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Chapter 4
Pattern Completion and Pattern Separation 
Mechanisms in the Hippocampus

Edmund T. Rolls

Introduction

There is great interest in how pattern separation and pattern completion in the hip-
pocampus contribute to its functions in memory and spatial function (Giocomo 
et al. 2011; Jezek et al. 2011; Leutgeb et al. 2007; McHugh et al. 2007; Nakashiba 
et al. 2012; Nakazawa et al. 2002, 2003; Wills et al. 2005), and among those who 
have made many contributions in this area are Ray Kesner and his colleagues (Hun-
saker and Kesner 2008, 2013; Kesner 2007, 2013; Kesner et al. 2012; Rolls and 
Kesner 2006).

This chapter describes some of the different types of pattern separation and pat-
tern completion in the hippocampal system, and the mechanisms that implement 
them. More comprehensive descriptions of my theory of hippocampal function, and 
of differences between the primate and rodent hippocampal neuronal representa-
tions and the implications for understanding human memory are provided elsewhere 
(Rolls 2008, 2010b, 2013; Rolls and Kesner 2006; Rolls and Xiang 2006; Kesner 
and Rolls 2015). The theory has been developed through many stages (Rolls 1987, 
1989a, b, c, 1990a, b, 1991, 1995, 1996b, 2008, 2010b; Rolls and Deco 2010; Rolls 
and Kesner 2006; Rolls and Treves 1998; Treves and Rolls 1991, 1992, 1994), has 
as a predecessor developments made by David Marr (Marr 1971) (though he never 
identified the CA3 system as an autoassociation network), and has benefitted great-
ly from collaborations with many whose names appear below in the citations, in-
cluding Alessandro Treves and Simon Stringer. The operation of pattern association 
networks, autoassociation networks, and competitive networks has been described 
elsewhere (Hertz et al. 1991; Rolls 2008; Rolls and Treves 1998; Rolls 2016).
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Background to the Approach to Hippocampal Function

Event and Episodic Memory

The focus is on a fundamental property of episodic memory, the ability to store and 
retrieve the memory of a particular single event involving an association between 
items such as the place and the object or reward seen at that place. Episodic memo-
ry, in the sense of a series of linked events, requires this type of event memory, and 
could be implemented by linking together a series of events.

An event consists of a set of items that occur together, such as seeing a particular 
object or person’s face in a particular place. An everyday example might be re-
membering where one was for dinner, who was present, what was eaten, what was 
discussed, and the time at which it occurred. The spatial context is almost always 
an important part of an episodic memory (Dere et al. 2008), and it may be partly 
for this reason that episodic memory is linked to the functions of the hippocampal 
system which is involved in spatial processing and memory. The ability to recall a 
whole memory from a partial cue is an important property of episodic memory and 
is referred to as completion.

Systems-Level Functions and Connections of the Primate 
Hippocampus

Any theory of the hippocampus must state at the systems level what is computed 
by the hippocampus. Some of the relevant evidence about the functions of the hip-
pocampus in memory comes from the effects of damage to the hippocampus, the 
responses of neurons in the hippocampus during behavior, and the systems-level 
connections of the hippocampus, as described in more detail elsewhere (Rolls 2008, 
2010b; Kesner and Rolls 2015; Rolls and Xiang 2006). Many of the memory func-
tions are important in event or episodic memory, in which the ability to remember 
what happened where on typically a single occasion (or trial in a learning experi-
ment) is important. It is suggested that an autoassociation memory implemented 
by the CA3 neurons enables event or episodic memories to be formed by enabling 
associations to be formed between spatial and other including object or reward rep-
resentations, and for completion to then occur in recall from any part. This is differ-
ent from pattern association memory in which a visual stimulus might become as-
sociated with a taste by associative synaptic modification. Later presentation of the 
visual stimulus would retrieve the taste representation. However, presentation of the 
taste would not retrieve the visual representation, and this is an important and fun-
damental difference between autoassociation and pattern association, as described 
in detail elsewhere (Rolls 2008, 2014, 2016; Rolls and Treves 1998).

Information stored in the hippocampus will need to be retrieved and affect other 
parts of the brain in order to be used. The information about episodic events re-
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called from the hippocampus could be used to help form semantic memories (Rolls 
1989b, c, 1990a; Treves and Rolls 1994). For example, remembering many particu-
lar journeys could help to build a geographic cognitive map in the neocortex. The 
hippocampus and neocortex would thus be complementary memory systems, with 
the hippocampus being used for rapid, “on the fly,” unstructured storage of informa-
tion involving activity potentially arriving from many areas of the neocortex; while 
the neocortex would gradually build and adjust on the basis of much accumulating 
information, often recalled from the hippocampal unstructured store, the semantic 
representation (McClelland et al. 1995; Moscovitch et al. 2005; Rolls 1989b; Treves 
and Rolls 1994). The theory shows how information could be retrieved within the 
hippocampus, and how this retrieved information could enable the activity in neo-
cortical areas that was present during the original storage of the episodic event to 
be reinstated, thus implementing recall, by using hippocampo-neocortical backpro-
jections is described elsewhere (Rolls 1995, 1996b, 2008, 2010b; Treves and Rolls 
1994; see Fig. 4.1).

To understand the functions of the primate hippocampus in event or episodic 
memory, it is necessary to understand from which other parts of the brain it receives 
information. Does it, for example, receive object as well as spatial information in 
terms of its connectivity? The primate hippocampus receives inputs via the entorhi-
nal cortex (area 28) and the highly developed parahippocampal gyrus (areas TF and 
TH) as well as the perirhinal cortex from the ends of many processing streams of 
the cerebral association cortex, including the visual and auditory temporal lobe as-
sociation cortical areas, the prefrontal cortex, and the parietal cortex (Amaral 1987; 
Amaral et al. 1992; Lavenex et al. 2004; Rolls 2008; Rolls and Kesner 2006; Suzuki 
and Amaral 1994b; Van Hoesen 1982; Witter et al. 2000b; see Fig. 4.1). The hip-
pocampus is thus by its connections potentially able to associate together object 
and spatial representations. In addition, the entorhinal cortex receives inputs from 
the amygdala and the orbitofrontal cortex, which could provide reward-related in-
formation to the hippocampus (Carmichael and Price 1995; Pitkanen et al. 2002; 
Stefanacci et al. 1996; Suzuki and Amaral 1994a).

The primary output from the hippocampus to neocortex originates in CA1 and 
projects to subiculum, entorhinal cortex, and parahippocampal structures (areas 
TF-TH) as well as prefrontal cortex (Delatour and Witter 2002; van Haeften et al. 
2003; Van Hoesen 1982; Witter 1993; see Fig. 4.1), though there are other outputs 
(Kesner and Rolls 2015). These are the pathways that are likely to be involved in the 
retrieval of information from the hippocampus back to the neocortex.

The theory is a quantitative theory and the numbers of synapses on the different 
types of neuron is an important feature of the circuitry emphasized next.

Hippocampal Circuitry

Hippocampal circuitry (Amaral 1993; Amaral and Witter 1989; Andersen et al. 
2007; Kondo et al. 2009; Lavenex et al. 2004; Naber et al. 2001; Storm-Mathiesen 
et al. 1990; Witter 2007; Witter et al. 2000b) is illustrated in Fig. 4.1.
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Projections from the entorhinal cortex layer 2 reach the granule cells (of which 
there are 106 in the rat) in the dentate gyrus (DG), via the perforant path (pp) (Witter 
1993). The granule cells project to CA3 cells via the mossy fibers (mf), which pro-
vide a sparse but possibly powerful connection to the 3 × 105 CA3 pyramidal cells 
in the rat. Each CA3 cell receives approximately 46 mossy fiber inputs, so that the 
sparseness of this connectivity is thus 0.005 %. By contrast, there are many more—
possibly weaker—direct perforant path inputs also from layer 2 of the entorhinal 
cortex onto each CA3 cell, in the rat of the order of 4 × 103. The largest number of 
synapses (about 1.2 × 104 in the rat) on the dendrites of CA3 pyramidal cells is, how-
ever, provided by the (recurrent) axon collaterals of CA3 cells themselves (rc) (see 
Fig. 4.2). It is remarkable that the recurrent collaterals are distributed to other CA3 
cells largely throughout the hippocampus (Amaral et al. 1990; Amaral and Witter 
1989, 1995; Ishizuka et al. 1990; Witter 2007), so that effectively the CA3 system 
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Fig. 4.1  Forward connections ( solid lines) from areas of cerebral association neocortex via the 
parahippocampal gyrus and perirhinal cortex, and entorhinal cortex, to the hippocampus; and 
backprojections ( dashed lines) via the hippocampal CA1 pyramidal cells, subiculum, and parahip-
pocampal gyrus to the neocortex. There is great convergence in the forward connections down to 
the single network implemented in the CA3 pyramidal cells; and great divergence again in the 
backprojections. Left: block diagram. Right: more detailed representation of some of the principal 
excitatory neurons in the pathways. D Deep pyramidal cells, DG Dentate granule cells, F Forward 
inputs to areas of the association cortex from preceding cortical areas in the hierarchy, mf mossy 
fibers, PHG parahippocampal gyrus and perirhinal cortex, pp perforant path, rc recurrent collateral 
of the CA3 hippocampal pyramidal cells, S Superficial pyramidal cells, 2 pyramidal cells in layer 2 
of the entorhinal cortex, 3 pyramidal cells in layer 3 of the entorhinal cortex. The thick lines above 
the cell bodies represent the dendrites
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provides a single network, with a connectivity of approximately 2 % between the 
different CA3 neurons given that the connections are bilateral. The CA3–CA3 re-
current collateral system is even more extensive in macaques than in rats (Kondo 
et al. 2009). The neurons that comprise CA3, in turn, project to CA1 neurons via 
the Schaffer collaterals. In addition, projections that terminate in the CA1 region 
originate in layer 3 of the entorhinal cortex (see Fig. 4.1).

