
Chapter 19
A Particular Case of Evans-Hudson Diffusion

Cristina Serbănescu

Abstract We know that the Markov processes are the solutions of certain stochastic
equations. In this article we will construct a noncommutative Markov process by
noncommutative stochastic calculus. We will also show that these are particular
cases of Evans-Hudson diffusions. At the end we will present two examples starting
from the classical theory of probabilities (the Brownian motion and the Poisson
process) which lead to particular cases of the noncommutative Markov processes.

Keywords Noncommutative Markov process • C*-algebra • Brownian motion
• Poisson process • Stochastic equation

19.1 Introduction

Studies in Quantum mechanics have posed the problem of completely positive
applications on C*-algebra of continuous linear operators on a Hilbert space. We
consider completely positive applications because they describe the evolution of a
quantum system, a high-physics energy system and we assume that this evolution
is not affected by the existence of other systems that do not interact with the given
one. Details concerning the way that the high-physics energy has come to pose this
problem may be found in [2] and [3]. Starting from a semigroup of positive operators
or from its infinitesimal operator, we can construct a homogenous Markov process.
The construction of these processes is done through different methods of which
we emphasize on solving stochastic integral equations [16]. Hence the theory of
quantum probabilities has developed as a noncommutative theory of probabilities
in [1] with motivations in high-physics energy [10]. The corresponding stochastic
processes were constructed only in the case of infinitesimal operators and are
expressed as finite sums. These are called Evans-Hudson diffusions [5]. This article
builds these processes on the antisymmetric Fock space (called fermionic) in which
the infinitesimal operator is an infinite sum. The case of the symmetric Fock space
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(called bosonic) was treated in [12]. This article shows how the obtained processes
as solutions of certain stochastic integral equations are noncommutative Markov
processes and appear as a particular case of certain Evans-Hudson diffusions [14]
with an infinite number of components, a notion yet to be defined.

This paper shows how noncommutative Markov processes are obtained as
solutions of certain stochastic equations, being particular cases of Evans-Hudson
Diffusions with an infinity of components.

The case of Markov processes on symmetric Fock spaces for infinitesimal
operator as an infinite sum was studied by Hudson and Parthasarathy [10]. This
paper aims to build noncommutative Markov processes on antisymmetric Fock
spaces where we do not have exponential commutative vectors and where the
commutative property does not occur between operators describing disjoint time
intervals. Unlike the symmetric Fock space, the defined operators are continuous
and the integral is a particular case of Bochner integral [8].

The Brownian Motion and the Poisson Process were given as examples.

19.2 Fermion Stochastic Integrals of Simple Processes

First we construct a stochastic integral on Fermion Fock space [9, 13] by analogy
with the same kind of integral on Boson Fock space [4], first of simple processes. We
define the Fermion stochastic integral for square-integrable integrands. We present
the infinitesimal operators like infinite sums, but we assume they are continuous.
Because of the canonical anticommutation relation we have left, right and mixed
stochastic integrals.

The noncommutative stochastic calculus was developed on Fermion Fock space.

Definition 2.1. Let H be a Hilbert space. We define the antisymmetric Fock space
�a(H) over H as the linear hull of all x1 ^ x2 ^ � � � ^ xn; n � 0; xi 2 H (where for
n D 0, we have the unit element, namely 1) with the following inner product:

hx1 ^ x2 ^ � � � ^ xn; y1 ^ y2 ^ � � � ^ yki D ın;k det .hxi ; yi i/i;j D1;:::;n

for n D k D 0 the determinant is considered to be 1.
About this space we mention the following:

(i) �a.H/ D
n̊�0

H n^, where H n^ is the closed linear hull of all x1 ^ x2 ^ � � � ^
xn; xi 2 H

(ii) xy.1/ ^ � � � ^ xy.n/ D " .�/ xy.1/ ^ � � � ^ xy.n/ where "(� ) is 1 or �1 if � is even
or odd.
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If two xi with different indexes i are equal this product is null.

(iii) �a.H/ D
8
<

:

X

n�0

xn W xn 2 H n^; fn W xn ¤ 0g f inite

9
=

;
is an associative

algebra, with unit element 1 and x1 ^� � �^xn is the product of x1; : : : ; xn; xi 2
H D H 1^, in established order.

(iv) If H � K, then �a.H/ � �a.K/.

