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Introduction

Our memories reflect the accumulation of our past experiences. They shape future 
decisions and determine what and how we learn over time. It should not be surpris-
ing, then, that many fundamental elements of memory (e.g., different associative 
algorithms, motivation, sensory, motor, attention, memory updating, and response 
selection) must work together to continuously guide experience-dependent and 
adaptive behaviors regardless of the nature of the type of currently active memory. 
Study of a variety of amnesic populations has illustrated that not only many regions 
of the brain play these important roles in memory, but also different brain areas do 
so for different reasons. Temporal lobe patients (the most famous of which is patient 
H. M.) show severe but select anterograde episodic memory impairment, while pro-
cedural memory remained intact (Bayley et al. 2005; Milner 2005). Patients suf-
fering from basal ganglia dysfunction show selective impairment in habit learning 
and procedural memory (Knowlton et al. 1996; Yin and Knowlton 2006). Amyg-
dala damage results in poor emotional regulation of memory (Adolphs et al. 2005; 
Paz and Pare 2013). Frontal patients suffer from inadequate working memory 
(Baddeley and Della Sala 1996; Goldman-Rakic 1996). These classic distinctions 
of the mnemonic consequences of damage to different brain areas in humans have 
been replicated in rodents by many, and the Kesner laboratory has been particularly 
successful at demonstrating not only double, but also often triple dissociations of 
functions of structures like the hippocampus, striatum, amygdala, and prefrontal 
cortex (e.g., Chiba et  al. 2002; Gilbert and Kesner 2002; Kametani and Kesner 
1989; Kesner et al. 1993; Kesner et al. 1989; Kesner and Williams 1995). More-
over, the often clever behavioral paradigms created in the Kesner laboratory over 
the years have been inspirational for generating more specific hypotheses about 
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memory function that could be tested in human subjects (e.g., Hopkins et al. 1995, 
2004; Kesner and Hopkins 2001, 2006).

Decades ago, Ray Kesner was perhaps the first to develop a broad theoretical 
model of memory that sought to explain many of its complexities. His attribute 
model of memory posits the existence of three basic types of memory (event, 
knowledge, and rule-based memories), each one of which incorporates similar and 
fundamental memory operations to establish and use their particular type of memo-
ry. Kesner has written many elegant reviews of his work (Kesner 1980, 1998, 2009; 
Kesner and DiMattia 1987; Kesner and Rogers 2004), and readers, if they have 
not done so already, should seek out those reviews to gain an appreciation for his 
most impressive programmatic, timely, and innovative research program. Kesner 
initially proposed his attribute model at a time when most studies on the neurobio-
logical models of memory focused on simpler memory functions of a small number 
of brain regions. However, more recently, the development of new behavioral and 
neuroscience technologies has sparked the current, widespread, and strong inter-
est in studying the multiple neural systems of the brain during complex memory 
function that involve learning and decision-making mechanisms. Thus, it is clear 
that the attribute model was and continues to be a visionary theoretical framework 
for studying brain mechanisms of memory, learning, and decision-making. Indeed, 
it is now generally accepted that as espoused by the attribute model, hierarchical 
sets of parallel and distributed neural networks mediate the complex and dynamic 
processes of simple and complex memories in the brain. Current challenges are to 
figure out how different networks interact, how behaviors come to guide memory 
operations, and how existing memories guide future learning and decisions.

Neurophysiological investigations of these memory-related brain regions both 
confirmed and challenged the multiple memory system view. Spatial and conjunc-
tive context-dependent coding were identified in the hippocampus (O’Keefe and 
Dostrovsky 1971; O’Keefe and Nadel 1978) and this was consistent with the view 
that hippocampus mediates episodic memory (Tulving 2002). Response-related 
codes were found in the striatum (Eschenko and Mizumori 2007; Jog et al. 1999; 
Yeshenko et al. 2004), supporting the hypothesis that striatum mediate habit or re-
sponse learning (Knowlton et al. 1996). Frontal cortical neurons remain active dur-
ing delay periods (Goldman-Rakic 1995), a finding that one might expect from a 
brain region that is importantly involved in working memory (Fuster 2006, 2008, 
2009). With time, however, additional studies began to show that these striking 
neural correlates of behavior were not so unique to the hippocampus, striatum, and 
frontal cortex. Egocentric movement-related firing by hippocampal interneurons 
was reported long ago (e.g., Vanderwolf 1969) but was largely unstudied until re-
cently in favor of studying what was at the time the more intriguing place cells. Pa-
rietal cortical neurons also showed strong representations of behavioral responses 
(e.g., Fogassi et al. 2005; McNaughton et al. 1994). Delay cells were found in re-
gions of the cortex other than the prefrontal cortex, for example, in somatosensory 
cortex (Meftah et al. 2009), parietal cortex (Snyder et al. 1997), frontal eye fields 
(Curtis et al. 2004), and less so in temporal cortex (Kurkin et al. 2011). The fact that 
the single unit evidence did not align directly with the lesion literature suggested 
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that many regions of the brain use similar types of information during their mne-
monic computations. However, since the single-unit data came from studies of ro-
dents and primates that used different recording methods while subjects performed 
a diverse set of tasks, it became important to record from multiple memory-related 
brain structures as an animal performed a single task that required animals to switch 
between different memories to continue adaptive decision-making.

In the following section, we describe our efforts to address the issue of whether 
different brain regions mediate different memories because they represent different 
kinds of information. The last section of this chapter explores the hypothesis that 
the relative contribution of different brain areas to memory is driven by homeostatic 
neural mechanisms that insures proper self-regulation of a behavioral adaptation 
system that depends on the memory functions described in the attribute model.

