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Preface

Tryptophan Metabolism: Implications for Biological
Processes, Health and Disease

In many organs and tissues, the major route for the metabolism of tryptophan is the
kynurenine pathway. One of the initial enzymes for this pathway is indoleamine-
2,3-dioxygenase, present in most organs and tissues except the liver. The second
enzyme, tryptophan-2,3-dioxygenase, is almost exclusively found in the mammalian
liver and is responsible for tryptophan catabolism. A small portion of tryptophan is
used for the synthesis of serotonin. Serotonin is a key neurotransmitter that
modulates a wide variety of functions in both peripheral organs and the central
nervous system. In response to signals from the circadian clock, N-acetylserotonin
is converted to melatonin, which is synthesized not only in the pineal gland but also
in many other parts of the body. Melatonin shows a strong antitumor activity by
decreasing tumor cell viability and reactive oxygen species generation.

Most of the endogenous metabolites of tryptophan particularly derived from
kynurenine pathway are implicated in cell damage in a wide range of psychiatric,
neurological, and systemic disorders such as osteoporosis, neurodegenerative
diseases, allergic and infectious diseases, brain injury, ischemic stroke injury,
depression, immune response modulation, and immune tolerance. Additionally
disrupted circadian rhythm, sleep restriction, and sleep deprivation-associated
metabolic disorders are the subject of current research; however, extremely
limited data has been obtained concerning the immune modulation, immune
escape mechanisms, spontaneous immune tolerance, and the biosynthesis of
quorum-sensing molecules.

Extensive screening of the tryptophan degradation pathway components aimed
to clarify and update the selected topics within the scope of recent opinions.
However, reappraisal of conceptualized definitions of tryptophan-related disorders
within the current perspectives surprisingly revealed that several details of trypto-
phan metabolism still remain unknown. Last of all, complementary investigations
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are required to comprehend the complex interaction between tryptophan-derived
metabolites among themselves and within the central nervous system and in the
periphery. Overall this publication focuses on the critical and controversial points of
tryptophan metabolism. We believe that the reassessment of tryptophan metabolism
may lead to new perceptions.

Ankara, Turkey Atilla Engin
Ayse Basak Engin
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Chapter 1
Tryptophan-Related Signaling Molecules:
Targets and Functions

Atilla Engin

Abstract Most of the daily dietary tryptophan (Trp) is oxidatively degraded
through the kynurenine (Kyn) pathway, and the remaining may be consumed either
in serotonin synthesis or in conversion into melatonin through the methoxyindole
pathway. Trp degradation products along the Kyn pathway include three neuroac-
tive metabolites: the neuroinhibitory agent kynurenic acid (KA), the free radical
generator 3-hydroxykynurenine (3HK), and the excitotoxin quinolinic acid (QA).
Kyn is the major metabolite of Trp and is readily transported across the blood—brain
barrier into the brain where it can be further metabolized in perivascular macro-
phages, microglia, and astrocytes, also to generate neuroactive intermediates. In
contrast to Kyn, QA, KA, and 3-hydroxyanthranilic acid (3HAA) penetrate through
the blood-brain barrier only poorly due to its polar nature. Although the cytokines
do not pass through the blood-brain barrier, their signals reach the brain through
humoral, neural, and cellular pathways and stimulate Trp degradation by interacting
with a cytokine network in the brain. The induction of Kyn pathway by indoleamine
2,3-dioxygenase (IDO) activity exhausts L-Trp in the medium and produces toxic
metabolites. While Kyn to Trp ratio reflects IDO activity, Kyn to KA ratio indicates
the neurotoxic challenge. Alpha7 nicotinic acetylcholine receptor (alpha7nAChR)
constitutes a crucial link between excessive KA formation and reduction in gluta-
mate. KA-induced reduction in prefrontal glutamate levels emerges as a result of
alpha7nAChR inhibition. Changes in the endogenous concentrations of KA, as a
potent alpha7nAChR and N-methyl-D-aspartate (NMDA) receptor antagonist, affect
extracellular dopamine levels in the brain. The entire monoaminergic neurotrans-
mission involves functional interactions between serotonin, norepinephrine, and
dopamine systems (Fig. 1.1). Serotonin transporter (SERT) reuptakes biogenic
amine neurotransmitters following release in the nervous systems and terminates
the action of serotonin. SERT can be regulated by a membrane-bound G-protein-
coupled receptor, and this occurs via nitric oxide (NO) and cyclic guanosine
monophosphate (cGMP). Desensitization and re-sensitization of G-protein-coupled
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2 A. Engin

receptors (GPCRs) can modulate receptor responsiveness in regulation of many
cellular functions. Diet restriction-induced exaggerated feedback control over
serotonin synthesis decreases serotonin neurotransmission at postsynaptic sites by
reducing availability of Trp. Enterochromaffin (EC) cells of the intestinal mucosa
respond to chemical and mechanical stimuli by releasing serotonin. The enteric
serotonin transporter plays a critical role in serotonergic neurotransmission and in
the initiation of peristaltic and secretory reflexes.

Keywords Tryptophan ¢ Kynurenine ¢ Kynurenic acid ¢ Quinolinic acid
Indoleamine 2,3-dioxygenase ¢ N-Methyl-D-aspartate receptor * Serotonin °
Serotonin transporter ® Serotonin receptors

1.1 Introduction

Amino acids are not only regulators of gene expression and the protein phosphoryla-
tion cascade but are also cell signaling molecules. Carbon skeletons of essential
amino acids cannot be synthesized by animal cells and, therefore, must be provided
from the diet (Wu 2010). The average daily nutritional requirement of L-tryptophan
(Trp) as an essential amino acid is 5 mg/kg. In order to improve mood or sleep, many
adults may consume Trp much more, up to 4-5 g/day (60-70 mg/kg) (Fernstrom
2012). Ninety-five percent of dietary Trp is oxidatively degraded in the liver through
the kynurenine (Kyn) pathway. Actually there are two rate-limiting enzymes of Kyn
formation: first, tryptophan 2,3-dioxygenase (TDO) and, the second, indoleamine
2,3-dioxygenase (IDO) (Marazziti et al. 2013). TDO reaction generates nicotinamide
adenine dinucleotide [NAD"] following Trp oxidation. A small amount of Trp degra-
dation can also occur extrahepatically by the enzyme IDO. IDO is expressed by a
large variety of cells and can be directly activated by proinflammatory cytokines such
as interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha, whereas TDO is
only located in the liver cells and is activated by stress hormones (Wirleitner et al.
2003). Degradation of Trp mainly occurs along the Kyn pathway. Eventually Kyn is
metabolized along one of two catabolic branches, leading to the formation of either
hydroxykynurenine (3HK) and quinolinic acid (QA) or kynurenic acid (KA). The
cerebral Kyn pathway is driven mainly by blood-borne L-Kyn, which enters from the
circulation to the brain using the large neutral amino acid transporter, whereas QA,
KA, and 3-hydroxyanthranilic acid (3HAA) cannot pass the blood-brain barrier eas-
ily (Fig. 1.1) (Fukui et al. 1991). In the brain, L-Kyn is then rapidly taken up by
astrocytes and, presumably, by microglial cells. Almost all enzymes of the Kyn path-
way are primarily contained in astrocytes and microglial cells (Schwarcz 2004).
However, astrocytes do not contain kynurenine 3-hydroxylase and therefore favor
KA synthesis, whereas microglial cells have very little kynurenine aminotransferase
(KAT) activity which catalyzes the irreversible transamination of L-Kyn to KA and
preferentially forms intermediates of the QA (Guillemin et al. 2001). KA can antago-
nize the neuronal degeneration mediated by excessive stimulation of N-methyl-D-
aspartate (NMDA) receptors in vivo (Lekieffre et al. 1990). During the stress response
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Fig. 1.1 Catabolic cascade of tryptophan metabolism. A simplified version of the kynurenine,
serotonin, and methoxyindole pathways demonstrating the major enzymes, intermediates, and
receptors. TDO tryptophan 2,3-dioxygenase, /DO indoleamine 2,3-dioxygenase, SOCS suppressor
of cytokine signaling, STATI-alpha signal transducer and activator of transcription 1-alpha, IRF-1
interferon regulatory factor-1, NF-kappaB nuclear factor kappa B, p38-MAPK p38 mitogen-
activated protein kinase, /DO-ITIM immunoreceptor tyrosine-based inhibitory motif for IDO,
IFN-gamma interferon gamma, /FN-alpha, interferon alpha, TNF-alpha tumor necrosis factor
alpha, IL-6 interleukin-6, ROS reactive oxygen species, RNS reactive nitrogen species, NMDAR
N-methyl-D-aspartate receptor, NAD* nicotinamide adenine dinucleotide, hpTrpH I human periph-
eral tryptophan hydroxylasel, hnTrpH2 human neural tryptophan hydroxylase2, BH4 tetrahy-
drobiopterin, ¢gBH2 quinonoid dihydrobiopterin, alpha7nAChR alpha7 nicotinic
acetylcholine receptor, AA-NAT arylalkylamine-N-acetyltransferase, HIOMT hydroxyindole-O-
methyltransferase, 5-HT2A, 5-HT2C, 5-HT1B, 5-HTIA serotonin receptors, Gi inhibitory G pro-
tein, Gs stimulatory G protein, SSRI selective serotonin reuptake inhibitor, SERT serotonin
transporter, s/PSC spontaneous inhibitory postsynaptic currents, GABA gamma-aminobutyric
acid, cAMP cyclic adenosine monophosphate, MT1, MT2 membrane-bound melatonin receptors

100- to 1,000-fold elevations in 3HK and QA occur upon microglial cell activation
or macrophage infiltration to the brain (Schwarcz 2004). 3HK generates free radical
species that can cause oxidative stress and lipid peroxidation. QA-induced excitation
and neurotoxicity are mediated by N-methyl-D-aspartate receptor (NMDA) recep-
tors. Because of the absence of effective removal mechanisms for extracellular QA
(Foster et al. 1984), its ability to induce concentration-dependent increases in reac-
tive oxidative species (ROS) formation (Santamaria et al. 2001), and its specific
interaction with the NMDA receptor (De Carvalho et al. 1996), QA is particularly
excitotoxin, whereas KA acts as a competitive blocker of the glycine co-agonist site
of the NMDA receptor (Kessler et al. 1989) and as a noncompetitive inhibitor of the
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alpha7 nicotinic acetylcholine receptor (alpha7nAChR) (Hilmas et al. 2001).
Therefore, KA is considered to be neuroprotective.

In the second metabolic pathway of L-Trp degradation, a small amount of Trp is
converted to 5-hydroxytryptophan by the tetrahydrobiopterin (BH4)-dependent
tryptophan hydroxylase (TrpH). Subsequently aromatic amino acid decarboxylase
(AAADC) catalyzes the second step of serotonin synthesis (Chen and Miller 2012).

The third metabolic pathway of L-Trp degradation involves its conversion into
melatonin through the methoxyindole pathway. Biosynthetic steps of melatonin
comprise two major rate-limiting enzymes: arylalkylamine-N-acetyltransferase
(AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT). Although trans-
forming of Trp into melatonin originally occurred in pinealocytes, it has been also
detected in many other parts of the body, including the eyes, bone marrow, skin,
lymphocytes, and enteroendocrine cells of the gastrointestinal tract (Konturek et al.
2007; Srinivasan et al. 2011). However, cytokine-driven Trp degradation pathways
and how they influence each other under different physiologic and pathologic
conditions are open to debate.

1.2 Cytokine-Mediated Signaling

Contrary to Kyn, cytokines are relatively large molecules that do not freely pass
through the blood—brain barrier. Nevertheless, cytokine signals are able to reach the
brain through humoral, neural, and cellular pathways and interact with a cytokine
network in the brain consisting of neurons, microglia, and astrocytes (Capuron and
Miller 2011). Considering the abovementioned issues, cytokine signals reach to the
brain with five different mechanisms: (1) passage of cytokines through the leaky
regions of the blood-brain barrier, (2) active transport with cytokine-specific trans-
port molecules on brain endothelium, (3) activation of endothelial cells, (4) trans-
mission of cytokine signals via afferent nerve fibers, and (5) entry into the brain
parenchyma and involvement of microglia and astrocytes (Rivest et al. 2000;
Konsman et al. 2002; Plotkin et al. 1996).

Cytokine overexpression in the brain due to inflammation is an important factor
in the pathogenesis of neurotoxic disorders. However, peripheral and central cytokine
compartments appear to be integrated, and their effects might synergize or inhibit
each other (Szelényi 2001). Although numerous cytokines and their receptors have
been identified in the brain, interleukin-1 (IL-1), IL-6, and TNF-alpha have been
implicated in the central control of responses to neuroendocrine, immune, and
behavioral alterations (Rothwell et al. 1996). Actually the innate and adaptive
immune responses are triggered by microglia in the central nervous system including
the release of proinflammatory mediators. In this case toll-like receptor (TLR)-
induced activation of microglia and the release of proinflammatory molecules are
responsible for neurotoxic processes (Lehnardt 2010). Following activation of the
immune system pathways, a number of cytokines alone or in combination including
IFN-alpha, IFN-gamma, and TNF-alpha through activation of a number of inflam-
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matory signaling pathways such as signal transducer and activator of transcription
I-alpha (STAT1-alpha), interferon regulatory factor (IRF)-1, nuclear factor (NF)
kappa B, and p38 mitogen-activated protein kinase (MAPK) stimulate IDO
(Fig. 1.1) (Fujigaki et al. 2006). IDO breaks down Trp into Kyn. Kyn is preferen-
tially converted to KA and QA in astrocytes and in microglia, respectively (Schwarcz
and Pellicciari 2002). As mentioned above, activated microglia is a chronic source
of multiple neurotoxic molecules, including TNF-alpha, nitric oxide (NO), IL-1beta,
and ROS, which cause progressive neuron damage (Lull and Block 2010). Initially
released cytokines, IL-1beta and TNF-alpha, signal neuroendocrine, autonomic,
limbic, and cortical areas of the central nervous system to control neural activity,
behaviors, hormone release, and autonomic functions (Lorton et al. 2006).

Acute activation of pattern-recognition receptors, TLR-4 and TLR-2, by expos-
ing to bacterial lipopolysaccharide and peptidoglycan, respectively, also increases
circulating levels of IFN-gamma and potently activates IDO in both the periphery
and the brain (Lestage et al. 2002). Indeed glial cells and TLRs are vital components
of immune response in the central nervous system. Intrauterine infection/inflamma-
tion promotes inflammatory processes in glial cells by upregulating cytokines and
by activating signaling pathways and transcriptional factors (Yuan et al. 2010).

Response to cytokines seems to be related to the hypothalamic—pituitary—adrenal
(HPA) axis activation. Thus IL-1 administration increases noradrenaline secretion
and stimulates indoleamine metabolism and most prominently increases the metab-
olism of serotonin (5-hydroxytryptamine, 5-HT). IL-6 also induces a short-lived
activation of the HPA axis. Its effects on Trp and serotonin metabolism are similar
to those of IL-1 (Dunn et al. 1999). Furthermore suppressors of cytokine signaling
(SOCS) proteins are critical modulators of cytokine-mediated processes, and janus
kinase 2 (JAK)-STAT-SOCS signaling modules can have diverse effects on inflam-
matory diseases (O’Shea and Murray 2008). In the long term, IL-6-dependent
upregulation of SOCS3 is responsible for inhibiting the IFN-gamma-driven
transcriptional expression of IDO (Fig. 1.1) (Orabona et al. 2004). Hence, an inverse
correlation between SOCS3 and IDO expression is evident. Immunomodulatory
mechanisms extensively use negative regulators in the form of signaling proteins
bearing one or more immunoreceptor tyrosine-based inhibitory motifs (ITIMs).
IL-6 upregulates SOCS3 and promotes SOCS3 binding to ITIMs of IDO. This
process causes shortening of the half-life and proteasome-mediated degradation of
IDO (Orabona et al. 2008).

1.3 IDO-Mediated Signaling

The extrahepatic Trp degradation enzyme IDO is induced by IFN-gamma-mediated
effects of the STAT1-alpha and IRF-1. The induction of IDO can also be mediated
through an IFN-gamma-independent mechanism which may be related to the
activity of the p38-MAPKinase pathway and NF-kappaB (Fujigaki et al. 2006).
Actually the enzymatic activity of IDO is enhanced in conditions of acute or chronic
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activation of the immune system, including immunotherapy, acquired immunodefi-
ciency syndrome, atherosclerosis and coronary heart disease, rheumatoid arthritis,
and obesity (Wirleitner et al. 2003). In particular secretion of IFN-gamma is
significantly higher in the obese than that of the control subjects. Initially this might
be partly dependent on the action of leptin that shifts T-helper (Th) cells toward a
Th1 phenotype. A shift to Thl-cytokine profile is dominated by the production of
IFN-gamma and is related to insulin resistance in obesity (Pacifico et al. 2006).
Hereby T cells and IFN-gamma participate in the regulation of the chronic inflam-
matory response in obese individuals (Rocha et al. 2008). Chronic inflammation
might trigger and maintain the transcriptional induction of IDO-mediated Trp
catabolism. Consequently chronic immune activation is the cause for reduced Trp
plasma levels in morbidly obese patients (Brandacher et al. 2007). In case of
obesity, activation of IDO simultaneously causes excessive synthesis of kynuren-
ines (Brandacher et al. 2006). Furthermore, decrease in Trp levels and subsequent
reduction in serotonin due to shift to Kyn pathway provoke satiety dysregulation
and ultimately lead to increase in caloric intake and favor obesity (Brandacher et al.
2007). Even after weight reduction in morbidly obese patients, Trp depletion persists
(Brandacher et al. 2006). The induction of the Kyn pathway by IDO activity and
subsequent decrease in the Trp availability in the brain results in the IFN-alpha-
induced depressive symptoms. While Kyn to Trp ratio reflects IDO activity, the Kyn/
KA indicates the neurotoxic challenge (Wichers et al. 2005). Higher IDO activity
has also been implicated in immune tolerance because it can inhibit the immune
response, either by exhausting L-Trp in the medium or producing toxic metabolites.
Trp metabolites in the Kyn pathway, such as 3HAA and QA, induce the selective
apoptosis in vitro of murine thymocytes and of Thl but not Th2 cells (Fallarino
et al. 2002). As stated above IDO activity is characterized best by the Kyn to Trp
ratio, but considering the immune tolerance, it should be correlated with the concen-
tration of immune activation marker such as neopterin (Schrocksnadel et al. 2006).

Until recently, the conversion of Trp to N-formylkynurenine was thought to be
performed by either of two enzymes, TDO and IDO. However a third enzyme,
indoleamine 2,3-dioxygenase-2 (IDO2) [indoleamine 2,3-dioxygenase-like protein
(INDOLJ1) or proto-indoleamine 2,3-dioxygenase (proto-IDO)], with the Trp degra-
dation activity has been described (Ball et al. 2009). Although IDO?2 is not as widely
expressed as IDO (IDOV1), it is also expressed in antigen-presenting dendritic cells
where Trp catabolism drives immune tolerance. Like IDO, IDO2 catabolizes Trp
and triggers phosphorylation of the translation initiation factor elF2alpha. Trp
restoration switches off this signaling pathway when activated by IDO, but not
IDO2, arguing that IDO2 has a distinct signaling role (Metz et al. 2007). IDO2 has
43 % similarity to classical IDO protein and shares the same critical catalytic
residues. Although IDO2 enzyme activity is weaker than IDO, it is less sensitive to
dextro-methyl tryptophan inhibition than IDO. Thus a more recent study indicated
that human CD4+ and CD8+ T-cell proliferation was inhibited by IDO2, but both
levo-1-methyl tryptophan and dextro-methyl tryptophan which are the gold stan-
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dard inhibitors of IDO enzyme activity could not reverse IDO2-mediated arrest
of cell proliferation, even at high concentrations (Qian et al. 2012). In fact,
IDO-dependent tolerogenic effects induced by transforming growth factor
beta (TGF-beta) are abolished by IDO gene silencing, but not by the use of 1-meth-
yltryptophan. TGF-beta/IDO/phosphotyrosine phosphatase SHP-1 axis activates
the anti-inflammatory NF-kappaB pathway by inhibiting the IL-1 receptor-associ-
ated kinase-1 (Orabona et al. 2012).

1.4 Aryl Hydrocarbon Receptor Activation

Gene transcription in response to xenobiotics can be stimulated by aryl hydrocarbon
receptor (AhR) which is one of the several ligand-dependent intracellular respon-
sive elements (Denison and Nagy 2003). In this respect Trp photoproducts modulate
light-dependent regulation of circadian rhythm through triggering of AhR signal-
ing. Thus these by-products, including 6-formylindolo(3,2-b)carbazole, have high
affinity for AhR (Mukai and Tischkau 2007). Ligand activation provokes the AhR
to migrate from cytosol to the nucleus and form a complex with the aryl hydrocar-
bon nuclear translocator (ARNT) that can bind dioxin-responsive elements in the
promoter regions of xenobiotic-metabolizing cytochrome P450 (CYP1A) enzymes
and 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase
(PARP7) (TiPARP) (Diani-Moore et al. 2010). TiPARP is an AhR target gene
that can mediate a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. TCDD
suppresses glucose metabolism-related pathways such as hepatic glucose produc-
tion, expression of key gluconeogenic genes, phosphoenolpyruvate carboxykinase,
and glucose-6-phosphatase activities, and NAD* levels. Nicotinamide, a known pre-
cursor of NAD", is an AhR antagonist. There is a link between signaling path-
ways for AhR toxicity and nutrient homeostasis NAD*/peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (PGClalpha), regulator
of mitochondrial biogenesis, and function/silent mating type information regulation
2 homolog 1 [(SIRT1), NAD-dependent deacetylase sirtuin-1] via the AhR target
gene TiPARP (Diani-Moore et al. 2010). Consequently the effects of TCDD are
mediated through its binding to the AhR, as a ligand-activated transcription factor.
Subsequent to binding AhR, TCDD inhibits CD4+ T-cell differentiation into T
helper (Th)1, Th2, and Th17 effector cells while inducing forkhead transcription
factor (Foxp3)-negative and/or preserving Foxp3+ regulatory T cells (Tregs)
(Marshall and Kerkvliet 2010). The AhR is a key transcriptional regulator of Th17-
cell differentiation. Th17 cells express kynurenine 3-monooxygenase, which is an
enzyme involved in catabolism of the Trp metabolite Kyn (Stephens et al. 2013). On
the other hand, activation of AhR induces IDO and IDO2 expression of dendritic
cells. Hence AhR activation is an important signaling pathway for IDO expression
and displays a critical role in the mechanism leading to the generation of Tregs.
Eventually induction of Tregs mediates the immune suppression through the
activation of AhRs (Vogel et al. 2008).
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1.5 Glutamate Neurotransmission

Inflammatory cytokines and their signaling pathways have significant effects on the
synthesis, release, and reuptake of serotonin, dopamine, and glutamate (Miller et al.
2013). In this context, higher glutamate receptor, mGluR 1alpha, and lower guanine
nucleotide-binding protein (G-protein)-coupled receptor, regulator of G-protein
signaling 4 (RGS4) mRNA levels, play an important role in regulating gamma-
aminobutyric acid (GABA) and glutamate neurotransmission in the brain cortex by
initiating intracellular signaling cascade (Fig. 1.1). Suppression of GABA release in
GABA neurons of the prefrontal cortex and diminished glutamate neurotransmis-
sion due to NMDA receptor hypofunction are evident in certain cognitive deficits
(Volk et al. 2010). Activation of serotonin 5-HT1A receptors or dopamine D
(4) receptors downregulates the function of NMDA receptor channel in pyramidal
neurons of the prefrontal cortex. Blocking RGS4 function significantly potentiates
the 5-HT1A regulation of NMDA receptor. Conversely, overexpression of RGS4
couples RGS4 to serotonin signaling in cortical neurons and attenuates the 5S-HT1A
effect (Gu et al. 2007). Furthermore elevated levels of KA in the prefrontal cortex
may contribute to the abnormal glutamatergic and nicotinic functions in cognitive
deficits (Schwarcz et al. 2001; Erhardt et al. 2009). This concept is partly based on
the finding that endogenous KA is an astrocyte-derived metabolite of Trp degradation
via Kyn pathway (Kiss et al. 2003). As already mentioned above, Trp degradation
products along the Kyn pathway include three neuroactive metabolites: the neuroin-
hibitory agent KA, the free radical generator 3HK, and the excitotoxin QA. Inhibition
of kynurenine 3-hydroxylase shifts Kyn pathway metabolism from 3HK formation
toward enhanced KA formation in the mature brain. Therefore acute kynurenine
3-hydroxylase inhibition effectively increases KA formation (Ceresoli-Borroni
et al. 2007). Following the systemic administration of Kyn, a significant reduction
in prefrontal glutamate occurs. Alpha7nAChRs constitutes a crucial link between
excessive KA formation and reduction in glutamate. Subsequent to peripheral
administration, Kyn penetrates the blood—brain barrier and dose dependently raises
extracellular KA levels in the prefrontal cortex. Actually systemic Kyn administra-
tion duplicates the reduction in extracellular glutamate seen after a local perfusion
of Kyn in the prefrontal cortex. Resultant KA-induced reduction in prefrontal gluta-
mate levels emerges as a result of alpha7nAChRs inhibition (Konradsson-Geuken
et al. 2010). The cognitive deficits are likely related to abnormal glutamatergic and
cholinergic neurotransmission in the prefrontal cortex. These defects may be
secondary to increased levels of the astrocyte-derived KA, which inhibits alpha7A-
ChR and may thereby reduce glutamate release. Fluctuations in endogenous KA
formation bidirectionally influence cortical glutamate concentrations. Consequently
selective attenuation of cerebral KA production by increasing glutamatergic tone
might improve cognitive functions (Wu et al. 2010). Endogenous glutamate acts
locally within the striatum via ionotropic receptors to control impulse-independent
and transporter-mediated mode of dopamine release. When the KA inhibits the
release of glutamate, low glutamate level may inhibit the secretion of dopamine
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(Borland and Michael 2004). Modulation of glutamate release by the alpha7nAChRs
on striatal glutamatergic terminals, in turn, activates presynaptic ionotropic gluta-
mate receptors on striatal dopaminergic nerve terminals (Kaiser and Wonnacott
2000). Decrease in extracellular levels of striatal dopamine due to KA-induced
blockade of alpha7nAChRs can be enhanced by stimulating the endogenous forma-
tion of KA via kynurenine 3-hydroxylase inhibition (Rassoulpour et al. 2005).
Blood-derived Kyn rapidly accesses to KAT II-containing astrocytes, and KA
synthesis takes place in astrocytes (Guidetti et al. 2007). Fluctuations in KA indi-
rectly regulate extracellular dopamine levels in the striatum. Acute inhibition of
KAT II reduced the de novo synthesis of KA; thus, KAT II is a critical determinant
of functionally relevant KA fluctuations (Amori et al. 2009). On the other hand,
cytokine-activated Kyn pathway not only depletes Trp but also generates neuroac-
tive metabolites that can significantly influence the regulation of dopamine and
glutamate (Miller et al. 2013). Excitotoxic damage is a common pathologic event in
a number of neurologic diseases occurring after accumulation of excess extracellu-
lar glutamate in the central nervous system and subsequent overstimulation of glu-
tamate receptors. High extracellular glutamate increases risk of glutamate
excitotoxicity. However, astrocytes can take up synaptically released glutamate and
maintain glutamate homeostasis (Pitt et al. 2003). Nevertheless astrocytes can
release glutamate together with the various chemical transmitters which may medi-
ate communication between neurons and astrocytes (Ida et al. 2008). There are
complex cross talks between microglia and astrocytes during neuroinflammatory
insults which would influence glutamate-dependent responses in astrocytes (Tilleux
et al. 2007). Astrocytosis due to the destruction of neurons is accompanied by
microglial activation. Actually in proinflammatory processes, activated microglia
stimulates the increase in number of astrocytes and enhances mRNA expression of
IL-6 (Rohl et al. 2007). Cytokine release from microglia also causes downregula-
tion of mGIuR5, mGIuRS5 protein, and mRNA expression in astrocytes (Tilleux
et al. 2007). On the other hand, the inhibition of inducible nitric oxide synthase
(INOS) eliminates the cytokine-induced enhancement of glutamate release, whereas
treatment with a NO donor, even in the absence of cytokines, increases glutamate
release (Ida et al. 2008). Nonspecific NOS inhibitors decrease the homocysteine-
induced lipid peroxidation more than does the selective neuronal nitric oxide syn-
thase (nNOS) inhibitor. In this case homocysteine can induce oxidative injury to
nerve terminals, and this effect involves the NMDA receptor stimulation, NOS
activation, and associated free radical formation (Jara-Prado et al. 2003). Higher
concentration of QA induces concentration-dependent increases in ROS formation
in all synaptosomes, but the increase in the production of peroxidized lipids only
emerges in the striatum and the hippocampus. These findings suggest that the
excitotoxic action of QA involves regional selectivity in the oxidative status of brain
synaptosomes (Santamaria et al. 2001). However, NMDA receptor antagonists
completely inhibit the increase of QA-induced lipid peroxidation (Santamaria and
Rios 1993).
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1.6 Serotonin Neurotransmission

Trp is only available in the diet. It is therefore likely that excessive diet restriction
and malnutrition decrease brain serotonin stores. Evidence shows that diet
restriction-induced exaggerated feedback control over serotonin synthesis and the
smaller availability of Trp decrease serotonin neurotransmission at postsynaptic
sites, leading to hyperactivity, depression, and behavioral disorders (Haleem 2012).
Conversely excessive L-Trp ingestion raises brain Trp levels and stimulates its
conversion to serotonin in neurons. Adverse effects may be seen at higher doses
(70-200 mg/kg) and include tremor, nausea, and dizziness. When Trp is taken
alone or with a drug that enhances serotonergic effects, it may provoke side effects
(Fernstrom 2012). In fact serotonin neurotransmission comprises multiple consecutive
processes including synthesis, storage/release, signaling, reuptake, and metabo-
lism, of which the first step, synthesis, is a critical modulator of serotonin neuro-
transmission (Chen and Miller 2012). Serotonin is synthesized by a two-step
enzymatic reaction. Firstly, the essential amino acid L-Trp is hydroxylated into
5-hydroxy-L-tryptophan by the limiting enzyme TrpH. Two isoforms of TrpH
enzyme, TrpH1 and TrpH2, have been characterized so far: TrpH1 is mainly
expressed in the gastrointestinal tract and the pineal gland, whereas TrpH2 is
primarily expressed in the central nervous system (Watts 2009). TrpH2 polymor-
phisms directly influence serotonergic function and thus impact on mood disor-
ders. TrpH2-deficient mice display alterations in anxiety-like behavior which is
accompanied by adaptational changes of 5-HT1A receptors and its associated sig-
naling pathway (Waider et al. 2011). Genetic inactivation of TrpH2 function in
mice led to the identification of phenotypic changes, ranging from growth retarda-
tion and late-onset obesity to enhanced conditioned fear response, increased
aggression, and depression-like behavior (Lesch et al. 2012). In fact TrpH, a BH4-
dependent amino acid hydroxylase, is the key regulator of serotonin biosynthesis
(Carkaci-Salli et al. 2006). 5-Hydroxy-L-tryptophan is converted to serotonin by
AAADC. Actually AAADC deficiency is a severe genetic neuro-metabolic disor-
der that is characterized with combined deficiency of serotonin, dopamine, and
catecholamines (Manegold et al. 2009). Furthermore endothelial AAADC plays an
important role in cardiac synthesis of serotonin and possibly in serotonin-depen-
dent regulation of NO generation. 5-Hydroxy-I-tryptophan administration in mice
increased phosphorylation of aortic endothelial NOS (eNOS) at Ser-1177 as well
as accumulation of nitrates in cardiac tissue (Rouzaud-Laborde et al. 2012). eNOS
is known to be stimulated by serotonin via 5-HT1B receptor/eNOS pathway
(McDuffie et al. 1999). Phosphorylation of eNOS produces NO without requiring
any changes in [Ca?*]i (Boo et al. 2003). Actually 5-HT2B receptor stimulation
plays a critical role in the phosphorylation of both extracellular signal-regulated
kinase 1/2 (ERK1/2) and eNOS (Asada et al. 2009). In human endothelial cells,
serotonin markedly stimulates eNOS expression and the phosphorylation of eNOS,
Akt, and ERK1/2. Consequently serotonin induces angiogenesis through activation
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of Akt in endothelial cells. Selective inhibition of 5-HT2A causes induction of the
eNOS/Akt pathway via the endothelial 5-HT1B receptors and enhances vasodila-
tion in diabetes mellitus (Iwabayashi et al. 2012).

Increased activity of the liver enzyme TDO is stimulated by an excess of circulat-
ing corticosteroids. In hypercortisolemic conditions, metabolism of Trp turns to the
Kyn pathway from serotonin synthesis. Upregulation of the Trp-Kyn pathway and
diminished availability of Trp are the primary causes of serotonin deficiency
(Oxenkrug 2010). Hypercortisolism affects the gene encoding TrpH2 and the
expression of TrpH2. Also chronic corticosterone intake disrupts the diurnal varia-
tion of TrpH2 mRNA expression in the brain stem dorsal raphe nucleus and of
plasma adrenocorticotropin and corticosterone levels in a dose-dependent manner
(Donner et al. 2012). The hippocampus plays a central role in regulation of the HPA
axis and release of endogenous glucocorticoids. Exposure to serotonin increases the
glucocorticoid receptor mRNA levels in hippocampal neurons. Eventually synthetic
and endogenous glucocorticoids, as well as serotonin, influence glucocorticoid
receptor expression during hippocampal development (Erdeljan et al. 2005). Stress
significantly increases extracellular serotonin release in the basolateral amygdaloid
nucleus and the prefrontal cortex (Kawahara et al. 1993). Indeed serotonin dramati-
cally enhances frequency and amplitude of spontaneous inhibitory postsynaptic
currents (SIPSCs) in the basolateral amygdala through 5-HT2A receptors. Because
of the basolateral amygdaloid GABAergic inhibition is blocked by selective 5-HT2A
receptor antagonists, the stress-induced effect appeared to be specific to 5S-HT2A
receptor downregulation (Jiang et al. 2009).

Monoaminergic neurotransmission involves functional interactions between
serotonin, norepinephrine, and dopamine systems. First of all serotonin system
exerts negative effect on norepinephrine system through 5-HT2A and on dopamine
system through 5-HT2C receptor-mediated mechanisms. Positive and negative
effect of norepinephrine system on serotonin neurotransmission is mediated through
alphal- and alpha2-adrenergic receptors, respectively (Hamon and Blier 2013).
Actually BH4 is an essential cofactor in the synthesis of serotonin, dopamine,
epinephrine, norepinephrine, and NO. BH4 availability influences many cells,
including neurons. Following peripheral nerve damage, BH4 dramatically increases
in sensory neurons and causes pain hypersensitivity (Latremoliere and Costigan
2011). Fatigue and impaired executive functions are commonly linked to disturbed
cerebral dopaminergic and noradrenergic neurotransmission. Moreover selective
serotonin reuptake inhibitors (SSRIs) contribute to fatigue, which is a common
residual symptom associated with depression (Stenman and Lilja 2013). During the
prolonged exercise, fatigue is attributed to the muscle glycogen depletion. “Central
fatigue hypothesis” previously was based on the increase in the concentration of
brain serotonin during exercise. However according to the revised central fatigue
hypothesis, an increase in central ratio of serotonin to dopamine is associated with
feelings of tiredness and lethargy (Meeusen and Piacentini 2003). Actually a complex
interplay between the different neurotransmitter systems induces fatigue: dopamine
and noradrenaline rather than serotonin alone (Roelands and Meeusen 2010).
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Diet restriction-induced exaggerated feedback control over serotonin synthesis
and the reduced availability of Trp decrease serotonin neurotransmission at postsyn-
aptic sites. A compensatory upregulation of postsynaptic 5S-HT1A receptors and
hypophagic serotonin receptors may be involved in suppression of appetite (Haleem
2012). In this case although the levels of Trp in the plasma and of serotonin in the
hypothalamus decrease, no effect is found on the levels of Trp in the hypothalamus.
Diet restriction-induced decrease of serotonin is due to an increase in the respon-
siveness of negative feedback control over serotonin, not due to smaller availability
of Trp (Haleem 2009). Likewise 20-25 % reduction in body weight due to food
restriction decreases serotonin concentration in the brain of male but not female rats
(Haider and Haleem 2000). Conversely in sugar-diet-treated rats, when the cumula-
tive food intakes increase, body weights decrease. Hyperphagic effects of selective
5-HT1A agonist are greater in normal diet than sugar-diet-treated rats. However
serotonin and 5-hydroxyindole acetic acid levels are not changed. Desensitization
of pre- as well as postsynaptic 5-HT1A receptors in rats treated with sugar diet
causes the precipitation of obesity (Jabeen and Haleem 2008). Actually long-term
consumption of sugar diet results in a decrease in the effectiveness of pre- as well as
postsynaptic 5-HT1 A receptor-dependent responses (Inam et al. 2006). Malnourished
offspring have a significant elevation of L-Trp, TrpH activity, and serotonin in the
brain stem. Both isoforms of TrpH (TrpH1 and TrpH2) are expressed at birth in both
groups; however, TrpH1 expression is significantly higher in offspring with
intrauterine malnutrition when compared to the controls. Malnourished offspring
show reduced expression of TrpH2 compared to controls. Thus it has been confirmed
that intrauterine malnutrition produces an increase in serotonin in the brain stem
and also shows increased expression of TrpH1 at birth, with decreased expression of
TrpH2 (Manjarrez-Gutiérrez et al. 2012).

The dorsal raphe nucleus (DRN) is the largest serotonin-containing nucleus in
the brain and has extensive ascending projections that innervate most forebrain struc-
tures. Targets of DRN innervation receive input from both serotonergic and nonseroto-
nergic cells. Selective serotonergic neurotoxins, including 5,7-dihydroxytryptamine
(5,7-DHT), have been shown to disrupt axonal transport in serotonergic neurons
(Callahan et al. 2001; Araneda et al. 1980). Human LIM homeobox transcription
factor 1-beta (Lmxl1b)-encoded gene is essential for the development of central
serotonergic neurons. This gene is required for the normal biosynthesis of serotonin
in the adult brain and for regulating normal functions of central serotonergic
neurons. Lmx1b deletion in the adult brain leads to reduction in central serotonin
levels. However the overall number of serotonergic neurons is not affected by delet-
ing Lmx1b, and Petl promoter expression in the adult brain is independent of
Lmx1b. Reduction in central serotonin levels seems to be the consequence of TrpH2
downregulation (Song et al. 2011). In fact Petl in the brain is necessary for terminal
differentiation of serotonergic neuron phenotype during embryonic development
(Hendricks et al. 2003). Considering the serotonergic signaling mechanisms, ETS
domain transcription factor Petl is also required for maintaining the serotonergic
neurotransmitter system during adult stages as well as for expression of the presyn-
aptic 5-HT1B autoreceptor. Therefore adult central nervous system expression of
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TrpH2 and serotonin transporter (SERT) is restricted to Petl-expressing serotonin
neurons and is rate limiting for the essential serotonergic functions of serotonin
synthesis and reuptake (Liu et al. 2010). Pet]l RNA co-localizes with TrpH-positive
neurons in raphe nuclei. Loss of Petl in the serotonergic neurons leads to a decrease
of TrpH2 expression but no change in Lmx 1b expression (Song etal. 2011). Virtually
serotonergic and nonserotonergic axons innervate distinct but partially overlapping
fields within vestibular nuclei (Halberstadt and Balaban 2007). Both local
GABAergic and glutamatergic cells project onto DRN serotonergic neurons (Jolas
and Aghajanian 1997). 5-HT1A receptors are present on nonserotonergic as well as
serotonergic DRN neurons. While the majority of serotonin-immuno-positive cells
are double-labeled for 5-HT1A receptor, small but significant population of sero-
tonin-immuno-negative cells express the 5-HT 1 A receptor (Kirby et al. 2003). Both
5-HT1A and alphalb adrenergic mRNA are highly expressed throughout the DRN,
and the vast majority of serotonergic neurons express both receptors. A smaller
percentage of GABAergic neurons also express 5-HT1A or alphalb adrenergic
mRNA. A small amount of catecholaminergic cells express either 5-HT1A or
alphalb adrenergic mRNA (Day et al. 2004).

Hence, serotonin not only affects neuronal excitability through activating post-
synaptic receptors (Guo and Rainnie 2010) but also affects presynaptic excitatory or
inhibitory neurotransmission in the central nervous system, because of the serotonin
activating 5-HT1A and/or 5-HT1B receptors located on the presynaptic terminals.
Serotonin exerts significant control over the synaptic inputs and the autonomous
activity of subcortical pallidal neurons (Bouryi and Lewis 2003; Hashimoto and
Kita 2008). The serotonin receptors have been divided into 7 subfamilies, 6 of
which include 13 different genes for G-protein-coupled receptors (GPCR). Post-
genomic modifications create 20 more G-protein-coupled serotonin receptors.
Consequently there are at least 30 distinct serotonin receptors that signal through G
proteins (Raymond et al. 2001). 5-HT1A and 5-HT1B receptors interface primarily
with inhibitory G proteins (Gi) to decrease adenylyl cyclase activity. Subsequently
the action of the SSRI is mediated through the 5-HT1A receptor (Blier and Ward
2003; Monaca et al. 2003). While SSRI inhibiting the SERT density and function, it
maintains the normal firing rates and release of serotonin and immediately increases
activation of postsynaptic serotonin receptors (Nemeroff and Owens 2003). All of
the seven specific serotonin receptors mediate SSRI effects; however, the second-
class receptors, 5S-HT6 and 5-HT7, primarily interact with stimulatory G proteins
(Gs) to increase adenylyl cyclase activity. In particular the 5-HT6 receptor is
involved in neuronal serotonergic transmission and may have effects on anxiety and
mood (Yoshioka et al. 1998). The 5-HT7 receptor is involved in hippocampal func-
tion (Gill et al. 2002), and has been implicated in the regulation of the glucocorti-
coid receptors (Laplante et al. 2002). SSRIs also affect the function of the 5-HT2C
receptor (Bristow et al. 2000) with some adverse effects potentially mediated by
5-HT2C. Other than for the 5-HT3 receptor, most of the downstream effects of
serotonin are mediated by G proteins (Raymond et al. 2001). Actually G proteins
are a family of guanine nucleotide-binding regulatory components that couple
neurotransmitter receptors to various types of intracellular effector systems. Gs/Gi
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mediates stimulation/inhibition of adenylate cyclase system, which forms cyclic
adenosine monophosphate (cyclic AMP) as a second messenger (Lesch and Lerer
1991). There are 16 genes for G-protein alpha subunits, 5 for beta, and 12 for gamma
(Downes and Gautam 1999). SSRIs have been associated with increased transcrip-
tion of adenylyl cyclase 1. 5-HT1A receptor mediates inhibition of basal and
Gs-induced cAMP formation in the absence of adenylyl cyclase 2. 5-HT1A
activation decreases activity of neuronal adenylyl cyclase 2 (Albert et al. 1999).
Among serotonin receptors, the 5-HT3 receptor is a member of the Cys-loop family
of ligand-gated ion channels and located in both the peripheral and central nervous
systems. Chronic activation of 5-HT3 receptor produces significant desensitization
of 5-HT3 and postsynaptic 5-HT 1A receptors without major changes in the expres-
sion of SERT and TrpH-2 genes (Kondaurova et al. 2012).

Human SERT reuptakes biogenic amine neurotransmitters following release in
the nervous systems and terminates the action of serotonin (Murphy et al. 2004).

SERT: are tightly controlled by multiple signaling pathways, including G-protein-
coupled receptor-linked pathways (Blakely et al. 2005). Two protein kinase G
(PKG)-dependent pathways have been proposed to support rapid SERT regulation
by A3 adenosine receptors (ARs). The first enhances SERT surface trafficking to
clear serotonin following vesicular release, and the second is a separate, p38 MAPK-
dependent process which augments SERT intrinsic activity (Zhu et al. 2004). p38
MAPK activation downstream of PKG via SERT catalytic regulatory pathway in a
trafficking-independent mode is distinct from events controlling SERT surface den-
sity. Protein phosphatase 2A is a critical component of the pathway responsible for
p38 MAPK upregulation of SERT catalytic activity (Zhu et al. 2005). Thus A3 ARs
activation stimulates serotonin uptake via PKG- and p38 MAPK-linked pathway
(Zhu et al. 2004). MAP kinase kinase (MAPKK) superfamily molecules, MKK3,
MKK3b, and MAPKKG®, can act as a specific activator for p38. Furthermore as a
major activator for p38, the MAPKKG6/p38 kinase cascade is activated strongly by
TNF-alpha and H,0, (Moriguchi et al. 1996). Eventually PKG-linked and p38
MAPK-linked pathways provide a rapid increase in SERT surface expression and
function. In contrast, the activity of protein phosphatase 2A inhibitors attenuates
MAPK or other signal transduction pathways and facilitates the stimulation of sero-
tonin transport (Zhu et al. 2005), whereas activated protein kinase C (PKC) interacts
with SERT and alters the subcellular localization of the transporter resulting in a
reduction of serotonin transport. SERT proteins are rapidly phosphorylated in paral-
lel with transporter redistribution and loss of functional uptake capacity. Indeed loss
of surface SERT protein after PKC activation reflects transporter redistribution
rather than irreversible loss of transporter protein via degradation (Haase et al.
2001; Blakely et al. 1998). In brief, one of the well-known mechanisms in the ter-
mination of the stimulation of monoamine neurotransmitters is the removal from the
synapse by transporter molecules. Transporters are located within the plasma mem-
brane of presynaptic cells and may be readily regulated by a variety of receptor-
mediated intracellular signals.

SERT can be rapidly regulated by a membrane-bound G-protein-coupled receptor
and this occurs via NO and cyclic guanosine monophosphate (cGMP). A3 AR is
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coupled to NO and cGMP (Miller and Hoffman 1994). ARs, Al, A2A, A2B, and
A3, are widely distributed throughout the brain and periphery (Fredholm et al.
2001) and have been implicated in a variety of physiological and pathological con-
ditions, including modulation of neural signaling (Okada et al. 1999). It was shown
that IL-1 receptors couple via the p38 MAPK pathway to activate SERT. Regulation
of SERT is achieved by the multiple AR subtypes in the brain (Fredholm et al.
2005). In particular, A3 AR activation stimulates SERT function in the brain.
Inhibition A3 ARs may be able to selectively diminish elevations in SERT activity
in a region-dependent manner without affecting basal serotonin clearance or steady-
state serotonin levels (Zhu et al. 2007). Consequently A3 AR activation leads to the
induction of the serotonin transport by a p38 MAPK-dependent pathway. Stimulation
of SERT by A3 AR activation in the brain suggests a functional relationship between
A3 AR activation, SERT activity, and serotonin signaling (Zhu et al. 2007). SERT
does not have a significant contribution to serotonin uptake in vascular smooth
muscle cells of human brain and peripheral vessels. The lack of SERT activity in
these vascular smooth muscle cells suggests that different mechanisms may be
responsible for serotonin uptake in different vascular beds. In this regard more
likely candidates responsible for non-SERT-dependent serotonin uptake are organic
cation transporters (OCTs). The polyspecific organic cation transporters OCT1, OCT2,
and OCT3 mediate bidirectional diffusion of small organic cations such as acetyl-
choline and monoamine neurotransmitters (Lee et al. 2009). The mRNA of OCT3 is
also called “extraneuronal monoamine transporter” and is expressed in vascular
smooth muscle cells of the human brain but not OCT1 and OCT?2. In addition to
OCT3, most probably the mRNA of plasma membrane monoamine transporter is
expressed and contributes to serotonin uptake in these cells (Li et al. 2013).

1.7 Desensitization and Re-sensitization
of Serotonin Receptors

Desensitization and re-sensitization of GPCRs can modulate receptor responsive-
ness in regulation of many cellular functions. These processes depend on the avail-
ability of functional receptors at the cell surface and on their mode of activation.
Chronic stimulation of receptor agonists causes GPCR desensitization. Actually
receptor desensitization can occur by a series of events such as downregulation of
the receptor, internalization of the receptor, or uncoupling of the receptor from its
signaling proteins (Sibley et al. 1987; Damjanoska et al. 2004). Desensitization
process is well described for serotonin receptors. The 5-HT1A is expressed both as
a pre- and postsynaptic receptor in neurons. The presynaptic receptor is preferen-
tially desensitized compared to postsynaptic receptors. Desensitization is dependent
on internal Ca* ions and PKC-dependent agonist-induced uncoupling of the
5-HT1A receptors (Wu et al. 2013). In a similar manner chronic treatment with
5-HT2A/2C receptor agonists disrupts the receptor-to-G-protein interaction. Possible
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mechanism underlying this desensitization process may be phosphorylation of the
5-HT2A receptor and/or G alpha g/11 proteins. The desensitization of 5-HT2A
receptors is most likely due to posttranslational modifications of the 5-HT2A
receptor and G alpha g/11 proteins altering the 5-HT2A receptor-to-G alpha g/11
protein interface (Damjanoska et al. 2004). Activation of 5-HT2A receptors
stimulates activation of G alpha /11, which in turn activates effector enzyme
phospholipase C (PLC). Desensitization of 5-HT2A receptor-stimulated PLC
activity is dependent on activation of the JAK—STAT pathway and is associated with
increases in RGS7 protein levels. This increase in RGS7 protein plays a role in the
desensitization of 5-HT2A receptor signaling by terminating the activated G alpha
g/11 proteins (Singh et al. 2009). Recycled internalized receptors return to the cell
surface and recover their ability to couple with G proteins that involve in the re-
sensitization process (Bhattacharyya et al. 2002). On the other hand in the absence
of serotonin, PKC-activated receptors also recycle to the cell surface. Even in
the presence of 5-HT, blocking the activation of PKC prevents the receptor internal-
ization. Therefore PKC activation is necessary for the internalization of serotonin
receptors. In order to internalize the receptor, PKC-mediated phosphorylation
occurs in the absence of serotonin or G-protein activation (Bhattacharyya et al.
2002). Eventually 5-HT2A receptors become available again at the cell surface after
both serotonin- and PKC-mediated processes.

1.8 Enterochromaffin Cell and Serotonergic Signaling

Actually one of the predominant sites of serotonin synthesis, storage, and release is
the enterochromaffin (EC) cells of the intestinal mucosa. Serotonin released from
EC cells activates neural reflexes associated with intestinal secretion, motility, and
sensation. In this respect 5-HT3 and 5-HT4 are the two important receptors for
serotonin signaling in pathologic conditions (Costedio et al. 2007). Hence serotonin
is not taken up by mucosal nerve fibers (Gershon and Sherman 1982). EC cells
activate both intrinsic and extrinsic primary afferent neurons through their release
of serotonin. Upon stimulation of 5-HT1P receptors by serotonin, submucosal
intrinsic primary afferent neurons trigger peristaltic and secretory reflexes. Serotonin
also enhances the release of transmitters through 5-HT4 receptors in prokinetic
reflex pathways. However in inflammatory conditions, serotonergic signaling is
specifically diminished within the mucosa due to decrease of transcripts encoding
tryptophan hydroxylase-1 and 5-HT reuptake transporter. Stimulation of serotonin
secretion and desensitization of its receptor can account for the symptoms seen in
diarrhea-predominant and constipation-predominant irritable bowel syndrome,
respectively (Gershon 2004).

Th17 cells, a novel subtype of proinflammatory T-helper cell, seem to have an
important role in the development of inflammatory bowel diseases (Brand 2009).
Increase in the plasma IL-17 and mRNA levels of the Th17-specific transcription
factor, retinoic acid-related orphan receptor gammat (RORgammat), is an evident
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finding in patients with active ulcerative colitis. The levels of p-STAT3 and
p-STATS in peripheral blood mononuclear cells, as well as the ratio of p-STAT3/p-
STATS, are also elevated in these patients. Rising circulating Th17 and the aberrant
activation of the STAT pathway may be effective in the progression of inflammatory
bowel diseases (Dong et al. 2013). Despite the importance of STAT3 signaling, it
should be emphasized that this stimulus alone is not sufficient to drive Th17 dif-
ferentiation. STAT3 is necessary but not sufficient for IL-17 expression (Chen et al.
2007). Thus IL-27 inhibits the development of proinflammatory Th17 cells by sup-
pressing in a STAT1-dependent manner the expression of the Th17-specific tran-
scription factor of RORgammat (Diveu et al. 2009). Stimulation of intestinal
epithelial cells with IL-27 results in the activation of the MAPK signaling pathways
p38 and ERK as well as of the phosphoinositol-3-kinase (PI3K)-Akt pathway. IL-27
also activates the transcription factors STAT1, STAT3, and STAT6. IL-27-mediated
IDO1 enzymatic activity is also strongly dependent on STAT1 as determined by the
IL-27-induced Kyn levels. While silencing of STAT3 has a weak positive effect on
IDO1 mRNA and protein expression, silencing of STAT6 does not influence IL-27-
activated IDO expression and enzymatic activity (Diegelmann et al. 2012). STAT1
DNA-binding site in the IDO promoter is identical to a described STAT1-binding
site following IFN-gamma stimulation (Chon et al. 1995). The response of the IDO
gene promoter region to IFN-gamma is dependent on two regulator elements IFN-
gamma-activated site and the IFN-stimulated response element. The location of the
IFN-gamma-activated site-related sequence is important in relation to the IFN-
stimulated response element sequence for a response to IFN-gamma. A cooperative
role of IFN-gamma-IRF1 and STAT1 is described in the induction of the IDO1 gene
by IFN-gamma (Chon et al. 1996).

