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Abstract. This works is motivated by a real-world case study where
it is necessary to integrate and relate existing ontologies through meta-
modelling. For this, we introduce the Description Logic ALCQM which
is obtained from ALCQ by adding statements that equate individuals
to concepts in a knowledge base. In this new extension, a concept can
be an individual of another concept (called meta-concept) which itself
can be an individual of yet another concept (called meta meta-concept)
and so on. We define a tableau algorithm for checking consistency of an
ontology in ALCOM and prove its correctness.

Keywords: Description logic + Meta-modelling - Meta-concepts + Well
founded sets - Consistency * Decidability

1 Introduction

Our extension of ALCQ is motivated by a real-world application on geographic
objects that requires to reuse existing ontologies and relate them through meta-
modelling [10].

Figure 1 describes a simplified scenario of this application in order to illus-
trate the meta-modelling relationship. It shows two ontologies separated by a
line. The two ontologies conceptualize the same entities at different levels of
granularity. In the ontology above the line, rivers and lakes are formalized as
individuals while in the one below the line they are concepts. If we want to inte-
grate these ontologies into a single ontology (or into an ontology network) it is
necessary to interpret the individual river and the concept River as the same
real object. Similarly for lake and Lake.

Our solution consists in equating the individual river to the concept River
and the individual lake to the concept Lake. These equalities are called meta-
modelling axioms and in this case, we say that the ontologies are related through
meta-modelling. In Figure 1, meta-modelling axioms are represented by dashed
edges. After adding the meta-modelling axioms for rivers and lakes, the concept
HydrographicObject is now also a meta-concept because it is a concept that
contains an individual which is also a concept.
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The kind of meta-modelling we consider in this paper can be expressed in
OWTL Full but it cannot be expressed in OWL DL. The fact that it is expressed
in OWL Full is not very useful since the meta-modelling provided by OWL Full
is so expressive that leads to undecidability [11].

OWL 2 DL has a very restricted form of meta-modelling called punning
where the same identifier can be used as an individual and as a concept [7].
These identifiers are treated as different objects by the reasoner and it is not
possible to detect certain inconsistencies. We next illustrate two examples where
OWL would not detect inconsistencies because the identifiers, though they look
syntactically equal, are actually different.

Ezxample 1. If we introduce an axiom expressing that HydrographicObject is a
subclass of River, then OWL’s reasoner will not detect that the interpretation
of River is not a well founded set (it is a set that belongs to itself).

Ezample 2. We add two axioms, the first one says that river and lake as indi-
viduals are equal and the second one says that the classes River and Lake are
disjoint. Then OWL’s reasoner does not detect that there is a contradiction.
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Fig. 1. Two ontologies on Hydrography

In this paper, we consider ALCQ (ALC with qualified cardinality restric-
tions) and extend it with Mboxes. An Mbox is a set of equalities of the form
a =m A where a is an individual and A is a concept. In our example, we have
that river =, River and these two identifiers are semantically equal, i.e. the
interpretations of the individual river and the concept River are the same. The
domain of an interpretation cannot longer consists of only basic objects but it
must be any well-founded set. The well-foundness of our model is not ensured by
means of fixing layers beforehand as in [8,12] but it is our reasoner which checks
for circularities. Our approach allows the user to have any number of levels (or
layers) (meta-concepts, meta meta-concepts and so on). The user does not have
to write or know the layer of the concept because the reasoner will infer it for
him. In this way, axioms can also naturally mix elements of different layers and
the user has the flexibility of changing the status of an individual at any point
without having to make any substantial change to the ontology.



Reasoning for ALCQ Extended with a Flexible Meta-Modelling Hierarchy 49

We define a tableau algorithm for checking consistency of an ontology in
ALCOM by adding new rules and a new condition to the tableau algorithm for
ALCQ. The new rules deal with the equalities and inequalities between individ-
uals with meta-modelling which need to be transferred to the level of concepts
as equalities and inequalities between the corresponding concepts. The new con-
dition deals with circularities avoiding non well-founded sets. From the practical
point of view, extending tableau for ALCQ has the advantage that one can eas-
ily change and reuse the code of existing OWL’s reasoners. From the theoretical
point of view, we give an elegant proof of correctness by showing an isomor-
phism between the canonical interpretations of ALCQ and ALC QM. Instead of
re-doing inductive proofs, we “reuse” and invoke the results of correctness of the
tableau algorithm for ALCQ from [1] wherever possible.