Memory Specialization and the Brain

Given that different memory capacities exist across different brain structures, a ma-
jor challenge has been to understand why those different brain areas make such spe-
cialized contributions to memory. The following describes investigations that tested 
the hypothesis that different brain areas represent different types of information and 
that this is responsible for their different memory capacities. Their specific focus 
here will be on a comparison of hippocampal and striatal neural representations as 
rats performed a hippocampal-dependent (spatial) task or a striatal-dependent (re-
sponse) task. Importantly, these are tasks that show dissociable mnemonic involve-
ment by the hippocampus and striatum in lesion and clinical investigations. Also, it 
is noted that the principle conclusions from these results should apply more broadly 
to an understanding of the relationship between other memory-related brain areas 
such as the amygdala and prefrontal cortex.

Are Memory Specializations Due to the Nature of the Information 
Represented by Neurons?

Dorsal striatal and dorsal hippocampal single-unit activity were recorded as rats 
performed a T-Maze task (Yeshenko et al. 2004; Eschenko and Mizumori 2007). 
One group of rats was trained to solve the first 10 trials of a recording session ac-
cording to a spatial strategy and then the next 10 trials according to a response strat-
egy. According to a spatial strategy, rats seek a location that had been previously 
associated with reward. A response strategy, on the other hand, requires rats to use 
the same egocentric response (i.e., right turn from the start location) to find food. 
Another group of rats ran 10 response trials followed by 10 spatial trials. Since these 
20 trials were performed within one recording session, the same striatal and hippo-
campal neurons were recorded before, during, and after an experimenter-controlled 
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switch in cognitive strategy (or memory). Also, since striatal neurons were often 
recorded simultaneously with hippocampal neurons, it was possible to compare di-
rectly activity in the two brain structures relative to the currently active memory, 
the accuracy of the choices made, and relative to the type of cognitive switch. Such 
switches included, not only changes from spatial to response strategy use (or vice 
versa) but also changes from one spatial memory (e.g., food is in the north location) 
to another spatial memory (e.g., food is in the south location), or from one response 
strategy (always turn right to find food) to another response strategy (always turn 
left to find food). Also, in some tests, the visual cues were altered to present another 
type of strategy (or memory) shift. Together, the inclusion of these different types 
of manipulations made it possible to see if neural responses in hippocampus or 
striatum were specific to a particular type of activated memory or cognitive change, 
or just cognitive change in general.

As had been reported in previous studies (e.g., McNaughton et al. 1983; O’Keefe 
and Dostrovsky 1971; Olton et al. 1978; Muller and Kubie 1987; Ranck 1973; Re-
dish 1999; summarized in Mizumori 2008b; O’Keefe and Nadel 1978), hippocam-
pal pyramidal cell discharge showed strong correlations with the location of an 
animal on the maze, while hippocampal (presumed) interneurons showed firing that 
was correlated with an animal’s movement velocity (Eschenko and Mizumori 2007; 
Yeshenko et al. 2004). As expected from the results of striatal lesion studies, dorsal 
striatal neurons showed strong correlations with behavioral response parameters 
such as the rat’s movement velocity and acceleration. Unexpectedly, location-selec-
tive neurons were also found in both medial and lateral sectors of dorsal striatum. 
(This pattern contrasts with an earlier report that a different type of neural represen-
tation of space, a rat’s directional heading, is found in only the medial, not lateral, 
dorsal striatum, Ragozzino et al. 2001.) Most of the details of the properties of both 
the movement and location correlates of hippocampal and striatal neurons did not 
differ as a function of whether the rat was solving the task with a (hippocampal-de-
pendent) spatial or (striatal-dependent) response strategy. This result indicates that 
both structures continuously and actively process similar types of information (al-
though some of the details may vary) regardless of whether hippocampal-dependent 
or striatal-dependent memories are engaged.

Given that both spatial and response-related information are represented in hip-
pocampus and striatum, it is possible that the distinct mnemonic contributions of 
these areas derive from differential sensitivities to changes in memory or contextual 
information. This hypothesis was also tested by Eschenko and Mizumori (2007) 
and Yeshenko et al. (2004) and the clear result was that both hippocampal and stria-
tal spatial, and movement neural codes were sensitive to changes in the memory 
demands of the task regardless of how the change in memory was brought about 
(e.g., by changing choice strategies, the available cues, from spatial to response 
strategy, or vice versa). For example, velocity correlated firing by either striatal or 
hippocampal neurons showed significant changes in the magnitude of the velocity 
correlation after the cognitive demands of a task shifted. This was the case even 
though the actual behaviors and velocities exhibited by the rats were consistent in 
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all phases of the test session. Interestingly, hippocampal movement codes respond-
ed most dramatically when rats shifted from one type of spatial strategy to another, 
whereas striatal movement codes responded similarly across all types of context 
shifts. Thus, details of a given context shift may differentially impact particular hip-
pocampal neurons whereas the same could not be said for striatal networks. Perhaps 
striatum responds more generally than hippocampus to any type of context change, 
a conclusion that is consistent with the view that striatum is primarily responsive 
to changes in reinforcement conditions more generally. Striatal and hippocampal 
velocity codes per se then are not solely determined by the ongoing behavior of the 
animals, but rather it is determined, or gated, by memory.

Place-specific firing by striatum and hippocampus also showed sensitivity to 
changes in cognitive strategy (or activated memory) and this was evidenced by 
significant changes in place field location or in-field firing rates. In the future then 
it would be of interest to determine if the context-regulation of striatal neural codes 
derives from hippocampus by disabling hippocampus, while testing the striatal neu-
ral responses to a context change. Since the hippocampus is hypothesized to detect 
changes in context (e.g., Mizumori et al. 1999; Mizumori et al. 2007a; Mizumori 
and Jo 2013), one prediction is that striatal neurons will not respond to context ma-
nipulations without a proper functioning hippocampus. If, however, striatal context-
sensitivity is not affected when hippocampal input goes off-line, then the context-
dependent striatal codes may emerge from neocortical memory systems.

Do the Memory Specializations Within the Brain Reflect 
Compensation After Brain Damage?

