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Cost Optimization and High Available
Heterogeneous Series-Parallel Redundant
System Design Using Genetic Algorithms

Walid Chaaban, Michael Schwarz, and Josef Börcsök

Abstract Heterogeneous redundant series-parallel systems allow the mixing of
components within the same subsystem. This diversity feature may improve the
overall characteristics of the system compared with the homogeneous case in term
of less susceptibility against so called common-cause failures and reduced cost.
That means they guarantee longer availability and are quite suitable for systems
that are designed to perform continuous processes. But the main challenging task is
to determine the optimal design that corresponds to the minimal investment costs
and satisfies the predefined constraints. This kind of combinatorial optimization
tasks is perfectly solved using heuristic methods, since those approaches showed
stability, powerfulness, and computing effectiveness in solving such matters. This
task is more complex than the homogeneous case since the search space is
getting larger due to the fact that every component available and that can be
deployed in a subsystem has to be taken into account. This fact leads definitely
to greater chromosome length and makes the search more time consuming. The
algorithm has been implemented in Matlab and three different existing models
(Levitin, Lisnianski, and Ouzineb) have been considered for a comparison with the
homogeneous case and for validation purposes.
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16.1 Introduction

Heuristic search methods represent powerful and effective means in solving combi-
natorial optimization problems since they do not require any additional information
compared with the classical optimization methods and they accelerate the search
towards objective or convergence through their parallel performed exploration and
exploitation of the search space.

One well known combinatorial optimization task solved using such heuristic
approaches is the Redundancy Allocation Problem (RAP) also referred to as
Redundancy Optimization Problem (ROP) which consists of determining best
series-parallel system designs in terms of redundancy depth on different subsystems
level corresponding to minimal investment costs and that satisfies at the same
time the predefined constraints and system design requirement specifications like
availability, weight, volume and etc.

The Redundancy Allocation Problem (RAP) or Redundancy Optimization Prob-
lem (ROP) [1] is a single objective optimization and can often be encountered
in many applications areas of the safety engineering world like electrical power
systems and in the consumer electronic industry where system designs are mostly
assembled using standard certified component types with different characteristics,
e.g., reliability, availability, nominal performance, cost, etc. This matter has been
intensively studied over last two decades and has been classified as a complex
nonlinear integer programming combinatorial problem, where deterministic or
conventional mathematical optimization approaches become ineffective by means
of computational effort and quality of solution [1].

Using heuristic and metaheuristic search methods, e.g. Genetic Algorithms
(GAs), Tabu Search (TS), Simulated Annealing, etc., in solving such kind of
combinatorial optimization problems aims to determine an optimal or near optimal,
also called pseudo-optimal solution, to the proposed RAP, i.e. to find the best
or at least one acceptable solution that satisfies the constraint(s). However, these
approaches have shown instead how powerful and effective they are in finding
high qualitative solutions for the addressed kind of problems, especially when
the search space corresponding to the problem becomes too large and where
conventional classical optimization methods become ineffective and useless. This
kind of problems was first introduced by Ushakov [1] and has been further analyzed
by Levitin and Lisnianski et al. [2–4], Ouzineb [5–7] and many others.

This paper deals with the cost optimization of heterogeneous structured series
assembled systems, where mixing of components or usage of non-identical com-
ponents within the same subsystem is allowed. This feature, compared with the
homogeneous case, includes more complexity to the task because the corresponding
search or solution space becomes larger, since every component available on the
market has to be taken into account. It represents a single objective optimization
(cost function) subject to one constraint which is the availability of the system.

The remainder of the paper is organized as follows. Section 16.2 gives a
short introduction into heterogeneous series-parallel multi-states configurations and
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a brief overview on the advantages obtained through mixing of components in
addition to a short comparison with homogeneous systems. Section 16.3 shortly
discusses genetic algorithms and its different operators while chromosomal encod-
ing and random generating of solution candidates are implemented in Sect. 16.4.
In Sect. 16.5 a detailed formulation of the optimization problem, which is solved
using heuristic traditional GA genetic techniques, is presented. Section 16.6 deals
with the Universal Moment Generating Function (UMGF), also called the Ushakov-
transform, which represents the function used for the determination and evaluation
of the availability of the different redundant structures. Section 16.7 reports differ-
ent numerical and experimental results, evaluations and graphical representations
obtained by the implemented GA algorithm for different analyzed models which
will be compared with previously published evaluations in terms of efficiency,
solution quality and accuracy in addition to algorithm computation speed and
convergence time. Finally concluding remarks are resumed in Sect. 16.8.