Related Work. As we mentioned before, OWL 2 DL has a very restricted form of
meta-modelling called punning [7]. In spite of the fact that the same identifier can
be used simultaneously as an individual and as a concept, they are semantically
different. In order to use the punning of OWL 2 DL in the example of Figure
1, we could change the name river to River and lake to Lake. In spite of the
fact that the identifiers look syntactically equal, OWL would not detect certain
inconsistencies as the ones illustrated in Examples 1 and 2, and in Example
4 which appears in Section 3. In the first example, OWL won’t detect that
there is a circularity and in the other examples, OWL won’t detect that there
is a contradiction. Apart from having the disadvantage of not detecting certain
inconsistencies, this approach is not natural for reusing ontologies. For these
scenarios, it is more useful to assume the identifiers be syntactically different
and allow the user to equate them by using axioms of the form a =, A.

Motik proposes a solution for meta-modelling that is not so expressive as
RDF but which is decidable [11]. Since his syntax does not restrict the sets of
individuals, concepts and roles to be pairwise disjoint, an identifier can be used
as a concept and an individual at the same time. From the point of view of
ontology design, we consider more natural to assume that the identifiers for a
concept and an individual that conceptualize the same real object (with different
granularity) will be syntactically different (because most likely they will live in
different ontologies). In [11], Motik also defines two alternative semantics: the
context approach and the HiLog approach. The context approach is similar to
the so-called punning supported by OWL 2 DL. The Hilog semantics looks
more useful than the context semantics since it can detect the inconsistency
of Example 2. However, this semantics ignores the issue on well-founded sets.
Besides, this semantics does not look either intuitive or direct as ours since it uses
some intermediate extra functions to interpret individuals with meta-modelling.
The algorithm given in [11, Theorem 2] does not check for circularities (see
Example 1) which is one of the main contributions of this paper.

De Giacomo et al. specifies a new formalism, “Higher/Order Description
Logics”, that allows to treat the same symbol of the signature as an instance, a
concept and a role [4]. This approach is similar to punning in the sense that the
three new symbols are treated as independent elements.
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Pan et al address meta-modelling by defining different “layers” or “strata”
within a knowledge base [8,12]. This approach forces the user to explicitly write
the information of the layer in the concept. This has several disadvantages: the
user should know beforehand in which layer the concept lies and it does not
give the flexibility of changing the layer in which it lies. Neither it allows us to
mix different layers when building concepts, inclusions or roles, e.g. we cannot
express that the intersection of concepts in two different layers is empty or define
a role whose domain and range live in different layers.

Glimm et al. codify meta-modelling within OWL DL [5]. This codification
consists in adding some extra individuals, axioms and roles to the original ontol-
ogy in order to represent meta-modelling of concepts. As any codification, this
approach has the disadvantage of being involved and difficult to use, since adding
new concepts implies adding a lot of extra axioms. This codification is not enough
for detecting inconsistencies coming from meta-modelling (see Example 4). The
approach in [5] has also other limitations from the point of view of expressibility,
e.g. it has only two levels of meta-modelling (concepts and meta-concepts).

Organization of the Paper. The remainder of this paper is organized as follows.
Section 2 shows a case study and explains the advantages of our approach.
Section 3 defines the syntax and semantics of ALCOM. Section 4 proposes
an algorithm for checking consistency. Section 5 proves its correctness. Finally,
Section 6 sets the future work.

2 Case Study on Geography

In this section, we illustrate some important advantages of our approach through
the real-world example on geographic objects presented in the introduction.

Figure 2 extends the ontology network given in Figure 1. Ontologies are
delimited by light dotted lines. Concepts are denoted by ovals and individuals by
small filled circles. Meta-modelling between ontologies is represented by dashed
edges. Thinnest arrows denote roles within a single ontology while thickest arrows
denote roles from one ontology to another ontology.