Another consideration that can be used to explain the different memory consequenc-
es of hippocampal and striatal lesions is that their effects reflect the extent to which 
remaining brain areas can compensate for a particular type of lesion. If the intrinsic 
processing by the structure of interest is unique and essential for learning to take 
place, then no behavioral impairment should be observed if other neural circuits are 
compromised. Indeed, there is abundant evidence that under most conditions, stim-
ulus-response learning is not impaired following hippocampal lesions, presumably 
since striatal computations are sufficient to support such learning (e.g., Knowlton 
et al. 1996; McDonald and White 1993; Packard et al. 1989; Packard and McGaugh 
1996; Yin and Knowlton 2006). This does not mean that the hippocampus does 
not normally play a role in stimulus-response performance; if hippocampus defines 
the context of the learning so that animals can quickly adapt when test conditions 
change, deficits in stimulus-response performance may be observed after hippo-
campal damage only if a context change is involved. In contrast, context-dependent 
learning is by definition complex and dynamic—a situation that the hippocampus 
seems uniquely qualified to handle. Thus, as shown in the literature, hippocampal, 
but not striatal, lesions result in selective context memory deficits.



204 S. J. Y. Mizumori

Are Memory Specializations in the Brain Defined by the 
Coordination of Neural Networks Across Brain Structures?

It is possible that brain structures play different roles in memory because of task-
dependent co-modulated neural activity across different brain structures at strategic 
times during task performance. Although much work remains to thoroughly test 
this hypothesis, there are initial indications that support this view. Ragozzino et al. 
(2001) recorded striatal head direction cells simultaneously with hippocampal place 
cells, and then compared their responses to different types of context shifts. It was 
found that when familiar cues were shifted, head directional preferences and place 
field locations shifted in a comparable fashion. In contrast, when rats were placed 
in new environments, the shift in head direction preferences and place fields ap-
peared random relative to each other. This result suggests that memory (i.e., past 
experiences) can bias striatal and hippocampal neural responses in a coordinated 
fashion, and that without such memory guidance, the two structures function more 
independently.

Numerous laboratories report that specific neural population-based rhythms can 
be detected both within and between memory structures such as the hippocampus, 
striatum, or prefrontal cortex (DeCoteau et al. 2007a; Engel et al. 2001; Fell et al. 
2001; Siapas et al 2005; Tabuchi et al. 2000; Varela et al. 2001; Womelsdorf et al. 
2007). Hippocampal theta activity seems to coordinate the timing of spatial coding 
by hippocampal neurons (Gengler et al. 2005; O’Keefe and Recce 1993). Striatal 
theta oscillations have been shown to become entrained to the hippocampal theta 
rhythm (Berke et  al. 2004; DeCoteau et  al. 2007a) in a behaviorally-dependent 
fashion. Also, directly stimulating the striatum can induce hippocampal high fre-
quency theta activity (Sabatino et al. 1985). When neural activity is disrupted in 
the striatum via D2 receptor antagonism, striatal modulation of high frequency hip-
pocampal theta activity is reduced, motor and spatial/contextual information is not 
integrated, and task performance is impaired (Gengler et al. 2005). This is consis-
tent with the idea that theta is important for sensory-motor integration (Hallworth 
and Bland 2004). It appears then that during goal directed navigation, hippocampal 
and striatal activity becomes increasingly coherent, and this pattern is dopamine de-
pendent. Given its putative role in assessing the value of behavioral outcomes (e.g., 
Schultz and Dickinson 2000), dopamine may play an important role in biasing the 
relative strengths of hippocampal and striatal output signals according to the most 
effective mnemonic strategy (e.g., Mizumori et al. 2004).

Particularly intriguing is a finding common to both the hippocampus and stria-
tum, and that is that synchronous neural activity occurs in specific task-relevant 
ways (e.g., Hyman et al. 2005; Jones and Wilson 2005), especially when rats engage 
in decision-making (e.g., Benchenane et  al. 2010). For example, striatal theta is 
modified over the course of learning an egocentric T-maze task, increasing as the 
rat comes to regularly choose and initiate turn behavior (DeCoteau et  al. 2007a, 
2007b). Rats that learned the task developed an antiphase relationship between hip-
pocampal and striatal theta oscillations, while rats that did not learn the task did not 
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show this coherent theta relationship. This coherence has also been observed during 
striatal-dependent classical conditioning (Kropf and Kuschinsky 1993).

The possibility that dopamine contributes to the regulation of memory efficiency 
and strategies by coordinating ensemble neural activity in distant brain structures 
is intriguing given its role in decision-making: Coherent theta oscillations across 
distant brain structures can be enhanced with application of dopamine (Benchenane 
et al. 2010) and impaired by dopamine antagonism (Gengler et al. 2005). Function-
ally, this type of control by dopamine suggests that information about the saliency 
of reward may determine which brain systems become synchronized (and desyn-
chronized), and this in turn informs the decision process about what information is 
used to update memories and which behaviors are selected.

The functional importance of neural oscillations in the gamma range (30–80 Hz) 
remains debated. However, since gamma oscillations tend to occur intermittently 
(i.e., “gamma bursts” of about 150–250 ms are followed by periods of desynchro-
nous activity), information carried by the cells that participate in a gamma burst ef-
fectively become a clear and punctuate signal against a background of disorganized 
neural activity. For this reason, it has been suggested that gamma bursts represent 
a fundamental mechanism by which information becomes segmented and/or fil-
tered within a structure, as well as a way to coordinate information across structures 
(Buzsaki 2006). Although theta and gamma frequencies are quite different (perhaps 
reflecting the type of information that each rhythm coordinates), there are many 
common physiological and behavioral relationships that suggest they are compo-
nents of a coordinated and larger scale oscillatory network. For example, similar to 
theta rhythms, single unit responses that are recorded simultaneously with gamma 
oscillations have been found to have specific phase relationships to the gamma 
rhythm (e.g., Berke 2009; Kalenscher et al. 2010; van der Meer and Redish 2009). 
Also, it is hypothesized that gamma oscillations may effectively select salient infor-
mation that can come to impact decisions, learning, and behavioral responses (e.g., 
Kalenscher et al. 2010; van der Meer and Redish 2009), since their appearance is 
often in relation to task-relevant events. Another similarity with the theta system is 
that the occurrence gamma oscillations appear to be at least in part regulated by the 
dopamine system (Berke 2009).