16.2 Homogeneous vs. Heterogeneous Series-Parallel
Configurations

In order to improve or to increase the system’s reliability and provide longer oper-
ation time, safety system designers may introduce different parallel technologies
into a system also called redundancy [8]. Including homogeneous components
redundancy is a great and effective technique to achieve a desired level of reliability
in binary state systems or to increase the availability of multi-state systems.
Reliability analysis have shown that the availability of homogeneous redundant
structures or systems is extremely affected by common cause failure (CCF) that
cannot be ignored since the CCF is the simultaneous failure of all components
of the same type due to a common cause (CC), which leads in homogeneous
redundant structures definitely to the failure of complete subsystems consisting of
identical components causing herewith a total system failure. Common cause events
may arise from environmental loads (humidity, temperature, vibration, shock, etc.),
errors in maintenance and system design flaws [9]. In order to partly overcome this
kind of facing problems and avoid total system failure subject to CCF heterogeneous
redundancy is used.

The main concept of heterogeneous or non-homogeneous structures consists
of the mixture of non-identical components within the same subsystem. That
means that all non-identical components with the same functionality available on
the market and which can be deployed in a redundant manner within the same
subsystem have to be taken into account in this case, the fact that would definitely
enlarge the size of the search space of feasible solutions and increase the exploration
and hence the convergence time towards acceptable solutions.

The main advantages and benefits of components mixing lie in the improvement
of the availability of the whole system and reducing the effect of common cause
failure in addition of introducing flexibility and diversification into redundant
system design through the allowed multiple component choice.
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Fig. 16.1 Heterogeneous series-parallel configuration consisting of s-nodes or subsystems

Figure 16.1 represents a heterogeneous series-parallel multi-state system consist-
ing of s subsystems, which are connected serially.

In Fig. 16.1 rij represents the reliability of a component of version j within the
subsystem i. In the case of a homogeneous configuration the reliabilities of all
components within the same subsystem are the same since subsystems consists of
identical components, i.e. all rij’s are equal for the same i, which must not be the case
in heterogeneous systems since they mostly deal with non-identical components on
the same stage.

For a brief explanation, in addition to a short mathematical computation that
shows why series-parallel configurations are more suitable and studied than parallel-
series configurations, the reader should refer to [1, 10]. This is due to the fact that
the overall reliability or availability of a system in a series-parallel configuration
is better than the corresponding parallel-series configuration using the same set of
components.

16.3 Genetic Algorithms

Genetic algorithms (GAs) are biologically inspired metaheuristic search and opti-
mization routines that mimic the act of self-evolution concept of natural species
that has been first laid by Charles Darwin. Nowadays, they are frequently used
in many engineering and mathematical fields like optimization, self-adaptiveness,
artificial intelligence, machine learning, etc. As computational efforts and speeds
have been increasingly improved over the last decade, GAs have been expanded
to cover a wide variety of applications including numerical and combinatorial
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optimization tasks in engineering like the one discussed in the recent work. For
further fundamentals and detailed information on genetic algorithms, the reader
should refer to [11, 12].

GAs represent iterative self-adaptive stochastic techniques based on the concept
of randomness. They mimic the process of the natural evolution of species. GAs
have become very popular and widely used over the last decade and are very well
suited as universal or common techniques for solving combinatorial optimization
problems, e.g. multimodal functions (many peaks and local optima), the very well-
known TSP (Travelling Salesman Problem) and redundancy allocation problems
like the one discussed in this paper and many other matters [13].

GAs differ from normal optimization and search methods in four fundamental
different ways [12]:

• The first difference is that GAs require an encoding of the parameter set in so
called solution candidates, also called chromosomes according to the biological
genetic terminology.

• Another difference is that GA starts the search from a start (initial) population
and not from a single point like classical deterministic algorithms.