CA3 as an Autoassociation or Attractor Memory: Pattern 
Completion

Arbitrary Associations and Pattern Completion in Recall

Many of the synapses in the hippocampus show associative modification as shown 
by long-term potentiation, and this synaptic modification appears to be involved in 
learning (see Andersen et al. 2007; Lynch 2004; Morris 1989, 2003; Morris et al. 
2003; Nakazawa et al. 2004; Nakazawa et al. 2003; Wang and Morris 2010). On the 
basis of the evidence summarized above, Rolls (1987, 1989a, b, c, 1990a, b, 1991) 
and others (Levy 1989; McNaughton 1991; McNaughton and Morris 1987) have 

Fig. 4.2  The numbers of connections from three different sources onto each CA3 cell from three 
different sources in the rat. (After Rolls and Treves 1998; Treves and Rolls 1992) 
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suggested that the CA3 stage acts as an autoassociation memory which enables 
episodic memories to be formed and stored in the CA3 network, and that subse-
quently the extensive recurrent collateral connectivity allows for the retrieval of a 
whole representation to be initiated by the activation of some small part of the same 
representation (the cue). The crucial synaptic modification for this is in the recur-
rent collateral synapses. (A description of the operation of autoassociative networks 
is provided in detail elsewhere (Amit 1989; Hertz et al. 1991; Rolls 2010a; Rolls 
and Deco 2002, 2010; Rolls and Treves 1998) including Memory, Attention, and 
Decision-Making (Rolls 2008)).

The architecture of an autoassociation network is effectively that of the recur-
rent collateral synapses shown in Fig. 4.2, and the learning rule for the change in 
the synaptic weights is as shown in Eq. (4.1) (Rolls 2008; Rolls and Treves 1998).

 
(4.1)

where k is a constant, ri is the activation of the dendrite (the postsynaptic term), 
r′j is the presynaptic firing rate, and δwij is the change in the synaptic weight wij. 
( wij refers to the j′th synapse onto the i′th neuron. An introduction to autoassocia-
tion, competitive, and pattern association networks is provided in the Appendices of 
Memory, Attention and Decision-Making: A Unifying Computational Neuroscience 
Approach (Rolls 2008).)

The hypothesis is that because the CA3 operates effectively as a single network, 
it can allow arbitrary associations between inputs originating from very different 
parts of the cerebral cortex to be formed. These might involve associations between 
information originating in the temporal visual cortex about the presence of an ob-
ject, and information originating in the parietal cortex about where it is. I note that 
although there is some spatial gradient in the CA3 recurrent connections, so that the 
connectivity is not fully uniform (Ishizuka et al. 1990; Witter 2007), the network 
will still have the properties of a single interconnected autoassociation network al-
lowing associations between arbitrary neurons to be formed, given the presence of 
many long-range connections which overlap from different CA3 cells, and the abil-
ity of attractor networks to operate with diluted connectivity shown in our compu-
tational studies prompted by this issue (Rolls 2012a; Rolls and Webb 2012; Treves 
1990; Treves and Rolls 1991). It is very interesting indeed that in primates (ma-
caques), the associational projections from CA3 to CA3 travel extensively along 
the longitudinal axis, and overall the radial, transverse, and longitudinal gradients 
of CA3 fiber distribution, clear in the rat, are much more subtle in the nonhuman 
primate brain (Kondo et al. 2009). The implication is that in primates, the CA3 net-
work operates even more as a single network than in rodents.

Crucial issues include how many memories could be stored in this system (to 
determine whether the autoassociation hypothesis leads to a realistic estimate of 
the number of memories that the hippocampus could store); whether the whole of 
a memory could be completed from any part; whether the autoassociation memory 
can act as a short term memory, for which the architecture is inherently suited; and 

· ·ij i jw k r rδ = ′
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whether the system could operate with spatial representations, which are essentially 
continuous because of the continuous nature of space. These and related issues are 
considered in the remainder of “Storage Capacity” and in more detail elsewhere 
(Rolls 2008; Kesner and Rolls 2015).

Storage Capacity

We have performed quantitative analyses of the storage and retrieval processes in 
the CA3 network (Rolls 2012a; Rolls and Webb 2012; Treves and Rolls 1991, 1992; 
Webb et al. 2011). We have extended previous formal models of autoassociative 
memory (see Amit 1989) by analyzing a network with graded response units, so as 
to represent more realistically the continuously variable rates at which neurons fire, 
and with incomplete connectivity (Rolls et al. 1997b; Rolls and Webb 2012; Treves 
1990; Treves and Rolls 1991; Webb et al. 2011). We have found that in general the 
maximum number pmax of firing patterns that can be (individually) retrieved is pro-
portional to the number CRC of (associatively) modifiable recurrent collateral (RC) 
synapses on to each neuron, by a factor that increases roughly with the inverse of 
the sparseness a of the neuronal representation. (Each memory is precisely defined 
in the theory: it is a set of firing rates of the population of neurons (which represent 
a memory) that can be stored and later retrieved, with retrieval being possible from 
a fraction of the originally stored set of neuronal firing rates.) The neuronal popu-
lation sparseness a of the representation can be measured by extending the binary 
notion of the proportion of neurons that are firing to any one stimulus or event as

 
(4.2)

where ri is the firing rate of the i′th neuron in the set of N neurons. The sparseness 
ranges from 1/N, when only one of the neurons responds to a particular stimulus 
(a local or grandmother cell representation), to a value of 1.0, attained when all the 
neurons are responding to a given stimulus. Approximately,

 
(4.3)

where k is a factor that depends weakly on the detailed structure of the rate distribu-
tion, on the connectivity pattern, etc., but is roughly in the order of 0.2–0.3 (Treves 
and Rolls 1991). For example, for CRC = 12,000 and a = 0.02, pmax is calculated to 
be approximately 36,000. This analysis emphasizes the utility of having a sparse 
representation in the hippocampus, for this enables many different memories to 
be stored. (The sparseness a in this equation is strictly the population sparseness 
(Franco et al. 2007; Treves and Rolls 1991). The population sparseness ap would 
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be measured by measuring the distribution of firing rates of all neurons to a single 
stimulus at a single time. The single neuron sparseness or selectivity as would be 
measured by the distribution of firing rates to a set of stimuli, which would take a 
long time. The selectivity or sparseness as of a single neuron measured across a set 
of stimuli often takes a similar value to the population sparseness ap in the brain, 
and does so if the tuning profiles of the neurons to the set of stimuli are uncorrelated 
(Franco et al. 2007). These concepts are elucidated by Franco, Rolls et al. (2007).) (I 
note that the sparseness estimates obtained by measuring early gene changes, which 
are effectively population sparsenesses, would be expected to depend greatly on the 
range of environments or stimuli in which these were measured. If the environment 
was restricted to one stimulus, this would reflect the population sparseness. If the 
environment was changing, the measure from early gene changes would be rather 
undefined, as all the populations of neurons activated in an undefined number of 
testing situations would be likely to be activated.)

In order for most associative networks to store information efficiently, hetero-
synaptic long-term depression (as well as LTP) is required (Fazeli and Collingridge 
1996; Rolls 2008; Rolls and Deco 2002;Rolls and Treves 1990, 1998; Treves and 
Rolls 1991). Simulations that are fully consistent with the analytic theory are pro-
vided by Rolls (1995, 2012a), Simmen et al. (1996), and Rolls et al. (1997b).

A number of points that arise, including measurement of the total amount of 
information (in bits per synapse) that can be retrieved from the network, the com-
putational definition of a memory, the computational sense in which CA3 is an at-
tractor network, and the possible computational utility of memory reconsolidation, 
are treated elsewhere (Rolls 2008; Rolls and Kesner 2006). Here I note that given 
that the memory capacity of the hippocampal CA3 system is limited, it is necessary 
to have some form of forgetting in this store, or other mechanism to ensure that its 
capacity is not exceeded. (Exceeding the capacity can lead to a loss of much of the 
information retrievable from the network.) Heterosynaptic LTD could help this for-
getting, by enabling new memories to overwrite old memories (Rolls 1996a, 2008). 
The limited capacity of the CA3 system does also provide one of the arguments 
that some transfer of information from the hippocampus to neocortical memory 
stores may be useful (see Treves and Rolls 1994). Given its limited capacity, the 
hippocampus might be a useful store for only a limited period, which might be in 
the order of days, weeks, or months. This period may well depend on the acquisition 
rate of new episodic memories. If the animal were in a constant and limited environ-
ment, then as new information is not being added to the hippocampus, the represen-
tations in the hippocampus would remain stable and persistent. These hypotheses 
have clear experimental implications, both for recordings from single neurons and 
for the gradient of retrograde amnesia, both of which might be expected to depend 
on whether the environment is stable or frequently changing. They show that the 
conditions under which a gradient of retrograde amnesia might be demonstrable 
would be when large numbers of new memories are being acquired, not when only 
a few memories (few in the case of the hippocampus being less than a few hundred) 
are being learned.
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Recall and Completion

A fundamental property of the autoassociation model of the CA3 recurrent collat-
eral network is that the recall can be symmetric, that is, the whole of the memory 
can be retrieved and completed from any part (Rolls 2008; Rolls and Kesner 2006; 
Rolls and Treves 1998). For example, in an object–place autoassociation memory, 
an object could be recalled from a place retrieval cue, and vice versa. Kesner et al. 
(2008) tested this using an object-cued spatial location recall task, and a spatial 
location-cued object recall task (developed from an episodic flavor–place paired-
associate task (Day et al. 2003)). After rats were trained to a criterion of 80 % cor-
rect on 1 of the 2 tasks, they received either a dorsal CA3 lesion or a vehicle control 
lesion. Control animals continued performing well on both tasks. Rats with lesions 
to dorsal CA3 were impaired on both tasks and performed at chance but were able to 
perform a non-episodic version of the task as a control. These data provide evidence 
that CA3 mediates episodic learning of arbitrary associations as tested in the 1-trial 
object cue with spatial location recall task, and the spatial location cue with object 
recall task (Kesner et al. 2008).