Are Memory Specializations in the Brain Defined  
by the Functional Significance of the Output Messages  
of Populations of Cells?

From the above discussion it is clear that there are widespread neural codes for 
spatial and response aspects of task performance across different brain areas, and 
that these are context- (or memory-) dependent. It is possible that neuromodulators 
such as dopamine bias the strengths of the output messages according to recent 
behavioral success. What then is the meaning of the efferent neural code at the 
population level? What neural mechanisms control this meaning, and how are the 
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outputs of different memory processing areas of the brain coordinated to result in 
continuously adaptive behaviors? These are some of the big challenges that remain 
to be addressed before we can fully understand the neural systems basis of multiple 
memory function. What follows is a suggested approach to future investigations of 
these big challenges.

Predictive Memories and Adaptive Decisions

Known patterns of intrinsic neural connectivity indicate that each memory-related 
brain structure undoubtedly processes information in a somewhat unique way, and 
yet it is unclear if these differences are sufficiently unique to account for the docu-
mented specialized memory capacities of each brain area. There is, however, grow-
ing evidence that the output of different brain structures has a common goal for dif-
ferent kinds of information, and that is to relay the extent to which experience-based 
predictions relevant to optimal task performance are born out. In fact, an emerging 
view is that the brain evolved in large part to allow organisms to accurately pre-
dict the outcomes of events and behaviors (e.g., Buzsaki 2013; Buzsaki and Moser 
2013; Llinas and Roy 2009; Mizumori and Jo 2013). In this way, organisms have 
been able to adapt to environments and societies of increasing complexity—a con-
dition that required sophisticated mechanisms to make decisions and predictions 
in a dynamic and conditional environment. According to this view, the underly-
ing neural mechanisms of predictions (and the assessment of their accuracy) are 
likely to be highly conserved across species (Adams et al. 2013; Watson and Platt 
2008). This includes the ability to retain information over times of varying scales 
depending on the desired goal. Indeed, different brain areas are known to generate 
and retain sequences of information, an ability that can be accounted for by state-
dependent changes in network dynamics (Mauk and Buonomano 2004), internally-
generated oscillatory activity (Pastalkova et al. 2008), and/or dedicated “time cells” 
(Kraus et al. 2013).

Hippocampal Evaluation of the Accuracy of Predictions About Contextual 
Information
A context discrimination hypothesis (CDH) postulates that single hippocampal neu-
rons provide multidimensional (context-defining) data to population-based network 
computations that ultimately determine whether expected contextual features of a 
situation have changed (e.g., Mizumori et al. 1999, 2000a, 2007a; Mizumori 2008a, 
b; Smith and Mizumori 2006a, b). Specifically, these hippocampal representations 
of spatial context information (O’Keefe and Nadel 138; Nadel and Payne 2002; 
Nadel and Wilner 1980) may contribute to a match-mismatch type of analysis that 
evaluates the present context according to how similar it is to the context that an 
animal expects to encounter based on past experiences (e.g., Anderson and Jef-
fery 2003; Gray 1982, 2000; Hasselmo 2005b; Hasselmo et al. 2002; Jeffery et al. 
2004, Lisman and Otmakhova 2001; Manns et  al. 2007a; Mizumori et  al. 1999, 
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2000a; Smith and Mizumori 2006a, b; Nadel 2008; Vinogradova 1995). Detected 
mismatches can be used to identify novel situations, initiate learning-related neural 
plasticity mechanisms, and to distinguish different contexts in memory—functions 
that are necessary to define significant events or episodes. When a match is comput-
ed, the effect of hippocampal output could be to strengthen currently active memory 
networks located elsewhere in the brain (e.g., neocortex). Thus, hippocampus may 
play different mnemonic roles depending on whether or not contexts change.

In support of the CDH, disconnecting hippocampus by fornix lesions impairs 
context discrimination (Smith et  al. 2004), and hippocampal lesions reduce ani-
mals’ ability to respond to changes in a familiar environment (Good and Honey 
1991; Save et al. 1992a, 1992b). Spatial novelty detection corresponds to selective 
elevation of the immediate early gene c-fos in hippocampus, and not in surrounding 
parahippocampal cortical regions (Jenkins et al. 2004). Also, as described above, 
hippocampal neurons show significantly altered firing patterns when rats experi-
ence spatial or nonspatial changes in a familiar environment (Eschenko and Mizu-
mori 2007; Ferbinteanu and Shapiro 2003; Fyhn et al. 2002; Leutgeb et al. 2005a, 
2005b; Moita et al. 2004; Muller and Kubie 1987; O’Keefe 1976; Puryear et al. 
2006; Smith and Mizumori 2006b; Wood et al. 1999; Yeshenko et al. 2004). As an 
example, Smith and Mizumori (2006b) showed that hippocampal neurons develop 
context-specific responses, but only when rats were required to discriminate con-
texts. Discriminating neural responses were not observed when rats were allowed to 
randomly forage for the same amount of time. Further, Manns et al. (2007b) dem-
onstrated that relative to match trials in an odor cue or object recognition task, CA1 
neurons were preferentially discharged when animals experienced a nonmatch situ-
ation in these same tasks. Also consistent with the CDH, neuroimaging studies of 
human performance shows that hippocampus becomes differentially active during 
match and mismatch trials (Chen et al. 2011; Dickerson et al. 2011; Duncan et al. 
2012a; Duncan et al. 2012b; Foerde and Shohamy 2011; Kuhl et al. 2010; Kumaran 
and Maguire 2007).

