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    Chapter 8   
 The Role of Xylem Parenchyma 
in the Storage and Utilization of Nonstructural 
Carbohydrates 

             Lenka     Plavcová      and     Steven     Jansen   

1             The Structure, Abundance, and Function of Ray 
and Axial Parenchyma in Wood 

1.1     The Structure of Ray and Axial Parenchyma in Wood 

 The fact that most of the cells present in mature wood are dead is often highlighted. 
Indeed, all xylem conduits (vessels and tracheids) found in the functional sapwood 
undergo cell autolysis, forming hollow tubes made of lignifi ed secondary cell wall. 
However, cells with a protoplasm are also present in secondary xylem. These cells 
are referred to as wood parenchyma because their cell wall is often much thinner 
than that of fi bers. Depending on their arrangement and orientation with respect to 
the main stem axis, parenchyma cells can be divided into two distinct types—radial 
(ray) and axial parenchyma. 

 Ray parenchyma consists of ribbon-like aggregates of cells that are produced by 
ray initials, extending radially from the cambial zone in the xylem and phloem. 
Xylem rays can be classifi ed depending on their width as uniseriate (Fig.  8.1a–d ), 
biseriate (Fig.  8.1e ), and multiseriate, referring to rays that are one-, two-, or more 
cells wide. Rays can also be subdivided according to the dimensions of individual 
cells viewed in a radial section. While most of the ray parenchyma cells have their 
longest axis oriented radially (procumbent cells), vertically elongated (upright) or 
isodiametric (square) cells also occur. Rays comprised exclusively of procumbent 
cells are called homocellular, while rays made of more than one parenchyma cell 
type are termed heterocellular (Carlquist  2001 ; Evert  2006 ). The entire ray system 
can consist of a single ray type, but a combination of different ray types commonly 
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  Fig. 8.1    Diversity in ray and axial parenchyma patterns as viewed in transverse wood sections 
stained with  safranin  and  alcian blue . Thick lignifi ed secondary cell walls of fi bers and vessels 
stain  pink , while protoplasts and less extensively lignifi ed cell walls of parenchyma cells 
appear  blue . All images were taken at the same magnifi cation; a scale bar is shown in ( f ). ( a ) A 
conifer species ( Picea abies ) showing the lowest proportion of parenchyma; rays are uniseri-
ate, axial parenchyma is absent, ( b ) a temperate, diffuse-porous tree ( Acer pseudoplatanus ) 
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Fig. 8.1 (continued) and biseriate rays, axial cells that can be, due to their thick secondary cell 
wall, classifi ed as living fi bers are in a scanty paratracheal and marginal arrangement ( arrows ), 
( c ) a tropical dry-deciduous tree ( Terminalia catappa ) with uniseriate rays and paratracheal vasi-
centric parenchyma, ( d ) a ring- porous temperate species ( Quercus robur ) with apotracheal axial 
parenchyma arranged in narrow bands and scanty paratracheal parenchyma contacting the vessels, 
rays are uniseriate (but multiseriate, up to 30-cells wide rays are common in older stems of this 
species), ( e ) a tropical evergreen tree ( Ficus rubiginosa ) with uniseriate and biseriate rays and 
axial parenchyma arranged in wide bands, ( f ) a tropical dry-deciduous tree ( Ceiba aesculifolia ) 
showing highly parenchymatous wood composed of multiseriate rays and thin-walled axial paren-
chyma cells. ( g ) The relative proportion of ray and axial parenchyma cells measured using trans-
verse sections for all six species shown above       

occurs. In addition to the ray types described above, other specialized ray systems 
such as aggregated and interconnected rays have been identifi ed. Interestingly, a 
temporal or permanent absence of rays occurs in the wood of several species 
(Barghoorn  1941 ; Carlquist  1970 ). Nevertheless, the complete absence of rays is a 
rarity restricted to small plants, in which woodiness is not pronounced and has 
evolved secondarily (Carlquist  1970 ).  

 Axial parenchyma is produced by fusiform cambial initials that undergo trans-
verse divisions, resulting in a parenchyma strand or axial series of two or more 
parenchyma cells. In some species, axial parenchyma is absent or sparse. This con-
dition is characteristic of conifers (Fig.  8.1a ); however, it can be found in many 
angiosperms as well. For instance, sparse axial parenchyma occurs in  Populus , 
 Aesculus ,  Berberis ,  Magnolia , and  Eucalyptus , to name a few examples. If present, 
axial parenchyma can be arranged in different patterns as distinguished in trans-
verse sections (Carlquist  2001 ; Kribs  1937 ). Traditionally, axial parenchyma is clas-
sifi ed as apotracheal if it appears distributed without a direct connection to vessels 
(Fig.  8.1d ), and paratracheal if it is strongly associated with xylem vessels (Fig.  8.1b, 
c ). These two basic categories can be further subdivided. For instance, parenchyma 
cells can be randomly scattered within the vessels and fi bers (diffuse apotracheal 
parenchyma), be in contact with vessels but not ensheathing them completely 
(scanty paratracheal parenchyma, Fig.  8.1b ), form a complete sheath surrounding 
vessels (vasicentric paratracheal parenchyma, Fig.  8.1c ), or be arranged in distinct 
tangential bands (banded parenchyma, Fig.  8.1d, e ). In addition, an increased occur-
rence of parenchyma cells at the tree ring boundary is often found in temperate 
species and referred to as marginal parenchyma (Fig.  8.1b ). Last but not least, wood 
of some trees such as  Adansonia  (Chapotin et al.  2006 ) or  Ceiba  (Fig.  8.1f ) is 
extremely parenchymatous, with axial parenchyma comprising most of the matrix 
between vessels and rays. The categorization outline above is useful, but to a certain 
extent arbitrary. Thus, intermediary patterns and co-occurrence of more than one 
type of axial parenchyma are frequently observed. Besides thin-walled parenchyma 
cells, some thick-walled axially oriented cells, which could be hence termed fi bers, 
also retain living protoplasts (Fahn and Leshem  1963 ). Axial cells that can be clas-
sifi ed as living fi bers rather than parenchyma occur, for instance, in  Acer  (Fig.  8.1b ), 
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 Robinia pseudoacacia  (Yamada et al.  2011 ), or  Cactaceae  (Mauseth and Plemons- 
Rodriguez  1997 ), although the distinction between these two cell types has often 
been neglected. When these cell types are distinguished, it has been hypothesized 
that living fi bers substitute for, or complement, the function of axial parenchyma 
cells (Carlquist  2001 ; Yamada et al.  2011 ; Wheeler et al.  2007 ).  