Figure 2 has five separate ontologies. The ontology in the uppermost position
conceptualizes the politics about geographic objects, defining GeographicObject as
a meta meta-concept, and Activity and GovernmentOffice as concepts. The ontol-
ogy in the left middle describes hydrographic objects through the meta-concept
HydrographicObject and the one in the right middle describes flora objects through
the meta-concept FloraObject. The two remaining ontologies conceptualize the
concrete natural resources at a lower level of granularity through the concepts
River, Lake, Wetland and Natural Forest.

Note that horizontal dotted lines in Figure 2 do not represent meta-modelling
levels but just ontologies. The ontology “Geographic Object Politics” has the
meta meta-concept GeographicObject, whose instances are concepts which have
also instances being concepts, but we also have the concepts GovernmentOfice
and Activity whose instances conceptualize atomic objects. OWL has only one
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Fig. 2. Case Study on Geography

notion of hierarchy which classifies concepts with respect to the inclusion C.
Our approach has a new notion of hierarchy, called meta-modelling hierarchy,
which classifies concepts with respect to the membership relation €. The meta-
modelling hierarchy for the concepts of Figure 2 is depicted in Figure 3. The
concepts are GovernmentOffice, Activity, River, Lake, Wetland and NaturalFor-
est, the meta-concepts are HydrographicObject and FloraObject, and the meta
meta-concept is GeographicObject.

The first advantage of our approach over previous work concerns the reuse
of ontologies when the same conceptual object is represented as an individual
in one ontology and as a concept in the other. The identifiers for the individual
and the concept will be syntactically different because they belong to different
ontologies (with different URIs). Then, the ontology engineer can introduce an
equation between these two different identifiers. This contrasts with previous
approaches where one has to use the same identifier for an object used as a
concept and as an individual. In Figure 2, river and River represent the same
real object. In order to detect inconsistency and do the proper inferences, one
has to be able to equate them.

The second advantage is about the flexibility of the meta-modelling hierarchy.
This hierarchy is easy to change by just adding equations. This is illustrated in the
passage from Figure 1 to Figure 2. Figure 1 has a very simple meta-modelling hier-
archy where the concepts are River and Lake and the meta-concept is Hydrograph-
icObject. The rather more complex meta-modelling hierarchy for the ontology of
Figure 2 (see Figure 3) has been obtained by combining the ontologies of Figure
1 with other ontologies and by simply adding some few meta-modelling axioms.
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After adding the meta-modelling equations, the change of the meta-modelling hier-
archy is automatic and transparent to the user. Concepts such as GeographicObject
will automatically pass to be meta meta-concepts and roles such as associated With
will automatically pass to be meta-roles, i.e. roles between meta-concepts.

Meta
Geographic
Object

Meta-Concepts

Hydrographic
Object

FloraObject

Fig. 3. Meta-modelling Hierarchy for the Ontology of Figure 2

The third advantage is that we do not have any restriction on the level of
meta-modelling, i.e. we can have concepts, meta-concepts, meta meta-concepts
and so on. Figure 1 has only one level of meta-modelling since there are con-
cepts and meta-concepts. In Figure 2, there are two levels of meta-modelling
since it has concepts, meta-concepts and meta meta-concepts. If we needed, we
could extend it further by adding the equation santaLucia =, SantaLucia for
some concept SantaLucia and this will add a new level in the meta-modelling
hierarchy: concepts, meta-concepts, meta meta-concepts and meta meta meta-
concepts.

Moreover, the user does not have to know the meta-modelling levels, they
are transparent for him. Our algorithm detects inconsistencies without burdening
the user with syntactic complications such as having to explicitly write the level
the concept belongs to.

The fourth advantage is about the possibility of mixing levels of meta-
modelling in the definition of concepts and roles. We can build concepts using
union or intersection between two concepts of different levels (layers). We can
also define roles whose domain and range live in different levels (or layers). For
example, in Figure 2, we have: 1) a role over whose domain is just a concept
while the range is a meta-concept, 2) a role manages whose domain is just a
concept and whose range is a meta meta-concept. We can also add axioms to
express that some of these concepts, though at different levels of meta-modelling,
are disjoint, e.g. the intersection of the concept Activity and the meta-concept
FloraObject is empty.
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3 ALCOM

In this section we introduce the ALCOM Description Logics (DL), with the
aim of expressing meta-modelling in a knowledge base. The syntax of ALC QM
is obtained from the one of ALCQ by adding new statements that allow us to
equate individuals with concepts. The definition of the semantics for ALC QM
is the key to our approach. In order to detect inconsistencies coming from meta-
modelling, a proper semantics should give the same interpretation to individuals
and concepts which have been equated through meta-modelling.

