
Chapter 22
Evaluation of Cache Coherence
Mechanisms for Multicore Processors

Malik Al-Manasia and Zenon Chaczko

Abstract Multiple core designs have become commonplace in the processor mar-
ketplace, and are therefore a major focus in modern computer architecture research.
Thus, for both product development and research, multiple core processor perfor-
mance evaluation is a mandatory step in marketplace. Multicore computing has
presented many challenges for system designers; one of which is data consistency
between a shared cache ormemory and the local caches of the chip. This is also known
as cache coherency. The cache coherence mechanisms are a key component in the
direction of accomplishing the goal of continuing exponential performance growth
through widespread thread-level parallelism. In the scope of this research, we have
studied the available efficientmethods and protocols used to achieve cache coherence
in multicore architectures. These protocols were further modeled and evaluated uti-
lizing Simics simulator for multicore architectures.We also explored the weaknesses
and strengths of different protocols and discussed the way of improving them.

22.1 Introduction

Enhancement of microprocessors is guided greatly by Moores Law, which forecasts
that the number of transistors per silicon area is doubled every eighteen months
[38]. Computer architects are embarking on a fundamental shift in how the transistor
bounty is used to increase performance, while Moores Law is expected to continue
at least into the next decade [36].

There is a great correlation between power and frequency. When the frequency is
enhanced, the power will also be enhanced and after that the temperatures will also
increase [41]. Multicore processors take advantage of this relationship by combining
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multiple cores. Each core is able to run at a lower frequency, by splitting up the
power provided to a single core normally between all cores [18]. The performance
will enhance whereas the power and temperatures are still under control.

Numerous new applications are becoming multithreaded and computer architec-
ture is turning its focus towards parallelism. This is because it’s very hard to enhance
the performance of single core processors by increasing the clock frequencies, let
alone the difficulties probable such as heating or speed of light if the frequency
exceeds certain ranges, the design and verification needs a large team as well.

Multicore design is faced with many challenges like any new design. These chal-
lenges require identification and understanding. One of the main challenges facing
ChipMultiprocessors (CMPs) is the competition for shared resources, this challenge
forms a restriction bottleneck [11, 23, 24]. Some of the shared resources are: main
memory bandwidth and capacity, cache bandwidth and capacity, memory subsystem
interconnection bandwidth and system power. Memory system scalability is the big
issue the multicore future will face and challenge.

The first on-chip multiprocessor for the computing market of the general purpose
was presented in 2000 by IBM. Followed in 2005 by AMD that presented the two
processor version for the server market, also in the end of 2007 and 2008 kickoff
quad-core and triple-core processors were introduced, whereas an 8-core chip for
computer-farm applicationwas produced by Sun in 2006. Tilera however, on the 20th
of August 2007 gave off its 64-core processor. Intel also released its two-processor
versions in 2005 for the server market; its quad core processor was presented on Dec
13, 2006. Within the coming years Intel is expected to release its 80-core processor
prototype each running at 3.16GHz.

Cache memory is defined as a specific memory subsystem whereas data of per-
sistent usage is stored for fast access. Caching is used to increase the speed of large
amount of slow, affordable memory by using a small amount of expensive memory.
Regarding multicore processors, cache coherency stands for the credibility of data
stored in each cores cache. Multicore processors may have distributed and shared
caches on the chip, so we should account for coherence protocols to assure that when
a core reads from memory, it reads the current piece of data and not a value that has
been updated by a different core.

The cache coherence problem is illustrated in Fig. 22.1. Figure22.1 illustrates
a shared L2 cache by four cores with private caches via a bus. The cores access
location X sequentially. At the beginning core 1, brings a copy to its cache by reading
X from L2 cache. After that, core 4 brings a copy to its cache by reading X from L2
cache. Thereafter core 4 changes X’s location value from 8 to 5.With a write-through
cache, causing the L2 cache location to be updated, but in (action 4) when core 1
read location X again, it will read the old value 8 from its own cache rather than
reading its correct value 5 from L2 cache.