Definition 2.2. Let H be a Hilbert space

(a) By a filtration in H we mean a family .Ht /t2Œ0;1/ of closed subspaces of H such
that

Hs � Ht ; 8s < t:

(b) We say that it is a right continuous filtration if Ht D \
u>t

Hu

(c) We say that it is a left continuous filtration if Ht is the closure of [
u>s

Hs

(d) We say that .Ht /t>0 is continuous if the filtration is right and left continuous.

The idea of defining these processes may be found in [6].

Definition 2.3. An adapted process is a family of operators F D .F.t/I t � 0/ on
h such that for each t � 0:

(a) D .F.t// D h0 N̋
"t N̋

ht .

(b) There is an operator F C.t/ W h0 N̋
"t N̋

ht ! h0 such that

hF.t/�; �i D ˝
�; F .t/C�

˛
for 8�� 2 h0 N̋

"t N̋
ht

(c) There are operators F1(t) and F C
1

.t/ on h0 ˝ "t such that:

F.t/ D F1.t/ ˝ 1

F C.t/ D F C
1

.t/ ˝ 1

(d) For each t0 and x 2 " we have:

sup
kuk�1

k.F .t0 C h/ � F.t// .u ˝ x/k h!0! 0

hence 8x 2 " and t 2 Œ0; 1/ lim
s!t

kF.t/ � F.s/kx D 0

where kT kx D sup
kuk�1

kT .u ˝ x/k
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Definition 2.4. A simple process is an adapted process of the form:

F.t/ D
1X

nD0

Fn�Œtn;tnC1/.t/I t � 0 for some sequence 0 D t0 < t1 < � � � <

tn ! 1
We denote by A0 and A, respectively, the sets of simple and adapted processes.

Definition 2.5. Let F; G; H 2 A0 and write

F D
1X

nD0

Fn�Œtn;tnC1/ ; G D
1X

nD0

Gn�Œtn;tnC1/ ; H D
1X

nD0

Hn�Œtn;tnC1/

0 D t0 < t1 < � � � < tn ! 1

The family of operators M D .M.t/; t � 0/ with D .M.t// D h0 N̋
"t N̋

ht defined

by M.0/ D 0

M.t/ D M .tn/ C �
AC

L .t/ � AC
L .tn/

�
Fn C Gn .AL.t/ � AL .tn// C .t � tn/ Hn

for tn < t < tnC1 is called stochastic integral of (F, G, H) and are denoted by:

M.t/ D
tZ

0

dAC
L F C GdAL C Hds

19.3 Stochastic Integrals of Continuous Processes

Now we want to estimate the norm of M.t/ .u ˝ x/, in order to define the stochastic
integrals [11].

We consider three possibilities, where the first is:

M.t/ D
bX

nD0

�
AC

L .snC1/ � AC
L .sn/

�
Fn for tb < t < tbC1, si D ti for i D

0; � � � ; b and sbC1 D t .
We denote F.t/ D

X

nD0

�Œtn;tnC1�.t/Fn and we write briefly

dM D �
dAC

L

�
F or M.t/ D

tZ

0

�
dAC

L

�
F .

We write as follows:

kM.t/ .u ˝ x/k2 �
�
�
�
�
�

X

p

Lp � Lp

�
�
�
�
�

2 tZ

0

kF .u ˝ x/k2da C
tZ

0

kF .�u ˝ x/k2da

C
X

k

sup
a�t

kM.a/ .u ˝ xck/k2kxkk2
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Now we deduce that if Fc D 1; 2; : : : are “simple integrands” like before and if

every u 2 h0, x 2 " and t > 0,

tZ

0

�
�Fc .u ˝ x/ � Fc’ .u ˝ x/

�
�2

da ! 0 for

c; c0 ! 1, then for every t > 0, u 2 h0 and x 2 ",
sup
a�t

�
�Mc .u ˝ x/ � Mc’ .u ˝ x/

�
�2 ! 0, where dMc D �

dAC
L

�
Fc .

We consider x D x1 ^ � � � ^ xr and by induction on r, the termX

k

sup
a�t

kM.a/ .u ˝ xck/k2kxkk2 vanishes for r D 0.