EC cells are the sensory transduction elements in the gastrointestinal mucosa and
respond to chemical and mechanical stimuli by releasing serotonin. The uptake of
serotonin by SERT-dependent mechanisms is a key factor in controlling serotonin
availability in the gastrointestinal tract. EC cell numbers increase in the ileum of
these rats (Bertrand et al. 2011). In obesity a significant decrease in the total number
of EC cells per crypt and a reduction in the levels of serotonin occur in western type
of diet-fed rats compared with in chow-fed rats. SERT protein levels and SERT-
dependent uptake of serotonin are constant. Although there is no change in trypto-
phan hydroxylase 1 mRNA, SERT mRNA increases. Reduction of serotonin
availability is associated with decreased intestinal motility in vivo (Bertrand et al.
2012). The enteric SERT is the only transporter expressed in the bowel with a high
affinity for serotonin. In SERT deficient bowel expresses dopamine transporter
(DAT) and OCTS3 that transport serotonin, although they lack the selectivity and
affinity of SERT for 5-HT. DAT and the OCTs might thus compensate, at least
partially, for the absence of SERT. Although there is an excessive increase in colonic
motility and watery diarrhea in the majority of SERT-deficient subjects, a striking
decrease in colonic motility and constipation may be evident in a minority of these
animals (Chen et al. 2001). No difference in OCT1 expression is detected between
SERT deficient and control animals. Upregulation of OCT3 expression and enhanced
low-affinity serotonin uptake may limit the adverse effects of elevated extracellular
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serotonin in the absence of SERT (Schmitt et al. 2003). Consequently OCT3
contributes to serotonin clearance if the expression of the SERT is low or absent.

As mentioned already, OCTs and the plasma membrane monoamine transporters
are capable of clearing biogenic amines from extracellular fluid and may serve to
buffer the effects of selective serotonin reuptake inhibitors (Daws 2009). Proliferation
of intestinal mucosal cells is significantly greater in mice with lack of the serotonin
reuptake transporter and in mice given selective serotonin reuptake inhibitors. On
the other hand serotonin promotes growth and turnover of the intestinal mucosal
epithelium. These processes are mediated by neuronal rather than mucosal serotonin
(Gross et al. 2012). Likewise, constitutive gastrointestinal motility depends on
neuronal rather than on mucosal serotonin, and the development of dopaminergic,
GABAergic, and calcitonin gene-related peptide (CGRP)-expressing enteric
neurons requires neuronal serotonin (Li et al. 2011).

Since EC cells are sensitive to oxygen, alterations in oxygen levels differentially
activate hypoxia-inducible factor lalpha (HIF-lalpha) and TpHI, as well as
NF-kappaB signaling. Changes in the amount of serotonin production and secretion
determine the oxygen sensing role of EC cells. Decrease in oxygen concentration
elevates serotonin secretion by 2-3.2-fold, as well as protein levels of HIF-1lalpha
by 1.7-3-fold. Whereas rising of the oxygen concentration to 100 % reduces
serotonin secretion, inhibits hypoxia transcriptional response element (HRE)-
mediated signaling, and significantly lowers HIF-lalpha levels. NF-kappaB
signaling is also elevated during hypoxia by 1.2—1.6-fold (Haugen et al. 2012).

1.9 Taste Receptor Signaling

GPCRs are key transmembrane recognition molecules for regulatory signals such
as light, odors, taste hormones, and neurotransmitters. In addition to activating G
proteins, GPCRs associate with a variety of GPCR-interacting proteins (GIPs)
(Bockaert et al. 2010). GIPs influence the targeting, trafficking, and signal trans-
duction properties of serotonin receptors (Marin et al. 2012). Three currently
recognized types of taste bud cells exhibit distinct morphological features and cel-
lular functions: nucleoside triphosphate diphosphohydrolases (NTPDase)2 and
glial glutamate/aspartate transporter (GLAST) co-localized type I cells (Bartel
et al. 2006), the taste-specific G-protein a-gustducin expressed type II cells (Yang
et al. 2000a), and serotonin, neuron-specific enolase, ubiquitin carboxyl terminal
hydrolase, and neural cell adhesion molecule expressed type III taste cells (Yee
et al. 2001). Adenosine triphosphate (ATP) activated presynaptic (type III) cells
release serotonin and norepinephrine following ATP secretion from receptor (type
II) taste bud cells during taste stimulation. Subsequently, serotonin released from
presynaptic (type III) cells provides a negative paracrine feedback onto receptor
cells by activating 5-HT1A receptors. Finally, taste-evoked Ca?* mobilization is
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inhibited from receptor cells (Huang et al. 2009). Salts and acids utilize api-
cally located ion channels for transduction, while bitter, sweet, and umami (L-glu-
tamate and 5’-ribonucleotides) stimuli utilize GPCRs and second messenger
signaling pathways (Kinnamon 2012). Two classes of taste GPCRs have been iden-
tified: the first group type 1 taste receptors (T1Rs) for sweet and umami (L-glutamate
and 5’-ribonucleotides) stimuli and the second group T2Rs for bitter stimuli
(Bachmanov and Beauchamp 2007). Transient receptor potential cation channel
subfamily M member 5 (melastatin 5 or TRPMS) depolarizes taste cells. TRPMS5
leads to the release of ATP, which activates ionotropic purinergic receptors on gus-
tatory afferent nerve fibers (Finger et al. 2005).

Cells expressing alpha-gustducin and phospholipase C isoform beta2 (PLC-
beta 2) localize at multiple cardiorespiratory and CO./H* chemosensory sites.
Especially in the medullary raphe, alpha-gustducin and PLC-beta2 are co-localized
with TrpH-immunoreactive serotonergic neurons. It has been shown that different
bitter-responsive T2Rs associate with G-protein alpha-gustducin, PLC-beta2, and
TRPMS in the brain stem of rats (Dehkordi et al. 2012). Mammalian taste cells
normally contain serotonin, and taste cells can take up 5-hydroxytryptophan and
convert it to serotonin. Subsequently serotonin functions as a neuromodulator or
neurotransmitter in vertebrate taste buds. Diffuse, cytoplasmic syntaxin-1-like
immunoreactivity is present in type III cells, and taste cell synapses use syntaxin-1
for neurotransmitter release (Kim and Roper 1995; Yang et al. 2000b; Yang et al.
2007). Serotonin-like immunoreactivity cells resemble syntaxin-1-like immunoreac-
tivity cells in both shape and structure and have been shown to co-localize with a
subset of syntaxin-1-like immunoreactive type III cells. Synapses are only observed
from type III taste cells onto ionotropic ligand-gated ion channel receptors (P2X2)-
like immunoreactivity nerve processes (Yang et al. 2012).

Synapses between gustatory receptor cells and primary sensory afferent fibers
transmit the output signal from taste buds to the central nervous system. Actually
several transmitter candidates have been proposed for these synapses, including
serotonin, glutamate, acetylcholine, ATP, and peptides. Serotonin is one of the
important neurotransmitters released by taste cells in response to gustatory stimula-
tion (Huang et al. 2005). However, only serotonin and ATP are secreted by separate
classes of taste cells. While presynaptic (type III) taste cells release serotonin upon
stimulation (Huang et al. 2007), receptor (type II) taste bud cells secrete ATP during
taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to
release serotonin and norepinephrine. Serotonin released from presynaptic (type III)
cells provides negative paracrine feedback onto receptor cells by activating
5-HT(1A) receptors, inhibiting taste-evoked Ca’* mobilization in receptor cells, and
reducing ATP secretion (Huang et al. 2009). Majority of or all presynaptic (type III)
taste cells secrete serotonin upon stimulation, but approximately one-third of them
co-release norepinephrine with serotonin. In other words there are three to five
times as many serotonergic presynaptic cells as there are norepinephrine/serotonin-
secreting cells (Huang et al. 2008).
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1.10 Conclusion

The Kyn pathway is the principle route of L-Trp metabolism and involves several
mechanisms which trigger various metabolic pathways and transcription factors.
Kyn produces neurotoxic and neuroprotective metabolic precursors before complete
oxidation to NAD*. Particularly QA-induced excitation and neurotoxicity are medi-
ated by the overactivation of NMDA receptors, whereas KA is an antagonist of
NMDA and alpha7nACh receptors and, thus, a potential neuroprotectant. While
Kyn to Trp ratio reflects IDO activity, the Kyn to KA ratio indicates the neurotoxic
challenge. Through the catabolic cascade of Trp metabolism, monoaminergic
neurotransmission involves functional interactions between serotonin, norepineph-
rine, and dopamine systems. Serotonin not only affects neuronal excitability through
activating postsynaptic receptors but also affects presynaptic excitatory or inhibitory
neurotransmission in the central nervous system. However human SERT reuptakes
biogenic amine neurotransmitters following release in the nervous systems and
terminates the action of serotonin. OCT contributes to serotonin clearance if the
expression of the SERT is low or absent. OCTs and the plasma membrane mono-
amine transporters are capable of clearing biogenic amines from extracellular fluid
and may serve to buffer the effects of SSRIs. Desensitization and re-sensitization
depend on the availability of functional receptors at the cell surface and on their
mode of activation. Reviewing the dynamic aspects of Trp signaling intermediates
helps to explain the mutual interaction of Kyn, serotonin, and melatonin pathways
and opens up new vistas regarding the mechanism of diseases.
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Chapter 2
Tryptophan and Cell Death

Atilla Engin and Ayse Basak Engin

Abstract Cell death attributed to the tryptophan (Trp) metabolites is dependent
on the exposure time and intracellular concentrations of cytotoxic Trp derivatives
such as 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HAA),
5-hydroxyanthranilic acid (SHAA), and quinolinic acid (QA). However, 3HAA,
3HK, and QA at low concentrations may also serve as a precursor for nicotinamide
adenine dinucleotide [NAD*] which has vital importance to maintain cell viability.
Inhibition of indoleamine 2,3-dioxygenase (IDO) activity results in a dose-
dependent decrease in intracellular [NAD"] levels. Mitochondrial permeability tran-
sition occurs in several forms of necrotic cell death. Disturbances in the normal
function of the mitochondria are associated with the alterations in the balance of Trp
metabolism. While kynurenic acid (KA) has proven to be neuroprotective with the
potential endogenous antioxidant properties, QA is a specific agonist at the
N-methyl-D-aspartate (NMDA) receptors and a potent neurotoxin with the marked
free radical-producing property. QA-induced cytotoxic effects are mediated by
overactivation of NMDA-like receptors and overexpression of inducible nitric oxide
synthase (iNOS). L-Kynurenine-derived neurotoxin-induced apoptosis occurs
through reactive oxygen species (ROS)-mediated pathways and is blocked by
antioxidants. Unlike the kynurenine pathway, the methoxyindole metabolites of Trp
metabolism protect cells against oxidative stress-induced apoptosis. Furthermore,
deprivation of Trp triggers autophagy in a mammalian target of rapamycin (mTOR)-
dependent manner. mTOR inhibition can suppress the activation of cyclin-dependent
kinases and then inhibits the cell cycle progress, suppresses cell proliferation, and
finally results in cell apoptosis.
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Keywords Tryptophan ¢ Kynurenine pathway e 3-Hydroxykynurenine e
3-Hydroxyanthranilic acid ¢ Quinolinic acid * N-Methyl-D-aspartate receptors
Inducible nitric oxide synthase * Autophagy * Necroptosis ® Apoptosis

2.1 Cell Death

Cell death has been subdivided into the following categories: apoptosis (type 1),
autophagic cell death (type II), and necrosis (type III) (Lockshin and Zakeri 2004).
Cell death patterns and their underlying molecular mechanisms may be different in
various diseases and even in different progression stages of the same disease (Wang
2012). Death-associated protein kinases (DAPKs) regulate many signaling events of
the cell death pathways, including apoptosis, autophagy, and membrane blebbing
(Bovellan et al. 2010). Actually, death-associated protein kinase 1 (DAPK1) consti-
tutes a critical integration point in both endoplasmic reticulum stress signaling and
cell death pathway that transmit these signals into two different directions, caspase
activation and autophagy (Gozuacik et al. 2008). Although functional studies
indicated that DAPK may direct autophagy specifically toward autophagic cell
death (Bialik and Kimchi 2010), DAPKI1 is an interferon-gamma (IFN-gamma)-
induced enzyme that controls cell cycle, apoptosis, and autophagy (Gade et al.
2012). Both tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma significantly
induce DAPKI activities. Subsequently, DAPK1 can mediate the pro-apoptotic
activity of TNF-alpha and IFN-gamma via the nuclear factor kappaB (NF-kappaB)
signaling pathways (Yoo et al. 2012).

Apoptotic cell death begins with autophagy and autophagy progresses with
apoptosis. Actually, caspases are central effectors of apoptosis. Apoptotic cell death
is generally classified into two distinct pathways as extrinsic apoptotic pathway and
intrinsic apoptotic pathway. By a majority of released molecules, caspase-dependent
apoptosis is initiated, but some can activate cell death in a caspase-independent way
(Lockshin and Zakeri 2004; Jin and El-Deiry 2005). The Nomenclature Committee
on Cell Death (NCCD) proposed unified criteria for the definition of cell death and
of its different morphologies. Suppressive effect of broad-spectrum caspase inhibi-
tors suggested that cell death is frequently considered to be caspase dependent
(Kroemer et al. 2009). Caspase inhibition simply induces a shift from an apoptotic
to mixed cell death morphology or even to full-blown features of necrosis or autoph-
agic cell death (Golstein and Kroemer 2005). Indeed two distinct pathways lead to
nuclear apoptosis. One of these involves caspases, caspase-activated DNAse (CAD),
and inhibitor of CAD (ICAD) and results in oligonucleosomal DNA fragmentation
and advanced chromatin condensation. The second, caspase-independent pathway
involves apoptosis-inducing factor (AIF) and leads to large-scale DNA fragmenta-
tion and peripheral chromatin condensation. Consequently, nuclear apoptosis is
only prevented when both CAD and AIF are inhibited (Susin et al. 2000). If apoptotic
cell death is induced by extracellular stress signals, it is defined as extrinsic apoptosis.
Extracellular stress signals are sensed and propagated by specific transmembrane
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receptors. Extrinsic apoptosis can be initiated by the binding of lethal ligands to
various death receptors (Wajant 2002), whereas in both caspase-dependent and cas-
pase-independent “intrinsic apoptosis,”’ the apoptotic demise of cells can be triggered
by intracellular stress conditions, including DNA damage, oxidative stress, cyto-
solic calcium overload, excitotoxicity, and endoplasmic reticulum stress (Galluzzi
et al. 2012).

“Autophagic cell death” occurs in the absence of chromatin condensation but
accompanied by massive autophagic vacuolization of the cytoplasm. Thereby,
autophagy is a lysosome-dependent degradation pathway and activated by stressful
situations such as starvation and oxidative stress (Vessoni et al. 2013). However,
“necrotic cell death” or “necrosis” is morphologically characterized by a gain in cell
volume, swelling of organelles, plasma membrane rupture, and subsequent loss of
intracellular contents (Galluzzi et al. 2012). Previously, necrosis has been consid-
ered as an accidental uncontrolled form of cell death, but evidences accumulated
over time showed that necrotic cell death is a well-controlled and programmed
process as caspase-dependent apoptosis and a consequence of extensive cross talk
between several biochemical and molecular events at different cellular levels
(Festjens et al. 2006). The receptor-interacting protein kinase 3 (RIP-3 kinase) and
poly(ADP-ribose) polymerase-1 (PARP-1) are emerged as critical regulators of pro-
grammed necrosis/necroptosis (Moriwaki and Chan 2013; Jog and Caricchio 2013).
The initiation of programmed necrosis, “necroptosis,” by the death receptors
requires the receptor-interacting protein kinase 1 (RIP-1 kinase) and RIP-3 kinase
activity (Fig. 2.1) (Vandenabeele et al. 2010). Thus necroptosis displays signs of
controlled processes such as mitochondrial dysfunction, enhanced generation of
reactive oxygen species (ROS), adenosine triphosphate (ATP) depletion, proteolysis
by calpains and cathepsins, and early plasma membrane rupture (Golstein and
Kroemer 2007).

In this chapter, underlying mechanisms of cell death patterns attributed to the
pathological accumulation of tryptophan (Trp) by-products have been discussed.

2.2 Toxic Versus Protective Effect of Tryptophan Metabolites

The essential amino acid Trp is primarily metabolized through the kynurenine
(Kyn) pathway, some components of whichmay be neurotoxic. 3-Hydroxykynurenine
(3HK), 3-hydroxyanthranilic acid (3HAA), and 5-hydroxyanthranilic acid (SHAA)
induce cell death which increases with the exposure time and intracellular concen-
tration compounds (Smith et al. 2009). Actually, the precursor of 3HAA, 3HK, is a
potential endogenous neurotoxin. Cortical and striatal neurons are much more vul-
nerable to 3HK toxicity than cerebellar neurons. 3HK-induced neuronal cell death
is dependent on the rate of cellular 3HK uptake and on the amount of intracellular
ROS following exposure to 3HK (Fig. 2.1) (Okuda et al. 1998). Thus 3HK-induced
neurotoxicity is mediated by the generation of hydrogen peroxide and hydroxyl
radicals. In addition to nonenzymatic auto-oxidation of 3HK in extracellular
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Fig. 2.1 Kynurenine pathway is the major route for tryptophan catabolism which generates QA,
an agonist at NMDA receptor and a potent neurotoxin, as well as kynurenic acid which is an
antagonist at glutamate and nicotinic receptors and, thus, a potential neuroprotectant. Other redox-
active compounds, 3-hydroxykynurenine and 3-hydroxyanthranilic acid, are able to generate free
radicals and can also damage neurons under many physiological and pathological conditions. TDO
tryptophan-2,3-dioxygenase, /DO indoleamine 2,3-dioxygenase, Kyn kynurenine, IL-Ilbeta
interleukin-1beta, /FN-y interferon-gamma, 3HK 3-hydroxykynurenine, QA quinolinic acid, 3HAA
3-hydroxyanthranilic acid, KA kynurenic acid, NMDAR N-methyl-D-aspartate receptor, a7-nAChR
alpha-7 nicotinic acetylcholine receptor, iNOSmRNA inducible nitric oxide synthase mRNA,
TNFa tumor necrosis factor-alpha, HO-1 heme oxygenase-1, ROS reactive oxygen species, RNS
reactive nitrogen species, Keap-1 kelch-like ECH-associated protein-1, Nrf2 nuclear factor
erythroid-2-related factor 2, Maf transcription factor Maf, ARE antioxidant response element,
NAD* nicotinamide adenine dinucleotide, H,0, hydrogen peroxide, ‘OH hydroxyl radical, NO
nitric oxide, TLR Toll-like receptor, RIP-1 kinase receptor-interacting protein kinase-1, RIP-3
kinase receptor-interacting protein kinase-3, GSH glutathione, SOD superoxide dismutase

compartments, endogenous xanthine oxidase activity is involved in peroxide
production. Hence the peroxide accumulation and cell death caused by 3HK are
blocked by allopurinol or attenuated by catalase (Okuda et al. 1996; Wei et al.
2000). Furthermore, 3HAA and anthranilic acid interact at the level of
3-hydroxyanthranilic acid oxidase. The ratio of 3HAA to anthranilic acid levels
represents a novel marker for the assessment of inflammation and its progression.
Anthranilic acid concentrations normally equal or exceed 3HAA levels by up to
fivefold. Decrease in the ratio of 3HAA to anthranilic acid levels represents a com-
pensatory mechanism to reduce cell toxicity (Darlington et al. 2010). Anthranilic
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acid inhibits 3-hydroxyanthranilic acid oxidase. Eventual conversion of 3HAA to
quinolinic acid (QA) and picolinic acid is reduced (Guillemin et al. 2007).

Trp degradation through the Kyn pathway plays an important role in the
pathogenesis of inflammatory processes. Likewise, in cortical and striatal neurons,
microglial 3HAA and QA act as neurotoxins while kynurenic acid (KA) is a neuro-
protectant. KA is an astrocyte-derived noncompetitive antagonist of the o7 nicotinic
acetylcholine receptor (a7nAChR) and inhibits N-methyl-D-aspartate (NMDA)
receptor competitively (Fig. 2.1). Changes in endogenous KA levels, by modulating
o7nAChR function, control extracellular gamma-aminobutyric acid (GABA) levels
and bidirectionally influence cortical glutamate concentrations. Glutamate receptor
agonists, QA and 3HK, can contribute to or exacerbate neuronal damage by gener-
ating free radicals (Stone et al. 2003; Beggiato et al. 2013; Wu et al. 2010). Actually,
both glutamate receptor-mediated excitotoxicity and free radical formation have
been correlated with decreased levels of the neuroprotective Trp metabolite, KA
(Zwilling et al. 2011). Even in minor changes that exceed the physiological concen-
trations of 3HK and QA, they may cause neuronal death. QA causes necrosis,
whereas 3HK-exposed neurons primarily die by apoptosis (Chiarugi et al. 2001).

On the other hand, interleukin-1 (IL-1) is a critical cytokine for neurotoxicity.
Following exposure of astrocytes to interleukin-1beta (IL-1beta)/IFN-gamma,
inducible nitric oxide synthase (iNOS) and TNF-alpha are overexpressed. Neuronal
cell death occurs at least within 48 h following cytokine stimulation. In this case,
endogenous TNF-alpha has a crucial role in mediating neurotoxicity (Downen et al.
1999). These cytokines can stimulate astrocytes instead of microglia to express
iNOS in humans (Liu et al. 1996). Actually, IL-1-induced neurotoxicity cannot
affect the viability of pure cortical neurons. However, IL-1 treatment of co-cultures
of neurons with glia or purified astrocytes induces caspase activation leading to
neuronal death. Caspase-dependent neuronal death is also associated with the
release of free radicals. Furthermore, IL-1-induced neuronal cell death is prevented
by pretreatment with the IL-1 receptor antagonist (Thornton et al. 2006).
Surprisingly, 3HAA suppresses cytokine and chemokine productions as well as
neurotoxicity which are induced by IL-1/IFN- and Toll-like receptor (TLR) ligands.
These effects are partly mediated by the capability of 3HAA to induce heme
oxygenase-1 (HO-1) in human glial cells (Fig. 2.1) (Krause et al. 2011). Indeed it
was demonstrated that 3HAA protects human neurons against cytokine- or TLR
ligand-induced death. The neurotoxic effect of 3HAA can eventuate within the
inflammatory environment. In these conditions, microglial HO-1 activity is
suppressed by TLR ligands but is enhanced by the anti-inflammatory cytokine,
interleukin-10 (IL-10) (Krause et al. 2011). Actually, HO-1, iNOS, and indoleamine
2,3-dioxygenase (IDO) are simultaneously expressed in murine macrophages sub-
sequent to IFN-gamma stimulation. While nitric oxide (NO) overproduction by
iNOS decreases IDO expression, HO-1 expression is increased (Oh et al. 2004).
Inhibition of IDO expression by NO has occurred in the IFN-gamma-primed
macrophages but not in microglial cells. Thereby, nitric oxide synthase (NOS)
inhibitors increase the levels of IDO mRNA in MT2 macrophages; no changes are
detected in IDO mRNA levels of microglial cells (Alberati-Giani et al. 1997).
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Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription
factor that regulates expression of several antioxidant and phase II detoxification
enzyme genes such as HO-1, glutamate-cysteine ligase (GCL), and peroxiredoxin-1
(Prx1), via binding to the antioxidant response element (ARE) under conditions of
oxidative stress (Fig. 2.1). Activation of Nrf2 plays a crucial role in cellular defense
against oxidative stress (Huang et al. 2014; Kim et al. 2012).

Kelch-like ECH-associated protein (Keap)-1 is a kind of stress sensor protein
that plays mandatory roles not only as a sensor of oxidative and electrophilic stresses
but also as a regulator of Nrf2 degradation. Thereby, the rapid degradation of Nrf2
requires direct association with Keap-1 (Kobayashi et al. 2004). Actually, Keap-1
together with N1f2 composes a nuclear shuttling mechanism. As mentioned above,
Keap-1 and Nrf2 constitute a crucial cellular sensor for oxidative stress and together
mediate a key step in the signaling pathway that leads to transcriptional activation
by the Nrf2 (Itoh et al. 1999a). In the absence of stress stimuli, the cytoplasmic
protein Keap-1 binds Nrf2 and prevents its translocation to the nucleus (Itoh et al.
1999b). However, during inflammation or infection, 3HA A induces HO-1 expression
and stimulates nuclear translocation of Nrf2 in human endothelial cells. In this case
firstly, 3HAA induces Nrf2-dependent HO-1 expression. Later on, HO-1 inhibits
monocyte chemoattractant protein (MCP)-1 secretion, vascular cell adhesion mol-
ecule (VCAM)-1 expression, and NF-kappaB activation, which are all associated
with vascular injury (Pae et al. 2006).

Exogenous 3HAA dose-dependently suppresses iNOS expression and coinci-
dently enhances HO-1 expression. This suppressive effect of 3HAA on iNOS
expression is reversed by blocking HO-1 activity (Oh et al. 2004). The ability of
3HAA to induce HO-1 is most certainly related to its free radical-generating proper-
ties because ROS provide necessary signals for Nrf2 activation (Dykens et al. 1987;
Opitz et al. 2007).

One of the well-known toxic metabolites of Kyn pathway, 3HK may cause cell
death by inducing oxidative damage. However, different 3HK levels are detected in
patients suffering from several diseases. In some of these patients, concentration-
dependent antioxidant or scavenging features of 3HK have been attributed to the
dual actions of this molecule (Colin-Gonzalez et al. 2013).

Another endogenous toxic metabolite of the Kyn pathway is QA. Pathological
accumulation of this by-product involves several mechanisms which trigger various
metabolic pathways and transcription factors. The primary mechanism exerted by
the QA in the central nervous system has been largely related to the overactivation
of NMDA receptors and increased cytosolic Ca** concentrations. This initial phase
is followed by the mitochondrial dysfunction, cytochrome c release, ATP exhaus-
tion, free radical formation, and oxidative damage (Pérez-De La Cruz et al. 2012).
Virtually, QA may also serve as a precursor for nicotinamide adenine dinucleotide
[NAD"]. Continuous biosynthesis of NAD* has vital importance to maintain cell
viability (Ying 2006). In this respect, the Kyn pathway constitutes the major meta-
bolic pathway for the synthesis NAD* which is an important enzymatic cofactor for
the DNA repair protein, PARP-1. Thereby, increasing IDO activity and Kyn metab-
olism in astroglial cells during inflammation maintain NAD* levels through de novo
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synthesis from Trp (Grant and Kapoor 2003). It is proposed that extracellular Kyn
pathway metabolites at pathophysiological concentrations may contribute to astro-
glial dysfunction and cell death. Although 3HAA, 3HK, and QA at low concentra-
tions significantly increase intracellular NAD* levels, at concentrations exceeding
100 nM, they cause a dose-dependent decrease in intracellular NAD* levels.
Likewise to NAD* depletion, higher concentrations of anthranilic acid may also
cause cell death (Braidy et al. 2009a). Competitive inhibition of IDO activity with
1-methyl-L-tryptophan results in a dose-dependent decrease in intracellular NAD*
levels and sirtuin deacetylase-1 (silent mating type information regulation 2 homo-
log-1, SIRT1) activity. Consequently, a decrease in intracellular NAD* due to inhi-
bition of IDO activity is correlated with reduced cell viability (Braidy et al. 2011).
In this context, SIRT, a family of NAD*-dependent deacetylases, is implicated in
energy metabolism and life span (Sundaresan et al. 2008). PARP-1 is a major
NAD*-metabolizing enzyme. Overstimulation of NMDA receptors induces a
decrease in cytoplasmic NAD* and an increase in ROS in neurons through PARP-1
activation (Yu et al. 2002). However, PARP-1-mediated NAD* depletion simultane-
ously increases mitochondrial SIRT3. SIRT3 acts as a prosurvival factor and pro-
tects neurons which are under the excitotoxic stress (Kim et al. 2011).

2.3 Redox-Active Molecules, Mitochondria,
and Tryptophan Metabolites

Programmed necrosis is a recently recognized entity which is an important mecha-
nism of neuronal damage following hypoxia-ischemia. RIP-1 kinase activity is
essential in order to progress the well-described forms of apoptosis-necrosis cell
death “continuum” (Northington et al. 2007). RIP-1 kinase-dependent apoptosis-
necrosis cell death is associated with the increased ROS production, decreased ATP
production, and decreased mitochondrial membrane potential (Irrinki et al. 2011).
Actually, RIP-1 is also one of the key components of the TNF-alpha-tumor necrosis
factor receptor 1 (TNFR1) signaling complex. RIP-1 kinase activity mediates the
formation of the necrosome (RIP-1/RIP-3 complex) which induces ROS production
via effects on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(NOX)-1 (Kim et al. 2007). On the other hand, iNOS expression and NO accumula-
tion increase in hypoxic brain. Physiological amounts of superoxide which is
produced by intact mitochondria react with NO to generate peroxynitrite.
Peroxynitrite-mediated elevation of cytoplasmic calcium levels results in the accu-
mulation of intracellular calcium into the mitochondria. Thus peroxynitrite-induced
elevation of cytosolic calcium collapses the mitochondrial membrane potential and
may cause peroxynitrite-induced cell death (Whiteman et al. 2004). Actually, nitro-
sative and oxidative stress cause the formation of protein nitrosamines. Meanwhile
Trp residues of proteins may most likely be exposed to nitrosative and oxidative
stress. Xanthine oxidase decomposes nitrosated Trp through superoxide and uric
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acid pathways. Uric acid-induced decomposition of N-nitroso-tryptophan generates
NO (Viles et al. 2013). Although NO and peroxynitrite inhibit enzymes that depend
on oxidizable amino acids for activity, in the presence of more readily oxidized
substrates, xanthine oxidase could not be inhibited by either NO or peroxynitrite
(Houston et al. 1998).

Disturbances in the normal function of the mitochondria are associated with the
alterations in the balance of Trp metabolism (Szalardy et al. 2012). The enhanced
production of free radicals worsens the mitochondrial functions by causing oxida-
tive damage to macromolecules and by opening the mitochondrial permeability
transition pores thereby inducing apoptosis. In this process, Kyn functions as a del-
eterious substance which can be metabolized in two separate ways: one branch pro-
duces KA and the other 3HK and QA, the precursors of NAD* (Sas et al. 2007). An
enzyme in the Kyn pathway, kynurenine 3-monooxygenase, is a flavin adenine
dinucleotide (FAD)-dependent monooxygenase and is located in the outer mito-
chondrial membrane where it converts L-kynurenine to 3-HK (Amaral et al. 2013).
Mitochondrial integrity is constantly threatened by the production of ROS within
the membrane. 3HK has dual effect in redox balance depending on the metabolic
demands of body cells, prooxidants or antioxidants. During the mitochondrial
dysfunction, 3HK causes intracellular accumulation of peroxide and subsequent
cell death (Okuda et al. 1996; Tan et al. 2012), whereas 5-hydroxyindoles, a class of
Trp metabolites, protect cells by attenuating oxidative stress and consequently
keeping them from mitochondrial dysfunction (Bae et al. 2010). Actually,
5-hydroxyindoles consist of three different molecules: 5-hydroxytryptamine
(serotonin), 5-hydroxytryptophan (SHTP), and 5-hydroxyindoleacetic acid
(SHIAA). Tryptophan hydroxylase (TPH) 2, the rate-limiting enzyme in the sero-
tonin biosynthesis, is a phenotypic marker for serotonin neurons and is known to be
extremely labile to oxidation. Oxidation of TPH2 inhibits its activity and leads to
the formation of high molecular weight aggregates in a dithiothreitol-reversible
manner. Oxidation shifts TPH2 from the soluble compartment into membrane
fractions and large inclusion bodies (Kuhn et al. 2011).

Otherwise, L-Kyn can also induce cell death via generating ROS in natural killer
cells. In this instance, treatment with the antioxidant N-acetylcysteine (NAC)
inhibits cytochrome c release and activation of caspase-3 and discontinues apoptotic
process (Song et al. 2011). Furthermore, IDO-induced T-cell death is an important
mechanism in IDO-mediated T-cell suppression. In this respect, 3HAA-mediated
depletion of intracellular glutathione (GSH) is the major mechanism in cell death.
When cellular GSH levels are maintained by addition of NAC, 3HAA-mediated
T-cell death is completely inhibited. This means that depletion of GSH from
activated T cells takes place without increasing ROS (Lee et al. 2010). IFN-gamma
stimulates the IDO expression through the JAK (janus kinase)/STAT1 (signal trans-
ducer and activator of transcription) signaling pathway in a dose-dependent manner
especially in human lens epithelial cells. In these cells, 3HK concentration is higher
than that of the other Trp metabolites and can cause higher rate of peroxide forma-
tion and apoptosis. Trp depletion as a cause of apoptosis is ruled out by blocking of
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apoptosis through the inhibition of kynurenine 3-hydroxylase (Mailankot and
Nagaraj 2010). Both 3HK and 3HAA generate superoxide and hydrogen peroxide
in a copper-dependent manner. Thus 3HK and 3HA A may be cofactors in the oxida-
tive damage of proteins through interactions with redox-active copper (Goldstein
et al. 2000). While KA has proven to be neuroprotective, QA is a specific agonist at
the NMDA receptors and a potent neurotoxin with the marked free radical-producing
property (Sas et al. 2007). QA-induced cytotoxic effects on neurons and astrocytes
are mediated by an overactivation of NMDA-like receptors. In these cells, QA
enhances mRNA and protein expression of iNOS and may cause NO-mediated free
radical damage (Braidy et al. 2009b). Neurotoxicity of 3HK is mediated by produc-
tion of hydrogen peroxide and its subsequent decomposition to hydroxyl radical and
these can cause cellular damage and induce apoptosis (Okuda et al. 1996).

2.4 Tryptophan and Programmed Cell Death

IDO has immunoregulatory function against antigenic stimulation. Treatments of
human natural killer (NK) cell lines with L-Kyn result in dose-dependent growth
inhibition and apoptosis. L-Kyn-induced apoptosis in NK cells occurs through an
ROS-mediated pathway and is blocked by antioxidants (Song et al. 2011). IDO
activation in cytokine-stimulated mesenchymal stromal cells mediates a marked
sensitivity of myeloma cells to Trp depletion in the microenvironment and subse-
quently inhibits myeloma cell growth (Pfeifer et al. 2012). However, IDO-high
expression within the tumor microenvironment creates an immunosuppressive
network and avoids immune attack and defeats the invasion of T cells via produc-
tion of pro-apoptotic Trp catabolites (Brandacher et al. 2006). The inhibition of IDO
may efficiently reverse enhancement of T-cell apoptosis and amplification of
Treg-mediated immunosuppression (Sun et al. 2011).

ROS may cause the initiation of DNA single-strand breakage, with subsequent
activation of the nuclear enzyme poly(ADP-ribose) synthetase (PARS). Increase in
PARS activity leads to a necrotic-type cell death through the energy depletion of the
cells. Melatonin inhibits the activation of PARS and prevents the organ injury
(Cuzzocrea and Reiter 2001). Moreover, antioxidant and anti-inflammatory effect
of melatonin is correlated with the inhibition of peroxynitrite production in addition
to PARS activation (Cuzzocrea et al. 1998). The enzymatic cofactor for the DNA
repair protein, PARP, is activated at an intermediate stage of apoptosis and is then
inactivated at a late stage by apoptotic proteases (Decker and Muller 2002).
Inflammation increases the concentration of oxidative metabolites and causes NAD*
depletion through increased PARP activity. However, the activity of IDO is also
markedly increases in astrocytes during inflammation. Induction of IDO and subse-
quent NAD" synthesis may contribute to the maintenance of intracellular NAD*
levels and cell viability under conditions of increased oxidative stress (Grant et al.
2000). Briefly, in the first step of the Kyn pathway, IDO catalyzes the oxidation of
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Trp to N-formylkynurenine which eventually forms NAD* through a series of reac-
tions (King and Thomas 2007).

Unlike the Kyn pathway, the methoxyindole branch of Trp metabolism does not
affect the indole ring of Trp. Although melatonin has been extensively studied,
other methoxyindoles, such as N-methylserotonin, 5-methoxyindole acetic acid,
and 5-methoxytryptamine, are less known. Nevertheless, methoxyindole and Kyn
branches of Trp pathway have different regulation mechanisms (Zhu et al. 2013).
Melatonin protects cells against oxidative stress-induced apoptosis due to its ability
to scavenge mitochondrial ROS. Thus mitochondrial protective effects of melatonin
are provided by two ways: first due to its primary antioxidative action and second its
direct targeting of the mitochondrial permeability transition (Jou et al. 2010). Via its
ability to reduce mitochondrial ROS generation, the subsequent mitochondrial
calcium overload, mitochondrial membrane potential depolarization, opening of the
mitochondrial permeability transition pore, mitochondrial permeability transition-
dependent cytochrome c release, downstream activation of caspase 3, and apoptotic
fragmentation of nuclear DNA are inhibited by melatonin (Jou et al. 2004). Actually,
mitochondrial permeability transition occurs in several forms of necrotic cell death,
including oxidative stress, pH-dependent ischemia/reperfusion injury, and Ca** ion-
ophore toxicity. Initially, few mitochondria undergo the mitochondrial permeability
transition which does not occur uniformly during apoptosis (Lemasters et al. 1998).
The indole molecule significantly reduces mitochondrial ROS formation. Thus mel-
atonin displays a protective effect against oxidative stress by inhibiting the mito-
chondrial depolarization and opening of the mitochondrial permeability transition
pores. This is associated with the high amount of environmental GSH content and
mitochondrial pyridine nucleotides (Hibaoui et al. 2009). Depressed nocturnal mel-
atonin concentrations or nocturnal excretion of the main melatonin metabolite,
6-sulfatoxymelatonin, promotes apoptosis in most tumor cells, in contrast to the
obvious inhibition of apoptotic processes in normal cells (Sdnchez-Hidalgo et al.
2012). Furthermore, melatonin is correlated with a decrease in the oxidative
phosphorylation at liver mitochondria. This effect of melatonin is associated with a
gradual decrease in the respiratory control index and significant alterations in the
membrane potential. During the mitochondrial calcium overload, melatonin can
also induce substantial release of cytochrome c and apoptosis-inducing factor
(Martinis et al. 2012).

Actually, anticancer effects of physiological blood concentrations of melatonin
are exerted via inhibition of cell proliferation and a stimulation of differentiation
and apoptosis. In this regard, melatonin receptor-mediated suppression of cyclic
adenosine monophosphate (cAMP) levels causes the diminishing of tumor fatty
acids transport by decreasing plasma membrane-associated fatty acid transport
proteins. The inhibition of these signal transductions leads to melatonin-induced
suppression of tumor linoleic acid uptake. Consequently, reduced amount of intra-
cellular linoleic acid turns to the inhibition of mitogenic signaling molecule
13-hydroxyoctadecadienoic acid (13-HODE) production (Blask et al. 1999, 2005).
13-HODE amplifies the activity of the epidermal growth factor receptor/mitogen-
activated protein kinase (EGF/MAPK) pathway leading to cell proliferation.
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Melatonin effectively blocks the production of 13-HODE. Therefore, rotating night
shift works enhance the risk of cancer progression by increasing light exposure
during night and decreasing nocturnal melatonin signal (Blask et al. 2002).
Furthermore, dietary melatonin supplementation supports the endogenous melatonin
signal to optimize the host/cancer balance in favor of host survival (Blask et al. 2005).

Glial cells and neurons are in constant reciprocal signaling both under physio-
logical and neuropathological conditions. Microglia perceives the microenviron-
ment like macrophages. Thus neuronal stress or injury may cause a deleterious type
of microglial activation which is associated with neurotoxicity and neuronal cell
death. Necrotic neurons induce subsequent microglial reactivation which results in
the upregulation of co-stimulatory molecules, beta2 integrin CD11b, pro-inflammatory
cytokines, iNOS, IDO, and cyclooxygenase-2 (COX-2) (Pais et al. 2008). Although
microglial activation is often associated with neuronal death during inflammation, it
also displays a neuroprotective role by saving neurons from QA-mediated toxicity.
In this case, fibroblast growth factor-2 (FGF-2) has a fundamental role in the protec-
tion against QA toxicity. After releasing from neurons, FGF-2 activates c-Jun
N-terminal kinase 1 and 2 pathway which contributes to neuronal survival
(Figueiredo et al. 2008).

On the other hand, synaptic glutamate receptors are located on the membranes of
neuronal cells. Astrocytes are responsible for most of the glutamate uptake in
synaptic as well as nonsynaptic areas and, consequently, are the major regulators of
glutamate homeostasis. Microglia in turn may secrete cytokines, which can impair
glutamate uptake and reduce the expression of glutamate transporters. Finally,
oligodendrocytes, the myelinating cells of the central nervous system, are very sen-
sitive to excessive glutamate signaling, which can lead to the apoptosis or necrosis
of these cells (Matute et al. 2006). The Kyn pathway of Trp metabolism includes an
agonist, QA, and an antagonist, KA, at glutamate receptors. Glutamate receptors are
also sensitive to NMDA. Necrotic neurons can induce pro-inflammatory markers of
microglial activation. Overactivated microglia enhances NMDA-receptor-mediated
neurotoxicity. However, NMDA -receptor-mediated cell death most likely depends
on increased production of glutamate (Pais et al. 2008).

During cerebral hypoxia, as a consequence of mitochondrial dysfunction, free
radical generation and cell death occurs. Simultaneous production of QA and KA is
eventuated through the Kyn pathway activation. Actually, KA can modulate NMDA
receptors and displays neuroprotective effect with preference for the glycine site of
the NMDA receptors. However, NMDA receptor-dependent toxicity of mitochon-
drial inhibitors is independent of the glycine site of action of KA (Fatokun et al.
2008). Indeed KA reduces the increase in striatal superoxide anion and peroxyni-
trite production and lipid peroxidation in the forebrain and cerebellum in a
concentration-dependent manner. These effects of KA are attributed to the potential
endogenous antioxidant properties in addition to the antagonist actions on alpha-
7nACh and NMDA receptors (Lugo-Huitrdn et al. 2011). It is usually assumed that
KA antagonizes the glycine site of the NMDA receptors and/or the neuronal cholin-
ergic alpha-7nACh receptors. However, it is not obvious whether the KA interacts
with these targets (Moroni et al. 2012).
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Signaling proteins, MAPKs, regulate the cell proliferation and differentiation.
Three members of MAPK, namely, the extracellular signal-regulated protein kinases
(ERKSs), c-Jun N-terminal kinases, and p38 MAPK, are activated in vulnerable neu-
rons and cause neuronal injury (Harper and Wilkie 2003; Zhu et al. 2002). ERK1/2
activation also takes place in the neurons of the neonatal rat brain after hypoxia-
ischemia. In this case, phosphorylation of ERK1/2-positive neurons indicates DNA
damage (Wang et al. 2003). The ERK-MAPK pathway may contribute to neuronal
injury through the upregulation of matrix metalloproteinase-9 (MMP-9). Decreasing
trauma-induced MMP-9 levels significantly attenuate tissue damage (Mori et al.
2002). Moreover, activated microglia exhibits a transient expression in iNOS,
COX-2, and several pro-inflammatory cytokines, such as IL-1beta, interleukin-6
(IL-6), and TNF-alpha. Microglial ERK1/2 and p38 MAPK activation in the
substantia nigra may involve dopaminergic neuronal cell death. However, by reduc-
ing iNOS and COX-2 mRNA expression, inhibition of ERK1/2 and p38 MAPK
rescues neurons (Choi et al. 2003).

Thus, during the 3HK-induced apoptotic neuronal cell death, ERK phosphoryla-
tion may occur. Cell death is preceded by mitochondrial dysfunction and cytochrome
c release from mitochondria to the cytosol. Mitochondrial dysfunction and subsequent
caspase activation are dramatically provoked by inhibition of MAPK/ERK1/2,
resulting in enhanced neuronal cell death (Lee et al. 2004). Apoptosis can be
initiated via an intrinsic pathway through the mitochondria-mediated death signaling
cascade. Damaged mitochondria release more ROS. A functional link is defined
between ROS and the caspase cascade involving caspase 2 and cleavage of anti-
apoptotic protein BcIXL (Prasad et al. 2006). 3-HK toxicity depends on the intracellular
generation of ROS. Subsequent neuronal apoptosis takes place as a result of trans-
porter-related cellular uptake of 3HK. Inhibition of 3HK uptake prevents its toxicity
(Okuda et al. 1998). Similarly, L-Kyn-induced apoptosis in natural killer cells occurs
through an ROS-mediated pathway. Antioxidants block cytochrome c release and
activation of caspase-3 during L-Kyn-induced apoptosis (Song et al. 2011). Likewise,
5-hydroxyindole (5HI), a metabolite of Trp, markedly inhibits cytochrome c release
and caspase-3 activation but not caspase-9 activation by attenuating oxidative stress
(Bae et al. 2010).

Some recent conflicting findings show that the activation of ERK1/2 contributes
to cell death and inhibition of the ERK pathway blocks apoptosis. However, ERK
can participate in cell death through the suppression of the anti-apoptotic signaling
molecule protein kinase B (Akt) (Zhuang and Schnellmann 2006). Indeed Akt path-
way has a critical role in mediating signaling transductions for cell survival. Protein
serine/threonine phosphatase-1 is a major phosphatase that directly dephosphory-
lates Akt to modulate its activation. Dephosphorylated Akt significantly modulates
its functions in promoting cell survival (Xiao et al. 2010). IL-27 activates ERK and
p38 MAPKSs as well as Akt, STAT1, STAT3, and STAT6 in intestinal epithelial
cells. Actually, the activation of the antibacterial gene IDOI is dependent on
STAT1 signal transduction. IL-27-induced IDO1 activity leads to growth inhibi-
tion of intestinal bacteria by causing local Trp depletion (Diegelmann et al. 2012).
Oxidative stress-induced injuries in neurons cause a biphasic or permanent ERK1/2
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activation. Potential targets of ROS and reactive nitrogen species such as cell sur-
face receptors, G proteins, upstream kinases, protein phosphatases, and proteasome
components modulate the duration and magnitude of ERK1/2 activation and affect
the subcellular localization of activated ERK1/2 (Chu et al. 2004). Thus L-trypto-
phan-derived 3HAA following induction of IDO acts as an endogenous inducer of
monocyte/macrophage apoptosis. In these cells, catalase, superoxide dismutase,
and manganese ions markedly enhance apoptosis in the presence of 3HAA (Morita
et al. 1999). Monocytes and liver cells can directly convert L-Trp into QA following
immune stimulation (Saito et al. 1993). 3HAA and QA induce the selective apopto-
sis of murine thymocytes and of T helper (Th) 1 but not Th2 cells. T-cell apoptosis
is associated with the activation of caspase-8 and release of cytochrome ¢ from
mitochondria. However, for induction of T-cell apoptosis, tenfold lower concentra-
tions of 3HAA and QA are observed than those required for neurotoxicity or for
apoptosis of macrophages and dendritic cells (Fallarino et al. 2002).

2.5 Hypertryptophanemia

Hypertryptophanemia is a rare inherited metabolic disorder probably caused by a
blockage in the conversion of Trp to Kyn, resulting in the accumulation of Trp and
some of its metabolites in plasma and tissues of affected patients. The patients pres-
ent mild-to-moderate mental retardation with exaggerated affective responses, peri-
odic mood swings, and apparent hypersexual behavior. Usually creatine kinase
plays a critical role in energy metabolism of tissues with intermittently high and
fluctuating energy requirements. However, Trp inhibits creatine kinase in vitro and
in vivo. In this case, inhibitory effect of Trp on creatine kinase activity is achieved
by oxidation of essential thiol groups of the enzyme (Cornelio et al. 2004). In human
hypertryptophanemia, Trp accumulates in the brain and significantly decreases the
overall content of brain antioxidant defenses. Therefore, the Trp-induced increase in
thiobarbituric acid-reactive substances is prevented by GSH and by combination of
catalase plus superoxide dismutase (Feksa et al. 2006). Furthermore, oxidative
stress due to Trp loading can also be prevented by the pretreatment with antioxi-
dants. Thus the hypothesis of Trp-induced oxidative stress in brain cortex has been
elucidated by giving taurine or alpha-tocopherol plus ascorbic acid (Feksa et al.
2008). Nonspecific NOS inhibitors decrease the homocysteine-induced lipid per-
oxidation than does the selective neuronal NOS inhibitor. Homocysteine can induce
oxidative injury to nerve terminals, and this effect involves the NMDA receptor
stimulation in addition to NO overproduction and associated free radical formation
(Jara-Prado et al. 2003).

QA induces concentration-dependent increases in ROS formation in all synapto-
somes, but increased production of peroxidized lipids is only estimated in the
striatum and the hippocampus. These findings suggest that the excitotoxic action of
QA involves regional selectivity in the oxidative status of brain synaptosomes
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(Santamaria et al. 2001). The NMDA receptor antagonist completely abolishes the
increase of QA-induced lipid peroxidation (Santamaria and Rios 1993).

2.6 Hypoxic-Ischemic Brain Damage and Tryptophan

Perinatal hypoxia-ischemia (HI) of neonates may cause hypoxic-ischemic brain
damage (HIBD). Actually, neural cells are selectively more susceptible to hypoxic-
ischemic injury; in this respect, programmed cell death such as apoptosis or autoph-
agy is the usual form of neural degeneration in HIBD (Northington et al. 2011). The
principal mechanisms leading to neuronal death after hypoxia-ischemia/reperfusion
are initiated by energy depletion and accumulation of extracellular excitotoxic
amino acids and glutamate with the subsequent activation of glutamate receptors
(Volpe 2001). It was shown that disruption of membrane integrity in hypoxic condi-
tions by phospholipases plays a role in the excitotoxic amino acid release from
neuronal cells. Thus brain extracellular levels of glutamate, aspartate, gamma-
aminobutyric acid (GABA), and glycine increase rapidly following the onset of
ischemia (Phillis and O’Regan 2003). Excessive phospholipase activation, along
with a decreased ability to resynthesize membrane phospholipids, can lead to the
generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apopto-
sis/necrosis (Phillis and O’Regan 2004). Additionally, excess amounts of glutamate
become toxic to the brain (Yager et al. 2002). Recent findings indicate that cells
employ different signaling pathways to monitor the depletion or sufficiency of
essential amino acids such as Trp. This information is integrated into cells as either
growth or autophagy decisions (Metz et al. 2012). Autophagy is the process by
which cells consume their own proteins and organelles to maintain levels of essen-
tial building blocks and promote survival under nutrient-poor conditions (Levine
and Kroemer 2008; Mizushima et al. 2008). Hence autophagy can precede apopto-
sis and play a protective role in neuronal death (Carloni et al. 2008). However,
apoptosis plays a predominant role in the pathological progress of HIBD (Li et al.
2007). Both are mainly controlled by the master metabolic regulator, the mamma-
lian target of rapamycin (mTOR). mTOR consists of two different complexes,
mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORCI1 regu-
lates some essential cellular processes including translation, transcription, and
autophagy (Inoki et al. 2012). Adenosine monophosphate-activated protein kinase
(AMPK) maintains the balance between ATP production and consumption (Hardie
2007). Actually, AMPK as a sensor of cellular energy status is activated under the
conditions of intracellular ATP deprivation. mMTOR and AMPK have opposite effects
on the control of metabolic functions. Furthermore, AMPK effectively suppress
mTORCT1 signaling in mammalian cells. Successful downregulation of mTOR is
required for AMPK activation (Gwinn et al. 2008). mTOR activation may be neces-
sary to prevent apoptotic neuronal cell death during oxidative stress (Chong et al.
2012). In contrast, loss of mTOR activity during oxidative stress leads to apoptotic
neuronal death (Chen et al. 2010).
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Hypoxia or ischemia can also regulate hypoxia-inducible factor-1alpha (HIF-
lalpha) and its target gene vascular endothelial growth factor (VEGF) expression to
exert neuroprotection against to the HIBD. In this case, HIF-1alpha is a vital mole-
cule in maintaining cellular oxygen balance (Li et al. 2008a). mTOR signaling
pathway involves in the regulation of HIF-1alpha and VEGF and thus contributes to
the survival mechanisms of HIBD through regulating apoptosis. Indeed mTOR is
not only a positive regulator of HIF-1alpha-dependent gene transcription but also
participates in the mechanism of hypoxia-promoted angiogenesis during the hypoxia
(Humar et al. 2002). Actually, the protein expression of HIF-1alpha and its target
gene VEGEF is regulated through phosphatidylinositol 3-kinase/protein kinase B
(PI3-K/Akt) signaling pathway, which is primarily involved in the survival process
after HIBD (Li et al. 2008b). mTOR is a main downstream molecule of the PI3-K/
Akt signaling pathway. Subsequent to activation of PI3-K, phosphoinositide-
dependent kinase 1 (PDK1) is translocated to the membrane and activates p70 ribo-
somal S6 kinase (ribosomal serine/threonine kinase) (Kang et al. 2008; Nakamura
et al. 2006; Gunn and Hailes 2008). Thus downstream of the nutrient-sensitive
mTORCI1 complex has two well-characterized substrates: eukaryotic translation
initiation factor 4E binding protein 1 (4EBP1) and the p70 ribosomal protein S6
kinases 1 (p70S6K). Phosphorylation of 4EBP-1 by mMTORCI1 suppresses its ability
to bind and inhibit the translation initiation factor 4E (eIF4E) (Shaw 2009). As a
principle hypoxia sensor, mTOR can also integrate the signals and transmit them to
the nucleus and then activates 4EBP1 and p70S6K (Park et al. 2010). Eventually,
mTOR may acquire the capability of limiting the ischemic neuronal death and
promoting the neurological recovery by preventing neuronal apoptosis, inhibiting
autophagic cell death (Chong et al. 2013).