The writeback caches complicate the situation even further. Core 4’s write would
not update L2 cache right away; instead it would barely set the dirty (or modified) bit
concerned with the cache block holding location X. Contents of cache block would
be written back to L2 cache solely when this cache block is subsequently replaced
from the cache of core 4. The reading of the old value is not inclusive to core 1;
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Fig. 22.1 Cache coherence problem

furthermore core 2 and core 3 will miss in their caches when reading location X
(actions 5 and 6) by reading the old value 8 instead of 5 from L2 cache. Last but
not least, if more than one core write different values in their write-back caches to
location X, The end value that will reach the L2 cache will not be related to the
sequence in which the writes to X occurred instead it will be determined by the
sequence in which the cache blocks that contain X are replaced.

Coherence between the caches has to be enforced in order for correct execution.
This process is affected by two main factors: Performance and implementation cost.

In general in hardware-based, there are twomethods for cache coherence, a snoop-
ing protocol and a directory-based protocol. The Snoopy cache-coherence methods
require sending information to all of cache controllers. However, if the number of
cores increased the cache messages will increase, also then the required bus which
connect the caches and all messages pass through it bandwidth will be bigger than
available one, then total saturation of bus bandwidth occurs. These techniques can be
used in small-scale systems due to this limitation. However, the Directory-based pro-
tocol, scales to larger numbers of processors or cores than snoopy-based coherence
protocol, since it enables multiple coherence actions to take place at the same time.

There are three critical attributes that have an impact on the performance of any
cache coherence protocol, thus being:

Low-latency Cache-to-Cache Misses: A cache-to-cache miss is a miss frequently
caused by accessing shared data that requires another processors cache to provide the
data. To decrease the latency of cache-to-cache misses, a coherence protocol should
ideally support direct cache-to-cache misses [33]. To efficiently support the frequent
communication and synchronization in these workloads, systems are required to
optimize the latency of cache-to-cache misses [6].

Bandwidth Efficiency: A cache coherence protocol should conserve bandwidth
to decrease the cost and avoid interconnect contention (since contention reduces
performance).

Scalability Challenges: Hardware resources must scale efficiently, as the future is
multithreaded. Memory hierarchy is the main hardware scalability dilemma. CMPs
depend on large, multi-level cache hierarchies to diminish the high cost, limited
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bandwidth and high latency of main memory. Caches generally use nearly the half of
chip area and a substantial fraction of system energy. The main problems limit cache
hierarchies scalability are cache associativity, partitioning and coherency. Caches
currently spend significant energy and latency to implement associative lookups,
making them inefficient and have a considerable impact on system performance.
The previously proposed partitioning techniques suffer from two main weaknesses:
they are not scalable and limited to a small number of coarse-grain partitions, and
partitioning often reduces performance. Also, traditional coherence schemes do not
scale beyond a few tens of cores.

The objective of this paper is to explain the relative behavior of different coherence
protocols (traditional protocols andTokenCoherence based protocols).We aimnot to
(1) Generate ultimate execution times or throughput rates for our simulated systems
or (2) Evaluating such protocols on all of the future’s system configurations. We
use an approximation of a chip multiprocessor system in order to accurately obtain
relative comparisons and evaluations instead. Full system simulation and modeling
of the first-order timing effects for approximating an aggressive multicore system
operating commercial loads are the means to reach such an aim. Our goal is to get
the first-order effects, although similar to most architectural simulations—Capturing
all system’s aspects in precise detail is not what we try to do.

22.2 Background and Related Work

In this section, we describe the traditional protocols (Snooping based protocols and
Directory based protocols) in addition to the Token coherence protocol: how they
are working, what the advantages and disadvantages of each of them and how the
improvement of these protocols can be done.

22.2.1 Snooping Protocols

In Snooping protocols the processor cores snoop every bus transaction and respond
with appropriate state changes for the corresponding cache lines depending on
two elements: the cache line status and bus transaction type. Two primary poli-
cies classify the snoop-based coherence protocols: the invalidation-based protocols
(e.g., the write-once [21], the Synapse [16], the Berkeley [25] and the Illinois [13])
and the update-based protocols (e.g., the Firefly [45] and the Dragon [37]). Hence
invalidation-based coherence has been favored over update-based coherence proto-
cols inmost up-to-date systems (e.g., [9, 12, 13, 22, 29, 39, 44]), this paper considers
only invalidation-based cache coherence protocols.