In an object–place task, rats were trained in a study phase to learn in one trial an 
association between two flavors of food and two spatial locations (Day et al. 2003). 
During a recall test phase they were presented with a flavor which served as a cue 
for the selection of the correct location. They found that injections of an N-meth-
yl-D-aspartate (NMDA) receptor blocker (AP5) or AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid)/kainate receptor blocker (CNQX) to the dorsal 
hippocampus prior to the study phase impaired encoding, but injections of AP5 
prior to the test phase did not impair the place recall, whereas injections of CNQX 
did impair the place recall. The interpretation is that somewhere in the hippocampus 
NMDA receptors are necessary for learning one-trial odor–place associations, and 
that recall can be performed without further involvement of NMDA receptors.

Evidence that the CA3 system is not necessarily required during recall in a ref-
erence memory spatial task, such as the water maze spatial navigation for a single 
spatial location task, is that CA3 lesioned rats are not impaired during recall of a 
previously learned water maze task (Brun et al. 2002; Florian and Roullet 2004). 
However, if completion from an incomplete cue is needed, then CA3 NMDA re-
ceptors are necessary (presumably to ensure satisfactory CA3–CA3 learning) even 
in a reference memory task (Gold and Kesner 2005; Nakazawa et al. 2002). Thus, 
the CA3 system appears to be especially needed in rapid, one-trial object–place re-
call, and when completion from an incomplete cue is required (see further “Pattern 
Separation Performed By Dentate Granule Cells”). Especially important though 
in assessing the implications of all such tests is that the theory sets out how the 
system operates when large numbers of memories, in the order of thousands, are 
to be stored and retrieved, and this is difficult to test adequately in behavioral ex-
periments. Effects found when the storage and retrieval of just a few memories are 
tested may not reflect well the operation of the system when it is heavily loaded, as 
it is expected to be when operating in the natural environment.
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Evidence for pattern completion has been observed using imaging with voltage-
sensitive dye in the CA3 region of a rat hippocampal slice. Following the induc-
tion of long-term potentiation from two stimulation sites activated simultaneously, 
stimulation at either of the two sites produced the whole pattern of activation that 
could be produced from both stimulation sites before LTP, thus demonstrating pat-
tern completion in CA3 (Jackson 2013).

Continuous, Spatial, Patterns, and CA3 Representations

The fact that spatial patterns, which imply continuous representations of space, are 
represented in the hippocampus has led to the application of continuous attractor 
models to help understand hippocampal function. This has been necessary, because 
space is inherently continuous, because the firing of place and spatial view cells is 
approximately Gaussian as a function of the distance away from the preferred spa-
tial location, because these cells have spatially overlapping fields, and because the 
theory is that these cells in CA3 are connected by Hebb-modifiable synapses. This 
specification would inherently lead the system to operate as a continuous attractor 
network. Continuous attractor network models have been studied by Amari (1977), 
Zhang (1996), Taylor (1999), Samsonovich and McNaughton (1997), Battaglia 
and Treves (1998), Stringer et al. (2002a, b, 2004), Stringer and Rolls (2002) and 
Rolls and Stringer (2005) (see Rolls 2008; Rolls and Deco 2002), and are described 
briefly next.

A “continuous attractor” neural network (CANN) can maintain the firing of its 
neurons to represent any location along a continuous physical dimension such as 
spatial view, spatial position, head direction, etc. It uses excitatory recurrent collat-
eral connections between the neurons (as are present in CA3) to reflect the distance 
between the neurons in the state space of the animal (e.g., place or head direction). 
These networks can maintain the bubble or packet of neural activity constant for 
long periods wherever it is started to represent the current state (head direction, 
position, etc) of the animal, and are likely to be involved in many aspects of spatial 
processing and memory, including spatial vision. Global inhibition is used to keep 
the number of neurons in a bubble or packet of actively firing neurons relatively 
constant, and to help to ensure that there is only one activity packet.

Continuous attractor networks can be thought of as very similar to autoassocia-
tion or discrete attractor networks (Rolls 2008), and have the same architecture, as 
illustrated in Fig. 4.3. The main difference is that the patterns stored in a CANN are 
continuous patterns, with each neuron having broadly tuned firing which decreases 
with, for example, a Gaussian function as the distance from the optimal firing lo-
cation of the cell is varied, and with different neurons having tuning that overlaps 
throughout the space. Such tuning is illustrated elsewhere (Rolls 2008; Rolls et al. 
2002). For comparison, autoassociation networks normally have discrete (separate) 
patterns (each pattern implemented by the firing of a particular subset of the neu-
rons), with no continuous distribution of the patterns throughout the space. A con-
sequent difference is that the CANN can maintain its firing at any location in the 
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Fig. 4.3  Simulation of competitive learning in the dentate gyrus to produce place cells from the 
entorhinal cortex grid cell inputs. a and b Firing rate profiles of two entorhinal cortex (EC) grid 
cells with frequencies of 4 and 7 cycles. c and d Firing rate profiles of two dentate gyrus (DG) cells 
with no training using competitive learning. e and f Firing rate profiles of two dentate gyrus (DG) 
cells trained using competitive learning. (After Rolls et al. 2006.)
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trained continuous space, whereas a discrete attractor or autoassociation network 
moves its population of active neurons toward one of the previously learned attrac-
tor states, and thus implements the recall of a particular previously learned pattern 
from an incomplete or noisy (distorted) version of one of the previously learned 
patterns.

Space is continuous, and object representations are discrete. If these representa-
tions are to be combined in for example an object–place memory, then we need 
to understand the operation of networks that combine these representations. Rolls, 
Stringer, and Trappenberg (Rolls et al. 2002) have shown that attractor networks 
can store both continuous patterns and discrete patterns, and can thus be used to 
store for example the location in (continuous, physical) space (e.g., the place “out 
there” in a room represented by spatial view cells) where an object (a discrete item) 
is present. We showed this by storing associated continuous and discrete representa-
tions in the same single attractor network, and then showing that the representation 
in the continuous space could be retrieved by the discrete object that was associated 
with that spatial position; and that the representation of the discrete object could be 
retrieved by providing the position in the continuous representation of space.

If spatial representations are stored in the hippocampus, the important issue aris-
es in terms of understanding memories that include a spatial component or context 
of how many such spatial representations could be stored in a continuous attractor 
network. The very interesting result is that because there are in general low cor-
relations between the representations of places in different maps or charts (where 
each map or chart might be of one room or locale), very many different maps or 
charts can be simultaneously stored in a continuous attractor network (Battaglia and 
Treves 1998).

We have considered how spatial representations could be stored in continuous 
attractor networks, and how the activity can be maintained at any location in the 
state space in a form of short-term memory when the external (e.g., visual) input is 
removed. However, a property of some spatial representations is that they can be 
updated by self-motion, idiothetic, input, and mechanisms have been proposed for 
how this could be achieved (Rolls and Stringer 2005; Samsonovich and McNaugh-
ton 1997; Stringer and Rolls 2006; Stringer et al. 2005, 2002a, b; Walters et al. 
2013), including in the entorhinal cortex grid cell system (Giocomo et al. 2011; 
Kropff and Treves 2008; Zilli 2012). The ways in which path integration could be 
implemented in recurrent networks such as the CA3 system in the hippocampus or 
in related systems are described elsewhere (McNaughton et al. 2006; Samsonovich 
and McNaughton 1997; Stringer et al. 2002a, b), and have been applied to primate 
spatial view cells by Rolls and colleagues (Rolls and Stringer 2005; Stringer et al. 
2004, 2005). Cognitive maps (O’Keefe and Nadel 1978) can be understood by the 
operations of these attractor networks, and how they are updated by learning and 
by self-motion (Rolls 2008). It has been argued that the bumpiness of the CA3 rep-
resentation of space is more consistent with episodic memory storage, as argued in 
this chapter, than with spatial path integration using the CA3 system as a continuous 
attractor network implementing path integration (Cerasti and Treves 2013; Stella 
et al. 2013).