Recall the formal syntax of ALCQ [2,7]. We assume a finite set of atomic
individuals, concepts and roles. If A is an atomic concept and R is a role, the
concept expressions C, D are constructed using the following grammar:
C,D:=A|T|L|-C|CnD|CUD|VR.C|3R.C|>nR.C|<nR.C
Recall also that ALCQ-statements are divided in two groups, namely TBox
statements and ABox statements, where a TBox contains statements of the
form C C D and an ABox contains statements of the form C(a), R(a,b), a =b
or a #b.

A meta-modelling axiom is a new type of statement of the form
a =m A where @ is an individual and A is an atomic concept.

which we pronounce as a corresponds to A through meta-modelling. An Mbozx
is a set M of meta-modelling axioms. We define ALCQM by keeping the
same syntax for concept expressions as for ALCQ and extending it only to
include MBoxes. An ontology or a knowledge base in ALCOM is denoted by
O = (7T,A, M) since it is determined by three sets: a Tbox 7, an Abox A and
an Mbox M. The set of all individuals with meta-modelling of an ontology is
denoted by dom(M).

Figure 4 shows the ALCQM-ontologies of Figure 1. In order to check for
cycles in the tableau algorithm, it is convenient to have the restriction that A
should be a concept name in a =, A. This restriction does not affect us in
practice at all. If one would like to have a =, C for a concept expression C, it
is enough to introduce a concept name A such that A = C and a =, A.

Mbox

Thbox

river =m River

Ri M Lake C L
ver are = lake =m Lake

Abox

HydrographicObject(river) HydrographicObject(lake)
River(queguay) River(santaLucia)
Lake(deRocha) Lake(delSauce)

Fig. 4. The ALCQOM-ontology of Figure 1
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Definition 1 (S, for n € N). Given a non empty set Sy of atomic objects, we
define Sy, by induction on N as follows: Sy+1 = Sp, UP(Sy,)

The sets S, are clearly well-founded. Recall from Set Theory that a relation R
s well-founded on a class X if every non-empty subset Y of X has a minimal
element. Moreover, a set X is well-founded if the set membership relation is
well-founded on the the set X.

Definition 2 (Model of an Ontology in ALCOM). An interpretation T is
a model of an ontology O = (T, A, M) in ALCOM (denoted as T |= O) if the
following holds:

1. the domain A of the interpretation is a subset of Sy for some N € N. The
smallest N such that A C Sy is called the level of the interpretation T.

2. T is a model of the ontology (T, A) in ALCQ.

3. T is a model of M, i.e. T satisfies each statement in M. An interpretation
T satisfies the statement a = A if a¥ = A,

Usually, the domain of an interpretation of an ontology is a set of atomic objects.
In the first part of Definition 2 we redefine the domain A of the interpretation,
so it does not consists only of atomic objects any longer. The domain A can now
contain sets since the set Sy is defined recursively using the power-set operation.
A similar notion of interpretation domain is defined in [9, Definition 1] for RDF
ontologies.

It is sufficient to require that it is a subset of some Sy so it remains well-
founded '. Note that Sy does not have to be the same for all models of an
ontology. The second part of Definition 2 refers to the ALC Q-ontology without
the Mbox axioms. In the third part of the definition, we add another condi-
tion that the model must satisfy considering the meta-modelling axioms. This
condition restricts the interpretation of an individual that has a corresponding
concept through meta-modelling to be equal to the concept interpretation.

Example 3. We define a model for the ontology of Figure 4 where
So = {queguay, santaLucia,deRocha, del Sauce}
Individuals and concepts equated through meta-modelling are semantically equal:

rivert = River? = {queguay, santaLucia}
lakel = Lake? = {deRocha,delSauce}

Definition 3 (Consistency of an Ontology in ALCOM). We say that an
ontology O = (T, A, M) is counsistent if there exists a model of O.

