 |e R?2,
i+2
i+1 .
2 1 —sin( i
Ay =itz IO R22 g gy =| € O 1er?2 ez,
0 1+e 0 1+sin(i)
(3.12)
and
0 ;2 0 05
ciy=| O . e R% for Z, . (3.13)
i+2 e
0 - 0
i+l e +1

The solution to the equation (2.1) with the matrices E(i), A(i), B(i) given by

(3.8) can be found in a similar way as in Example 2.1.

4 Concluding Remarks

The Weierstrass-Kronecker theorem on the decomposition of the regular pencil has
been extended to the fractional descriptor time-varying discrete-time linear systems.
A method for computing the solutions of the fractional systems has been proposed.
Necessary and sufficient conditions for the positivity of the systems have been
established. The effectiveness of the test are demonstrated on examples. The
considerations can be extended to the fractional descriptor time-varying continuous-
time linear systems.
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