The main present advantage of snoop-based multiprocessors is the low average
miss latency, especially for cache-to-cache misses. The responder knows fast that it
has to send a response because a request is sent directly to all the other processors
and memory modules in the system. Low cache-to-cache miss latency is of great



22 Evaluation of Cache Coherence Mechanisms … 311

importance for workloads with considerable amounts of data sharing. Replying with
data from processor caches when possible can reduce the average miss latency if
cache-to-cache misses have lower latency than fetching data from memory (i.e., a
memory-to-cachemiss). Low-latencymemory access is a result of the tightly-coupled
nature of these systems [33].

Formerly, snooping has had two additional advantages. First, shared-wire buses
used to be cost-effective interconnects for numerous systems and bus-based coher-
ence offered a complexity-effective approach to applying cache coherence. Second,
bus-based snooping protocols were comparatively simple. This advantage that was
of great importance in the past is now much less importance; New snooping proto-
cols that use virtual buses are often as complex or more complex than alternative
approaches to coherence.

The first primary disadvantage of snooping is that even though system design-
ers have evolved beyond shared-wire buses snooping designers are still bound to
choosing interconnects that can provide virtual-bus behavior (i.e., a total order of
requests) when they choose interconnect. These virtual-bus interconnects could be
more expensive (e.g., by requiring switch chips), may obtain lower bandwidth (e.g.,
due to a bottleneck at the root), or might acquire higher latency (since all requests
need to reach the root). On the contrary, an unordered interconnect (such as a directly
connected grid or torus of processors) might have more attractive latency, bandwidth
and cost attributes [33].

The second primary disadvantage is that snooping protocols are still naturally
broadcast-based protocols; i.e., protocols whose bandwidth requirements increase
with the number of processors. This broadcast requirement limits system scalability
even after eliminating the bottleneck of a shared-wire bus or virtual bus. To control
this limitation, recent proposals [8, 34, 42] aim at reducing the bandwidth require-
ments of snooping by using destination-set prediction (also known as predictive
multicast) instead of broadcasting all requests. These proposals suffer from snoop-
ings other disadvantage: They rely on a totally-ordered interconnect, Even though
they reduce request traffic.

Some of the best techniques that can be used to improve the Snoopy Cache
Coherency protocols:

1. Three wired OR signals: In this technique, when any other cache has a copy
of block besides the requester the first signal is asserted, and when any cache
has exclusive copy of block the second signal given. The third signal is asserted
when all snoop actions are finished on the bus [18]. When the third signal is
asserted, the other two signals are safely examined by the requesting L1 and
the L2. Performance can be improved by implementing these signals using low-
latency L-Wires since all of them are on the critical path.

2. Voting wires is another technique used to enhance snoopy based protocol with
low latencies. Generally cache to cache transfers occur from the data in the
modified state, whereas there is a single supplier [17]. Although, a block can be
retrieved from other cache rather thanmemory inMESI protocol.Multiple caches
share copy voting mechanism is generally used to provide data therefore voting
mechanism works with low latencies and enhances processor performance.
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22.2.1.1 Directory-Based Protocols

Memory is distributed among different processors in directory based protocols and
directory is maintained for each such memory. Currently, several Chip Multiproces-
sors, as Piranha [7] also use directory protocols in order to maintain cache coherency.
L1 cache misses are sent to L2 caches and a directory which store the status of block
is maintained across each L2 caches. The request goes to home node where the orig-
inal data is stored to check whether it has. When request comes from requester node
from another cache, if it is not available the request goes to remote node by home
node and first fetches data from remote node and sends it later on to requester node.
Also write-invalidate-direct based protocol is employed in one of the most common
chip multiprocessors technology we are using, which is core2duo.

Directory protocols target the avoidance of the scalability and interconnection
limitations of snooping protocols. Directory protocols predate snooping protocols
for a fact, with Censier and Feautrier [10] and Tang [43] performing early work on
directory protocols in the late 1970s. Systems that use these protocols also known as
distributed shared memory (DSM) or cache-coherent non-uniform memory access
(CC-NUMA) systems are preferred when scalability (in the number of processors or
cores) is a first-order design constraint. These protocols often sacrifice fast cache-
to-cache misses in exchange for this scalability, even though these protocols are
significantly more scalable than snooping protocols, Examples of systems that use
directory protocols includeStanfordsDASH[27, 28] andFLASH[26],MITsAlewife
[2], SGIs Origin [29], the AlphaServer GS320 [20] and GS1280 [15], Sequents
NUMA-Q [14], Crays X1 [1], and Piranha [7].