Deprivation of an essential amino acid triggers autophagy in an mTOR-dependent
manner. Induction of autophagy is reversed by restoring that essential amino acid.
Thus, the IDO-mediated Trp deprivation would trigger autophagy. Substitution of
Trp reverses autophagic response, based on their common ability to restore Trp suf-
ficiency signaling in the mTOR pathway. When amino acids are sufficient and the
Akt pathway is active, the mTORC1 becomes active and phosphorylates the trans-
lational regulators p70S6K and 4EBP1, stimulating their activity (Metz et al. 2012).
Trp depletion as caused by IDO overactivation leads to an accumulation of uncharged
Trp transfer RNA (tRNA) in cells. The integrated stress response kinase GCN2
(general control nonderepressible 2, a serine/threonine-protein kinase), a sensor of
uncharged tRNA, is activated by amino acid deprivation. Uncharged tRNA is
recognized as an important effector of the IDO pathway. This activates the GCN2,
which then phosphorylates and inhibits the translation initiation factor 2alpha
(eIF2alpha), blocking protein synthesis and arresting cell growth (Munn et al.
2005). Thus, in cells experiencing Trp limitation due to the activation of IDO, both
GCN2 and mTOR should be affected. The potent IDO inducer IFN-gamma depletes
Trp and represses mTOR activity (Metz et al. 2012). The cellular responses to IFN-
gamma are complex, and emerging evidence suggests that IFN-gamma may regulate
autophagic functions. Conversely, autophagy modulates innate and adaptive
immune functions in various contexts. IFN-gamma promotes Trp depletion,
activates the elF2a kinase, GCN2, and leads to an increase in the autophagic flux.
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Further, Trp supplementation and RNA interference directed against GCN2 inhibits
IFN-gamma-induced autophagy (Fougeray et al. 2012). mTOR can participate in
the regulation of neuronal death. mTOR inhibition by rapamycin can suppress the
activation of cyclin-dependent kinases and then inhibits the cell cycle progress, sup-
presses cell proliferation, and finally results in cell apoptosis (Gu et al. 2008).

2.7 Conclusion

The Kyn pathway intermediates of Trp metabolism, 3HK, 3HAA, and SHAA, may
induce cell death depending on exposure time and intracellular concentrations of
these compounds. A decrease in the ratio of 3HAA to anthranilic acid levels reduces
cell toxicity. While microglial glutamate receptor agonist QA acts as a neurotoxin,
KA which is an astrocyte-derived a7nAChR and NMDA receptor antagonist, is a
neuroprotectants. Actually, astrocytes are responsible for most glutamate uptake in
synaptic as well as nonsynaptic areas and, consequently, are the major regulators of
glutamate homeostasis. Even in minor changes that exceed the physiological con-
centrations of QA and 3HK, they can contribute to neuronal damage by generating
free radicals. On the other hand, 3HAA-generated free radicals induce Nrf2-ARE
which is the necessary transcription factor for the expression of HO-1. 3HAA sup-
presses IL-1/IFN- and TLR ligands associated with neurotoxicity through HO-1.

Competitive inhibition of IDO activity or overstimulation of NMDA receptors
decreases intracellular NAD* levels and reduces cell viability. Contrarily, IDO
induction and subsequent increase in NAD* synthesis may contribute to the mainte-
nance of intracellular NAD* levels and cell viability under conditions of increased
oxidative stress. 3HK has dual effect in redox balance; in case of mitochondrial
dysfunction, 3HK causes intracellular accumulation of ROS/reactive nitrogen spe-
cies and subsequent cell death. In human hypertryptophanemia, Trp accumulates in
the brain and significantly decreases the overall content of brain antioxidant
defenses. Trp deficiency due to the overactivation of IDO leads to the suppression
of mTOR activity which inhibits cell cycle progress. However, melatonin protects
cells against oxidative stress-induced apoptosis due to its ability to scavenge mito-
chondrial ROS. Finally, different signaling informations about the depletion or suf-
ficiency of cellular Trp create new decisions considering either cellular growth or
cell death.
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Chapter 3
Tryptophan and Nitric Oxide in Allergy

Kathrin Becker, Giorgio Ciprandi, Johanna Gostner, Heinz Kofler,
and Dietmar Fuchs

Abstract An immune deviation toward Th2-type immunity is involved in the
pathogenesis of allergic asthma and rhinitis. Allergic inflammation is characterized
by upregulation of Th2-type cytokines (the so-called Th2 polarization), whereas
there is a downregulation of Thl-type immune response and related cytokines like
interferon-y (IFN-y). The latter is a strong inducer of enzyme indoleamine
2,3-dioxygenase (IDO), which degrades the essential amino acid tryptophan as part
of an antiproliferative strategy of immunocompetent cells to halt the growth of
infected and malignant cells. Tryptophan metabolism may also play a relevant role
in the pathophysiology of allergic disorders.

In patients with pollen allergy, raised serum tryptophan concentrations were
observed compared to healthy blood donors. Moreover, the higher baseline trypto-
phan concentrations were associated with poor response to specific immunotherapy.
It turned out that the increase of tryptophan concentrations in patients with pollen
allergy only exists outside pollen season, but not in season. Interestingly, there was
only a minor alteration of the kynurenine to tryptophan ratio (Kyn/Trp, an index of
tryptophan breakdown), which is used as an estimate of IDO activity.

The reason for the higher tryptophan concentrations in patients with pollen
allergy outside season remains obscure. With this respect, specific interaction of
nitric oxide (NO.) with IDO could be important, because an enhanced formation of
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NO. has been reported in patients with asthma and allergic rhinitis: exhaled breath
NO. is increased in asthma versus healthy controls, and serum nitrite concentrations
were found to be higher in allergic patients out of pollen season than in season.
Importantly, NO. slows down the expression and activity of the heme enzyme
IDO. So, the higher tryptophan levels could be explained when IDO activity was
suppressed by NO.. As a consequence, inhibitors of inducible NO. synthase (iNOS)
should be reconsidered as candidates for antiallergic therapy out of season that may
decrease the production of NO. and thus abrogate the arrest of IDO.

Keywords Allergy * Atopy * Cross-regulation * Indoleamine 2,3-dioxygenase ®
Interferon-gamma ¢ Kynurenine to tryptophan ratio * Neopterin * Nitric oxide
Th2-type immunity * Tryptophan 2,3-dioxygenase

3.1 Tryptophan

L-Tryptophan is an essential amino acid that is required for protein biosynthesis and
also serves as precursor of several metabolites in humans. Absorbed tryptophan
circulates in its free form or bound to albumin in the peripheral blood stream. Only
in its free form, it can cross the blood-brain barrier. There are three different biosyn-
thetic pathways in which tryptophan is metabolized: (i) the formation of kynurenine
derivates, which represents the major route; (ii) the generation of serotonin, a neu-
rotransmitter and precursor of melatonin (Schroecksnadel et al. 2006; Chen and
Guillemin 2009); and (iii) the biosynthesis of proteins (Fig. 3.1).

To generate kynurenine, tryptophan is oxidized by a cleavage of the indole ring
moiety, which is achieved either by tryptophan 2,3-dioxygenase (TDO), indole-
amine 2,3-dioxygenase 1 (IDO-1), or IDO-2. TDO is primarily expressed in the
liver and is inducible by tryptophan or corticosteroids (Badawy 2013). IDO-1 is
induced by various inflammatory cytokines, with this respect the most prominent
one being interferon-y (IFN-y), and is expressed in numerous cells as macrophages,
microglia, neurons, and astrocytes, but also epithelial cells and fibroblasts (Guillemin
et al. 2007). The recently discovered IDO-2 possesses similar activities to IDO-1
but differs in its expression pattern, substrate specificity, and signaling pathways
(Chen and Guillemin 2009).

IDO-1 plays an essential role within the immune response and could even serve
as a biomarker for the inflammation status in human. It has been discovered that
IDO-1 inhibits immune cell and pathogen proliferation by the depletion of
tryptophan and/or by the production of bioactive catabolites (Samelson-Jones and
Yeh 2006). In addition, tryptophan breakdown products such as kynurenine,
3-hydroxyanthranilic acid, and quinolinic acid may negatively affect neurological
functions, while other metabolites such as kynurenic acid can be neuroprotective
(Heyes et al. 1992; Klein et al. 2013; Sas et al. 2007).

The second metabolic pathway is the generation of the neurotransmitter
5-hydroxytryptamine (serotonin) via the enzyme tryptophan 5-hydroxylase (T5H).
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L-TRYPTOPHAN
(i) (i) (i) T5H
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Serotonin
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/ \ Kynurenic acid
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Fig. 3.1 The three different ways of tryptophan usage. (i) The first one represents the major route
of tryptophan breakdown. The rate-limiting enzymes indoleamine 2,3-dioxygenase (IDO) or tryp-
tophan 2,3-dioxygenase (TDO) convert the essential amino acid tryptophan into kynurenine. This
metabolite is precursor of several metabolites. (if) The second pathway is the conversion via tryp-
tophan 5-hydroxylase (T5H) and followed by decarboxylation to the neurotransmitter serotonin
(5-hydroxytryptamine). Furthermore, tryptophan is required for protein biosynthesis (iii)

In a first step, 5-hydroxytryptophan is formed, which is converted to serotonin under
the influence of 5-hydroxytryptophan decarboxylases that require pyridoxal phos-
phate as a cofactor. In the case of insufficient tryptophan availability, serotonin pro-
duction is diminished, which may cause neuropsychiatric symptoms like depression
or other mood disorders (Widner et al. 2002). The third pathway represents trypto-
phan as a component of proteins.

3.2 Tryptophan and Its Influence on the Immune System

Significant alterations of serum tryptophan concentrations were observed in preg-
nant women (Schrocksnadel et al. 1996). Tryptophan concentrations declined with
the duration of pregnancy and correlated inversely with neopterin concentrations.
Data indicated that IDO activity was involved in the tryptophan metabolism.
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Thereafter, it was found that IDO activation is an important aspect in the
establishment of immunotolerance against the fetus (Munn et al. 1998) and thus that
tryptophan metabolism is strongly involved in immunomodulation (Mellor and
Munn 2004). Great attention was paid to the estimation of tryptophan breakdown as
a biomarker in various immune pathologies such as infections, autoimmune and
neurodegenerative disorders, and allergy (Schroecksnadel et al. 2006; Widner et al.
2000a, b; Raitala et al. 2006; Kositz et al. 2008). In the human immune system, vari-
ous cell types play an important role to protect the integrity of the organism from
invaders. The efficient host defense against pathogens is achieved through the thor-
ough coordination of the innate and adaptive immune system. Once an antigen is
present in the body, it has to be recognized by T cells, which identify the antigen in
cooperation with antigen-presenting cells. The recognition sites include the T-cell
receptor and the major histocompatibility complex. Furthermore, the signal cas-
cades involve several binding proteins such as the protein ligand B7 and the cluster
of differentiation 28 (CD28), which provide co-stimulatory signals to T cells
(Balakrishnan and Adams 1995). The activation of different subsets of T-helper
(Th) cells characterizes different immune responses. T cells can differentiate into a
variety of effector subsets, including the classical Thl- and Th2-type cells, the
recently defined Th17-type cells, the Th9 subset that control the growth and activa-
tion of mast cells, the follicular helper T (Tfh) cells that are responsible for the
B-cell maturation responses (Zhou et al. 2009), and the regulatory T cell (Treg). The
decision for differentiation is mostly driven by cytokines that are expressed in the
microenvironment. Also, the interaction strength between the T-cell antigen recep-
tor and the antigen can influence the direction of differentiation (Zhou et al. 2009).

Signaling by the arylhydrocarbon receptor (AHR) is thought to be involved in
T-cell differentiation. AHR 1is a cytosolic receptor, which translocates into the
nucleus after ligand binding and dimerizes with the AHR nuclear translocator
(ARNT) to act as a transcription factor for various genes including the cytochrome
P450 (CYP) enzymes (Van Voorhis et al. 2013). The AHR is known as a sensor to
the outside environment that modulates the immune system in response to toxins.
However, AHR signaling is activated not only after toxic exposures but also by
endogenous compounds like the tryptophan catabolite kynurenine, which leads to
the activation of several CYP isoenzymes and other metabolizing enzymes such as
glutathione S-transferase Ya (GSTYa) or aldehyde-3-dehydrogenase (ALDH-3)
(Van Voorhis et al. 2013). Via AHR, a toxin can also elicit an inflammatory response
with the induction of Treg, where the IDO pathway and its metabolites are involved
(Van Voorhis et al. 2013).

3.3 Types of Immune Response

Thl-type immune reaction is crucial in the pathogenesis of several inflammatory
disorders like cardiovascular diseases, autoimmune syndromes, malignant tumor
diseases, and neurodegenerative disorders (Asehnoune et al. 2004; Romagnani
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2004; Schroecksnadel et al. 2007). Th1-type cells are characterized by the production
of typical Thl-type cytokines like IFN-y and are involved in the cellular immune
response against pathogens and malignant cells. In the opposite, Th2-type cells pre-
dominate in allergic reactions and asthma (Romagnani 2004), interleukin-4 (IL-4),
interleukin-5, and interleukin-13 representing prominent cytokines released from
Th2-type cells. They mediate antibody responses, especially immunoglobulin E
(IgE) production (Barth et al. 2003), and control helminthes infections (Zhou et al.
2009). Th17-type cells represent another type of T-helper cells, which modulate
immune responses. They are supposed to combine innate and adaptive immunity
(Yu and Gaffen 2008); produce IL-17A, IL-17F, and IL-22; and play important roles
against extracellular bacteria or fungi. Regulatory T cells (Tregs) are involved in the
maintenance of immunological self-tolerance (Hori et al. 2003) and limit potential
collateral tissue damage (Zhou et al. 2009). Tregs are characterized by expression of
forkhead transcription factor box p3 (Foxp3). There are two subgroups of Tregs: the
naturally occurring Tregs (nTreg) and the induced Tregs (iTreg). Both cell types
play a role in the maintenance of self-tolerance and the prevention of
autoimmunity.

During the Thl-type immune reaction, the most prominent immune inductor
IFN-y is secreted by activated T lymphocytes and natural killer (NK) cells to initiate
antimicrobial and antitumoral defense mechanisms (Romagnani 2006). Thereby,
IFN-y induces various biochemical pathways such as the activation of GTP-
cyclohydrolase I (GTP-CH1) and IDO. This includes also the high output of reac-
tive oxygen species (ROS) by human macrophages or monocytes (Nathan et al.
1983) and the induction of the inducible nitric oxide synthase (iNOS) and of several
other immune effector pathways (Widner et al. 2000a; Werner et al. 1991).

The activation of GTP-CH1 by IFN-y leads to the production of the pteridine
derivatives neopterin and 5,6,7,8-tetrahydrobiopterin (BH,). BH, is the essential
cofactor for several monooxygenases including iNOS and is formed in various cells
of several species upon exposure to proinflammatory stimuli. Upon stimulation,
these cells produce NO. in a high rate. However, the production of BH, involves
6-pyruvoyltetrahydropterin (PTPS), an enzyme, which is of low activity in human
and primate macrophages and dendritic cells. As a result of this biochemical pecu-
liarity, human and primate monocyte-derived cells produce high amounts of neop-
terin at the expense of BH,. In the absence of sufficient amounts of BH,, also the
proper function of enzyme iNOS and in this way NO. output are diminished (Werner
et al. 1990; Andrew and Mayer 1999). In contrast, human fibroblasts or endothelial
cells preferentially produce BH,, and thus, also NO. is formed.

Neopterin is a stable biomarker of immune activation, which can be easily deter-
mined in body fluids like blood, urine, and cerebrospinal fluid (CSF) (Fuchs et al.
1992; Murr et al. 2002). Because of the common immunostimulatory background,
neopterin production and tryptophan breakdown are not only induced in parallel
in vitro (Weiss et al. 1999) but also in patients (Schroecksnadel et al. 2006). Several
in vivo studies confirm the association between altered neopterin concentrations and
tryptophan breakdown rates, as detected in serum samples of patients with infectious
diseases, like HIV, gynecological cancer, malignant tumors, cardiovascular disease,
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neurodegenerative disorders, or diseases associated with normal aging processes
(Schroecksnadel et al. 2005a, 2006; Fuchs et al. 1988, 1990, 1991, 2009; De Rosa
et al. 2011; Pedersen et al. 2011; Wirleitner et al. 2003). Both pathways turned out
to represent robust and strongly predictive immune activation biomarkers.

Neopterin concentrations can be measured with commercially available
ELISA. Usually, tryptophan and kynurenine concentrations are measured with
high-performance liquid chromatography (HPLC), and IDO activity can be esti-
mated by the ratio of kynurenine to tryptophan (Kyn/Trp) concentrations.

In vitro, high neopterin output by activated human monocyte-derived macro-
phages has been shown to be associated with a strong release of hydrogen peroxide
(H,0,) (Nathan 1986). In line with this observation, higher neopterin concentrations
in, e.g., patients with coronary artery disease were found to concur with low con-
centrations of serum antioxidants (Murr et al. 2009). This fact implies that neopterin
concentrations can also serve as sensitive indirect marker of oxidative stress during
immune activation (Murr et al. 1999).

3.3.1 Allergy

In the past few years, the incidence of allergy and asthma has increased drastically.
Allergy and asthma are among the most common chronic diseases in the world.
Currently, more than 130 million people are affected by asthma and the numbers are
steadily growing. Interestingly, in developing countries, there is a lower prevalence
of allergic diseases. Environmental factors, for example, more indoor allergens, pol-
lution, changes in diet, or breastfeeding, could be the reason for these increasing
atopic diseases. However, there are still little relations and evidences, which demon-
strate definitive risk factors. A link between lifestyle, habits, and the development
of allergy might exist, but the connection is still heavily discussed (Fuchs 2012).
However, childhood infections seem to have a protective effect for the development
of atopy and allergic diseases in the later life. A higher allergic sensitization occurs
often in newborn, but less in children from large families and those who attend daily
day care (Strachan 1989; Kriamer et al. 1999; Yazdanbakhsh et al. 2002). These
results suggest that a frequent contact with infections could have protective effects
on the children (Strachan 1989).

The main explanatory theories for the increase of atopic diseases are altered
hygienic conditions (Strachan 1989) and human nutrition. Nowadays, there exist
improved sanitation and living conditions, vaccinations, and antimicrobial therapies,
and most people have less contact to microbes. Immune stimulations by microbes
are considered to be necessary to hinder the consolidation of the atopic responder
type, as was concluded from the hygiene hypothesis (Liu and Murphy 2003).
Furthermore, human nutrition has considerably changed. Food preservation and ster-
ilization reduces the microbial exposure, and pasteurization has replaced drying and
fermentation (Fuchs 2012; Yazdanbakhsh et al. 2002; Isolauri et al. 2004). The food
preservatives have become more and more popular because of the globalization, as
food is shipped and offered all over the world and needs to be conserved over a long
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time. Many of the commonly used preservatives are antioxidative substances, which
can inhibit the oxidation of the food components (Gostner et al. 2014).

Recently, major attention is payed to the role of the human innate immune sys-
tem as it was shown to be strongly activated during allergic responses. Antigen-
presenting cells can absorb the allergen and initiate the signal transduction for T-cell
development within the Th2-type immune response direction. Th2-type cell activa-
tion leads to IL-4, IL-5, and IL-13 cytokine expression. These cytokines can interact
with their receptors to stimulate allergen-specific IgE production. Furthermore, this
cytokine production leads to the accumulation of a high number of eosinophils and
mast cells and boosts inflammation in the body (Holt et al. 1999). Immune cells start
to produce large amounts of cytokines, chemotactic factors, or free radicals, which
leads in the end to enhanced vascular permeability and persistent inflammation
(Ciprandi et al. 2011a). High amounts of IgE circulate in the blood and bind to the
high affinity IgE receptor (FceRI) of mast cells or basophiles to activate histamine
release, which is the main inductor of an allergic disease (Brown et al. 2008). At this
time point, the sensitization to a specific allergen is stored. If this antigen is present
at another time, it can bind to the IgE of mast cells and activate several cascades like
vasodilation, mucous secretion, and nerve stimulation of muscle contraction
(Zaknun et al. 2012). However, not every Th2-type response is characterized by IgE
production.

It has been argued that a decreased exposure to pathogens in early childhood may
result in an insufficient stimulation of Thl-type cells, which leads to a diminished
capability to counterbalance the expansion of Th2-type cells and thus results in a
predisposition to allergy (Yazdanbakhsh et al. 2002). High IgE levels may indicate
atopy, which underlies allergic diseases as asthma, rhinoconjunctivitis, and eczema.
It is well accepted that Thl- and Th2-type cytokines cross-regulate each other
(Romagnani 2004). Allergic inflammation is characterized by the upregulation of
Th2-type cytokines and downregulation of Thl-type cytokines such as IFN-y. Von
Bubnoff and Bieber described the IDO pathway as one of the central pathways in
allergy development. IDO activity not only is crucial during pregnancy, chronic
inflammation, tumorigenesis, and infections but also influences the inflammatory
state of atopy or allergy (von Bubnoff and Bieber 2012).

An in vitro study in human peripheral blood mononuclear cells (PBMC) further
confirmed this observation that typical Th2-type cytokines, IL-4 and IL-10, can
counteract IFN-y- and Thl-mediated pathways, when the effects of the different
cytokines on neopterin formation and tryptophan breakdown were compared (Weiss
et al. 1999). After IL-4 or IL-10 exposure, a lower stimulatory effect of IFN-y was
observed, which resulted in a diminished tryptophan breakdown rate and lower
neopterin levels, whereas Thl-type cytokine IL-12 had the opposite effect of co-
stimulating both biochemical pathways. Thus, exposure of PBMC to Th2-type cyto-
kines was reflected by higher tryptophan concentrations in culture supernatants,
because the breakdown of the amino acid was suppressed.

Allergic rhinitis is associated with the dysfunction of T-cell responses, where the
antigen induces mast cell activation by allergen-specific IgE. Severe allergic rhinitis
has a huge impact on the health-related quality of life and/or work, which can result
in a significant individual burden. Furthermore, allergic rhinitis and asthma are
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often comorbid diseases. Frequent treatments with aspirin, anti-inflammatory
agents, or antibiotics can inhibit Thl-type immune response and strengthen the
development of Th2-type responses and cause allergic symptoms in the case of a
concomitant phenomenon (Kuo et al. 2013). The activated cells release large
amounts of proinflammatory cytokines, which induce inflammatory cell enhance-
ment. It may lead to a persistent inflammation of the nasal mucosa, which is the
main relevant pathophysiological feature in allergic rhinitis (Ciprandi et al. 2011a).
Interestingly, treatment of PBMC with aspirin or salicylic acid had a similar effect
on neopterin production and tryptophan breakdown as compared with Th2-type
cytokines, where both were suppressed (Schroecksnadel et al. 2005b).

These results are in line with the hypothesis that allergy results from a shift of
Th1- toward Th2-type immunity. Inhibition of IFN-y and as a result also of IDO
decreases the Th1-type immune response.

Besides typical nasal symptoms like itching, sneezing, rhinorrhea, or obstruction
(Bousquet et al. 2008), many allergic rhinitis patients exhibit also nonnasal symp-
toms as behavioral changes like tiredness, somnolence, depression, apathy, and
impaired attention, which can reduce the quality of life (Juniper and Guyatt 1991;
Ciprandi et al. 2011b). This fact supports the hypothesis that the tryptophan path-
way and as a result also serotonin production play an important role in allergy.

Allergen-specific immunotherapy (AIT) is widely used to treat asthma and aller-
gic rhinitis and to modify the disease development. AIT is typically used, when
medication or environmental changes cannot control asthma or allergic rhinitis
symptoms. There are two ways of desensitization procedures, the subcutaneous
immunotherapy (SCIT), where the allergens are injected subcutaneous to the
patients, also known as “allergy shots.” In contrast, the sublingual immunotherapy
(SLIT) provides the allergen as drops to the sublingual area for local absorption.
The outcome of both treatments seems to be equal (Saporta 2012), although some
studies claimed that SCIT might have better results (Mungan et al. 1999). SCIT is a
well-established method, which has been used for many decades, and furthermore,
it is well tolerated (Saporta 2012). SLIT is also a very old method, which is not well
established in the USA, but in Europe it is still a commonly used treatment. SLIT
seems to be a safer method for treatment of children (André et al. 2000).

3.4 Tryptophan in Allergy

Induction of IFN-y leads to the activation of downstream biochemical pathways like
tryptophan breakdown by IDO. IDO activity is drastically enhanced during the pro-
inflammatory Thl-type immune response and contributes to the pathogen defense
by deprivation of the essential amino acid tryptophan. Furthermore, ROS and reac-
tive nitrogen species (RNS) are produced in high amounts, and these are commonly
known to interference with target cells or pathogens by oxidation and/or nitration of
vital cellular structures. For the balance of immune responses, Thl and Th2
responses can cross-regulate each other (Romagnani 2004, 2006). This can be
achieved by the activation of redox-sensitive signaling cascades, where oxidative
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conditions support Thl-type development, while excess of antioxidant compounds
“antioxidant stress” can lead to a shift toward allergic Th2-type immune responses
(Murr et al. 2005; Poljsak and Milisav 2012). IDO is widely accepted for its role in
infection, pregnancy, autoimmunity, and neoplasia, but also the control of allergic
inflammation was attributed to the enzyme (von Bubnoff and Bieber 2012).

Higher serum tryptophan concentrations were observed in adult patients with pol-
len allergy compared to healthy blood donors (Kositz et al. 2008). In this study, 44
patients with allergic rhinitis were examined before and after SCIT and compared to
38 healthy controls. In atopics, higher tryptophan levels in comparison to healthy
blood donors were noted, but there were no differences in kynurenine concentrations.
Also Kyn/Trp was only slightly, but not significantly, lower in atopics, and serum
neopterin levels tended to be at the upper limit of the normal levels. Interestingly,
higher levels of tryptophan were preferentially observed in nonresponders to
SCIT. Thus, tryptophan concentrations could help to predict the outcome of SCIT.

A further study confirmed the higher tryptophan levels in patients with pollen
allergy, but this observation was made only off pollen season but not in pollen sea-
son (Ciprandi et al. 2010). Notably, also the higher tryptophan levels observed in the
first study (Kositz et al. 2008) were measured in patients before they received desen-
sitization therapy and were thus off pollen season. Patients with pollen allergy seem
to have a distinct IDO activity pattern with higher tryptophan levels due to a less
breakdown out of season. However, tryptophan levels decline closer to normal val-
ues in spring; when under allergen exposure, tryptophan breakdown becomes initi-
ated. In regard to this observation, the higher tryptophan levels during winter could
represent a consequence of the chronic Th2-type immune response in summer due
to counter-regulation.

However, any possible (primary or additional) role of TDO activation should not
be disregarded.

Another substrate of IDO, serotonin, was found to be higher in patients with pol-
len allergy compared to outside of pollen season (Ciprandi et al. 201 1b). Interestingly,
low serotonin levels in allergic rhinitis patients in season upon pollen allergen expo-
sure were strongly related with behavioral impairment, as was assessed by quality
of life questionnaires, and thus, serotonin can serve as a biomarker of behavioral
symptoms during allergic response (Ciprandi et al. 2011b). As in other clinical
inflammatory conditions, tryptophan availability is strongly involved in the patho-
genesis of mood disorders and depression (Widner et al. 2002). Abnormal trypto-
phan concentrations may be involved in the development of neuropsychiatric
symptoms, while serotonin production is decreased (Widner et al. 2000a) or may be
also above normal.

3.4.1 Nitric Oxide: Nitrite

The reason for the higher tryptophan concentrations in patients outside of pollen
season still remains obscure. Specific interactions of NO. with IDO could be very
important in this circumstance (Ciprandi and Fuchs 2013). There are several reports
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in the literature that exhaled breath from patients with allergic rhinitis or asthma
contained higher NO. levels compared to healthy controls (Stewart and Katial
2012). Likewise, serum nitrite concentrations were found to be higher in allergic
rhinitis patients compared to healthy controls, and again, this was apparent off pol-
len season rather than during pollen season (Ciprandi et al. 2011a).

These observations seem to provide a link between tryptophan breakdown and
the formation of NO., which has been demonstrated earlier to inhibit the expression
and function of IDO (Thomas et al. 1994) (Fig. 3.2). Thus, when NO. formation is
increased, an inhibition of IDO becomes more likely, and as a consequence, trypto-
phan concentration would increase (Ciprandi et al. 2010). The increase of trypto-
phan in atopics out of season can be explained by a suppression of IDO activity
through the enhanced availability of NO. (Gostner et al. 2014). Importantly, no
inhibitory activity on GTP-CH]1, the key enzyme for neopterin production, is known
for NO..This would agree with the independent development of tryptophan and
neopterin concentration in patients with allergic rhinitis, e.g., mast cells can pro-
duce IFN-y and stimulate the production of neopterin in monocyte-derived macro-
phages or dendritic cells, while NO. formation starts in endothelial cells and IDO
activity becomes arrested by the presence of NO. (Ciprandi and Fuchs 2013).

iNOS inhibitors have already been considered as candidates for an antiallergic
therapy (Hesslinger et al. 2009) without considering their influence on IDO. iNOS
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IFN-Y GTP-GCH-1
7,8- Dihydroneopterin triphosphat

PTPS

in human macrophages other cell types:

and dendritic cells

Neopterin Biopterin (BH,)
2 Cofactor foriNOS

No BH; > O, = NO production

Inhibition of IDO

Fig. 3.2 Interferon-y (IFN-y) expression leads to the induction of GTP-cyclohydrolase I
(GTP-CH1), which produces out of guanosine triphosphate (GTP) 7,8-dihydroneopterin triphos-
phate. In human macrophages and dendritic cells, the enzyme 6-pyruvoyltetrahydropterin (PTPS)
is lacking, and neopterin is produced. In all other cell types PTPS forms 5,6,7,8-tetrahydrobiopterin
(BHy). BH, serves as a cofactor for inducible nitric oxide synthase (iNOS) to produce nitric oxide
(NO.). High levels of NO. can inhibit IDO activation and as a result inhibit tryptophan breakdown.
If BH, is not available, iNOS produces superoxide (O,.”) instead of NO..
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inhibitors may abrogate the IDO arrest, by diminishing NO. production. Still,
treatment with iNOS inhibitors should be more effective outside of pollen season,
than during season (Ciprandi and Fuchs 2013). IDO and iNOS are both induced by
IFN-y. iNOS inhibitors block NO. production and thereby can promote IDO activ-
ity. However, the interference of NO. and IDO could be cell specific. In stimulated
monocyte-derived cells, ROS are concomitantly produced with NO. and give rise to
the cell-toxic peroxynitrite (ONOQO"), whereas in other cells, because of the absence
of superoxide anion (O,.”), NO. is not oxidized and exerts its inhibitory effect on
IDO. This can be explained with an excess of antioxidants, which can stabilize the
iNOS cofactor BH, to guarantee high NO. production. Furthermore, other NOS
enzymes that are not induced by IFN-y can continue to produce NO. and inhibit IDO.

3.4.2 Nitric Oxide and Tryptophan Metabolism

NO. is a classical messenger for several biological processes, which include vasodi-
latation (Allen et al. 2009), neurotransmission (Bult et al. 1990; Garthwaite 2008),
macrophage-mediated cytotoxicity (Marletta et al. 1988), gastrointestinal smooth
muscle relaxation (Bult et al. 1990), and bronchodilation (Lindeman et al. 1995).
NO. synthases produce NO. by the oxidation of L-arginine and formation of the by-
product, L-citrulline (McNeill and Channon 2012). There are three isoforms of
NOS: (1) neuronal NO. synthase (nNOS) is involved in the regulation of autonomic
functions in cardiovascular diseases; (2) iNOS has effects on vascular functions
under conditions of sepsis and is a potent mediator of inflammation; (3) endothelial
NO. synthase (eNOS) acts in vascular diseases such as atherosclerosis, hyperten-
sion, and ischaemia-reperfusion. All of them can be responsible for abnormalities in
endothelial functions. nNOS and eNOS are both calcium dependent, while iNOS
works calcium independently (Moncada 1999). Furthermore, the first two NOS iso-
forms are constitutively expressed, while iNOS seems to be active only during
immune responses (Tsutsui et al. 2009).

NO. synthesis is commonly not only cell specific, but also the environment in
which the cells, organs, or the whole organisms that are experienced at the time of
the production site is important for the activity of the three different NOS (Villanueva
and Giulivi 2010). Several cross talks have been described for NO. and IDO. For
example, tryptophan and the tryptophan-kynurenine pathway metabolite
3-hydroxyanthranilic acid can inhibit iNOS at the expression and catalytic level
(Samelson-Jones and Yeh 2006). Furthermore, during the immune response, NO. is
an important regulator of the enzyme IDO. NO. inhibits IDO by preventing both the
expression and the activity of IDO, by binding to the catalytic domain
(Samelson-Jones and Yeh 2006). In turn, IDO inhibition then leads to higher
tryptophan levels.

As described above, BH, is required for a proper function of NO. synthesis.
However, in human macrophages, there is a lack of PTPS to produce BH,, and
instead, neopterin accumulates. When BH, levels become deficient, the oxygenase
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domain of NOS enzymes produces O,.” instead of NO.. The produced O,.” can
promote further reactions to form other ROS/RNS such as ONOO™ or H,0,, which
can disturb the redox balance and in the end lead to cellular injury and inflamma-
tion. Toxic ROS products like H,O,, O,., or ONOO™ can suppress the growth of
target cells and pathogens (Schroecksnadel et al. 2010; Wink et al. 2011) but also
lead to the dysfunction of protective cellular antioxidant mechanisms in inflamed
tissue, which can result in a high oxidative stress milieu (Hesslinger et al. 2009;
Bowler and Crapo 2002). In turn, a high degree of oxidative stress can activate sig-
naling cascades such as mitogen-activated protein kinase (MAPK), transcription
factor nuclear factor-kB (NF-kB), and activator protein (AP) pathways and initiate
the expression of proinflammatory cytokines such as tumor necrosis factor-o (TNF-
a) and IL-1, chemokines, and adhesion molecules (Aggarwal 2004).

The increased ROS production can further limit BH, availability through the
oxidation of the oxidation-sensitive molecule BH, itself (Lindeman et al. 1995).
Oxidative stress is probably involved in a wide range of clinical pathologies like
cardiovascular or neurodegenerative disorders (Halliwell 1996, 2006). To counter-
act ROS effects, different strategies have evolved. For example, some small mole-
cules function as antioxidants or enzymes, which can neutralize ROS, like catalase,
glutathione peroxidase (EC 1.11.1.9), and superoxide dismutase (Sies 1997,
Halliwell 1999). Antioxidants may be synthesized in the body or can be obtained
from the diet. An intake of dietary antioxidants can counteract oxidation processes
by scavenging ROS and other redox-sensitive molecules and therefore protect
against cellular damage (Schroecksnadel et al. 2007; Jenny et al. 2011). However, if
antioxidants are present in a normal milieu without inflammation, an excess can
shift the Th1-type immune response to Th2-type immunity, which can promote or
accelerate allergic reactions when an allergen is met (Zaknun et al. 2012).

3.5 Food Antioxidants and Tryptophan Metabolism

In the last decades, antioxidant exposure and uptake have extremely increased. Food
and beverages are supplemented with vitamins such as A, C, or E, and this is done
because of the conviction that this should be healthy. However, it is still unclear
whether supplemented antioxidant vitamins and other compounds have a benefit
comparable to that of their natural counterparts. Moreover, meta-analyses demon-
strated that supplemented antioxidant vitamins like vitamin A, C, and E may even
increase mortality rather than reduce it (Bjelakovic et al. 2007); especially, vitamins
E and A and B-carotene seem to exert also adverse effects.

Today, when antioxidants are supplemented to almost every food or beverage, it is
not easy to avoid overexposure. Thereby, extra vitamins are usually advertised. This
is not the case for food preservatives and colorants. These are usually declared only
as fine print. Food preservatives like sodium sulfite or benzoate but also colorants like
curcumin or betalain are widely known for their antioxidant activity (Zaknun et al.
2012). However, a well-functioning human organism does not need extra antioxidant
supplementation; the content in the normal Western diet is sufficient.
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An excess of food preservatives or antioxidants may increase allergy risks. They
can suppress Thl-type immune responses and cytokine expression, and conse-
quently, due to the cross-regulation of Thl- and Th2-type immune responses, Th2-
type cytokines are upregulated, and the development of asthma and allergic diseases
might be favored (Murr et al. 2005). If an allergen is presented, Th2-type cytokines
are produced in a high concentration, and this condition can strengthen the Th2-type
immune response. Under antioxidant-loaded conditions, allergic response already
initially becomes stronger when an allergen is met, than in conditions with normal
antioxidant levels (Zaknun et al. 2012).

It is well documented that antioxidants can stabilize BH, and promote NO. pro-
duction, which leads in the end to the inhibition of IDO and an increase of trypto-
phan and higher serotonin levels. In parallel, high serotonin levels could even
precipitate the serotonin syndrome, which is a life-threatening disease, character-
ized by a clinical triad of mental-status changes, autonomic hyperactivity, and neu-
romuscular abnormalities. It is known to be induced either by adverse drug reaction;
from therapeutic drug use, intentional self-poisoning, or inadvertent interaction
between drugs; or by an excess of antioxidants (Boyer and Shannon 2005).

Physical exercise is the most convenient way to escape from reductive caused by
excess intake of antioxidative compounds. Sports help not only in burning fat; it
especially oxidizes the even stronger antioxidants like vitamins, spices, and food
preservatives. This interaction may help to understand the findings that supplemen-
tation with antioxidant vitamins was found to slow down the antioxidant defense
response induced by physical exercise and sports (Ristow et al. 2009; Peternelj and
Coombes 2011). Thus, moderate sports and physical exercise can be recommended
to combat allergic responses.

Unfortunately, in the current generation, every negative effect of food is first
denominated by the public as an allergy. However, food allergy is often not an
allergy in its sense. In its strict sense, food allergy is an adverse reaction to the food
itself, and the classical immune mechanism is specific, for it being indicated by the
presence of IgE antibodies is typical. The diagnosis will be taken after a case his-
tory, the demonstration of IgE sensitization by a skin-prick test on an in vitro test,
and will be confirmed by a positive oral provocation (Wiithrich 2009). By contrast,
food intolerance is considered as a “nonimmune”-mediated adverse reaction to the
food. There are enzymatic (e.g., lactose intolerance, lactase deficiency), pharmaco-
logical (reactions against biogenic amines, histamine intolerance), or undefined
food intolerances (against food additives). Interestingly, under such conditions,
huge amounts of H, are produced and exhaled, H, under certain circumstances
being a strong antioxidative compound. Still, it has to be kept in mind that not every
sign of sickness after food intake has to be an allergy.

Recently, performed studies reported an association between fast-food consump-
tion and the prevalence of asthma, rhinoconjunctivitis, and eczema in children and
adolescents (Ellwood et al. 2013). In addition, antioxidants or additives may disturb
the endogenous appetite and satiation regulatory circuits. On the one hand, antioxi-
dants may suppress tryptophan breakdown by IDO (Jenny et al. 2011) and thus
increase the availability of tryptophan for serotonin production and as a conse-
quence contribute to mood improvement. Tryptophan metabolic changes may also
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contribute to the weight gain after a calorie-restricted diet (Berger et al. 2013), when
under starvation conditions tryptophan levels decline, which increases carbohydrate
craving as a substitute for brain serotonin (Wurtman and Wurtman 1995) followed
by weight gain. This sequence of events can explain the often observed yo-yo effect,
also known as weight cycling when people rapidly gain weight after a diet.

Also, the histamine content of beverages and food has to be taken in consider-
ation. As mentioned above, histamine is known to trigger acute symptoms like acute
rhinitis, bronchoconstriction, diarrhea, or cutaneous wheal. It has a strong activity
on endothelium and bronchial or smooth muscle cells and modulates also chronic
inflammatory events (Jutel et al. 2002). Histamine is important in the early and late
phase response to soluble antigens. It increases the vascular permeability and is
involved in the recruitment, adherence, and activation of inflammatory cells
(Andersson et al. 1994). Histamine content is increased in preserved food and thus
could play an important role in the precipitation of allergic symptoms, if too high
histamine uptake can trigger allergy development. Moreover in vitro, an inhibitory
effect of histamine on neopterin formation in myelomonocytic cells has been
described (Gruber et al. 2000).

Also air pollution can be responsible for increasing allergy appearance. An
important compound is carbon monoxide (CO), which accumulates in the blood or
is inhaled during cigarette smoke. CO can downregulate Th1-type immune responses
via inhibition of IFN-y and inhibition of IDO activity and thus activate Th2-type
immunity (Naito et al. 2012). An excess of antioxidants can explain the connection
of obesity, smoking or pollution, and their association with the increase of allergies
(Hosick and Stec 2012), when CO, a gas with well-known antioxidant properties,
exerts its effect to counteract Th1-type immune activation. As another consequence,
tryptophan availability will increase, when IDO is suppressed. In turn, the higher
tryptophan and thus serotonin availability may enhance mood and thus support
addiction to tobacco smoking.

3.6 Conclusion

Significant alterations of tryptophan metabolism have been described in patients
suffering from allergy. Allergy development is characterized by Th2-type immune
activation that is related to Th2-type cytokine expression like IL-4, IL-5, and IL-10
by Th2-type cells. The immoderate increase of allergies in the past decades posed
the question of the underlying trigger. Various approaches were taken into consider-
ation, like the hygiene hypothesis or the pollution of the air. Still the aspect of anti-
oxidants and allergy development has to be investigated in more detail. The
enormous presence of antioxidants as food additives, preservatives, or colorants is
indispensable in our lifestyle. Antioxidants can inhibit Th1-type immune response
and thus can result in an insufficient clearance of infectious pathogens. The inhibi-
tion can be mediated by downregulation of IFN-y and/or by the inhibition of IDO
leading to higher tryptophan levels. The radical scavenging property of antioxidants
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can stabilize BH,, the cofactor for iNOS, and thus promote high NO. output. The
high NO. level inhibits IDO activity by binding to the catalytic domain. For the
allergy diagnosis, high levels of NO. and tryptophan can be good biomarkers that
may be of value for the judgment of treatment response. The excess of antioxidants
can represent the missing link between the constant growing number of allergy and
obesity patients. The downregulation of Th1-type immune response and expression
of Th2-type cytokines can be attributed to the inhibiting nature of anti-inflammatory
agents like antioxidants. The impression is emerging that in otherwise healthy peo-
ple, stress due to overwhelming exposure to antioxidants is more relevant than oxi-
dative stress, which is critical in clinical conditions related with Th1-type immunity
and excess IFN-y and thus ROS production. A right balance between cellular pro-
duced ROS and antioxidant uptake via nutrition is essential to support human health.
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Chapter 4
Tryptophan Metabolites: A Microbial
Perspective

Evren Doruk Engin

Abstract The discovery of the regulation of tryptophan biosynthetic pathway by
means of a repressible operon has been recognised as a milestone in genetics. This
long multistep pathway is energetically so expensive that numerous allosteric con-
trol loops exist in addition to tight genetic regulation. That’s why essential amino
acid tryptophan is a valuable product for food industry and animal breeding.
Traditionally, vitamin auxotrophs of soil microorganisms have been used for amino
acid manufacturing. However, in the age of synthetic biology, metabolic engineer-
ing has recently become the method of choice to construct the producer strains.

Additionally, in contrast to mammalian cells, bacterial cells are able to produce
tryptophan starting at central metabolic intermediates from pentose phosphate path-
way and glycolysis. This metabolic divergence provides an excellent target for the
development of novel antimicrobials which interfere with the biosynthesis of
tryptophan.

Tryptophan metabolism makes at least two contributions to microbial quorum-
sensing pathways, which may have implications in antimicrobial chemotherapy.
The autoinducers of renowned Pseudomonas quinolone signalling system originate
either from kynurenine or shikimate pathways. Fluorinated 4-quinolone derivative
antimicrobial drugs exhibit antipathogenic effects at subinhibitory concentration,
presumably by interfering with Pseudomonas quinolone signalling. Another
recently recognised bacterial signal molecule is indole, a degradation product of
tryptophan. Unconventional stationary phase signal molecule indole is unique, as no
receptor/response regulator protein has been identified to date. Instead, the effects
of indole have been attributed to its physicochemical interaction with the cell
membrane.
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4.1 Introduction

Tryptophan (Trp, W) is one of the 22 standard amino acids, which has aromatic
indole ring as functional group. Mainly L-stereoisomer is found in natural polypep-
tide chains, whereas D-form is quite rare to occur in proteins. Apart from being
incorporated into proteins, various metabolites of tryptophan act as intercellular
signal molecules, pheromones/hormones in organisms from all three kingdoms,
both intra- and interspecies manner (Tryptophan 2014).

4.2 Tryptophan Biosynthesis

Mammalian cells lack the capability to synthesise this amino acid; thus exogenous
L-tryptophan supplementation is considered essential, and as a result, all mamma-
lian organisms must rely on dietary consumption of protein-rich food. On the con-
trary, prokaryotes, eukaryotic microorganisms and higher plants usually have
biosynthetic pathways for this amino acid (Gibson and Pittard 1968).

The synthesis of tryptophan from glucose covers an energetically expensive long
metabolic pathway (Figs. 4.1 and 4.2). Therefore, L-tryptophan synthesis rate is
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Fig. 4.1 Chorismate pathway in Escherichia coli (Adapted from EcoCyc Pathways, publicly
available at http://ecocyc.org/ (Caspi et al. 2014))
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tightly controlled in multiple steps, by means of transcriptional repression,
attenuation and feedback inhibition. Plants and microorganisms utilise shikimic
acid or anthranilate as starting compound for L-tryptophan synthesis (Jacob and
Monod 1961; Yanofsky et al. 1981).

The shikimate pathway draws D-erythrose 4-phosphate from the non-oxidative
branch of pentose phosphate pathway and phosphoenolpyruvate from glycolytic
pathway to yield chorismate as end product, which further proceeds to aromatic
amino acid biosynthesis (Fig. 4.1). The aldol condensation reaction catalysed by
2-dehydro-3-deoxyphosphopentonate aldose (EC 2.5.1.54, DAHP synthase) cataly-
ses the first committed step of aromatic amino acid biosynthesis. In Escherichia coli
K-12 substrain MG1655, the genome contains aroF, aroG and aroH which encode
three allosterically regulated isozymes of DAHP synthase for tyrosine, phenylala-
nine and tryptophan biosynthesis, respectively. These three isozymes are all homodi-
meric or homotetrameric metalloenzymes that require divalent iron as cofactor — with
the exception of AroF, which may couple with various divalent metal cations such
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as Mn*? — and share about 40 % of sequence identity. In minimal medium, E. coli
cells mainly express phenylalanine-regulated [AroG], isoform of DAHP synthase
and, to a smaller extent, tyrosine-regulated [AroF], form. Tryptophan-sensitive
[AroH], constitutes only 1 % of the total DAHP synthase activity of the cell (Tabaka
2009). The allosteric sites of DAHP synthases are located at N-terminal domain.
Certain missense mutations in the N-terminal of tyrosine-sensitive DAHP synthase
were shown to abolish the negative feedback regulation (Jossek et al. 2001). The
enzyme levels in the cell are transcriptionally controlled by tryptophan repressor
trpR for aroH and tyrosine repressor #yrR for aroG and aroF, respectively (Wallace
and Pittard 1969). Once chorismate has formed, anthranilate synthase (EC 4.1.3.27)
catalyses the transfer of one amine group from L-glutamine, yielding anthranilate,
L-glutamate and pyruvate. This reaction constitutes the first committed step of
L-tryptophan biosynthesis and is subjected to allosteric regulation by the end prod-
uct, L-tryptophan.

Tryptophan operon was the first repressible operon discovered, which had a
deep impact in our understanding of the genetic regulatory mechanisms in pro-
tein synthesis (Fig. 4.3) (Jacob and Monod 1961). The operon consists of a regu-
latory region followed by structural genes. The regulatory region encodes the
constituently expressed repressor protein, promoter, operator and trpL (leader
peptide—attenuator complex). The helix—turn—helix DNA-binding motifs of zrpR-
encoded tryptophan repressor are exposed to interact with the operator region of
the trp promoter, whenever tryptophan is available in the cytoplasm in adequate
concentrations. Hence, transcription cannot pass through operator-bound trp
repressor, and the operon is repressed in abundant supply of tryptophan
(Jayaraman 2011; Faghfuri et al. 2013). The enzyme expression economy of tryp-
tophan operon is further fine-tuned by a mechanism called attenuation. As the
availability of tryptophan decreases, the operon gets transcribed. In the bacterial
cell, no distinct nuclear barrier exists to separate the translation and transcription
processes. Thus, ribosomes begin translation on mRNAs while transcription from
DNA continues. In case of tryptophan operon transcript, mRNA begins with trpL
leader sequence which includes four functional sequence segments. Segment 1
encodes the leader peptide, which contains tandem tryptophan codons. The fol-
lowing segments 2, 3 and 4 do not code protein. Instead, segment 2 is able to form
stem loop structure with segment 3, and segment 3 is able to form stem loop
structure with segment 4. In case there is no tryptophan shortage in the cell, ribo-
some rapidly processes segment 1 and advances to segment 2. Ribosomal block-
ade of segment 2 before segment 3 transcription permits stem loop structure
formation between segments 3 and 4, which in turn attenuates transcription of the
remaining operon. When tryptophan becomes limiting for the cell, the ribosome
gets stalled while translating the leader peptide, leaving segment 2 available to
form stem loop structure with segment 3. In this case, segment 3 is no longer
available to form attenuator stem loop structure. The transcription and translation
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of trp operon proceed. In E. coli cells, translating ribosome acts as tryptophan
sensor (Nudler and Mironov 2004).

4.2.1 Tryptophan Production in Bacterial Cells

The demand for commercial sources of L-tryptophan is constantly increasing, as
this amino acid has been realised to be important in animal nutrition, treatment of
certain psychological diseases and synthesis of antimicrobials. However, trypto-
phan synthesis involves energetically expensive multistep pathway, which compli-
cates commercial manufacturing process. Moreover, the chemical synthesis of this
essential amino acid for industrial purposes is not feasible, as it requires
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nonrenewable toxic raw materials. Additionally, the end product is a racemic mix-
ture of both stereoisomers of tryptophan (Aiba et al. 1982; Shen et al. 2012).
Therefore, microbial production of tryptophan is still the most feasible way, yet it’s
not a trivial task to bypass the stringent control over tryptophan biosynthetic path-
ways to obtain overproducer strains. Generally, auxotrophic soil bacteria have been
used in the production of various amino acids. In the case of tryptophan, Bacillus
subtilis, Corynebacterium glutamicum, Brevibacterium lactofermentum, Citrobacter
freundii, Escherichia coli, Pseudomonas hydrogenothermophila, Aureobacterium
flavescens and Arthrobacter parafineus have been engineered to overproduce this
valuable product. One strategy involves to obtain phenylalanine and tyrosine auxo-
trophic mutants with the aid of toxic substrates p-fluorotryptophan and 5-methyl-
tryptophan (Mukhopadhyay and Roy 2011). A more rational means of increasing
tryptophan synthesis capacity of bacterial cells is to engineer the pathway around
phosphoenolpyruvate and erythrose 4-phosphate condensation reaction, which pro-
vides aromatic metabolites. In one study, Shen et al. succeeded dramatic increases
in tryptophan synthesis in E. coli cells by concomitantly overexpressing phospho-
enolpyruvate synthase (a.k.a. pyruvate, water dikinase) and transketolase. These
two enzymes catalyse the formation of phosphoenolpyruvate from pyruvate and
D-erythrose 4-phosphate from p-D-fructose-6-phosphate, respectively, conveying
them to shikimate pathway as substrates of AroF/G/H (Shen et al. 2012). Gu et al.
have constructed metabolically engineered mutant Escherichia coli strains which
accumulate 6,000 times more tryptophan compared to wild-type bacteria. The
researchers first constructed a basic L-tryptophan synthetic strain by knocking out
tryptophan repressor rpR, tryptophanase tnaA and major glucose transporter pzsG,
in order to derepress trp operon, prevent degradation of tryptophan to indole and
convey phosphoenolpyruvate molecules to shikimate pathway, respectively. The
strain also included feedback inhibition-resistant mutants of DAHP synthase and
anthranilate synthase to bypass the regulation on the initial committed steps of aro-
matic amino acid synthesis and tryptophan synthesis branches. In addition to these
modifications, the researchers swapped the repressible t7p promoter with a rela-
tively strong SCPtacs promoter, in order to elevate the expression of #rp operon (Gu
et al. 2012).