894 Pattern Completion and Pattern Separation Mechanisms in the Hippocampus

Perforant Path Inputs to CA3 Cells Perform Completion  
and Initiate Recall in CA3

By calculating the amount of information that would end up being carried by a 
CA3 firing pattern produced solely by the perforant path input and by the effect of 
the recurrent connections, we have been able to show (Treves and Rolls 1992) that 
an input of the perforant path type, alone, is unable to direct efficient information 
storage. Such an input is too weak, it turns out, to drive the firing of the cells, as the 
“dynamics” of the network is dominated by the randomizing effect of the recurrent 
collaterals. On the other hand, an autoassociative memory network needs afferent 
inputs to apply the retrieval cue to the network. We have shown (Treves and Rolls 
1992) that the perforant path system is likely to be the one involved in relaying the 
cues that initiate retrieval in CA3. The concept is that to initiate retrieval, a numeri-
cally large input (the perforant path system, see Fig. 4.2) is useful so that even a par-
tial cue is sufficient (see Eq. 17 of Treves and Rolls (1992)); and that the retrieval 
cue need not be very strong, as the recurrent collaterals (in CA3) then take over in 
the retrieval process to produce good recall (Rolls 2008; Treves and Rolls 1992). In 
this scenario, the perforant path to CA3 synapses operate as a pattern associator, the 
quantitative properties of which are described elsewhere (Rolls 2008, 2016; Rolls 
and Treves 1990, 1998). If an incomplete recall cue is provided to a pattern associa-
tion network using distributed input representations, then most of the output pattern 
will be retrieved, and in this sense pattern association networks do perform pattern 
generalization, and this generalization performed at the perforant path synapses to 
CA3 cells helps in the completion produced by the recurrent collateral CA3–CA3 
autoassociation process.

In contrast, during storage, strong signals, in the order of mV for each synaptic 
connection, are provided by the mossy fiber inputs to dominate the recurrent collat-
eral activations, so that the new pattern of CA3 cell firing can be stored in the CA3 
recurrent collateral connections (Rolls 2008; Treves and Rolls 1992).

The Dilution of the CA3 Recurrent Collateral Connectivity 
Enhances Memory Storage Capacity and Pattern Completion

Figure 4.2 shows that in the rat, there are approximately 300,000 CA3 neurons, 
but only 12,000 recurrent collateral synapses per neuron. The dilution of the con-
nectivity is thus 12,000/300,000 = 0.04. The connectivity is thus not complete, and 
complete connectivity in an autoassociation network would make it simple, for the 
connectivity between the neurons would then be symmetric (i.e., the connection 
strength from any one neuron to another is matched by a connection of the same 
strength in the opposite direction), and this guarantees energy minima for the ba-
sins of attraction that will be stable, and a memory capacity than can be calculated 
(Hopfield 1982). We have shown how this attractor type of network can be extended 
to have similar properties with diluted connectivity, and also with sparse representa-
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tions with graded firing rates (Rolls and Treves 1990; Treves 1990, 1991; Treves 
and Rolls 1991).

However, the question has recently been asked about whether there are any ad-
vantages to diluted autoassociation or attractor networks compared to fully connect-
ed attractor networks (Rolls 2012a). One biological property that may be a limiting 
factor is the number of synaptic connections per neuron, which is 12,000 in the 
CA3–CA3 network just for the recurrent collaterals (see Fig. 4.2). The number may 
be higher in humans, allowing more memories to be stored in the hippocampus than 
order 12,000. I note that the storage of large number of memories may be facilitated 
in humans because the left and right hippocampus appear to be much less connected 
between the two hemispheres than in the rat, which effectively has a single hip-
pocampus (Rolls 2008). In humans, with effectively two separate CA3 networks, 
one on each side of the brain, the memory storage capacity may be doubled, as the 
capacity is set by the number of recurrent collaterals per neuron in each attractor 
network (Eq. 4.3). In humans, the right hippocampus may be devoted to episodic 
memories with spatial and visual components, whereas the left hippocampus may 
be devoted to memories with verbal/linguistic components, that is, in which words 
may be the part of the episode (e.g., who said what to whom and when) (Barkas 
et al. 2010; Bonelli et al. 2010; Sidhu et al. 2013).

The answer that has been suggested to why the connectivity of the CA3 autoas-
sociation network is diluted (and why neocortical recurrent networks are also dilut-
ed), is that this may help to reduce the probability of having two or more synapses 
between any pair of randomly connected neurons within the network, which it has 
been shown greatly impairs the number of memories that can be stored in an attrac-
tor network, because of the distortion that this produces in the energy landscape 
(Rolls 2012a). In more detail, the hypothesis proposed is that the diluted connectiv-
ity allows biological processes that set up synaptic connections between neurons to 
arrange for there to be only very rarely more than one synaptic connection between 
any pair of neurons. If probabilistically there were more than one connection be-
tween any two neurons, it was shown by simulation of an autoassociation attractor 
network that such connections would dominate the attractor states into which the 
network could enter and be stable, thus strongly reducing the memory capacity of 
the network (the number of memories that can be stored and correctly retrieved), 
below the normal large capacity for diluted connectivity. Diluted connectivity be-
tween neurons in the cortex thus has an important role in allowing high capacity of 
memory networks in the cortex, and helping to ensure that the critical capacity is 
not reached at which overloading occurs leading to an impairment in the ability to 
retrieve any memories from the network (Rolls 2012a). The diluted connectivity is 
thus seen as an adaptation that simplifies the genetic specification of the wiring of 
the brain, by enabling just simple attributes of the connectivity to be specified (e.g., 
from a CA3 to another CA3 neuron chosen at random to specify the CA3 to CA3 re-
current collateral connectivity), rather than which particular neuron should connect 
to which other particular neuron (Rolls 2012a; Rolls and Stringer 2000). Consistent 
with this hypothesis, there are NMDA receptors with the genetic specification that 
they are NMDA receptors on neurons of a particular type, CA3 neurons (as shown 



914 Pattern Completion and Pattern Separation Mechanisms in the Hippocampus

by the evidence from CA3-specific vs. CA1-specific NMDA receptor knockouts) 
(Nakazawa et al. 2002, 2003, 2004; Rondi-Reig et al. 2001). A consequence is that 
the vector of output neuronal firing in the CA3 regions, that is, the number of CA3 
neurons, is quite large (300,000 neurons in the rat). The large number of elements in 
this vector may have consequences for the noise in the system, as we will see below.

The dilution of the CA3–CA3 recurrent collateral connectivity at 0.04 may be 
greater dilution than that in a local neocortical area, which is in the order of 0.1 
(Rolls 2008, 2012a). This is consistent with the hypothesis that the storage capacity 
of the CA3 system is at a premium, and so the dilution is kept to a low value (i.e., 
great dilution), as then there is lower distortion of the basins of attraction and hence 
the memory capacity is maximized (Rolls 2012a).

Pattern Separation of CA3 Cell Populations Encoding 
Different Memories

For the CA3 to operate with high capacity as an autoassociation or attractor memo-
ry, the sets of CA3 neurons that represent each event to be stored and later recalled 
need to be as uncorrelated from each other as possible. Correlations between pat-
terns reduce the memory capacity of an autoassociation network (Kohonen 1977, 
1984; Kohonen et al. 1981; Marr 1971), and because storage capacity is at a pre-
mium in an episodic memory system, there are several mechanisms that reduce the 
correlations between the firing of the population vectors of CA3 neuron firing each 
one of which represents a different event to be stored in memory. In the theoretical 
physics approach to the capacity of attractor networks, it is indeed assumed that 
the different vectors of firing rates to be stored are well separated from each other, 
by drawing each vector of firing at random, and by assuming very large (infinite) 
numbers of neurons in each pattern.

We have proposed that there are several mechanisms that help to achieve this 
pattern separation, namely the mossy fiber pattern separation effect produced by the 
small number of connections received by a CA3 neuron from mossy fibers which 
dominate the CA3 cell firing; the expansion recoding, and the sparse representation 
provided by the dentate granule cells that form the mossy fiber synapses; and the 
sparseness of the CA3 cell representation. Neurogenesis of dentate granule cells is 
a fifth potential contributor to achieving pattern separation of CA3 cell firing. The 
five factors are described next. Before this, it is remarked that some of this archi-
tecture may be special to the hippocampus, and not found in the neocortex, because 
of the importance of storing and retrieving large numbers of (episodic) memories 
in the hippocampus. The neocortex in contrast is more concerned with building 
new representations for which competitive learning is more important, and thus 
neocortical circuitry does not use a mossy fiber system to produce new random sets 
of neurons activated (Rolls 2008, 2016).
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Pattern Separation and the Sparse Connectivity of the Mossy Fiber 
Inputs to CA3 Cells

We hypothesize that the mossy fiber inputs force efficient information storage by 
virtue of their strong and sparse influence on the CA3 cell firing rates (Rolls 1987, 
1989b, c; Treves and Rolls 1992). (The strong effects likely to be mediated by the 
mossy fibers were also emphasized by McNaughton and Morris (1987) and Mc-
Naughton and Nadel (1990)). We (Rolls and Treves) (Rolls 1987, 1989b, 1989c, 
1990b, 2008; Rolls and Treves 1998; Treves and Rolls 1992) hypothesize that the 
mossy fiber input appears to be particularly appropriate in several ways. First, the 
fact that mossy fiber synapses are large and located very close to the soma makes 
them relatively powerful in activating the postsynaptic cell. Second, the firing activ-
ity of dentate granule cells appears to be very sparse (Jung and McNaughton 1993; 
Leutgeb et al. 2007) and this, together with the small number of connections on 
each CA3 cell, produces a sparse signal, which can then be transformed into sparse 
firing activity in CA3 by a threshold effect. The hypothesis is that the mossy fiber 
sparse connectivity solution performs the appropriate function to enable learning 
to operate correctly in CA3 (Cerasti and Treves 2010; Treves and Rolls 1992). The 
perforant path input would, the quantitative analysis shows, not produce a pattern 
of firing in CA3 that contains sufficient information for learning (Treves and Rolls 
1992) (see further Section “Perforant Path Inputs to CA3 Cells Perform Completion 
and Initiate Recall in CA3”).