1.2     How Much Ray and Axial Parenchyma Occurs in Wood? 

 Ray and axial parenchyma cells make up a substantial proportion of all wood cells 
(Fig.  8.1g ). The volumetric content is hard to measure directly; however, the 
proportion of parenchyma cells can be estimated from the area measurements taken 
on a transversal or tangential section. In gymnosperms, the total parenchyma pro-
portions are commonly between 5 and 10 % and compose mainly of radial paren-
chyma (Fig.  8.1a ). In angiosperms, the total amount or parenchyma ranges typically 
between 20 and 40 % (Fig.  8.1b–d ); however, values between 40 and 60 % are not 
uncommon among tropical angiosperms (Fig.  8.1e ). The proportion of ray paren-
chyma is typically around 10–20 %, while the axial parenchyma proportions 
between 1 and 30 % are common in angiosperms. The aforementioned numbers 
represent values typically encountered in wood (Fig.  8.1g ) (Von Frey-Wyssling and 
Aeberli  1942 ; Wagenführ  2007 ; Ruelle et al.  2006 ; Zieminska et al.  2013 ); however, 
more extreme values also occur. For example, very low ray proportions of around 
7 % were reported for two  Acacia  species (Zieminska et al.  2013 ), while very high 
axial parenchyma proportions of 67 % were measured in  Ceiba aesculifolia  
(Fig.  8.1f ) and several species of the genus  Adenia  (Hearn  2009 ).  

1.3     The Function of Ray and Axial Parenchyma in the Storage 
of Nonstructural Carbohydrates 

 The function of wood parenchyma in storage is often highlighted and put in contrast 
with the main role of vessels in facilitating water conduction and the role of fi bers 
in providing the mechanical support. Nonstructural carbohydrates (NSC) represent 
the most abundant reserves stored in wood parenchyma. The importance of NSC 
storage for tree growth and functioning has been known for many decades 
(Kozlowski  1992 ; Kramer and Kozlowski  1979 ). Recently, this topic has received 
renewed attention because the size and the dynamics of the NSC pool might represent 
factors potentially limiting tree growth (Palacio et al.  2014 ) and affecting tree survival 
under drought stress (McDowell et al.  2008 ). 

 The total volume of ray and axial parenchyma can be viewed as a fi nite compart-
ment potentially available for storage. Given the large volume of woody trunks, the 
size of this storage pool is substantial from the whole plant perspective. For instance, 
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Würth et al. ( 2005 ) calculated that the carbon stored in the above ground woody 
biomass accounts for 80 % of the total carbon pool present in a seasonally dry 
tropical forest and that this amount would be suffi cient to completely regrow the 
entire canopy. However, the storage capacity provided by wood parenchyma is not 
always completely fi lled up. Instead, the NSC levels fl uctuate, refl ecting the dynamic 
balance between carbohydrate production and utilization. 

 Besides the total amount of NSCs, their partitioning into starch and soluble sugar 
fraction is of importance. Out of these two components, starch can be considered as 
the primary long-term storage form of NSCs. Its molecules are large and cannot 
move freely between cells; however, they can be readily hydrolyzed to produce 
soluble sugars. Soluble sugars constitute a plethora of mono- and oligosaccharides 
that are mobile and fulfi ll more active physiological roles. 

 As ray and axial parenchyma are the main sites of NSC accumulation in wood, 
the NSC status of these cells should be directly mirrored in the NSC content and 
composition measured in the bulk sapwood. The sapwood NSCs have been ana-
lyzed in a number of ecological studies (Hoch et al.  2003 ; Sauter and Wellenkamp 
 1998 ; Ashworth et al.  1993 ; Palacio et al.  2007 ; Carbone et al.  2013 ), providing 
insights into the size and dynamics of the wood parenchyma carbohydrate pool. In 
the following sections, we will review the NSC accumulation patterns observed in 
different tree species and different woody organs and discuss changes in NSC con-
centration and composition that occur throughout the growing season. These aspects 
of sapwood NSC dynamics will be linked to the anatomy and physiology of ray and 
axial parenchyma cells.   

2     Patterns in NSC Accumulation Across Different Woody 
Species, Organs, and Time 

2.1     Variation in NSC Across Different Tree Species 

 As already mentioned, a positive relationship between the NSC content and the 
proportion of ray and axial parenchyma in wood can be expected. To the best of our 
knowledge, this assumption has not been confi rmed empirically, except for the 
notion that conifer wood tends to have lower NSC concentrations than the wood of 
angiosperms, which is in agreement with the lower proportion of parenchyma found 
in conifer wood (Johnson et al.  2012 ). Considering the large differences in wood paren-
chyma content across angiosperms, as illustrated by the more than threefold varia-
tion shown by the fi ve angiosperms in Fig. 8.1a–g , it would be interesting to see if 
the tendency for a higher NSC content with increasing volume of parenchyma holds 
true also within this group. While the meta-analysis of published data can provide 
useful insights (Johnson et al.  2012 ), the fi ner-scale patterns are likely to be con-
founded by the different sampling schemes employed by different authors and the 
high variation in NSC concentration found across different woody organs and 
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seasons. In addition, the sapwood NSC content is usually expressed as a mass-based 
concentration, and therefore depends on wood density, which varies substantially 
between different species (Chave et al.  2009 ) and to some extent also within a single 
tree (Domec and Gartner  2002 ; McCulloh et al.  2012 ). This problem could be 
solved by expressing the NSC concentration on a wood volume rather than a wood 
mass basis. Unfortunately, the studies looking at the sapwood NSC content do not 
usually report wood density values to allow this conversion. Thus, additional 
research is required to demonstrate conclusively whether the proportion of ray and 
axial parenchyma is an important driver of the amount of NSC stored in wood. 
Here, we will provide some initial hints on answering this question. 