4.2.2 Tryptophan Synthesis Inhibitors: Promising
Antimicrobials

The famous futurist and science fiction writer Isaac Asimov had imagined the planet
Aurora devoid of pathogenic microorganisms in his novel, Robots of the Dawn
(Asimov 1994). Asimov must have realised the insidious role of nasty and ruthless
microscopic organisms in altering the history, along with all prominent characters
that you can come across in the pages of history books. The discovery of penicillin
in 1929 and streptomycin in 1943 were followed by many others in the following
two decades. This golden age of antibiotic discovery had witnessed dramatic
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decreases in morbidity and mortality due to infectious diseases (Davies 2006).
However, the misbelief of microbial geneticists that the emergence of resistant
strains upon antibiotic exposure would be rather rare in 1950s might had a promot-
ing impact on the more liberal use of these drugs. The controversial practice of
nontherapeutic use of growth-promoting antibiotics in animal breeding has its roots
in those years (Graham et al. 2007). Massive and unlimited use of antibiotics soon
led to the emergence of resistant bacterial pathogens. The problem has recently
become further complicated with the appearance of multiple drug-resistant strains.
Besides, as the population ages, the intensive care of critically ill and/or immuno-
suppressed individuals (i.e. cancer patients) became a routine task, rather than an
exception (Tanwar et al. 2014). Unfortunately, it appears that microorganisms have
lapped humans in this race. In the last few decades, antimicrobial research has
become an expensive and unprofitable business for pharmaceutical companies. As
the companies abandon their research and development activities in the field, the
innovation gap between introductions of new molecular classes is widening
(Committee on New Directions in the Study of Antimicrobial Therapeutics: New
Classes of Antimicrobials 2006).

Despite the fact that a vast number of antimicrobial molecules that belong to
numerous classes exist, only four major metabolic pathways have been targeted for
the sake of selective toxicity (Haag et al. 2012):

e Protein synthesis

* Nucleic acid synthesis
e Cell wall synthesis

* Folate synthesis

Novel systems biology-based approaches have started to emerge as cost-effective
methods to discover brand new antimicrobial drug targets. With today’s technology,
high-throughput omics studies generate tremendous amount of heterogeneous big
data from genome, transcriptome and metabolome. Efforts have been directed to
combine all into a unified knowledge. Structural systems pharmacology framework
is a drug discovery platform, which aims to be an integrative modelling framework
for drug action (Xie et al. 2014). Chang et al. have recently used this approach to
predict novel antimicrobial targets in Escherichia coli K12 MG1655 expanded
genome-scale model (GEM-PRO) (Chang et al. 2013; Monk et al. 2013). Over
12,000 molecules that are presented with at least one PBD structure have been
scanned as possible ligands of target proteins included in GEM-PRO. Notably, there
were five molecular structures that were potential inhibitors of trpB-encoded tryp-
tophan kinase p-subunit, which catalyses the irreversible condensation of indole and
L-serine to form tryptophan in the presence of pyridoxal phosphate as cofactor
(Chang et al. 2013). Tryptophan is an essential amino acid that mammalian cells
cannot produce. Accordingly, biosynthetic pathway of this amino acid comprises a
suitable antimicrobial target in terms of selective toxicity.

Shikimate pathway provides biosynthetic precursors for several pathways, which
synthesise aromatic compounds including tryptophan, in plants and microorgan-
isms, but not in mammals (Gibson and Pittard 1968; Kishore and Shah 1988).
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Therefore, any of the seven enzymes that form shikimate pathway may be
considered as possible targets for antimicrobials. The inhibitor of
3-phosphoshikimate- 1-carboxyvinyltransferase, glyphosate, which is marketed as
an herbicide, also exhibits inhibitory effect on gram-positive and gram-negative
bacteria in vitro. In relatively higher concentrations, this compound also restricts the
growth of apicomplexan parasites (Roberts et al. 2002). Recently, Pitchandi et al.
have manually curated information on the analysis of chorismate synthase in 42
pathogenic bacterial species, along with 48 inhibitor substances with known IC50/
Ki values, and compiled them into a database to enable ligand-based drug design
strategies (Pitchandi et al. 2013). All these efforts are encouraging in that applica-
tion of systems biology techniques in rational drug discovery and design will even-
tually accelerate the development cycles and cut off the expenses of pharmaceutical
industry.

4.3 Tryptophan in Microbial Cell to Cell Signalling

4.3.1 Glow While Speaking

Since the seventeenth century, mariners have been reporting incidences of “milky
sea”, as mentioned by Jules Verne in his science fiction novel, Twenty Thousand
Leagues Under the Sea, nearly 150 years ago. In Chapter 24 of the novel, Conseil —
the faithful servant of Professor Pierre Aronnax — expresses his amazement at the
glowing milky sea, while Nautilus is sailing half-immersed on the Bay of Bengal in
a dark moonless night. Apparently, Verne rewarded his science-thirsty readers with
gems of knowledge enclosed in the explanations of Professor Aronnax, who attrib-
uted the lactified ocean to the presence of “myriads of infusoria, a sort of luminous
little worm” (Verne 1870). It was one century later that chronobiologists Nealson
and Hastings described the glowing of “luminous little worms” — the marine Vibrio —
depended on the presence of cellular mass (Nealson et al. 1970; Nealson and
Hastings 1979). Later on, Miller et al. succeeded to capture the first satellite images
of a milky sea in the northwestern Indian Ocean, in an area close to the route of
Nautilus. With the aid of 833-km attitude polar-orbiting meteorological satellites,
this truly massive event was documented to span over 17,000 km? with an estimated
bacterial biomass of 4 x 10?2 cells (Miller et al. 2005).

Bacteria were the first inhabitants of the biosphere. As being the first comers,
they had to convert inorganic material into highly ordered biomolecules to form liv-
ing cells. Though conforming a complex and dynamic environment is by no means
a solitary endeavour for microbial cells, they further organise to form hierarchically
structured colonies. This multicellular/communal lifestyle requires to achieve the
proper balance between individuality and sociality and involves the production, lib-
eration and detection of a variety of chemical signal molecules. These chemical
signal molecules form the mediators of quorum sensing — the communication net-
work (Jacob et al. 2004).
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Quorum sensing is everywhere and can occur both within and between bacterial
species. More interestingly, transkingdom signalling is also common between bac-
teria and eukaryotic organisms.

Communication of microorganisms over chemical signal networks is a wide-
spread phenomenon. Both intra- and interspecies coordinated communal behaviour
is called quorum sensing and involves the production, release and sensing of small
signal/pheromone molecules called autoinducers. To date, N-acylated homoserine
lactone derivatives, cyclic dipeptides, quinolones, furanosyl borate diesters and lac-
tonised small peptides have been accredited to serve as autoinducers (Parsek and
Greenberg 2005). Quorum sensing governs the control and regulation of all the
metabolic activities of bacterial cell. The effects of these molecular signalling net-
works have been thoroughly studied and documented for a number of phenotypes,
including biofilm formation, toxin production, motility and exopolysaccharide for-
mation (Yang et al. 2014; Wang et al. 2014).

An oversimplified scheme of bacterial quorum-sensing system includes:

* An autoinducer (pheromone) synthase gene, which encodes the enzyme which
catalyses the synthesis of autoinducer molecule, usually making use of interme-
diary metabolites provided from central metabolic pathways. In case of gram-
positive bacteria, the autoinducer gene usually encodes the amino acid sequence
of pre-pheromone molecule.

e The autoinducer molecule, a small organic molecule or a lactonised
oligopeptide.

* A sensor kinase and a corresponding response regulator, which usually form a
two-component regulatory system.

* Quorum-sensing-responsive target genes.

Marine bacterium Vibrio fischeri was the first microbial species described to use
quorum sensing to monitor the population density and relaying a response accord-
ingly. In 1970, Nealson and Hastings had observed that the cellular density of Vibrio
fischeri cultures determined the bioluminescence phenotype of the cells. They
hypothesised that small messenger molecules (or pheromones) travel between cells
to stimulate luminescence. Later on, with works of Bassler and others, at least three
signalling pathways have been discovered in this marine bacterium (Henke and
Bassler 2004). Autoinducer synthases LuxM, LuxS and CgsA catalyse the synthesis
of pheromone molecules N-(3-hydroxybutanoyl) homoserine lactone (autoin-
ducer-1), (25,4s)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate (autoin-
ducer-2) and (S)-3-hydroxytridecan-4-one (cholera quorum-sensing autoinducer),
respectively. In a growing culture, the concentration of these pheromone molecules
increases with the increasing bacterial density (Defoirdt and Sorgeloos 2012). These
signal molecules diffuse and bind the periplasmic autoinducer receptors of both
secreting and nearby bacterial cells. All three autoinducers have their respective sen-
sor kinases LuxN, LuxQ and CqgsS. In low population densities and accordingly low
autoinducer concentrations, these receptors act as kinases that phosphorylate LuxU,
which in turn phosphorylates LuxO. Phospho-LuxO, together with 654, activates the
expression of regulatory small RNAs encoded by grr1-5 (Lilley and Bassler 2000).
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These sSRNAs and RNA chaperone Hfq destabilise the [uxR transcripts. In high cell
densities, the autoinducer receptors turn into phosphatases that dephosphorylate
phospho-LuxU. Consequently, no grr expression occurs and /uxR mRNAs survive.
LuxR is the master quorum sensor in V. harveyi, which controls many aspects of the
bacterial metabolism (Fig. 4.4) (Henke and Bassler 2004).

Notably, like many other bacteria, V. harveyi is able to respond to more than one
type of signals received from the environment that later converge into a single
downstream transmission and gene expression pathway. An important reason for
this supposedly “wasteful” strategy is to socialise. In nature, it’s rather an exception
to find monospecies bacterial populations. Instead, microorganisms form complex
communities. Recently, with the emergence of massively parallel DNA sequencing
technologies, we have recognised that the bacterial diversity of a single human gut
microbiota extends to more than 1,000 “species-level” phylotypes (Lozupone et al.
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2012). It becomes an absolute necessity for a microorganism to perceive the
chemical status of the environment to conform and survive in this enormous crowd
of diversity. Accordingly, most of the intraspecies signalling molecules also act as
interspecies communication pheromones (Ryan and Dow 2008). Even eukaryotic
cells have been shown to respond to bacterial quorum sensing. Bacterial acyl
homoserine lactones display immunomodulatory effects on macrophages and T
cells and activate inflammatory responses in mice (Mathesius et al. 2003).

Many gram-positive and gram-negative bacteria have been shown to produce and
sense autoinducer-2 molecules. Thus this pheromone is considered as a universal
signalling molecule (Federle and Bassler 2003).

Most gram-negative bacteria are able to produce Al-1 class of molecules which
have species-specific acyl side chains with variable lengths, oxidation and satura-
tion properties. For instance, Pseudomonas aeruginosa has two Al-1 signalling cir-
cuits. The LuxI homologues Lasl and RhIl catalyse the synthesis of
N-(3-oxo-dodecanoyl)-L-homoserine lactone (oxoC12-HSL) and N-butanoyl-L-
homoserine lactone (C4-HSL), respectively. These signalling molecules are also
perceived by bacterial cells that belong to a related genus, Burkholderia (Nadal
Jimenez et al. 2012).

In an ecological and evolutionary context, it must be emphasised that different
bacterial species display niche-specific behaviours in response to various autoin-
ducer molecules. Concurrently, not every class of autoinducers has been demon-
strated to be synthesised in every bacterial species (Federle and Bassler 2003).
Interestingly, the genuses Escherichia, Salmonella and Klebsiella genomes encode
the LuxR homologue SdiA, without AI-1 synthase (LuxI) homologue. It has recently
been shown that E. coli SdiA is responsive to C8-HSL, 3-oxo-C8-HSL and C6-HSL
(Yao et al. 2006). A notable impact of N-AHL enabled function of SdiA on
Salmonella metabolism is the efflux of indole, an important tryptophan metabolite,
outside the cell (Ryan and Dow 2008).

4.3.2 Indole as a Signal Molecule

Indole is an aromatic heterocyclic organic compound which gives the intense faecal
odour when present in high concentrations. Numerous organisms including gram-
positive and gram-negative bacteria have the enzyme tryptophanase, which converts
L-tryptophan to indole and pyruvic acid (Fig. 4.5). Copious amounts of indole are
produced by bacterial cells to facilitate communication in microbial communities,
especially in stationary phase cultures. It has been suggested that indole is a “global”
signal molecule which affords/provides interkingdom communication. This kind of
communication is indispensible in various ecological settings, especially in host—
pathogen interactions. Indole performs its cell-wide actions in transition to station-
ary phase via the global regulator RpoS (Mueller et al. 2009). Indole production in
Escherichia coli is affected by certain environmental factors. Extreme alkalinity or
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acidity, the presence of antibiotics and high or low temperature promote indole
production (Han et al. 2011; Hirakawa et al. 2010).

Enterohaemorrhagic Escherichia coli (EHEC) is an important human pathogen
that causes food-borne diseases such as non-bloody diarrhoea, haemorrhagic colitis
and haemolytic uraemic syndrome. EHEC adheres to the intestinal epithelium and
causes attaching and effacing lesions, which is characterised by the destruction of
brush border microvilli. The pathogenesis of EHEC depends on the 36-kbp
chromosomal pathogenicity island which harbours 41 ORFs clustered in locus of
enterocyte effacement (LEE) 1-5 operons. LEE4 operon encodes the key compo-
nents of type III secretion machinery, which is responsible for the externalisation of
bacterial adhesin called intimin. Hirakawa et al. showed that indole production
enhances the expression of type III secretion system components, which in turn
increases intimin secretion and lesion formation (Hirakawa et al. 2009).

Indole also enhances the production of enteropathogenic Escherichia coli
(EPEC) toxin which paralyses and kills the roundworm Caenorhabditis elegans, in
much similar way as in EHEC (Anyanful et al. 2005). Likewise, tryptophanase-
deficient delta-tnaA mutants of both EHEC and EPEC display attenuated virulence.
Interestingly, indole represses various virulence-related phenotypes such as motil-
ity, biofilm formation and attachment. These findings suggest a dual role for indole
in disease processes (Lee et al. 2010).

Unlike other “classical” autoinducer molecules, to date, no response regulators
have been shown for indole to exert its effects on the cellular metabolism. Indole has
to enter the cell in order to exert it effects. The mode of indole entry into the cells has
been a subject of dispute. Indole has been known for its capability to penetrate mam-
malian cellular membranes, owing to the hydrophobic nature of this small molecule.
Yet, recent data suggests that indole transporter proteins play an important role in
bacterial metabolism. Tryptophan/indole:H+ symporter Mtr has been implicated in
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active uptake of indole compounds. Tryptophan auxotrophic Escherichia coli cells
could be rescued by the addition of exogenous indole in tryptophan-free medium,
where indole is converted to tryptophan by the action of tryptophanase. However,
delta-mtr Trp auxotrophs are unable to survive (Pifiero-Fernandez et al. 2011).

It has been recently shown that indole induces xenobiotic exporters and oxidative
stress protective mechanisms, which in turn provide decreased susceptibility to anti-
microbial drugs and toxins.

Physicochemical properties of indole drive it to interact with the lipid bilayer
membrane. The most probable sites of indole localisation in lipid bilayer mem-
branes depend on the hydrophobic and lipophilic effects along with hydrogen-
bonding, cation-pi and electrostatic interactions. Indole molecules are strongly
attracted to the relatively hydrated interfacial regions of the lipid bilayer membrane.
The three sites where indole molecules are most probably localised are as follows
(Norman and Nymeyer 2006; Gaede et al. 2005):

1. Near the glycerol moiety, localised in the interface
2. Near the choline moiety (weakly bound)
3. At the centre of the bilayer’s hydrocarbon core (weakly bound)

The displacement of indole from water phase is aided by the hydrophobic effect,
whereas the binding of indole to the interface is mainly an enthalpy-driven process
(Norman and Nymeyer 2006; Gaede et al. 2005). Chimerel et al. have shown that
indole acts as a proton ionophore and, at concentrations of 3—5 mM, significantly
reduces the electrochemical potential (proton motive force; PMF) across the
cytoplasmic membrane of Escherichia coli cells. This, in turn, deactivates MinCD
oscillation and prevents FtsZ polymerisation to form cell division ring. In this
respect, the cytoplasmic membrane itself behaves like a target of indole as a signal
molecule that controls the cell cycle (Chimerel et al. 2012). To date, numerous bio-
logical ionophores have been characterised. Plasmid-encoded colicins A, E1, Ia, Ib
and K and antibiotics nigericin, valinomycin, monensin, gramicidin S and many
more are well known for their toxic pH and electrical potential dissipating effects on
the target cells. The cell cycle arresting ionophore indole is regarded beneficial to
the producer cells as it exerts its effects to prepare the cell to stationary phase
(Chimerel et al. 2012).

4.3.3 Pseudomonas Quinolone Signalling

The investigation on quinolones as antimicrobials has started decades ago, with the
discovery of 4-quinolones in the 1940s and nalidixic acid in the early 1960s
(Emmerson and Jones 2003). Yet, the discovery of 4-quinolones as a new class of
signalling molecules is rather new in quorum-sensing research. Pesci et al. have
demonstrated that 4-quinolone family compounds 2-heptyl-3-hydroxy-4-quino-
lone, 2-hydroxy-3-heptyl-4-quinolone and 2-heptyl-4-hydroxy-quinolone are
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released from bacterial cells and bind their cognate autoinducer-dependent
transcriptional activator PqsR (response regulator) to express appropriate target
genes in a cell density-dependent manner (Pesci et al. 1999). Pyocyanin production,
lectin synthesis, reduced biofilm formation, swarming motility and increased drug
resistance phenotypes have been linked to PQS (Nadal Jimenez et al. 2012)
(Fig. 4.6).

Two distinct biosynthetic pathways have been defined for the synthesis of
Pseudomonas quinolone signal molecules. These two pathways converge to form
anthranilate and ultimately the HHQ and PQS signal molecules. Anthranilate is
synthesised either directly by tryptophan degradation via kynurenine formation or
by transformation from tryptophan precursor shikimate (Farrow and Pesci 2007;
Miller et al. 1953). Detailed analyses of the pathway revealed that PqgsABCD
proteins are able to produce approximately 50 structurally related 4-quinolone com-
pounds, most of which have no significant role in cell to cell signalling (Nadal
Jimenez et al. 2012). Interestingly, the addition of hydroxyl group to HHQ to form
PQS dramatically increases the iron affinity of the molecule. Membrane-bound
PQS molecules enhance the accumulation of iron from the surrounding environ-
ment (Diggle et al. 2007).

4.3.4 Antipathogenics: Taming the Wild Bacteria

As discussed earlier in the text, the bottleneck in the antimicrobial discovery has
insidiously become a real public health threat. With the emergence of multidrug-
resistant bacteria, the infections that were once treatable have become impossible to
treat. While trying to preserve the currently available drugs, we urgently need to
discover new viable targets for antimicrobial chemotherapy.

Social intelligence is defined as the capability of an individual to perceive and
understand the environment and mount appropriate responses. As more and more
genomic data becomes available, we are starting to apprehend the extent of micro-
bial social capabilities to communicate each other. Bacterial cells are equipped with
complex communication capabilities which permit them to adapt to the environ-
ment and organise into highly structured colonies. Quorum-sensing signalling
enables the bacterial population to make collective decisions and cooperative hier-
archical organisations. In order to survive in a complex microbial community, it’s a
prerequisite to have the ability to sense the local environment for limiting nutrients,
presence of toxins and signal molecules from other cells (Jacob et al. 2004).
Likewise, an infectious disease process also involves the appropriate use of
these communication capabilities, in order to determine when to hide from the
immune system and when to express the full set of lytic enzymes. From the patho-
gen perspective, successful invasion of a host organism depends on excellent
management of information processing and signal integration (Mehta et al. 2009).
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Sirota-Madi et al. have sequenced the genome of the pattern-forming bacterium
Paenibacillus vortex and performed a detailed comparative analysis between
P. vortex and a set of 500 complete bacterial genomes, in terms of social 1Q distribu-
tion based on the number of genes directed to information processing and integra-
tion. They have concluded that “brilliant” P. vortex stays in a social IQ score range
of three standard deviations above the “ordinary” Bacillus subtilis and Escherichia
coli (Sirota-Madi et al. 2010). Unsurprisingly, Pseudomonas aeruginosa and
Bacillus anthracis are ranked within the two standard deviations above normal.
Both pathogens cause difficult to treat infections.

Interfering with multistep quorum-sensing circuits at any point may direct the
bacterial community to make inappropriate decisions. This assumption comprises
the basis of using therapeutic quorum-sensing inhibitors as antipathogenic drugs
(Rasmussen and Givskov 2006).

Fluorinated 4-quinolone derivative antimicrobials have been in the market for a
considerable period of time. In contrast to the ancestor compound nalidixic acid,
fluoroquinolones carry a fluorine atom in the central ring system at C6 or C7 posi-
tions. The suggested cellular target for these broad-spectrum bactericidal antimicro-
bial compounds is the inhibition of relaxation of DNA supercoils in bacterial cells,
which in turn impairs the replication and transcription of DNA. DNA gyrase and
topoisomerase IV are the main enzymes which these compounds bind and inhibit
(Hooper 1999a). In extended clinical use, it’s not unusual to experience resistance
against these compounds, due to the missense mutations in the DNA gyrase and
topoisomerase IV genes, which hinders the binding of the drug to the target enzyme.
To date, most of the resistance-bearing mutations were confined to the 83rd and
87th codons of gyrA and 80th and 84th codons of parC, which encode DNA gyrase
and topoisomerase IV, respectively, most probably due to mechanistic reasons
(Hooper 1999b, 2001).

Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that
causes severe infectious diseases in humans. It has a particular importance in cystic
fibrosis that over 90 % of these patients develop chronic lung infection. Interestingly,
certain members of fluoroquinolone antimicrobials may exhibit antipathogenic
effect by suppressing the expression of virulence factors such as elastase, phospho-
lipase C, exoenzyme S, exotoxin A and total protease activity in this bacterium
(Grimwood et al. 1989b). In a rat Pseudomonas aeruginosa chronical lung infection
model, animals were treated with subinhibitory concentrations of fluoroquinolones
as low as 1/20 of minimum inhibitory concentration (MIC). In spite of similar bac-
terial counts with the control group, fluoroquinolone treatment group had less severe
histopathological lung damage. Furthermore, the alleviation of the histopathologi-
cal damage did not deteriorate with the increasing MIC values in the time course of
treatment (Grimwood et al. 1989a). It’s yet to be proven whether fluoroquinolone
antimicrobials interfere with PQS to suppress the expression of these virulence fac-
tors. Still, the interference of quorum sensing is a promising target in antimicrobial
chemotherapy (Pesci et al. 1999).
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4.4 Conclusion

Tryptophan is an essential aromatic amino acid in human and animal nutrition. As
mammalian cells are not able to produce tryptophan, they need to take it in food.
Furthermore, tryptophan supplementation has been suggested for treatment of cer-
tain neurological conditions (Mukhopadhyay and Roy 2011). Therefore, diverting
microbial metabolism to construct hyperproducer bacterial strains has become
important. More than 50 years have passed after Jacob and Monod have demon-
strated the genetic regulation of tryptophan biosynthesis as the first repressible
operon discovered (Jacob and Monod 1961). Similar to other aromatic amino acids,
biosynthetic pathway for tryptophan spans numerous enzymatic steps, including the
allosterically regulated ones, which provide tight regulation of the synthesis of this
metabolically “expensive” product (Shen et al. 2012). The data acquired by using
systems biology techniques enabled us to engineer superior microbial factory cells
with the aid of synthetic biology methods. Tryptophan production is no exception.

After the golden age of antimicrobial drug discovery, pharmaceutical companies
have almost quitted antimicrobial development business to divert their resources to
more profitable fields. Keeping in mind that mammalian cells are enable to produce
tryptophan, it’s worthwhile to “hack” the microbial tryptophan biosynthetic path-
way in order to develop novel antimicrobial drugs with high therapeutic indexes.
Using systems biology databases for rational drug design is coming into reality
(Haag et al. 2012; Chang et al. 2013).

Another promising approach for prevention and treatment of infectious diseases
is quorum-sensing interference. Microbial cells continuously monitor the biochemi-
cal state and population density of the environment. In the case of pathogenic
microorganisms, the decision mechanisms for virulence factor expression are hard-
wired to quorum-sensing circuits. Indole and 4-quinolone derivatives constitute two
important autoinducer classes, which take part in such decisions. Obviously, the
modulation and interference of quorum sensing may also interfere with the
expression of virulence factors and thus eliminate the pathogenetic mechanisms
(Heeb et al. 2011; Lee and Lee 2010).

Acknowledgement Figures 4.1, 4.2 and 4.5 have been adapted from EcoCyc Pathways, publicly
available at http://ecocyc.org/ (Caspi et al. 2014 Jan 1).
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Chapter 5

The Role of L-Tryptophan Kynurenine
Pathway Metabolism in Various Infectious
Diseases: Focus on Indoleamine
2,3-Dioxygenase 1

Yuki Murakami, Hiroyasu Ito, and Kuniaki Saito

Abstract The kynurenine (KYN) pathway is the major route of L-tryptophan
(L-TRP) catabolism and an anabolic source of nicotinamide-containing nucleotide.
To date, three enzymes that catalyze the first and rate-limiting step in the KYN
pathway of TRP metabolism have been described: indoleamine 2,3-dioxygenase
(IDO) 1, IDO2, and L-tryptophan 2,3-dioxygenase (TDO). In this chapter, we focus
on the role of IDOI in various infectious diseases. IDO1 has a much broader sub-
strate profile for indoleamine-containing compounds and is induced by several pro-
inflammatory cytokines. Substantial increases in the TRP-K'YN pathway metabolites
occur in human brain, blood, and systemic tissues during immune activation. This
enzyme also plays a key role in the immunomodulatory effects on several types of
immune cells. Originally known for its regulatory function during pregnancy and
chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the
inflammatory state of infectious diseases. Understanding the regulation of IDOI
and the subsequent biochemical reactions is essential for the design of therapeutic
strategies in certain immune diseases. Therefore, we will discuss current knowledge
about the role of IDO1 and its metabolites during various infectious diseases, e.g.,
infection by hepatitis virus, HIV, influenza virus, encephalomyocarditis virus, and
parasites. Especially the regulation of type I interferon (IFN) production via IDO1 in
these infectious diseases is discussed.
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5.1 Regulatory Enzymes in L-Tryptophan-Kynurenine
Pathway

L-tryptophan (L-TRP) is an essential starting point of two biochemical pathways: (1)
the enzyme tryptophan 5-hydroxylase converts L-TRP into 5-hydroxytryptophan,
which is subsequently decarboxylated to 5-hydroxytryptamine (5-HT, serotonin), an
essential neurotransmitter, and (2) two atoms of oxygen are inserted into L-TRP to
form N-formylkynurenine, the first and rate-limiting step in the kynurenine (KYN)
pathway (Fig. 5.1). It is estimated that only 1 % of dietary L-TRP can be converted
into 5-HT (Russo et al. 2003). The remaining 99 % of L-TRP is metabolized via the
KYN pathway. L-TRP is catalyzed by three different enzymes: indoleamine 2,3-diox-
ygenase (IDO) 1, IDO2, and L-tryptophan 2,3-dioxygenase (TDO) (Table 5.1).

IDOs have broad substrate specificity and will accept several different indoleam-
ines including D- and L-TRP, tryptamine, 5-hydroxytryptophan (5-HTP), 5-HT, and
melatonin (Shimizu et al. 1978). IDO1 is widely expressed in different cell types in
the central nervous system (CNS) and peripheral tissues, and TRP metabolism via
IDO1 activity is related to many different functions, dependent on the tissues, cell
types, and physiological context. IDO1 is induced by IFN-y-mediated effects of the
signal transducer and activator of transcription la (STAT1a) and interferon regula-
tory factor-1 (IRF-1). The IDO1 gene has two interferon-stimulated response ele-
ments (ISREs) and IFN-y-activated site (GAS) element sequences in the 5'-flanking
region (Hassanain et al. 1993; Chon et al. 1995; Konan and Taylor 1996). IDO1
induction is also mediated by an IFN-y-independent mechanism under certain cir-
cumstances (Hissong and Carlin 1997; Fujigaki et al. 2001, 2006). Fujigaki et al.
demonstrated that IDO1 induction by lipopolysaccharide (LPS) is not mediated by
STAT1a or IRF-1 binding activities that induce IDO1 transcriptional activity by
IFN-y in many cells (Fujigaki et al. 2006). LPS stimulation of human monocytes
and macrophages activates several intracellular signaling pathways, including the
IkappaB kinase-nuclear factor-kB (NF-kB) and mitogen-activated protein kinase
(MAPK) pathways. These pathways, in turn, activate a variety of transcription fac-
tors that include NF-xB and activator protein-1 (AP-1). A part of the induction of
IDO1 by LPS is mediated by a signal from NF-kB or p38-MAPK pathways. A
homology search of the 5'-flanking region of the IDO1 gene shows consensus
sequences for transcriptional factors such as AP-1, NF-kB, and NF-IL-6, which are
activated by LPS and other proinflammatory cytokines such as TNF-a, IL-6, and
IL-1p. Therefore, the IDO1 gene could be upregulated by LPS or these cytokines in
a synergistic manner.

While the expression and function of IDO2 has been well explored in the mouse
model, there is a lack of knowledge about its expression and functional significance
in human tissue. Studies combining mRNA and protein analysis suggest that mouse
IDO2 is expressed in the liver, epididymis, and kidney (Ball et al. 2007; Fukunaga
et al. 2012). Although it is difficult to assess the distribution of IDO2 in humans as
very few studies have examined both protein and mRNA expression, IDO2 mRNA
and protein expression has been detected in human pancreatic cancer cell lines
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Fig. 5.1 Schematic overview of the kynurenine pathway. L-tryptophan (L-TRP) in the extracel-
lular fluid is transported into cells by a high-affinity tryptophan transporter. The first rate-limiting
enzyme indoleamine 2,3-dioxygenase (IDO) 1 catalyzes the initial enzymatic step in the kynuren-
ine (KYN) pathway leading to the synthesis of a number of KYN metabolites. IDO1 is induced by
several proinflammatory cytokines; therefore, KYN metabolism is increased during many inflam-
matory conditions. By contrast, glucocorticoid hormones increase transcription of tryptophan
2,3-dioxygenase (TDO) and peripheral degradation of L-TRP via the KYN pathway. The biologi-
cal function and induction mechanism of IDO2 are still unclear and controversial. IDO1 is an
important regulatory enzyme in the production of L-KYN in a broad spectrum of cell types. Once
synthesized, L-K'YN can be further metabolized through three distinct pathways to form kynurenic
acid (KYNA), 3-hydroxy-L-kynurenine (3-HK), and anthranilic acid (AA). Low activity of kyn-
urenine 3-monooxygenase (KMO) in some cells restricts the capacity to synthesize quinolinic acid
(QUIN) from L-TRP. KAT I, II, III kynurenine aminotransferase, XA xanthurenic acid, 3-HAA
3-hydroxyanthranilic acid, 3-HAO 3-hydroxyanthranilic acid oxidase, NAD+ nicotinamide ade-
nine dinucleotide+, NMDAR N-methyl-D-aspartate receptor, AMPA a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid, @7nAChR o7 nicotinic acetylcholine receptor, AR aryl hydrocarbon
receptor, GPR35 G protein-coupled receptor 35
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Table 5.1 First rate-limiting enzymes in the KYN pathway

Active Major
Protein (kDa) |enzyme expression
Enzyme | (amino acid) |formation | tissues Inducer Ref
hIDO1 45.3 kDa Monomer | Brain, heart, Proinflammatory | Yamamoto and
(403) lung, spleen, cytokines, LPS Hayaishi (1967),
uterus, vascular Fujigaki et al.
endothelium, (2001), (20006),
epididymis Murakami et al.
(2013) and
Sugimoto et al.
(2006)
hIDO2 |47 kDa (420) | Monomer | Brain, liver, Unknown Ball et al. (2007),
kidney, (2009), Fukunaga
epididymis etal. (2012) and
Yuasa et al.
(2009)
hTDO 47.8 kDa Tetramer | Liver, brain Glucocorticoid Forouhar et al.
(406) L-TRP (2007), Schutz

and Feigelson
(1972), (1972)
and Knox and
Auerbach (1955)

(Witkiewicz et al. 2009), and the expression of IDO2 mRNA has been detected in
gastric, colon, and renal tumors in humans (Lob et al. 2009). A recent report also
suggested that response to a combination chloroquine/radiotherapy treatment for
brain metastases was more pronounced in patients with an “active” IDO2 genotype
(Eldredge et al. 2013). The current studies on IDO2 may suggest that human IDO2
is active under specific conditions. It is possible that IDO2 activity is determined by
the presence of particular cofactors and is only evident in certain cell types or
conditions.

In contrast to both IDOs, TDO is a highly substrate-specific dioxygenase and
deoxygenates only L-TRP and some TRP derivatives. TDO is also the rate-limiting
enzyme in the KYN pathway of TRP metabolism in the periphery (Botti et al. 1995),
catalyzing the oxidative cleavage of TRP and regulating homeostatic plasma TRP
concentrations. TDO expression can be induced, or its activity can be increased by
L-TRP and its analogs via actions at a distinct allosteric activation site 2. In stress-
related neuropsychiatric disorders, glucocorticoid hormones also increase TDO
activity and peripheral degradation of TRP via the KYN pathway, limiting TRP
availability for 5-HT synthesis. Although the major site of expression of TDO is the
liver, mRNA and protein levels of TDO expression have been shown in astrocytes
within the human frontal cortex (Miller et al. 2004), and several studies suggest that
the enzyme and its activity are upregulated in the anterior cingulate cortex of
patients with schizophrenia and psychiatric disorders (Miller et al. 2006; Kanai
et al. 2009). Now it seems clear that peripheral TDO activity is inversely related to
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brain L-TRP concentrations (Badawy et al. 1989) and that brain L-TRP concentra-
tions can be dramatically increased by inhibiting TDO activity (Salter et al. 1995).
Therefore, the expression and activity of peripheral and potentially brain TDO are
also considered to understand TRP metabolism in the CNS during health and dis-
ease states.

5.2 TRP Metabolites in Peripheral Tissues and the CNS

Studies in vitro have shown that not all human cells are capable of directly synthe-
sizing quinolinic acid (QUIN) from L-TRP. The activities of KYN pathway enzymes
and the production of KYN metabolites depend on cell types (Heyes et al. 1997).
IDOI is not only the most important regulatory enzyme for KYN pathway, but also
kynurenine 3-monooxygenase (KMO), kynureninase, and 3-hydroxyanthranilic
acid oxidase (3-HAO) are important determinants of whether a cell can make
QUIN. Indeed, stimulation by proinflammatory cytokines resulted in large increases
of IDO1 activity in most cell types, although the accumulated amounts of QUIN are
very different. It has been shown that blood macrophages and monocyte-derived
cells produced the largest amount of QUIN in accordance with the highest activities
of KMO and kynureninase compared to other cell types (Fig. 5.2) (Heyes et al.
1997). Previously, we demonstrated the activities of KYN pathway enzymes and the
ability of different human cells to convert pathway intermediates into QUIN (Heyes
et al. 1997). Stimulation with IFN-y substantially increased IDO1 activity and
L-KYN production in primary peripheral blood macrophages and fetal brains
(astrocytes and neurons), as well as cell lines derived from macrophage/monocytes,
astrocytoma, B lymphocyte, liver, and lung. High activities of KMO, kynureninase,
or 3-HAO were found in IFN-y-stimulated macrophages and monocyte- and liver-
derived cells; these cells made large amounts of QUIN when supplied with L-TRP,
L-KYN, 3-hydroxykynurenine (3-HK), or 3-hydroxyanthranilic acid (3-HAA).
QUIN production by human fetal brain cultures and astrocytoma cells was restricted
by the low activities of KMO, kynureninase, and 3-HAO, and only small amounts
of QUIN were synthesized when cultures were supplied with L-TRP or 3-HAA. In
lung-derived cells, QUIN was produced only from 3-HK and 3-HAA, consistent
with their low KMO activity. The results are consistent with the notion that IDO1 is
an important regulatory enzyme in the production of L-KYN and QUIN. KMO and,
in some cells, kynureninase and 3-HAO are important determinants of whether a
cell can make QUIN from L-TRP.

Under physiological conditions, KYN pathway enzymes in the mammalian brain
are preferentially, although not exclusively, localized in nonneuronal cells (Heyes
et al. 1992, 1993; Schwarcz et al. 2012). Metabolism of the pathway is driven by
blood-derived L-TRP, L-KYN, and 3-HK or by locally formed metabolites
(Fig. 5.2). Astrocytes express kynurenine aminotransferases (KATs) but do not con-
tain KMO and therefore cannot produce 3-HK from KYN (Gramsbergen et al.
1997; Hodgkins and Schwarcz 1998; Hodgkins et al. 1999). 3-HK and its major
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Fig. 5.2 Clinical conditions associated with altered TRP metabolism in the peripheral and the
central nervous systems (CNS). It should be noted that the magnitude of substrate flux through the
KYN pathway is influenced by individual tissue enzyme activities, tissue blood flow, blood metab-
olite concentrations, cell membrane permeability, and active transport mechanisms. Systemic
immune stimuli induce IDOL1 in extrahepatic tissues and increase L-K'YN production. However,
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downstream metabolites are synthesized in microglia and other monocyte-derived
cells (Alberati-Giani et al. 1996; Heyes et al. 1996). Once synthesized within glial
cells, QUIN and kynurenic acid (KYNA) are promptly released into the extracellu-
lar milieu to affect their pre- and postsynaptic neuronal targets.

Many peripheral tissues express IDO1/2, while the liver has a predominance of
the unrelated and less substrate-selective enzyme TDO (Fig. 5.2). These enzymes
lower TRP levels and increase KYN concentrations, with the latter leading to
increased generation of the more distal metabolites such as QUIN and KYNA. About
90 % of total plasma TRP is bound to albumin, forming a complex that cannot
across the blood-brain barrier (BBB), but free-form TRP is available for transport
across the BBB into the brain (Madras et al. 1974). An important interface exists
with the CNS since TRP, KYN, and 3-HK can cross the BBB quite readily (Eastman
et al. 1992; Fukui et al. 1991; Speciale and Schwarcz 1990; Speciale et al. 1989).
On the other hand, KYNA and 3-HAA do not cross the BBB, but their concentra-
tions are elevated markedly after systemic administration of KYN (Miller et al.
1992; Nozaki and Beal 1992). QUIN also does not normally cross into the CNS, but
when the barrier is compromised, it may do so, like many compounds (Vezzani
et al. 1989). These results mean that altering the TRP-K'YN ratio in the blood can
produce significant secondary changes in the amount of KYNSs in the CNS (Saito
et al. 1992), contributing, no doubt, to the effects of immune activity and stress. The
induction of IDO1 in endothelial cells by inflammatory mediators including IFN-y
and the resulting changes of local TRP and KYN concentrations are likely to alter
the levels of both compounds and their metabolites in the CNS, especially since
there is evidence that the KYN generated is secreted preferentially from the basolat-
eral pole of the endothelial cells, gaining direct access to the cerebral aspect of the
BBB (Owe-Young et al. 2008). This relationship may be of special significance for

<
<

Fig. 5.2 (continued) extrahepatic tissues have very low activity of KMO, while the stress-related
hormone, glucocorticoid, increases TDO activity and peripheral degradation of L-TRP via the
KYN pathway. Therefore, in the periphery, the degradation of L-TRP and the subsequent forma-
tion of circulating KYNs are normally regulated by steroid hormones (glucocorticoid) and proin-
flammatory cytokines (IFN-y, TNF-a, IL-6, and IL-1p). Metabolites may enter the blood and be
exchanged among different tissues for further metabolism. L-TRP, L-KYN, and 3-HK in the extra-
cellular fluid are transported into cells by a high-affinity transporter, and they all cross the blood-
brain barrier (BBB) using the large neutral amino acid transporter into the brain (Fukui et al. 1991).
Increases in brain metabolite levels may reflect their direct diffusion into the brain from blood or
by entry of precursors and subsequent metabolism in brain cells. Increased levels of metabolites
within the CNS following immune stimulation may result from induction of IDO1 in brain cells,
including monocyte infiltrates and glial cells. Astrocytes harbor KATs but do not contain KMO.
3-HK and its major downstream metabolites are synthesized in microglia and other cells of mono-
cytic origin. Once synthesized within glial cells, QUIN and KYNA are promptly released into the
extracellular milieu to affect the normal functions of responsive cells (e.g., neurons) by interfering
with binding of glutamate and other excitatory amino acid to these receptors. KYNA is also a
ligand of o7 nicotinic acetylcholine receptor (a7nAChR), which mediates inflammatory regula-
tion. Together, peripheral and central events connect chronic inflammation and neuroinflammatory
mechanisms with abnormal metabolism along the KYN pathway and pathological conditions in
the body
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understanding the cognitive and neurodegenerative effects of human immunodefi-
ciency virus (HIV) infection (see details in later section) in which there is strong
evidence for the role of QUIN neurotoxicity (Kandanearatchi and Brew 2012).
Local changes in TRP and KYN metabolite levels will also affect immune tolerance
which may further exacerbate susceptibility of the CNS in some individuals (Owe-
Young et al. 2008).

5.3 Immune Regulation by IDO1

IDOI1 was first isolated from rabbit intestine in 1967 (Yamamoto and Hayaishi
1967), and it became rapidly clear that its induction serves the mechanism of anti-
microbial resistance. Infection by bacteria, parasites, or viruses induces a strong
IFN-y-dependent inflammatory response. IFN-y-induced IDO1 degrades TRP, and
the depletion of TRP results in the regulation of intracellular pathogens (Yoshida
et al. 1979; Murray et al. 1989; Daubener et al. 1993; Nagineni et al. 1996;
Pfefferkorn and Guyre 1984). On the other hand, Munn D.H. et al. provided evi-
dence for a much broader immunoregulatory significance of TRP degradation by
IDO1. They demonstrated that tolerance to allogeneic fetuses is regulated by IDO1-
expressing cells in the mice placenta (Munn et al. 1999). Indeed, many studies also
showed that a marked increase in IDO1 suppresses the immune response by locally
depleting TRP and hence preventing T-lymphocyte proliferation using the IDOI
inhibitor, 1-methyl-DL-tryptophan (1-MT) (Heseler et al. 2008; Munn et al. 2004;
Schmidt et al. 2009). These previous studies clearly showed that TRP degradation
by IDOI1 substantially contributes to immunoregulation, and therefore, IDO1 has
been considered a strong immunoregulatory factor.

IDO1 is predominantly expressed in antigen-presenting cells (APCs) of the
immune system — the dendritic cells (DCs), monocytes, and macrophages (Heitger
2011; Blaschitz et al. 2011; Murakami et al. 2013). As described previously, IDO1
can be introduced by soluble cytokines such as IFN-y, type I IFNs, transforming
growth factor-p (TGF-B), TNF-a, or toll-like receptor (TLR) ligands such as LPS
(Fujigaki et al. 2001). In addition, KYN and 3-HK could be also involved in the
exacerbation of TRP starvation in T cells. Kaper T. et al. have proposed the exis-
tence of a positive feedback between IDO1-mediated TRP metabolism in DCs and
KYN-induced TRP depletion in CD98-expressing T cells (Kaper et al. 2007). CD98
is expressed on astrocytes and activated T cells. T cells are sensitive to low levels of
TRP and TRP metabolites in vitro. TRP deficiency specifically activates the general
control nonderepressing-2 (GCN2) kinase in murine and human T cells, which
leads to a halt in the G2 phase of T-cell division and, consequently, T-cell suppres-
sion (Fig. 5.3a) (Munn et al. 2005). Moreover, a specific combination of TRP
metabolites can inhibit anti-CD3 antibody-induced T-cell proliferation and induce
T-cell apoptosis in vitro (Terness et al. 2002; Fallarino et al. 2002). The combination
of low TRP concentration and specific TRP metabolites leads to the generation of
regulatory T cells (Tregs) from naive T cells in vitro (Fallarino et al. 2006;
Belladonna et al. 2007). Tregs inhibit the activation, differentiation, and survival of
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Fig. 5.3 Immune regulation by IDO1. (a) CD19* plasmacytoid DCs (pDCs) express high levels of
IDO1, which can activate mature regulatory T (Treg) cells via activation of the protein kinase
general control nonderepressing-2 (GCN2) pathway of protein synthesis inhibition (Sharma et al.
2007; Murakami et al. 2013). pDC-produced IDO1 and activated Treg can convert naive T cells
into new Treg. IDO1 acts in an autocrine manner to suppress pDC production of IL-6, which pre-
vents the conversion of Treg into IL-17-producing Th17 proinflammatory cells (Sharma et al.
2009). IDO1 also downregulates type I IFN (IFN-a) production by pDC (Manlapat et al. 2007).
(b) Virus-specific T-cell regulation by IDO1. Antigen-presenting cells produce IL-12b, which can
induce virus-specific T cells, via TLR signaling activated by viral component. Simultaneously,
the activation of TLR signaling enhances IDO1 expression via IFN-y production. IDO1 impairs
the induction and proliferation of virus-specific T cells directly and/or indirectly (via the induction
of Treg)
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effector T cells through the induction of IDO1 in APCs by ligation of inhibitory
ligands and cytokines from Tregs (Fig. 5.3b) (Fallarino et al. 2004).

It is possibly the selective pressure by Tregs that drove the evolution of the IDO1
mechanism from one operating in innate and inflammatory responses to pathogens
(Bozza et al. 2005; Fallarino et al. 2006) to an effector mechanism of Treg function
(Grohmann and Puccetti 2003; Fallarino et al. 2003). Functional plasticity in DCs
allows these cells to present antigens in an immunogenic or tolerogenic fashion,
largely contingent on environmental factors (Grohmann and Puccetti 2003).
Co-stimulatory and co-inhibitory interactions between DCs and T cells are pivotal
in tipping the balance between immunity and tolerance in favor of either outcome.
When CD80/CD86 molecules on DCs were engaged to T cells, cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), widely expressed by Tregs, was later
shown to behave as an activating ligand for CD80/CD86 receptors, resulting in
intracellular signaling events. Through an unidentified signal cascade, DCs release
type I and type II IFNs that act in an autocrine and paracrine fashion to induce
strong IDO1 expression and function (Grohmann and Puccetti 2003). KYN-
dependent T-cell differentiation would contribute to expand the pool of Tregs
(Puccetti and Grohmann 2007). However, in the long-term control of immune
homeostasis and tolerance to self, IDO1 relies on different regulatory stimuli and
cytokines, providing a basal function amenable to regulation by abrupt environmen-
tal changes (Belladonna et al. 2008).

In a TGF-B-dominated environment and in the absence of IL-6, IDO1 activates a
variety of downstream signaling effectors that sustain TGF-p production, produc-
tion of type I IFNs, and a bias of plasmacytoid DCs (pDCs) toward a regulatory
phenotype (Lande and Gilliet 2010; Matta et al. 2010). IDO1 enhances its own
expression and stably tips the balance between proinflammatory and anti-inflamma-
tory NF-kB activation.

5.4 The Role of IDO1 and Its Metabolites
in Various Infectious Diseases

Infection caused by various microbes (bacteria, virus, fungus, and parasite) induces
inflammation in various body organs and promotes the production of many cyto-
kines related to inflammation. Innate immune systems are deeply involved in the
infection-induced inflammation via TLR, RIG-I-like receptor (RLR), and NOD-like
receptors (NLRs) (Meylan et al. 2006; Kawai and Akira 2011). These receptor sig-
nals increase the production of various cytokines, including type I and II IFN, and
proinflammatory cytokines (IL-1f, IL-6, and TNF-a). It is well known that these
cytokines could enhance the expression of IDO1 in dendritic cells, monocytes, and
macrophages. A recent report demonstrated that TLR signaling could directly
induce IDOI1 expression without the stimulation of cytokines (Godin-Ethier et al.
2011). Thus, the expression of IDOI in various host cells is enhanced via inflamma-
tory molecules during infectious diseases.
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Recently, many studies evaluated the induction and role of IDO1 during infections
caused by various pathogens including bacteria, virus, fungus, and parasitic insects.
These reports make it increasingly clear the significance of IDOI in infectious dis-
eases. In this section, we discuss the involvement of IDO1 and TRP metabolites in
infectious diseases caused by some viruses (hepatitis virus, human immunodefi-
ciency virus, influenza virus, encephalomyocarditis virus), Toxoplasma gondii,
Chlamydia spp., and fungus.

5.4.1 Hepatitis Virus Infection

There are five types of hepatitis viruses (A, B, C, D, and E) which can infect humans
either via oral or blood transmission. These viruses can cause acute or chronic hepa-
titis in humans. All types of human hepatitis viruses can induce acute hepatitis.
Moreover, Epstein-Barr (EB) virus, cytomegalovirus, and herpes virus can also
induce acute liver injury. Fulminant hepatitis is a clinical syndrome consisting of
sudden and severe liver injury that results in hepatic encephalopathy and acute liver
failure (Meyer and Duffy 1993; Wright and Lau 1993). The rate of mortality in
fulminant hepatitis patients remains very high, although intensive medical care and
implementation of the latest therapies, including liver transplantation, are available
today. Chisari et al. have established acute hepatitis B model using human hepatitis
B virus (HBV) transgenic (Tg) mice and hepatitis B surface (HBs) antigen (Ag)-
specific cytotoxic T lymphocytes (CTLs) (Ando et al. 1993, 1994). A fulminant
hepatitis model has been created by adoptive transfer with HBsAg-specific CTLs
into HBV Tg mice. The mice develop a necroinflammatory liver disease that is his-
tologically similar to acute viral hepatitis in man. In this acute hepatitis murine
model, IDO1 expression was significantly increased in the liver of HBV Tg mice
after HBsAg-specific CTL injection (Iwamoto et al. 2009). IFN-y expression is
markedly increased in the liver after the CTL injection, and enhancement of IFN-y
production is deeply involved in the induction of IDO1 in hepatocytes. However, the
role of IDOI is unclear in this acute hepatitis model. To evaluate the role of IDOI1
during acute hepatitis, we backcrossed HBV Tg mice and IDO1 knockout (KO)
mice to establish HBV Tg/IDO1 KO mice and evaluated liver injury using these
established mice. Liver injury after administration of HBsAg-specific CTLs was
attenuated in HBV Tg/IDO1 KO mice compared to that in HBV Tg/IDO1 wild-type
(WT) mice (unpublished data). Moreover, coadministration of CTLs and KYN,
which is a metabolite of L-TRP converted by IDO1, induced severe liver injury even
in HBV Tg/IDO1 KO mice. These results indicated that KYN induced by IDO1
may be one of the aggravating factors for liver injury in HBV Tg mice during acute
hepatitis induced by HBsAg-specific CTLs. Woodchuck hepatitis virus infects
woodchucks and also causes acute hepatitis. IDO1 expression in the liver is upregu-
lated during acute hepatitis caused by woodchuck hepatitis virus (Wang et al. 2004).
IFN-y is involved in the enhancement of IDO1 expression during this virus infec-
tion. In acute liver injury model induced by a chemical agent — carbon tetrachloride
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(CCLA4) or alpha-galactosylceramide (GalCer) — IDO1 expression in the liver was
immediately enhanced after the injection of these chemical agents (Li et al. 2012;
Ito et al. 2010). Thus, IDO1 expression was enhanced during acute hepatitis or liver
injury in which IFN-y or proinflammatory cytokine production was involved in the
development of liver injury. In acute hepatitis caused by any virus, IFN-y produc-
tion by immune cells and Th1 response become dominant to eliminate intracellular
pathogens (virus), and consequently, IDO1 expression and the metabolites of TRP
in the liver increase during acute hepatitis caused by various viral infections.
Inhibition of induction of IDO1 may lead to new therapies aiming at reducing tissue
damage, because these TRP metabolites induced by IDO1 exacerbate liver injury
cooperatively with antigen-specific CTLs.