The particular property of the small number of mossy fiber connections onto a 
CA3 cell, approximately 46 (see Fig. 4.2), is that this has a randomizing effect on 
the representations set up in CA3, so that they are as different as possible from each 
other (Rolls 1989b, 1989c, 2008; Rolls and Kesner 2006; Rolls and Treves 1998; 
Treves and Rolls 1992). (This means, for example, that place cells in a given en-
vironment are well separated to cover the whole space.) The result is that any one 
event or episode will set up a representation that is very different from other events 
or episodes, because the set of CA3 neurons activated for each event is random. 
This is then the optimal situation for the CA3 recurrent collateral effect to operate, 
for it can then associate together the random set of neurons that are active for a 
particular event (e.g., an object in a particular place), and later recall the whole set 
from any part. It is because the representations in CA3 are unstructured, or random, 
in this way that large numbers of memories can be stored in the CA3 autoassocia-
tion system, and that interference between the different memories is kept as low as 
possible, in that they are maximally different from each other (Hopfield 1982; Rolls 
2008; Rolls and Treves 1998; Treves and Rolls 1991).

The requirement for a small number of mossy fiber connections onto each CA3 
neuron applies not only to discrete (Treves and Rolls 1992) but also to spatial rep-
resentations, and some learning in these connections, whether associative or not, 
can help to select out the small number of mossy fibers that may be active at any 
one time to select a set of random neurons in the CA3 (Cerasti and Treves 2010). 
Any learning may help by reducing the accuracy required for a particular number 
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of mossy fiber connections to be specified genetically onto each CA3 neuron. The 
optimal number of mossy fibers for the best information transfer from dentate gran-
ule cells to CA3 cells is in the order of 35–50 (Cerasti and Treves 2010; Treves and 
Rolls 1992). The mossy fibers also make connections useful for feedforward inhibi-
tion in CA3 (Acsady et al. 1998), which is likely to be useful to help in the sparse 
representations being formed in CA3.

On the basis of these and other points, we predicted that the mossy fibers may 
be necessary for new learning in the hippocampus, but may not be necessary for the 
recall of existing memories from the hippocampus (Rolls 2008; Rolls and Treves 
1998; Treves and Rolls 1992). Experimental evidence consistent with this predic-
tion about the role of the mossy fibers in learning has been found in rats with disrup-
tion of the dentate granule cells (Lassalle et al. 2000) (Pattern Separation Performed 
By Dentate Granule Cells).

We (Rolls and Kesner 2006) have hypothesized that nonassociative plasticity of 
mossy fibers (see Brown et al. 1989, 1990) might have a useful effect in enhancing 
the signal-to-noise ratio, in that a consistently firing mossy fiber would produce 
nonlinearly amplified currents in the postsynaptic cell, which would not happen 
with an occasionally firing fiber (Treves and Rolls 1992). This plasticity, and also 
learning in the dentate, would also have the effect that similar fragments of each 
episode (e.g., the same environmental location) recurring on subsequent occasions 
would be more likely to activate the same population of CA3 cells, which would 
have potential advantages in terms of economy of use of the CA3 cells in different 
memories, and in making some link between different episodic memories with a 
common feature, such as the same location in space. Consistent with this, dentate 
neurons that fire repeatedly are more effective in activating CA3 neurons (Henze 
et al. 2002).

As acetylcholine turns down the efficacy of the recurrent collateral synapses 
between CA3 neurons (Giocomo and Hasselmo 2007; Hasselmo et al. 1995), then 
cholinergic activation also might help to allow external inputs from the mossy fibers 
rather than the internal recurrent collateral inputs to dominate the firing of the CA3 
neurons during learning, as the current theory proposes. If cholinergic activation 
at the same time facilitated LTP in the recurrent collaterals (as it appears to in the 
neocortex), then cholinergic activation could have a useful double role in facilitat-
ing new learning at times of behavioral activation (Giocomo and Hasselmo 2007; 
Hasselmo et al. 1995), when presumably it may be particularly relevant to allocate 
some of the limited memory capacity to new memories.

Pattern Separation and the Sparseness of the Firing of the Dentate 
Granule Cell Input Via the Mossy Fibers to CA3 Cells

The firing activity of dentate granule cells appears to be very sparse (Jung and Mc-
Naughton 1993; Leutgeb et al. 2007) and this, together with the small number of 
dentate mossy fiber connections on each CA3 cell, produces a sparse signal, which 
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can then be transformed into sparse firing activity in CA3 by a threshold effect. The 
pattern separation mechanisms that enable the dentate to provide a sparse firing 
input to CA3 are described below.

Pattern Separation and the Large Number of Dentate Granule 
Cells Providing Inputs Via the Mossy Fibers to CA3 Cells

Expansion recoding can decorrelate input patterns, and this can be performed by 
a stage of competitive learning with a large number of neurons (Rolls 2008). A 
mechanism like this appears to be implemented by the dentate granule cells, which 
are numerous (1 × 106 in the rat, compared to 300,000 CA3 cells), have associa-
tively modifiable synapses (required for a competitive network), and strong inhibi-
tion provided by the inhibitory interneurons. This may not represent expansion of 
numbers relative to the number of entorhinal cortex cells, but the principle of a large 
number of dentate granule cells, with competitive learning and strong inhibition 
through inhibitory interneurons, would produce a decorrelation of signals like that 
achieved by expansion recoding (Rolls 2008).

Sparseness of the CA3 Cell Representation and Pattern Separation

The firing of CA3 cells is relatively sparse, and this helps to decorrelate different 
population vectors of CA3 cell firing for different memories. (Sparse representa-
tions are more likely to be decorrelated with each other (Rolls 2008).) Evidence on 
the sparseness of the CA3 cell representation in rats includes evidence that CA3 
cell ensembles may support the fast acquisition of detailed memories by providing 
a locally continuous, but globally orthogonal spatial representation, onto which new 
sensory inputs can rapidly be associated (Leutgeb and Leutgeb 2007). In the ma-
caque hippocampus, in which spatial view cells are found (Georges-François et al. 
1999; Robertson et al. 1998; Rolls et al. 1997a, 1998), for the representation of 64 
locations around the walls of the room, the mean single cell sparseness as was 0.34, 
and the mean population sparseness apwas 0.33 (Rolls 2008; Rolls and Treves 2011; 
Rolls et al. 1998). For comparison, the corresponding values for inferior temporal 
cortex neurons tuned to objects and faces were 0.77 (Franco et al. 2007; Rolls 2008; 
Rolls and Treves 2011); for taste and oral texture neurons in the insular cortex the 
population sparseness was 0.71; for taste and oral texture neurons in the orbito-
frontal cortex was 0.61; and for taste and oral texture neurons in the orbitofrontal 
cortex was 0.81 (Rolls 2008; Rolls and Treves 2011). Thus, the evidence is that the 
hippocampal CA3/pyramidal cell representation is more sparse in macaques than 
in neocortical areas and the amygdala, and this is consistent with the importance 
in hippocampal CA3 of using a sparse representation to produce a large memory 
capacity.
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Representations in the neocortex and in the hippocampus are often distributed 
with graded firing rates in the neuronal populations (Rolls and Treves 2011). The 
firing rate probability distribution of each neuron to a set of stimuli is often ex-
ponential or gamma (Rolls and Treves 2011). These graded firing rate distributed 
representations are present in the hippocampus, both for place cells in rodents and 
for spatial view cells in the primate (Georges-François et al. 1999; McNaughton 
et al. 1983; O’ Keefe and Speakman 1987; O’Keefe 1979; Robertson et al. 1998; 
Rolls 2008; Rolls et al. 1997a, 1998; Rolls and Treves 2011). In processes in the 
brain such as memory recall in the hippocampus or decision-making in the cortex 
that are influenced by the noise produced by the close to random spike timings of 
each neuron for a given mean rate, the noise with this graded type of representation 
may be larger than with the binary firing rate distribution that is usually investigated 
(Rolls and Deco 2010). In integrate-and-fire simulations of an attractor decision-
making network, we showed that the noise is indeed greater for a given sparseness 
of the representation for graded, exponential, than for binary firing rate distribu-
tions (Webb et al. 2011). The greater noise was measured by faster escaping times 
from the spontaneous firing rate state when the decision cues are applied, and this 
corresponds to faster decision or reaction times. The greater noise was also evident 
as less stability of the spontaneous firing state before the decision cues are applied. 
The implication is that spiking-related noise will continue to be a factor that influ-
ences processes such as decision-making, signal detection, short-term memory, and 
memory recall (including in the CA3 network) even with the quite large networks 
found in the cerebral cortex. In these networks there are several thousand recurrent 
collateral synapses onto each neuron. The greater noise with graded firing rate dis-
tributions has the advantage that it can increase the speed of operation of cortical 
circuitry (Webb et al. 2011). The graded firing rates also by operating in a nonlinear 
network effectively increase the sparseness of the representation, and this itself is a 
pattern separation effect (Webb et al. 2011).