• GAs use information provided directly by the objective function and do not
require any additional information or auxiliary knowledge like derivatives,
gradients, etc.

• GAs apply probabilistic transition rules or operators (crossover, mutation) and
not deterministic ones.

As mentioned before the search procedure starts from a random generated
population of chromosomes that are encoded according to the addressed problem
(binary, integer, decimal, etc.) conducting herewith a simultaneous search in many
areas of the feasible solution space at once. The encoding of solutions constitutes
the most difficult and challenging task of GAs and the evolving procedure from one
population to the next is referred to as generation.

After each generation the new generated solutions are decoded and evaluated
in terms of fitness with the help of the objective function. The fitness value of a
chromosome represents a measure for its quality (fitness) and represents the decision
maker of the selection operator since the probability of selection of chromosomes
is proportional to its corresponding fitness value. A general overview of the genetic
cycle is given in Fig. 16.2.

The genetic run process terminates when at least one of its predefined termination
criterions is met, e.g., when the predefined maximum number of generations or
repetitions Nrep or a specific number of successive runs without any solution’s
improvement is reached, or for example when the current solution satisfies the
predefined requirement specifications or constraints.

Three main operators, also called genetic operators, will be executed during
one genetic cycle, hence the selection, crossover or recombination and the
mutation operator. These operators are shortly discussed in the following
subsections.
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Fig. 16.2 General overview of the genetic process

16.3.1 Selection or Reproduction: Operator

Outgoing from a start or an initial population of different solution candidates the
selection operator is used to randomly select or choose individuals or chromosomes
which will reproduce and help building the next population during the genetic
cycle. This operator represents an artificial version of natural selection, the Dar-
winian principle of the survival of the fittest, which drives the evolution towards
optimization. Since the selection probability is proportional to relative fitness,
chromosomes with higher fitness have better chance or higher probability to survive
into next population, while chromosomes with bad or lower fitness will die off. This
phenomenon will improve the population’s average fitness from one population to
the next.

There are many selection methods, some of them are listed in the following [14]

• Roulette Wheel selection,
• Tournament selection,
• Rank selection,
• etc.

16.3.2 Recombination or Crossover: Operator

Whereas the selection operator determines which chromosomes of the recent
population are going to reproduce, the crossover operator performs jumps between
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the different solution subspaces enabling the exploration of new areas of the solution
space and avoiding herewith premature convergence in addition to the exchange
of some basic characteristics or genetic materials and inheriting these properties
to the offsprings which will join next populations. The crossover occurs with a
predefined crossover rate or probability of crossover pc. There are many crossover
techniques used in genetic algorithms [1, 14, 15] like the one-point crossover, two-
point crossover, uniform and half uniform crossover and many other crossover
techniques.

In the following the one-point crossover operator is shortly discussed. For this
purpose two parent chromosomes Parent1 and Parent2 are selected. Afterwards
a pseudorandom real number is generated in [0; 1]. If and only if the generated
number is less or equal pc both parents will undergo crossover; otherwise they will
have to be recopied in the population and wait to undergo the next operator, hence
the mutation operator.

In case 2 chromosomes undergo crossover, a crossover point or position depend-
ing on the length of the chromosome is randomly selected on both selected parent
chromosomes. This step is done by a pseudorandom integer number generator that
generates numbers in the interval [1;lc � 1], where lc is the length of the vector
representing the chromosome. All data beyond that point in either chromosome
will be swapped between the two parent organisms which will result in two new
individuals called offsprings or children chromosomes. The one-point crossover
technique is depicted in Fig. 16.3.

Figure 16.4 shows a pseudo code which resumes the crossover procedure.

Parent 1

Parent 2

Crossover point

Offspring 1

Offspring 2

Fig. 16.3 One-point crossover technique

Fig. 16.4 Pseudocode—one-point crossover
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Fig. 16.5 Mutation of a binary encoded chromosome

Fig. 16.6
Pseudocode—mutation
operator

16.3.3 Mutation Operator

After crossovering parent chromosomes the resulting offsprings or children undergo
mutation with a low mutation rate or probability pm. The mutation operator
introduces diversity into the GA algorithm and inserts small disturbance into the
properties (genes) of the proposed solutions avoiding herewith premature conver-
gence into local maxima. Mutation also helps recovering loss that might have been
caused by crossover. After the mutation process has been accomplished, the new
resulting mutated chromosomes constitute the new next population. The mutation
of a binary encoded chromosome consists of inverting the randomly selected bit
or position like depicted in Fig. 16.5, while a pseudo code which represents the
mutation routine is shown in Fig. 16.6.