The ALCQM-ontology defined in Figure 4 is consistent.

! In principle, non well-founded sets are not source of contradictions since we could
work on non-well founded Set Theory. The reason why we exclude them is because we
think that non well-founded sets do not occur in the applications we are interested in.
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Ezxample 4. We consider the ontology of Figure 2 and the axioms:

River N Lake C L
Wetland = NaturalForest

and the fact that associatedWith is a functional property. Note that we have
the following axioms in the Abox:

associatedWith(wetland, lake)
associatedWith(natural Forest, river)

As before, the ALCQ-ontology (without the Mbox) is consistent. However, the
ALCOM-ontology (with the Mbox) is not consistent.

Example 1 illustrates the use of the first clause of Definition 2. Actually, this
example is inconsistent because the first clause of this definition does not hold.
Examples 2 and 4 illustrate how the second and third conditions of Definition 2
interact.

Definition 4 (Logical Consequence from an Ontology in ALCOM). We
say that S is a logical consequence of O = (7, A, M) (denoted as O = S) if
all models of O are also models of S where S is any of the following ALCQM-
statements, i.e. C C D, C(a), R(a,b), a =n A, a =b and a # b.

It is possible to infer new knowledge in the ontology with the meta-modelling
that is not possible without it as illustrated by Examples 1, 2 and 4.

Definition 5 (Meta-concept). We say that C is a meta concept in O if there
exists an individual a such that O = C(a) and O |E a =y A.

Then, C' is a meta meta-concept if there exists an individual a such that
O E C(a), O = a =y A and A is a meta-concept. Note that a meta meta-
concept is also a meta-concept.
We have some new inference problems:

1. Meta-modelling. Find out whether O = a =, A or not.
2. Meta-concept. Find out whether C' is a meta-concept or not.

Most inference problems in Description Logic can be reduced to satisfiability by
applying a standard result in logic which says that a formula ¢ is a semantic
consequence of a set of formulas I" if and only if I' U —¢ is not satisfiable. The
above two problems can be reduced to satisfiability following this general idea.
For the first problem, note that since a #,, A is not directly available in the
syntax, we have replaced it by a # b and b =, A which is an equivalent statement
to the negation of a =, A and can be expressed in ALCOM.

Lemma 1. O E a =, A if and only if for some new indiwvidual b, O U {a #
b,b=m A} is unsatisfiable.

Lemma 2. C is a meta-concept if and only if for some individual a we have that
OU{~C(a)} is unsatisfiable and for some new individual b, OU{a # b,b =, A}
s unsatisfiable.
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4 Checking Consistency of an Ontology in ALCOM

In this section we will define a tableau algorithm for checking consistency of an
ontology in ALCOM by extending the tableau algorithm for ALCQ. From the
practical point of view, extending tableau for ALCQ has the advantage that one
can easily change and reuse the code of existing OWL’s reasoners.

The tableau algorithm for ALCOM is defined by adding three expansion
rules and a condition to the tableau algorithm for ALCQ. The new expansion
rules deal with the equalities and inequalities between individuals with meta-
modelling which need to be transferred to the level of concepts as equalities and
inequalities between the corresponding concepts. The new condition deals with
circularities avoiding sets that belong to themselves and more generally, avoiding
non well-founded sets.

Definition 6 (Cycles). We say that the tableau graph L has a cycle with
respect to M if there exist a sequence of meta-modelling azioms Ay =m ao,
Ay =may, ... Ay =m an all in M such that

Al € E(mo) To = Qg
A € ,C(J)l) r1 R ay

An € E(:Enfl) Tp—1 = Ap—1
Ag € L(zy) Ty & Ay,

Ezample 5. Suppose we have an ontology (7, A, M) with two individuals a and
b, the individual assignments: B(a) and A(b); and the meta-modelling axioms:

a=mA b=, B.

The tableau graph L£(a) = {B} and £(b) = {A} has a cycle since A € L(b) and
B e L(a).