Chronic hepatitis is generally caused by HBV or human hepatitis C virus (HCV)
infection. Most cases of hepatocellular carcinoma (HCC) are associated with
chronic hepatitis induced by HBV or HCV (Arzumanyan et al. 2013). Therefore, the
elimination of HBV or HCV in the early phases of infection is critical for an
improved prognosis for the patient. Recent reports demonstrated that the expression
and activity of IDOI1 are increased during chronic hepatitis caused by HBV infec-
tion (Chen et al. 2009). In patients with HBV infection, alanine aminotransferase
(ALT) levels and HBV load correlated with IDO1 expression in the blood samples.
Some reports have also demonstrated that IDO1 expression and activity are signifi-
cantly enhanced in chronic hepatitis with HCV infection (Larrea et al. 2007,
Zignego et al. 2007). For patients, the expression of IDO1 in the liver was upregu-
lated and correlated with CTLA-4 directly. CTLA-4 is expressed on the surface of
T cells and transmits an inhibitory signal to T cells. Therefore, the induction of
IDO1 may inhibit T-cell reactivity to viral antigens in chronic HCV infection
directly or via enhancement of CTLA-4 expression. In clinical practice, patients
with HCV infection are generally treated with type I interferon (IFN) and guanosine
analog (ribavirin) to eliminate the HCV. This IFN and ribavirin therapy sometimes
induces depression in patients. Some reports indicated that IDO1 may be involved
in the development of IFN-induced depression in HCV-infected patients (Zignego
et al. 2007; Baranyi et al. 2013). Type I IFN can also upregulate the expression of
IDOL1 in various host immune cells (Huang et al. 2013; Von Bubnoff et al. 2011).
Therefore, the measurement of IDO1 may be able to predict the onset of type I IFN-
induced depression during therapy to HCV-infected patients (Raison et al. 2010;
Smith et al. 2012). A recent study demonstrated that the addition of protease inhibi-
tor to standard therapy with pegylated IFN and ribavirin, as compared with standard
therapy alone, significantly increased the rates of sustained virologic response in
previously untreated adults with chronic HCV genotype 1 infection (Poordad et al.
2011). Now, while we may completely eliminate HCV from the patient’s system by
the coadministration of IFN, ribavirin, and protease inhibitor, there is no treatment
to completely eliminate HBV from patients with chronic HBV infection. In chronic
hepatitis caused by HBV infection, patients are generally treated with IFNs and a
nucleoside analog (lamivudine). However, this treatment only suppresses viral pro-
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liferation and does not completely eliminate HBV. Therefore, patients with chronic
hepatitis by HBV infection must be on continuous treatment with IFN and lamivu-
dine. Lifelong viral persistence in chronic hepatitis B (CHB) carriers is due to liver-
induced immune tolerance toward HBYV, which is characterized by defective
HBV-specific T-cell responses and undetectable anti-HB Ab levels (Rehermann and
Nascimbeni 2005). One possible treatment to eliminate HBV completely from the
patients with HBV may be immunological therapy using the activation of host
immune cells. In chronic HBV infection state, the host immune system is tolerant to
HBYV itself. The enhancement of host immune response against HBV can induce
seroconversion in HB V-infected patients; seroconversion seems to completely elim-
inate HBV. Induction of a powerful immune response to the HBV antigen may lead
to complete elimination of HBV from the patient’s system. Several reports state
attempts to induce HBV-specific immune response in HBV transgenic mice in
which host immune system is tolerant to HBV antigen; it was seen that general vac-
cination never induced HBV-specific immune response in the host animal (Ito et al.
2008; Zeng et al. 2013). IL-12-based vaccination therapy may reverse liver-induced
immune tolerance toward HBV by restoring systemic HBV-specific CD4" T-cell
responses, eliciting robust hepatic HBV-specific CD8* T-cell responses, and facili-
tating the generation of HBsAg-specific humoral immunity. We previously demon-
strated that a-galactosylceramide (GalCer), which is a ligand specific to natural
killer T (NKT) cells, powerfully induced HBsAg-specific CTLs with HBsAg vac-
cination (Ito et al. 2008). As previously indicated, the expression of IDOI1 is
enhanced in chronic hepatitis caused by HBV infection (Chen et al. 2009). Many
reports demonstrated that IDO1 can suppress the activity and proliferation of sev-
eral types of lymphocytes via depletion of tryptophan and/or the increase of some
TRP metabolites (Li et al. 2012; Hoshi et al. 2010; Murakami et al. 2012). During
chronic hepatitis, the enhancement of IDO1 activity may inhibit HBV-specific
immune response by lymphocytes in the host, and HBV cannot be eliminated by
host immune system completely. However, GalCer, which can strongly induce
HBV-specific CTLs with HBsAg vaccination, also enhanced the expression of
IDOL1 in the liver and spleen and increased the concentration of KYN in the serum
(Ito et al. 2010). In our unpublished results, HBsAg-specific immune response
induced by the immunization with HBsAg and GalCer was strongly enhanced in
IDO1 KO mice compared with WT mice. A competitive inhibitor of IDOI1, 1-MT
could also increase HBsAg-specific CTL response induced by HBsAg and GalCer
immunization. These results indicated that IDO1 inhibition and activation of
immune response by GalCer could extremely enhance HBV-specific cellular
immune response during HBsAg vaccination. Coadministration of HBsAg, GalCer,
and 1-MT may lead to a new therapy to completely remove HBV in patients with
chronic hepatitis caused by HBV infection. Thus, IDO1 is enhanced and deeply
involved in chronic hepatitis. The control of IDO1 induction may open a new treat-
ment to purge the hepatitis virus completely even in immune-tolerant states such as
during chronic hepatitis.
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5.4.2 Human Immunodeficiency Virus (HIV) Infection

HIV is a lentivirus and causes acquired immunodeficiency syndrome (AIDS) in
humans. The immune system of a patient infected with HIV allows life-threatening
opportunistic infections and cancers. Patients show highly elevated serum/plasma
concentrations of the proinflammatory cytokines, type I and type II IFN. These
cytokines induce the production of reactive oxygen species and the degradation of
TRP by IDOI1. For two decades and counting, it was shown that sources of the
neurotoxin QUIN in the brain of HIV-1-infected patients and retrovirus-infected
macaques were synthesized locally within the brain, and these results demonstrate
arole for induction of IDO1 in accelerating the local formation of QUIN within the
brain tissue, particularly in areas of encephalitis, rather than entry of QUIN into
the brain from the meninges or blood (Heyes et al. 1998). Indeed, IDO1 has power-
ful immunosuppressive activity, which could contribute to the immune dysfunc-
tion observed in HIV-infected patients. HIV infection induced the expression of
IFN-P and IFN-y in peripheral blood mononucleated cell (PBMC) from a healthy
donor (Boasso et al. 2007). These cytokines enhanced IDO1 expression in PBMC
after HIV infection. Moreover, a recent study demonstrated that HIV Tat protein
directly induced IDO1 expression on DC (Planes and Bahraoui 2013). In this
report, Tat induced IDO1 expression before the production of IFN-y at the kinetic
level, and IFN-y pathway inhibitors had no effect on Tat-induced IDO1. Thus, dur-
ing HIV infection, IDO1 expression is enhanced by HIV proteins and IFN induced
by HIV infection in host immune cells. IDO1 inhibitor (1-MT) enhanced the elimi-
nation of HIV-infected macrophages in an animal model (Potula et al. 2005). The
treatment with 1-MT increased the number of HIV-specific CTLs, leading to elimi-
nation of HIV-infected macrophages in the brain. As a therapy against simian
immunodeficiency virus (SIV) infection, IDO1 inhibitor was used in macaques.
Combination therapy with 1-MT and antiretroviral reagents (didanosine, stavu-
dine, 9-(2-phosphonylmethoxypropyl) adenine) significantly reduced the virus
levels in plasma and lymph nodes of SIV-infected animals (Boasso et al. 2009).
1-MT appeared to synergize with antiretroviral therapy (ART) for HIV in inhibit-
ing viral replication and did not interfere with the beneficial immunologic effects
of ART (increased frequency of total CD4 T cells, increase of CD8 T cells, and
reduction of regulatory T cells). IDO1 activity is strictly associated with the func-
tion of regulatory T cells, in that regulatory T cells induce IDO1 expression in
APC, and IDO1-expressing APC induce a regulatory T-cell phenotype in naive T
cells (Fallarino et al. 2003; Curti et al. 2007). Regulatory T cells accumulate in
lymph nodes where IDO1 is upregulated during HIV infection (Nilsson et al. 2006;
Estes et al. 2006). These regulatory T cells induced by IDO1 may inhibit the induc-
tion and proliferation of HIV-specific effector T cells to eliminate HIV from the
patients. A previous study investigated the role of IDOI in mice infected with
LP-BMS5 murine leukemia virus, which results in the development of a fatal immu-
nodeficiency syndrome known as murine AIDS (Hoshi et al. 2010). The absence of
IDO1 upregulated the production of type I IFNs and downregulated virus
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replication in the animals with LP-BM5 infection. The survival rate of IDO1 KO
mice or 1-MT-treated mice infected with LP-BMS5 alone or with both LP-BM5 and
Toxoplasma gondii was clearly greater than the survival rate of WT mice. In gen-
eral, HIV impairs the host immune system via the destruction of CD4* T cells.
Moreover, the enhancement of IDO1 expression induced by HIV infection is also
one of the mechanisms to cause immunodeficiency in HIV patients.

5.4.3 Influenza Virus Infection

Influenza, commonly known as the flu, is an infectious disease caused by RNA
viruses of the family Orthomyxoviridae, the influenza viruses. The most common
symptoms are chills, fever, runny nose, sore throat, muscle pains, headache (often
severe), coughing, weakness/fatigue, and general discomfort. Previous reports indi-
cated that IDOI activity in the lung and lung-draining mediastinal lymph nodes
were enhanced after the infection with the influenza virus (Huang et al. 2013;
Yoshida et al. 1979). Induction of IDO1 expression impaired influenza-specific
effector CD8 T-cell responses and delayed the recovery after viral clearance (Huang
et al. 2013). Moreover, treatment by IDO1 inhibitor increased the numbers of acti-
vated and functional CD4* T cells, influenza-specific CD8* T cells, and effector
memory cells in the lung after influenza virus infection (Fox et al. 2013). However,
the influenza-induced IDO1 activity did not affect virus clearance during influenza
infection (Huang et al. 2013). Secondary bacterial pneumonia is a serious disease
during or after influenza infection. A previous report demonstrated that viral infec-
tions and bacterial components in the airway synergize to produce huge proinflam-
matory mediators that contribute to the severe prognosis of secondary bacterial
complications during or after influenza infection (Zhang et al. 1996). Upregulation
of IDO1 expression induced by influenza virus infection enhanced bacterial out-
growth during secondary pneumococcal pneumonia (van der Sluijs et al. 2006).
Treatment of 1-MT in secondary bacterial infection after influenza infection model
significantly reduced the bacterial outgrowth and proinflammatory cytokine pro-
duction in the infected lung. These results indicated that control of IDO1 expression
leads to the treatment of influenza virus infection in itself and secondary pneumonia
after influenza virus infection. Though the therapy to inhibit IDO1 expression can
hardly eliminate influenza virus, it is useful to improve the prognosis in the patients
infected with the virus.

5.4.4 Encephalomyocarditis Virus Infection

Encephalomyocarditis virus (EMCV), a member of the Picornaviridae family which
includes the Enterovirus genus, causes acute myocarditis in animals. EMCYV infec-
tion in mice is an established model for viral myocarditis, dilated cardiomyopathy,
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and congestive heart failure (Topham et al. 1991). An earlier report demonstrated
that type I IFN is upregulated by IDO1 knockdown or inhibition during experimen-
tal EMCYV infection, resulting in suppressed EMCV replication (Hoshi et al. 2012).
Moreover, the treatment of IDO1 KO mice with KYN metabolites eliminated the
effects of IDO1 knockdown on the improved survival rates. Type I IFN is produced
by macrophages or dendritic cells that recognize the virus via TLRs or RIG-1. KYN
decreased the number of macrophages and suppressed the production of type I
IFN. These results suggested that KYN metabolites regulate the production of type
I IFNs by the suppression of immune cells during EMCYV infection.

5.4.5 Toxoplasma gondii Infection

Toxoplasma gondii, an intracellular protozoon, is a major pathogen of the opportu-
nistic infectious disease toxoplasmosis in infants, pregnant women, and immuno-
compromised hosts, such as patients with AIDS or those treated with
immunosuppressive drugs. Previous studies have also indicated that IDO1 induction
by IFN-y resulted in the degradation of L-TRP and inhibited 7. gondii growth
in vitro and in vivo (Heseler et al. 2008; Silva et al. 2002). On the other hand, a
recent study demonstrated that IDO1 activity inhibited by 1-MT attenuated 7. gondii
replication and inflammatory damage in the lung after infection (Murakami et al.
2012). Also, several reports indicated that marked increases in IDO1 may suppress
immune responses by locally depleting L-TRP and hence preventing T-lymphocyte
proliferation (Munn et al. 1999; Liu and Wang 2009). In other words, IDO1 may
impair the host immune system’s ability to eliminate 7. gondii during infection.
Thus, IDO1 has two opposite effects in the control of 7. gondii infection. A recent
report demonstrated that the minimum concentration of tryptophan required for bac-
terial growth is 10-40-fold higher than the minimum concentration necessary for
T-cell activation (Muller et al. 2009). A balance between the antimicrobial effect and
the inhibition of host lymphocytes may be important during 7. gondii infection.

5.4.6 Chlamydia spp. Infection

Chlamydia is a genus of bacteria that are obligate intracellular parasites. Chlamydia
infection is a common sexually transmitted infection (STI) in humans caused by the
bacterium Chlamydia trachomatis. Chlamydia trachomatis is a gram-negative bac-
terium that causes severe diseases of the eye and the urogenital tract. It is recognized
by host immune cells via TLR2 (Darville et al. 2003). The host immune response to
Chlamydia trachomatis potently depends on IFN-y, which is a strong inducer of
IDOI1 (Roshick et al. 2006). IDO1-mediated TRP starvation is thought to be the
major innate immune mechanism to control Chlamydia growth. Since the addition
of TRP reversed the effect of IFN-y in Chlamydia growth, restriction of Chlamydia
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spp. intracellular growth depended on tryptophan deprivation. Only a condition of
severe IDOI1-mediated TRP degradation would inhibit bacterial persistence and
concomitantly reduce bacteria reactivation. However, at suboptimal concentrations
of IFN-y, tryptophan starvation could allow the infection to enter a persistent state
(Beatty et al. 1994). Thus, chlamydial development is rigorously regulated by severe
TRP depletion with high IDO1 activity.

5.4.7 Fungal Infection

Although human beings are continuously exposed to fungi, they rarely develop fun-
gal infections. A variety of environmental and physiological conditions contribute
to the development of fungal diseases. Fungal infections easily develop under con-
ditions of primary or acquired immunodeficiency. A stable host and fungi interac-
tion requires that the elicited host immune response be strong enough to allow host
survival with or without pathogen depletion and to establish persistency without
excessive inflammation. In an experimental fungal infection model, IDO1 activity
was enhanced at sites of infection as well as in dendritic cells and effector neutro-
phils via IFN-y- and CTLA-4-dependent mechanisms. IDO1 inhibition by the treat-
ment of 1-MT greatly exacerbated Candida infection and associated inflammatory
pathology as a result of deregulated innate and adaptive/regulatory immune
responses (Bozza et al. 2005). 1-MT impaired the activation and functioning of sup-
pressor CD4+CD25+ regulatory T cells producing IL-10 during Candida infection.
Several types of regulatory host immune cells could influence the outcome of fungal
infection. A good balance is required between regulatory T-cell responses, effector
components, and the pathogen. A recent study demonstrated that the IDO1/regula-
tory T-cell axis had a protective effect on fungal allergy (Grohmann et al. 2007).
Glucocorticoid-inducible TNF receptor (GITR) modulated tryptophan catabolism
by IDOI induction and inhibited host Th2 response during fungal allergic diseases.
Thus, induction of IDO1 could be an important mechanism underlying the anti-
inflammatory action of corticosteroids. The induction of IDO1 may be involved not
only in the outcome of fungal infectious diseases by host immune system but also
in the allergic diseases caused by fungal infection.

5.5 Future Strategy Targeting the TRP-KYN Pathway

An early study suggested that IDO1 participates in controlling fetal allograft rejec-
tion (Munn et al. 1998). Since then, a number of studies support the importance of
IDO1 as a negative co-stimulatory molecule. IDO1 deficiency has been shown to
promote T-cell response, downregulate Treg responses, and exacerbate autoimmune
inflammatory diseases (Yan et al. 2010). The current study provides evidence that
absence and inhibition of IDOI are critical for suppressing virus replication with
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upregulated type I IFN (Hoshi et al. 2010). Although the role of IDO1 may be com-
plex and may depend on the difference of disease stages (e.g., acute/chronic dis-
ease) or the stimulus pathogens, current studies suggest that modulation of the
IDO1 pathway may be an effective strategy for treatment of various infectious
diseases.

On the other hand, recent studies provide interesting evidences. Aryl hydrocar-
bon receptor (AhR) is a ligand-activated transcription factor. AhR is an important
transcriptional regulator of drug-metabolizing enzymes, best known for mediating
the toxicity of dioxin. AhR also has endogenous functions that include controlling
cell cycle, immune responses, and cell differentiation. It has been recently reported
that KYNA may be one of the endogenous ligands of AhR (Denison and Nagy
2003). Interestingly, it has been recently shown that KYN is also able to activate
AhR responses (Mezrich et al. 2010) and IDO1 is induced by DCs in response to
dioxin (Vogel et al. 2008). Possibly, AhR can interact with several KYNs and pro-
mote the generation of immunosuppressive T cells (Mezrich et al. 2010). It has been
repeatedly shown that KYNA is a potent antagonist of the glycine allosteric site at
the NMDA receptor complex, and for several years, it was assumed that interaction
between KYNA and the NMDA receptor complex could have a physiological role
in brain function (Stone 1993). However, KYNA affinity for the NMDA receptor
complex is not sufficient in physiological conditions. It has also been demonstrated
that KYNA antagonizes o7 nicotinic acetylcholine receptors (a7nAChRs)
(Alkondon et al. 2004), which have been shown to mediate inflammatory regulation
in a variety of inflammatory states, such as sepsis, endotoxic shock, and colitis
(Pavlov 2008). Thus, targeting the KYN pathway for new drug development could
be of value not only for treatment of various infectious diseases but also for prevent-
ing the development of neurodegenerative disorders. In addition, understanding the
subsequent steps on the KYN pathway and physiological mechanisms responsible
for regulation of KYN and its metabolite concentration in biological fluids may be
important for future drug development.

5.6 Conclusion

TRP metabolism via KYN pathway is a good example of how metabolism of small
molecules can impact the immune system. IDO1, an enzyme involved in the catabo-
lism of TRP, is expressed in a variety of cells including immune cells, such as
monocyte-derived macrophages and DCs. TRP depletion via IDO1 is part of the
cytostatic and antiproliferative activity, and IDO1 activity participates in the regula-
tion of T-cell responses and immune homeostasis. Therefore, induction of the KYN
pathway and/or controlling the systemic TRP concentrations by stimulation of
immune cells or by diet might be an effective strategy for treatment of virus infec-
tion and immune diseases. We believe that further findings on the mechanism of
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immune regulation by IDO1 and KYN pathway might contribute to the develop-
ment of a novel therapy protocol, which would target several immune disorders.
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Chapter 6
Evaluation of Tryptophan Metabolism
in Chronic Immune Activation

Ayse Basak Engin

Abstract Chronic immune activation is encountered in different pathologies
including granulomatous and functional bowel diseases, cancer, aging, atheroscle-
rosis, and obesity. Persistence of chronic inflammatory stimuli over time creates a
biologic background for immunosenescence and favors neopterin formation with
the enhanced tryptophan (Trp) degradation in diseases concomitant with cellular
immune activation. Trp degradation leads to the generation of several neuroactive
compounds by three distinct pathways.

Indoleamine 2,3-dioxygenase (IDO) induction leads to many complex changes
within the affected cells resulting in immunosuppression through breakdown of Trp.
Thus, neopterin concentrations as well as IDO expression significantly increase in
inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn’s disease.

However, irritable bowel syndrome (IBS) is linked with abnormal serotonin
functioning and immune activation. In this case, enteric serotonin (5-HT) signaling
may be defective and inactivated by the serotonin-selective reuptake transporter
(SERT) in the enterocytes. A positive correlation is evident between IBS severity
and kynurenine (Kyn) to Trp ratio which is significantly correlated with the rise of
interferon (IFN)-gamma.

The dual host-protective and tumor-promoting actions of immunity are referred
to as cancer immunoediting. IDO-reactive T cells are able to recognize and kill
tumor cells as well as IDO-expressing dendritic cells (DCs). IDO activation leads to
immunosuppression through breakdown of Trp in the tumor microenvironment and
tumor-draining lymph nodes. C-C chemokine receptor type 4 (CCR4)+ forkhead
boxp3(Foxp3)+ regulatory T (Treg) cells create a favorable environment for tumor
escape from host immune responses. Thus, Foxp3+/IDO+ tumors are associated
with more advanced disease.

Age-related changes in the immune system are known as immunosenescence. A
causal relationship is evident between the Trp metabolism and immune deficiency
in elderly. Eventually, the reduced serum Trp concentrations and increased Kyn
levels indicate increased chronic low-grade inflammation in elderly. In this case,
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IDO-induced Trp degradation is associated with increase in neopterin and nitrite
levels. The amounts of neopterin produced by activated macrophages correlate with
their capacity to release reactive oxygen species (ROS). Melatonin not only
improves the antioxidant potential of the cell by stimulating the synthesis of antioxi-
dant enzymes but also reduces free radical generation. The decline in melatonin
production in aged individuals is a primary contributing factor for the development
of age-associated neuronal damage.

IDO activity also has a significant positive correlation in both sexes with carotid
artery intima/media thickness as an early marker of atherosclerosis. Enhanced Trp
degradation in patients with coronary heart disease correlates with enhanced neop-
terin formation. In addition to elevated Kyn to Trp ratio, neopterin concentrations
correlate with the abdominal obesity and metabolic syndrome.

Keywords Tryptophan * Kynurenine ® Neopterin * Ulcerative colitis ® Crohn’s dis-
ease ¢ [rritable bowel syndrome * Immune escape mechanisms ® Obesity * Aging

6.1 Introduction

Tryptophan (Trp) is an indispensable amino acid that should be supplied by dietary
protein. L-Tryptophan metabolism is associated with numerous physiological func-
tions and leads to the generation of several neuroactive compounds by three distinct
pathways (Ruddick et al. 2006). First of all through the kynurenine (Kyn) pathway,
while a large amount of Trp is oxidatively metabolized in the liver, simultaneously
a small amount of Trp degradation can occur extrahepatically (Wirleitner et al.
2003). In this respect the conversion of Trp to Kyn is catalyzed by either the ubiqui-
tous indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO)
which is localized in the liver (Ruddick et al. 2006). In the central compound of this
pathway, Kyn can turn into free radical generator 3-hydroxykynurenine, kynurenic
acid (KA), and quinolinic acid (QA). KA is an N-methyl-D-aspartate (NMDA)
receptor and alpha7 nicotinic acetylcholine receptor (alpha7nAChR) antagonist at
physiological concentrations through its competitive blockade of the glycine co-
agonist site (Schwarcz and Pellicciari 2002). QA has excitotoxic properties due to
potent activation of NR2A and NR2B; NMDA receptor subtypes and its ability to
generate free radicals are independent of receptor activation (Schwarcz and
Pellicciari 2002). The activity of TDO can be increased by L-Trp and its analogs via
an allosteric binding site and is competitively inhibited by some common indoleam-
ines including tryptamine (Ruddick et al. 2006). IDO is stimulated during cellular
immune responses preferentially by T-helper (Th)1-type cytokine interferon-gamma
(IFN-gamma). IDO induction has been correlated with the conversion of Trp to Kyn
and simultaneously induction of guanosine triphosphate cyclohydrolase (GTPCH),
which is the key enzyme in pteridine biosynthesis. Therefore, IDO is recognized as
one of the prominent mediators of immune regulation by metabolic pathways. IDO
activity is best characterized by the Kyn to Trp ratio which correlates with
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concentrations of immune activation markers such as neopterin (Taylor and Feng
1991; Schrocksnadel et al. 2006). Thus, increased neopterin formation with the
enhanced Trp degradation is only observed in diseases concomitant with cellular
immune activation (Widner et al. 2002). In this context a significant correlation
between Kyn-Trp ratio and neopterin concentrations indicates the involvement of
IDO during the degradation of Trp (Garcia-Lestén et al. 2012). Therefore,
immunosuppressant substances are effective by inhibiting IDO activity and
neopterin production simultaneously in a similar dose-dependent manner
(Schroecksnadel et al. 2011).

In another pathway, a small portion of Trp is used for the synthesis of serotonin.
Serotonin (5-hydroxytryptamine, 5-HT) is a key neurotransmitter that modulates a
wide variety of functions in both peripheral organs and the central nervous system
(CNS). The predominant site of 5-HT synthesis throughout the gastrointestinal tract
is the enterochromaffin (EC) cells of the intestinal mucosa (Martel 2006). 5-HT is
synthesized through the actions of two different tryptophan hydroxylases, trypto-
phan hydroxylase (TpH)-1 and TpH-2, which are found in EC cells and neurons,
respectively (Gershon and Tack 2007). Tetrahydrobiopterin (BH4) is essential for
the biosynthesis of serotonin, which serves as cofactor for tryptophan hydroxylase.
GTPCH 1 is the first and rate-limiting enzyme for BH4 biosynthesis (Nagatsu and
Ichinose 1999; Ichinose et al. 2013). The effects of 5-HT occur via seven distinct
families of 5-HT receptors (5-HTRs). Six of them are G-protein coupled, whereas
the remaining 5-HT3R is ionotropic (Hoyer et al. 2002; Hannon and Hoyer 2008).
The synaptic concentration of released serotonin is regulated by the serotonin trans-
porter (SERT) that removes serotonin from the synapse. Intestinal 5-HT is inacti-
vated by metabolic degradation after SERT-mediated uptake into enterocytes or
neurons. Furthermore, inhibition of SERT causes an increase in transmural trans-
port of 5-HT in intestinal segments and augments the extracellular concentration of
5-HT (Martel 2006). Since Trp is known as the primary amino acid precursor of
serotonin, systemic Trp depletion results in decreased serotonin synthesis (Bell
et al. 2001; van Donkelaar et al. 2011). Consequently, the two metabolic pathways,
Kyn and 5-HT, compete for their reciprocal precursor, Trp. Eventually, KA
concentrations reduce and 5-HT synthesis increases. Although serotonergic metab-
olism in the intestinal mucosa is not affected by acute Trp depletion, profound
effects on systemic concentrations of serotonergic metabolites are evident
(Keszthelyi et al. 2012).

Another pathway that is activated in response to signals from the circadian clock
and arylalkylamine N-acetyltransferase (AANAT; serotonin N-acetyltransferase) is
the first rate-limiting enzyme in melatonin production and converts serotonin to
N-acetyl serotonin. AANAT also constitutes a key interface between melatonin pro-
duction and regulatory mechanisms (Coon et al. 2002). Actually, synthesis of mela-
toninstarts withhydroxylationof L-Trpto5-hydroxytryptophan. 5-Hydroxytryptophan
is converted to serotonin. Serotonin is subsequently converted to N-acetylserotonin
by the enzyme AANAT (Slominski et al. 2012). AANAT mRNA is uniformly distrib-
uted in the pineal gland but is limited primarily to the photoreceptor outer segments
in the retina. Furthermore, the conversion of N-acetylserotonin to melatonin is
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achieved by the enzyme of hydroxyindole-O-methyltransferase (HIOMT). This
enzyme is present in high amount in the pineal gland, but it is nearly undetectable in
the retina (Coon et al. 2002). Circadian clocks in the vertebrate retina optimize reti-
nal function by driving rhythms in gene expression, photoreceptor outer segment
membrane turnover, and visual sensitivity (Iuvone et al. 2005). Most of the regula-
tory functions of melatonin are mediated by two high-affinity G-protein-coupled
receptors, named MTland MT2 (Dubocovich et al. 2010), which are mainly
expressed in the CNS but are also present in different peripheral organs (Slominski
et al. 2012). The third melatonin-binding site MT3 is an enzyme named quinone
reductase 2 (QR?2). Protective effect of melatonin against oxidative stress is provided
by the activation of MT3/QR2. All three melatonin receptors can be found in the gut
(Chen et al. 2011). G-protein-coupled membrane receptors of melatonin modulate
several intracellular messengers such as cyclic adenosine monophosphate (cAMP)
and [Ca2+] which are highly effective in the production of melatonin (Klein 2007).

Chronic immune activation is encountered in different pathologies including
granulomatous and functional bowel diseases (Prior et al. 1986; Clarke et al. 2009),
atherosclerosis (Blasi 2008), cancer (Dalgleish and O’Byrne 2002), and obesity
(Brandacher et al. 2007; Duncan and Schmidt 2001). Persistence of chronic inflam-
matory stimuli over time creates a biologic background for immunosenescence and
favors the susceptibility to inflammatory age-related diseases (Franceschi et al.
2000; Candore et al. 2006). In this chapter, inflammatory bowel disease, irritable
bowel syndrome, cancer, aging, atherosclerosis, and obesity are taken into consid-
eration in terms of chronic immune activation and Trp metabolism.

6.2 Chronic Immune Activation in Inflammatory
and Functional Bowel Diseases

Inflammatory bowel disease (IBD) results from an inappropriate immune response
that occurs in genetically susceptible individuals. It represents a complex interac-
tion between the intestinal immune system, environmental circumstances, and
microbial factors (Danese and Fiocchi 2006). Actually, IBDs consist of two distinct
pathologies: ulcerative colitis and Crohn’s disease. The incidence and prevalence of
IBD are increasing with time and in different regions around the world. In time-
trend analyses, 75 % of Crohn’s disease studies and 60 % of ulcerative colitis stud-
ies have an increased incidence of statistical significance. The highest reported
prevalence values for IBD were in Europe, 505 per 100,000 persons and 322 per
100,000 persons, and in North America, 249 per 100,000 persons and 319 per
100,000 persons, for ulcerative colitis and for Crohn’s disease, respectively
(Molodecky et al. 2012).

The mechanisms of cell entry into the intestinal mucosa, bacterial and foreign
antigen invasion, angiogenesis, and the control of gut inflammation through intesti-
nal microvasculature are the most important issues considering the pathogenesis of
IBD (Danese 2011).
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Regardless of pathogenetic mechanisms, evaluation of urinary neopterin
excretion in untreated ulcerative colitis patients shows a striking correlation between
neopterin levels and the severity of disease. When the chronic cellular immune acti-
vation underlying ulcerative colitis is subsided, neopterin levels decrease and clini-
cal remission is achieved (Niederwieser et al. 1985). Furthermore, fecal neopterin
concentration is also increased in patients with clinically active or inactive Crohn’s
disease and in patients with clinically active ulcerative colitis when compared with
controls. Therefore, neopterin represents a remarkable biomarker for the activity of
IBD (Husain et al. 2013). On the other hand, expression of IDO mRNA is markedly
induced in perifollicular regions of lymphoid follicles in colonic tissues of IBD
patients. IDO is primarily expressed in CD123+ mononuclear cells. Upregulation of
IDO is detected by the increase of Kyn and Kyn/Trp in supernatants from colonic
tissues (Wolf et al. 2004). In a similar manner with neopterin, increase in IDO
expression in the lesions of ulcerative colitis or Crohn’s disease is positively related
to the severity of inflammation. IDO-positive mononuclear cells also express
CDl11c, CD68, and toll-like receptor (TLR)4 (Zhou et al. 2012). Deficient TLR and
nucleotide-binding-oligomerization domain function due to genetic variability is
associated with an increased susceptibility to the development of inflammatory
bowel disease (Mueller and Podolsky 2005). Actually, nucleotide-binding-
oligomerization domain-containing-2 (NOD2) acts as a bacterial sensor in dendritic
cells (DCs), and NOD?2 variants are associated with Crohn’s disease. DCs from
individuals with Crohn’s disease expressing Crohn’s disease-associated NOD2 are
defective in autophagy induction, bacterial trafficking, and antigen presentation
(Cooney et al. 2010).

On the other hand, an induction of mRNA for TLR2, TLR4, and TLRS expres-
sion in inflammation-associated human intestinal macrophages also contributes to
the inflammatory process (Hausmann et al. 2002). TLRs play essential roles in
innate immune responses by recognizing various pathogen-derived components. In
this respect, they activate various transcription factors such as nuclear factor-kappa
B (NF-kappaB), activating protein-1, and interferon regulatory factors, which are
responsible for inflammatory responses. In addition, TLRs also mediate alternative
pathways by utilizing TLR3, TLR4, TLR7/8, and TLRY. Specific combination of
these adapter molecules induces type I interferon responses (Kawai and Akira
2006). Consequently, the classical proinflammatory TLR signaling pathway leads
to the synthesis of inflammatory cytokines and chemokines, such as interleukin
(IL)-1beta, IL-6, IL-8, IL-12, and tumor necrosis factor (TNF)-alpha, which are
causally involved in the pathogenesis of IBD. Thus, treatment with the TNF-
blocking antibody, “infliximab,” indicates good clinical response to anti-TNF-alpha
agents. This is accompanied with reduced IDO expression (Wolf et al. 2004; Frazao
et al. 2013).

Chronic or recurrent abdominal pain or discomfort along with altered bowel
function characterizes the irritable bowel syndrome (IBS) (Fukudo 2013).
Gastrointestinal comorbidities, such as functional dyspepsia, gastroesophageal
reflux disease, functional constipation, and anal incontinence, occur in almost 50 %
of the patients. A broad variety of extraintestinal comorbidities, such as fibromyalgia,
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chronic fatigue syndrome, and chronic pelvic pain, are best documented and appear
in up to 65 % (Riedl et al. 2008). A web-based survey that was carried out shown
that the subtypes of IBS were mixed IBS 36 %, IBS with diarrhea 33 %, IBS with
constipation 18 %, and unsubtyped IBS 11 % (Krogsgaard et al. 2013). It is also
thought that the disorder of the autonomic nervous system function, the neuro-
immune axis, and the brain-gut-microbiota axis profiles are unique in IBS patients.
Since 5-HT neurotransmission in IBS patients is regulated with the 5-HT3 antago-
nists, 5-HT4 agonists, and antidepressants, 5-HT appears to be strongly associated
with brain-gut function (Fukudo 2013). Successive potentiation of 5-HT and desen-
sitization of its receptor could account for the symptoms seen in diarrhea-
predominant and constipation-predominant IBS, respectively (Gershon 2004).
Hence, IBS is a complex disorder that is associated with altered gastrointestinal
motility, secretion, and sensation. Actually, 5-HT modulates sensation and percep-
tion of visceral stimulation at peripheral and central sites. However, enteric 5-HT
signaling may be defective and inactivated by the SERT in the enterocytes or neu-
rons. Tegaserod, a 5-HT4 partial agonist, is used in constipation-predominant IBS,
while alosetron, a 5-HT3 antagonist, is used in IBS with diarrhea (Sikander et al.
2009; Crowell and Wessinger 2007). Furthermore, mucosal 5-HT, TpH-1 mRNA,
SERT mRNA, and SERT immunoreactivity are all significantly reduced in both IBS
with constipation and IBS with diarrhea (Coates et al. 2004). These data suggested
that reduced SERT in the IBS patients can be one of the factors contributing to the
development of both diarrhea and constipation. Thus, SERT immunoreactivity
intensity of all IBS, IBS with diarrhea and IBS with constipation, patients signifi-
cantly differs from that of healthy controls (El-Salhy et al. 2013). There are conflict-
ing data on the efficacy of selective 5-HT reuptake inhibitors in IBS, the association
of the SERT gene promoter polymorphism serotonin transporter-linked polymor-
phic region (S-HTTLPR) with IBS, and the expression pattern of SERT in the intes-
tinal mucosa of IBS patients (Colucci et al. 2008).

According to these evidences, IBS has been linked with abnormal serotonin
functioning and immune activation. On the one hand, Trp is used as a substrate for
serotonin biosynthesis, but it can alternatively be catabolized to Kyn by the enzyme
IDO. While a positive correlation between IBS severity and Kyn to Trp ratio is evi-
dent in these patients, increase in IFN-gamma activity is significantly correlated
with the rise of Kyn-Trp ratio (Fitzgerald et al. 2008). In this case two alternatives
may be valid. Firstly, the increased Kyn-Trp originates from the increased activity
of hepatic TDO; the alternative scenario of increased IDO activity is equally valid.
However, the elevated neopterin levels in the IBS cohort strongly suggest that IDO
is the main enzymatic player. Although, the majority of the neopterin measurements
are below the cutoff value, 10 nM level, which are considered to be reliably indica-
tive of a disease state (Schroecksnadel et al. 2005a). In some cases although both
plasma Kyn levels and the Kyn-Trp ratio are significantly increased in the IBS
cohort, no difference is found in plasma L-Trp levels between IBS patients and
healthy subjects. These patients show significant increases in neopterin levels but
below the cutoff value (Clarke et al. 2009). These evidences confirm that low-level
chronic immune activation may be valid in IBS. Additionally, significant imbalances
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in Trp concentrations and its metabolites may be frequently observed. This
phenomenon might be associated either with a disturbance in albumin binding of
Trp and an overcompensatory response to decreased Trp concentrations or a dys-
functional serotonergic system in IBS (Chen and Guillemin 2009; Shufflebotham
et al. 20006).

As stated above, IBS patients exhibit a distinct Trp degradation profile through
downstream of overall TLR activation that is different from that of healthy controls.
However, TLR4 activation for Trp metabolism appears equivalent in both healthy
controls and some subgroups of IBS patients (Clarke et al. 2012). Indeed, colonic
gene and protein expression of TLR2 and TLR4 differs significantly between the
subgroups of IBS patients, providing further support for the hypothesis of altered
intestinal immune activation. A significant increase of TLR2 and TLR4 was shown
only in diarrhea mixed bowel pattern (IBS-M) subgroup compared with healthy
subjects. These results support the hypothesis, at least in constipation and IBS-M
patients, that the innate immune system plays a key role in the pathophysiology of
the disease. Thus the increased colonic expression of TLR2 and TLR4 in IBS-M
patients are accompanied by the impaired expression of peroxisome proliferator-
activated receptor-gamma (PPAR-gamma) and enhanced production of mucosal
proinflammatory cytokines, IL-8 and IL1-beta (Belmonte et al. 2012).

In fact IBS patients showed a significant amount, 72 % increase in number of
mucosal immune cells, CD3+, CD4+, and CD8+ T cells, and mast cells compared
to controls (Cremon et al. 2009). The increased level of T-cell activation is consis-
tent with the hypothesis of low-grade immune activation in IBS (Ohman et al.
2009). Mild inflammation is involved in diarrhea-predominant IBS patients as pro-
inflammatory cytokine TNF-alpha is significantly higher, although no difference in
anti-inflammatory cytokine is observed (Rana et al. 2012). Although IBS is charac-
terized by the increase of proinflammatory cytokines, IL-6 and IL-8, IBS patients
with certain extraintestinal comorbid conditions are distinguished by additional
elevations in IL-1beta and TNF-alpha (Scully et al. 2010).

6.3 Immune Escape Mechanism in Cancer

The dual host-protective and tumor-promoting actions of immunity are referred to
as cancer immune editing which is comprised of elimination, equilibrium, and
escape phases (Vesely and Schreiber 2013). IDO-reactive T cells are peptide-
specific, cytotoxic effector cells. Hence, IDO-specific T cells effectively disrupt
IDO+ cancer cell lines of different origin. IDO-specific cytotoxic T lymphocytes
(CTLs) recognize and kill IDO+-matured CD19+ plasmacytoid DC, which medi-
ates immune suppression. Indeed, IDO is upregulated in DC in tumor-draining
lymph nodes and creates a tolerogenic microenvironment (Sgrensen et al. 2009).
DNA molecules containing unmethylated CpG oligodeoxynucleotides
(ODN) have potent immunostimulatory effects on plasmacytoid DCs through
TLRY recognition and signaling. Human plasmacytoid DCs are activated by
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CpG-ODN-mediated TLRO ligation. Later, they can induce the generation of CD4+
CD25+ forkhead boxp3(Foxp3)+ regulatory T cells (Tregs) from CD4+CD25 T
cells (Moseman et al. 2004). In this process, human plasmacytoid DCs express high
levels of IDO mRNA and protein in response to TLRY ligation and use the IDO
pathway to induce the differentiation of CD4+CD25+Foxp3+ Tregs from
CD4+CD25- T cells. IDO inhibitor, 1-methyl-D-tryptophan, significantly impedes
plasmacytoid DC-driven inducible Treg generation and suppressor cell function.
However, Kyn supplementation suppresses the effect of 1-methyl-D-tryptophan and
restores the differentiation of Treg cells (Chen et al. 2008).

IDO is spontaneously recognized by CTLs in patients with cancer (Sgrensen
et al. 2009). Thus, IDO-specific T cells are present in peripheral blood as well as in
the tumor microenvironment. These IDO-reactive T cells are able to recognize and
kill tumor cells as well as IDO-expressing DCs, that is, one of the main immune-
suppressive cell populations (Sgrensen et al. 2011). Inhibition of the expression and
activity of IFN-gamma-induced IDO in bone marrow-derived dendritic cells
(BMDCs) through the suppression of the activity of Janus kinase/signal transducers
and activators of transcription (JAK/STAT) and protein kinase C causes antitumor
activity by regulating CD8+ T-cell polarization and CTLs activity (Noh et al. 2013).

Spontaneous CTL reactivity against IDO exists not only in patients with cancer
but also in healthy persons. IDO+ DCs inhibit T-cell proliferation because of Trp
depletion and accumulation of toxic Trp metabolites (Platten et al. 2005; Munn and
Mellor 2007). Actually, Trp metabolites of the Kyn pathway, such as
3-hydroxyanthranilic and QA, can induce the selective apoptosis of Thl cells and
can also effectively suppress T-cell proliferation (Fallarino et al. 2003). Furthermore,
CTLs starved of Trp are unable to proliferate and go into G1 cell-cycle arrest (Munn
et al. 2005).

Moreover, IDO-expressing plasmacytoid DCs activate the general control non-
derepressible-2 (GCN2) kinase pathway in responding T cells. GCN2 kinase acts as
a molecular sensor for T cells during IDO-induced Trp depletion and related immu-
nosuppression (Munn et al. 2005). Endoplasmic reticulum (ER) transmembrane
signaling protein, unfolded protein response (UPR)-mediated downregulation of
protein synthesis, is accompanied by increased phosphorylation of eukaryotic trans-
lation initiation factor 2alpha (eIF2alpha). UPR initiates a rapid block in translation
of cyclin D1 mRNA, and the cyclin D-dependent kinase activity is lost. During ER
stress, one of the mammalian elF2alpha kinases, protein kinase RNA-activated
(PKR)-like ER kinase (PERK), contributes to cyclin D1 translation attenuation and
provokes G1 arrest (Brewer et al. 1999). When considering all, both PERK and
GCN2 contribute to the ER stress-mediated regulation of elF2alpha phosphoryla-
tion and translation of cyclin D1 (Hamanaka et al. 2005). Consequently, the activa-
tion of GCN2 triggers a stress response program that can result in cell-cycle arrest,
differentiation, adaptation, or apoptosis via elF2alpha phosphorylation (De Haro
et al. 1996).

Functionally, Trp-deprived DCs show a reduced capacity to stimulate T cells,
which can be restored by blockade of specific immunoglobulin (Ig)-like transcripts
(ILTs), ILT3. Trp deprivation generates human monocyte-derived DCs with a
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marked upregulation of the inhibitory receptors ILT3 and ILT4 and increases the
capacity to induce CD4+CD25+Foxp3+ Tregs in an ILT3-dependent manner.
Moreover, ILT3high ILT4high DCs lead to the induction of CD4+CD25+Foxp3+
Tregs with suppressive activity from CD4+CD25- T cells. The generation of
ILT3high ILT4high DCs with tolerogenic properties by Trp deprivation is linked to
a stress response pathway mediated by the GCN2 kinase (Brenk et al. 2009).

IDO activation leads to many complex changes within the affected cells resulting
in immunosuppression through breakdown of Trp in the tumor microenvironment
and tumor-draining lymph nodes (Soliman et al. 2010). In human malignancies,
overexpression of IDO can facilitate immune escape which is under control of
tumor suppressor gene bridging integrator 1 (Binl). Thus, Binl loss contributes to
immune escape in cancer by increasing the STAT1 and NF-kappaB-dependent
expression of IDO (Muller et al. 2005). Since IDO represents an antitumoral
immune effector mechanism, IDO also can cause immune system failure by inhibit-
ing T-cell responses. Therefore, tumor cells can escape from immune system
through IDO activity. Kyn-Trp ratio correlates strongly with the concentrations of
cytokine IL-6, soluble IL-2 receptor-alpha, TNF-alpha receptor, and the macro-
phage marker neopterin. In this respect accelerated Trp degradation represents an
immune escape mechanism (Sperner-Unterweger et al. 2011). Within the tumor
microenvironment, not only tumor cells but also other infiltrating cells such as DCs,
monocytes, and others can be sources of IDO. In addition to the Trp depletion, accu-
mulation of its metabolites into the tumor environment also propagates the suppres-
sion of antitumor immune responses (Zamanakou et al. 2007). On the other hand,
Engin et al. have found that certain colon cancer subsets are different in their ability
to express IDO, while significant correlation between IDO activity and immunos-
taining scores indicates an immunosuppressive activity in patients with high IDO
expression in colorectal cancer. Thus, high total IDO immunostaining score is a
strong predictor for immune tolerance, lymphatic invasion, and subsequent lymph
node metastasis (Engin et al. 2010).

Treg cells have been defined as a specialized subpopulation of T cells that act to
suppress activation of the immune system and thereby maintain immune system
homeostasis and tolerance to self-antigens (Sakaguchi 2005, 2006). CD4+ Treg
cells are abundant in tumor tissues and prevent the induction of effective antitumor
immunity. They express C-C chemokine receptor 4 (CCR4) in tumor tissues.
CCR4+ Treg cells are predominant among tumor-infiltrating Foxp3+ T cells
(Sugiyama et al. 2013). The chemokines which are specific ligands for CCR4 that
are produced by tumor cells attract CCR4+ Treg cells to the tumor. These cells cre-
ate a favorable environment for tumor escape from host immune responses. Thus,
anti-CCR4 monoclonal antibodies eliminate the suppressive effect of CCR4+ Treg
cells on the host immune response to tumor cells (Ishida and Ueda 2006). Actually,
Foxp3+ Treg cells are associated with more advanced disease in cancers. As IDO
promotes differentiation of Treg cells, it may become a suitable target to abolish the
development of T-cell tolerance against the cancer development. Node-positive dis-
ease almost exclusively occurs in patients with Foxp3+/IDO+ tumors. Actually, the
combined expression and immunosuppressive effects of IDO and Foxp3 on



130 A.B. Engin

metastatic lymph nodes support this assumption (Mansfield et al. 2009). Most Treg
cells are defined based on expression of CD4, CD25, and the transcription factor,
Foxp3. The combination of expression of CD4, CD25, and CD127 represents highly
purified population of Treg cells and has an efficient suppressor function (Liu et al.
2006). Indeed, natural Treg cells have been observed to predominantly infiltrate
tumor masses especially in the early phase of tumor progression (Yamaguchi and
Sakaguchi 2006).

Activation of IDO in either tumor cells or nodal regulatory DCs appears to be
sufficient to facilitate tumoral immune escape (Munn and Mellor 2007). Additionally,
most human tumors can overexpress IDO (Uyttenhove et al. 2003). For instance,
IDO is also expressed in human breast cancer cells. Estrogen receptor-negative
breast cancer cells may evade the attention of the immune system through the
expression of IDO together with its main substrate, L-Trp transport, into these cells
(Travers et al. 2004).

In the tumor-draining lymph nodes (TDLNs), there are three strong regulatory
mechanisms. IDO, functional activation of Tregs, and the inhibitory programmed
cell death 1/programmed cell death 1 ligand (PD-1/PD-L) pathway are tightly
linked and constitute an immunosuppressive milieu. When IDO+ plasmacytoid DCs
present antigen to effector T cells in the presence of mature, resting Tregs, this initi-
ates a GCN2-dependent activation of the Tregs by IDO. While GCN2 signaling is
critical for allowing IDO-induced functional activation, Trp metabolites complete
the full activation of the Tregs. Seventy-five to 90 % of this constitutive Treg activ-
ity in TDLNSs is mediated via IDO-induced, PD-1/PD-L-dependent pathway. IDO-
induced Treg activation is prevented by blockade of CTLs antigen 4, and
IDO-Treg-PD-1/PD-L pathway is interrupted (Sharma et al. 2007). Eventually, the
combination of these IDO-expressing plasmacytoid DCs and IDO-activated Treg
cells renders the local milieu in the TDLNSs profoundly inhibitory for T-cell activa-
tion (Munn and Mellor 2006).

On the other hand, Tregs exposed to certain inflammatory signals from activated
DCs or TLR ligands can lose their suppressor activity (Pasare and Medzhitov 2003)
and may alter their phenotype (be “reprogrammed”) to resemble proinflammatory
effector cells. The reprogrammed Treg cells downregulate Foxp3 expression and
express proinflammatory cytokines, IFN-gamma, IL-17, and TNF-alpha. This
phenotype conversion requires DC-Treg cell contact, which causes IL-6 secretion
by the DC, and occurs in an antigen-specific manner (Radhakrishnan et al. 2008).
That means IDO plus effector T cells activate Foxp3+ Tregs for suppression. In the
absence of IDO, Tregs can lose their suppressor phenotype and undergo conversion
to a Th17-like phenotype. Most of the reprogrammed Tregs coexpress IL-2 and
TNF-alpha, in addition to IL-17 and IL-22. Only a small number of reprogrammed
cells express interferon-gamma or IL-10. Thus, reprogrammed Treg is a source
of multiple proinflammatory cytokines. Upregulation of IL-17 in Tregs is driven
by IL-6. However, IL-6 expression occurs only when IDO is blocked
(Sharma et al. 2009).

Trp degradation is also detectable in patients with gynecological cancer. The
relationship between Kyn-Trp and neopterin concentrations indicates that cellular
immune activation rather than tumor-mediated IDO activity is responsible for the



6 Evaluation of Tryptophan Metabolism in Chronic Immune Activation 131

degradation of Trp (Schroecksnadel et al. 2005b). However, immunosuppressants
are effective to inhibit IDO activity and neopterin production in a similar and dose-
dependent manner (Schroecksnadel et al. 2011).