Neurogenesis of Dentate Granule Cells to Provide New 
Representations in CA3 Uncorrelated with Previous CA3 
Representations

If adult neurogenesis in the dentate gyrus does prove to be functionally relevant, 
its computational role could be to facilitate pattern separation for new patterns, by 
providing new dentate granule cells with new sets of random connections to CA3 
neurons. Consistent with the dentate spatial pattern separation hypothesis (Rolls 
1989b, c, 1996b; Treves and Rolls 1992, 1994), in mice with impaired dentate neu-
rogenesis, spatial learning in a delayed non-matching-to-place task in the radial arm 
maze was impaired for arms that were presented with little separation, but no deficit 
was observed when the arms were presented farther apart (Clelland et al. 2009). 
Consistently, impaired neurogenesis in the dentate also produced a deficit for small 
spatial separations in an associative object-in-place task (Clelland et al. 2009).
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The Direct Perforant Path to CA3 Cell Input: Poor at Pattern 
Separation and Forcing a New Memory Pattern into CA3 Cell 
Firing

It has been suggested that the feedforward connectivity from the entorhinal cortex 
via the perforant path to the CA3 neurons may act as a feedforward pattern associa-
tion network that is more important than the CA3–CA3 recurrent collateral autoas-
sociation system (Cheng 2013). The quantitative properties of pattern association 
networks are described elsewhere (Rolls 2008; Rolls and Treves 1990, 1998). If an 
incomplete recall cue is provided to a pattern association network using distributed 
input representations, then most of the output pattern will be retrieved, and in this 
sense pattern association networks do generalize. (As noted above, pattern associa-
tion networks do not perform pattern completion, in that the unconditioned stimulus 
cannot recall the conditioned stimulus.) The analyses described in these sources 
shows that the capacity of pattern association networks (the maximum number of 
memories that can be stored and retrieved, here denoted by pmax) is approximately

 
(4.4)

where CPA is the number of feedforward associatively modifiable connections per 
neuron, and ao is the sparseness of the representation in the output neurons of the 
pattern associator (Rolls 2008). Given that there are fewer feedforward (perforant 
path) synaptic connections onto CA3 neurons (3600) than recurrent synaptic con-
nections between CA3 neurons (12,000 in the rat) (see Fig. 4.2), then the capacity 
of the feedforward system would be considerably smaller than that of the recurrent 
collateral CA3–CA3 system. (It is noted that the ao of Eq. (4) would be the same 
number as the a of Eq. (3), as that is just the sparseness of the firing of the popula-
tion of CA3 neurons. The number of perforant path synapses is sufficiently large 
that it can act as a retrieval cue for even an incomplete pattern so that the CA3–CA3 
connections can then complete the retrieval, given that the recall signal for the per-
forant path pattern associator is proportional to the square root of the number of 
perforant path synapses, as shown by Eq. 17 of Treves and Rolls (1992).) The feed-
forward hypothesis (Cheng 2013) thus has a strong argument against it of storage 
capacity, which would be much less (approximately 3600/12,000) than that of the 
CA3–CA3 recurrent collateral system operating as an autoassociation memory. An-
other disadvantage of the feedforward hypothesis is that the attractor properties of 
the CA3–CA3 connections would be lost, and these potentially contribute to hold-
ing one or more items simultaneously active in short-term memory (Rolls 2008; 
Rolls et al. 2013), and providing a basis for temporal order memory as described in 
“Dilution of the CA3 Recurrent Collateral Connectivity Enhances Memory Storage 
Capacity and Pattern Completion.” Another disadvantage is that we have been able 
to show (Treves and Rolls 1992) that an input of the perforant path type, alone, is 
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unable to direct efficient information storage. Such an input is too weak, it turns 
out, to drive the firing of the cells, as the “dynamics” of the network is dominated 
by the randomizing effect of the recurrent collaterals. Another disadvantage of the 
feedforward hypothesis is that a pattern associator may not, with an incomplete cue, 
be able to recall the exact pattern that was stored, whereas an attractor network has 
the property that it can fall into an attractor basin that can reflect perfect retrieval of 
the memory (Rolls 2008; Rolls and Treves 1998).

Pattern Separation Performed by Dentate Granule Cells

The theory is that the dentate granule cell stage of hippocampal processing which 
precedes the CA3 stage acts as a competitive network in a number of ways to pro-
duce during learning the sparse yet efficient (i.e., nonredundant) representation 
in CA3 neurons that is required for the autoassociation implemented by CA3 to 
perform well (Rolls 1989b, c, 1990b; Kesner and Rolls 2015; Rolls et al. 2006; 
Treves and Rolls 1992). An important property for episodic memory is that the den-
tate by acting in this way would perform pattern separation (or orthogonalization) 
(Rolls 1989b; Kesner and Rolls 2015; Rolls et al. 2006; Treves and Rolls 1992), 
enabling the hippocampus to store different memories of even similar events, and 
this prediction has been confirmed (Gilbert et al. 2001; Goodrich-Hunsaker et al. 
2008; Kesner et al. 2012; Leutgeb and Leutgeb 2007; McHugh et al. 2007; Rolls 
2008; Rolls and Kesner 2006) (“Pattern Separation Performed By Dentate Granule 
Cells”). Consistently with this evidence for pattern separation by dentate granule 
cells, in rats small changes in the shape of the environment in which rats are explor-
ing can substantially alter the activity patterns among place-modulated granule cells 
(Leutgeb et al. 2007).

As just described, the dentate granule cells could be important in helping to 
build and prepare spatial representations for the CA3 network. The actual repre-
sentation of space in the primate hippocampus includes a representation of spatial 
view (Georges-François et al. 1999; Robertson et al. 1998; Rolls et al. 1997a, 1998; 
Rolls and Xiang 2006), whereas in the rat hippocampus it is of the place where the 
rat is. The representation in the rat may be related to the fact that with a much less 
developed visual system than the primate, the rat’s representation of space may be 
defined more by the olfactory and tactile as well as distant visual cues present, and 
may thus tend to reflect the place where the rat is. However, the spatial representa-
tions in the rat and primate could arise from essentially the same computational 
process as follows (de Araujo et al. 2001; Rolls 1999). The starting assumption 
is that in both the rat and the primate, the dentate granule cells (and the CA3 and 
CA1 pyramidal cells) respond to combinations of the inputs received. In the case 
of the primate, a combination of visual features in the environment will, because of 
the fovea providing high spatial resolution over a typical viewing angle of perhaps 
10–20 °, result in the formation of a spatial view cell, the effective trigger for which 
will thus be a combination of visual features within a relatively small part of space. 
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In contrast, in the rat, given the very extensive visual field subtended by the rodent 
retina, which may extend over 180–270 °, a combination of visual features formed 
over such a wide visual angle would effectively define a position in space that is a 
place (de Araujo et al. 2001).

The entorhinal cortex contains grid cells, which have high firing in the rat in 
a two-dimensional spatial grid as a rat traverses an environment, with larger grid 
spacings in the ventral entorhinal cortex (Fyhn et al. 2004; Hafting et al. 2005). This 
may be a system optimized for path integration (McNaughton et al. 2006) which 
may self-organize during locomotion with longer time constants producing more 
widely spaced grids in the ventral entorhinal cortex (Kropff and Treves 2008). How 
are the grid cell representations, which would not be suitable for association of an 
object or reward with a place to form an episodic memory, transformed into a place 
representation that would be appropriate for this type of episodic memory? I have 
proposed that this could be implemented by a competitive network (see Rolls 2008) 
in the dentate gyrus which operates to form place cells, implemented by each den-
tate granule cell learning to respond to particular combinations of entorhinal cortex 
cells firing, where each combination effectively specifies a place, and this has been 
shown to be feasible computationally (Rolls et al. 2006). The sparse representations 
in the dentate gyrus, implemented by the mutual inhibition through inhibitory inter-
neurons and competitive learning, help to implement this “pattern separation” ef-
fect (Rolls 1989b, c, 2008; Rolls and Treves 1998). The investigations showed that 
learning in the perforant path to dentate granule cell representation, and the sparse 
representation in the dentate granule cells, are both important in the formation of 
place-like fields in dentate granule cells from the grid cells in the entorhinal cortex 
(Georges-François et al. 1999; Robertson et al. 1998; Rolls et al. 1997a; 1998). To 
illustrate this, Fig. 4.3 shows from these simulations the responses of the simulated 
grid cells (a, b), the dentate receptive fields formed by feedforward connections 
and a sparse representation in the dentate gyrus (c, d), and the dentate receptive 
fields formed when Hebbian synaptic modification and training is included in the 
feedforward connections to implement competitive learning (e, f). It is only with the 
full competitive learning that the dentate receptive fields self-organized to become 
small place-like receptive fields (Rolls et al. 2006) similar to those found in the rat 
dentate granule cells.

In primates, there is now evidence that there is a grid-cell like representation in 
the entorhinal cortex, with neurons having grid-like firing as the monkey moves 
the eyes across a spatial scene (Killian et al. 2012). Similar competitive learning 
processes may transform these entorhinal cortex “spatial view grid cells” into hip-
pocampal spatial view cells, and may help with the idiothetic (produced in this case 
by movements of the eyes) update of spatial view cells (Robertson et al. 1998). The 
presence of spatial view grid cells in the entorhinal cortex of primates (Killian et al., 
2012) is of course predicted from the presence of spatial view cells in the primate 
CA3 and CA1 regions (Georges-François et al. 1999; Robertson et al. 1998; Rolls 
2008; Rolls et al. 1997a, 1998; Rolls and Xiang 2006). Further support of this type 
of representation of space being viewed “out there” rather than where one is located 
as for rat place cells is that cells in the human parahippocampal cortex with spatial 
view-like properties have now been described (Ekstrom et al. 2003).
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CA1 Cells and Pattern Completion Prior  
to Hippocampo-Directed Recall to the Neocortex

The CA3 cells connect to the CA1 cells by the Schaeffer collateral synapses. The 
associative modifiability in this connection helps the full information present in 
CA3 to be retrieved in the CA1 neurons (Rolls 1995; Schultz and Rolls 1999; Trev-
es 1995; Treves and Rolls 1994). Part of the hypothesis is that the separate subparts 
of an episodic memory, which must be represented separately in CA3 to allow for 
completion, can be combined together by competitive learning in CA1 to produce 
an efficient retrieval cue for the recall via the backprojection pathways to the neo-
cortex of memories stored in the neocortex (Rolls 1989a, b, 1995, 1996b; Treves 
and Rolls 1994). Associative recall in the CA3 to CA1 feedforward connections is 
a prominent property which implements what amounts to pattern completion (Rolls 
1995, 2008; Schultz et al. 2000), though for pattern associators this process is usu-
ally described as generalization (Rolls 2008).