16.4 Chromosomal Encoding and Random Generating
of Solution Candidates

Genetic algorithms are population based combinatorial optimization approaches
where populations consist of a predefined number of solution candidates, also
called chromosomes or individuals. These candidates represent vectors of encoded
information, referred to as genetic materials, which will be decoded using the
fitness or objective function in order to find the optimal (minimum or maximum) or
near optimal solution of the addressed problem, whereas the recent approaches for
solving the RAP problem are based on the Universal Moment Generating Function
(UMGF) for estimating the availability of multi-state systems [2, 5–7, 16]. The
encoding of chromosomes represents one of the major challenges faced in the
context of genetic computing.

With regard to such problems that are dealt with in this paper, i.e., in the case
of heterogeneous redundant structures the chromosome length corresponding to a
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system is definitely longer than chromosome corresponding to the homogeneous
case since each component version or type available on the market that may be
deployed in a subsystem has to be taken into account, whereas in homogeneous
systems, the chromosome length is equal to twice the number of subsystems, since
only one component type or version is allowed on each stage. The chromosomes
are integer encoded and each element xij of the chromosome vector corresponds
to the number of components of version j used in subsystem i. The chromosome
dimension or length lc is given therefore through:

lc D
sX

iD1

Ji : (16.1)

where s is the total number of subsystems or stages and Ji the total number
of component versions available on the market that can be used on stage or in
subsystem i. For more clarification and to gain a deeper insight it is important to
mention at this point that two components of different versions or non-identical
components connected in parallel are supposed to perform the same task or
function. The difference lies in the technical data (reliability/availability, nominal
performance and etc.) in addition to purchasing costs.

For example let us consider a system consisting totally of four subsystems with
the following version vector m D [4 6 8 5] representing the number of components
available on the market for each subsystem. The chromosome length results in this
case as the sum of all elements of the version vector and would give according to
Eq. (16.1) a total chromosome length of 4 C 6 C 8 C 5 D 23 and the chromosome
encoding or vector X will look like in the following:

X D .Œx11 : : : x14� ; Œx21 : : : x26� ; Œx31 : : : x38� ; Œx41 : : : x45�/ : (16.2)

where xij denotes as mentioned previously the number of components of type j used
in subsystem i.

For generating chromosomes or solution candidates according to the addressed
optimization problem, discussed in this paper, a pseudo random number generator is
used. Since events should happen at random but some events or numbers within the
chromosomal encoding should have a higher probability of occurrence or happening
than others, e.g. zeros which means that no components of this kind are used, a
weighted pseudo random number generator is used.

As mentioned above, the step of generating numbers with predefined probabil-
ities of occurrence in addition to the limitation of the maximum number of totally
used components within each subsystem would reduce the search hypervolume.
This would increase the computation speed drastically towards convergence and
make the algorithm more efficient and time consuming.
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16.5 Cost Optimization and Redundancy Allocation:
Task Formulation

The cost optimization problem of heterogeneous series-parallel redundant systems
discussed in this work deals with the determination of optimal redundant designs
and the level of redundancy (redundancy allocation) to use in each subsystem
that corresponds to the minimal total purchasing costs of the system and which
satisfies at the same time the predefined availability constraints. This kind of
optimization gives a rise to safety vs. economics conflicts resumed in the following
two points [17]:

Choice of components: choosing high reliable components guarantees high
system availability but may be largely non-economic due to high purchase prices;
whereas choosing less reliable components for lower costs on one hand may
decrease the availability of the system and increase drastically the accident costs
on the other hand.

Choice of redundancy configuration: choosing highly redundant configurations
increases definitely the reliability and availability of the system and is accompanied
at the same time with higher purchase costs caused by additional equipment units
required to improve individual subsystems reliabilities.