Initialization for the ALC QM-tableau is nearly the same as for ALCQ. The
nodes of the initial tableau graph will be created from individuals that occur
in the Abox as well as in the Mbox. After initialization, the tableau algorithm
proceeds by non-deterministically applying the expansion rules for ALCOM.
The expansion rules for ALCQM are obtained by adding the rules of Figure 5
to the expansion rules for ALCQ.

We explain the intuition behind the new expansion rules. If a =, A and
b =m B then the individuals a and b represent concepts. Any equality at the
level of individuals should be transferred as an equality between concepts and
similarly with the difference.

The ==-rule transfers the equality a = b to the level of concepts by adding two
statements to the Thox which are equivalent to A = B. This rule is necessary
to detect the inconsistency of Example 2 where the equality river = lake is
transferred as an equality River = Lake between concepts. A particular case
of the application of the ~-rule is when a =, A and a =,, B. In this case, the
algorithm also adds A = B.
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~-rule: Let a =m Aand b =n Bin M. If a~band AU-B, Bl —-A does not
belong to 7 then 7 «— AU —-B, B U —A.

#-rule: Let a =m A and b = B in M. If a % b and there is no z such that
AN-BUBM-A € L(z) then create a new node z with
L(z) ={AN-BUBM-A}.

close-rule: Let a =m A and b =n B where a = z, b =y, L(z) and L(y) are defined.
If neither x ~y nor %y are set then equate(a, b, £) or differenciate(a, b, L).

Fig. 5. Additional Expansion Rules for ALCOM

The #-rule is similar to the ~-rule. However, in the case that a % b, we
cannot add A # B because the negation of = is not directly available in the
language. So, what we do is to replace it by an equivalent statement, i.e. add an
element z that witness this difference.

The rules ~ and % are not sufficient to detect all inconsistencies. With only
these rules, we could not detect the inconsistency of Example 4. The idea is that
we also need to transfer the equality A = B between concepts as an equality
a =~ b between individuals. However, here we face a delicate problem. It is not
enough to transfer the equalities that are in the Thox. We also need to transfer
the semantic consequences, e.g. @ = A = B. Unfortunately, we cannot do
O | A = B. Otherwise we will be captured in a vicious circle 2 since the problem
of finding out the semantic consequences is reduced to the one of satisfiability.
The solution to this problem is to explicitly try either a =~ b or a % b. This
is exactly what the close-rule does. The close-rule adds either a ~ b or a % b
through two new functions equate and di f ferenciate. It is similar to the choose-
rule which adds either C' or ~C'. This works because we are working in Classical
Logic and we have the law of excluded middle. For a model Z of the ontology,
we have that either aZ = b% or aZ # b% (see also Lemma 5). Since the tableau
algorithm works with canonical representatives of the ~-equivalence classes, we
have to be careful how we equate two individuals or make them different.

Note that the application of the tableau algorithm to an ALCQM knowledge
base (7,.A, M) changes the Tbox as well as the tableau graph L.

Definition 7 (ALCOM-Complete). (7,L) is ALCOM-complete if none of
the expansion rules for ALCOM is applicable.

The algorithm terminates when we reach some (7, L) where either (7, L)
is ALCOM-complete, £ has a contradiction or £ has a cycle. The ontology
(T, A, M) is consistent if there exists some ALCAM-complete (7, L) such that
L has neither contradictions nor cycles. Otherwise it is inconsistent.

5 Correctness of the Tableau Algorithm for ALCOM

In this section we prove termination, soundness and completeness for the tableau
algorithm described in the previous section. We give an elegant proof of com-
pleteness by showing an isomorphism between the canonical interpretations of

ALCQ and ALCOM.

2 Consistency is the egg and semantic consequence is the chicken.
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Theorem 1 (Termination). The tableau algorithm for ALCOM described in
the previous section always terminates.

Proof. Suppose the input is an arbitrary ontology O = (7, 4, M). We define
concepts(M) = U,—, 4=, plAN"BUBMN=A,AU-B,BLU-A}
Suppose we have an infinite sequence of rule applications:
(70, Lo) = (T1, L1) = (T3, L2) = ... (1)

where = denotes the application of one ALC QM-expansion rule. In the above
sequence, the number of applications of the ~, % and close-rules is finite as we
show below:

1. The = and #-rules can be applied only a finite number of times in the above
sequence. The =~ and %-rules add concepts to the Thox and these concepts
that can be added all belong to concepts(M) which is finite. We also have
that 7; € 7 U concepts(M) for all i. Besides none of the other rules remove
elements from the Thox.