This is the way we define

tZ

0

�
dAC

L

�
F for those F for which it is a sequence Fc

of simple integrands with

tZ

0

�
�Fc .u ˝ x/ � Fc’ .u ˝ x/

�
�2

da ! 0 for c0 ! 1 for

every t > 0, u 2 h0 and x 2 ".
We remark that if F.t/ D F1.t/ ˝ 1 with respect to h D ht ˝ ht and if

F.t/ .u ˝ x/ is continuous in t for every u 2 h0, x 2 ", then there exists a sequence

Fc namely Fc.t/ D
X

k�0

�h k
2n ; kC1

2n

iF

�
k

2n

�

.

We also mention that:

kM.t/k2
x �

�
�
�
�
�

X

p

Lp � Lp

�
�
�
�
�

2 tZ

0

kF.a/k2
xda C

tZ

0

kF.a/k2
xda

C
X

k

sup
a�t

kM.a/k2
xck

kxkk2:

Writing the formulas kM.t/ .u ˝ x/k2 for M.t/ � M.s/, we shall obtain:

kM.t/ � M.s/k2
x �

�
�
�
�
�

X

p

Lp � Lp

�
�
�
�
�

2 tZ

s

kF.a/k2
xda C r

tZ

s

kF.a/k2
xda

C
X

k

sup
a�t

kM.a/ � M.s/k2
xck

kxkk2

and by induction we show that F is continuous hence lim
s!t

kF.s/ � F.t/kx D 0 for

every x, then M(t) follows continuous similarly.

Definition 3.1. The integrals can be defined separately and we have:

M.t/ D
tZ

0

�
dAC

L F C GdAL C Hds
� D

tZ

0

dAC
L F C

tZ

0

GdAL C
tZ

0

Hds:
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19.4 Stochastic Equations

Theorem 4.1. Let be the operators X(0), B and D in L(h0).
We show that the stochastic differential equation:

X.t/ D X.0/ C
tZ

0

dA�
L .BF XDF / C

tZ

0

.BGXDG/ dAL C
tZ

0

.BH XDH / ds

has a unique solution which is a continuous process.

Proof. We remark that the integrands are “allowable”, hence the stochastic integrals
are well defined.

Unicity: if X and Y are two solutions, with X.0/ D Y.0/, then Z D X � Y will
be a solution of the equation with Z.0/ D 0.

Since kBFDkx � kBk kF kx kDk for B; D 2 L .h0/, we have for t � T :

kZ.t/k2
x � c

tZ

0

kZ.a/k2
xda C

X

k

sup
a�t

aZ

0

kBF Z.a/DF k2XCkkxkk2da

C
0

@

tZ

0

X

k

k.BGZ.a/DG/k2XCkda

1

A e

X

k

kxkk2

We give the proof by induction on r, if x D x1 ^ x2 ^ � � � ^ xr .
Knowing that
Z.a/ .u ˝ .x1 ^ x2 ^ � � � ^ xr�1// D 0 for all u and xi, we deduce:

kZ.t/k2
x � c

tZ

0

kZ.a/k2
xda C 0 (for k D 0 this is obvious) and using Gronwall’s

lemma, we obtain kZ.t/k2
x � 0ect , hence Z.a/ .u ˝ .x1 ^ x2 ^ � � � ^ xr�1// D 0

for all u and xi.
Existence: We establish the existence iteratively.
We fix T > 0 and we consider X.0/.t/ D X.0/ for every t � T and then

inductively:

XnC1.t/ D X.0/ C
tZ

0

dA�
L .BF XnDF / C

tZ

0

.BGXnDG/ dAL C
tZ

0

.BH XnDH / ds
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We have:

kXnC1.t/ � Xn.t/ky

D
�
�
�
�
�
�

tZ

0

dA�
L .BF .Xn � Xn�1/ DF /C

tZ

0

.BG .Xn � Xn�1/ DG/ dAL

C
tZ

0

.BH .Xn � Xn�1/ DH / ds

�
�
�
�
�
�

y

� d ’qn�1
.p�1/ C d ’qn�2

.p�1/cT C � � � C d ’q0
.p�1/

�
.cT /n�1= .n � 1/Š

�

C c’ .cnT n=nŠ/

If we denote with qn the last expression which doesn’t depend on t, we have, if k
and n � k converge to 1 with n:

qn D d 0
k�1X

j D1

qn�j
.p�1/.cT /j �1= .j � 1/Š

C d 0 �qn�k
.p�1/.cT /k�1= .k � 1/Š C qn�k�1

.p�1/.cT /k=kŠ
�

C
nX

j DkC2

qn�j
.p�1/.cT /j �1= .j � 1/ŠCc0 .cnT n=nŠ/

Now we use

 
X

k

ak

!
.
 