The detection of changes in context is fundamentally important for the continual 
selection of appropriate behaviors that optimize performance and learning in a vari-
ety of tasks (e.g., navigation-based learning, instrumental conditioning, or classical 
conditioning). Context discrimination engages and prepares cellular mechanisms 
for rapid and new learning at potentially important times (Paulsen and Moser 1998), 
as it is generally known that novelty detection increases attention and exploratory 
behaviors in a variety of tasks. Interestingly, hippocampal cell firing tends to occur 
during the “encoding phase” of the ongoing theta rhythm (Hasselmo 2005a), which 
is increased during exploratory and investigatory behaviors (Vanderwolf 1969). 
Thus, detection of a nonmatch situation can change the relationship between cell 
discharge and the local theta rhythm such that encoding functions are enhanced. 
Detection of matches, on the other hand, does not cause changes in the hippocampal 
neural activity profile, resulting in efferent messages that continue to retrieve/utilize 
the currently active memory network that drove the execution of recently success-
ful responses. Context discrimination, then, can be viewed as being critical for the 
formation of new episodic memories because it leads to the separation in time and 
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space, one meaningful event from the next. Such division of memories could fa-
cilitate long-term information storage according to memory schemas (Bethus et al. 
2010; Tse et al. 2007).

Context discrimination, or the detection of a mismatch between expected and 
experienced context-specific information, is considered an example of an error in 
predicting the contextual details of the current situation, referred to as a context pre-
diction error. Transmission of a context prediction error signal from hippocampus 
should inform distal brain areas that a change in the context has occurred. In this 
case, upon receipt of the context prediction error message, efferent midbrain struc-
tures may respond with changes in excitation or inhibition that are needed to evalu-
ate the subjective value of the context prediction error signal (e.g., Humphries and 
Prescott 2010; Lisman and Grace 2005; Mizumori et al. 2004; Penner and Mizu-
mori 2012a). On the other hand, a hippocampal signal indicating that there was no 
prediction error may enable plasticity mechanisms that facilitate the incorporation 
of new information into existing memory schemas (e.g., Bethus et al. 2010; Mizu-
mori et al. 2007a, b; Tse et al. 2007). Thus, hippocampal context analysis become 
critical for the formation of new episodic memories not only because prediction 
signals provide a mechanism that separates in time and space one meaningful event 
from the next, but also because the outcome of the prediction error computation 
engages appropriate neuroplasticity mechanisms in efferent structures that promote 
subsequent adaptive decisions and memory.

Striatal Evaluation of the Accuracy of Predictions About Response Outcomes
Analogous to hippocampus, the midbrain dopaminergic system also generates pre-
diction error signals, but in this case the focus is on whether the outcome of goal-di-
rected behaviors occur as predicted based on past experience (Bayer and Glimcher 
2005; Hollerman et al. 1998; Hollerman and Schultz 1998; Mizumori et al. 2009; 
Stalnaker et al. 2012). In particular, it is thought that dopamine neurons transmit 
information about the subjective value of rewards in terms of reward prediction 
error signals (RPEs). RPEs are thought to initiate three distinct and parallel loops 
of information processing between striatum and neocortex as new associations be-
come learned sufficiently to habitually drive behaviors (e.g., Alexander et al. 1986; 
Alexander and Crutcher 1990a, b; Haber 2003). Penner and Mizumori (2012b) re-
cently summarized this vast literature: Information within the limbic loop flows 
between ventromedial prefrontal cortex with the ventral striatum (Alexander and 
Crutcher 1990a, b; Graybiel 2008; Graybiel et al. 1994; Pennartz et al. 2009; Voorn 
et al. 2004; Yin and Knowlton 2006) to mediate learning about the significance of 
previously neutral stimuli (i.e., as it occurs in Pavlovian learning). The associative 
loop involves the medial prefrontal cortex and the dorsomedial striatum to support 
action-outcome learning. The sensorimotor loop involves transmission between so-
matosensory and motor cortical areas with the dorsolateral striatum. The latter loop 
is suited for incremental sensory-motor learning that happens when new procedural 
memories are formed. It is hypothesized that the transformation of newly learned 
behaviors to habits occurs as a result of multiple iterations of information flow 
through these three information loops starting with the limbic loop, the associative 
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loop, and then finally the sensorimotor loop. Importantly, information flow through 
these systems is thought to be continually informed about the expected values of 
goals via dopamine signaling from the ventral tegmental area (VTA) and/or the 
substantia nigra (SN; Horvitz 2002; Nicola et al. 2004; Schultz 2010). When per-
forming well-learned habits, the striatum is particularly suitable to rapidly control 
behavior or to provide feedback about behaviors that led to prediction errors (Stal-
naker et al. 2012) because of its rather unique pattern of reciprocal connections with 
sensory and motor cortical regions (Alexander and Crutcher 1990a; Groenewegen 
et  al. 1999; Haber 2003), and because striatum can receive immediate feedback 
when goal outcomes are not what was expected. In this way, midbrain signals of 
errors in predicting rewards may initiate adjustments to future planned behaviors 
(Penner and Mizumori 2012b).

Sensory and Motor Predictions
In addition to hippocampus and striatum, various sensory-motor cortical and cere-
bellar areas have been reported to generate prediction errors when expected sensory 
or motor-related input does not match expectations (e.g., Scheidt et al. 2012; Tanaka 
et al. 2009). This sort of feedback permits temporally and spatially precise behavior 
adjustments based on past outcomes. Also, information about expected sensory and 
motor events can be used to plan future sensory expectations and specific anticipa-
tory movements (e.g., Duhamel et al. 1992). Such prediction error mechanisms are 
thought to fine tune actions to optimize the chances of securing a desired goal.