Backprojections to the Neocortex, and Memory Retrieval 
from the Hippocampus Involving Pattern Completion

The need for information to be retrieved from the hippocampus to affect other brain 
areas was noted in the Introduction. The way in which this could be implemented 
via backprojections to the neocortex (Rolls 1995, 1996b, 2008; 2010b; Treves and 
Rolls 1994) is considered here in the context of recalling a complete memory repre-
sentation in the complete set of cortical areas that provide inputs to the hippocam-
pus (see Fig. 4.1).

It is suggested that the modifiable connections from the CA3 neurons to the CA1 
neurons allow the whole episode in CA3 to be produced in CA1. The CA1 neurons 
would then activate, via their termination in the deep layers of the entorhinal cortex, 
at least the pyramidal cells in the deep layers of the entorhinal cortex (see Fig. 4.1). 
These entorhinal cortex layer 5 neurons would then, by virtue of their backprojec-
tions (Lavenex and Amaral 2000; Witter et al. 2000a) to the parts of cerebral cortex 
that originally provided the inputs to the hippocampus, terminate in the superficial 
layers (including layer 1) of those neocortical areas, where synapses would be made 
onto the distal parts of the dendrites of the (superficial and deep) cortical pyramidal 
cells (Rolls 1989a, b, c). The areas of cerebral neocortex in which this recall would 
be produced could include multimodal cortical areas (e.g., the cortex in the superior 
temporal sulcus which receives inputs from temporal, parietal, and occipital cortical 
areas, and from which it is thought that cortical areas such as 39 and 40 related to 
language developed), and also areas of unimodal association cortex (e.g., inferior 
temporal visual cortex). The backprojections, by recalling previous episodic events, 
could provide information useful to the neocortex in the building of new represen-
tations in the multimodal and unimodal association cortical areas, which by build-
ing new long-term and structured representations can be considered as a form of 
memory consolidation (Rolls 1989a, b, c; 1990a; b, 2008), or in organizing actions.
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The hypothesis of the architecture with which this would be achieved is shown 
in Fig. 4.1. The feedforward connections from association areas of the cerebral neo-
cortex (solid lines in Fig. 4.1), show major convergence as information is passed to 
CA3, with the CA3 autoassociation network having the smallest number of neurons 
at any stage of the processing. The backprojections allow for divergence back to 
neocortical areas. The way in which I suggest that the backprojection synapses are 
set up to have the appropriate strengths for recall is as follows (Rolls 1989a, b, c). 
During the setting up of a new episodic memory, there would be strong feedfor-
ward activity progressing toward the hippocampus. During the episode, the CA3 
synapses would be modified, and via the CA1 neurons and the subiculum, a pattern 
of activity would be produced on the backprojecting synapses to the entorhinal 
cortex. Here, the backprojecting synapses from active backprojection axons onto 
pyramidal cells being activated by the forward inputs to entorhinal cortex would 
be associatively modified. A similar process would be implemented at preceding 
stages of neocortex, that is in the parahippocampal gyrus/perirhinal cortex stage, 
and in association cortical areas, as shown in Fig. 4.1.

The concept is that during the learning of an episodic memory, cortical pyra-
midal cells in at least one of the stages would be driven by forward inputs, but 
would simultaneously be receiving backprojected activity (indirectly) from the hip-
pocampus which would by pattern association from the backprojecting synapses to 
the cortical pyramidal cells become associated with whichever cortical cells were 
being made to fire by the forward inputs. Then later on, during recall, a recall cue 
from perhaps another part of cortex might reach CA3, where the firing during the 
original episode would be completed. The resulting backprojecting activity would 
then, as a result of the pattern association learned previously, bring back the firing 
in any cortical area that was present during the original episode. Thus, retrieval 
involves reinstating the activity that was present in different cortical areas that was 
present during the learning of an episode. (The pattern association is also called 
heteroassociation, to contrast it with autoassociation. The pattern association oper-
ates at multiple stages in the backprojection pathway, as made evident in Fig. 4.1). 
If the recall cue was an object, this might result in recall of the neocortical firing 
that represented the place in which that object had been seen previously. As noted 
elsewhere in this chapter and by McClelland et al. (1995), that recall might be use-
ful to the neocortex to help it build new semantic memories, which might inherently 
be a slow process and is not a part of the theory of recall.

A plausible requirement for a successful hippocampo-directed recall operation, 
is that the signal generated from the hippocampally retrieved pattern of activity, 
and carried backward toward neocortex, remain undegraded when compared to the 
noise due, at each stage, to the interference effects caused by the concurrent storage 
of other patterns of activity on the same backprojecting synaptic systems. That re-
quirement is equivalent to that used in deriving the storage capacity of such a series 
of heteroassociative memories, and it was shown by Treves and Rolls (1991, 1994) 
that the maximum number of independently generated activity patterns that can be 
retrieved is given, essentially, by the same formula as (3) above where, however, a 
is now the sparseness of the representation at any given stage, and C is the average 
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number of (back-)projections each cell of that stage receives from cells of the previ-
ous one. (k′ is a similar slowly varying factor to that introduced above.) If p is equal 
to the number of memories held in the hippocampal memory, it is limited by the 
retrieval capacity of the CA3 network, pmax. Putting together the formula for the lat-
ter with that shown here, one concludes that, roughly, the requirement implies that 
the number of afferents of (indirect) hippocampal origin to a given neocortical stage 
( CHBP), must be CHBP = CRCanc/aCA3, where CRC is the number of recurrent collaterals 
to any given cell in CA3, the average sparseness of a representation is anc, and aCA3 
is the sparseness of memory representations there in CA3.

The above requirement is very strong: even if representations were to remain as 
sparse as they are in CA3, which is unlikely, to avoid degrading the signal, CHBP 
should be as large as CRC, that is, 12,000 in the rat. If then CHBP has to be of the 
same order as CRC, one is led to a very definite conclusion: A mechanism of the type 
envisaged here could not possibly rely on a set of monosynaptic CA3-to-neocortex 
backprojections. This would imply that, to make a sufficient number of synapses 
on each of the vast number of neocortical cells, each cell in CA3 has to generate a 
disproportionate number of synapses (i.e., CHBP times the ratio between the number 
of neocortical and that of CA3 cells). The required divergence can be kept within 
reasonable limits only by assuming that the backprojecting system is polysynaptic, 
provided that the number of cells involved grows gradually at each stage, from CA3 
back to neocortical association areas (Treves and Rolls 1994) (cf. Fig. 4.1).

The theory of recall by the backprojections thus provides a quantitative account 
of why the cerebral cortex has as many backprojection as forward projection con-
nections.

These concepts show how the backprojection system to neocortex can be con-
ceptualized in terms of pattern completion, as follows. First, the information that is 
present when a memory is formed may be present in different areas of the cerebral 
cortex, for example of a face in a temporal cortex face area (Rolls 2012b), of a 
spatial location in a neocortical location area, and of a reward received in the orbi-
tofrontal cortex (Rolls 2014). To achieve detailed retrieval of the memory, reinstate-
ment of the activity during recall of the neuronal activity during the original mem-
ory formation may be needed. This is what the backprojection system described 
could achieve, and is a form of completion of the information that was represented 
in the different cortical areas when the memory was formed. Because such a wide 
set of different neocortical areas must be content addressed, a multistage feedback 
system is required, to keep the number of synapses per neuron in the backprojection 
pathways down to reasonable numbers. (Having CA1 directly address neocortical 
areas would require each CA1 neuron to have tens of millions of synapses with 
cortical neurons. That is the part of the computational problem solved by the multi-
stage backprojection system shown in Fig. 4.1.) Second, the backprojection system 
with its series of pattern associators can each be thought of as performing a type of 
pattern completion.

Further aspects of the operation of the backprojecting systems are described 
elsewhere (Rolls 2008, 2016).
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Tests of Pattern Separation and Pattern Completion

There is now a large literature on tests of pattern separation and pattern completion 
in the hippocampus (Giocomo et al. 2011; Hunsaker and Kesner 2008, 2013; Jezek 
et al. 2011; Kesner 2007, 2013; Kesner et al. 2012; Leutgeb et al. 2007; McHugh 
et al. 2007; Nakashiba et al. 2012; Nakazawa et al. 2002, 2003; Rolls and Kesner 
2006; Wills et al. 2005), and a brief summary of some of the findings is provided 
next. An important point is that the theory (Rolls 1987, 1989a, b, c, 1990a, b, 1991, 
1995, 1996b, 2008, 2010b, 2013; Rolls and Deco 2010; Kesner and Rolls 2015; 
Rolls and Treves 1998; Treves and Rolls 1991, 1992, 1994) is a quantitative theory 
of hippocampal function, and addresses how pattern separation and pattern comple-
tion are important in enabling the hippocampal system to operate up to capacity, 
which is in the order of tens of thousands of different memories. Some predictions 
from the theory may only hold when the system is well loaded, that is tested when 
the system is operating with thousands of memories, for then the pattern separation 
will be important. It is possible to test the predictions in simulations, where the sys-
tem can be trained up to capacity (Rolls 1995, 2012a; Rolls et al. 1997b). In vivo, it 
may be useful to test the storage and recall of as many memories as possible, and in 
addition testing animals kept in environments where memories of the hippocampal 
type are needed may also help to test hypotheses in situations where the hippocam-
pus has been at least moderately well loaded with many different memories.