2. Since the set {(a,b) | a,b € dom(M)} is finite, the close-rule can be applied
only a finite number of times. This is because once we set a ~ b or a % b, no
rule can “undo” this.

This means that from some n onwards in sequence (1)
(7o, Lv) = (Tnt1, Lov1) = (Togo, Log2) = -0 (2)

there is no application of the rules ~, % and close. Moreover, 7,, = 7; for all
¢ > n. Now, sequence (2) contains only application of ALCQ-expansion rules.
This sequence is finite by [1, Proposition 5.2]. This is a contradiction.

The proof of the following theorem is similar to Soundness for ALCOM [1]..

Theorem 2 (Soundness). IfO = (7, A, M) is consistent then the ALCOM-
tableau graph terminates and yields an ALCQM-complete (Ty., L) such that Ly,
has neither cycles nor contradictions.

The following definition of canonical interpretation is basically the one in
[1, Definition 4.3]. Instead of <, we use the idea of descendants.

Definition 8 (ALCQ-Canonical Interpretation). We define the ALCQ-
canonical interpretation . from a tableau graph L as follows.

AT ={x| L(x) is defined}
7. _fx ifzedk
7) _{y ifx~y andy € Ale
AYfe ={z € AT | A€ L(x)}
R)%e = {(z,y) € ATe x A%< | R € L(x,y), = is not blocked or
R € L(z,y), where x is blocked by z and z is not blocked }
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Note that the canonical interpretation is not defined on equivalence classes
of =~ but by choosing canonical representatives.

Lemma 3. If the tableau algorithm for ALCOM with input O = (T, A, M)
yields an ALCOM-complete (T', L) such that L has no contradictions then I,
is a model of (T, A).

Proof. We define rel(A,) as follows.

rel(Az) = {C(z) | C € L(y),y = z}U
{R(a,b) | R € L(x,y),a ~ z,b~y,{a,b} C O}U
{fe=yle~ylu{z#ylz#y}

By [1, Lemma 5.5]), Z. is amodel of (77, rel(Az)). Since T C 7" and A C rel(A.),
we have that Z is a model of (7, A).

So, how can we now make Z. into a model of the whole ontology (7,4, M)?
We will transform Z into a model of (7, A, M) by defining a function set. The
following lemma allows us to give a recursive definition of set.

Lemma 4. If the tableau graph L has no cycles then (A<, <) is well-founded
where < is the relation defined as y < x if y € (A%, x ~a and a =, A € M.

Proof. Suppose (AZe, <) is not well-founded. Since AZ« is finite, infinite descen-
dent <-sequences can only be formed from <-cycles, i.e. they are of the form

Yn <Y1 < ... < Yn
It is easy to see that this contradicts the fact that £ has no cycles.

Definition 9 (From Basic Objects to Sets: the function set). Let £ a
tableau graph without cycles and Z. be the ALCQ-canonical interpretation from
L. For z € A%e we define set(z) as follows.

set(z) = {set(y) | y € (A)%} ifx ~a for some a =y A € M
set(x) =z otherwise

Lemma 5. Let L be an ALCOM-complete tableau graph without contradictions.
Ifa =m A and a' = A’ then either a = a' ora % o' . In the first case, ATe = A«
and in the second case, ATe # Al

Lemma 6. Let L be an ALCQM-complete tableau graph that has neither con-
tradictions nor cycles and let I. be the canonical interpretation from L. Then,
set is an injective function, i.e. x = ' if and only if set(z) = set(a’).

Proof. We prove first that set is a function. It is enough to consider the case
when z ~ a =y A and z ~ o’ =, A’. By Lemma 5, a ~ a’ and (A)% = (A")%.
Hence, set(x) is uniquely determined.