X

k

bk

!

� max .ak=bk/, and we have:

maxkC2�j �n

�
.cT /

.
.j � 1/ ; cT=n

�
D

max
�

maxj �n�k

�
q

.p�1/

j C1

.
q

.p�1/

j

�
;
�
q

.p�1/

n�k =q
.p�1/

n�1�k

�
CcT=k; maxkC1�j .cT=j /

�

which converges to 0.
Hence

X
..Xn � Xn�1/ .t// is the solution of the equation.

Theorem 4.2. We consider the stochastic integral equation: U.t/ D 1 C
tZ

0

�
U�

�
dAC

L

�C U� .dAL/ C UXds
�
,

where X D �
 
X

p

Lp C Lp

!
.

2.

Then there exists a unique unitary process satisfying this equation.
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Proof. We have U C.t/ D 1 C
tZ

0

��
dAC

L

�
�U C C .dAL/ �U C C XU Cds

�
(since

X D X�).

19.5 Noncommutative Markov Processes as Stochastic
Equation Solutions

Definition 5.1. A noncommutative Markov process is a system which includes:

(i) A Hilbert space h0.
(ii) A C*-algebra A � L .h0/ with 1.

(iii) A family of completely positive mappings: T1 W A ! A; t � 0 with Tt1 D 1,
T0 D 1 and TtCs D Tt Ts (briefly a semigroup of completely positive mappings
on A with Tt 1 D 1).

(iv) Another Hilbert space h, in which h0 is a closed subspace.
(v) A family .jt /t�0 of *-homomorphisms jt W A ! L.h/, such that:

1. j0.x/ D x ˚ 0 relatively to h D h0 ˚ h?
0 .

2. js.1/jsCt .x/js.1/ D js .Tt x/.

Remark.

(a) js(1) is a projector.
(b) js.1/ � jsCt .1/ for t � 0, hence denoting ht D Imjt .1/, notation which is not

incompatible with h0, we obtain a filtration (ht).
(c) There results that Tt is completely positive:

js .Tt x/ D js.1/jsCt .x/js.1/ for s D 0 we have j0 .Tt x/ D
j0.1/jt .x/j0.1/ and hj0 .Tt x/ u; vi D hj0.1/jt .x/j0.1/u; vi and j0 is a
projector.

We also have:

h.Tt x/ u; vi D hjt .x/ .u ˝ 1/ ; .v ˝ 1/i :

Let be Si 2 A, Vi 2 A, then we have:

DX

i;j
Si � Tt

�
V �

i Vj

�
Sj u; v

E
D
X

i;j

˝
Tt

�
V �

i Vj

�
Sj u; Si v

˛

D
X

i;j

˝
jt

�
V �

i Vj

� �
Sj u ˝ 1

�
; .Si v ˝ 1/

˛

D
X

i;j

˝
jt � .Vi / jt .V /j

�
Sj u ˝ 1

�
; Si v ˝ 1

˛

D
X

i;j

˝
jt

�
Vj

� �
Sj u ˝ 1

�
; jt .Vi / Si v ˝ 1

˛ D
�
�
�
X

j
hjt .Vi / Si v ˝ 1i

�
�
�

2 � 0
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(d) If S W A ! A is continuous and linear, then Tt D etS defines a semigroup, but
generally Tt are not completely positive. If S1 D 0 then Tt 1 D 1.