The previously described aspects of safety system design call for compromise
choices which optimize system operation in view of recommended safety and longer
operation time or budget constraint. As mentioned before this paper deals with
customizing a GA for budgetary optimization and redundancy determination of
multi state systems under a given availability constraint. This problem is considered
as a single objective optimization and can be mathematically formulated as to
minimize the cost function Csys(X) (objective function) of the whole system given
by [1, 5–7, 16]:

Csys.X/ D
sX

iD1

miX

j D1

cij xij : (16.3)

where cij being the cost of component of type j in subsystem i and xij the number of
components of type j used in subsystem i. mi is the number of component choices
available on the market which may be deployed in subsystem i. The (cost) objective
function represented in Eq. (16.3) results over the sum of the purchasing costs of all
components used in system that should meet at the same time the system specified
availability constraint, which implies that the total availability of the system Asys(X)
must satisfy a minimum level of availability required A0 (inequality or availability
constraints)

Asys.X/ � A0: (16.4)
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Based on the UMGF or the Ushakov-transform, the total availability of the
system Asys(X) is estimated as a function of system structure, performance and
availability characteristics of its constituting components.

For a detailed overview of the UMGF in computing the availability of series-
parallel systems the reader should refer to [2, 3, 5–7, 10, 17, 18].

16.6 Universal Moment Generating Function

The UMGF, also referred to as Ushakov-transform according to I. Ushakov (mid
1980s) or u-function, is a polynomial representation of the different states corre-
sponding to a component or a system. For a great understanding of the mathematical
fundamentals of the UMGF the reader should refer to [17]. For example, the
u-transform uj(z) of a component or a random variable j having M different discrete
states is given by

uj .z/ D
MX

mD1

pmzWm: (16.5)

In Eq. (16.5) pm is the probability that the nominal performance of the component
or value of the discrete random variable j at state m equal to Wm.

Since in the recent study it is assumed that the used components are binary state,
i.e., have two particular states (perfect working or complete failing), the Ushakov-
polynomial representation of a binary state component j is given by

uj .z/ D
2X

mD1

pmzWm D �
1 � Aj

�
z0 C Aj zWj D �

1 � Aj

�C Aj zWj : (16.6)

In Eq. (16.6) Aj represents the probability that the component is available (perfect
functioning) and delivers a nominal performance of Wj (Pr[Wm D Wj] D Aj) while
(1 � Aj) represents the probability of unavailability or failing (system not available,
i.e., Pr[Wm D 0] D 1 � Aj). The 0 power factor in the failing state results from the
absence of delivered performance in this state.

In order to determine the u-function of an entire series-parallel system for
availability computation purposes, two different basic operators will be respec-
tively applied [5, 6, 10, 17, 18]. These two operators also called composition
operators applied respectively [17] will be implemented separately in the following
subsections.
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16.6.1 � -Operator: Ushakov Transform of Parallel
Configurations

The � -composition operator is used to determine the u-function of parallel systems.
Suppose a system consisting of xi parallel connected components, the corresponding
u-function is given by the following equation

uparal lel .z/ D � .u1.z/; u2.z/; : : : ; uxi .z// : (16.7)

where the total performance or the structure function f (W1,W2, : : : ,Wxi) is given by
the sum of the performances or capacities of the individual components or elements
as described in the following equation

f .W1; W2; : : : ; Wxi / D
xiX

iD1

Wi : (16.8)

For a pair of parallel connected components with the corresponding u-functions
u1(z) and u2(z) given according to Eq. (16.5) the resulting u-function uparallel(z) of
the entire parallel system is given by

uparal lel .z/ D � .U1.z/; U2.z//

D
nX

iD1

P1i z
W1i

mX

j D1

P2j zW2j

D
nX

iD1

mX

j D1

P1i P2j zW1i CW2j :

(16.9)

In Eq. (16.9), n and m represent the number of states of the components 1
and 2. W1i and W2j are respectively the nominal performances of the components
1 and 2 at states i and j, which occur with the respective probabilities P1i and P2j

(i D 1 : : : n and j D 1 : : : m). All this means that the � -operator is nothing else than
the polynomial product of the individual u-functions corresponding to all parallel
connected components and therefore Eq. (16.9) can be represented as

uparal lel .z/ D
xiY

eD1

ue.z/: (16.10)

