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Abstract. A problem of packing unequal circles in a fixed size rectangular con-
tainer is considered. The circle is considered in a general sense, as a set of 
points that are all the same distance (not necessary Euclidean) from a given 
point. An integer formulation is proposed using a grid approximating the con-
tainer and considering the nodes of the grid as potential positions for assigning 
centers of the circles. The packing problem is then stated as a large scale linear 
0-1 optimization problem. Valid inequalities are proposed to strengthening the 
original formulation. Nesting circles inside one another is considered tacking 
into account the thickness of the circles. Numerical results on packing circles, 
ellipses, rhombuses and octagons are presented to demonstrate the efficiency of 
the proposed approach. 

1 Introduction 

Packing problems generally consist of packing a set of items of known dimensions into 
one or more large objects or containers to minimize a certain objective (e.g. the unused 
part of the container or waste). Packing problems constitute a family of natural combi-
natorial optimization problems applied in computer science, industrial engineering, 
logistics, manufacturing and production processes (see e.g. [2, 5, 7, 10, 11] and the 
references therein). 

Along with industrial applications one may find packing problems, e.g. in health-
care issues. In [22] automated radiosurgical treatment planning for treating brain and 
sinus tumours was considered. Radiosurgery uses the gamma knife to deliver a set of 
extremely high dose ionizing radiation, called “shots” to the target tumour area. For 
large target regions multiple shots of different intensity are used to cover different parts 
of the tumour. However, this procedure may result in large doses due to overlap of the 
different shots. Optimizing the number, positions and individual sizes of the shots can 
reduce the dose to normal tissue and achieve the required coverage.  

Packing problems for regular shapes (circles and rectangles) of objects and/or con-
tainers are well studied [12]. In circle packing problem the aim is to place a certain 
number of circles, each one with a fixed known radius inside a container. The circles 
must be totally placed in the container without overlapping. The shape of the container 
may vary from a circle, a square, a rectangular, etc. Many variants of packing circular 
objects have been formulated as nonconvex (continuous) optimization problems with 
decision variables being coordinates of the centres [12]. Non-overlapping typically is 
assured by nonconvex constraints representing that the Euclidean distance separating 
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the centres of the circles is greater than a sum of their radii. The nonconvex problems 
can be tackled by available nonlinear programming (NLP) solvers, however most NLP 
solvers fail to identify global optima and global optimization techniques have to be used 
[5]. The nonconvex formulations of circular packing problem give rise to a large variety 
of algorithms which mix local searches with heuristic procedures in order to widely 
explore the search space. We will refer the reader to review papers presenting the scope 
of techniques and applications for regular packing problem [1, 4, 6, 18, 19, 20]. 

Irregular packing problems involve non standard shapes of objects and/or contain-
ers. Irregular shapes are those that require non-trivial handling of the geometry. One of 
the most common representations for irregular shape is a polyhedral domain which 
may by nonconvex o multi-connected. Heuristic and metaheuristic algorithms are the 
basis for the solution approaches [7, 21]. 

 In this paper we study approximate packing of circular-like objects using a regular 
grid to approximate the container. The circular-like object is considered in a general 
sense, as a set of points that are all the same distance (not necessary Euclidean) from a 
given point. Thus different shapes, such as ellipses, rhombuses, rectangles, octagons 
can be treated the same way by simply changing the norm used to define the distance. 
In a sense, we demostrate that packing some irregular objects is as simple as packing 
circles. The nodes of the grid are considered as potential positions for assigning centers 
of the circles. The packing problem is then stated as a large scale linear 0-1 optimiza-
tion problem. Valid inequalities are proposed to strengthening the original formulation. 
Nesting circles inside one another is considered tacking into account the thickness of 
the circles. Numerical results on packing circles, ellipses, rhombuses and octagons are 
presented to demonstrate the efficiency of the proposed approach.  

To the best of our knowledge, the idea to use a grid was first implemented in [3] in 
the context of cutting problems. This approach was recently applied in [9, 14-17, 21] 
for packing problems. This work is a continuation of [14]. The rest of the paper is 
structured as follows. In Section 2 the main integer programming model for packing 
problem is presented. Section 3 is related to the experimental results on packing cir-
cles, ellipses, rhombuses and octagons to show that our methodology is efficient. A 
final section concludes this work. 