(e) If U 2 L.h/ is unitary, then T ! U T U � is a *-homomorphism:

L.h/ ! L.h/:

We shall use the following formulas:

I. If M.t/ D M.0/ C
tZ

0

dAC
L F C .dA/LG C .ds/H then

hM.t/ .u ˝ x/ ; M.t/ .v ˝ y/i D hM.0/ .u ˝ x/ ; M.0/ .v ˝ y/i

C
tZ

0

�X

p

˝
LpF.a/ .u ˝ x/ ; LpF.a/ .v ˝ y/

˛

C
X

p;j
.�1/j CrCw �xjp.a/

˝
M.a/

�
u ˝ xcj

�
; LpIF.a/I .v ˝ y/

˛

C yjp.a/
˝
LpIF.a/I .u ˝ x/ ; M.a/

�
v ˝ ycj

�˛

C .�1/j �1
�
yjp.a/ hM.a/ .u ˝ x/ ; LpIG.a/I

�
v ˝ ycj

�˛

C xjp.a/
˝
LpIG.a/I

�
u ˝ xcj

�
; M.a/ .v ˝ y/

˛�

C hH.a/ .u ˝ x/ ; M.a/ .v ˝ y/i/ da

II. For S 2 L .h0/, we have .S ˝ 1/ D
tZ

0

dAC
L F C .dAL/ G C Hds D

tZ

0

�
dAC

SL

�
F C .dALS�/ G C SHds as we know from the definition of the

stochastic integral.

III. From U �.t/ D 1 C
tZ

0

��
dAC

L

�
�U � C .dAL/ �U � C XU �ds

�
we deduce that

.S ˝ 1/ U �.t/ D .S ˝ 1/ C
tZ

0

��
dAC

L

�
�U � C .dALS�/ �U � C XU �ds

�
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We consider

U.t/ D 1 C
tZ

0

�
U�

�
dAC

L

�C U� .dAL/ C UXds
�

we write it as follows:

U .t C s/ D U.s/ C
sCtZ

0

�
U�

�
dAC

L

�C U� .dAL/ C UXds
�

The integral can be considered as

tZ

0

of the same integrant with hs instead of h0

and hs instead of h0. Using “III.”, the equation can be written: U .s/�1U .t C s/ D

1 C
sCtZ

0

�
U .s/�1U�

�
dAC

L

�C U .s/�1U� .dAL/ CU .s/�1UXds
�

and then U .s/�1

U .: C s/ appears as U(.).

Lemma 5.2. We consider the equation

U.t/ D 1 C
tZ

0

�
U�

�
dAC

L

�C U� .dAL/ C UXds
�

where X� D X D

�
�X

Lp C Lp

�
=2.

If we define:

A D fS I 2 L .h0/ ; S� D �Sg ; Tt .S/ D ety.S/

where Y.S/ D
�X

p
Lp

�SLp

�
C XS C SX .

Then we have hTt .S/u; vi D hU.t/ .S ˝ 1/ U.t/ .u ˝ 1/ ; .v ˝ 1/i.
Proposition 5.3. We consider the equation

U.t/ D 1 C
tZ

0

�
U�

�
dAC

L

�C U� .dAL/ C UXds
�

where X D �
�X

Lp C Lp

�
=2.

Then, if we define

A D fS I 2 L .h0/ ; S� D �Sg ; Tt .S/ D ety.S/
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where
Y.S/ D

�X

p
Lp

�SLp

�
C XS C SX and jt .S/ D .Ut .S ˝ 1/ Ut

�/ Pt , where

Pt is the projector on ht, the system h0, L(h0), Tt and jt is a noncommutative Markov
process.

Proof. Writing the equation

U C.t/ D 1 C
tZ

0

��
dAC

L

�
�U C C .dAL/ �U C C XU Cds

�
and since U*(t)

appears as ˝1 relatively to h D ht ˝ ht and PsCt D 1˝ our relation becomes

˝
.S ˝ 1/ U .s C t /� .u ˝ x/ ; U .s C t /� .v ˝ y/

˛ D
˝
.Tt .S/ ˝ 1/ U .s/� .u ˝ x/ ; U .s/� .v ˝ y/

˛

We have U .s/� .u ˝ x/ ; U .s/� .v ˝ y/ 2 hs and it suffices to show that˝
.S ˝ 1/ U .s C t /� .u ˝ x/ ; U .s C t /� .v ˝ y/

˛ D h.Tt .S/ ˝ 1/ u; vi.
Hence we obtain the formula from Lemma 5.2, that is

hTt .S/u; vi D ˝
U.t/ .S ˝ 1/ U .t/� .u ˝ 1/ ; .v ˝ 1/

˛
:

Then T ! U T U � is a *-homomorphism: L.h/ ! L.h/.