 Using the same species as shown in Fig.  8.1a–g , we visualized the starch deposi-
tion by staining with Lugol’s solution (Fig.  8.2a–f ). The iodine test revealed obvious 
differences in starch accumulation in these species that differ greatly in the amount 
of wood parenchyma. The parenchyma was packed with starch in all three temperate 

  Fig. 8.2    Distribution of starch in wood parenchyma cells in the same species as shown in 
Fig.  8.1 . The wood samples of the temperate species  Picea abies  ( a ),  Acer pseudoplatanus  
( b ), and  Quercus robur  ( d ) were collected at the Ulm University campus in October. In these spe-
cies, most of the wood parenchyma cells appear densely packed with starch grains. The samples 
of the tropical plants  Terminalia catappa  ( c ),  Ficus rubiginosa  ( e ), and  Ceiba aesculifolia  
( f ) were obtained from the living collections of the botanical garden of Ulm University in early 
June. Despite growing under the same conditions of a tropical greenhouse, these species show 
marked differences in starch deposition. While  Terminalia  accumulates large amounts of starch 
in xylem parenchyma cells ( c ), the wood parenchyma in  Ficus  ( e ) and in particular in  Ceiba  ( f ) 
show much lower starch content. Note the absence of starch in contact cells in  Acer ,  Terminalia,  
and  Quercus  ( arrows )       
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species sampled at the end of the growing season (Fig.  8.2a, b, d ). In contrast, the 
tropical plants showed varying patterns in starch accumulation, despite growing 
under the same conditions in a tropical greenhouse (Fig.  8.2c, e, f ). The starch abun-
dance was highest in  Terminalia  in which almost all parenchyma cells were fi lled 
with starch grains (Fig.  8.2c ). The amount of starch was much lower in  Ficus  
(Fig.  8.2e ). In this species, the starch grains were sparse and almost absent in the 
regions closer to the cambium. The lowest starch accumulation was observed in the 
highly parenchymatous wood of  Ceiba aesculifolia  (Fig.  8.2f ). Based on this simple 
iodine test, we cannot say whether most of the NSC were present in the form of 
soluble sugars in the wood of  Ficus  and  Ceiba , or whether the total levels of NSC 
were low in spite of the high parenchyma content found in these two species. More 
than threefold differences in wood NSC concentration have recently been reported 
in a study encompassing 17 tropical trees from 10 different families (Würth et al. 
 2005 ). It would be interesting to see if this variability is at least partially explained 
by the amount of wood parenchyma. Marked differences in NSC concentration 
were observed not only between species but also between different tree parts. Thus, 
we will continue this review by comparing the patterns in NSC content found 
between woody branches, trunks, and roots.   

2.2     Variation in NSC Across Different Woody Organs 

 Most studies monitoring the NSC levels in more than one woody organ report val-
ues for the main trunk and small terminal branches. Three times higher NSC con-
centrations in branch wood than in trunk wood were observed in eleven temperate 
trees (Hoch et al.  2003 ; Sala and Hoch  2009 ); however, such trend was much less 
pronounced in a tropical environment (Würth et al.  2005 ; Newell et al.  2002 ). The 
proportion of parenchyma does not differ greatly between branches and trunks 
(Bhat et al.  1985 ; Koch  1985 ); therefore, any differences in NSC concentrations 
between these two tissues are likely caused by physiological rather than anatomical 
drivers. Alternatively, it is possible that the branch wood NSC values are overesti-
mated because of the inclusion of pith in the samples used for branch wood NSC 
measurements. Besides affecting the total branch biomass, medullary (i.e., pith) 
tissue is known to accumulate starch (Essiamah and Eschrich  1985 ). Both of these 
phenomena could bias the NSC concentrations toward higher values. 

 Nevertheless, the branch wood NSC pool consistently appears to be more 
dynamic than the trunk wood pool. This was manifested by a more dramatic sea-
sonal change (Würth et al.  2005 ; Hoch et al.  2003 ; Newell et al.  2002 ), a higher 
proportion of the soluble sugar fraction (Sala and Hoch  2009 ), and a steeper increase 
in NSC levels with increasing tree height (Sala and Hoch  2009 ; Woodruff and 
Meinzer  2011 ) in branches as compared to trunks. The aforementioned differences 
between branches and trunks are consistent with the more proximal position of 
branches to the source of photoassimilates and developing buds and fruits that act as 
strong carbon sinks. Therefore, it can be suggested that branch wood parenchyma 
helps to buffer against a short-term imbalance between carbon supply and demand. 
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 In contrast, the trunk wood parenchyma might be more specialized for long-term 
storage. This idea is supported by a recent study showing surprisingly long resi-
dence times of NSC extracted from the outermost 2 cm of sapwood in red maple and 
eastern hemlock. Using radiocarbon dating, the mean age of sapwood NSC has been 
estimated to be about a decade, although a substantial fraction of carbon seemed to 
have much faster turnover (Richardson et al.  2013 ). This faster fraction likely rep-
resents carbohydrates used to support parenchyma metabolism and cambial growth 
(Carbone et al.  2013 ; Hill et al.  1995 ). 

 In older trunks, the NSC concentration is known to decline radially with increas-
ing distance from the cambium (Würth et al.  2005 ; Hoch et al.  2003 ). This decline is 
likely linked with parenchyma cell death and transition to heartwood. While low 
values of NSC concentrations are typically reached at the depth of 15–20 cm in trunks 
that showed a stem diameter of 30–100 cm, the radial patterns show interesting inter-
specifi c differences and variation with tree age (Würth et al.  2005 ; Hoch et al.  2003 ; 
Barbaroux and Bréda  2002 ). More specifi cally, the decrease in NSC concentration 
with increasing sapwood depth was particularly sharp in ring-porous oak, while dif-
fuse porous trees exhibited a more gradual decline (Hoch et al.  2003 ; Barbaroux and 
Bréda  2002 ). The tropical tree,  Luehea seemanii , exhibited remarkably constant NSC 
content throughout the entire 12-cm-thick sapwood (Würth et al.  2005 ). 

 Besides above-ground xylem biomass, woody roots also accumulate large 
amounts of NSC (Würth et al.  2005 ; Palacio et al.  2007 ; Loescher et al.  1990 ; Pate 
et al.  1990 ). High NSC storage capacity of belowground woody tissue is in accor-
dance with a higher proportion of ray and axial parenchyma typically found in small 
woody roots compared to branches (Lens et al.  2000 ; Pratt et al.  2007 ). However, in 
coarser roots, the relative proportion of wood parenchyma might not be signifi -
cantly different from stems due to an increase in inter-ray distance with increasing 
root diameter (Koch  1985 ; Wargo  1976 ). 

 The below-ground storage pool is particularly important when coping with dis-
turbances that destroy a substantial portion of the above-ground plant biomass. A 
greater dependence on below-ground storage is characteristic for plants resprouting 
after disturbance, as opposed to plants that regenerate from seeds. In agreement, a 
higher proportion of wood parenchyma, paralleled by a greater amount of starch 
reserves, have been observed in resprouters than seeders growing in fi re-prone habi-
tats of Western Australia and South Africa (Pate et al.  1990 ; Verdaguer and Ojeda 
 2002 ). Interestingly, however, the overall starch tissue content was more strongly 
driven by the starch packing density than the amount of parenchyma tissue (Pate 
et al.  1990 ). Furthermore, not all the plants under study, including some of the 
resprouters, accumulated starch in ray and axial parenchyma cells. While some spe-
cies accumulated starch only in their root cortex, other plants deposited starch in 
both or only one of the wood parenchyma subsystems. Yet other species had starch 
grains distributed in all three tissues. Unfortunately, it is not known if the same 
patterns occurred consistently throughout the season and what the levels of soluble 
sugars in the roots of these plants were. 