2 The Principal Model 

Suppose we have non-identical circles of known radius ,  

which have to be packed in a container  . It is assumed that no two objects overlap 
with each other and each packed object lies entirely in the container. Here we consider 
the circle as a set of points that are all the same distance  (not necessary Euclidean) 

from a given point. In what follows we will use the same notation for the figure 

bounded by the circle, , assuming that it is easy to under-

stand from the context whether we mean the curve or the figure. Denote by  the 

area of .  

Let at most   circles  are available for packing and at least  of them have 

to be packed. Denote by the node points of a regular grid covering the 
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rectangular container. Denote by the distance (in the sence of norm used to define the 

circle) between points and  of the grid. Define binary variables  if centre of a 

circle  is assigned to the point ; otherwise. In what follows we will say that 

the object is assigned to the node if the corresponding reference point is assigned to 

that node and will denote this as . 

In order to the circle  assigned to the point be non-overlapping with other cir-

cles being packed, it is necessary that  for , such that . 

For fixed let . Let be the cardinality of :

. Then the problem of maximizing the area covered by the circles can be 

stated as follows: 
 

   (1) 

                                    subject to 
   (2)  

 ,  (3) 

                         for  for , ,                          (4) 

 ,  (5) 

 .  (6) 

 
Constraints (2) ensure that the number of circles packed is between  and ; 

constraints (3) that at most one centre is assigned to any grid point; constraints (4) that 
can not be assigned to the node if is not totally placed inside ; pair-wise 

constraints (5) guarantee that there is no overlapping between the circles; constraints 
(6) represent the binary nature of variables. 

Similar to plant location problems [22] we can state non-overlapping conditions in a 
more compact form. Summing up pair-wise constraints (5) over we get 

 for ,                 (7) 

Note that constraints similar to (7) were used in [9] for packing equal circles ( ).  
 
Proposition 1. [15,17]. Constraints (5), (6) are equivalent to constraints (6), (7).  

Thus the problem (1)-(6) is equivalent to the problem (1)-(4), (6), (7). To compare 
two equivalent formulations, let 
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 for , , , 

 for , . 

Proposition 2. [15, 17]. . 
As follows from Proposition 2, the pair-wise formulation (1)-(6) is stronger [23] 

than the compact one. Numerical experiments presented in [17] demonstrate that the 
pair-wise formulation is also computationally more attractive since it provides a 
tighter LP-bound. Bearing in mind these reasons we restrict ourselves by considering 
below only pair-wise formulations. 

By the definition, and hence if , then 

. Thus a half of the constraints in (5) are redundant since we have  

 for , , , 

 for , , . 

The redundant constraints can be eliminated without changing the quality of LP-
bound giving a reduced pair-wise non overlapping formulation.  

In many applied problems nesting circles inside one another is permitted. For ex-
ample, in [8, 10, 11] nesting is considered in the context of packing pipes of different 
diameters into a shipping container. Nesting is also essential for storing different cyl-
inders one over another in the form of cylindrical towers.  

To consider nesting circles inside one another, we only need to modify the non-
overlapping constraints. In order to the circle  assigned to the point be non-
overlapping with other circles being packed (including circles placed inside this circle), 
it is necessary that  for , such the  for 

. Let 

 

Then the non-overlapping constraints for packing circles with nesting can be stated in 
the form 

  (8) 

Constraints (3) have to be relaxed in case of nesting. 
If nesting is permitted, e.g., in the case of packing plastic pipes [8,10,11], it may be 

necessary to take into account the thickness of the pipe, i.e. the difference between 
external and internal size of the object. To consider nesting-subject-to-thickness we 
need only to redefine the set . Let  be the thickness of the circle .  For 