19.5.1 The Brownian Motion as Noncommutative
Markov Process

We consider H a Hilbert space, a Brownian xt on a probability space (E, K, P), A D
A� 2 L.H/ and U .t; !/ D eixt .!/A. Hence U(t, !) is a unitary operator of L(H).

Let be Tt W L.H/ ! L.H/ defined as Tt .x/ D
Z

U.t/XU .t/�dP .

We have U.t/ D
X

n�0
in.xt /

nAn=nŠ, hence

U .t/� D
X

n�0
.�1/n.xt /

nAn=nŠ; U.t/X.t/U .t/�

D
X

n;k
.�1/n�k.xt /

nCkAnXAk=nŠkŠ

D
X

u

X

nCkDu
.xt /

nCkiui�2kAnXAk=nŠkŠ

D
X

u
.ixt /

u
X

nCkDu
.�1/kAnXAk=nŠkŠ D

X

u
.ixt /

uDu.X/=uŠ

where D.X/ D AX � XA.
Indeed D D P � Q.
P.X/ D AX , Q.X/ D XA, hence



352 C. Serbănescu

Du.X/ D .P � Q/u.X/ D
X

nCkDu
C n

u .�1/kP nQkX , since P and Q
commute.

Hence Tt .X/ D
X

u
iuE ..xt /

u/ Du.X/=uŠ.

From E
�
ei	xt

� D e�t	2=2E
�
e

i	x t
�

D e�t	2=2 we deduce that

X

n
inE ..xt /

n/ 	n=nŠ D
X

n

��	2t=2
�n

=nŠ

and replacing 	 D D we obtain Tt .X/ D e�tD2=2.X/, that is Tt D e�tD2=2.
We have
� �D2=2

�
.X/ D � �A2X � XA2

�
=2CAXA, hence it is of the considerate form

with only one term L D L� D A.

19.5.2 The Poisson Process as Noncommutative
Markov Process

We consider H a Hilbert space, a sequence Un of unitary operators, a convergent
sum with positive terms

X

n
	n D 	, pn D 	n=	, a probability space (E, K, P)

and a particular composite Poisson process on it, that is xt D yzt , where (zt) is a
Poisson process of parameter 	 and .yn/n�1 is a sequence of independent variables,
independent of (zt), all having the repartition ƒ D † pn"n. We consider Y0 D 1.

For every t we consider Ut .!/ D Uyzt : : : U0 and we define for X 2 L.H/,

Tt .X/ D
Z

U.t/XU .t/�dP:

We have

Tt .X/ D
X

k

Z

�.zt Dk/U.t/XU .t/�dP

D
X

k

�
.	t/ke�	t =kŠ

� Z

�.zt Dk/Uyk
: : : Uy0XU �

y0dP D
X

k

�
.	t/ke�	t =kŠ

�X

n1;:::;nk

pn1 : : : pnk
Unk

: : : Un1XU �
n1 : : : U �

nk

We denote Li .X/ D Ui XUi
� and we have:

Tt .X/ D
X

k

�
.t/ke�	t =kŠ

�X

n1;:::;nk

	n1 : : : 	nk
Lnk

: : : Ln1.X/

D
X

k

�
.t/ke�	t =kŠ

� �X

n
	nLn

�k

.X/ D e
t

�

�	C
X

n
	nLn

�

.X/

hence Tt D e
t

�

�	C
X

n
	nLn

�

.
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We remark now that

�
�	 C

X

n
	nLn

�
.X/ D

X

n

�
	n

1=2U �
n

��
X
�
	n

1=2U �
n

�
C ZX C XZ;

where Z D �	=2 D �
X

n

��	1=2
n U �

n

�� �
	1=2

n U �
n

�
=2, hence Tt is a particular

case of the considerate semigroups.

19.6 Conclusions

The need to build the non-commutative Markov processes was given by the evolu-
tion of probabilities in quantum mechanics. This paper aims to build these processes
on antisymmetric Fock space where we do not have exponential commutative
vectors and where the commutative property does not occur between operators
describing disjoint time intervals. For this reason the processes are obtained as
solutions of stochastic integral equations. This mathematical model creates the
possibility to construct physical processes as stochastic integral equations solutions,
being at the same time a new method of proving that certain processes are
noncommutative. The model may be used in diffusion processes.
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13. Serbanescu C.: Fermoin Stochastic Integrals of Continuous Processes. Analele Universităţii,
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