Directory protocols better scalability than snooping protocols and avoidance of
snoopings virtual bus interconnect are the two primary advantages of directory proto-
cols. Themost discussed and studied advantage is perhaps the significantly improved
scalability of directory protocols. Byonly contacting those processors thatmight have
copies of a cache block (or a small number of additional processors when using an
approximate directory implementation), the traffic in the system grows linearly with
the number of processors. In contrast, the endpoint traffic of broadcasts used in snoop-
ing protocols grows quadratically [33]. Combined with a scalable interconnect (one
whose bandwidth grows linearly with the number of processors), Using directory
protocol the system is permitted to scale to hundreds or thousands of processors.

Two scalability dilemmas are encountered when using large system sizes:
First, the amount of directory state required becomes great concern.
Second, interconnect of reasonable is not truly scalable.
A deep study of these two problems have been applied extensively, and actual

systems supporting hundreds of processors exist (e.g., the SGI Origin 2000 [29]).
The ability to exploit arbitrary point-to-point interconnects is the second and

maybe themore important advantage of directory protocols. The point-to-point inter-
connects are generally have high-bandwidth and low-latency [33].

Directory protocols are of two main disadvantages. First, the extra intercon-
nect traversal and directory access is on the critical path of cache-to-cache misses.
Hence the memory lookup is normally performed simultaneously with the directory
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lookup memory-to-cache, misses do not incur a penalty. Directory lookup latency is
similar to that of main memory DRAM in numerous systems, and thus locating
this lookup on the critical path of cache-to-cache misses increases cache-to-cache
miss latency considerably. Although the directory latency can be decreased by using
fast SRAM in order to hold or cache directory information, the extra latency pre-
sented by the additional interconnect traversal is harder to mitigate. A combination
of these two latencies enhances cache-to-cache miss latency significantly. With the
prevalence of cache-to-cachemisses inmany important commercial workloads, these
higher-latency cache-to-cache misses might have a dramatical impact on system per-
formance.

The storage and manipulation of directory state could be considered the second
disadvantage of directory protocols. This disadvantage was present on earlier sys-
tems, ones that used dedicated directory storage (SRAM or DRAM) thus adding to
the total system cost. On the other hand, to save directory state while eliminating
additional storage capacity overhead; numerous modern directory protocols have
used the main system DRAM and reinterpretation of bits used for error correction
codes (ECC) (e.g., the S3mp [40], Alpha 21364 [39], UltraSparc III [22], and Piranha
[7, 20]) by increasing the number of memory reads and writes [19] storing these bits
in main memory enhances the memory traffic [33].

Some of the best techniques that can be used to improve the Directory based
Cache Coherency protocols:

1. Exclusive Read Request for a block in a shared state.
The L2 cache is a clean copy and upon receiving a request from the L1 cache the L2
cache is going to invalidate every L1 cache in this approach. Before sending the data
to the processor, The L1 cache will receive an invalidate acknowledgement from the
other L1 caches. Normally the L2 cache requires a hop for the reply and where as it
requires 2 hops for an acknowledgment. So the latencies of the Hop and the latencys
of reply and acknowledgement messages should be of the same value [4]. In this
approach both the acknowledgment and reply messages are sent at the same time
via the corresponding low latency L-wires and low power PW-wires. This approach
enhances the performance and lowers the consumption of power.

2. Read request for block in exclusive state.
The exclusive owner will receive a read request for the L2 cache sends as the request-
ing L1 receives a copy of data from the L2 cache. The exclusive owner will send a
reply message to the requesting L1 cache pointing out that the data sent by the L2
cache is valid if the exclusive copy is a clean one. If the requesting node requests
for data the exclusive owner will send a copy of data to the requesting L1 cache
while updating the data in the L2 cache. The requesting cache will not go on until it
receives a message from the exclusive owner. Simultaneously the data the L2 cache
sends the data through slow PW wires [4].

An acknowledgement message should be sent to the requester from the exclusive
owner through low bandwidth L-wires if the owner copy is a clean copy, whereas if
the owner copy is a dirty copy then the message should be sent through the B-wires
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and the write back to the L2 is done via PW-wires. This approach mainly follows
the ways of improving the performance by sending the prioritized data through the
L-wires and the least prioritized one through PW-wires.