For a subsystem i within a series-parallel configuration consisting of xi different
parallel connected binary state components, whose UMGF representation is given
by Eq. (16.6), the u-function according to Eq. (16.10) is written in the form

uparal lel .z/ D
xiY

eD1

��
1 � Aij

�C Aij zWij
�
: (16.11)
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j represents the index corresponding to the version of the component used in case
of non-homogeneity. Suppose that all parallel connected components are identical,
Eq. (16.11) is rewritten as

uparal lel .z/ D ��
1 � Aij

�C Aij zWij
�xi

: (16.12)

Using the binomial theorem the power representation of Eq. (16.12) can be
expanded in a sum of the form

uparal lel .z/ D
xiX

kD0

�
xi

k

��
Aij zWij

�k�
1 � Aij

�xi �k

D
xiX

kD0

�
xi

k

�
Ak

ij

�
1 � Aij

�xi �k
zkWij

D
xiX

kD0

˛ikzkWij

(16.13)

with

˛ik D binm
�
k; Aij ; xi

� D
�

xi

k

�
Ak

ij

�
1 � Aij

�xi �k
(16.14)

and where the binomial coefficients are given by

�
xi

k

�
D xi Š

kŠ .xi � k/Š
: (16.15)

That means that the u-function or the polynomial z-representation of each parallel
subsystem consisting of xi non-identical components (heterogeneous case) can be
computed according to Eq. (16.11). If all xi or a specific number xn of components
are identical, some simplification can be made using the binomial theorem according
to Eq. (16.13).

16.6.2 �-Operator: Ushakov Transform of Series
Configurations

In order to determine the u-function of a system consisting of s elements or
components connected in series, the �-operator is applied according to

useries.z/ D � .u1.z/; u2.z/; : : : ; us.z// : (16.16)
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In the case of series connected components, the element with the minimal or
least performance becomes the bottleneck of the system. This system is the decision
maker about the total system performance or productivity. Therefore the structure
or the performance function f is given by

f .W1; W2; : : : ; Ws/ D min .W1; W2; : : : ; Ws/ : (16.17)

For a pair of components u1(z) and u2(z) connected in series and according to Eq.
(16.17) the resulting u-function of the system useries(z) is given by

useries.z/ D � .u1.z/; u2.z//

D �

0

@
nX

iD1

P1i z
W1i ;

mX

j D1

P2j zW2j

1

A

D
nX

iD1

mX

j D1

P1i P2j zf .W1i ;W2j /:

(16.18)

Replacing the structure function according through Eq. (16.17), the u-function of
two series connected components will be given by

useries.z/ D
nX

iD1

mX

j D1

P1i P2j zmin.W1i ;W2j /: (16.19)

16.6.3 Ushakov Transform of Series-Parallel Systems: (� , �)

As mentioned previously, in order to determine the u-function of the entire series-
parallel MSS both composition operators � and � have to be performed respectively
like depicted in Fig. 16.7.

In Fig. 16.7 the individual s parallel systems consisting of non-identical binary
state components will be replaced by single elements having multi-states u-
functions (u1(z) : : : us(z)) determined by the � -composition operator according to
Eq. (16.11). Afterwards the �-composition operator will be applied on the resulting
system consisting of the s-multi-states components connected in series which leads
to the u-function usys(z) of the entire system that would be computed with the help
of Eq. (16.16) like in the following

usys.z/ D � .u1.z/; u2.z/; : : : ; us.z//

D �

 
x1X

kD0

˛1kzkW1j ;

x2X

kD0

˛2kzkW2j ; : : : ;

xsX

kD0

˛skzkWsj

!