6.4 Aging and Chronic Immune Activation

Aging is associated with increased levels of circulating cytokines and proinflamma-
tory markers. Age-related changes in the immune system, known as immunosenes-
cence, and increased secretion of cytokines by adipose tissue represent the major
causes of chronic inflammation (Michaud et al. 2013). Actually, impairment of
immune defense with aging is a part of the age-associated neuroendocrine disorders
which consist of hypertension, obesity, dyslipidemia, type 2 diabetes, menopause,
late-onset depression, vascular cognitive impairment, and some forms of cancer
(Oxenkrug 2010). On the other hand, progressive increase in Trp catabolism is also a
part of the normal aging process (Frick et al. 2004). In this regard, a causal relation-
ship is evident between the Trp metabolism and immune deficiency in elderly. Thus,
neopterin, Kyn-Trp ratio, and all Kyn metabolites are 20-30 % higher in the older
group, whereas Trp is 7 % lower (Theofylaktopoulou et al. 2013). Eventually, the
reduced serum Trp concentrations and increased Kyn levels indicate increased chronic
low-grade inflammation in elderly. In this case IDO-induced Trp degradation is asso-
ciated with increase in neopterin and nitrite levels (Capuron et al. 2011). In addition
to rising neopterin and Kyn levels, KA and homocysteine concentrations as well as
the Kyn-Trp ratio also increase with older age. In this respect increasing neopterin
concentrations and Kyn-Trp ratio in older age are associated with immune activation
especially of the T-cell/macrophage system (Frick et al. 2004; Urbariska et al. 2006).
As mentioned above, neopterin and Trp metabolites are strong predictive markers of
the normal aging process and comorbidities of aging such as cardiovascular and neu-
rodegenerative diseases or malignant tumors. Actually, aging and related pathological
conditions critically involve an overwhelming production of reactive oxygen species
(ROS) (Becker et al. 2014). During the exposure to oxidative stress, neopterin deriva-
tives exhibit distinct biochemical effects, most likely via interactions with reactive
oxygen or nitrogen intermediates (Hoffmann et al. 2003). The amounts of neopterin
produced by activated monocytes/macrophages correlate with their capacity to release
ROS. With this background, neopterin concentrations in body fluids can be taken into
consideration as a degree of oxidative stress emerging during cell-mediated immune
response (Murr et al. 1999). In this case the increased synthesis of BH4 in pteridine
pathway is an adaptive response to inflammation; however, inflammation-induced
oxidative stress could oxidize BH4 (Huang et al. 2005). In fact the enhanced produc-
tion of neopterin occurs at the expense of BH4 formation (Fuchs et al. 2009). BH4 is
the essential cofactor in the enzymatic hydroxylation of phenylalanine, tyrosine, and
Trp. It is synthesized from GTP, and synthesis steps are catalyzed by GTPCH I,
6-pyruvoyl-tetrahydropterin synthase, and sepiapterin reductase (Shintaku 2002).
IFN-gamma-induced IDO promoter activity is enhanced synergistically by
TNF-alpha. IFN-gamma-responsive elements, IFN regulatory factor-1, and two
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IFN-gamma-stimulated response elements (ISRE-1 and ISRE-2) are critical for this
synergistic activation (Robinson et al. 2005). The transcriptional regulation of
GTPCH 1 is important in the control of BH4 metabolism during the coordinated
induction of GTPCH I and inducible nitric oxide synthase (iNOS) gene expression.
However, the combination of TNF-alpha and IFN-gamma induces a strong activa-
tion of GTPCH I mRNA, protein, and BH4 production (Peterson and Katusic 2005).
Eventually, TNF-alpha acts synergistically with the Th1 type cytokine, IFN-gamma
in age-related changes in both pteridine and Kyn pathways. Meanwhile, BH4 serves
as an essential NOS cofactor, and Kyn catabolites, quinolinic acids, and picolinic
acids transcriptionally activate iNOS. These evidences indicate that there is a con-
nection between arginine and Trp metabolic pathways in the generation of reactive
nitrogen intermediates in aging (Melillo et al. 1994). Consequently, demand for
BH4 might be increased under the condition of Kyn-induced activation of iNOS
triggered by IFN-gamma-induced upregulation of Kyn pathway (Oxenkrug 2007).
The deficiency of BH4 results in uncoupling of NOS and shifting of arginine metab-
olism to the production of superoxide anion rather than nitric oxide (NO) (Pou et al.
1992).

Actually, IFN-gamma does not play a role in redox modulation of IDO activity
in DCs. The cystine/glutamate antiporter controls intracellular and extracellular
redox. Mattox et al. showed that the antiporter control of redox regulates IDO enzy-
matic activity and IDO protein levels in DCs. IDO-competent DCs arise under
pathophysiologic conditions, which are characterized by imbalances in systemic
redox as occurs in obesity and aging (Mattox et al. 2012). Blocking the antiporter
activity exhausts intracellular glutathione and interferes with DC differentiation
from monocyte precursors, thereafter significantly reducing DC presentation of
exogenous antigen to T cells (D’ Angelo et al. 2010).

Several intermediate products of the Kyn pathway are known to be neurotoxic.
Among them, the NMDA receptor agonist and neurotoxin, QA, is likely to be most
important in terms of biological activity (Stone 2001). Anthranilic acid,
3-hydroxyanthranilic acid (3-HAA), and 3-hydroxykynurenine (3-HK) have been
shown to generate free radicals leading to neuronal damage similar to QA (Stone
2001). During the Trp supplementation, Trp can be used for the synthesis of sero-
tonin, melatonin, and nicotinamide adenine dinucleotide (NAD") besides the Kyn
production (Ruddick et al. 2006; Penberthy 2007). Moreover, under conditions of
Trp depletion, supplementation with Trp downregulates enzymes directing Trp to
non-NAD*-dependent pathways. This suggests a shift of all available Trp catabo-
lism to NAD* synthesis (Penberthy 2007). Kyn causes intracellular NAD* depletion
and reduces cell viability at greater than physiological concentrations (Braidy et al.
2009). The third metabolic pathway of L-Trp degradation leads to synthesis of its
major metabolite melatonin. Melatonin not only improves the antioxidant potential
of the cell by stimulating the synthesis of antioxidant enzymes but also reduces free
radical generation and keeps the adequate mitochondrial adenosine triphosphate
(ATP) synthesis. The decline in melatonin production in aged individuals is one of
the primary contributing factors for the development of age-associated neuronal
damage (Pandi-Perumal et al. 2013).
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6.5 Atherosclerosis

Atherosclerosis is a chronic inflammatory disease initiated by the retention and
accumulation of low-density lipoprotein (LDL) in the artery wall, leading to mal-
adaptive responses of macrophages and T cells (Tabas et al. 2007). It could be
caused by an immune reaction against autoantigens at the endothelial level, the most
relevant of which are oxidized LDL and heat shock proteins (Blasi 2008). IDO sup-
presses T-cell activity and is upregulated by various inflammatory stimuli. IDO
activity has a significant positive correlation in both sexes with carotid artery intima/
media thickness as an early marker of atherosclerosis (Niinisalo et al. 2008;
Pertovaara et al. 2007). Enhanced Trp degradation was reported in patients with
coronary heart disease and was found to correlate with enhanced neopterin forma-
tion. In cardiovascular disease, IFN-gamma is the most important trigger for the
formation and release of ROS. Chronic ROS production leads to the depletion of
antioxidants. Furthermore, oxidative stress plays a major role in the atherogenesis
and progression of cardiovascular disease (Schroecksnadel et al. 2006). In these
patients, as traditional cardiovascular disease risk factors, IFN-gamma activity,
plasma neopterin, and plasma Kyn-Trp ratio provide similar risk estimates for major
coronary events and mortality (Pedersen et al. 2011). Neopterin and Kyn do not
necessarily only serve as passive markers of IFN-gamma activity. Neopterin is
released in parallel with its partially reduced derivative 7,8-dihydroneopterin (Fuchs
et al. 2009). IFN-gamma-stimulated human macrophages generate ROS as well as
neopterin and 7,8-dihydroneopterin. These pteridines may also have antioxidant
effects depending on the circumstances (Herpfer et al. 2002).

The Kyn metabolite, 3-HAA, has immune regulatory properties and can inhibit
Th1 and Th2 cells while increasing the amount of Tregs (Platten et al. 2005; Hayashi
et al. 2007). Thus, 3-HAA modulates systemic adaptive immune responses and
inhibits oxidized LDL (oxLDL) uptake in macrophages. Consequently, 3-HAA
reduces local inflammation and atherosclerosis by impairing local antigen presenta-
tion and vascular infiltration of T cells (Zhang et al. 2012). However, 3-HAA, but
not L-Kyn, markedly inhibits antigen-independent proliferation of CD8+ T cells
induced by IL-2, IL-7, and IL-15 (Weber et al. 2006). A marked immunosuppres-
sive effect of IDO expression is evident on human CD4+ and CD8+ T cells.
Nevertheless, there is a significant difference in the suppressive effect of IDO on
proliferation of CD8+ compared to that of CD4+ T cells (Forouzandeh et al. 2008).
Actually, IFN-gamma is synthesized by CD4+ Th1 cells. This cytokine, a key regu-
lator of immune function, is highly expressed in atherosclerotic lesions and has
emerged as a significant factor in atherogenesis (McLaren and Ramji 2009).
Neopterin is produced by human macrophages upon activation by proinflammatory
stimuli like Th1-type cytokine IFN-gamma. Neopterin has prooxidative properties.
Elevated neopterin concentrations are an independent marker for cardiovascular
disease (Fuchs et al. 2009). Additionally, high neopterin levels also predict indepen-
dently adverse prognosis in coronary artery disease patients (Grammer et al. 2009;
Ray et al. 2007; Avanzas et al. 2005). Patients with hypertension and chest pain, but
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without obstructive coronary artery disease and developed adverse events during
follow-up period, have significantly higher neopterin levels compared with patients
without events (Avanzas et al. 2004). Aging vasculature generates an excessive ROS
and NO. Consequently, it facilitates the formation of the deleterious radical, per-
oxynitrite. Main sources of ROS are mitochondrial respiratory chain and nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidases, although NOS
uncoupling could also account for ROS generation. The redox-sensitive transcrip-
tion factor, NF-kappaB, is upregulated in vascular cells and drives a proinflamma-
tory shift (El Assar et al. 2013).

Actually, IFN-gamma regulates a number of steps during atherogenesis. Its cel-
lular actions in human macrophages are mediated through the regulation of STAT1.
IFN-gamma-induced expression of key genes implicated in atherosclerosis is extra-
cellular signal-regulated kinase (ERK) 1/2 dependent. The ERK pathway is required
for the IFN-gamma-induced activity of STAT1 and monocyte chemoattractant pro-
tein-1 promoter (Li et al. 2010). At the same time IFN-gamma is also a principal
inducer of neopterin and Kyn formation. Positive correlation between circulating
neopterin and Kyn-Trp ratio levels reflects IFN-gamma activity.

When macrophages are exposed to oxLDLs, increased nuclear factor erythroid
2-related factor 2 (Nrf2) expression protects the macrophages from oxLDL-
mediated injury via expression of antioxidant enzymes, including catalase, glutathi-
one peroxidase (GPx), glutathione reductase, glutathione S-transferase, and
NADPH/quinone oxidoreductase 1 (Zhu et al. 2008). Circulating adipocyte fatty
acid-binding protein (FABP4) levels are associated with long-term prognosis in
patients with coronary heart disease and may represent an important pathophysio-
logical mediator of atherosclerosis (Von Eynatten et al. 2012). In macrophages,
FABP4 coordinates cholesterol trafficking and inflammatory responses. Nrf2 is a
redox-sensitive transcription factor and provides a primary cellular defense against
the oxidative stress. Akt and ERK/Nrf2-dependent FABP4 upregulation pathway in
human macrophages responds to the oxidative effect of polyunsaturated fatty acids
(Lazaro et al. 2013). The kelch-like ECH-associated protein (Keapl)-Nrf2-ARE
(antioxidant response element) signaling pathway elicits an adaptive response for
cell survival. During cell stress, Keapl disrupts Nrf2, and Nrf2 translocates to the
nucleus and upregulates genes containing an antioxidant response element in their
promoter regions (Wakabayashi et al. 2010). The activation of N1f2 suppresses IFN-
gamma production while inducing the production of the Th2 cytokines IL-4, IL-5,
and IL-13 (Rockwell et al. 2012). In fact the dual neuroprotective treatment with
nicotinamide and an Nrf2 inducer indicates that redox environment is more impor-
tant than ROS for neuron survival in aging (Ghosh et al. 2014).

Raising the bioavailability of NO in primary human endothelial cells by activat-
ing Nrf2 impairs the presence of superoxide and the subsequent formation of per-
oxynitrite. Eventually, active Nrf2 elicits an antioxidant response in endothelial
cells and reduces endothelial NOS (eNOS) expression. BH4 levels are important to
keep eNOS in the coupled and NO-producing state. Reduced BH4 levels lead to
downregulated eNOS expression in an Nrf2-dependent manner. Activation of Nrf2
downregulates eNOS levels via elevation of heme oxygenase (HO-1) activity (Heiss
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et al. 2009). HO-1 is important to prevent the endothelium from atherosclerosis.
3-HAA induces HO-1 expression and stimulates nuclear translocation of Nrf2 in
human endothelial cells. Nrf2-dependent HO-1 expression induced by 3-HAA
inhibits the monocyte chemoattractant protein (MCP)-1 secretion, vascular cell
adhesion molecule (VCAM)-1 expression, and the activation of transcriptional
NF-kappaB in endothelial cells. Subsequently, TNF-alpha stimulated vascular
injury and inflammation is suppressed in atherosclerosis (Pae et al. 2006).

Oxidant compounds such as hydrogen peroxide (H,0,) have been shown to stim-
ulate the release of arachidonic acid (AA) in a number of cell systems (Xu et al.
2003). Involvement of AA and its metabolites in the stimulation of both ERK and
c-Jun-N-terminal kinase (JNK) following the oxidative stress evoked by H,O,
induces a cell-cycle arrest (Tournier et al. 1997). Fatty acid, AA, interferes with the
transcriptional function of the IFN-gamma signaling pathway by reducing phos-
phorylation of STAT1. AA modulates the immunosuppressive activity of IDO by
inhibiting the IFN-gamma/STAT 1/IDO pathway (Bassal et al. 2012).

IDO expression is impaired in early prediabetic nonobese diabetic mouse strain.
Virtually, IFN-gamma fails to induce IDO expression in cells with defective STAT1
phosphorylation in IFN-gamma-induced IDO signaling pathway of these animals
(Hosseini-Tabatabaei et al. 2012).

The NF-kappaB subunits p65 and STAT1 cooperate to control iNOS gene tran-
scription in response to proinflammatory cytokines (Burke et al. 2013). iNOS gen-
erates high concentrations of NO which is easily converted to peroxynitrite and
superoxide in the prooxidant environment, a characteristic in essential hyperten-
sion. iNOS upregulates arginase activity, which limits NO production through
eNOS and causes hypertension-associated endothelial dysfunction (Santhanam
et al. 2007). Acute iNOS inhibition increases NO-dependent vasodilation likely
through eNOS-mediated mechanisms (Smith et al. 2011).

The metabolism of arginine to NO is functionally in contrast with the metabo-
lism of Trp to Kyn. Similar to iNOS, IDO is expressed in inflammatory conditions
via IFN-gamma induction. IFN-gamma-induced endothelial IDO converts Trp to
N-formylkynurenine, which decomposes spontaneously to Kyn. Kyn could directly
modulate vascular tone and significantly attenuate the contractile response via acti-
vation of soluble guanylate cyclase (sGC). Eventual activation of adenylate cyclase
by Kyn contributes to vessel relaxation via a cAMP-dependent pathway (Wang
et al. 2010). Hence, Kyn formation within atherosclerotic arteries possibly repre-
sents a counter-regulatory protective mechanism (Niinisalo et al. 2010).

6.6 Human Hypertryptophanemia

Aging is characterized by a proinflammatory status which could contribute to the
onset of major age-related diseases such as cardiovascular diseases, neurodegenera-
tion, osteoarthritis and osteoporosis, and diabetes. In human hypertryptophanemia
or in other neurodegenerative diseases, Trp accumulates in the body. Subsequent
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events leading to the brain injury are involved in oxidative stress damage (Feksa
et al. 2008). Actually, Trp significantly decreases the brain antioxidant defenses by
reducing the values of total radical-trapping antioxidant potential, total antioxidant
reactivity, and glutathione. Consequently, the overall content of antioxidant capac-
ity of the brain is reduced by Trp. Furthermore, the Trp-induced increase of thiobar-
bituric acid-reactive substances is fully prevented by glutathione and by combination
of catalase plus superoxide dismutase (Feksa et al. 2006). More recent studies of
Trp loading have indicated that high doses of Trp cause an abnormal white blood
cell accumulation in tissues (Gross et al. 1996, 1999; Ronen et al. 1999), suggesting
that Trp or its metabolites are active in modulating immune system activity.

6.7 Obesity-Related Chronic Immune Activation

Obesity-related immune-mediated systemic inflammation is associated with the
induction of the Trp-Kyn pathway which reflects the IDO activation. Although a
markedly increased Kyn-Trp ratio is evident in adult obese subjects with meta-
bolic syndrome, obese juveniles show contrary decrease in Kyn-Trp ratio (Mangge
et al. 2014). In any case plasma Trp concentration of obese individual is reduced
independent of the weight reduction and dietary intake. Because of the changes in
Trp metabolism, serotonin production may decrease. Impaired satiety due to sub-
sequent insufficient serotonin synthesis causes overfeeding and obesity
(Brandacher et al. 2007). Kyn-Trp ratio and all kynurenines, except anthranilic
acid, are 2—8 % higher in overweight and 3—17 % higher in obese, than in normal-
weight individuals (Theofylaktopoulou et al. 2013). Bariatric surgery significantly
diminishes immune mediators by substantial weight reduction. In addition to ele-
vated levels of neopterin, Trp depletion still persists (Brandacher et al. 2006).
Neopterin concentrations correlate with abdominal obesity and metabolic syn-
drome (MetS), which is the cause of increased mortality risk. Accordingly, neop-
terin concentrations also correlate with high-density lipoprotein (HDL) cholesterol,
insulin resistance, and plasma pyridoxal-5'-phosphate (Oxenkrug et al. 2011).
Dysregulation of Trp-Kyn and Kyn-NAD metabolic pathways plays an important
role in the occurrence of insulin resistance. Thus, the key enzymes of Kyn-NAD
pathway require pyridoxal-5-phosphate as a cofactor. Obesity, cardiovascular dis-
eases, or aging associated by excessive Kyn and xanthurenic acid formation in
combination with pyridoxal-5-phosphate deficiency impair the biological activity
of insulin (Oxenkrug 2013). Inflammation is associated with a T-cell infiltration in
obese adipose tissue, with predominance of Th17 in the omental compartment and
of Treg in the subcutaneous depot. The Th17/Treg balance is decreased in subcu-
taneous fat and correlates with IDO1 activation. In contrast, in the omental com-
partment, despite IDO1 activation, the Th17/Treg balance control is impaired
(Wolowczuk et al. 2012).
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6.8 Conclusion

During the chronic immune activation, Trp-consuming pathways display extremely
simple response to highly complex immune mechanisms. Trp depletion and Trp
metabolites influence the immune response modulation and immune tolerance. The
activation of IDO through IFN-gamma leads to many complex changes within the
affected cells resulting in immunosuppression through breakdown of Trp. Despite
the evidences, IDO is not a sole factor in chronic immune activation encountered
diseases. In particular suppression of tumor-specific host immune response suggests
that IDO might support the tumor progression by providing immune escape.
Persistence of chronic inflammatory stimuli over time creates a biologic background
for immunosenescence and favors the susceptibility to inflammatory age-related
diseases. Thus, for better understanding of the mechanisms underlying the interac-
tion between IDO and chronic immune activation-related disorders, further studies
should be planned in more details.
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Chapter 7
Diabetes and Tryptophan Metabolism

Ugur Unluturk and Tomris Erbas

Abstract Tryptophan, an essential amino acid, can be metabolized to several kinds
of physiologically active metabolites. Accumulating data indicate that an altered
metabolism of tryptophan and its active metabolites have important roles for the
pathogenesis and development of complications of diabetes mellitus. Changes in
tryptophan—kynurenine and tryptophan—methoxyindole pathways are related to sev-
eral pathophysiological mechanisms of type 1 or type 2 diabetes. Particularly, sero-
tonin, melatonin, and their receptors would be novel targets not only to better
understand the pathogenesis of diabetes but also to develop new antidiabetic agents.

Keywords Diabetes mellitus * Type 1 diabetes * Type 2 diabetes * Diabetic compli-
cations * Tryptophan ¢ Tryptophan metabolism ¢ Indoleamine 2,3-dioxygenase ®
Kynurenine ¢ Serotonin * Melatonin

7.1 Introduction

In addition to the traditional knowledge, recent studies show that amino acids are
also among the regulators of the phosphorylation cascade of proteins and expression
of genes. Moreover, they are crucial precursors of hormones and nitrogenous sub-
stances with outstanding biological importance. Even though physiological concen-
trations of amino acids and their metabolites are necessary for physiological
processes, their elevated levels might be pathogenic in several disorders. Several
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amino acids regulate key metabolic pathways that are necessary for homeostasis,
growth, reproduction, and immunity. These amino acids are called “functional
amino acids,” and tryptophan is one of them (Wu 2009).

Diabetes mellitus defines a group of metabolic disorders characterized by hyper-
glycemia. Type 1 and type 2 diabetes are the most frequent ones. While type 1 dia-
betes is caused by absolute insulin deficiency, insulin resistance and relative
impairment in insulin secretion lead to type 2 diabetes. In the last two decades,
prevalence of type 2 diabetes mellitus has enormously increased worldwide in par-
allel with the increased prevalence of obesity. As a result, diabetic complications
have become one of the leading causes of organ dysfunctions/losses and mortality
as well as healthcare expenses. The pathogenesis of both type 1 and 2 diabetes still
bears many secrets, and care of these frequent metabolic disorders needs to be
improved with further treatment alternatives in order to decrease disease-related
burden and mortality.

As a functional amino acid, tryptophan and altered tryptophan metabolism may
have roles in diabetes mellitus pathogenesis. Additionally, the end products of tryp-
tophan, i.e., serotonin and melatonin, as well as their receptors would be novel tar-
gets to develop new antidiabetic agents. In this chapter, we will discuss the
association of diabetes with the tryptophan metabolism and its intermediary and end
products under the scope of available literature.

7.2 Tryptophan Metabolism

Tryptophan is an essential amino acid and can be metabolized to several kinds of
physiologically active metabolites such as L-kynurenine, L-kynurenic acid, quino-
linic acid, and picolinic acid in addition to serotonin and nicotinic acid derivatives
(Fig. 7.1). Tryptophan has two nonprotein metabolic pathways to produce these
active substances: methoxyindole and kynurenine (Gal and Sherman 1980).

7.2.1 Tryptophan—-Kynurenine Pathway

Approximately 95 % of tryptophan is metabolized by the tryptophan—kynurenine
pathway. The rate-limiting enzyme of kynurenine formation from tryptophan is the
indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO) (Dang
et al. 2000; Oxenkrug 2010a). Kynurenine is further metabolized in two different
pathways, kynurenine—kynurenic acid pathway and kynurenine—nicotinamide ade-
nine dinucleotide (NAD) pathway (Fig. 7.1). The end product of kynurenine—-NAD
pathway is NAD. More than 30 intermediary metabolites of this pathway, named as
kynurenines, display free radical-generating properties (3-hydroxykynurenine and
3-hydroxyanthranilic acids) and may cause lipid peroxidation and activate an ara-
chidonic acid cascade (3-hydroxykynurenine, 3-hydroxyanthranilic acids,
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Fig.7.1 The association of tryptophan—kynurenine pathway and its metabolites with several steps
of the diabetes pathogenesis and diabetic complications. “+” sign represents stimulation and “-”
sign represents inhibition

quinolinic and picolinic acids), which increases the production of inflammatory
mediators (Gal and Sherman 1980; Oxenkrug 2007). Some of these mediators can
induce apoptosis (kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic
acids) and have a neurotoxic potential (3-hydroxykynurenine) (Rongvaux et al.
2003; Schwarcz and Pellicciari 2002).

7.2.2 Tryptophan—Methoxyindole Pathway

The methoxyindole pathway leads to the generation of serotonin
(5-hydroxytryptamine, 5-HT) and melatonin. The rate-limiting step of the serotonin
biosynthesis is the hydroxylation of tryptophan, which is catalyzed by tryptophan
hydroxylase. The availability of tryptophan as a substrate is an important rate-
limiting factor for serotonin biosynthesis. This pathway metabolizes about 5 % of
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Fig. 7.2 The association of tryptophan—methoxyindole pathway and its metabolites with several
steps of the diabetes pathogenesis and diabetic complications. “+” sign represents stimulation and
“~” sign represents inhibition. IR insulin receptor, MT1 and MT2 melatonin receptor 1 and 2,
5-HT2CR serotonin 5-HT2C receptor, IDO/TDO indoleamine 2,3-dioxygenase/tryptophan
2,3-dioxygenase, AANAT aralkylamine N-acetyltransferase, HIOMT hydroxyindole-O-methyl
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tryptophan (Gal and Sherman 1980). Serotonin is also a substrate for melatonin
biosynthesis. After stimulation by night, activity of either aralkylamine
N-acetyltransferase or serotonin N-acetyltransferase, which are the rate-limiting
enzymes in melatonin synthesis, is enhanced, and they convert serotonin into
N-acetyl serotonin (NAS), which is then converted to melatonin, with the additional
help of hydroxyindole-O-methyl transferase, also known as acetyl serotonin
N-methyltransferase (Fig. 7.2) (Claustrat et al. 2005).

7.3 Diabetes Mellitus Definition and Classification

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia
resulting from defects in insulin secretion and/or insulin action. The vast majority
of diabetic cases are classified within two etiopathogenetic categories: type 1 and
type 2 diabetes mellitus. Type 1 diabetes is characterized by the absolute deficiency
of insulin secretion and results from a cell-mediated autoimmune destruction of the
f cells of the pancreas. Type 1 diabetes accounts for only 5-10 % of all diabetic
cases. Type 2 diabetes is characterized by the combination of insulin resistance and
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Tab!e 7.1 Othe}‘ rare types . Genetic defects of B-cell function (MODYs,
of diabetes mellitus mitochondrial DNA, and others)

2. Genetic defects in insulin action (type A insulin
resistance, lipoatrophic diabetes, and others)

3. Endocrinopathies (Cushing’s syndrome, acromegaly,
and others)

4. Diseases of the exocrine pancreas

5. Drug or chemical induced (glucocorticoids,
diazoxide, and others)

6. Infections

7. Uncommon forms of immune-mediated diabetes

8. Other genetic syndromes associated with diabetes
Adapted from the Diagnosis and Classification of

Diabetes Mellitus of the American Diabetes Association
(2011)

an inadequate compensatory insulin secretory response (relative insulin deficiency).
Type 2 diabetes accounts for 90-95 % of all diabetic cases (2011, Genuth et al.
2003). More than 2 % of pregnant women develop gestational diabetes mellitus.
Pregnancy is associated with insulin resistance, caused mainly by the diabetogenic
hormones secreted from the placenta (e.g., estrogen, prolactin, human chorionic
somatomammotropin, cortisol, and progesterone), and gestational diabetes occurs
when the insulin resistance surpasses a pregnant woman’s pancreatic function. The
other causes of diabetes are very rare (Table 7.1).

7.4 Diabetes Mellitus and Tryptophan Metabolism

7.4.1 Type I Diabetes

Type 1 diabetes is characterized by the absolute deficiency of insulin secretion and
usually results from autoimmune destruction of the f cells of the pancreas. Several
antibodies are detected in the course of type 1 diabetes such as islet cell antibodies
(ICA); antibodies to glutamic acid decarboxylase; to insulin; to the tyrosine phos-
phatases, IA-2 and IA-2f; and zinc transporter ZnT8. Detecting such antibodies in
serum of the patients can help us make the differential diagnosis of diabetes.
Especially, a positive result for the antibody against glutamic acid decarboxylase is
indicative for the immune-mediated or type 1A diabetes. In some cases of absolute
insulin deficiency, there might be no evidence of autoimmunity and we may not
detect any other known causes for the p-cell destruction. Such cases are called as
idiopathic or type 1B diabetes mellitus.

The lifelong risk for type 1 diabetes is about 6 % in an offspring and 5 % in the
siblings (Redondo et al. 1999). The risk of type 1A diabetes is associated with poly-
morphisms of multiple genes and is more closely associated with certain human
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leukocyte antigen (HLA) alleles; however, this genetic locus accounts for less than
50 % of genetic contributions to disease susceptibility (Concannon et al. 2009). The
HLA region includes the genes that encode major histocompatibility complex
(MHC) class II molecules, which is expressed on the membrane of antigen-
presenting cells such as macrophages (Tisch and McDevitt 1996). The antigens
implicated in the pathogenesis of type 1 diabetes are bound to the MHC class II
molecules and are presented to the antigen receptors of T cells, which have pivotal
roles in autoimmune diseases. Amino-acid sequences of these class Il molecules are
important for antigen binding, and any substitutions at critical positions could
increase or decrease the susceptibility to type 1 diabetes (Rowe et al. 1994). In addi-
tion to MHC genes, polymorphisms in non-MHC genes such as a promoter of the
insulin gene, the protein tyrosine phosphatase gene, and the cytotoxic T-lymphocyte-
associated antigen-4 are also implicated in the pathogenesis of type 1 diabetes
(Davies et al. 1994; Polychronakos and Li 2011; Santin and Eizirik 2013).

The nonobese diabetic (NOD) strain of mice has become the prototypic model
for autoimmune diseases and is used widely as an animal model of type 1A diabetes
(Kolb 1987). This strain of mice has an autoimmune infiltration at the p-cell micro-
environment (insulitis) and develops clinical diabetes around 120 days of age, mim-
icking the type 1 diabetes in humans. The progression to the state of clinical type 1
diabetes begins with the infiltration of the perivascular ducts and peri-islet regions
of the pancreas, initially by macrophages and dendritic cells and subsequently by T
and B lymphocytes (Delovitch and Singh 1997). It is accepted that Th, cells, which
produce IFN-y, are the central mediators of insulitis seen in NOD mice. Furthermore,
anti-interferon gamma antibodies can suppress the damage in the islet cells and the
initiation of insulitis seen after increases in levels of IL-12 and IL-18 (potent induc-
ers of interferon gamma) (Rothe et al. 1997). Th, cells also have an ability to induce
the destruction in islet cells. It is proposed that the process of inducing and sustain-
ing type 1 diabetes is dependent on both Th; and Th, lymphocytes (Almawi et al.
1999).

Several autoantigens were also proposed to be implicated in the onset and pro-
gression of type 1 diabetes. About 85 % of type 1 diabetic patients have islet anti-
bodies at the time of diagnosis (Atkinson and Maclaren 1994). According to the
data obtained from NOD mice model, insulin/proinsulin itself is one of the primary
target autoantigens, and changing a specific amino acid of insulin can prevent dia-
betes in them (Nakayama et al. 2005). Glutamic acid decarboxylase enzyme (GAD),
which is present in islet cells, is another important autoantigen, and 70 % of newly
diagnosed type 1 diabetes patients have antibodies to GAD (Baekkeskov et al.
1990). A number of additional type 1 diabetes-related islet autoantigens have also
been identified (Verge et al. 1996). The data obtained from the NOD mice (Yang
et al. 1997) and the patients who have X-linked agammaglobulinemia (Martin et al.
2001) suggest that the autoimmunity seen in type 1 diabetes is principally mediated
by T cells, so B cells are not required for the initiation of the disease.

Triggering factors of the autoimmunity seen in type 1 diabetes have not been
fully identified yet. Environmental factors such as prenatal factors, viral infections,
and cow’s milk are important factors in the development of type 1 diabetes.
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Especially enteroviruses can cause f-cell damage. One theory is molecular mimicry,
such as the homology between GAD and Coxsackie B virus (Ko et al. 1994). Self-
antigens are expressed in the thymus (Pugliese et al. 1997), and tolerance to self-
molecules is most likely to start at the thymus (Nitta et al. 2008). The thymocytes
that express T cell receptor with an affinity toward self-molecules are exposed to
negative selection during the development of immune system. The insulin gene has
also thymic expression (Nitta et al. 2008) and studies show that the length of vari-
able number of tandem repeat polymorphisms of the promoter of insulin gene con-
trols the expression of insulin mRNA in the thymus and thus leads to the susceptibility
to type 1 diabetes (Vafiadis et al. 2001).

7.4.2 Type 1 Diabetes and Tryptophan Metabolism

Accumulating data indicate an altered metabolism of tryptophan and increased lev-
els of kynurenine pathway metabolites in diabetes (Rosen et al. 1955; Hundley et al.
1956; Auricchio et al. 1960; Hattori and Kotake 1984; Oxenkrug 2013). Tryptophan
plasma levels were found to be lower in both an animal model (Masiello et al. 1987)
and type 1 diabetic patients (Herrera et al. 2003; Fierabracci et al. 1996; Koenig
et al. 2010).

Protein deficiency could impair immune functions, thus increasing the suscepti-
bility to diseases. There has been a growing interest recently in the role of trypto-
phan on immune responses. Notably, progressive decline in plasma levels of
tryptophan was observed in animals with chronic lung inflammation (Melchior
et al. 2003). IDO is expressed in various tissues and the highest levels of its
expression are found in immune cells. Catabolism of tryptophan via IDO appears to
be pivotal for functions of both macrophages and lymphocytes (Macchiarulo et al.
2009). Especially, IDO plays a significant role in modulation of T cell-mediated
immune responses (Munn et al. 1998; Baban et al. 2005; Jalili et al. 2010). Both
IDO-induced tryptophan depletion and the resulting accumulation of kynurenine
can contribute to the suppression of T cell-mediated immune responses. IDO is a
cytokine-inducible enzyme and IFN-y is known to be the main inducer of IDO
(Yasui et al. 1986). Tumor necrosis factor (TNF)-alpha stimulates IDO activity and
enhances IFN-y-induced IDO expression (Robinson et al. 2005). IFN-y fails to
induce tolerating properties in dendritic cells from highly susceptible NOD female
mice that are in early stages of diabetes. This defect is associated with defective
tryptophan catabolism and is related to transient blockade of the STAT1 pathway of
intracellular signaling by IFN-y. This condition results in impaired transcriptional
activation of the IDO gene and is caused by peroxynitrite production. Furthermore,
the use of a peroxynitrite inhibitor may rescue tryptophan catabolism and provide
tolerance in those mice (Grohmann et al. 2003). Similarly, dermal fibroblasts of
diabetic NOD mice, regardless of their gender, fail to express IDO in response to
IFN-y treatment, and a defect in STAT1 phosphorylation is also shown as the poten-
tial underlying mechanism (Hosseini-Tabatabaei et al. 2012). Furthermore, local
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overexpression of IDO by fibroblasts, co-transplanted with pancreatic islets, can
delay immune rejection and prolongs islet allograft survival, even in the absence of
any antirejection treatment (Jalili et al. 2010).

These findings showing a defect in tryptophan catabolism in dendritic cells and
in diabetic fibroblasts may give hints about impaired tolerance in autoreactive T
cells that affect selective destruction of the p cells in type 1 diabetes.

The activities of the enzymes in the metabolic pathway of tryptophan affect the
production of tryptophan metabolites. Hepatic activity of a-amino-b-
carboxymuconate-semialdehyde decarboxylase was demonstrated to be much
higher in rats with type 1 diabetes (Tanabe et al. 2002). Furthermore, the amounts
of urinary excreted niacin metabolites per tryptophan intake in streptozotocin-
induced diabetic rats (one way to generate type 1 diabetic animal model is to use
streptozotocin to destroy P cells of pancreas) were significantly less than those in
the normal rats (Egashira et al. 1995). Kynurenine or quinolinic acid was found to
be three times more in the hepatocytes prepared in vitro from streptozotocin-induced
diabetic rats, compared with that of normal hepatocytes (Sasaki et al. 2009).
Decreased kynureninase activity was also reported in diabetic rabbits with type 1
diabetes (Allegri et al. 2003).

Quinolinic acid results in neurotoxicity and this molecule was considered to be
involved in the pathogenesis of neurodegenerative disorders (Heyes et al. 1991).
Kynurenine and L-kynurenic acid demonstrate neuroprotective effects (Robotka
et al. 2008; Rozsa et al. 2008). These metabolites also affect the immune system
(Belladonna et al. 2007). Quinolinic acid, by inhibiting phosphoenolpyruvate car-
boxykinase, was proposed to suppress gluconeogenesis (Lelli et al. 2008). It has
been suggested that type 1 diabetes mellitus augmented both kynurenine and quino-
linic acid generation in the liver (Sasaki et al. 2009).

There exists experimental evidence that high levels of glucose and/or the purified
Amadori albumin lead to specific oxidative modifications in tryptophan residues in
lysozymes, thus inhibiting their activity (Chetyrkin et al. 2008). Chetyrkin et al. also
demonstrated that pyridoxamine reduced the oxidation of tryptophan residues.
Oxidized tryptophan residues are also elevated in cardiac proteins of streptozotocin-
induced diabetic rats (Hamblin et al. 2007). Therefore, these results suggest that
oxidative stress and tryptophan oxidation could be among the reasons responsible
from the reduced serum levels of tryptophan both in animal models of type 1 diabe-
tes and also in diabetic patients (Jain 2008).

7.4.3 Type 2 Diabetes Mellitus

Type 2 diabetes is characterized by the combination of varying degrees of insulin
resistance and an inadequate compensatory insulin secretory response (relative
insulin deficiency) (1997, Genuth et al. 2003). Its prevalence has increased dramati-
cally in the last decade. Sedentary lifestyle and the resulting obesity are the main
causes of this increase (Sullivan et al. 2005). The importance of insulin resistance
and impaired insulin secretion in the pathogenesis of type 2 diabetes has been well
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documented. Insulin resistance is the best predictor of developing type 2 diabetes.
Five years before the onset of diabetes, insulin resistance is generally evident, and
insulin secretion usually increases 3—4 years before the development of overt diabe-
tes and then decreases until diagnosis (Tabak et al. 2009). Insulin resistance in type
2 diabetes is probably due to a post-receptor defect, affecting one of the intracellular
enzymes involved in glucose metabolism. Genetic background of insulin resistance
has been observed in a study conducted with lean normoglycemic offsprings of
parents with type 2 diabetes (Rothman et al. 1995). These offsprings represented to
have reduced non-oxidative glucose metabolism (indicative of insulin resistance)
and muscle glycogen synthesis secondary to a defect in muscle glucose transport/
hexokinase activity prior to the onset of overt diabetes. Increased muscle cell lipid
content has also been observed in these subjects, which indicates a relation between
the dysregulation of fatty acid metabolism and insulin resistance. Subsequent stud-
ies also showed that this dysregulation was due to an inherited defect in mitochon-
drial functions of skeletal muscle (Petersen et al. 2004). Studies indicate that insulin
resistance alone is insufficient to cause diabetes (Lauro et al. 1998; Moller and Flier
1991). There is a close link between high-fat diet and development of diabetes.
Glucose is transported into f cells to induce insulin secretion, and the glucose trans-
porter-2 (GLUT-2) mediates this transportation. A mouse model of genetically
defective GLUT-2 represented glucose intolerance, and a similar phenotype was
also reported in high-fat diet-fed (lipotoxicity) wild-type mice (Ohtsubo et al. 2005).
Hyperglycemia itself contributes to decrease in insulin secretion (glucotoxicity) by
P cells as well (Moran et al. 1997).

Increasing knowledge about the genetic background of diabetes indicates that
monogenic causes of type 2 diabetes constitute only a small fraction of cases, and
most of type 2 diabetic cases have complex polygenic risk factors. Type 2 diabetes
is essentially considered to represent a multipart interaction between complex poly-
genic inheritance and environmental factors. Observational studies clearly demon-
strated a genetic influence on the development of type 2 diabetes, i.e., about 39 % of
type 2 diabetics have at least one parent with the disease (Klein et al. 1996), and
ethnic groups living in the same environment may have different diabetes preva-
lence (Carter et al. 1996). On the other hand, environmental factors also play a
major role in the development of diabetes. For example, the prevalence of type 2
diabetes is much higher among Pima Indians in the United States than those in
Mexico (Schulz et al. 2006). Genome-wide association analysis has also identified
several diabetes susceptibility loci, such as the genes involved in pancreatic devel-
opment and insulin synthesis, -cell function, and insulin action (Sladek et al. 2007,
Zeggini et al. 2008; Voight et al. 2010). Requirements for multiple abnormalities in
the genes controlling insulin secretion and action may explain the non-Mendelian
inheritance and the variable penetrance of type 2 diabetes. Genome-wide associa-
tion studies indicate that type 1 and type 2 diabetes’ genetic loci do not overlap.

Type 2 diabetic patients usually present with hypertension, dyslipidemia, and
visceral obesity, which are named together as metabolic syndrome that indicates an
increased cardiovascular risk (DeFronzo and Ferrannini 1991). Insulin resistance is
considered to be the underlying factor for all these pathologies, and hyperinsulinemia
that occurs as a result of insulin resistance leads to increases in free fatty acids in the
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circulation and inflammatory cytokines from adipose tissue. Obesity causes insulin
resistance and probably decreases the sensitivity of the  cells to glucose and losing
weight can reverse these effects (Henry et al. 1985). An exercise regimen also
improves the glucose tolerance and delays the development of overt diabetes. The
exact mechanism of how obesity induces diabetes is not clearly understood. Obese
patients have high plasma free fatty acid levels. Such high levels suppress insulin
secretion and insulin-stimulated glucose uptake and thus constitute a risk factor for
type 2 diabetes (Paolisso et al. 1995; Boden and Chen 1995; Ohtsubo et al. 2005).
Low-grade inflammation is also considered as a common mediator linking obesity
and type 2 diabetes (Hotamisligil 2006). Increased levels of inflammatory markers
such as TNF-alpha, IL-6, and plasminogen activator inhibitor-1 are correlated with
incidence of type 2 diabetes (de Rekeneire et al. 2006). Adipose tissue secretes
numerous adipokines that can induce low-grade inflammatory activity as well.
Leptin, expressed primarily in adipocytes, is a major adipokine, and its levels are in
proportion to the adipocyte mass (Zhang et al. 1994; Weigle et al. 1997; Gautron
and Elmquist 2011). Leptin is a hormone made and released by the adipose tissue
and regulates metabolism, energy intake/expenditure, and behavior through leptin
receptors located in the central nervous system (Friedman and Halaas 1998). Leptin
gives a signal to the hypothalamus about fat storage status. It is well demonstrated
that leptin deficiency and/or resistance is associated with obesity and type 2 diabe-
tes. The adipoinsular axis has long been proposed as the link between the adipose
tissue and the P cells through the insulin and leptin interaction (Kieffer and Habener
2000). Effects of leptin on B-cell mass and functions according to the presence of
insulin resistance were also reported in an animal study (Morioka et al. 2007).
Another important adipokine in the pathogenesis of obesity and diabetes is adipo-
nectin. Numerous studies revealed that low adiponectin levels were associated with
obesity, the development of insulin resistance, and subsequent type 2 diabetes
(Kadowaki et al. 2006). Studies with animal models of obesity revealed that
increased release of TNF-alpha from adipose tissue leads to insulin resistance
(Hotamisligil et al. 1993; Uysal et al. 1997).

7.4.4 Type 2 Diabetes and Tryptophan Metabolism
7.4.4.1 Type 2 Diabetes and Kynurenine Pathway

A common feature of insulin resistance-related disorders, e.g., metabolic syndrome,
type 2 diabetes, and obesity, is the low-grade chronic inflammation. Chronic inflam-
mation may be one of the mechanisms that trigger IDO (Oxenkrug 2013). Tryptophan
metabolism shifts from serotonin synthesis to formation of kynurenine metabolites
when IDO is activated (Fig. 7.2).

Plasma tryptophan levels are decreased in obese rats (Finkelstein et al. 1982) and
in obese patients (Brandacher et al. 2007). It was demonstrated that after bariatric
surgery in morbidly obese patients, preoperative high kynurenine/tryptophan ratio
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(as an index of IDO activity) did not decrease (Brandacher et al. 2006). Recently,
serum kynurenine/tryptophan ratio and IDO expression in the omental and subcuta-
neous adipose tissues and also in the liver were shown to be high in obese women
(Wolowczuk et al. 2012).

It was reported that xanthurenic acid induced experimental diabetes in rats
(Kotake et al. 1975). Several mechanisms have been proposed for the effects of
xanthurenic acid (reviewed in (Oxenkrug 2013)), such as decreasing the effects of
insulin (Kotake et al. 1975) or insulin release (Rogers and Evangelista 1985), direct
toxic effects (Meyramov et al. 1998), or induction of apoptosis in pancreatic islets
(Malina et al. 2001). Xanthurenic acid, kynurenic acid, and their derivatives, quin-
aldic acid and 8-hydroxyquinaldic acid, inhibit proinsulin synthesis in isolated rat
pancreatic islets (Noto and Okamoto 1978). In a study with a small sample size, an
increased urine excretion of xanthurenic acid was reported in type 2 diabetic patients
(Hattori and Kotake 1984). A recent metabolomics study showed an increased level
of kynurenic acid in the urine of nonhuman primates with type 2 diabetes mellitus
(Patterson et al. 2011).

Kynurenine pathway needs pyridoxal-5-phosphate as a cofactor, which is an
active form of vitamin B6, for NAD" synthesis (van de Kamp and Smolen 1995).
Pyridoxal-5-phosphate deficiency causes downregulation of kynureninase and leads
to a shift in tryptophan metabolism from the formation of NAD to excessive produc-
tion of xanthurenic acid (Bender et al. 1990). Decreased formation of NAD leads to
the inhibition of synthesis and secretion of insulin as well as the death of pancreatic
p cells (Okamoto 2003). It was shown that vitamin B6 decreased insulin levels and
improved insulin sensitivity in a dose-dependent manner, in an animal model of
type 2 diabetes (Murakoshi et al. 2009).

Most of the chronic hepatitis C virus (HCV) infections are associated with insu-
lin resistance and the molecular mechanisms concerning this condition are still
under debate (Romero-Gomez 2006). An activated tryptophan—kynurenine metabo-
lism (IDO activation) was previously reported in patients with HCV infection
(Larrea et al. 2007). In a recent study, significant correlations were reported between
insulin resistance/insulin secretion and tryptophan as well as kynurenine concentra-
tions (Oxenkrug et al. 2013).

7.4.4.2 Type 2 Diabetes and Methoxyindole Pathway
7.4.4.2.1 Type 2 Diabetes and Serotonin

Two different tryptophan hydroxylase enzymes catalyze serotonin synthesis accord-
ing to central or peripheral serotonin needs. While tryptophan hydroxylase-1 is used
at peripheral tissues, tryptophan hydroxylase-2 acts at the central nervous system
(CNS) (Sakowski et al. 2006). The monoamine-signaling molecule, serotonin, can-
not cross the blood-brain barrier, and the synthesis of serotonin depends on the
presence of circulatory tryptophan (Fernstrom 2013). Tryptophan-free diet leads to
a rapid decrease in brain serotonin (Reilly et al. 1997). Serotonin is involved in the
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maintenance of energy balance through regulating many behavioral and physiological
processes (Tecott 2007). The suppression of food intake is the predominant global
effect of CNS serotonin signaling. Serotonin in CNS is synthesized at the raphe
nuclei. Administration of serotonin or its precursor 5-hydroxytryptophan into CNS
causes a decrease in foot intake and increases the metabolic rate (Yamada et al.
2006). At least 18 receptors of serotonin have been identified (Marston et al. 2011).
In hypothalamus, the 5S-HT2CR receptor of serotonin is the predominantly expressed
type (Yadav et al. 2009), and serotonin exerts its anorectic action through this recep-
tor (Nonogaki et al. 1998).

Insulin has also an anorexigenic effect in CNS and its receptors are co-localized
with serotonin receptors in the hypothalamus (Bruning et al. 2000). There is an
interaction between the insulin and serotonin systems. The function of 5-HT2CR
may be inhibited by insulin receptor activation in cells expressing both of these
receptors (Hurley et al. 2003). Systemic administration of 5-HT2CR agonists
reduces elevated serum insulin levels and improves glucose tolerance and insulin
sensitivity in mice with insulin resistance (Zhou et al. 2007). These effects were
achieved at doses that did not show any impact on food intake or body weight.
These data were further supported by the finding that genetic inactivation of the
5-HT2CR in mice impaired glucose homeostasis (Wade et al. 2008). Administering
fenfluramine, a drug that increases synaptic serotonin concentrations by inducing
vesicular release and inhibiting reuptake, into the hypothalamus leads to increases
in hypothalamic extracellular insulin levels (Orosco et al. 2000). Systemic dexfen-
fluramine treatment was also reported to increase serum insulin levels (Papazoglou
et al. 2012). Furthermore, increased serum insulin levels and pancreatic islet cell
density (indicating increased insulin production) were reported in the serotonin
reuptake transporter-deficient mice (Chen et al. 2012). These findings suggest that
the 5-HT2CR may be a novel target for the treatment of type 2 diabetes.

Serotonin in circulation has complex effects on peripheral glucose regulation.
While serotonin induces hyperglycemia, likely by inhibiting glucose uptake, it also
leads to hyperinsulinemia, presumably by stimulating pancreatic f§ cells (Hajduch
et al. 1999; Moore et al. 2005). Serotonin is also synthesized and stored in secretory
f granules within P cells (Ekholm et al. 1971; Richmond et al. 1996). The concept
of “microserotonergic systems” in peripheral tissues has emerged with the recent
advances in intracellular serotonin functions (Paulmann et al. 2009), which at least
partially underlie the regulation of insulin release by serotonin. Serotonin is con-
comitantly released with insulin during the stimulation of B cells by glucose (Smith
et al. 1999). Studies on tryptophan hydroxylase-1~- mice (lack of peripheral sero-
tonin) identified the “serotonylation” of small GTPases as a 5-HT receptor-
independent, intracellular signaling mechanism of monoamines (Walther et al.
2003). Intracellular Ca* mobilization and monoamine accumulation in the cyto-
plasm together trigger vesicular exocytosis through activating covalent binding of
serotonin to GTPases, in a reaction that is conferred by the Ca*>-dependent transglu-
taminases (TGases) (Walther et al. 2003). TGase2™~ mice are glucose intolerant
(Bernassola et al. 2002). It was shown that intracellular serotonin regulates insulin
secretion in peripheral tryptophan hydroxylase-17~ mice. Due to the lack of
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serotonin in the pancreas, these mice are diabetic and have an impaired insulin
secretion. The damaged insulin secretion was also reversed by pharmacological res-
toration of the peripheral serotonin levels in vivo (Paulmann et al. 2009). In sum-
mary, serotonin primarily acts not only as an intercellular signaling molecule but
also as an intracellular agent by regulating the activity of target proteins through
covalent coupling.

7.4.4.2.2 Type 2 Diabetes and Melatonin

The methoxyindole pathway of tryptophan results in the generation of serotonin and
then the synthesis of melatonin. In mammals, melatonin is mainly derived from
pineal body and peaks at night in response to light information received through
retinohypothalamic pathway and from the suprachiasmatic nucleus in the hypo-
thalamus where the circadian clock is located. This enables the synchronization of
the phases of the circadian clock with the light—dark cycle. This pathway is stimu-
lated during the night and inhibited by light stimulation. Along with clock and cal-
endar functions, melatonin has an antioxidant action and is a biological modulator
of mood, sleep, sexual behavior, and circadian rhythm (Singh and Jadhav 2014).
The suprachiasmatic nucleus is the master oscillator of the light—dark cycle. It con-
trols the release of melatonin and adrenal glucocorticoids and transmits information
to other systems to control the sleep—wake cycle, cardiovascular system activity,
endocrine behavior, and dietary activity. Any deficiency in melatonin or in melato-
nin precursors leads to impaired circadian rhythms, depressed mood, and sleep dis-
orders (Oxenkrug 2010b; Oxenkrug and Requintina 2003). Accumulating data
indicate that disrupted circadian system is associated with metabolic syndrome,
including type 2 diabetes and obesity (Pulimeno et al. 2013).

Melatonin has especially an important role in the regulation of glucose metabo-
lism. Experimentally induced desynchronization of sleep—wake cycles has been
reported to significantly contribute to higher fasting plasma glucose levels (Scheer
et al. 2009). The removal of the pineal gland, under basal conditions, leads to higher
glucose and glucagon levels and lower insulin levels in rats (Diaz and Blazquez
1986; Rodriguez et al. 1989). In type 2 diabetic rats, pinealectomy resulted in
increased insulin resistance and accelerated disease progression (Scheer et al. 2009;
Nishida et al. 2003). These findings indicate a potential direct role of melatonin on
pancreatic functions in rats. Pinealectomized rats also displayed hepatic insulin
resistance, increased gluconeogenesis, and phosphoenolpyruvate carboxykinase
(PEPCK) expression at the end of the nocturnal feeding period (Kosa et al. 2001).
In the early hours of the morning, in parallel to decreased levels of circulating mela-
tonin, increased gluconeogenesis and hyperglycemia have also been observed in
type 2 diabetic patients (Radziuk and Pye 2006). A disrupted rhythm of insulin
secretion was also reported in the isolated islets of pinealectomized rats (Picinato
et al. 2002). These data indicate that melatonin is involved in the control of hepatic
gluconeogenesis and acts as a synchronizer of biological rhythms associated with
the development of type 2 diabetes.
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Melatonin synthesis has been reported to be decreased in a type 2 diabetic rat
model (Peschke et al. 2006). An improvement in glucose metabolism after treat-
ment with melatonin was also demonstrated in an insulin-resistant mouse model
(Sartori et al. 2009). Whereas administering melatonin or insulin alone provided a
limited protection against hyperglycemia-induced oxidative damage in diabetic
rats, combined treatment prevented the oxidative damage and ameliorated hypergly-
cemia (Sartori et al. 2009). Several studies on diabetic rats have demonstrated a
protective role of melatonin on the preservation of the pancreatic f cell, such as
inducing B-cell neogenesis, proliferation, and also prevention from apoptosis
(Karamitri et al. 2013). Melatonin receptors have two subtypes (MT1 and MT2)
(Pandi-Perumal et al. 2008), which also exist in pancreatic islet cells. Removing the
MT1 receptor of melatonin leads to impaired glucose metabolism and increased
insulin resistance (Bazwinsky-Wutschke et al. 2014).

Human studies concentrating on the association of melatonin with diabetes are
very limited in number. Nocturnal levels of melatonin were observed to be decreased
in type 2 diabetic patients (Tutuncu et al. 2005; Peschke et al. 2006). Recently,
lower melatonin secretion was reported to be independently associated with a higher
risk of developing type 2 diabetes (McMullan et al. 2013). In addition, several poly-
morphisms linked to the MTNR1B gene, which encodes the melatonin MT2 recep-
tor, have been identified as a risk factor for developing type 2 diabetes (Bonnefond
et al. 2012).