 Taken together, the comparison between species and woody organs suggests that 
the amount of parenchyma is important for the overall capacity to store carbohydrates; 
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however, the differences in starch accumulation patterns, possibly tied to the 
concentration of soluble sugars, provide another layer of complexity.  

2.3     Seasonal Variation in NSC 

 The NSC content and its partitioning between starch and soluble sugars is also 
known to vary seasonally. The seasonal dynamics of wood NSC is most widely 
studied in temperate winter- deciduous trees (Kozlowski  1992 ; Ashworth et al.  1993 ; 
Sauter and van Cleve  1994 ), providing the following general picture. The total NSC 
concentration usually peaks at the end of the growing season and declines through-
out winter, reaching its minimum during or shortly after bud break. Importantly, 
starch is often almost completely hydrolyzed during winter months in response to 
low temperatures, resulting in an increased concentration of soluble sugars 
(Fig.  8.3a ) (Sauter and Wellenkamp  1998 ; Schoonmaker  2013 ). At the end of win-
ter, the starch is transiently resynthesized, only to be hydrolyzed again shortly 
before bud break (Essiamah and Eschrich  1985 ; Sauter and van Cleve  1994 ). Starch 
and the total NSC levels then recover over the growing season. In contrast to decidu-
ous trees, the peak in NSC concentration commonly occurs before bud break and 
remains low throughout the growing season in both temperate and boreal conifers 
(Hoch et al.  2003 ; Schoonmaker  2013 ). The aforementioned patterns make intuitive 
sense in terms of the typical progression of photosynthetic activity and growth and 
likely hold true on a large scale. However, recent studies indicate that this view 
might be an oversimplifi cation and that various modifi cations of this general pattern 
can be found across different woody tissues, species, sites, and seasons (Hoch et al. 
 2003 ; Richardson et al.  2013 ). For instance, Hoch et al. ( 2003 ) did not observe a 
considerable reduction of NSC concentration during bud break in most of the angio-
sperm species studied. In some years, Richardson et al. ( 2013 ) even found higher 
NSC concentrations in March than in November in maple and oak, suggesting that 
a redistribution of NSC took place during the dormant season.  

 The patterns in carbohydrate concentration appear even more variable in a sea-
sonally dry tropical forest. In a study on four trees differing in their leaf phenology 
(Newell et al.  2002 ), the branch wood of a truly drought-deciduous species ( Cecropia 
longipes ) exhibited a fourfold higher NSC concentration during the dry season, 
which was driven by a large increase in starch concentration (Fig.  8.3b ). In contrast, 
the brevi-deciduous trees such as  Anacardium excelsum  showed much smaller sea-
sonal variation in their NSC levels and a slight increase in soluble sugar fraction 
during the dry season (Fig.  8.3c ). The tendency for higher levels of NSC in branch 
wood during the dry season was confi rmed by a follow-up study encompassing 17 
species (Würth et al.  2005 ). However, the seasonal effect was relatively weak in 
comparison with a striking interspecifi c variability. 

 The seasonal changes in sapwood NSC refl ect the balance between carbon supply 
by photosynthesis and carbon utilization for various physiological needs such as 
growth, reproduction, or stress mitigation. The structure of ray and axial parenchyma 
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  Fig. 8.3    Seasonal course of starch and soluble sugar concentrations in branch wood of winter- 
deciduous  Populus  ×  canadensis  ( a ), drought-deciduous  Cecropia longipes  ( b ), and brevi- 
deciduous  Anacardium excelsum  ( c ). The shaded area in each graph indicates the period with 
unfavorable growing conditions (i.e., the winter in case of  Populus  and the dry season in the case 
of  Anacardium  and  Cecropia ). Data redrawn from Sauter and van Cleve ( 1994 ) ( a ) and Newell 
et al. ( 2002 ) ( b ,  c )       
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and their biochemical machinery likely have a great infl uence on the NSC dynamics 
described above. The total parenchyma volume should be the parameter most 
closely related to the seasonal maximum in NSC content, assuming that the storage 
capacity of parenchyma cells is fully used during this period. In contrast, the dynam-
ics of NSC is driven by physiological activity of ray and axial parenchyma cells and 
surrounding source and sink tissues (e.g., leaves, fl ushing buds, developing fruits, 
the cambium). Furthermore, the spatial proximity and connectivity between wood 
parenchyma and these sinks and sources is important for facilitating the NSC trans-
location within the plant body. While mechanisms underlying the buildup of NSC 
stores remain poorly understood, several studies have focused on processes involved 
in the mobilization and utilization of starch stored in wood parenchyma cells. The 
underlying cellular processes will be discussed in the following section.   

3     Metabolic Activity of Wood Parenchyma Underlying 
the Dynamics of Sapwood NSC 

3.1     Starch Mobilization and Metabolism of Soluble Sugars 

 The mobilization of starch reserves is initiated by the depolymerization of its 
molecules (Fig.  8.4 ). In plants, starch breakdown can be catalyzed by various 
enzymes such as amylases, glucosidases, and glucanohydrolases (Zeeman et al. 
 2010 ). To the best of our knowledge, only one study has looked at the starch hydro-
lyzing machinery acting in wood parenchyma (Witt et al.  1995 ). In this study, 
numerous enzymes with a potential amylolytic activity have been investigated in the 
ray parenchyma of  Populus  ×  canadensis  and the main effect on starch degradation 
has been attributed to α-amylase and it has been hypothesized that the high tempera-
ture sensitivity of this enzyme underlies the mid-winter starch degradation and its 
resynthesis in early spring.  

 Simple sugars originating from starch hydrolysis are metabolized in a myriad of 
ways. Typically, the sugar molecules need to be phosphorylated before they can 
participate in further biochemical reactions. The phosphorylation of sugars is cata-
lyzed by phosphotransferases. One of these enzymes is a plant hexokinase catalyz-
ing the phosphorylation of hexoses, most importantly glucose. In addition, 
hexokinase also plays a prominent role in sugar-mediated signaling (Jang et al. 
 1997 ). While we are not aware of any studies on hexokinase activity in wood 
parenchyma, a gene encoding for this enzyme has recently been shown to exhibit a 
xylem parenchyma-specifi c expression in leaf petioles of tobacco (Giese et al.  2005 ). 