Summary: Error Signaling in the Brain
The above description illustrates that the generation of neural responses that signal 
times when actual events or information do not match those expected based on 
past experiences (i.e., prediction error signals) is often observed across many brain 
areas. In fact, it has been suggested that the ability to predict behavioral outcomes 
has essentially driven the evolution of the entire brain (Llinas and Roy 2009). Such 
error signals allow organisms to appropriately refine movements and choices rela-
tive to their perceived utility or value, and thus ultimately determine future deci-
sions and behavior (e.g., Doll et al. 2012; Schultz and Dickinson 2000; Walsh and 
Anderson 2012). At a cellular level, prediction error signals may elevate the level 
of excitability of efferent neurons such that they become more responsive to out-
come signals. This greater neural responsiveness may enhance the temporal and 
spatial resolution of future neural responses, and this in turn may ultimately result 
in improved accuracy of future predictions. For example, if hippocampus detects a 
mismatch between expected and actual contextual features, it may generate an error 
signal that “alerts” striatal efferent structures so that they become more responsive 
to future rewards (Lisman and Grace 2005; Mizumori et  al. 2000a, 2004, 2009; 
Penner and Mizumori 2012a, b; Schultz and Dickinson 2000). Midbrain-generated 
reward prediction error signals may destabilize cortical neural (memory) networks 
so that they become more readily updated with new information (Mizumori 2008a; 
Penner and Mizumori 2012b). The updated memory information can then be passed 
on to hippocampus in the form of the most up-to-date context expectations. This 
view of how error signals can inform future processing in other prediction regions 
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of the brain is consistent with the view that there is a high degree of interdependence 
across mnemonic structures regardless of the task (Mizumori et al. 2004; Yeshenko 
et al. 2004).

Homeostatic Regulation of Predictive Memory Systems

An interesting and often described feature of memory functions is the rapid and 
seemingly automatic nature of its processes, or changes in processing, when a sig-
nificant feature of a memory task changes. A challenge for future research then is to 
understand the neural mechanisms of the apparent automaticity and high accuracy 
of prediction analyses. An intriguing possibility is that the seemingly automatic na-
ture derives from self-regulatory, intrinsic synaptic mechanisms rather than (only) 
responses to external information. Such mechanisms may align with the principles 
of homeostasis similar to those described for self-regulation at synaptic and neural 
circuit levels (e.g., Marder and Goaillard 2006; Marder and Prinz 2003; Mizumori 
and Jo 2013; Turrigiano 1999, 2008, 2011; Turrigiano and Nelson 2004). That is, 
homeostatic regulation could drive the automatic and continuous maintenance of 
the balance between stable and flexible processing that neural networks need to 
retain learned (stable or expectancy) information that can to be (flexibly and adap-
tively) updated as needed.

Marder and Goaillard (2006) suggested that homeostatic neural plasticity may 
be nested: Calcium sensors may monitor neural firing rates, then up or down regu-
late the availability of glutamate receptors to ramp up or down firing rates toward 
an optimal firing rate set point. Groups of neurons or neural networks may sense 
changes in firing collectively to regulate experience-dependent population activity 
levels and patterns of activation. In this way homeostatic synaptic plasticity enables 
groups of neural circuits to find a balance between flexible and stable processing 
as needed to learn from experiences, and to be responsive to future changed inputs. 
While details of how networks of cells or their connections engage in homeostatic 
regulation remain to be discovered it is worth noting that homeostatic regulation at 
the neural systems level indeed occurs, as is evident from studies of brain develop-
ment, as well as from studies of reactive or compensatory neuroplasticity mecha-
nisms that occur in response to experience (e.g., sensorimotor learning; Froemke 
et al. 2007) or brain injury (e.g., brain trauma or addiction; Nudo 2011; Robinson 
and Kolb 2004). Although homeostatic neural plasticity mechanisms have not been 
used to account for complex learning, current theories of reinforcement- and con-
text-based learning and memory commonly rely on the autoregulation of feedback 
loops between systems that assess the outcomes of choices and existing (episodic) 
memory systems.

If homeostatic regulation pertains to neural networks that underlie adaptive 
memory, it should be possible to identify key components including variables that 
are being monitored by sensors and then regulated by controllers. For complex 
memory systems, such a model likely contains multiple hierarchically organized 
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loops of control similar to what was described by Buzsaki (2013). For example, 
iterative updating via interactions between hippocampus, the dopamine striatal sys-
tem, and memory networks would allow context prediction errors to guide future 
adaptive behaviors. This is somewhat similar to the micro- macro-agent distinction 
recently described by Kurth-Nelson and Redish (2009). This process may be en-
abled by sensors which monitor cell excitability within each structure. In this case, 
changes in calcium flux appear to be an important part of the sensing system that 
determines the current level of firing. A change in firing rates (either higher or lower 
than the optimal level) is taken as an indicator of a mismatch between optimal and 
actual rates, and a controller mechanism becomes engaged to bring the firing rates 
back to the optimal levels. Such a natural restorative mechanism that responds to 
cellular detection of errors in prediction (as reflected in firing rate deviations) seems 
essential since it would be unhealthy for neurons to exist in a chronically excited or 
inhibited state.

It has been suggested that the prefrontal cortex serves in a controller role that 
maintains the optimal excitatory level in prediction regions of the brain (more de-
tails below). In particular prefrontal cortex is strategically situated to enable mecha-
nisms that restore afferent firing rates to a predetermined ‘set point’ via its detailed 
excitatory and inhibitory extrinsic connections (as reviewed in Arnsten et al. 2012). 
In this way, prefrontal cortex may orchestrate and coordinate the level of neural ex-
citability in different prediction error brain areas (e.g., hippocampus and striatum) 
according to homeostatic principles. Thus, prefrontal cortex biases the nature of the 
outputs of connected brain areas according to experience and recent outcomes of 
decisions (Fig. 9.1).