D
MX

mD0

ımzWm:

(16.20)
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Fig. 16.7 Determination of the u(z)-function for the entire series-parallel system

ım and Wm are real numbers determined according to Eq. (16.19). The evaluation
of the probability that the entire system satisfies a specific level of performance
W0 is given by the sum over all coefficients ım that correspond to a nominal
performance Wm greater or equal W0. The resulting sum represents the availability
Asys(X) corresponding to the series-parallel system, whose design is represented by
X and is given by

Asys .W0/ D Pr .Wm � W0/ D
X

Wm�W0

ım: (16.21)

Given K different demand levels represented by Wk
0 where k D 1 : : : K, which

should be satisfied over different operation intervals Tk the total availability Asys(X)
of the system is obtained by the sum of the instantaneous availabilities correspond-
ing to the different demand levels divided by the total operation or mission time and
is given by

Asys.X/ D 1
T

KX

kD1

X

Wm�W k
0

ımTk

D 1
KX

kD1

Tk

KX

kD1

X

Wm�W k
0

ımTk:
(16.22)
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16.7 Tuning Parameters and Experimental Results:
Validation

The simple genetic algorithm with some modifications in the context of its operators
was used in this work. The algorithm has been implemented in Matlab which
provides uniform pseudorandom number generators and powerful matrix and vector
operations and allows great visualization and graphical representation. The three
different models, which have been analyzed in the homogeneous case in a previous
publication [10, 18], have been treated again in the heterogeneous case in order to
show the effect of mixing of components on investment cost reduction and hence
getting safer systems subject to CCFs for lower cost than the homogeneous case
and for same given constraint factors. The used components are assumed to be
binary state (perfect working or totally failing). The models and data, as mentioned
previously, have been taken from [5–7], are listed below:

• Lev4_4_6_3
• Lev5_5_9_4
• Ouz6_4_11_4

For a brief understanding of the decoding of the denotation of the individual
models it is referred to Ouzineb in [5–7]. The purchasing price, reliability and
nominal performance capacity for the components corresponding to the upper listed
systems are supposed to be known and can be retrieved from a list with technical
data (excel sheets).

The algorithm starts by retrieving the data of the analyzed problem from the
appropriate sheet and by random generating a so called initial population of size
Popsize that has been set to 100 chromosomes. The integer encoded chromosomes
constituting the initial population have been generated in such a way that generated
solutions that do not satisfy the given availability constraint are rejected and
replaced by new acceptable ones in order to get a high qualitative start population.
The constituting individuals or chromosomes have been created using a weighted
pseudo random number generator which generates numbers between zero and the
total number of components allowed in each subsystem, which have been set
to ten. The probability of occurrence of 0 has been varied between 0.7 and 0.9
during the random chromosome generation process depending on the length of the
chromosome corresponding to the analyzed problem. This limitation to the number
of components allowed within a subsystem in addition to the rejection of non-
feasible solutions. Furthermore a weighted generation of chromosome would limit
the area that will be explored within the search space and should accelerate the
search procedure towards convergence.

After evaluating and ranking populations (cost and availability estimation)
chromosomes are selected to mate, recombine and finally mutate in order to build
new offsprings that complete the next population of size Popsize. This genetic pro-
cedure repeats until the predefined maximal number of generations Nrep is reached
(Termination criterion). After completing each population through crossover and
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Fig. 16.8 Results of the genetic algorithm run of the heterogeneous case (Levitin—model
containing four subsystems, availability constraint A0 D 0.900 and 300 generations). The cost-
generation and availability-generation curves dependencies are depicted on the left-hand side. The
cost-time and availability-time dependencies are depicted on the right-hand side

mutation the population will be checked for multiplicity before evaluation by
term of fitness function and new chromosomes would be generated to replace the
chromosomes that appear more than once and have therefore been removed. This
procedure of inserting new chromosomes to the population is compared to the act of
inserting new genetic materials and may lead to new search areas that have not been
explored or searched before and may accelerate the convergence speed. Figures 16.8
and 16.9 show the results of one run of the GA over the Lev4-(4/6)-3 model
(heterogeneous case) data by predefined availability constraints of A0 D 0.900 and
A0 D 0.960, and Fig. 16.10 shows the run of the GA over the Ouz6_(4/11)_4 by an
availability constraint of A0 D 0.99. The different plots show the evolution progress
outgoing from the random initial population up to the predefined maximum number
of generations. The best result (Cost—upper plots and Availability—lower plots),
received after each genetic cycle, is depicted.

The time needed to find the best solution (convergence time) depends on the
quality of the start population and on how the selected fittest chromosomes evolve
throughout crossover and mutation.