 Phosphorylation of glucose is the fi rst step of glycolysis that can be followed by 
aerobic respiration. Respiration represents the key process through which the 
chemical energy contained in nutrients is released and made available for fueling 
the cellular metabolism. Respiration of wood parenchyma has been studied in a series 
of interesting experiments (Spicer and Holbrook  2005 ,  2007a ,  b ). The respiration 
rates expressed per unit sapwood volume were between 0.4 and 1 μmol O 2  cm −3  h −1  
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and did not differ greatly between three angiosperm and two conifer species studied. 
However, when expressed per living parenchyma volume, the two conifers showed 
one order of magnitude higher respiration than the angiosperms, with the  respiration 
rates being around 12 and 3 μmol O 2  cm −3  h −1 , respectively. Such respiration rates 
are much lower than those typically found in meristems, but considerably higher 
than those measured in tissues purely devoted to storage, such as tubers. This sug-
gests that wood parenchyma cells have a more active role than just being a simple 
storage compartment. Based on cytochemical staining, respiratory activity appears 

  Fig. 8.4    NSC dynamics at the cellular level. Enzymes and transporters involved in the biochemi-
cal transformation and intercellular traffi cking of NSC are shown. Starch hydrolysis is catalyzed 
by α-amylase ( A ). The synthesis of sucrose at the sites of starch mobilization is catalyzed by 
sucrose-6-phosphate-synthase (SPS). Sucrose breakdown at the sink sites is catalyzed by sucrose 
synthase (SuSy) and neutral invertase (NI) ( B ). Sucrose might also be hydrolyzed in the apoplast 
by acid invertase (AI). Soluble sugars are transported within the parenchyma network symplasti-
cally through pit plasmodesmata. The permeability of plasmodesmata might be affected by myosin 
contraction and callose deposition ( C ). Soluble sugars can move across a parenchyma-vessel pit 
membrane to the apoplast. The effl ux of sugars to a conduit lumen is passive and driven by the 
concentration gradient. Putative membrane channels (SUF) likely facilitates the effl ux ( D ). Soluble 
sugars can also be retrieved from the conduit apoplast to the parenchyma symplast by active trans-
port via proton-sugar symporters (SUT, HEX). The electrochemical proton gradient required for 
the sugar uptake is generated by ATP-dependent proton pumps ( E )       
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particularly high in parenchyma cells that are in a direct contact with xylem con-
duits. These so-called contact or vessel-associated cells are characterized by high 
mitochondrial counts, high activity of respiratory enzymes (Sauter et al.  1973 ; 
Alves et al.  2001 ), and reduced starch accumulation (Fig.  8.2b, c , d, Braun  1984 ). 
Interestingly, wood parenchyma cells of some species contain chloroplasts and are 
photosynthetically active (Langenfeld-Heyser  1989 ; Cocoletzi et al.  2013 ; Larcher 
et al.  1988 ). The carbon assimilation rates exhibited by woody stems are low and 
usually not suffi cient to result in a net carbon uptake; nevertheless, they may be 
involved in the refi xation of CO 2  released during parenchyma respiration, thereby 
reducing respiratory carbon loss (Pfanz et al.  2002 ). 

 Sucrose is usually the most abundant component of soluble sugar fraction found 
in wood. There are three key enzymes governing the metabolism of sucrose in 
plants—sucrose-6-phosphate-synthase (SPS), sucrose-synthase (SuSy), and inver-
ase (Fig.  8.4 ). While SPS catalyzes the synthesis of sucrose molecules from phos-
phorylated monomers, the other two enzymes, SuSy and invertase, are responsible 
for sucrose catabolism. The difference between these two enzymes is that SuSy 
catalyzes the conversion of sucrose into fructose and UDP-glucose, while invertase 
catalyzes the hydrolysis of sucrose into nonphosphorylated monomers. In plants, 
several types of invertases can be distinguished based on their subcellular localiza-
tion and pH optimum. While netural invertase (NI) is localized in the cytoplasm, 
acid invertases (AI) are found in vacuoles and cell walls (Sturm  1999 ). 

 Seasonal changes in the activity of all three enzymes, SPS, SuSy, and invertase, 
which play an important role in sucrose metabolism, were studied along a radial 
profi le in the sapwood of  Robinia pseudoacacia , providing interesting insights into 
the coordination of NSC mobilization and utilization (Hauch and Magel  1998 ). An 
increased activity of sucrose synthesizing SPS was indicative of starch mobiliza-
tion. Thus, a high SPS activity was observed throughout the entire width of sap-
wood during cold winter months when starch is being hydrolyzed into soluble 
sugars. The high SPS activity persisted in the middle and outermost sapwood during 
bud break. In contrast, the activities of SuSy and neutral invertase peaked in sink 
tissues to which sucrose was transported and subsequently catabolized. In spring, 
SuSy was highly active in sapwood regions close to the cambium, producing UDP- 
glucose for the synthesis of cell walls of newly developing xylem cells. By contrast, 
NI was mostly active in the sapwood-to-heartwood transition zone during autumn, 
likely providing precursors for the synthesis of heartwood phenolic. Similar pat-
terns in SPS and SuSy activity as observed in  Robinia pseudoaccacia  have also 
been detected in the wood of  Populus  ×  canadensis  (Schrader and Sauter  2002 ).  

3.2     Translocation of Soluble Sugars 

 In order to supply carbon and energy to the cambium and the sapwood-to- heartwood 
transition zone, sucrose and other soluble sugars arising from starch mobilization 
have to move radially within the stem (Fig.  8.4 ). Rays provide an ideal path for such 
a translocation (Van Bel  1990 ). Ray parenchyma cells are interconnected via pits 
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perforated by numerous plasmodesmata, such that a symplastic continuum exists 
within the ray (Fig.  8.5a, b ). This continuum can be visualized with symplastic fl uo-
rescence tracers (Sokolowska and Zagórska-Marek  2012 ); however, very little is 
known about the rate, selectivity, and regulation of this transport pathway. The rate 