It should be noted that although it is reasonable to assume that the prefrontal 
cortex is a major controller of the impact of prediction error signaling in the brain, 
other sources of control of cell excitability may arise via direct interconnections be-
tween the multiple prediction detection areas of the brain. For example, a prediction 
error from the hippocampus could be transmitted to midbrain–striatal neurons along 
pathways that do not necessarily include the prefrontal cortex. Indirect support for 
this idea comes from observations that conditions that produce error messages in 
the hippocampus change reward responses of dopamine neurons (Jo et  al. 2013; 
Puryear et  al. 2010), phasic theta comodulation is observed between hippocam-
pus and striatum (DeCoteau et al. 2007a) during decision tasks, and comodulation 
of neural activity has been reported between prefrontal cortex and parietal cortex 
(Diwadkar et al. 2000). Perhaps neuromodulators such as dopamine strengthen or 
weaken associations that led to the last correct or incorrect, respectively, decision 
or behavior.

In sum, homeostatic regulatory processes may contribute to the automatic and 
continuous self-regulatory nature of prediction error analysis, decision-making, and 
learning. Such a naturally adaptive mechanism may optimize the relative contribu-
tion of different types of prediction error signals to future decisions and actions 
according to the pattern of recent successes and failures in prediction.
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Fig. 9.1   a A homeostatic model of memory processing suggests that the primary goal of prefrontal 
cortex interactions with prediction centers of the brain (e.g., hippocampus and the midbrain-
striatal area) is to maintain the baseline (tonic) firing rate of neurons within these centers at a 
set point level that is optimal for detecting future prediction errors. Modulating factors such as 
one’s motivation or emotional state can elevate or reduce the baseline firing rates. It is postulated 
that the prefrontal cortex continually receives information from the prediction areas regarding 
the current population firing rates. If the baseline rates become elevated (e.g., due to stress) the 
prefrontal cortex is equipped to anatomically and physiologically restore firing rates ( red straight 
arrows) to their optimal (baseline) levels. If the rates become too low (e.g., in depression), the 
prefrontal cortex should engage mechanisms to elevate firing to optimal levels over time. When 
a prediction error signal arrives in, or is generated by, a given prediction structure, firing rates 
can increase (in cases when prediction errors are positive) or decrease (when prediction errors 
are negative). The degree of rate increases or decreases scales to the degree of mismatch that is 
detected, and the slope of the increase or decrease in firing may vary between individuals and/
or as a function of experience ( blue arrow). b The prefrontal cortex is responsible for restoring 
the firing rates back to optimal levels and this reduces the uncertainty that was generated by the 
prediction error signals
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Setting the Baseline from Which Prediction Error Signals Emerge: A Role for 
Hypothalamus, Amygdala, and the Prefrontal Cortex
Individual neurons face a continual barrage of excitatory inputs across tens of thou-
sands of synaptic connections. Yet, neurons cannot maintain high levels of excit-
ability and remain viable in the long term. Fortunately, individual neurons appear 
to be able to naturally and automatically engage mechanisms that control their level 
of excitability. This may occur by sensing and controlling the flow of various ions 
across cell membranes (e.g., Burrone et al. 2002; Turrigiano 2008; Turrigiano et al. 
1998, see more detailed description below). Optimal levels of neuronal activity can 
be maintained also by achieving a relatively constant balance of excitatory and in-
hibitory synaptic input (e.g., Burrone et al. 2002). Together these factors define the 
baseline level of tonic activity from which phasic error signals are generated. Inter-
estingly, the tonic level of cell excitability can be set according to the motivational 
state of an animal (Cagniard et al. 2006; Pecina et al. 2003; Puryear et al. 2010) 
suggesting that ones motivational state may play a significant role in determining 
the threshold for phasic neural and behavioral responding to unexpected events.

Motivational state information (e.g., signals of hunger or thirst) may arrive in 
prediction error structures (e.g. the hippocampus or striatum) and/or their control-
ler (prefrontal cortex) via hypothalamic afferent systems. For example, lateral hy-
pothalamus signals of hunger that reach brain areas that evaluate predictions may 
increase subsequent reward-responsiveness of efferent target neurons. Elevated re-
sponses to reward may reflect higher subjective values of the reward, an interpreta-
tion that is consistent with the biological needs of an animal. The amygdala, on the 
other hand, is thought to mediate a different motivational variable, and that is the 
emotional state of animals (Johansen et al. 2011). A message reflecting the current 
emotional state may emerge from the amygdala’s role in associating cues with their 
aversive consequences (e.g., Chau and Galvez 2012; Paz and Pare 2013). Amygdala 
likely alters its neural activity in response to fear (Ciocchi et al. 2010; Haubensak 
et al. 2010; Li et al. 2013). Since the amygdala has direct excitatory effects on SN or 
VTA neurons (Lee et al. 2005; Zahm et al. 2011), fear-induced amygdala activation 
may increase the likelihood that dopamine neurons transition to a more excitable 
“up-state” (Wilson 1993; Wilson and Kawaguchi 1996) when hippocampal messag-
es arrive. In this way, in urgent situations, animals can more readily assess the value 
of a changed context since transitioning to an “up-state” could make the dopamine 
cells respond more quickly to an input. This could be adaptive since responses can 
be implemented more quickly.

In addition to generally biasing the levels of neural excitability (which may 
translate to biasing the threshold for prediction error signaling), the amygdala may 
modulate prediction error-based learning efficiency on a trial by trial basis. For 
example, it is known that there is increased attention to cues or rewards that are 
unexpected or surprising based on past experiences (Pearce and Hall 1980; Rescorla 
and Wagner 1972). The dopamine system clearly plays a role in surprise-induced 
enhancement of learning (e.g., Schultz et al. 1997; Schultz and Dickinson 2000), 
and this may relate to transient influences of the amygdala on dopamine neurons 
since this prediction error-based learning effect is abolished in rats with amygdala 
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disruption (Holland and Gallagher 2006) with no effects on the subsequent expres-
sion of surprise-induced enhanced learning (Lee et al. 2008). The amygdala and 
hypothalamus, then, may orchestrate information processing circuits/systems by 
ultimately setting the threshold for future error detection via direct connections to 
prediction error structures such as the hippocampus, striatum, sensory and motor 
cortex, and the cerebellum.