To prove that set is injective, we do induction on (A%<, <) which we know that
is well-founded by Lemma 4. By Definition of set, we have two cases. The first



60 R. Motz et al.

case is when set(z) = . We have that set(2’) = x and 2’ is exactly x. This was
the base case. In the second case, we have that for x =~ a and a =, A,

set(z) = {set(y) | y € (A)™}

Since set(z) = set(x’), we also have that 2’ ~ a’ and o’ =, A’ such that
set(z') = {set(y’) | ¥’ € (A")*}

Again since set(z) = set(a’), we have that set(y) = set(y’). By Induction Hypoth-
esis, y = ¢’ for all y € (A)%. Hence, (A)Tc C (A’)%. Similarly, we get (A’)% C
(A)%. So, (A)%e = (A")%. Tt follows from Lemma 5 that a ~ a’. Then, z = z’
because the canonical representative of an equivalence class is unique.

We are now ready to define the canonical interpretation for an ontology in

ALCOM.

Definition 10 (Canonical Interpretation for ACLOM). Let L be an
ALCOM-complete tableaw graph without cycles and without contradictions. We
define the canonical interpretation T™ for ALCQM as follows:

Al = {set(z) | x € AT}

(a)fm = set(a)

(A)Im = {set(x) | x € A%<}

(R)m = {(set(x),set(y)) | (x,y) € (R)*}

Definition 11 (Isomorphism between interpretations of ALCQ).
An isomorphism between two interpretations T and T’ of ALCQ is a bijective
function f: A — A’ such that

- fah) =a”
~ x € AT if and only if f(x) € AT
~ (z,y) € RT if and only if (f(z), f(y)) € RT .

Lemma 7. Let Z and I’ be two isomorphic interpretations of ALCQ. Then, T
is a model of (T, A) if and only if T' is a model of (T,A).

To prove the previous lemma is enough to show that z € CZ if and only if
f(z) € CT by induction on C.

Theorem 3 (Completeness). If (7,A, M) is not consistent then the
ALCOM-tableau algorithm with input (T, A, M) terminates and yields an
ALCOM-complete (T, L) such that L that has either a contradiction or a cycle.

Proof. By Theorem 1, the ALC QM-tableau algorithm with input (7, A, M) ter-
minates. Suppose towards a contradiction that the algorithm yields an
ALCOM-complete (7', L) such that that £ has neither a contradiction nor a
cycle. We will prove that Z, is a model of (7, .4, M). For this we have to check
that Z,, satisfies the three conditions of Definition 2.
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1. In order to prove that AZ» C Sy for some Sy and N, we define Sy = {z €
AZe | set(r) = x}.

2. We now prove that Z, is a model of (7,.4). By Lemma 3, the canonical
interpretation Z. is a model of (7, .A). It follows from Lemma 6 that set :
ATe — Am is a bijective map. It is also easy to show that Z. and Z,, are
isomorphic interpretations in ALCQ. By Lemma 7, Z,, is a model of (7, .A).

3. Finally, we prove that a’m = (A)Z» for all a =, A € M. Suppose that
a=m A € M. Then,

= set(a) by Definition 10
= {set(x) | x € (A)%} by Definition 9
= Am by Definition 10

A direct corollary from the above result is that ALC QM satisfies the finite
model property.

6 Conclusions and Future Work

In this paper we present a tableau algorithm for checking consistency of an
ontology in ALCOM and prove its correctness. In order to implement our algo-
rithm, we plan to incorporate optimization techniques such as normalization,
absorption or the use of heuristics [2, Chapter 9].

A first step to optimize the algorithm would be to impose the following order
on the application of the expansion rules. We apply the rules that create nodes
(3 and >) only if the other rules are not applicable. We apply the bifurcating
rules (L, choose or close-rules) if the remaining rules (all rules except the 3, >,
LI, choose and close-rules) are not applicable. One could prove that this strategy
is correct similarly to Section 5.

A second step to optimize the algorithm would be to change the ~-rule.
Instead of adding ALI-B and A U B, we could add A = B and treat this as a
trivial case of lazy unfolding.

We would also like to study decidability of consistency for the kind of meta-
modelling presented in this paper in more powerful Description Logics than
ALCOM.

We believe that consistency in ALC QM has the same complexity as ALCQ,
which is Exp-time complete [13]. We also plan to study worst-case optimal
tableau algorithms for ALCOM [3,6].

Acknowledgments. We are grateful to Diana Comesana for sharing with us the data
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