  Fig. 8.5    Parenchyma–conduit and parenchyma–parenchyma cell connections in  Quercus robur . 
( a ) A radial section showing a vessel-ray interface observed with a light microscope. Numerous pit 
connections are apparent at the interface between the ray and vessel ( arrow ) and between the 
different fi les of ray cells (arrowheads). A clear distinction between contact (cc) and isolation cells 
(ic) within the ray is obvious in the picture. ( b ) A slightly bordered pit between two ray cells (r) 
observed with a transmission electron microscope. The pit membrane is penetrated by plasmodes-
mata ( arrow ). Various cytoplasmic bodies and vesicles are abundant in the pit channel, suggesting 
intense transport activity across the pit membrane. ( c ) Cross-section through an axial parenchyma 
cell (ap) connected to an adjacent vessel (v) via a half-bordered pit. The pit membrane is without 
plasmodesmata. The amorphous (or protective) layer between the pit membrane and the plasma-
lemma is thin but still apparent ( asterisk ). From the vessel lumen side, the pit membrane is covered 
by an electron dense plug, also known as the “black cap” ( arrow )       

L. Plavcová and S. Jansen



223

and direction of the bulk symplastic transport of carbohydrates are likely driven by 
the concentration gradient, similarly to the movement of sucrose during symplastic 
phloem loading. Based on the dynamics of starch deposition, Sauter and Kloth 
( 1986 ) calculated a carbohydrate fl ow rate of 800 pmol cm −1  s −1  across the tangen-
tial ray walls of  Populus  ×  canadensis  and concluded that much of this fl ux must 
have occurred via plasmodesmata.  

 Moreover, the presence of highly ordered microfi laments and microtubules run-
ning parallel to the longer (i.e., radial) axis of the ray cells provides possibility for 
active directional transport (Chaffey and Barlow  2001 ). Myosin, belonging to the 
family of ATP-dependent molecular motors, and the polysaccharide callose are 
localized at the plasmodesmal faces within the pit membranes. Both of these com-
pounds are known to infl uence the permeability of plasmodesmata (Reichelt et al. 
 1999 ; Zavaliev et al.  2011 ; White and Barton  2011 ) and could hence facilitate an 
active regulation of the ray-to-ray cell conductance. Nevertheless, even if plasmo-
desmata are present and unblocked, the passage of molecules through pits will be 
associated with a certain resistance. Thus, more effi cient radial conduction is 
expected in rays composed of procumbent rather than square or upright cells, 
because the number of cell-to-cell connections that need to be crossed is smaller in 
case of procumbent cells (Carlquist  1975 ). 

 Sugars can also move out of the parenchyma cells and enter the conduit lumen. 
The exchange of carbohydrates between parenchyma cells and conduits is facili-
tated by conduit–parenchyma pits, which exhibit a different structure than the sim-
ple or slightly bordered parenchyma–parenchyma pit pairs (Fig.  8.5a, c ). When 
observed with a transmission electron microscope, the conduit–parenchyma pit 
membranes appear compact, rather electron dense and free of plasmodesmata 
(Fig.  8.5c ). In addition, a specialized cell wall layer is deposited underneath the pit 
membrane, lining the entire conduit–parenchyma interface between the plasma-
lemma and the lignifi ed wall. This so-called amorphous or protective layer may 
enlarge the actual area available for the exchange of substances (Barnett et al.  1993 ); 
however, other functions such as providing a buffer against xylem pressure oscilla-
tions were also proposed (Van Bel and Van der Schoot  1988 ). Both the pit mem-
brane and the amorphous layer are rich in pectins (Wisniewski and Davis  1995 ; 
Plavcová and Hacke  2011 ). The amorphous layer contains also arabinogalactan-rich 
glycoproteins (AGPs) (Wisniewski and Davis  1995 ). These extracellular proteins 
prevent a tight alignment of pectin molecules (Lamport et al.  2006 ) and hence may 
increase the porosity and permeability of the amorphous layer. Moreover, AGPs are 
known to interact with the plasma membrane and act as receptors (Seifert and 
Roberts  2007 ), which points to interesting possibilities for a more active role of the 
amorphous layer in sensing and signaling. Another feature of conduit–parenchyma 
pits is the formation of an additional pectinaceous plug during winter months 
observed in several temperate trees (Wisniewski and Davis  1995 ; Wisniewski et al. 
 1991a ). Because of its high electron density this plug is sometimes referred to as the 
“black cap.” The exact function of the black cap is not known but it might hinder the 
growth of ice crystals or prevent uncontrolled loss of water and other substances 
from parenchyma cells during winter dormancy. 
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 Our knowledge of molecular mechanisms involved in the sugar movement 
between parenchyma cells and conduits is rather limited, with most information 
coming from a few temperate deciduous trees. In these trees, two opposing sugar 
fl uxes have been identifi ed, namely the sugar effl ux from and the sugar infl ux to the 
parenchyma cells (Fig.  8.4 ). The balance between these two fl uxes drives the sugar 
composition of the xylem sap. High sugar concentrations, indicative of high effl ux 
and/or low infl ux rates, are often found in xylem sap during winter and early spring. 
For instance, the spring sap concentration of sugar maple ( Acer saccharum ) reaches 
typically values of 2–3 % (Taylor  1956 ), while a concentration of about 0.6 % was 
measured in  Acer platanoides  (Schill et al.  1996 ) and  Populus  ×  canadensis  (Sauter 
 1988 ). In contrast, the summer concentrations are close to 0.1 %. 

 The effl ux of soluble sugars out of parenchyma cells (Fig.  8.4 ) occurs passively 
along a concentration gradient (Sauter  1982 ; Améglio et al.  2004 ; Münch  1930 ). 
Therefore, high effl ux rates are expected when the concentration of soluble sugars 
in parenchyma cells is high. In agreement, high sugar effl ux is observed during 
winter when most of the starch stored in parenchyma cells is hydrolyzed. In walnut, 
the sap sugar concentration was indeed highest during winter, with sucrose repre-
senting the most abundant xylem sap saccharide (Améglio et al.  2002 ,  2004 ). The 
dynamics of sap sugars are different in poplar. In this species, a rapid increase in sap 
sugar levels was observed during bud break, reaching levels more than three times 
higher than those measured in winter. Interestingly, hexoses comprised the major 
fraction of xylem sap sugars during this time, suggesting that sucrose might be 
hydrolyzed in the apoplast by acid invertase (Sauter  1988 ). The rapid increase in sap 
sugar levels indicates the sugar effl ux is not just a mere leakage but rather an actively 
regulated process. The sugar effl ux rates are sensitive to inhibitors, suggesting that 
the effl ux is facilitated by membrane channels (Sauter  1982 ; Améglio et al.  2004 ). 
Thus, the modulation of effl ux rates can be achieved by changing the abundance and 
activity of these hitherto uncharacterized proteins. 