 For  defined as  

,  (9) 

we get non-overlapping constraints (8) for the case of  “nesting-subject-to-thickness”. 
The rest of the optimization model stated above remains unchanged. 
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Note that all constructions proposed above, including Propositions 1,2, remain va-
lid for any norm used to define the circular-like object. In fact, changing the norm 
affects only the distance used in the definitions of the sets in the non-

overlapping constraints (5), (8). That is, by simple pre-processing we can use the 
basic model (1)-(6) for packing different geometrical objects of the same shape. It is 
important to note that the non-overlapping condition has the form  no 

matter which norm is used. For example, a circular object in the maximum norm 
is represented by a square, taxicab norm yields a 

rhombus. In a similar way we may manage rectangles, ellipses, etc. Using a superpo-
sition of norms, we can consider more complex circular objects. For 

and a suitable  we get an octagon, an intersec-

tion of a square and a rhombus. 
We may expect that the linear programming relaxation of the problem (1)-(6) pro-

vides a poor upper bound for the optimal objective. For example, for and suit-
able the point for all  may be feasible to the relaxed problem 
with the corresponding objective growing linearly with respect to the number of grid 
points. 

To tightening the LP-relaxation for (1)-(6) without nesting we consider valid ine-
qualities aimed to ensure that no grid point is covered by two circles. Define matrix 

as follows. Let  for ,  otherwise. By this definition, 

if the circle  centred at covers point . The following constraints ensure that no 
points of the grid can be covered by two circles: 

.  (10) 

Note that (10) is not equivalent to non-overlapping constraints (5). Constraints (10) 
ensure that there is no overlapping in grid points, while (5) guarantee that there is no 
overlapping at all. The valid inequality (10) holds for any norm used to define the cir-
cular object. 

3 Numerical Results 

In this section we present a numerical study on packing equal circles, ellipses, rhom-
buses and octagons by varying the definition of the norm in (1)-(6). It is assumed that 
the supply of the objects is unlimited. The standard Euclidean and taxicab norms were 
used to define circles and rhombuses,  and 

 

 
were used for ellipses and octagons. A rectangular uniform grid of 

size  along both sides of the container was implemented. It is not hard to verify 
that for these particular shapes constraints (4) constraints (4) can be relaxed by reduc-
ing correspondingly the size of the container. The test bed set of 9 instances was used 
for packing maximal number of equal circular objects into a rectangular container of 
width 3 and height 6. The values of radii and grid size are the same as in [9, Table 3]. 
All optimization problems were solved by the system CPLEX 12.6. The runs were 
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executed on a desktop computer with CPU AMD FX 8350 8-core processor 4 Ghz 
and 32Gb RAM. 

The results of the numerical experiment are given in Table 1. Here the first four col-
umns present instance number, radius  of the circular object, size of the grid  and 
the number of binary variables (dim). The following columns give the number of objects 
packed and corresponding CPU time (in seconds) for circles (C), ellipses (E), rhombuses 
(R) and octagons (O). For all problem instances was set as a stopping crite-
rion for running CPLEX. The asterisk indicates that the computation was interrupted 
after the computation time exceeded 12-hours CPU time. For problem instances where 
optimality was not achieved within time limit the number of objects corresponds to the 
best integer solution and the number in parenthesis indicates the value of  in % 
obtained to the moment of interruption. Packings for instance 7 are presented in Fig. 1. 

 
Table 1. Packing circles, ellipses, rhombuses and octagons 

 
No.   dim O CPU R CPU C CPU E CPU 

1 0.5 0.125 697 18         1 28 1 18 1 34 11 

2 0.625 0.15625 1403 9 52 15 11 10 41 21 25 

3 0.5625 0.0703125 2449 12 202 20 312 13 186 27 288 

4 0.375 0.046875 1425 26 49 39 399 32 4 59 2 

5 0.3125 0.078125 2139 41 6850 76 6 45 114 99 3 

6 0.4375 0.0546875 3666 20 1430 35 2829 21 17654 44 (4) * 

7 0.25 0.0625 3649 72 22 127 17 74 (5) * 137 (7) * 

8 0.275 0.06875 2880 50 20495 75 (4.6) * 61 177 108 (6) * 

9 0.1875 0.046875 6897 106 (12.5) * 167 (9) * 140 (5) * 261 (4) * 

 
As can be seen from Table 1 for all types of the objects the large instances were 

not solved to optimality within the time limit. The computation was interrupted ob-
taining a feasible solution within 5-10% of proven relative suboptimality.  