Nevertheless, it is not yet known whether melatonin has positive effects on meta-
bolic parameters in type 2 diabetic patients and diabetic complications, as observed
in animal studies.

7.4.5 Diabetic Complications and Tryptophan Metabolism

Diabetic complications are mainly categorized as acute and chronic. Acute compli-
cations of diabetes include diabetic ketoacidosis, hyperosmolar hyperglycemic non-
ketotic coma, and hypoglycemia. Chronic complications are specifically classified
as either microvascular (i.e., neuropathy, retinopathy, and nephropathy) or macro-
vascular (i.e., cerebrovascular, cardiovascular, and peripheral vascular disease).
Chronic hyperglycemia is central to the pathophysiology of chronic complications
and leads to long-term damage, dysfunction, and failure in different organs, espe-
cially the eyes, kidneys, nerves, heart, and blood vessels. An altered metabolism of
tryptophan and its active metabolites have also been implicated in most of diabetic
complications (Carl et al. 2002; Raju et al. 2007; Zarnowski et al. 2007; Kanth et al.
2009; Pawlak et al. 2009; Munipally et al. 2011; Hirayama et al. 2012).
Kynurenine pathway metabolites are present in the human eye (Van Heyningen
1971). Kynurenine and 3-hydroxykynurenine derivatives are found in the lens and
they absorb UV radiation; therefore, they may have roles in protecting the retina and
lens from UV light (Chiarugi et al. 1999). Accumulation of kynurenine was reported
in cataractous lenses of animals with diabetes (Raju et al. 2007; Zarnowski et al.
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2007) and also in senile nuclear human cataracts (Zarnowski et al. 2007). On the
other hand, nuclear cataract contains extensive oxidation of proteins and
3-hydroxykynurenine which oxidize lens crystalline and cause cataract formation
(Aquilina et al. 1997). Glycated lens proteins can produce reactive oxygen radicals.
By this way, they can oxidize tryptophan into kynurenine. IDO is expressed in the
human lens and it was reported that IDO was induced in type 1 diabetic cataractous
lenses (Kanth et al. 2009). IDO-mediated oxidation of tryptophan may also lead to
increases in kynurenine and kynurenine metabolites in the lenses of diabetics.

A recent study showed increased levels of xanthurenic acid precursors, kynuren-
ine, and 3-hydroxykynurenine as well as elevated expression of IDO in serum sam-
ples of patients with diabetic retinopathy (Munipally et al. 2011). These results
indicate that IDO enzyme and tryptophan—kynurenine pathway metabolites might
be involved in the diabetic retinopathy pathogenesis by the mechanism of oxidative
stress. 3-Hydroxykynurenine has a role in producing H,0O, (Eastman and Guilarte
1990), which could be a cause of oxidative damage seen in diabetic retinopathy
(Munipally et al. 2011). In addition, it was reported that nocturnal melatonin levels
in type 2 diabetic patients with proliferative diabetic retinopathy were significantly
lower than those in type 2 diabetic patients without proliferative retinopathy (Hikichi
et al. 2011). Upon this result, the authors proposed that decreased retinal light per-
ception might be linked to low levels of melatonin, which could also accelerate the
diabetic complications. Furthermore, the protective role of melatonin on retina has
been recently shown both in diabetic rats (Li et al. 2013) and in an experimental
animal model of retinopathy associated with type 2 diabetes (Salido et al. 2013).
Decreased levels of melatonin were also reported in type 2 diabetic patients with
cardiac autonomic neuropathy (Tutuncu et al. 2005).

The kynurenine pathway tryptophan metabolites are also associated with
inflammation and oxidative stress markers, as well as cardiovascular diseases in
patients with end-stage renal disease, including diabetics (Pawlak et al. 2009).
Activation of the kynurenine pathway and its enzymatic activity could be related to
increased inflammatory reactions seen in uremic patients. Higher levels of kynuren-
ine were reported in hemodialysis patients with type 1 or 2 diabetes (Koenig et al.
2010).

As an index of IDO activity, the ratio of kynurenine to tryptophan is frequently
used in clinical studies (Oxenkrug 2010a). A significant proportion of coronary
heart disease patients had a higher kynurenine/tryptophan ratio (Wirleitner et al.
2003). Furthermore, it was reported that IDO activity was correlated with athero-
sclerosis risk factors, such as age, carotid artery intima/media thickness, low-density
lipoprotein, body mass index, and C-reactive protein (Pertovaara et al. 2007,
Niinisalo et al. 2008). A recent metabolomics study reported higher kynurenine lev-
els in diabetic patients with nephropathy compared with those without nephropathy
(Hirayama et al. 2012).

Diabetic ketoacidosis is an acute and life-threatening complication of diabetes
and is associated with insulin deficiency. Low levels of tryptophan were reported in
patients with diabetic ketoacidosis and this depletion was proposed to be a possible
predisposing factor for affective disorders secondary to the neurotransmitter



162 U. Unluturk and T. Erbas

imbalances seen in diabetic patients (Carl et al. 2002). Several studies in animal
models evaluating the serotonergic activity of brain in type 1 diabetes have been
published (Crandall et al. 1981; Trulson et al. 1986; Lackovic and Salkovic 1990;
Yang and Lin 1995; Herrera et al. 2003, 2005). The level of tryptophan, the rate of
serotonin synthesis, and the activity of tryptophan-hydroxylase have been reported
to be decreased in the brains of animals with type 1 diabetes (Crandall et al. 1981;
Trulson et al. 1986; Herrera et al. 2005). These results indicate a diminished activity
of the serotonergic system. Tryptophan-hydroxylase demonstrates an unsaturated
enzyme activity with respect to tryptophan. Therefore, a decrease in available tryp-
tophan could be one of the causes of the reduced activity of the metabolic pathway
of tryptophan in the brain, as seen in animal models of type 1 diabetes. There could
be other intrinsic factors that lead to the sustained tryptophan—hydroxylase activity.
In relation to this, a study reported a significantly decreased affinity of tryptophan—
hydroxylase for tryptophan and lower rates of enzyme activity in both the cortex
and the brainstem of rats with type 1 diabetes, compared to the healthy controls
(Herrera et al. 2005). These changes could be related to the epigenetic modifications
of functional protein systems after developing a diabetic condition and might affect
the pathophysiology of the psychoneurological complications of diabetes.

7.5 Conclusions

There is growing evidence about the role of tryptophan metabolism in the pathogen-
esis of diabetes and its complications (summarized in Figs. 7.1 and 7.2). While most
of the studies were conducted with animal models of type 1 diabetes, there exist a
limited number of human studies about tryptophan metabolism. Accumulating lit-
erature suggests that tryptophan metabolism is upregulated during diabetes and
affects several systems, such as p-cell secretory capacity; insulin sensitivity; devel-
opment of microvascular, macrovascular, and psychoneurological complications of
diabetes; as well as immune responses. Recent data suggest that the altered trypto-
phan metabolism, serotonin, melatonin, and their receptors in diabetes would be
novel targets to understand the secrets of the pathogenesis of diabetes and related
complications as well as to develop new antidiabetic agents. However, there is a
huge need for further studies in humans in order to support the existing data obtained
from animal models. Encouraging results of the animal studies may accelerate the
conduct of human trials.
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Chapter 8

3-Hydroxykynurenic Acid and Type 2
Diabetes: Implications for Aging, Obesity,
Depression, Parkinson’s Disease,

and Schizophrenia

Gregory Oxenkrug

Abstract Aging, obesity, depression, Parkinson’s and other neurodegenerative
diseases, schizophrenia, and treatment with antipsychotic drugs are highly associ-
ated with insulin resistance (IR) and type 2 diabetes mellitus (T2D). Molecular
mechanisms of increased associations remain uncertain. Current review of literature
and our data suggest that one such mechanism is the overproduction of diabetogenic
factors resulting from dysregulation of upstream and downstream pathways of tryp-
tophan (TRP)-kynurenine (KYN) metabolism. Proinflammatory factors and stress
hormones activate two upstream steps of TRP—KYN pathway: TRP conversion into
KYN, a substrate for formation of kynurenic acid (KYNA), and KYN conversion
into 3-hydroxyKYN (3-HK). The first step of downstream pathway of 3-HK metab-
olism, formation of 3-hydroxyanthranilic acid (3-HAA), is catalyzed by pyridoxal-
5-phosphate (P5P)-dependent kynureninase (K'YNase). PSP deficiency, associated
with inflammation, stress, and treatment with antipsychotic drugs, diverts metabo-
lism of overproduced 3-HK from formation of 3-HAA to the excessive formation of
3-hydroxykynurenic acid (3H-KYNA). Human and experimental studies suggested
diabetogenic (e.g., impairment of production, release, and biological activity of
insulin) effect of KYN, 3H-KYNA, KYNA, and their metabolites. We propose that
one of the mechanisms of increased association of IR (and T2D) with aging, obe-
sity, depression, neurodegenerative diseases, schizophrenia, and treatment with
antipsychotic drugs is overproduction of 3H-KYNA resulting from upregulated for-
mation of 3-HK augmented by P5P deficiency. Pharmacological regulation of up-
and downstream TRP-KYN metabolic pathways might be a new approach for
prevention and treatment of IR (and IR progression to T2D) associated with aging,
obesity, depression, neurodegenerative diseases, schizophrenia, and treatment with
antipsychotic drugs.
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8.1 Introduction

Aging, obesity, depression (including induced by antiviral treatment of HCV),
Parkinson’s disease, schizophrenia and treatment with antipsychotic drugs, and
neurodegenerative disorders (e.g., vascular, Alzheimer’s, and HIV-1-associated
dementias and Huntington disease) are chronic inflammation-/stress-related condi-
tions that are highly associated with insulin resistance (IR) and type 2 diabetes
(T2D). While IR and T2D might increase the risk of inflammation/stress-related
conditions, the reverse causality is possible, i.e., that these conditions increase the
risk of developing IR and T2D. Alternatively, these conditions might facilitate pro-
gression from prediabetes to T2D.

We suggest that one of the mechanisms of high association between chronic
inflammation/stress-related conditions and IR (T2D) is dysregulation of tryptophan
(TRP)—kynurenine (KYN)-NAD+ metabolism (Oxenkrug 2013).

8.1.1 Upstream KYN Metabolic Pathways

TRP is an essential (for humans) amino acid. About 5 % of nonprotein route of TRP
metabolismis utilized for the formation of methoxyindoles: serotonin, N-acetylserotonin,
and melatonin (Oxenkrug 2007). The major nonprotein route of TRP metabolism is
formation of KYN (via production of N-formyl-KYN), catalyzed by rate-limiting
enzymes: either inflammation-inducible indoleamine 2,3-dioxygenase (IDO) (Murray
2001) or stress-inducible TRP 2,3-dioxygenase (TDO) (Fig. 8.1) (Schwarcz et al. 2012).

8.1.2 Downstream KYN Metabolic Pathways

KYN is metabolized into kynurenic acid (KYNA), by pyridoxal 5’-phosphate (P5P)-
dependent KYN-aminotransferases I, II, and III (KATs), or oxidated into
3-hydroxyKYN (3-HK), by flavin adenine dinucleotide-dependent KYN
3-monooxygenase (KMO) (Amori et al. 2009). 3-HK is a substrate for two competi-
tive  pyridoxal-5-phosphate  (P5P)-dependent  pathways:  formation  of
3-hydroxyanthranilic acid (3-HAA) (along the NAD+ biosynthetic pathway) cata-
lyzed by kynureninase (K'YNase) and formation of 3-hydroxy-KYNA (3H-KYNA)
(also known as xanthurenic acid) catalyzed by HK-transaminase (HKT) (Fig. 8.1). It
is noteworthy that insects’ HKT has sequence identity with mammalian alanine ami-
notransferases (Han et al. 2002) known to be elevated in T2D (Deboer et al. 2013).
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IFNG kynureninase
kmo (PflP)
TRP ——» IDO/TDO > KYN i » HK —»HAA —» NAD+
l
Serotonin KAT< (P5P) % HKT
NAS STRESS KYNA 3H-KYNA
Melatonin
IR/T2D

Fig. 8.1 KYN metabolic pathways and type 2 diabetes. Abbreviations: TRP tryptophan, IFNG
interferon-gamma, /DO indoleamine 2,3-dioxygenase, TDO TRP 2,3-dioxygenase, KYN kynuren-
ine, KAT KYN-aminotransferase, KYNA kynurenic acid, KMO KYN-3-monooxygenase, HK
3-hydroxyKYN, HKT HK-transaminase, 3H-KYNA 3-hydroxyKYNA (xanthurenic acid), P5P
pyridoxal 5’-phosphate, HAA 3-hydroxyanthranilic acid, NAD+ nicotinamide adenine dinucleo-
tide, IR insulin resistance, 72D type 2 diabetes, NAS N-acetylserotonin

8.2 Regulation of Upstream KYN Metabolic Pathways

8.2.1 Inflammation

Proinflammatory factors, in particular, Thl-type cytokine interferon-gamma
(IFNG), activate IDO, catalyzing conversion of TRP into KYN (precursor of KYNA
and 3-HK) (Taylor and Feng 1991), and KMO, catalyzing conversion of KYN into
3-HK (precursor of 3-HAA and 3H-KYNA) (Alberati-Giani et al. 1996). The effect
of IFNG on IDO activity is affected by polymorphic gene that encodes IDO produc-
tion (Smith et al. 2012).

8.2.2 Stress

Stress upregulates TDO (Oxenkrug 2007; Schwarcz et al. 2012; Su et al. 2011) and
KMO activities. Thus, electric foot shock elevates rat brain levels of KYN, 3-HK,
and KYNA (Pawlak et al. 2000).

It is noteworthy that overproduction of 3H-KYNA metabolic precursors, KYN
and 3-HK, may not be sufficient to increase formation of 3H-KYNA. Thus, mouse
lung infection, resulted in a 100-fold induction of IDO, was accompanied by a 16-
and threefold increase of KYN and 3-HK levels, respectively, without increase of
3H-KYNA (Christen et al. 1990). In the same vein, chronic administration of IFNG
increased the release of KYN and KYNA but not of 3H-KYNA from cultured rat
astrocytes (Fukuyama et al. 2014).
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However, upregulation of 3-HK production may be a prerequisite to P5P-induced
shift of 3-HK metabolism from formation of HAA toward overproduction of
3H-KYNA.

8.3 Regulation of Downstream KYN Metabolic Pathways

Recent reviews indicated that low levels of plasma P5P are associated with a variety
of inflammatory disease conditions independent of dietary intake of vitamin B6,
excessive catabolism of the vitamin B6, or congenital defects in its metabolism
(Paul et al. 2013; Ueland and Selhub 2012). Authors suggested that the inverse
association between plasma P5P and inflammation may be the result of mobiliza-
tion of PSP for use in downstream metabolism of KYN overproduced in response to
inflammation-induced upregulation of IDO, i.e., a passive consequence of P5P piv-
otal role as a coenzyme for the key enzymes of KYN metabolism: KATs, HKT, and
KYNase. However, continuous decline of plasma P5P might, in its turn, affect
downstream metabolism of KYN. Because KYNase is more sensitive to PSP defi-
ciency than other P5P-dependent enzymes of KYN metabolism (Kamp and Smollen
1995), PSP deficiency results in inhibition of KYNase and downregulation of con-
version of overproduced 3-HK into HAA. Overproduced 3-HK, therefore, became
available as a substrate for formation of an excessive amount of 3H-KYNA (Allegri
et al. 2003; Ogasawara et al. 1962).

Recent study found that impact of PSP deficiency on stress/substrate-inducible
TDO-driven KYN metabolism is dose dependent: moderate deficiency yielded
increased 3-HK and decreased KYNA formation, while more severe PSP deficiency
yielded an additional increase in 3H-KYNA and KYN (Rios-Avila et al. 2013).

The other consequence of PSP deficiency-induced downregulation of KYNase is
the decreased formation of NAD+ that leads to inhibition of synthesis and secretion
of insulin and the death of pancreatic beta cells (Okamoto 2003). Considering that
NAD inhibits TDO (Cho-Chung and Pitot 1967), decreased formation of NAD+
caused by P5P deficiency might lead to further activation of TDO and increased
production of KYN.

Besides PSP deficiency, KYNase might be inhibited by 3H-KYNA, thus sustain-
ing the accumulation of HK, KYNA, KYN, and 3H-KYNA at the expense of NAD+
production (Shibata et al. 1996). Additionally, 3H-KYNA might perpetuate PSP
deficiency by inhibiting pyridoxal kinase, the enzyme catalyzing the formation of
P5P from vitamin B 6 (Takeuchi et al. 1985)

Clinical and experimental studies indicate that PSP deficiency combined with
upregulated TRP conversion to KYN leads to increased availability of 3-HK as
substrate for formation of 3K'YNA and 8-HQ and increased availability of KYN as
substrate for KYNA and QA in the cerebellum, corpus striatum, frontal cortex, and
pons/medulla (Guilarte and Wagner 1987), blood (Midttun et al. 2011; Ciorba 2013)
and pancreatic islets (Rogers and Evangelista 1985).
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Vitamin B6 depletion drastically increased while vitamin B6 supplementation
normalized urinary HK and 3-HK'YNA excretion after TRP load in cardiac (Rudzite
et al. 2003) and obese patients (Yess et al. 1964) and rats (Okamoto 2003). In addi-
tion, vitamin B6 dose-dependently decreased insulin levels and improved insulin
sensitivity in the KK-A(y) mice, animal model of type 2 diabetes (Murakoshi et al.
2009; Unoki-Kubota et al. 2010).

Therefore, inflammation or stress augmented by P5P deficiency might result in
overproduction of KYN, KYNA precursor, and 3-HK, precursor of 3H-KYNA.

8.4 Diabetogenic Effects of KYN Derivatives

8.4.1 KYNA

KYNA is an endogenous broad-spectrum antagonist at all subtypes of ionotropic
glutamate receptors that preferentially activate at the strychnine-insensitive glycine
allosteric site of the N-methyl-D-aspartate (NMDA) receptor and a noncompetitive
antagonist at the alpha7 nicotinic receptor (Schwarcz et al. 2012; Turski et al. 2013).
Increased urine excretion of KYNA was found in nonhuman primate and mouse
models of T2D in a recent metabolomic study (Patterson et al. 2011). KYNA (in
micromolar concentrations) was detected in pancreatic juice of pigs (Kuc et al.
2008). The possible mechanisms of diabetogenic effect of KYNA might be related
to the KYNA’s ability to block NMDA receptors. Thus, NMDA antagonist and
pharmacological precursor of KYNA, 7-KYNA, and NMDA antagonist, MK-801,
negated the inhibition of glucose production induced by NMDA agonists injected
into dorsal vagal complex in rodents (Lam et al. 2010).

8.4.2 3H-KYNA

3H-KYNA was discovered (and designated as xanthurenic acid) in 1943 in urine of
vitamin B6 deficient rats after administration of TRP (Lepkovsky et al. 1943). Apart
from a specific role for 3H-KYNA in the signaling cascade resulting in gamete
maturation in mosquitoes (Billker et al. 1998), nothing was known about its func-
tions in other species including mammals, except it pro-convulsive effect (Lapin
1978). 3H-KYNA was reported to induce experimental diabetes in rats (Kotake
et al. 1975), and its elevated urinary excretion was found in alloxan- and
streptozotocin-induced diabetic rats (Okamoto 2003; Ikeda and Kotake 1986;
Hattori et al. 1984; Connick and Stone 1985), while decreased activity of P5P-
dependent KYNase was observed in alloxan-induced diabetic rabbits (Allegri et al.
2003). Increased urine excretion of 3H-KYNA was found in diabetic patients
(Kotake et al. 1975) and in subjects with prediabetes (Manusadzhian et al. 1974). It
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is noteworthy that insulin dose dependently decreases urine excretion of 3H-KYNA
(and increases excretion of KYNA) in rats after TRP load (Kotake et al. 1975).
Metabolomic study revealed high association between alloxan and 3-HK in rats fed
with high caloric diet (Gu et al. 2007). The possible mechanisms mediating
3H-KYNA contribution to development of diabetes might be (a) induction of patho-
logical apoptosis of pancreatic beta cells through 3H-KYNA-induced activation of
caspase 3 (Malina et al. 2001), (b) formation of 3H-KYNA-Zn++ complexes in beta
cells that exert a toxic effect in isolated pancreatic islets (Meyramov et al. 1984), (c)
inhibition of proinsulin synthesis in isolated rat pancreatic islets (Noto and Okamoto
1978), (d) inhibition of insulin release from pancreas observed in the rat (Rogers
and Evangelista 1985), and (e) formation of chelate complexes with insulin that are
indistinguishable from insulin as antigens but have 49 % lower activity than pure
insulin (Ikeda and Kotake 1986). In addition, 3H-KYNA, KYNA, and their deriva-
tives, quinaldic acid (QA) (Takahashi et al. 1956) and 8-hydroxyquinaldic acid
(8-HQ) (Takahashi and Price 1956) (in millimolar concentrations, i.e., much higher
than their micromolar concentrations in pig’s pancreatic juice), inhibited proinsulin
synthesis in isolated rat pancreatic islets (Noto and Okamoto 1978).

8.5 Clinical Markers of Upregulation of TRP-KYN Pathway

Rate of TRP conversion into KYN might be assessed by evaluation of ratio between
substrate (TRP) and end product (KYN) of enzymatic reaction catalyzed by IDO
or TDO. Serum (or plasma) KYN to TRP ratio (KTR) is a generally accepted clini-
cal marker of IDO activity (Midttun et al. 2011). However, considering that both
IDO and TDO regulate the rate of TRP conversion into KYN, serum concentra-
tions of TRP and KYN might be affected by the activity of stress hormone-induc-
ible TDO as well. Since IDO and TDO do not activate concurrently (Takikawa
et al. 1986), assessment of inflammation factors might help to decide whether
increased KTR is triggered by activation of IDO or TDO. IFNG, the most powerful
inducer of IDO, is produced by microglia and macrophages and, after release into
the circulation, is rapidly neutralized by soluble receptors or binds to target struc-
tures. Therefore, the half-life of circulating IFNG is short, and its activity cannot
be reliably evaluated by systemic measurements, e.g., IFNG concentrations in
blood (Fuchs et al. 2009). The more reliable method to differentiate between IFNG
and stress-induced activation of TRP conversion into KYN is evaluation of IFNG-
induced marker of inflammation, neopterin. Concurrently with IDO, IFNG tran-
scriptionally induces the rate-limiting enzyme of pteridine biosynthesis, guanosine
triphosphate cyclohydrolase 1 (GTPCH) (Schoedon et al. 1986; Fuchs 2002;
Neurauter et al. 2008). In humans, IFNG-induced stimulation of GTPCH results in
accumulation of 7,8-dihydroneopterin and its stable water-soluble derivative,
neopterin. Therefore, elevated neopterin concentration might be considered not
only as a clinical marker of inflammation (as e.g., C-reactive protein and
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fibrinogen) but an indirect marker of increased of KYN production during
inflammation (Sucher et al. 2010). Blood neopterin levels correlate with KTR in
healthy humans (Spenser et al. 2010; Capuron et al. 2014) and cardiovascular
patients (Midttun et al. 2011; Murr et al. 2011).

8.6 Dysregulation of TRP-KYN Metabolism in T2D

Impaired accumulation of TRP in the brain concomitantly with a much faster disap-
pearance of the administered TRP from the bloodstream was observed in
streptozotocin-diabetic rats after TRP load (Masiello et al. 1987). Surplus of dietary
TRP, the initial substrate for the formation of KYN, KYNA, 3-HK, and 3H-KYNA,
induces insulin resistance (IR), a precursor of T2D, in pigs (Koopmans et al. 2009).
Decreased KYNase activity was observed in liver and kidney of alloxan-diabetic
rabbits (Allegri et al. 2003). Increased expression of IDO and serum levels of
3H-KYNA precursors, KYN and 3-HK, was reported in patients with diabetic reti-
nopathy (Munipally et al. 2011). As it was mentioned earlier, 3H-K'YNA was identi-
fied in prediabetes subjects (Manusadzhian et al. 1974). Recent studies revealed
decreased plasma TRP concentrations and increased KYN and KTR in 21 hemodi-
alysis patients with diabetes in comparison with 40 healthy controls patients (Koenig
et al. 2010). Neopterin, an inflammatory marker of IFNG-induced upregulation of
IDO (Fuchs et al. 2009; Oxenkrug 2011), was increased in these patients and cor-
related with KYN concentrations (rs=0.393, p<0.01), indicating that increased
TRP degradation was a result of IDO activation.

Neopterin negatively correlated with IR in Caucasian population (Fuchs et al.
1982; Spencer et al. 2010). We found correlation between plasma neopterin concen-
trations and IR (HOMA-IR, r=0.08, P<0.03) and P5P (r=-0.13, P=0.002) in 592
adult (45-75 years of age) participants of community dwellers of Boston Puerto
Rican Health Study. The strongest (r=0.15) and most significant (P <0.0002) cor-
relation was observed between HOMA-IR and neopterin/P5P ratio (index of com-
bination of increased inflammation and P5P deficiency) (Oxenkrug et al. 2011a).

8.6.1 Dysregulation of TRP-KYN Metabolism in Aging

Animal and human studies suggested that aging is associated with upregulation of
TRP-KYN metabolism (Oxenkrug 2007). The increased dioxygenation of mito-
chondrial TRP to N-formyl-KYN was consistently present among conserved bio-
markers across ageing models in five species (Groebe et al. 2007). KTR, a marker
of the rate of KYN formation from TRP, increased with aging in humans when
comparing three age groups (34-60, 61-71, and 72-93 years) (Frick et al. 2004) and
nonagenarians with 45-year-old subjects (Pertovaara et al. 2006). Increased
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formation of KYNA was observed in aged rat brain (Moroni et al. 1988; Gramsbergen
et al. 1992) and in human serum (Urbanska et al. 2006; Theofylaktopoulou
et al. 2013). The higher rate of TRP conversion into KYN at the entry into the study
was predictive of higher mortality in 10-year prospective study of nonagenarians
(Pertovaara et al. 2007). 3H-KYNA accumulates in organs with aging and activates
caspases 9 and 3, leading to apoptosis of pancreatic beta cells (Malina et al. 2001).

Aging-associated upregulation of TRP—K'YN metabolism might be triggered by
activation of IDO due to age-associated chronic inflammation or TDO due to
age-associated elevation of cortisol production.

8.6.2 Aging and TDO (Stress)

Aging is characterized by elevated production of TDO inducer, cortisol, due to dis-
inhibition of the brain—pituitary—adrenal axis (Dilman et al. 1979; Oxenkrug and
Gershon 1987; Oxenkrug et al. 1983, 1984a, b). TRP-KYN pathway and related
genes were described in Drosophila melanogaster (Savvateeva-Popova et al. 2003).
TDO is the rate-limiting enzyme of KYN formation from TRP in Drosophila, as in
the other species. However, the end product of TRP-K'YN pathway in Drosophila is
not NAD but brown eye pigment (Tearle 1991). Besides TDO, TRP-KYN metabo-
lism is affected by ATP-binding cassette (ABC) transporter regulating TRP access
to intracellular TDO (Sullivan and Sullivan 1975). Drosophila melanogaster
mutants with impaired KYN production and TDO-deficient (vermilion) (Kamyshev
1980) and ABC transport-impaired (white) eye mutants had longer life span than
wild-type flies (Oxenkrug 2010c). Furthermore, TDO inhibitor, alpha-methyl tryp-
tophan (aMT), and ABC transported inhibitor, 5-methyl tryptophan (SMT), pro-
longed mean and maximum life span (by 27 % and 43 % and 21 % and 23 %,
respectively) (Oxenkrug et al. 2011b).

8.6.3 Inflammation and Aging: IDO

Aging is associated with a chronic low-grade inflammation triggered by a shift from
the homeostatic balance of pro- and anti-inflammatory mediators to a proinflamma-
tory Thl (cellular)-type state (Vasto et al. 2007) and by increased reactivity upon
immune stimulation due to priming of brain microglial cells and peripheral macro-
phages (Henry et al. 2009). Activation of macrophages and microglia requires both
a “priming” stimulus (i.e., IFNG) and a secondary “triggering” stimulus such as
stress (Sparkman and Johnson 2008) or infection (e.g., gram-negative bacterial
endotoxin, lipopolysaccharide (Henry et al. 2009). Microglia-derived IFNG was
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shown to stimulate astrocytes via IFNG receptor in the injured hippocampus of
SAMRI1 mice (Hasegawa-Ishii et al. 2011).

Involvement of IDO inducer, IFNG, in mechanisms of aging is supported by
identification of interferon-related genes among six pathways regulating senes-
cence/immortalization: the cell cycle pRB/p53, cytoskeletal, interferon related,
insulin growth factor related, MAP kinase, and oxidative stress pathway (Fridman
and Tainsky 2008). Prolonged treatment with IFNG induces cellular senescence in
human vascular endothelial cells via upregulation of senescence-associated genes
(Kim et al. 2009). Age-dependent increases in IFNG production have been reported
in in vitro and in vivo studies, with minor changes in the remaining evaluated cyto-
kines in senescence-accelerated mice (Rodrigez et al. 2007). The frequency of A
(low-producer) alleles of IFNG(+874) gene that encodes the production of IFNG
protein increased with aging in line with the other evidences that centenarians are
characterized by a higher frequency of genetic markers associated with better con-
trol of inflammation (Lio et al. 2002). Down’s syndrome, a condition representing
an accelerated aging, was associated with higher percentages of IFNG-producing
cell in comparison with mentally retarded and healthy controls (Baran et al. 1996).

8.6.4 Inflammation and Aging: Neopterin

Increased plasma levels of neopterin (but not other 33 independent immune param-
eters) separated the aged and a healthy younger group (Fahey et al. 2000). Neopterin
levels increased with age (Fuchs et al 2009; Pertovaara et al. 2006; Theofylaktopoulou
etal. 2013; Spencer et al. 2010) with no gender differences (Schennach et al. 2002),
while age-associated increase of IDO was more prominent in women than in men
(Raitala et al. 2005). Elevation of neopterin, as a consequence of upregulation of
IFNG production, has been shown to correlate with several components of
inflammation-associated metabolic syndrome, including IR in populations of
European ancestry (Grammer et al. 2009). We assessed neopterin correlations with
IR and other clinical markers of metabolic syndrome and mortality risk in popula-
tion with a different genetic background, i.e., Puerto Ricans residents of Boston
(592 subjects (4575 years of age). Neopterin concentrations correlated with insulin
resistance (HOMA-IR, r=0.08, P<0.03), abdominal obesity (waist circumference,
r=0.085, p<0.038), and HDL cholesterol (r=-0.15, p<0.0001). Neopterin con-
centrations of >16 nmol/L. at baseline were associated with the dramatically
increased risk of mortality in 113 subjects followed for 6 years (Oxenkrug et al.
2011a).

Since inflammation is associated with PSP deficiency (Morris et al. 2010; Shen
et al. 2010), we assessed correlations of neopterin with PSP. Neopterin concentra-
tions correlated with plasma (PLP (r=-0.13, P=0.002) (Oxenkrug et al. 2011a).
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8.6.5 Aging and P5P

Aging is associated with vitamin B6 (P5P) deficiency (Schennach et al. 2002; Gori
et al. 2006; Selhub et al. 2010; Middtun et al. 2011). Since PSP deficiency is associ-
ated with the increased production of diabetogenic kynurenine derivative, 3H-KYNA
(Middtun et al. 2011), it was suggested that aging-associated combination of
increased formation of KYN from TRP with PSP deficiency contributes to the
development of IR in aging (Oxenkrug 2013b).

8.7 Dysregulation of TRP-KYN Metabolism in Obesity

Human obesity is characterized by chronic low-grade inflammation in white adi-
pose tissue that releases many inflammatory mediators, including KYN (Watts et al.
2011; Scarpellini and Tack 2012). Activation of IDOI, a rate-limiting enzyme that
converts TRP to KYN and is induced by IFNG, has been suggested to trigger a
metabolic syndrome (including obesity) in response to chronic inflammation
(Oxenkrug 2010b). Overexpression of IDO1 in the liver and white adipose tissues
of obese patients and increased serum KTR in obese in comparison with lean
women were discovered by Wolowczuk et al. (2012). Free TRP was decreased in
the plasma of obese rats (Finkelstein 1982), while obese mice produced more IFNG
than controls and had deficient IFNG receptor (Rocha et al. 2008). Secretion of
IFNG was significantly higher in the obese than in the control subjects that might be
partly depend on action of leptin, an adipocyte-secreted hormone, that shifts Th
cells toward a Th1 phenotype (Mouzaki et al. 2012; You et al. 2008). In obese chil-
dren, a shift to Th1-cytokine profile is dominated by the production of IFNG and is
related to IR (Pacifico et al. 2006). Proinflammatory cytokines exacerbate IR, impair
insulin action, and, thus contribute to the development of T2DM (Lann and LeRoith
2007). Significantly higher serum neopterin levels were reported in subjects with
increased waist-to-hip ratio (Bozdemir et al. 2006) and increased BMI (Ledochowski
et al. 1999; Ursavas et al. 2008). Low plasma TRP and high plasma KYN levels
(elevated KTR) were observed in obese subjects, independently of weight reduction
or dietary intake, and likely result from the inflammatory response of the adipose
tissue (Ashley et al. 1985; Breum et al. 2003). Serum levels of KTR and neopterin
and inflammatory markers, including C-reactive protein, in morbidly obese patients
were significantly increased compared to the control group, but only KTR and
neopterin remained below normal after weight reduction induced either by caloric
restriction (Gatti et al. 1994) or by bariatric surgery (Brandacher et al. 2006). These
studies suggest that IFNG-induced IDO and GTPCH activities have unique role as
the trait (vs state) inflammatory markers in obesity. Nevertheless, it has been dem-
onstrated that weight loss improves the inflammatory profile of obese subjects
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through a decrease of proinflammatory factors and an increase of anti-inflammatory
molecules (Forsythe et al. 2008). In addition, these TRP metabolic changes may
subsequently reduce 5-HT production and cause mood disturbances, depression,
and impaired satiety ultimately leading to increased caloric uptake and obesity
(Brandacher 2007).

Obesity is one of the major risk factor for the development of IR (Stanworth and
Johns 2009) and is considered as an independent cause of IR (Park et al. 2005). In
most cases, IR exists because of the obesity and will disappear with weight loss
(Gomez-Ambrosi et al. 2008).

8.7.1 P5P Deficiency

P5P deficiency was noted in 11 % of morbid obese individuals before laparoscopic
sleeve gastrectomy (Damms-Machado et al. 2012). Significantly lower PSP concen-
trations were reported in the morbidly obese Norwegian women and men (Aasheim
et al. 2008).

8.7.2 Dysregulation of TRP-KYN Metabolism in Depression

The stress-induced TDO activation shunting TRP metabolism from formation of
serotonin toward production of KYN in depression was originally suggested in
1969 (Lapin and Oxenkrug 1969; Oxenkrug 2010a, 2013a). Association of depres-
sion with the increased production of cortisol (Leonard 2005) is described else-
where and might be further supported by the results of recent animal experiments
(Gibney et al. 2014). Discovery of inflammation-inducible IDO added another
mechanism of upregulation of KYN formation from TRP in depression (Hayaishi
1976). Increased production of IDO inducers, proinflammatory factors, was reported
in depression (Leonard and Myint 2009). Gene set analysis reported upregulation of
IFNG, the most powerful IDO inducer, in postmortem brain tissue samples from
Brodmann area 10 in the prefrontal cortex from psychotropic drug-free persons,
with the history of depression (Shelton et al. 2010). Both IDO and TDO activations
lead to the same major consequences described in depression: (1) deficiency of
serotonin (and its metabolites, melatonin and N-acetylserotonin) (Oxenkrug and
Ratner 2012) contributing to insomnia, dysregulation of biological rhythms
(Oxenkrug and Requintina 2003), and impairment of neurogenesis (Duman and
Aghajanian 2014); (2) upregulated formation of KYN and its neuroactive deriva-
tives exerting anxiogenic, pro-oxidative, and cognitive impairment effects (Lapin
1973, 2003).
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Depression is associated with low plasma concentrations of PSP (Merete et al.
2008; Moorthy et al. 2012) and increased urine secretion of 3H-K'YNA acid inde-
pendent from P5P status (Cazzulo et al. 1974).

Therefore, upregulated formation of KYN and 3-HK in depression in combina-
tion with P5P deficiency might contribute to the increased association between
depression and T2DM (Rustad et al. 2011; Demakakos et al. 2010) and increased
(by 65 %) risk of development of T2DM (Campayo et al. 2010) supporting the
hypothesis that depression leads to diabetes (Eaton et al. 1996).

8.7.3 Dysregulation of TRP-KYN Metabolism in Depression
Associated with Hepatitis C Virus

Depression is an often (30-50 %) side effect of IFN-alpha treatment (Loftis et al.
2013). There is a strong correlation between increased serum K'YN levels and sever-
ity of depression, associated with IFN-alpha treatment of HCV or melanoma
patients (Larrea et al. 2007). We found that the presence of high-producer (T) allele
of IFNG (+874) T/A gene that encodes the production of proinflammatory cytokine,
IFNG, increases the risk of development of depression during I[FN-alpha treatment
(Oxenkrug et al. 201 1c). There was strong (r=0.7) and highly significant (p <0.0001)
correlation between serum KYN and neopterin levels in our cohort of HCV patients.
High serum TRP was the risk factor for the development of depression (Oxenkrug
et al. 2014, in press), while high neopterin levels predicted poor response to IFN-
alpha treatment of HCV patients (Oxenkrug et al. 2012).

The incidence of IR among HCV patients is 50 %, which is fourfold higher than
in non-HCV population (Negro and Alaei 2009). HCV infection significantly low-
ered vitamin B6 (Lin and Yin 2009). IFN-alpha treatment was associated with the
increased risk of developing IR and higher incidence of T2DM in comparison with
the group of nonviral chronic liver disease (Brischetto et al. 2003) or patients with
chronic hepatitis B virus (Imazeki et al. 2008). Moreover, antecedent HCV infec-
tion markedly increases the risk of developing diabetes in susceptible subjects,
while even nondiabetic HCV patients have IR and specific defects in the insulin-
signaling pathway (Knobler and Schattner 2005). Serum KYN and neopterin con-
centrations are higher in HCV patients than in non-HCV population (Fuchs et al.
1982). We found correlations between plasma levels of KYN and homeostasis
model of insulin resistance (IR) assessment (HOMAZ2-IR) scores (p=0.32, p=0.01)
and between KYN and scores of HOMA-beta (pancreatic beta cell function)
(r=0.30, p=0.02) in 60 hepatitis C virus (HCV) patients (Oxenkrug et al. 2013).
There was no correlation between KYNA and IR, probably because of downregula-
tion of P5SP-dependent KATs despite increased availability of KYN as a substrate
for KYNA formation. The absence of KYNA correlations with HOMA-IR in our
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study of HCV subjects does not preclude possible KYNA involvement in the
development of T2DM in non-HCV subjects because of additional impact of HCV-
inducible apoptosis-like death of pancreatic beta cells through a caspase 3-dependent
pathway (Wang et al. 2012).

Therefore, exposure to HCV and treatment with IFN-alpha might predispose to
the development of T2DM in HCV patients because of upregulation of TRP-KYN
metabolism and inflammation-associated P5P deficiency.

8.7.4 Dysregulation of TRP-KYN Metabolism
in Parkinson’s Disease

Over half of Parkinson’s disease (PD) patients have abnormal glucose tolerance
(prediabetes) (Lipman et al. 1974; Sandyk 1993). Development of T2D in PD
patients is associated with decreased efficacy of dopamine replacement therapy
(Sandyk 1993), worsening of rigidity and gait (Papapetropoulos et al. 2004), and
increased cost of medical care (Pressley et al. 2003).

While type 2 diabetes (T2D) was suggested as a risk factor for PD (Hu et al.
2007), there is a possibility for a reverse causality, i.e., that PD increased a risk for
T2D. Alternatively, PD might facilitate progression from prediabetes to T2D. One
might suggest that one of the mechanisms of high association between IR and PD is
dysregulation of TRP-K'YN metabolism. Thus, upregulated conversion of TRP into
KYN (Widner et al. 2002) and increased concentrations of 3H-KYNA precursor,
3-HK, were reported in brain tissues (Ogawa et al. 1992) and spinal fluid (Lewitt
et al. 2013) of PD patients.

8.7.5 Dysregulation of TRP-KYN Metabolism
in Neurodegenerative Disorders

Besides Parkinson’s disorder, peripheral IR and T2D are associated with other neu-
rodegenerative conditions such as Huntington’s disease (Russo et al. 2013) and vas-
cular disease (Umegaki 2014), Alzheimer’s disease (de la Monte 2009), and
HIV-1-associated dementias (Calvo and Martinez 2014).

Dysregulation of TRP-KYN pathway might contribute to the association of
these conditions with IR considering the findings of drastically elevated levels of
3-HK in spinal fluid and serum of patients (Sardar et al. 1995; Schwarz et al.
2013) and brains of animal models of neurodegenerative disorders (Guidetti
et al. 2006; Campesan et al. 2011).
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8.7.6 Dysregulation of TRP-KYN Metabolism
in Schizophrenia

Atypical antipsychotic drugs (AAD) are widely prescribed to treat various disor-
ders, most notably schizophrenia and bipolar disorder. Treatment with AAD is asso-
ciated with the increased incidence of IR and T2DM that are considered as damaging
side effects of AAD (Citrome et al. 2013). On the other hand, recent review sug-
gested that schizophrenia might predispose patients to diabetes (Leonard et al.
2012). In schizophrenia, metabolic syndrome incidence is double that of the general
population, with women having a higher incidence (Ellingrod et al. 2012). Increased
formation of KYNA in schizophrenia is well documented (Carlborg et al. 2013;
Sathyasaikumar et al. 2011). Although we could not find studies of 3H-KYNA in
patients with schizophrenia, plasma levels of its immediate precursor, 3-HK, were
higher (by 50 %) in 35 medication-naive and 18 medication-free patients with
schizophrenia compared with 48 healthy controls and decreased after 6 weeks of
treatment (Myint et al. 2011). Both baseline and proinflammatory factor-stimulated
levels of 3-HK were higher in ex vivo study of skin fibroblast from patients with
schizophrenia than in control subjects (Johansson et al. 2013).

Elevation of 3-HK might result from increased conversion of KYN into HK,
catalyzed by KMO and/or decreased metabolism of 3-HK, catalyzed by P5P-
dependent KYNase. We could not find studies of the effect of AAD on KMO and
P5P. However, typical antipsychotic drug, chlorpromazine, was reported to activate
KMO in mouse liver in both in vivo and in vitro studies (Mostafa et al. 1982) and to
cause PSP deficiency in rat brains (Gey and Georgi 1974). The state of PSP defi-
ciency might be further perpetuated by 3-HK and 3H-KYNA-induced inhibition of
P5P (Karawya et al. 1981).

Therefore, it is possible that upregulated formation of KYNA and 3H-KYNA
contributes to predisposition of patients with schizophrenia to T2D. AAD might
further increase 3H-KYNA formation by activation of KMO, an enzyme catalyzing
KYN conversion into 3-HK, a precursor of 3H-KYNA, and by triggering deficiency
of P5P, cofactor of KYNase, catalyzing degradation of 3-HK.

8.8 Conclusion

Review of literature and our data suggest that inflammation- and/or stress-induced
upregulation of TRP-KYN metabolism, resulting in the excessive production of
KYN, KYNA, and 3-HK, is one of the factors predisposing to T2D. Deficiency of
P5P, a cofactor of the key enzyme of 3-HK-NAD pathway, diverts the excessive
amount of 3-HK from formation of NAD toward production of
3H-KYNA. Overproduction of diabetogenic KYN, KYNA, 3-HK, and 3H-KYNA
might contribute to increased association of T2D with aging, obesity, depression
(including triggered by IFN-alpha treatment), Parkinson’s disease, schizophrenia
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and use of antipsychotic drugs, and neurodegenerative conditions, e.g., vascular,
Alzheimer’s, and HIV-1-associated dementias and Huntington disease.

Pharmacological regulation of TRP-KYN and KYN-NAD pathways and main-
tenance of adequate vitamin B6 status might contribute to the prevention and treat-
ment of T2D in the abovementioned conditions.

One of the possible interventions is the inhibition of enzymes of TRP-KYN
pathways. The standard IDO inhibitor, 1-methyl-L-TRY (Cady and Sono 1991), is
not available for human use. The family of IDO inhibitors were identified among
alkaloids isolated from Berberis aristata, a herb widely used in Indian and Chinese
systems of medicine (Yu et al. 2010). One of them, berberine, improves IR in dia-
betic hamsters (Li et al. 2011) and diabetic patients (Zhao et al. 2012; Di Pierro
et al. 2012) and prolonged life span and improved health span in Drosophila model
(Navrotskaya et al. 2012, 2014).
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Chapter 9
Therapeutical Implications of Melatonin
in Alzheimer’s and Parkinson’s Diseases

Daniel P. Cardinali, Daniel E. Vigo, Natividad Olivar, Maria F. Vidal,
and Luis 1. Brusco

Abstract Neurodegenerative diseases like Alzheimer’s disease (AD) and
Parkinson’s disease (PD) are major health problems, and a growing recognition
exists that efforts to prevent them must be undertaken by both governmental and
nongovernmental organizations. In this context, the pineal product melatonin has a
promising significance because of its chronobiotic/cytoprotective properties. One of
the features of advancing age is the gradual decrease in endogenous melatonin syn-
thesis. A limited number of therapeutic trials have indicated that melatonin has a
potential therapeutic value as a neuroprotective drug in the treatment of AD, mini-
mal cognitive impairment (which may evolve to AD), and PD. Both in vitro and
in vivo, melatonin prevented the neurodegeneration seen in experimental models of
AD and PD. For these effects to occur, doses of melatonin about two orders of mag-
nitude higher than those required to affect sleep and circadian rhythmicity are
needed. More recently, attention has been focused on the development of potent
melatonin analogs with prolonged effects which were employed in clinical trials in
sleep-disturbed or depressed patients in doses considerably higher than those
employed for melatonin. In view that the relative potencies of the analogs are higher
than that of the natural compound, clinical trials employing melatonin in the range
of 50-100 mg/day are needed to assess its therapeutic validity in neurodegenerative
disorders.
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Abbreviations

6-OHDA  6-hydroxydopamine

Ach Acetylcholine

AChE Acetylcholinesterase

AD Alzheimer’s disease

AFMK N'-Acetyl-N*-formyl-5-methoxykynuramine
AMK N'-Acetyl-5-methoxykynuramine

APP Amyloid precursor protein

Ap Aggregated pf-amyloid

Bcl-2 B cell lymphoma proto-oncogene protein
ChAT Choline acetyltransferase

Cox Cyclooxygenase

DA Dopamine

GABA y-Aminobutyric acid

GPR50 G-protein receptor 50 ortholog

GPx Glutathione peroxidase

GRd Glutathione reductase

GSH Reduced glutathione

GSK-3 Glycogen synthase kinase-3

iNOS Inducible nitric oxide synthase

L-DOPA  L-Dihydroxyphenylalanine

MAO Monoamine oxidase

MAP Microtubule-associated protein

MCI Mild cognitive impairment

MPP* 1-Methyl-4-phenylpyridinium

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mPTP Mitochondrial permeability transition pore
mRNA Messenger ribonucleic acid

MT, Melatonin receptor 1

MT, Melatonin receptor 2

MT; Melatonin receptor 3

NF «B Nuclear factor kB

nNOS Neuronal nitric oxide synthase

NO Nitric oxide

PD Parkinson’s disease

PK Protein kinase

RBD REM-associated sleep behavior disorder
REM Rapid eye movement

RNS Reactive nitrogen species

ROR Retinoic acid receptor-related orphan receptor
ROS Reactive oxygen species

RZR Retinoid Z receptor

SCN Suprachiasmatic nuclei

SNpc Substantia nigra pars compacta

SOD Superoxide dismutase

D.P. Cardinali et al.
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9.1 Introduction

Neurodegenerative disorders are a group of chronic and progressive diseases
characterized by selective and symmetric losses of neurons in cognitive, motor, or
sensory systems. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the
most clinically relevant examples of neurodegenerative disorders. Although the ori-
gin of specific neurodegeneration in these disorders remains mostly undefined,
three major and frequently interrelated processes, namely, free radical-mediated
damage, mitochondrial dysfunction, and excitotoxicity, have been identified as
common pathophysiological mechanisms for neuronal death (Reiter et al. 1998).

Neurodegenerative diseases have become a major health problem, and a growing
recognition exists that efforts to prevent these diseases at an early stage of develop-
ment must be undertaken by both governmental and nongovernmental organiza-
tions. Regular intake of antioxidants by the elderly has been recommended for
prevention of age-associated, free radical-mediated, and neurodegenerative dis-
eases, although the efficacy of this treatment is discussed (Johnson et al. 2013). In
this context, the use of melatonin as a cytoprotective agent becomes of interest.

Melatonin is a well-preserved methoxyindole found in most phyla having
remarkable cytoprotective actions in addition to chronobiotic properties. The source
of circulating melatonin is the pineal gland, and a substantial amount of data sup-
port that plasma melatonin decrease is one of the features of advancing age (Bubenik
and Konturek 2011). In this chapter we will first summarize the efficacy of melato-
nin to decrease basic processes of brain degeneration in animal models of AD and
PD. We will then assess the clinical data that support the possible therapeutic effi-
cacy of melatonin in AD and PD.

9.2 Basic Biology of Melatonin Relevant
to Neurodegeneration

Tryptophan serves as the precursor for melatonin biosynthesis. It is hydroxylated at
C5 position and then decarboxylated to form serotonin. Serotonin is N-acetylated
by the enzyme serotonin-N-acetyl transferase and the produced N-acetylserotonin
is finally O-methylated by the enzyme hydroxyindole-O-methyl transferase to form
melatonin.

In all mammals, circulating melatonin derives primarily from the pineal gland
(Claustrat et al. 2005). In addition, melatonin is locally synthesized in many cells,
tissues, and organs including lymphocytes, bone marrow, thymus, gastrointestinal
tract, skin, and eyes, where it may play either an autocrine or paracrine role (see for
(Hardeland et al. 2011)). Both in animals and in humans, melatonin participates in
diverse physiological functions signaling not only the length of the night but also
enhancing free radical scavenging and the immune response, showing relevant cyto-
protective properties (Hardeland et al. 2011).
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Circulating melatonin binds to albumin (Cardinali et al. 1972) and is metabolized
mainly in the liver where it is hydroxylated in the C6 position by the cytochrome
P50 monooxygenases A2 and 1A (Facciola et al. 2001; Hartter et al. 2001).
Melatonin is then conjugated with sulfate to form 6-sulfatoxymelatonin, the main
melatonin metabolite found in urine. Melatonin is also metabolized in tissues by
oxidative pyrrole ring cleavage into kynuramine derivatives. The primary cleavage
product is N'-acetyl-N*-formyl-5-methoxykynuramine (AFMK), which is defor-
mylated, either by arylamine formamidase or by hemoperoxidase, to N'-acetyl-5-
methoxykynuramine (AMK) (Hardeland et al. 2009). It has been proposed that
AFMK is the primitive and primary active metabolite of melatonin to mediate cyto-
protection (Tan et al. 2007). Melatonin is also converted into cyclic
3-hydroxymelatonin in a process that directly scavenges two hydroxyl radicals
(Tan et al. 2007).

Melatonin exerts many physiological actions by acting on membrane and nuclear
receptors while other actions are receptor independent (e.g., scavenging of free radi-
cals or interaction with cytoplasmic proteins) (Reiter et al. 2009). The two mem-
brane melatonin receptors cloned so far (MT, and MT,) have seven membrane
domains and belong to the superfamily of G-protein-coupled receptors (Dubocovich
et al. 2010). MT, and MT, receptors are found in the cell membrane as dimers and
heterodimers. GPR50, a G-protein-coupled melatonin receptor ortholog that does
not bind melatonin itself, dimerizes with MT, receptors and can block melatonin
binding (Levoye et al. 2006). The human MT, receptor exhibits a lower affinity than
the human MT, receptor and becomes desensitized after exposure to melatonin,
presumably by an internalization mechanism.

As representatives of the G-protein-coupled receptor family, MT, and MT,
receptors act through a number of signal transduction mechanisms (Dubocovich
etal. 2010). The MT, receptor is coupled to G proteins that mediate adenylyl cyclase
inhibition and phospholipase C activation. The MT, receptor is also coupled to the
inhibition of adenylyl cyclase, and it additionally inhibits the soluble guanylyl
cyclase pathway.