On the left-hand side of Figs. 16.8, 16.9 and 16.10 (heterogeneous case) the best
solution found (Top: cost value, bottom: availability value for found cost) during
each generation is plotted against generation number whereas the same plots are
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Fig. 16.9 Results of the genetic algorithm run of the heterogeneous case (Levitin—model
containing four subsystems, availability constraint A0 D 0.960 and 300 generations). The cost-
generation and availability-generation curves dependencies are depicted on the left-hand side. The
cost-time and availability-time dependencies are depicted on the right-hand side

represented on the right hand side against algorithm processing time. On the head
of each plot the best chromosome or system design corresponding to the optimal
(minimal) found cost subject to the given availability constraint is represented. In
the context of the plots the generation number and convergence time are reported
for which the best result has been identified.

Figures 16.11, 16.12 and 16.13 represent the homogeneous case of the het-
erogeneous problems analyzed successively in Figs. 16.8, 16.9, and 16.10. These
figures have been included in order to show that through mixing of components
lower or better system costs (Lev4-(4/6)-3—Model) can be reached in comparison
to the homogeneous case subject to the same availability constraint. In the analyzed
Ouz6_(4/11)_4 model no better cost results have been achieved but at least the same
results as in the homogeneous case have been reached. One additional reason is to
show that with the GA approach analyzed in this paper it was also possible to get
the same results got with the hybridized GA C TS algorithm implemented in [5, 7].
This fact shows the effectiveness and accuracy of the GA approach discussed in this
work since with the GA implemented in [6, 7] different results have been achieved.

The best test results got within 15 successive runs of the genetic algorithm over
the different models mentioned previously are shown in Table 16.1. Computing and
convergence time for best achieved results are also included in the same table and
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Fig. 16.10 Results of the genetic algorithm run of the heterogeneous case (Ouzineb—model
containing six subsystems, availability constraint A0 D 0.990 and 300 generations). The cost-
generation and availability-generation curves dependencies are depicted on the left-hand side. The
cost-time and availability-time dependencies are depicted on the right-hand side

serve to show how well the genetic algorithm customized for the heterogeneous case
is performing in term of convergence speed, which can also be seen in the results
depicted in Figs. 16.8, 16.9 and 16.10.

16.8 Conclusion and Future Works

Based on the facts and experimental results shown in the previous section and
resumed in Table 16.1 for the different analyzed models, it can be recognized
and concluded that the GA algorithm for heterogeneous series-parallel multi-states
systems implemented in this work was performing in a great and efficient manner in
term of convergence speed towards optimal results being expected and represented
by Ouzineb in [5–7] and obtained by the hybrid GA C TS metaheuristic approach,
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Fig. 16.11 Results of the genetic algorithm run of the homogeneous case for the same upper
system (Levitin—model containing four subsystems) and subject to the same availability constraint
A0 D 0.900. As one can see in the heterogeneous case a better cost factor can be reached (5.423)
than the homogeneous case (5.986) due to the fact that components have been mixed

Fig. 16.12 Results of the genetic algorithm run of the homogeneous case for the same upper
system (Levitin—model containing four subsystems) and subject to the same availability constraint
A0 D 0.960. As one can see in the heterogeneous case a better cost factor can be reached (7.009)
than the homogeneous case (7.303) due to the fact that components have been mixed
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Fig. 16.13 Results of the genetic algorithm run of the homogeneous case for the same upper
system (Ouzineb—model containing six subsystems) and subject to the same availability constraint
A0 D 0.990. As one can see in both cases the same cost factor has been reached (12.764) but
definitely for less computation time in the homogeneous case

in addition to the high accuracy in determining or finding the optimal solution
(minimal system cost). And since genetic searching seems like searching for a
small fish in a big ocean one small disadvantage or drawback is the standard one
known in (heuristic) genetic approaches and that is resumed in the fact that the best
optimal solution is not guaranteed or ensured in each run due to the limitation of the
maximum number of iterations that may result, that some regions of the search or
solution space that may include the optimal solution remains unexplored or out of
reach.

The genetic approach implemented in this paper represents a very effective
means in solving single objective constrained redundancy design problems like the
complex heterogeneous one discussed in this work.

One of our future intentions is to tune genetic algorithms with local search
algorithms targeting to increase the level of search accuracy. This kind of tuning is
referred to in the literature as hybridization of genetic global searching algorithms.
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