 If sap fl ow occurs, sugars released into the conduit lumen can be carried via the 
low-resistance apoplastic pathway toward the canopy. This additional amount of 
carbon can be valuable to support fl ushing buds in spring (Bonhomme et al.  2010 ). 
However, as vascular connections are often not fully developed during the initial 
phase of bud reactivation (Ashworth  1982 ), sugars need to be reabsorbed by paren-
chyma cells and move to the bud tissue via extraxylary pathways. 

 In contrast to sugar effl ux, the uptake of sugars from the xylem sap by paren-
chyma cells is an active process facilitated by proton-sugar symporters (Fig.  8.4 ). 
Transcript and protein levels of several of these putative transporters have been 
studied in walnut (Decourteix et al.  2006 ,  2008 ). While the sucrose transporter 
JrSUT1 was strongly up-regulated in xylem parenchyma cells during bud break, 
two hexose transporters, JrHT1 and JrHT2, were abundant during the period of 
intense radial growth. This suggests that the sugar uptake is selective and likely 
tailored to suit specifi c physiological needs. The symport of sugars is powered by 
the electrochemical gradient generated by ATP-dependent proton pumps also 
known as H + -ATPases (Alves et al.  2007 ). High expression of H + -ATPase coincides 
with a high activity of respiratory enzymes, indicating that the sugar retrieval is 
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energetically demanding but also remarkably effi cient. For instance, in willow 
( Salix ), the rates of sugar infl ux have been estimated to be more than fi ve times 
higher than the rates of sugar effl ux (Sauter  1983 ). 

 In this section, we described the cellular processes that underlie the dynamics of 
NSC in sapwood (Fig.  8.4 ), starting with the conversion of starch into soluble sugars, 
continuing with the in situ use of sugars, and fi nishing with their radial and axial 
transport into more distant sink tissues. We showed that NSC dynamics are driven 
by the activity of key sugar-modifying enzymes and transport systems, acting within 
the anatomical and physiological boundaries provided by wood parenchyma cells. 
In the next section, we will briefl y discuss potential implications of these processes 
for whole plant physiology.   

4     The Role of Sapwood NSC at the Whole Plant Level 

 Carbohydrate storage is important for a tree’s ability to withstand periods of 
unfavorable environmental conditions and to reactivate its growth when favorable 
conditions are reestablished. Interestingly, the NSC reserves are rarely depleted in 
trees, leading to the suggestion that tree growth and survival is not limited by carbon 
supply (Körner  2003 ). Alternatively, it has recently been proposed that trees actively 
maintain high NSC concentration at the expense of growth in order to sustain plant 
functioning under environmental stress (Sala et al.  2012a ; Wiley and Helliker  2012 ). 
We believe that the wide array of tightly regulated physiological processes taking 
place in ray and axial parenchyma cells fi ts well into this picture. While starch accu-
mulation in wood parenchyma at the end of the growing season can be viewed as 
manifestation of a long-term storage function, the complex dynamics of soluble 
sugars can be perceived as a suite of active physiological processes—some are 
related to maintenance respiration and growth while others are mostly involved in 
stress mitigation (Fig.  8.6 ). For the sake of simplicity, we will outline these func-
tions as consecutive events progressing over seasons typical for a temperate climate. 
However, we recognize that not all of these functions are relevant all the time. 
Instead, different functions can be more important in different tree species or under 
particular circumstances, resulting in different requirements on structural and phys-
iological properties of wood parenchyma cells.  

 In winter, two important physiological roles of soluble sugars can be identifi ed, 
namely the protection of parenchyma cells from freeze injury and reversal of freeze- 
induced embolism. Subzero temperatures can damage or even kill wood paren-
chyma cells. Therefore, two strategies for coping with freezing temperatures 
evolved in these cells—they either tolerate extracellular ice formation or avoid 
freezing by deep supercooling (Sakai et al.  1987 ; Kuroda et al.  2003 ; Burke et al. 
 1976 ). In the case of freeze tolerance, an increased concentration of soluble sugars 
resulting in higher osmotic potential of the cytoplasm helps to prevent cellular 
dehydration driven by extracellular freezing (Yuanyuan et al.  2009 ; Cavender-Bares 
 2005 ). In case of freeze avoidance, soluble sugars may help to inhibit the formation 

8 The Role of Xylem Parenchyma in the Storage and Utilization…



226

of ice crystals and to stabilize the plasmatic membrane. Furthermore, the integrity 
of the amorphous layer and its pectin composition are important for the ability of 
parenchyma cells to undergo supercooling (Wisniewski and Davis  1989 ; Wisniewski 
et al.  1991b ). 

 Repeated freeze–thaw cycles are known to induce embolism of xylem conduits 
even under modest tensions. Ring-porous trees cope with this phenomena by pro-
ducing new conduits in spring, whereas many diffuse porous species are capable of 
refi lling embolized conduits (Hacke and Sauter  1996 ). Refi lling can be driven by 
positive root or stem pressure or a combination of the two. While the accumulation 
of inorganic nutrients in the root apoplast seemed to underlie the development of 
root pressure in  Juglans , soluble sugars released by the parenchyma cells were critical 
for the generation of positive stem pressure in both  Juglans  (Améglio et al.  2002 ,  2004 ; 

  Fig. 8.6    Schematic representation of various functions that starch and soluble sugars fulfi ll in 
sapwood. Starch represents the primary form of nonstructural carbohydrates used for the long-term 
storage. Starch can be converted into soluble sugars that fulfi ll more active physiological roles. 
Soluble sugars are used for respiration. They are important for defense against pathogens by pro-
viding energy and material for the synthesis of defense chemicals. Increased concentration of 
soluble sugars in wood parenchyma cells may prevent freeze and desiccation damage. Soluble 
sugars can move radially via the symplastic continuum in ray parenchyma cells toward the cam-
bium or toward the center of the stem to supply carbon and energy for the formation of new xylem 
or for the synthesis of heartwood extractives. Soluble sugars are also secreted into the apoplast 
where they can drive refi lling of xylem embolism. Sugars released to the xylem sap can be carried 
upstream and retrieved closer to the plant apex, thereby supplying carbon to fl ushing buds       
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Ewers et al.  2001 ) and  Acer  (Sauter et al.  1973 ; Hacke and Sauter  1996 ). Thus, in 
climates where freezing occurs, wood parenchyma can be important for the restora-
tion of vascular integrity at the start of a new growing season. On the other hand, a 
high amount of parenchyma represents a challenge because freeze damage to the 
living tissue needs to be prevented. 