3. The methods of which the Proximity Aware coherence protocols enhances the
performance of a multicore thus by lowering the unnecessary access to the off-chip
memory are described below.

22.2.1.2 Token-Based Protocols

The constraint of directory indirection are removed without sacrificing either decou-
pling of the interconnect from the coherence protocol or decoupling of coherence
from consistency thus is done by using the recently-proposed token coherence pro-
tocol [31, 33, 34]. Token coherence take on token counting to resolve races without
the need to require home node or an ordered interconnect. Token coherence con-
tains even further levels of decoupling by separating the correctness substrate from
the systems performance policy. The correctness substrate is decoupled further on
invoking safety and avoiding starvation.

Token counting does not ensure that a request is satisfied in the end even though
it ensures safety. Thus, the correctness substrate gives persistent requests to prevent
starvation. The processor initiates a persistent request when it detects possible star-
vation. Using a fair arbitration mechanism, the substrate then activates at most one
persistent request per block. Each system node remembers all activated persistent
requests (for example, in a table at each node) and forwards all tokens for the block
those tokens are present at the time being and received in the future to the request ini-
tiator. Finally, the initiator performs a memory operation (a load or store instruction)
and deactivates its persistent request when it has the necessary tokens.

Token coherence performance policies have been developed [33] to approx-
imate an unordered broadcast-based protocol (inspired by snooping protocols),
a bandwidth-efficient performance policy that emulates a directory protocol, and
a predictive hybrid protocol that uses destination-set prediction [34].

TokenB protocol focuses on both avoiding indirection latency for cache-to-cache
misses (like snooping protocols) and not requiring any interconnect ordering (like
directory protocols). One seemingly clear approach is to directly send broadcasts on
an unordered interconnect.

22.3 Evaluation Methodology

The objective of evaluation is to explain the relative behavior of different coherence
protocols (traditional protocols and Token Coherence based protocols). The Sim-
ics full-system multiprocessor simulator (WindRiver) extended with the Wisconsin
GEMS simulation environment [35] is used in order to perform the analysis [5].
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Table 22.1 Simulation parameters

Private L1 caches 64 KB, 4-way set associative, split D/I, 1ns latency (2-cycle latency)

L2 cache Unified, 4MB, 6ns latency (12 cycles)

Main memory 4GB, 80ns (160 cycles)

Coherence protocol MOESI protocol

Interconnect link 4GB/second or unbounded bandwidth 15ns latency (30 cycles)

Throughout this research, we demonstrate how the overall performance of differ-
ent protocols by the runtime i.e. measuring the time necessary to complete certain
amount of work. The metric instructions-per-cycle has been used by other works
instead of runtime in judging performance improvements. However; system timing
effects of multiprocessor workloads may alter the number of instructions executed
therefore, Instruction Per Cycle (IPC) is not a suitable metric for evaluating the
coherence protocols and systems.

Themeasurement is started at the parallel phase so that we avoidmeasuring thread
forking. Until now, a full system checkpoint (to provide a well-defined starting point)
is used to initialize the system state and to simulate the execution until the end of the
parallel phase. The number of cycles is recorded and referred to as application time
in order to complete the parallel phase.

Endpoint traffic (in messages per miss) and interconnect traffic (in terms of bytes
on interconnect links per miss) are other ways besides reporting runtime that mea-
sure and report the traffic [4]. The endpoint traffic shows the amount of controller
bandwidth needed for handling incoming messages. The amount of link bandwidth
used by the messages are indicated in the interconnect traffic as they traverse the
interconnection.

We used three multi-threaded commercial workloads from the Wisconsin Com-
mercial Workload Suite [3]: an online transaction processing workload (OLTP),
a Javamiddlewareworkload (SPECjbb), and a staticweb servingworkload (Apache).
The previously mentioned workloads operate on a simulated 16-core SPARC proces-
sor that runs Solaris 9. The simulated system has 4GBs of main memory.

Following are details of how the main components of the system are modeled
(Table22.1).