 

 

Fig. 1.  Packing equal objects for instance 7 

R Δ

0mipgap =

mipgap

R Δ



546 I. Litvinchev et al. 

However, the most of the computation time was used to tightening the dual bound 
to prove optimality/suboptimality of the feasible solution obtained on early stages of 
CPLEX. For example, for the case of octagons and instance 9 a feasible solution with 
105 objects packed was obtained within 300 sec., for instance 5 - 41 objects in 30 sec, 
for instance 6 – 19 objects in 30 sec. A similar behaviour was noticed for other ob-
jects and instances where the computation time exceeds 1000 sec. For all these  
instances at most 600 sec. was necessary to get a feasible solution with relative differ-
ence 1-2% from the best feasible or optimal solution. Thus we may consider CPLEX 
as a sufficiently fast tool to find good feasible solutions and in this sense it is compa-
rable with heuristics proposed, e.g., for circle packing problems in [9]. 

Table 2 presents an effect of introducing valid inequalities (10) in the problem 
formulation (1)-(6). The columns here indicate the type of the object (C, E, O, R), the 
value of the LP-relaxation before and after introducing valid inequalities, LP and 
LPC, correspondingly. The value of LP-relaxation without valid inequalities (second 
column in Table 2) is just the same for all types of circular objects and equals to the 
half of the instance dimension (all variables are 0.5). We see that introducing valid 
inequalities (10) improves significantly the quality of LP bound for all shapes of the 
objects. The detailed study of this subject for the case of circles one can find in [17] 
for the same test bed instances. 

Table 2. LP-relaxations 

No. LP O LPC R LPC C LPC E LPC 

1 348.5 18    19 28 33.43 18 19 34 36 

2 701.5 9 10 15 16.87 10 10 21 25 

3 1224.5 12 14.0743 20 22.25 13 14.07 27 29.91 

4 712.5 26 30.9485 39 41.37 32 36.33 59 68.86 

5 1069.5 41 53.4043 76 94.76 45 53.4 99 110 

6 1833.5 20 22.5537 35 39.72 21 23.86 43 49.787 

7 1824.5 72 90.9767 127 157.96 74 90.98 137 182 

8 1440 50 59.014 75 79.53 61 72 108 134.56 

9 3448.5 106  134.342 167 182.28 140 162 261 273.61 

 
The results of a small computational experiment for packing two octagons in  

a square 30x30 container maximizing the total area of the objects are presented in 
Table 3.  

Table 3. Packing 2 different octagons 

No.  dim N- CPU N+ CPU N+T CPU 

1 0.6, 6.3 441 627.48   1 842.21 1 804.37 1 

2 0.6, 6.3 961 699.06 6 971.05 3 910.209 5 

3 1, 5.3 441 699.35 1 952.82 1 922.99 1 

4 1, 5.3 961 750.09 57 1158.27 129 1019.1 49 

1 2,R R
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Here the first three columns give instance number, radii, and a number of grid 
points (integer variables). The last columns give the total area without nesting (N-), 
with nesting (N+) and with nesting and thickness (N+T), as well as corresponding 
CPU time in sec. The thickness in (1.9) was defined as . The packings ob-
tained for instance 4 are presented in Fig. 2. 

 

 

Fig. 2. Packing two octagons for instance 4 

4 Conclusions 

Integer formulations were proposed for approximate packing circular-like objects with 
nesting and taking into account the thickness of objects (the difference between external 
and internal size of the object). It was demonstrated that by simply changing the defini-
tion of the distance (preprocessing) it is possible to use the same basic models for pack-
ing different circular-like objects such as circles, ellipses, rhombuses, octagons, etc.  

Valid inequalities were considered to strengthening the original formulation. The re-
sults of our numerical experiment indicate that the valid inequalities improve signifi-
cantly the LP-bound. Note that these inequalities can be used for packing different 
shapes. An interesting area for future research is the generalization of valid inequalities 
for the case of nesting. To cope with large dimension of arising problems it is interest-
ing to study the use of Lagrangian relaxation and corresponding heuristics [13, 23].  

This work was partially supported by grants from RFBR (12-01-00893-а) and 
CONACYT (167019).  
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