 In spring, the main function of soluble sugars is to support new growth in order 
to quickly reestablish photosynthetic production. Expanding buds and the active 
cambial zone represent the strongest sinks during this period. Both of these tissues 
receive carbohydrates stored in sapwood (Hill et al.  1995 ; Bonhomme et al.  2010 ; 
Decourteix et al.  2008 ). While little is known about the partitioning of reserves 
between these two tissues, it can be expected that it is closely related to the offset 
between the cambium and bud phenology. The cambium likely represents a more 
important sink for stored carbohydrates in ring-porous than diffuse-porous species 
because a large proportion of the radial stem growth occurs before the onset of 
photosynthetic activity in ring-porous trees (Barbaroux and Bréda  2002 ; Panchen 
et al.  2014 ). In species that bloom before the leaf-out, the opening fl ower buds draw 
strongly on stored reserves as indicated by a pronounced decline in branch wood 
NSC levels (Hoch et al.  2003 ). Higher allocation of NSC reserves into the cambium 
should put more requirements on the radial transport mechanisms via the ray sym-
plast, while the axial transport pathway, which involves sugar exchange between 
wood parenchyma and xylem apoplast, should be accentuated in case of higher 
needs for sugar translocation into the buds. 

 In summer, when the canopy is fully developed and photosynthetically active, 
soluble sugars found in the sapwood could help to prevent and repair damage caused 
by environmental stress. In the more traditional sense, the importance of sapwood 
NSC reserves should be seen in the possibility to regrow leaves in case of severe 
defoliation caused by environmental stress. From the less traditional point of view, 
the high NSC pool may be needed for a continuous maintenance of hydraulic integrity 
that is constantly being perturbed. Drought and the attack of pathogens arguably 
represent the two most important environmental challenges frequently encountered 
by trees. 

 The importance of carbohydrates in the repair of drought-induced embolism has 
been widely recognized. Despite some recent concerns calling the routine occur-
rence of refi lling under tension into question (Wheeler et al.  2013 ; Sperry  2013 ), the 
active release of both sugars and water into the conduit lumen by xylem parenchyma 
cells is believed to be at the heart of the putative mechanism that may facilitate 
rapid reversal of drought-induced embolism (Salleo et al.  1996 ; Tyree et al.  1999 ; 
Hacke and Sperry  2003 ; Secchi et al.  2011 ; Secchi and Zwieniecki  2011 ; Brodersen 
et al.  2010 ). Moreover, abundant wood parenchyma, as found in many tropical trees, 
can help to delay the onset of cavitation by providing high water storage capacity 
(Borchert and Pockman  2005 ). It is not known if excessive water loss from paren-
chyma cells during drought can compromise their physiological functions, although 
desiccation-induced damage to the protoplasm has been documented in wood 
parenchyma cells during cold stress (Ristic and Ashworth  1994 ). If the maintenance 
of turgor pressure is important, for instance for biomechanical reasons (Chapotin 
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et al.  2006 ), increased concentration of soluble sugars could provide means for 
reducing the capacitive discharge from wood parenchyma cells. 

 The importance of ray and axial parenchyma for wound and pathogen responses 
in wood is also well documented. Most importantly, parenchyma cells produce tylo-
ses and gums that plug old or damaged xylem conduits, thereby preventing uncon-
trolled spread of pathogens within the xylem pipeline (Bonsen and Kucera  1990 ; 
Nicole et al.  1992 ). The production of these vascular occlusions involves active 
secretory processes (Rioux et al.  1998 ) and hormonal signaling (McElrone et al. 
 2010 ), and thus is likely associated with high demands for energy that can be drawn 
from NSC reserves. On the other hand, a higher proportion of thin-walled paren-
chyma cells that are rich in carbohydrates can make wood more attractive for 
nutrient- seeking pathogens and herbivores (Schwarze  2007 ; Martín et al.  2009 ). 
This could result in a faster progression of infection once the pathogen succeeds in 
overcoming the initial defense mechanisms. 

 In fall, the wood parenchyma NSC stores should be replenished and available to 
support the tree’s physiological functions in winter and during the next growing 
season. However, some of the NSC can still be consumed for heartwood formation, 
which is known to occur predominantly during the period of early dormancy (Taylor 
et al.  2002 ). As suggested in a recent review (Spicer  2005 ), heartwood formation 
should be viewed as an active developmental program during which a conductive 
but vulnerable sapwood is transformed in a nonconductive but durable heartwood. 
This process, initiated within wood parenchyma cells, involves a suite of biochemi-
cal reactions that use, at least in part, energy and carbon from carbohydrates stored 
in sapwood (Hauch and Magel  1998 ; Magel et al.  1994 ). 

 In this section, we summarized the most important ways of how sapwood NSC 
are used in growth, development, and stress mitigation (Fig.  8.6 ) and showed the 
tight links to the well-known functions of ray and axial parenchyma cells. However, 
it is important to note that reserves other than NSC are also stored in wood paren-
chyma cells, with nitrogen and phosphorous representing the most important ones 
(Hoch et al.  2003 ; Langheinrich and Tischner  1991 ; Sauter and van Cleve  1991 ). 
Thus, it is likely that the tree performance is, at least in some occasions, more 
strongly limited by the availability of these nutrients than by the availability of 
carbon (Millard and Grelet  2010 ; Sala et al.  2012b ). Nevertheless, we believe that 
our analysis of NSC dynamics provides a useful conceptual basis that can be applied 
to better understand the dynamics of other nutrients as well.  

5     Future Perspectives 

 Research on xylem has a great tradition in integrating structure and function and 
great advances in understanding the plant water transport have been made by link-
ing the anatomy of xylem conduits to functional hydraulic traits (Hacke et al.  2001 , 
 2006 ; Jansen et al.  2009 ). We can envision similar progress in elucidating the 
functional role of parenchyma cells in carbohydrate storage and dynamics, paved by 
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uncovering the great diversity in ray and axial parenchyma structure and their spatial 
distribution. Such research would greatly benefi t from integrating approaches tradi-
tionally used in studies on xylem hydraulics (e.g., perfusion experiments, analysis 
of pit structure) with methods used to examine phloem physiology (e.g., the appli-
cation of symplastic and apoplastic tracers, radioactive labelling, molecular meth-
ods). Moreover, ecological data on sapwood NSC concentration and composition 
will help to upscale the processes and imply their importance for whole plant 
functioning. 

 Most research to date has been made on temperate species. However, wood 
structure exhibits great diversity and ray and axial parenchyma seems to be more 
abundant and exhibit more elaborated patterns in tropical trees. Similarly, carbohy-
drate metabolism in sapwood seems to be more complex, dynamic, and shifted 
further from the role in long-term storage in the tropics. Therefore, studies con-
ducted on tropical trees might provide further valuable insights.     
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