22.4 Analysis and Evaluations

In order to evaluate the demand system; full-system simulation is used. Using full
system simulation allows for evaluating the proposed systems when running realistic
scientific applications on top of actual operating systems. As well as capturing the
subtle timing effect that can’t be captured with trace-based evaluation. We use cycles
per transaction to be our only metric of performance. Figure22.2 shows normal-
ized runtime (smaller is better) that TokenB is faster than Snooping with unlimited
bandwidth links by (21–34).
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Fig. 22.2 Runtime of Snooping, Directory, and TokenB. The runtime of Snooping, Directory, and
TokenB with unbounded link bandwidth

TokenBs endpoint traffic is similar to or less than Snooping while has more inter-
connect traffic than Snooping. Figure22.3 illustrates the endpoint traffic (in normal-
izedmessages permiss received at each endpoint coherence controller), and Fig. 22.4
exhibits the interconnect traffic (in normalized bytes permiss).When examining only
data and non-reissued request traffic, TokenB and Snooping are practically identical.
TokenB adds some additional traffic overhead (comes from reissued and persistent
requests), but the overhead is small for all three of our workloads. Snooping and
TokenB both use extra traffic for writeback control messages, but because of the
detailed implementation decisions in Snooping involving writeback acknowledg-
ment messages, Snooping uses more traffic for writebacks than TokenB. Snooping
sends a writeback request on the ordered interconnect to both the memory and to
itself as a marker message. If it is still the owner of the block, it receives the marker
message and sends the data back to the memory. Ignoring this precise implementa-
tion overhead leads us to conclude that these protocols generate the same amounts
of traffic.

Fig. 22.3 Endpoint Traffic
of Snooping, Directory, and
TokenB. The endpoint traffic
(in normalized messages per
miss) of Snooping,
Directory, and TokenB
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Fig. 22.4 Interconnect
Traffic of Snooping,
Directory, and TokenB. The
interconnect traffic (in
normalized bytes per miss)
of Snooping, Directory, and
TokenB

TokenB generates bigger endpoint traffic and interconnect traffic than Directory.
These figures show that TokenB generates more traffic than Directory about three
timesmore endpoint traffic and interconnect traffic). Thus results in, incredibly higher
bandwidth coherence controllers are required by TokenB.

TokenB depends on broadcast, which limits its scalability. TokenB is less scalable
than Directory, hence DIRECTORY avoids broadcast. However, as the number of
processors increases, TokenB endpoint bandwidth improves linearly. The intercon-
nect traffic difference betweenTokenB andDirectory enhances slowly. Thus, TokenB
can operate well for almost up to 64 processors if bandwidth is rich (by using high-
bandwidth links and high-throughput coherence controllers). On the other hand,
TokenB is not a good choice for larger or more bandwidth-limited systems.

22.5 Conclusions and Recommendations for Future Work

The cache coherencemechanisms are a key element aiming at accomplishing the goal
of proceeding exponential performance growth through widespread thread-level par-
allelism. The available efficient methods and protocols were studied in this paper,
which were used to achieve cache coherent in multicore architectures. These proto-
cols (Snooping-based protocols, Directory-based protocols and TokenB-based pro-
tocols) modeled and evaluated on the Simics/GEMS simulator. The weaknesses and
strengths of each protocolwere demonstrated andwediscussed how the improvement
of them can be done.

TokenB is both (1) better than Snooping and (2) faster than Directory when
bandwidth is plentiful. TokenB is better than SNOOPING because it uses the same
amounts of traffic and can outperform Snooping by exploiting a faster, unordered
interconnect. TokenB is of a higher speed thanDirectory in bandwidth-rich situations
by avoiding placing directory lookup latency and a third interconnect traversal on the
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critical path of common cache-to-cache misses. On the other hand, TokenB uses a
moderate amount of additional interconnect traffic and considerable more endpoint
messagebandwidth thanDirectory for small systems.Thus,Directoryperformsbetter
than TokenB in a bandwidth-constrained situation. Although TokenB is a message-
intensive protocol, it is only one of many possible high performance policies.

The choice of coherence protocol is as complicated and subtle today as it has ever
been. CMPs will enable even more cost-effective multicore processors by reducing
the number of discrete components in the system. For the futurework,we recommend
further modeling for each of the snooping, Directory, and Token protocols by testing
additional benchmarks rather than the three benchmarks that we use in this paper, in
the same architecture for more accuracy results.
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