Dentate Granule Cells

The theory predicts that pattern separation is performed by competitive learning by 
the dentate granule cells. Evidence consistent with this has been found neurophysi-
ologically in the small sparsely encoded place fields of dentate neurons (Jung and 
McNaughton 1993; Leutgeb and Leutgeb 2007) and their reflection in CA3 neurons 
(Leutgeb and Leutgeb 2007). Further, and consistent with the theory, it has been 
shown that selective dentate lesions in rats (Gilbert and Kesner 2003; Gilbert et al. 
2001; Goodrich-Hunsaker et al. 2008; Hunsaker and Kesner 2013; Kesner 2013; 
Rolls 2008; Kesner and Rolls 2015) or dentate NMDA receptor knockouts in mice 
(McHugh et al. 2007) impair spatial, object–place (or reward–place: Remember-
ing where to find a reward) association tasks especially when the places are close 
together and require pattern separation before storage in CA3.

Mossy Fiber Inputs to CA3 and Learning

The theory predicts that the dentate granule cell mossy fiber system of inputs to the 
CA3 neurons is necessary to store spatial memories, but not to recall them. Lassalle 
et al. (2000) have obtained evidence consistent with this in rats with damage to the 
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mossy fiber system (Lassalle et al. 2000), and there is further evidence consistent 
with this (Daumas et al. 2009; Lee and Kesner 2004; Rolls and Kesner 2006).

Perforant Path Inputs to CA3 and Recall

The theory predicts that the direct perforant path input from the entorhinal cortex to 
the CA3 cells (which bypasses the dentate granule cells) is involved in the recall of 
memory from the CA3 system, and Lee and Kesner (2004) have obtained evidence 
consistent with this in a Hebb–Williams maze recall task (Lee and Kesner 2004).

CA3 and Pattern Completion

The theory predicts that the CA3 system is especially important in object–place or 
reward–place tasks in which associations must be formed between any spatial loca-
tion and any object (referred to as arbitrary associations). There is much evidence 
from subregion analyses involving disruption of CA3 that CA3 is necessary for 
arbitrary associations between places and objects or rewards (Gilbert and Kesner 
2003; Hunsaker and Kesner 2013; Rolls and Kesner 2006). Similar impairments 
were obtained following deletion of CA3 NMDA receptors in mice in the acquisi-
tion of an odor–context paired associate learning task (Rajji et al. 2006). If place or 
time is not a component, associative tasks such as odor–object association are not 
impaired (Rolls and Kesner 2006), underlining the fact that the hippocampus is es-
pecially involved in episodic types of associative memory which typically involve 
place and/or time.

The theory predicts that the CA3 is especially important in object–place or 
reward–place completion tasks, in which associations must be completed from a 
part of the whole. It has been shown that if completion from an incomplete cue is 
needed, then CA3 NMDA receptors are necessary (presumably to ensure satisfac-
tory CA3–CA3 learning) even in a reference memory task (Gold and Kesner 2005; 
Hunsaker and Kesner 2013; Nakazawa et al. 2002).

The theory predicts that the CA3 system is especially needed in rapid, one-tri-
al object–place, learning and recall. It has been shown that hippocampal NMDA 
receptors (necessary for long-term potentiation to occur) are needed for one-trial 
flavor–place association learning, and that hippocampal AMPA/kainate receptors 
are sufficient for the recall, though the hippocampal subregion involved was not 
tested (Day et al. 2003). In subregion studies, Kesner and colleagues have shown 
that CA3 lesions produce chance performance on a one-trial object–place recall task 
(Kesner et al. 2008) and other object–spatial tasks (Kesner and Rolls 2001; Rolls 
and Kesner 2006). For example, CA3 lesions produced chance performance on both 
a one-trial object–place recall and place–object recall task (Kesner et al. 2008). This 
is evidence that CA3 supports arbitrary associations as well as episodic memory 
based on 1-trial learning. A control fixed visual conditional to place task with the 
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same delay was not impaired, showing that it is recall after one-trial (or rapid, epi-
sodic) learning that is impaired (Kesner et al. 2008). CA3 NMDA receptors are as 
predicted by the theory necessary for rapid/one-trial spatial learning, as shown by 
a mouse knockout study by Nakazawa, Tonegawa and colleagues (Nakazawa et al. 
2004, 2003; Tonegawa et al. 2003). We have shown that hippocampal CA3 neu-
rons reflect the computational processes necessary for one-trial object–place event 
memory, used as a model for episodic memory (Rolls and Xiang 2006).

Another type of test of the autoassociation (or attractor) hypothesis for CA3 has 
been to train rats in different environments, for example, a square and a circular 
environment, and then test the prediction of the hypothesis that when presented 
with an environment ambiguous between these, hippocampal neurons will fall into 
an attractor state that represents one of the two previously learned environments, 
but not a mixture of the two environments. Evidence consistent with the hypothesis 
has been found (Wills et al. 2005). In a particularly dramatic example, it has been 
found that within each theta cycle, hippocampal pyramidal neurons may represent 
one or other of the learned environments (Jezek et al. 2011). This is an indication, 
predicted by Rolls and Treves (1998), that autoassociative memory recall can take 
place sufficiently rapidly to be complete within one theta cycle (120 ms), and that 
theta cycles could provide a mechanism for a fresh retrieval process to occur after 
a reset caused by the inhibitory part of each theta cycle, so that the memory can be 
updated rapidly to reflect a continuously changing environment, and not remain too 
long in an attractor state.

Evidence that the firing of hippocampal pyramidal cells in macaques is more 
sparse than in neocortical areas is described in “Sparseness of the CA3 Cell Repre-
sentation and Pattern Separation.” This is consistent with the premium placed in the 
hippocampus for storing and retrieving large numbers of independent memories.

The theory predicts that if primates including humans can form an episodic 
memory in which objects or people are seen at particular locations even though the 
observer viewing the space has never been to those locations “out there” in space, 
there should be a neural system in CA3 that can support such associations between 
places “out there” in a scene and objects. Exactly this is provided by the spatial 
view neurons Rolls and colleagues have discovered that are present in primate CA3 
(Georges-François et al. 1999; Robertson et al. 1998; Rolls et al. 1997a, 1998; Rolls 
and Xiang 2005, 2006; Rolls et al. 2005). Place cells will not do for this type of 
episodic memory (Rolls 2010b, 2013).

Recall Via CA1 to Neocortex: A Reverse Hierarchy of Pattern 
Associators Each Performing Pattern Completion

The theory shows quantitatively, analytically, how memories could be retrieved 
from the hippocampus to the neocortex (Treves and Rolls 1994), and this has been 
shown by simulation of the multistage hippocampal system including the entorhinal 



1054 Pattern Completion and Pattern Separation Mechanisms in the Hippocampus

cortex, dentate, CA3, CA1, and return to the entorhinal cortex to recall the memory 
to be quantitatively realistic (Rolls 1995).

It has been shown that after learning in hippocampal-dependent tasks, neocorti-
cal representations may change (Schwindel and McNaughton 2011). Although this 
has been interpreted as the transfer of memories from the hippocampus to the neo-
cortex (Schwindel and McNaughton 2011), it should be noted that if the hippocam-
pal representation changes as a result of learning, then the altered representation in 
CA1 will, even with fixed synaptic connections back to neocortex, alter neocorti-
cal firing, with no learning or actual “transfer” involved. (This occurs whenever 
one vector of neuronal firing changes and influences another vector of neuronal 
firing through fixed connections.) It has also been suggested that the transfer of 
information from the hippocampus to the neocortex occurs especially during sleep 
(Marr 1971; Schwindel and McNaughton 2011). My own view is that during wak-
ing would be the best time to retrieve a memory from the hippocampus to the neo-
cortex by using the hippocampus to retrieve the complete episodic memory from 
a fragment. The retrieval would reinstate the neocortical activity present when the 
event was originally learned. The retrieved information now present in the neocor-
tex could then be used to build new semantic memories, for example, a narrative 
account of all the events that took place on one’s fifth birthday party. During waking 
the building of semantic representations could be guided and organized by rational 
thought into useful semantic representations. To do this during sleep would run the 
risk of forming bizarre semantic representations of the type that we dream about 
during the unguided noise-driven stochastic firing during sleep (Rolls 2008; Rolls 
and Deco 2010). Further, the active recall during waking of memories from the hip-
pocampus means that mainly relevant or useful memories would be retrieved from 
the hippocampus (not useless memories such as where one parked one’s bicycle two 
weeks ago), and only these memories would tend to become incorporated into use-
ful long-term semantic representations, allowing memories not retrieved from the 
hippocampus to be overwritten by new memories in the process of forgetting that 
involves using CA3 sets of neurons chosen at random for new episodic memories 
(Rolls 2008).

Many further tests of the theory are described elsewhere (Hunsaker and Kesner 
2013; Kesner et al. 2012; Rolls 2008, 2010b; Rolls and Kesner 2006). The theory 
has recently been extended to temporal order memory and temporal pattern separa-
tion (Rolls 2010b, 2013), which are also related to hippocampal function (Hoge and 
Kesner 2007; Kesner et al. 2002; Kesner and Rolls 2015).
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