The prefrontal cortex can also be thought of as regulating the excitability state of 
neurons in predictive centers of the brain but for different reasons than both amyg-
dala and hypothalamus. The prefrontal cortex is commonly thought to be important 
for holding information on-line in a working memory buffer (e.g., Arnsten et al. 
2012; Fuster 2008). This function is considered essential to be able to select appro-
priate responses and/or for switching behavioral strategies (Ragozzino et al. 1999a; 
Ragozzino et al. 1999b; Young and Shapiro 2009), and this interpretation is consis-
tent with findings that transient functional connections exist between the prefrontal 
cortex and the hippocampus or striatum especially when working memory is helpful 
for optimal behaviors. For example, hippocampal and prefrontal theta become co-
modulated at times when animals make choices (e.g., Hyman et al. 2005; Shirvalkar 
et al. 2010), but not at other times during task performance. Co-activation of striatal 
and prefrontal activity has also been observed when working memory is required 
for accurate response selection (Levy et al. 1997; Scimeca and Badre 2012). Thus, 
the functional connections between striatum and prefrontal cortex, or between hip-
pocampus and prefrontal cortex, can vary in strength and impact depending on the 
current task demands. Presumably this variation reflects the phasic task-dependent 
coordination of patterns of excitation and inhibition between prefrontal cortex and 
its efferent targets. Since the prefrontal cortex is thought to play a role in predic-
tion analysis (e.g., Holyroyd et al. 2002), we suggest the possibility that its major 
contribution is to regulate efferent cell excitability according to recent behavioral 
outcomes. Indeed, Karlsson et al. (2012) recently showed that prefrontal cortical 
representations switch states of stability when conditions of greater uncertainty 
arise, that is, when response outcomes do not occur as predicted. Also, Merchant 
et al. (2011) suggest that prefrontal cortex exerts “top-down” control over parietal 
cortical responses in a match-to-sample task.

Prefrontal modulation is made possible due to the rather complex pattern of in-
hibitory and excitatory control over multiple types of efferent neurons (i.e., both 
interneurons and projection neurons) in efferent prediction brain areas (as reviewed 
in Arnsten 2011, Arnsten et al. 2012; Khan and Muly 2011), neurons that then could 
return information back to prefrontal cortex about their current activity state. Neo-
cortex has indeed been shown to regulate the excitability states of subcortical neu-
rons (e.g., Calhoon and O’Donnell 2013; Plenz and Arnsten 1996; Plenz and Kitai 
1998). During baseline conditions, prefrontal cortex in particular may continually 
receive information about the current level of neural activity in target regions, and 
then use this afferent data to determine the extent and type of excitatory and inhibi-
tory control needed to achieve optimal tonic activity within each of the multiple 
efferent prediction error systems. If the tonic activity becomes too low, for example, 
at times when there are no prediction error signals, prefrontal cortex may elevate the 
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state of neural excitability so that the prediction cells are more responsive to future 
error signals, a feature that should increase the speed and accuracy of the error sig-
naling. If, on the other hand, the baseline activity of a target region is higher than 
the optimal for the detection of prediction errors, further increasing the excitability 
of the cells may be detrimental for the cell’s health and ability to produce clear error 
signals. In this case, it would be most adaptive if the prefrontal cortex lowered the 
level of excitability of its target cells so that optimal responsivity can be restored in 
the target region.

Recurrent neurocircuitry within the prefrontal cortex is thought to contribute to 
its working memory capacity (e.g., Arnsten et al. 2012), and as such this circuit is a 
clear candidate system to not only integrate error signals arriving from the different 
prediction error brain regions, but to also bias the thresholds and strengths of subse-
quent error-related signals from the brain regions that originally produced the error 
signal. The particular constellation of excitatory and inhibitory biases presumably 
will result in the most desired behavioral outcome.

In summary, at specific times when working memory is needed, the intrinsic re-
current neural circuits of the prefrontal cortex (Arnsten et al. 2012) may selectively 
and strategically exploit (differentially or in concert) its rich array of excitatory and 
inhibitory efferent connections to regulate the probability of neural firing in differ-
ent prediction areas of the brain such that the relative responsiveness of different 
prediction brain regions changes in task-dependent ways. When prediction errors 
are detected and firing rates change, the prefrontal cortex may not only integrate the 
signal within its recurrent intrinsic circuitry, but it may have a key restorative func-
tion in efferent structures such that the firing rates return to a baseline tonic level 
that optimizes subsequent responsiveness to input. Thus, the prefrontal cortex may 
bias efferent neurons’ ability to engage in, or efficiently use, prediction error analy-
sis and hence their ability to adaptively guide future behaviors. This process may 
be a key factor that determines which prediction error-generating (i.e., memory) 
system ultimately controls the selection of future responses.

Final Comments

Memory research continues to evolve in complexity as new technologies become 
available. Ray Kesner’s conceptualization of the cognitive and neurobiological un-
derpinnings of memory was visionary in that it laid out a multidimensional neural 
systems view of memory that has provided guidance for a number of decades. Cur-
rent challenges are to understand why different brain structures have select roles in 
memory, the nature of the interaction between brain structures, the control mecha-
nisms for the interactions between brain areas, and the mechanisms by which mem-
ory functions, in all of its complexities, appear to be self-regulated and automatic. 
We offer a new hypothesis that the different memory regions of the brain make 
special contributions to memory because they assess the validity of different types 
of predictions that are needed for one to continually make adaptive choices and 



216 S. J. Y. Mizumori

engage in adaptive and goal-directed behaviors. A homeostatic model of memory 
regulation is described to at least in part account for the seemingly automatic nature 
of memory function. Thank you Ray, for guiding the field to this very important 
and crucial time in memory research, one that promises exponential growth in the 
near future.
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