
A Practical Succinct Data Structure

for Tree-Like Graphs

Johannes Fischer1 and Daniel Peters2

1 TU Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

2 Physikalisch-Technische Bundesanstalt (PTB), Germany
daniel.peters@ptb.de

Abstract. We present a new succinct data structure for graphs that are
“tree-like,” in the sense that the number of “additional” edges (w.r.t. a
spanning tree) is not too high. Our algorithmic idea is to represent a
BFS-spanning tree of the graph with a succinct data structure for trees,
and enhance it with additional information that accounts for the non-
tree edges. In practical tests, our data structure performs well for graphs
containing up to 10% of non-tree edges, reducing the space of a pointer-
based representation by a factor of ≈20, while increasing the worst-case
running times for the operations by roughly the same factor.

1 Introduction

Succinct data structures have been one of the key contributions to the algo-
rithms community in the past two decades. Their goal is to represent objects
from a universe of size u in information-theoretical optimal lg u bits of space.1

Apart from the bare representation of the object, fast operations should also be
supported, ideally in time no worse than with a “conventional” data structure
for the object. For this, one usually allows extra space o(lg u) bits.

A prime example of succinct data structures are ordered rooted trees, where
with n nodes we have u ≈ 4n. In 1989, Jacobson made a first step towards
achieving this goal, by giving a data structure using 10n+ o(n) bits, while sup-
porting the most common navigational operations in O(lg n) time [19]. This was
further improved to the optimal 2n + o(n) bits and optimal O(1) navigation
time by Munro and Raman [25]. Note that a conventional, pointer-based data
structure for trees requires Θ(n lg n) bits, which is off by a factor of lg n from
the information-theoretical minimum.

Since the work of Munro and Raman, the research on succinct data structures
has blossomed. We now have succinct data structures for bit-vectors [27], per-
mutations [23], binary relations [2], dictionaries [26], suffix trees [29], to name
just a few.

The practical value of those data structures has sometimes been disputed.
However, as far as we know, in all cases where genuine attempts were made at

1 Function lg denotes the binary logarithm throughout this paper.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 65–76, 2015.
c© Springer International Publishing Switzerland 2015



66 J. Fischer and D. Peters

practical implementations, the results have mostly been successful [13,20,16, etc.,
to cite some recent papers presented in the algorithm engineering community].
Further examples of well-performing practical succinct tree implementations will
be mentioned throughout this paper.

1.1 Our Contribution

We focus on the succinct representation of a very practical class of graphs: graphs
that are “tree-like” in the sense that the number of edges, which can potentially
be Θ(n2) for an n-node graph, is much lower. We measure this tree-likeness by
introducing two additional parameters: (1) k, the number of “additional” edges
that have to be added to a spanning tree of the graph (note that k = m− n+1
if m denotes the total number of edges), and (2) h, the number of nodes having
more than one incoming edge (also called non-tree nodes in the following). This
definition of tree-likeness is similar in flavor to the k-almost trees by Gurevich
et al. [17], but in the latter the number of additional edges is counted separately
for each biconnected component, with k being the maximum of these.

We think that our definition of tree-likeness encompasses a large range of in-
stances arising in practice. One important example comes from computational
biology, where one models the ancestral relationships between species by phy-
logenetic trees. However, sometimes there are also non-bifurcating specification
events [18]. One approach to handle those events are phylogenetic networks,
which have an underlying tree as a basis, but with added cross-edges to model
the passing of genetic material that does not follow the tree.

Our first contribution (Sect. 3) is a theoretical formulation of a succinct data
structure for graphs with the above mentioned parameters n, m, k, and h. It
uses space at most (2n+m) lg 3+h lg n+ k lg h+ o(m+ k lg h) +O(lg lg n) bits,
which is close to the 2n + o(n) bits for succinct trees if k (and hence also m
and h) is close to n. This should be compared to the O((n +m) lgn) bits that
were needed if the graph was represented using a pointer-based data structure.
Our second contribution is that we show that the data structure is amenable to
a practical implementation (Sect. 4–5). We show that we can reduce the space
from a conventional pointer-based representation by a factor of about 20, while
the times for navigational operations (moving in either direction of the edges)
increase by roughly the same factor; such a space-time tradeoff is typical for
succinct data structures.

1.2 Further Theoretical Work on Succinct Graphs

Farzan and Munro [9] showed how to represent a general graph succinctly in

lg
(
n2

m

)
(1+o(1)) bits of space, while supporting the operations supported both by

adjacency lists and by adjacency matrices in optimal time. Other results exist for
special types of graphs: separable graphs [5], planar graphs [25], pagenumber-k
graphs [11], graphs of limited arboricity [21], and DAGs [8]. However, to the best
of our knowledge, only the approach on separable graphs has been implemented



A Practical Succinct Data Structure for Tree-Like Graphs 67

so far [6]. Also, none of the approaches can navigate efficiently to the sources of
the incoming edges (without doubling the space), as we do.

2 Preliminaries

In this section we introduce existing data structures that form the basis of our
new succinct graph representation. All these results (hence also our new one) are
in the word-RAM model of computation, where it is assumed that the machine
consists of words of width w bits that can be manipulated in O(1) time by a
standard set of arithmetic and logical operations, and further that the problem
size n is not larger than O(2w).

2.1 Succinct Data Structures

Let S[0, n) be a bit-string of length n. We define the fundamental rank - and
select -operations on S as follows: rank1(S, i) gives the number of 1’s in the prefix
S[0, i], and select1(S, i) gives the position of the i’th 1 in S, reading S from
left to right (0 ≤ i < n). Operations rank0(S, i) and select0(S, i) are defined
similarly for 0-bits. S can be represented in n + o(n) bits such that rank- and
select-operations are supported in O(1) time [25].