By using receptor autoradiography with the nonselective 2-['*IJiodomelatonin
ligand and real-time quantitative reverse transcription—polymerase chain reaction to
label melatonin receptor mRNA, MT, and MT, receptors have been identified in the
retina, suprachiasmatic nuclei (SCN), thalamus, hippocampus, vestibular nuclei,
and cerebral and cerebellar cortex. At the level of the hippocampus, MT, receptors
were detected in CA3 and CA4 pyramidal neurons, which receive glutamatergic
excitatory inputs from the entorhinal cortex, whereas M T, receptors were predomi-
nantly expressed in CAI.

In addition to binding to MT; and MT, receptors, melatonin has been shown to
display affinity for another binding site, originally considered to represent a
membrane-bound receptor (MT3), but then confirmed to be an enzyme, quinone
reductase 2 (QR2) (Nosjean et al. 2000). Polymorphisms in the promoter of the
human QR?2 gene are associated with PD and a decline in cognitive ability over time
(Harada et al. 2001).
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Melatonin also binds to transcription factors belonging to the retinoic acid
receptor superfamily, in particular, splice variants of RORa (RORa1, RORx2, and
RORa isoform d) and RZRf (Wiesenberg et al. 1995; Lardone et al. 2011). Retinoic
acid receptor subforms are ubiquitously expressed in mammalian tissues, and
relatively high levels were detected especially in T- and B-lymphocytes, neutrophils,
and monocytes (Lardone et al. 2011).

Melatonin is a powerful antioxidant that scavenges *OH radicals as well as other
radical oxygen species (ROS) and radical nitrogen species (RNS) and that gives rise
to a cascade of metabolites that share antioxidant properties (Galano et al. 2011).
Melatonin also acts indirectly to promote gene expression of antioxidant enzymes
and to inhibit gene expression of prooxidant enzymes (Antolin et al. 1996; Pablos
et al. 1998; Rodriguez et al. 2004; Jimenez-Ortega et al. 2009). In particular, this
holds for glutathione peroxidase (GPx) and for glutathione reductase (GRd), pre-
sumably in response to GPx-dependent increases in GSSG, the oxidized form of
glutathione (GSH). Melatonin contributes to maintain normal brain GSH levels
(Subramanian et al. 2007) by stimulating GSH biosynthesis via y-glutamylcysteine
synthase and glucose-6-phosphate dehydrogenase (Rodriguez et al. 2004; Kilanczyk
and Bryszewska 2003).

As abovementioned, the antioxidative efficiency of melatonin is high because the
metabolites formed after free radical scavenging also act as free radical scavengers
with an activity even higher than the native compound. Melatonin has a demon-
strated superiority to vitamin C and E in protection against oxidative damage and in
scavenging free radicals (Galano et al. 2011). Additionally, melatonin potentiates
effects by other antioxidants, such as vitamin C, Trolox (a water-soluble vitamin E
analog), and NADH.

Melatonin has significant anti-inflammatory properties presumably by inhibiting
nuclear factor k B (NF «B) binding to DNA thus decreasing the synthesis of proin-
flammatory cytokines, by inhibiting cyclooxygenase (Cox) (Cardinali et al. 1980)
particularly Cox-2 (Deng et al. 2006) and by suppressing inducible nitric oxide
(NO) synthase (iNOS) gene expression (Costantino et al. 1998). Melatonin was
shown to protect from oxidotoxicity already at physiological concentrations (Galano
et al. 2011; Tan et al. 1994). Although melatonin’s direct action as an antioxidant
agent is mostly independent on receptor interaction (Leon-Blanco et al. 2004), the
upregulation of antioxidant enzymes involves nuclear transcription and in some
cases RZR/RORa receptors (Urata et al. 1999).

The efficacy of melatonin in inhibiting oxidative damage has been tested in a
variety of neurological disease models where free radicals have been implicated as
being at least partial causal agents of the condition. Besides the animal models of
AD and PD discussed below, melatonin has been shown to lower neural damage due
to cadmium toxicity (Poliandri et al. 2006; Jimenez-Ortega et al. 2011), hyperbaric
hyperoxia (Shaikh et al. 1997; Pablos et al. 1997), 6-aminolevulinic acid toxicity
(Princ et al. 1997; Carneiro and Reiter 1998; Onuki et al. 2005), y radiation (Erol
et al. 2004; Shirazi et al. 2011; Taysi et al. 2008), focal ischemia (Lee et al. 2004;
Tai et al. 2011), brain trauma (Beni et al. 2004; Tsai et al. 2011; Kabadi and Maher
2010), and a number of neurotoxins (Reiter et al. 2010).
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Melatonin’s neuroprotective properties, as well as its regulatory effects on
circadian disturbances, validate melatonin’s benefits as a therapeutic substance in
the preventive treatment of neurodegenerative diseases discussed below. Moreover,
melatonin exerts anti-excitatory, and at sufficient dosage, sedating effects (Golombek
et al. 1996; Caumo et al. 2009) so that a second neuroprotective mode of action may
exist involving the y-aminobutyric acid (GABA)-ergic system as a mediator. This
view is supported by studies indicating that melatonin protects neurons from the
toxicity of the amyloid-p (Af) peptide (a main neurotoxin involved in AD) via acti-
vation of GABA receptors (Louzada et al. 2004).

Melatonin has also anti-excitotoxic actions. Early studies in this regard employed
kainate, an agonist of ionotropic glutamate receptors, and gave support to the
hypothesis that melatonin prevents neuronal death induced by excitatory amino
acids (Giusti et al. 1996; Manev et al. 1996). It has also been reported that adminis-
tration of melatonin reduces the injury of hippocampal CA1l neurons caused by
transient forebrain ischemia (Cho et al. 1997; Kilic et al. 1999) or high glucocorti-
coid doses (Furio et al. 2008).

The various types of toxicities listed above can result in cell death by necrosis or
apoptosis. Apoptotic neuronal death requires RNA and protein synthesis and deple-
tion of trophic factors. Apoptosis also involves single-strand breaks of DNA and
neurotrophic factors have been found to rescue neurons from this type of death
(Dodd et al. 2013). They may act via cellular antiapoptotic components, such as the
B cell lymphoma proto-oncogene protein (Bcl-2). Bcl-2 is capable of blocking the
apoptotic pathway in the mitochondria by preventing the formation of a functional
mitochondrial permeability transition pore (mtPTP) and, thus, the release of the
mitochondrial enzyme cytochrome c, which represents the final and no-return sig-
nal of the apoptotic program (Khandelwal et al. 2011). Studies in vitro indicate that
melatonin enhances expression of Bcl-2 and prevents apoptosis (Jiao et al. 2004;
Koh 2011; Radogna et al. 2010). In addition, melatonin directly inhibits the opening
of the mtPTP, thereby rescuing cells (Peng et al. 2012; Jou 2011; Andrabi et al. 2004).

9.3 Basic Aspects of Melatonin Activity
in Animal Models of AD

The pathological signature of AD includes extracellular senile plaques, formed
mainly by AR deposits, and intracellular neurofibrillary tangles, resulting mainly
from abnormally hyperphosphorylated microtubule-associated protein (MAP) tau.
AB is generally believed to play an important role in promoting neuronal degenera-
tion in AD turning neurons vulnerable to age-related increases in the levels of oxi-
dative stress and an altered cellular energy metabolism. Concerning the
microtubule-associated protein tau, it promotes microtubule assembly and is a
major factor to stabilize microtubules.

AB is composed by 39-43 amino acid residues derived from its precursor, the
amyloid precursor protein (APP) (Selkoe 2004). APP is proteolytically processed
by a- or pB-secretases in different pathways. The a-non-amyloidogenic pathway
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involves cleavage of APP by a-secretase to release a fragment of APP N — terminal,
which after cleavage by y-secretase precludes the formation of A (Selkoe 2004).
The pB-amyloidogenic pathway includes f-secretase which results in the formation
of intact A} peptide and is mediated by the sequential cleavage of p-secretase and
y-secretase at the N- and C-terminal of AB sequence (Selkoe 2004). Melatonin
inhibited the normal levels of soluble APP secretion in different cell lines interfer-
ing with APP maturation (Lahiri and Ghosh 1999). Additionally, the administration
of melatonin efficiently reduces A generation and deposition in vivo (Matsubara
et al. 2003; Lahiri et al. 2004) and in vitro (Lahiri and Ghosh 1999; Song and Labhiri
1997; Zhang et al. 2004; Olivieri et al. 2001).

Generally, the results in transgenic mice support the view that melatonin regu-
lates APP and AR metabolism mainly by preventing the pathology, with little anti-
amyloid and antioxidant effects occurring after the deposition of AB. Thus,
melatonin therapy in old Tg2576 mice starting at 14 months of age could not pre-
vent additional A} deposition (Quinn et al. 2005) while a similar treatment starting
at the 4th month of age was effective to reduce AB deposition (Matsubara et al.
2003). Since amyloid plaque pathology is typically seen in 10-12-month-old
Tg2576 mice (Hsiao et al. 1996), the data point out to the effectiveness of melatonin
in preventing amyloid plaque formation rather than afterwards.

How melatonin exerts its inhibitory effect on the generation of A} remains unde-
fined. The proteolytic cleavage of APP by a-secretase pathway is regulated by many
physiological and pathological stimuli particularly through protein kinase (PK) C
activation and secretase-mediated cleavage of APP. The inhibition of glycogen syn-
thase kinase-3 (GSK-3) and upregulation of c-Jun N-terminal kinase result in high
activity of matrix metalloproteinases with increasing degradation of A3 (Donnelly
et al. 2008). GSK-3 interacts with presenilin-1, a cofactor of y-secretase, the phos-
phorylation of GSK-3, by PKC leading to y-secretase inactivation. Indeed, GSK-3
can be one of the common signaling pathways increasing AB generation and tau
hyperphosphorylation, and melatonin could regulate APP processing through PKC
and GSK-3 pathways.

Melatonin interacts with AB,, and AB,, and inhibits progressive p-sheet and/or
amyloid fibrils (Poeggeler et al. 2001; Pappolla et al. 1998). This interaction between
melatonin and A3 appears to depend on structural melatonin characteristics rather
than on its antioxidant properties, since it could not be mimicked by melatonin ana-
logs or other free radical scavengers (Poeggeler et al. 2001). By blocking the forma-
tion of secondary sheets, melatonin not only reduces neurotoxicity but also facilitates
peptide clearance by increasing its proteolytic degradation.

Oxidative stress plays a central role in AB-induced neurotoxicity and cell death.
Accumulating data support that melatonin effectively protects cells against
AB-induced oxidative damage and cell death in vitro (Feng et al. 2004a; Zatta et al.
2003) and in vivo (Matsubara et al. 2003; Feng et al. 2004a; Furio et al. 2002; Shen
et al. 2002; Rosales-Corral et al. 2003). In cells and animals treated with A3, mela-
tonin could exert its protective activity through an antioxidant effect, whereas in
APP transfected cells and transgenic animal models, the underlying mechanism
may involve primarily the inhibition of generation of p-leaves and/or amyloid fibrils.
Aggregated AP generates ROS that produce neuronal death by damage of neuronal



204 D.P. Cardinali et al.

membrane lipids, proteins, and nucleic acids. Protection from AP toxicity by
melatonin was observed, especially at the mitochondrial level (Olcese et al. 2009;
Dragicevic et al. 2011).

As far as the hyperphosphorylation of tau, it reduces tau capacity to prevent
microtubule changes and the disruption of the cytoskeleton arrangement ensues
(Brion et al. 2001; Billingsley and Kincaid 1997). Indeed, the extent of neurofibril-
lary pathology correlates with the severity of dementia in AD patients. The level of
hyperphosphorylated tau is three to four times higher in the brain of AD patients
than in normal adult brains (Khatoon et al. 1992; Igbal et al. 2005). More than 30
serine or threonine phosphorylation sites have been identified in the brains of AD
patients (Nelson et al. 2012).

Melatonin efficiently attenuates tau hyperphosphorylation by affecting protein
kinases and phosphatases in a number of experimental models including exposure
of N2a and SH-SYS5Y neuroblastoma cells to wortmannin (Deng et al. 2005), calyc-
ulin A (Li et al. 2004, 2005; Xiong et al. 2011), and okadaic acid (Benitez-King
et al. 2003; Montilla-Lopez et al. 2002; Montilla et al. 2003; Wang et al. 2004).
Melatonin also antagonizes the oxidative stress that arises by the action of these
agents (Liu and Wang 2002; Wang et al. 2005).

The inhibition of melatonin biosynthesis in rats not only resulted in impairment
of spatial memory but also induced an increase in tau phosphorylation, an effect
prevented by melatonin supplementation (Zhu et al. 2004). Melatonin also pre-
vented the oxidative damage and organelles injury found in animal models. The
results point out to the involvement of decreased melatonin levels as a causative
factor in the pathology of AD.

The oxidative stress is known to influence tau phosphorylation state (Gomez-
Ramos et al. 2003; Lovell et al. 2004). The accumulation of misfolded and aggre-
gated proteins in brain neurons of AD is considered a consequence of oxidative
stress, in addition to the molecular structural changes due to age (Kenyon 2010).
Since melatonin prevents, as an antioxidant and free radical scavenger, overproduc-
tion of free radicals, it seems feasible that the prevention of tau phosphorylation by
melatonin is partly due to its antioxidant activity. In addition several studies indi-
cated that melatonin may act as a modulator of enzymes in a way that is unrelated
to its antioxidant properties. These include the regulation by melatonin of PKA
(Schuster et al. 2005; Peschke et al. 2002), PKC (Witt-Enderby et al. 2000; Rivera-
Bermudez et al. 2003), Ca**/calmodulin-dependent kinase II (Benitez-King et al.
1996), and mitogen-activated protein kinase (Chan et al. 2002).

A major and early event in the pathogenesis of AD is the deficit in cholinergic
function (Struble et al. 1982). Neurons in the nucleus basalis of Meynert, the major
source of cholinergic innervation to the cerebral cortex and the hippocampus,
undergo a profound and selective degeneration in AD brains (Samuel et al. 1994).
The levels of acetylcholine (ACh) are reduced at the early stage of AD, whereas the
activities of the synthesizing enzyme choline acetyltransferase (ChAT) and of the
degradating enzyme acetylcholinesterase (AChE) do not change until a late phase of
AD (Terry and Buccafusco 2003; Rinne et al. 2003). Since a profound decrease in
ChAT activity in the neocortex of AD patients correlated with the severity of
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dementia, the use of AChE inhibitors as a standard treatment of mild to moderate
AD is now widely employed (Spencer et al. 2010).

Melatonin has a protective effect on the cholinergic system. It prevents the
peroxynitrite-induced inhibition of choline transport and ChAT activity in synapto-
somes and synaptic vesicles (Guermonprez et al. 2001). Melatonin treatment of
8-month-old APP695 transgenic mice significantly improved the profound reduc-
tion in ChAT activity in the frontal cortex and the hippocampus (Feng et al. 2004a).
Melatonin also antagonizes the spatial memory deficit and the decreased ChAT
activity found in adult ovariectomized rats (Feng et al. 2004b). However, in rats
perfused intracerebroventricularly with A for 14 days, melatonin was unable to
restore the activity of ChAT (Tang et al. 2002). Melatonin inhibited lipopolysac-
charide- and streptozotocin-induced increase in AChE activity (Agrawal et al.
2009). Recently hybrids of the AChE inhibitor tacrine and melatonin were synthe-
sized as new drug candidates for treating AD (Fernandez-Bachiller et al. 2009;
Spuch et al. 2010). These hybrids showed better antioxidant- and cholinergic-
preserving activity tacrine or melatonin alone. The direct intracerebral administra-
tion of one of these hybrids decreased induced cell death and AB load in the APP/
PS1 mouse brain parenchyma accompanied by a recovery of cognitive function
(Spuch et al. 2010).

Another common factor in the pathogenesis of AD is the activation of microglia
with consequent more expression of proinflammatory cytokines (Arends et al. 2000;
Combadiere et al. 2007; Streit et al. 2004; Shen et al. 2007). Epidemiological stud-
ies have shown that the use of anti-inflammatory drugs decreases the incidence of
AD (Stuchbury and Munch 2005). AB-induced microglial activation is a major
source of inflammatory response (Park et al. 2012). Melatonin attenuated the pro-
duction of proinflammatory cytokines induced by A, NF kB, and nitric oxide in the
rat brain (Rosales-Corral et al. 2003; Lau et al. 2012). Moreover, the DNA-binding
activity of NF kB was inhibited by melatonin (Mohan et al. 1995; Chuang et al.
1996).

9.4 Clinical Aspects of Melatonin Application in AD

Normal aging is characterized by a decline of cognitive capacities including reason-
ing, memory, and semantic fluency, which is detectable as early as the fifth decade
of life (Singh-Manoux et al. 2014). Although there is a high variability across cogni-
tive domains measured and among individuals in the degree and timing of age-
related cognitive losses, there is evidence for a preclinical stage in dementia in
which cognitive performance is borderline as compared to normal aging (Silveri
et al. 2007). In community-based studies, up to 28 % of a sample of healthy
community-dwelling elder shows deficits in performance that were not explained
by age-related changes, education levels, mood, or health status. This strongly sug-
gests the existence of early pathological changes which is a transitional state taking
place between normal aging and early AD (Grundman et al. 2004).
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Cross-sectional studies reveal that sleep disturbances are associated with mem-
ory and cognitive impairment (Fotuhi et al. 2009; Beaulieu-Bonneau and Hudon
2009; Cochen et al. 2009; Vecchierini 2010). A severe disruption of the circadian
timing system occurs in AD as indicated by alterations in numerous overt rthythms
like body temperature, glucocorticoids, and/or plasma melatonin (Weldemichael
and Grossberg 2010; Harper et al. 2001; Mishima et al. 1999). The internal desyn-
chronization of rhythms is significant in AD patients (Van Someren 2000). One
emerging symptom is “sundowning,” a chronobiological phenomenon observed in
AD patients in conjunction with sleep—wake disturbances. Sundowning includes
symptoms like disorganized thinking, reduced ability to maintain attention to exter-
nal stimuli, agitation, wandering, and perceptual and emotional disturbances, all
appearing in late afternoon or early evening (Weldemichael and Grossberg 2010;
Klaffke and Staedt 2006; Pandi-Perumal et al. 2002). Chronotherapeutic interven-
tions such as exposure to bright light and/or timed administration of melatonin in
selected circadian phases alleviated sundowning symptoms and improved sleep—
wake patterns of AD patients (der Lek et al. 2008).

A number of studies have revealed that melatonin levels are lower in AD patients
as compared to age-matched control subjects (Mishima et al. 1999; Skene et al.
1990; Ohashi et al. 1999; Liu et al. 1999). The decreased CSF melatonin levels of
AD patients were attributed to a decreased melatonin production. CSF melatonin
levels decreased even in preclinical stages (Braak stages-1) when patients did not
manifest cognitive impairment (Zhou et al. 2003) suggesting thereby that reduction
in CSF melatonin may be an early marker (and cause) for incoming AD. The
decrease of melatonin levels in AD was attributed to a defective retinohypothalamic
tract or SCN-pineal connections (Skene and Swaab 2003). Decreased MT, immu-
noreactivity and increased M T, immunoreactivity have been reported in the hippo-
campus of AD patients (Savaskan et al. 2002, 2005). Additionally f3;-adrenoceptor
mRNA levels decreased and the expression and activity of monoamine oxidase gene
augmented in the pineal gland of AD patients (Wu et al. 2003).

The impaired melatonin production at night correlates significantly with the
severity of mental impairment in demented patients (Magri et al. 1997). As AD
patients have profound deficiency of endogenous melatonin, replacement of levels
of melatonin in the brain could be a therapeutic strategy for arresting the progress of
the disease. Melatonin’s neuroprotective and vasoprotective properties would help
in improving the clinical condition of AD patients (Srinivasan et al. 2006).

There is published information indicating that melatonin, as a chronobiotic
agent, is effective in treating irregular sleep—wake cycles and sundowning symp-
toms in AD patients (Fainstein et al. 1997; Jean-Louis et al. 1998a; Mishima et al.
2000; Cohen-Mansfield et al. 2000; Mahlberg et al. 2004; Brusco et al. 1998a;
Cardinali et al. 2002; Asayama et al. 2003; Singer et al. 2003; Pappolla et al. 2000)
(Table 9.1). In an initial study on 14 AD patients with 6-9 mg of melatonin given
for a 2-3-year period, it was noted that melatonin improved sleep quality (Brusco
et al. 1998a). Sundowning, diagnosed clinically, was no longer detectable in 12 out
of 14 patients. Reduction in cognitive impairment and amnesia was also noted. This
should be contrasted with the significant deterioration of the clinical conditions
expected from patients after 1-3 year of evolution of AD.
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The administration of melatonin (6 mg/day) for 4 weeks to AD patients reduced
nighttime activity as compared to placebo (Mishima et al. 2000). An improvement of
sleep and alleviation of sundowning were reported in 11 AD patients treated with
melatonin (3 mg/day at bedtime) and evaluated by using actigraphy (Mahlberg et al.
2004). Improvement in behavioral signs was reported with the use of 6-9 mg/day of
melatonin for 4 months in AD patients with sleep disturbances (Cardinali et al. 2002).

In a double-blind study conducted on AD patients, it was noted that 3 mg/day of
melatonin significantly prolonged actigraphically evaluated sleep time, decreased
activity in night, and improved cognitive functions (Asayama et al. 2003). In a mul-
ticenter, randomized, placebo-controlled clinical trial of a sample of 157 AD patients
with sleep disturbances, melatonin or placebo was administered for a period of
2 months (Singer et al. 2003). In actigraphic studies a trend to increased nocturnal
total sleep time and decreased wake after sleep onset was noted in the melatonin-
treated group. On subjective measures by caregiver ratings, significant improve-
ment in sleep quality was noted with 2.5 mg sustained-release melatonin relative to
placebo (Singer et al. 2003).

Negative results with the use of melatonin in fully developed AD were also pub-
lished. For example, in a study in which melatonin (8.5 mg fast release and 1.5 mg
sustained release) was administered at 10:00 PM for ten consecutive nights to
patients with AD, no significant difference was noticed with placebo on sleep, cir-
cadian rhythms, and agitation (Gehrman et al. 2009). Although the lack of beneficial
effect of melatonin in this study on sleep could be attributed to the short period of
time examined, it must be noted that large interindividual differences among patients
suffering from a neurodegenerative diseases are not uncommon. It should be also
taken into account that melatonin, though having some sedating and sleep latency-
reducing properties, does not primarily act as a sleeping pill, but mainly as a
chronobiotic.

A review of the published results concerning melatonin use in AD (Cardinali
et al. 2010) yielded eight reports (five open-label studies, two case reports) (N=89
patients) supporting a possible efficacy of melatonin: sleep quality improved and in
patients with AD sundowning was reduced and cognitive decay slowed progression.
In six double-blind, randomized placebo-controlled trials, a total number of 210 AD
patients were examined. Sleep quality increased, sundowning decreased signifi-
cantly, and cognitive performance improved in four studies (N=143), whereas there
was absence of effects in two studies (N=67) (Cardinali et al. 2010).

Another systematic search of studies published between 1985 and April 2009 on
melatonin and sundowning in AD patients was published (de Jonghe et al. 2010).
All papers on melatonin treatment in dementia were retrieved, and the effects of
melatonin on circadian rhythm disturbances were scored by means of scoring sun-
downing/agitated behavior, sleep quality, and daytime functioning. A total of nine
papers, including four randomized controlled trials (n=243) and five case series
(n=87), were reviewed. Two of the randomized controlled trials found a significant
improvement in sundowning/agitated behavior. All five case series found an
improvement. The results on sleep quality and daytime functioning were inconclu-
sive (de Jonghe et al. 2010).
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Therefore, whether melatonin has any value in preventing or treating AD remains
uncertain. It must be noted that one of the problems with AD patients with fully
developed pathology is the heterogeneity of the group examined. Moreover, the
reduced hippocampal expression of MT, melatonin receptors in AD patients
(Savaskan et al. 2005) and of MT; receptors in the circadian apparatus at later stages
of the disease may explain why melatonin treatment is less effective or erratic at this
stage (Wu et al. 2007).

Mild cognitive impairment (MCI) is diagnosed in those who have an objective
and measurable deficit in cognitive functions, but with a preservation of daily activi-
ties. The estimates of annual conversion rates to dementia vary across studies but
may be as high 10-15 % (Farias et al. 2009), MCI representing a clinically impor-
tant stage for identifying and treating individuals at risk. Indeed, the degenerative
process in AD brain starts 20-30 years before the clinical onset of the disease
(Davies et al. 1988; Price and Morris 1999). During this phase, plaques and tangle
loads increase and at a certain threshold the first symptom appears (Braak and Braak
1995, 1998).

CSF melatonin levels decrease even in preclinical stages of AD when the patients
do not manifest any cognitive impairment, suggesting that the reduction in CSF
melatonin may be an early trigger and marker for AD (Zhou et al. 2003; Wu et al.
2003). Although it is not known whether the relative melatonin deficiency is either
a consequence or a cause of neurodegeneration, it seems clear that the loss in mela-
tonin aggravates the disease and that early circadian disruption can be an important
deficit to be considered.

We previously reported a retrospective analysis in which daily 3-9 mg of a fast-
release melatonin preparation p.o. at bedtime for up to 3 years significantly improved
cognitive and emotional performance and daily sleep—wake cycle in 25 MCI patients
(Furio et al. 2007). Recently we reported data from another series of 96 MCI outpa-
tients, 61 of whom had received daily 3—24 mg of a fast-release melatonin prepara-
tion p.o. at bedtime for 15-60 months in comparison to a similar group of 35 MCI
patients who did not receive it (Cardinali et al. 2012a). In addition, all patients
received the individual standard medication considered appropriate by the attending
psychiatrist.

Patients treated with melatonin exhibited significantly better performance in
mini—mental state examination and the cognitive subscale of the AD Assessment
Scale. After application of a neuropsychological battery comprising a Mattis’ test,
digit—symbol test, Trail A and B tasks, and the Rey’s verbal test, better performance
was found in melatonin-treated patients for every parameter tested (Cardinali et al.
2012a). Abnormally high Beck Depression Inventory scores decreased in melatonin-
treated patients, concomitantly with the improvement in the quality of sleep and
wakefulness. These results further support that melatonin is a useful add-on drug for
treating MClI in a clinic environment.

Thus, an early initiation of treatment can be decisive for therapeutic success
(Quinn et al. 2005). In Table 9.2, published data concerning melatonin treatment in
MCT are summarized. Six double-blind, randomized placebo-controlled trials and
two open-label retrospective studies (N=782) consistently showed that the
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administration of daily evening melatonin improves sleep quality and cognitive
performance in MCI patients. Therefore, melatonin treatment could be effective at
early stages of the neurodegenerative disease.

There are two reasons why the use of melatonin is convenient in MCI patients.
In the course of the neurodegenerative process, the age-related deterioration in cir-
cadian organization becomes significantly exacerbated and is responsible of behav-
ioral problems like sundowning (Wu and Swaab 2007). Age-related cognitive
decline in healthy older adults can be predicted by the fragmentation of the circa-
dian rhythm in locomotor behavior. Hence, replacement of the low melatonin levels
occurring in the brain (Zhou et al. 2003; Wu et al. 2003) can be highly convenient
in MCI patients. On the other hand, the bulk of information on the neuroprotective
properties of melatonin derived from experimental studies (see for ref. (Pandi-
Perumal et al. 2013; Rosales-Corral et al. 2012)) turns highly desirable to employ
pharmacological doses in MCI patients with the aim of arresting or slowing dis-
ease’s progression.

The sleep-promoting activity of melatonin in humans has been known for years
(Vollrath et al. 1981; Waldhauser et al. 1990), and a number of studies pointed to a
beneficial effect of melatonin in a wide variety of sleep disorders (see for ref.
(Cardinali et al. 2012b)). However, controversy continues to surround claims of
melatonin’s therapeutic potential. A meta-analysis on the effects of melatonin in
sleep disturbances at all age groups (including young adults with presumably nor-
mal melatonin levels) failed to document significant and clinically meaningful
effects of exogenous melatonin on sleep quality, efficiency, and latency (Buscemi
et al. 2006). However, another meta-analysis involving 17 controlled studies in old
subjects has shown that melatonin was effective in increasing sleep efficiency and
in reducing sleep onset latency (Brzezinski et al. 2005). After the approval by the
European Medicines Agency of a prolonged-release form of 2 mg melatonin
(Circadin®, Neurim, Tel Aviv, Israel) for treatment of insomnia in patients >55 years
of age, a recent consensus of the British Association for Psychopharmacology on
evidence-based treatment of insomnia, parasomnia, and circadian rhythm sleep dis-
orders concluded that prolonged-release melatonin is the first-choice treatment
when a hypnotic is indicated in old patients (Wilson et al. 2010).

In addition to sleep promotion, melatonin has a mild sedating effect. This may be
the cause for the decrease in Beck’s score seen in MCI studies. Melatonin has a
facilitatory effect on GABAergic transmission (Cardinali et al. 2008) which may be
responsible for the anticonvulsant, anxiolytic, antihyperalgesic, and antinociceptive
effects of the methoxyindole.

The mechanisms accounting for the therapeutic effect of melatonin in MCI
patients remain to be defined. Melatonin treatment mainly promotes slow-wave
sleep in the elderly (Monti et al. 1999) and can be beneficial in MCI by augmenting
the restorative phases of sleep, including the augmented secretion of GH and neuro-
trophins. As outlined above, melatonin acts at different levels relevant to the devel-
opment and manifestation of AD. The antioxidant, mitochondrial, and
anti-amyloidogenic effects can be seen as a possibility of interfering with the onset
of the disease. Therefore, to start melatonin treatment as soon as possible can be
decisive for the final response (Quinn et al. 2005).
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One important aspect to be considered is the melatonin dose employed, which may
be unnecessarily low when one takes into consideration the binding affinities, half-
life, and relative potencies of the different melatonin agonists on the market. In addi-
tion to being generally more potent than the native molecule, melatonin analogs are
employed in considerably higher amounts (Cardinali et al. 2011a). Licensed doses of
the melatonin receptor agonist ramelteon vary from 8 to 32 mg/day while agomela-
tine has been licensed for treatment of major depressive disorder at doses of 25-50 mg/
day. In clinical studies involving healthy human subjects, tasimelteon, another mela-
tonin receptor agonist (Vanda Pharmaceuticals, Washington, DC, USA), was admin-
istered at doses of 10-100 mg/day (Rajaratnam et al. 2009), while pharmacokinetics,
pharmacodynamics, and safety of the melatonin receptor agonist TIK-301 (Tikvah
Pharmaceuticals, Atlanta, GA, USA) have been examined in a placebo-controlled
study using 20—100 mg/day (Mulchahey et al. 2004). Therefore, studies in MCI with
melatonin doses in the range of 75—100 mg/day are further warranted.

Indeed, melatonin has a high safety profile; it is usually remarkably well toler-
ated and, in some studies, it has been administered to patients at very large doses.
Melatonin (300 mg/day) for up to 3 years decreased oxidative stress in patients with
amyotrophic lateral sclerosis (Weishaupt et al. 2006). In children with muscular
dystrophy, 70 mg/day of melatonin reduced cytokines and lipid peroxidation
(Chahbouni et al. 2010). Doses of 80 mg melatonin hourly for 4 h were given to
healthy men with no undesirable effects other than drowsiness (Waldhauser et al.
1984). In healthy women given 300 mg melatonin/day for 4 months, there were no
side effects (Voordouw et al. 1992). A recent randomized controlled double-blind
clinical trial on 50 patients referred for liver surgery indicated that a single preop-
erative enteral dose of 50 mg/kg melatonin (i.e., an equivalent to 3 g for a 60-kg
adult) was safe and well tolerated (Nickkholgh et al. 2011).

Another outcome of the study reported in (Cardinali et al. 2012a) was that when
melatonin is employed much less benzodiazepines are needed to treat sleep distur-
bances in MCI. Since, as abovementioned, melatonin and benzodiazepines shared
some neurochemical (i.e., interaction with GABA-mediated mechanisms in the
brain (Cardinali et al. 2008)) and behavioral properties (e.g., a similar day-dependent
anxiolytic activity (Golombek et al. 1996)), melatonin therapy was postulated to be
an effective tool to decrease the dose of benzodiazepines needed in patients
(Fainstein et al. 1997; Dagan et al. 1997; Garfinkel et al. 1999; Siegrist et al. 2001).
A recent retrospective analysis of a German prescription database identified 512
patients who had initiated treatment with prolonged-release melatonin (2 mg) over
a 10-month period (Kunz et al. 2012). From 112 patients in this group who had
previously used benzodiazepines, 31 % discontinued treatment with benzodiazepines
3 months after beginning prolonged-release melatonin treatment. The discontinua-
tion rate was higher in patients receiving two or three melatonin prescription (Kunz
et al. 2012). The prolonged use of benzodiazepines and benzodiazepine receptor
agonists (Z-drugs) is related to severe withdrawal symptoms and potential depen-
dency which has become a public health issue leading to multiple campaigns to
decreases consumption of these drugs. A recent pharmacoepidemiological study
concluded that these campaigns generally failed when they were not associated with
the availability and market of melatonin (Clay et al. 2013).
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In conclusion, the question as to whether melatonin has a therapeutic value in
preventing or treating MCI, affecting disease initiation or progression of the neuro-
pathology and the driving mechanisms, deserved further analysis in future studies.
Double-blind multicenter studies are needed to further explore and investigate the
potential and usefulness of melatonin as an antidementia drug at the early stage of
disease.

9.5 Basic Aspects of Melatonin Activity
in Animal Models of PD

PD is a major neurodegenerative disease characterized, in its clinically relevant stages,
by the progressive degeneration of dopamine (DA)-containing neurons in the substantia
nigra (Rothman and Mattson 2012; Seppi et al. 2011). Typical of PD are cellular inclu-
sions called Lewy bodies. They are single or multiple intraneuronal inclusions selec-
tively distributed in the cytoplasm and having various sizes and shapes depending on
the brain area that is affected. Lewy bodies have a relatively restricted distribution and
are usually associated with DA neurons of the substantia nigra pars compacta (SNpc)
and ventral tegmental region, noradrenergic neurons of the locus coeruleus, catechol-
amine cells of the medulla oblongata, serotoninergic neurons of the raphe nuclei, and
specific cholinergic neurons (Rothman and Mattson 2012; Seppi et al. 2011).

Several studies indicate that accumulation of fibrillar a-synuclein aggregates is
associated with PD and other Lewy body diseases (Fornai et al. 2005). Mitochondrial
dysfunction plays a role in this process. Protein misfolding and aggregation in vivo can
be suppressed or promoted by several factors, among them free radicals. It has thus
been postulated that aggregation of a-synuclein might be one of many possible links
that connect mitochondrial dysfunction to neurodegeneration (Fornai et al. 2005).

Animal models of altered brain DA function have been developed by injecting
6-hydroxydopamine (6-OHDA) into the nigrostriatal pathway of the rat or by inject-
ing the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP). MPTP-
induced parkinsonism in animals is preferred over the other neurotoxin-induced
models due to its potential to cause the disease in humans and in subhuman pri-
mates. MPTP is selective to the neurons in SNpc region and causes severe loss of
striatal spines in nonhuman primates (Herraiz and Guillen 2011), a consistent neu-
ropathologic phenomenon observed in postmortem PD brains.

MPTP administered to rats is selectively taken up by astrocytes and is metabo-
lized into methyl 1-4 phenyl pyridinium (MPP*). This cation is selectively taken up
by dopaminergic neurons and causes increased production of free radicals, deple-
tion of ATP, and apoptosis. In the case of 6-OHDA, the neurotoxin selectively
destroys nigrostriatal neurons by causing enhanced release of free radicals. It should
be stressed, however, that these animal models do not reflect the prodromal early
changes in upper spinal cord and brain stem seen in PD and therefore are presum-
ably meaningless in terms of etiology.

With some exceptions the role of melatonin in prevention and treatment of
experimental PD is now supported by experimental data. Acufia-Castroviejo et al.
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used an MPTP model to show that melatonin could counteract MPTP-induced lipid
peroxidation in striatum, hippocampal, and midbrain regions (Acufia-Castroviejo
et al. 1997). Using the 6-OHDA model, Mayo et al. showed that when added to
incubation medium containing 6-OHDA, melatonin significantly prevented the
increased lipid peroxidation which normally would have occurred in cultured PC 12
cells (Mayo et al. 1998). Melatonin also increased the levels of antioxidant enzymes
(Mayo et al. 1998). Additionally, melatonin reduced pyramidal cell loss in the hip-
pocampus, a cellular area which undergoes degeneration in the brains of PD patients
and which presumably causes memory deficits in affected patients. Thomas and
Mohanakumar similarly demonstrated in vitro and ex vivo models, as well as in an
in vivo MPTP rodent model, that melatonin had potent hydroxyl radical scavenger
activity in the mouse striatum and in isolated mitochondria (Thomas and
Mohanakumar 2004). In addition to these primary effects, the investigators also
found secondary increases in SOD activity.

The attenuation of MPTP-induced superoxide formation indicates an additional
neuroprotective mechanism by melatonin. Intra-median forebrain bundle infusion
of a ferrous-ascorbate-DA hydroxyl radical (*OH) generating system, which causes
significant depletion of striatal DA, could be significantly attenuated by melatonin
administration (Borah and Mohanakumar 2009). In another study, Antolin et al.
used the MPTP model and found that melatonin was effective in preventing neuro-
nal cell death in the nigrostriatal pathway as indicated by the number of preserved
DA cells, of tyrosine hydroxylase levels, and other ultrastructural features (Antolin
et al. 2002). The findings thus demonstrated that melatonin clearly prevents nigral
dopaminergic cell death induced by chronic treatment with MPTP.

a-Synuclein assembly is a critical step in the development of Lewy body diseases
such as PD and dementia with Lewy bodies. Melatonin attenuated kainic
acid-induced neurotoxicity (Chang et al. 2012) and arsenite-induced apoptosis (Lin
et al. 2007) via inhibition of a-synuclein aggregation. Melatonin also decreased the
expression of a-synuclein in dopamine-containing neuronal regions after amphet-
amine both in vivo (Sae-Ung et al. 2012) and in vitro (Klongpanichapak et al. 2008).
In another study melatonin effectively blocked a-synuclein fibril formation and
destabilized preformed fibrils. It also inhibited protofibril formation, oligomeriza-
tion, and secondary structure transitions of a-synuclein as well as reduced
a-synuclein cytotoxicity (Chang et al. 2012; Brito-Armas et al. 2013).

MPTP elicits its neurotoxic effects by increasing the amount of *NO derived
from iNOS. This action mainly affects DA neurons while *®NO derived from neuronal
NOS (nNOS) has a damaging effect on dopaminergic fibers and terminals in the
striatum. A future therapy for PD may require agents that inhibit the degenerative
effects of iNOS in the substantia nigra pars compacta (Zhang et al. 2000). Since
melatonin can effectively downregulate iNOS and prevent *NO formation in the
brain (Cuzzocrea et al. 1997; Escames et al. 2004), it should be regarded as a drug
of choice for arresting the neuronal degeneration associated with PD.

MPTP, through its metabolite MPP*, causes direct inhibition of Complex I of the
mitochondrial electron transport chain. Such an inhibition of Complex I has been
reported in the substantia nigra of patients suffering from PD. By increasing
Complex I and IV activities of the mitochondrial electron transport chain, melatonin
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exerts one of its antioxidant effects (Acufia-Castroviejo et al. 2011). Melatonin also
stimulates the gene expression of three antioxidant enzymes Cu/Zn-SOD, Mn-SOD,
and GPx in cultured dopaminergic cells (Mayo et al. 1998).

Symptomatically effective treatment for PD in modern medicine is by supple-
mentation of DA in its precursor form that crosses the blood—brain barrier. However,
long-term administration DA precursor typically leads to motor complications, such
as L-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (Carta et al. 2004;
Werneke et al. 2006). It is also shown that administration of this drug in high doses
leads to generation of neurotoxic molecules such as 6-OHDA. Therefore, efforts are
in the vogue to reduce the intake or to compensate for the side effects of this drug.
In a recent study undertaken to examine whether melatonin could potentiate the
effect of a low dose of L-DOPA in MPTP-induced experimental parkinsonism in
mice, melatonin, but not L-DOPA, restored spine density and spine morphology of
medium spiny neurons in the striatum suggesting that melatonin could be an ideal
adjuvant to L-DOPA therapy in PD, making it possible to bring down the therapeutic
doses of L-DOPA (Naskar et al. 2013).

It has been proposed that an abnormal assembly of the cytoskeleton is involved
in the pathogenesis of neurodegenerative diseases. Lewy bodies, which are consid-
ered to be cytopathologic markers of parkinsonism, comprise abnormal arrange-
ments of tubulin, MAP 1 and MAP 2 (Beach et al. 2009). Melatonin is very effective
in promoting cytoskeletal rearrangements and thus may have a potential therapeutic
value in the treatment of neurodegenerative diseases including parkinsonism
(Benitez-King et al. 2004).

It must be noted that other studies do not support the hypothesis that melatonin
is of therapeutic benefit in parkinsonism. For instance, reduction of melatonin by
pinealectomy, or by exposure of rats to bright light to inhibit melatonin synthesis,
has been found to enhance recovery from parkinsonism, i.e., spontaneous remission
of symptoms following 6-OHDA or MPTP have been observed, whereas melatonin
administration aggravated them (Willis and Armstrong 1999; Tapias et al. 2010),
using a rotenone model of PD in rats, found that melatonin administration led to
striatal catecholamine depletion, striatal terminal loss, and nigral DA cell loss and
thus was not neuroprotective. Indeed, the use of melatonin as an adjunct therapy to
either halt progressive degeneration or for providing symptomatic relief in PD
patients has been questioned (Willis and Robertson 2004).

9.6 Clinical Aspects of Melatonin Application in PD

Key symptoms of PD such as tremor, rigidity, bradykinesia, and postural instability
develop when about three-fourth of dopaminergic cells are lost in the SNpc, and
consequently the smooth, coordinated regulation of striatal motor circuits is ham-
pered (Maguire-Zeiss and Federoff 2010; Tansey et al. 2007). However, PD does
not start in the nigrostriatum, but rather in the brainstem or even the spinal cord of
subjects who remain asymptomatic for a long period of time (Braak et al. 2003).
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Other, non-motor symptoms are seen in PD, and some of them, such as hyposmia,
depression, or rapid eye movement (REM)-associated sleep behavior disorder
(RBD), can precede the onset of disease. Non-motor symptoms are often misdiag-
nosed and untreated, although their appearance is an index of a worse prognosis and
lower quality of life. Indeed up to 65 % of patients diagnosed with RBD, which is
characterized by the occurrence of vivid, intense, and violent movements during
REM sleep, subsequently developed PD within an average lag time of 12—13 years.

Administration of melatonin 3—12 mg at bedtime has been shown to be effective
in the treatment of RBD (Kunz and Bes 1997, 1999; Takeuchi et al. 2001; Boeve
et al. 2003; Anderson and Shneerson 2009). A total of 119 patients have been
reported (Table 9.3). For example, in a study reporting the records of 45 consecutive
RBD patients seen at Mayo Clinic between 2008 and 2010, 25 patients receiving
melatonin (6 mg daily) reported significantly reduced injuries and fewer adverse
effects (McCarter et al. 2013).

Polysomnography showed statistically significant decreases in the number of R
epochs without atonia and in the movement time in R. This contrasted with the
persistence of tonic muscle tone in R sleep seen with patients treated with clonaze-
pam. Because of these data a clinical consensus recommended melatonin use in
RBD at Level B, i.e., “assessment supported by sparse high grade data or a substan-
tial amount of low-grade data and/or clinical consensus by the task force” (Aurora
et al. 2010). In another consensus statement generated in 2011, a claim for eventual
trials with disease-modifying and neuroprotective agents in RBD was urged based
on the high conversion rate from idiopathic RBD to parkinsonian disorders (Schenck
et al. 2013). Six inclusion criteria and 24 exclusion criteria were identified for
symptomatic therapy and neuroprotective trials (Schenck et al. 2013).

At this time, there is no treatment that will delay or stop the progression of PD,
and medications currently available are mostly symptomatic. The increasing inci-
dence of age-associated neurodegenerative diseases has been attributed to the aug-
mented generation of free radicals and the associated oxidative stress, which is
enhanced in certain regions of the aging brain (Gibson et al. 2010; Olanow 1992;
Fahn and Cohen 1992). Increased lipid peroxidation, decreased levels of GSH, and
increased iron levels occur in the brains of patients suffering from parkinsonism
(Dexter et al. 1989). As the increased iron levels can promote the Fenton reaction,
it seems feasible that an increased hydroxyl radical formation induces free radical
damage. Free radical damage of lipids, proteins, and nucleic acids has all been
reported in the substantia nigra of parkinsonian patients (Alam et al. 1997).
Oxidative stress has been suggested to be the major cause of dopaminergic neuronal
cell death. Exposure to high concentrations of H,O, that are formed during oxida-
tion of DA by monoamine oxidase (MAQO) may also be a major cause for destruc-
tion of dopaminergic neurons in parkinsonism (Fahn and Cohen 1992). Therefore,
within this context the cytoprotective properties exhibited by melatonin are promis-
ing as a tool in PD prevention.

The study of melatonin secretion in PD has revealed some interesting findings. In
related studies a phase advance in nocturnal melatonin levels in L-DOPA-treated par-
kinsonian patients was noted, but this was not observed in untreated patients when
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compared to control subjects (Fertl et al. 1993). Similar findings were noted in studies
in which a phase advance of about 2 h in plasma melatonin secretion was seen in PD
patients receiving dopaminergic treatment when compared to untreated patients
(Bordet et al. 2003). This study also confirmed previous findings that L-DOPA treat-
ment influenced melatonin secretion rhythmicity. An increase in daytime melatonin
secretion was also noted in L-DOPA-treated patients. An increase in melatonin secre-
tion may be one of the adaptive responses to neurodegeneration (Bordet et al. 2003)
and could play a neuroprotective role through an antioxidant effect.

The occurrence of motor fluctuations in PD was related to fluctuations in serum
melatonin levels, a finding that was attributed to interactions of monoamines with
melatonin in the striatal complex (Escames et al. 1996). Melatonin may exert direct
motor effects through its interactions with DA and serotonin. Changes in levodopa-
related motor complications may be related to changes in melatonin secretion pattern.
L-DOPA-related motor complications occur in nearly half of the patients with PD on
completion of the first 5 years of treatment (Koller 1996), and as noted above, results
on experimental parkinsonism in mice support the use of melatonin as an adjuvant to
L- to bring down the therapeutic doses of L-DOPA in PD (Naskar et al. 2013).

The hypothesis that melatonin has an inhibitory motor effect which is probably
involved in wearing-off episode (i.e., the progressively shorter intervals during
which symptoms remain adequately controlled as if the effects of medication would
start to “wear off”’) has been supported by some therapeutic studies. Stimulation of
globus pallidus inhibited an increase in daytime plasma melatonin levels in parkin-
sonian patients as compared to healthy subjects (Catala et al. 1997) and was also
reported to improve motor symptoms and complications in patients with PD
(Olanow et al. 2000). Melatonin may be useful in halting or retarding the progres-
sive degeneration of PD and may hold further promise for inhibiting the L-DOPA-
related motor complications.

Because of the lower rates of cancer mortality/incidence in patients with PD,
speculations about risk or preventative factors common to both diseases, including
lifestyle factors (such as smoking) and genetic susceptibility, have been entertained.
Relevant to the subject of the present review is that preliminary epidemiological
evidence suggests that longer years of working night shifts are associated with
reduced melatonin levels and reduced risk of PD among, whereas longer hours of
sleep appear to increase their risk (Schernhammer and Schulmeister 2004). While
lower melatonin concentrations may predict a higher cancer risk, there is also some
evidence that they may be associated with a lower risk of PD.

The finding that a reduced expression of melatonin MT; and MT, receptors
occurs in amygdala and substantia nigra in patients with PD (Adi et al. 2010) indi-
cates that there is a possibility that the melatonergic system is involved in the abnor-
mal sleep mechanisms seen as well as in its overall pathophysiology. Melatonin has
been used for treating sleep problems, insomnia, and daytime sleepiness in PD
patients. In a study undertaken on 40 patients (11 women, 29 men; range 4376 years)
melatonin was administered for a treatment period of 2 weeks, in doses ranging
from 5 mg to 50 mg/day (Dowling et al. 2005). To avoid the possibility of producing
a circadian shift, melatonin was administered 30 min before bedtime (circadian
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shifts can occur if administered melatonin is administered at any other time). All
subjects were taking stable doses of antiparkinsonian medications during the course
of the study. Relative to placebo, treatment with 50 mg of melatonin significantly
increased nighttime sleep, as revealed by actigraphy. As compared to 50 mg or pla-
cebo, administration of 5 mg of melatonin was associated with significant improve-
ment of sleep in the subjective reports. The study also found that the high dose of
melatonin (50 mg) was well tolerated (Dowling et al. 2005).

In another study 18 PD patients were randomized after performing a basal poly-
somnography to receive melatonin (3 mg) or placebo 1 h before bedtime for 4 weeks
(Medeiros et al. 2007). Subjective sleep quality was assessed by the Pittsburgh
Sleep Quality Index and daytime somnolence by the Epworth Sleepiness Scale. All
measures were repeated at the end of treatment. On initial assessment, 14 patients
(70 %) showed poor-quality sleep and 8 (40 %) excessive diurnal somnolence.
Increased sleep latency (50 %), REM sleep without atonia (66 %), and reduced
sleep efficiency (72 %) were found in PSG. Sleep fragmentation tended to be more
severe in patients on lower doses of L-DOPA, although melatonin significantly
improved subjective quality of sleep. The objective abnormalities remained
unchanged. Motor dysfunction was not improved by the use of melatonin (Medeiros
et al. 2007).

Exposure to light of 1,000-1,500 Ix intensity for 1-1.5 h, 1 h prior to bedtime for
2-5 weeks, has been found to improve the bradykinesia and rigidity observed in 12
PD patients (Willis and Turner 2007). A reduction in agitation and psychiatric side
effects was also reported in this study. The authors suggested that activation of the
circadian system by antagonizing melatonin secretion with bright light has a thera-
peutic value for treating the symptoms of PD (Willis 2008).

However, bright light has been employed in a number of studies for treating
depressive symptoms, and the view has been advanced that suppression of melato-
nin secretion is not the likely mechanism by which artificial light exerts its thera-
peutic effect (Rosenthal et al. 1984). Two possible mechanisms have been proposed
for the therapeutic effect of bright light. Firstly, bright light could reset the phase of
abnormal circadian rthythms seen in depressed patients (Lewy et al. 1984). Secondly,
although evening bright light exposure produces a momentary suppression of mela-
tonin, it actually causes a rebound increase in melatonin secretion late in the night
(Beck-Friis et al. 1985). The fact that bright light exposure ultimately facilitates
melatonin secretion rather than suppressing it is said to be responsible for the thera-
peutic efficacy of bright light in affective disorders. Hence in the case of PD, bright
light may improve the symptoms of PD, not by antagonizing melatonin secretion
but by increasing it through a rebound effect.

Indeed, the bright light effect may be indicative of circadian changes in PD. This
is supported by the reduced Bmall mRNA expression in leukocytes (Cai et al.
2010), although effects in peripheral oscillators do not necessarily allow conclu-
sions on changes in the hypothalamic master clock. The finding that the mouse stria-
tal DA receptors DIR and D2R are under circadian control (Cai et al. 2010), can be
seen as an interesting facet in this context, although circadian variations in receptor
expression are by no means exceptional features.
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9.7 Conclusions

As melatonin exhibits both hypnotic and chronobiotic properties, it has been
therapeutically used for treatment of age-related insomnia as well as of other pri-
mary and secondary insomnia (Leger et al. 2004; Zhdanova et al. 2001). A recent
consensus of the British Association for Psychopharmacology on evidence-based
treatment of insomnia, parasomnia, and circadian rhythm sleep disorders concluded
that melatonin is the first-choice treatment when a hypnotic is indicated in patients
over 55 years (Wilson et al. 2010).

As shown by the binding affinities, half-life, and relative potencies of the differ-
ent melatonin agonists in the market, it is clear that studies using 2—5 mg melatonin/
day are unsuitable to give appropriate comparison with the effect of the abovemen-
tioned compounds, which, in addition to being generally more potent than the native
molecule, are employed in considerably higher amounts (Cardinali et al. 2011b).
Melatonin has a high safety profile and it is usually remarkably well tolerated. In
some studies melatonin has been administered to patients at large doses (Weishaupt
et al. 2006; Chahbouni et al. 2010; Waldhauser et al. 1984; Voordouw et al. 1992).
Therefore, further studies employing melatonin doses in the 100 mg/day are needed
to clarify its potential therapeutical implications in humans. From animal studies it
is clear that a number of preventive effects of melatonin, like those in neurodegen-
erative disorders, need high doses of melatonin to become apparent (Cardinali et al.
2010; Srinivasan et al. 201 1a, b). If one expects melatonin to be an effective neuro-
protector, especially in aged people, it is likely that the low doses of melatonin
employed so far are not very beneficial.
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