These operations have been extended to sequences over larger alphabets, at
the cost of slight slowdowns in the running times [14]: let S[0, n) be a string over
an alphabet Σ of size σ. Then S can be represented in n lg σ(1 + o(1)) bits of
space such that the operations ranka(S, i) and S[i] (accessing the i’th element)
take O(lg lg σ) time, and selecta(S, i) takes O(1) time (all for arbitrary a ∈ Σ
and arbitrary 0 ≤ i < n). Note that by additionally storing S in plain form,
the access-operation also takes O(1) time, at the cost of duplicating the space.
In some special cases the running times for the three operations is faster. For
example, when the alphabet size is small enough such that σ = wO(1) for word
size w, then Belazzougui and Navarro [3] proved that O(1) time for all three
operations is possible within O(n lg σ) bits of space.

2.2 The Level Order Unary Degree Sequence (LOUDS)

There are several ways to represent an ordered tree on n nodes using 2n bits [24,
4]; in this article, we focus on one of the oldest approaches, the level order unary
degree sequence [19], which is obtained as follows (the reasons for preferring
LOUDS over BPS [24] or DFUDS [4] will become evident when introducing
the new data structure in Sect. 3). For convenience, we first augment the tree
with an artificial super-root that is connected with the original root of the tree.
Now initialize B as an empty bit-vector and traverse the nodes of the tree level
by level (aka breadth-first). Whenever we see a node with k children during
this level-order traversal, we append the bits 1k0 to S, where 1k denotes the
juxtaposition of k 1-bits. See Fig. 1 for an example. In the LOUDS, each node
is represented twice: once by a ‘1,’ written when the node was seen as a child



68 J. Fischer and D. Peters

1

32 4

5 6 7

0

1110

100110

0100

0

10

8

(a) tree

1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0
1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 8
B =

(b) LOUDS

Fig. 1. An ordered tree (a) and its level order unary degree sequence (b)

during the level-order traversal, and once by a ‘0,’ written when it was seen as
a parent. The number of bits in B is 2n+ 1.

We identify the nodes with their level-order number, since both the 1- and
the 0-bits appear in this order in B. It should be noted that all succinct data
structures for trees [19, 24, 4, 10, 7] must have the freedom to fix a particular
naming for the nodes; natural such namings are post- or pre-order [19, 24, 4],
in-order [7], and level-order [19], as here.2

If we now augment B with data structures for rank and select (see Sect. 2.1),
then the resulting space is 2n+ o(n) bits, but basic navigational operations on
the tree can be simulated in O(1) time: for moving to the parent node of i
(1 ≤ i ≤ n), we jump to the position y of the i’th 1-bit in B by y = select1(B, i),
and then count the number j of 0’s that appear before y in B by j = rank0(B, y);
j is then the level-order number of the parent of i. Conversely, listing the children
of i works by jumping to the position x of the i’th 0-bit in B by x = select0(B, i),
and then iterating over the positions x+1, x+2, . . . , as long as the corresponding
bit is ‘1.’ For each such position x+k with B[x+k] = 1, the level-order numbers
of i’s children are rank1(B, x) + k, which can be simplified to x− i+ k + 1.

3 New Data Structure

We now propose our new succinct data structure for tree-like graphs. Let G
denote a directed graph. We use the following characteristics of G:

– n, the number of nodes in G,
– m, the number of edges in G,
– c ≤ n, the number of strongly connected components with no incoming edge

from a different strongly connected component,
– k = m− n+ 1, the number of non-tree edges in G (the number of edges to

be added to a spanning tree of G to obtain G), and
– h ≤ k, the number of non-tree nodes in G (nodes with more than 1 incoming

edge).

2 If the naming is arbitrary (e.g., chosen by the user), then n lg n bits are inevitable,
since any memory layout of the nodes has n! possible namings.



A Practical Succinct Data Structure for Tree-Like Graphs 69

1

3

2

4

5

6

8

7

(a) A graph G

1

32

4 5

6 7 8

0

4

7

78

110

10210

110210

20020

10

(b) The resulting tree TG. Shadow
nodes are depicted as dashed lines.

1 0 1 1 0 1 0 2 1 0 1 1 0 2 1 0 2 0 0 2 0
1 2 3 4 4 5 6 7 7 8 8 7

1 20 3 4 5 6 7 8

B =

H =4,7,8,7

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

(c) The resulting ternary LOUDS B and
the array H of non-tree edges

Fig. 2. Illustration of our new data structure. The nodes are numbered such that they
correspond to the level-order numbers in the chosen BFT-tree.

For simplicity, assume for now that there exists a node r inG from which a path
to every other node exists (i.e., c = 1). From r, perform a breadth-first traversal
(BFT) of G. Let TBFT

G denote the resulting BFT-tree. We augment TBFT
G as fol-

lows: for each node w that is inspected but not visited during the BFT at node v
(meaning that it has already been visited at an earlier point), we make a copy of
w and append it as a child of v in the BFT-tree TBFT

G . We call those nodes shadow
nodes. Finally, we add a super-root to r, and call the resulting tree TG, which has
exactlym+2 nodes. See Fig. 2a and 2b for an example ofG and TG. If no such node
r exists, we perform the BFT from c nodes r1, . . . , rc for every strongly connected
component with no incoming edge from a different such component, and obtain a
BFT-forest. All roots of this forest will be made children of the super-root. This
adds at most c additional edges to TG.

We now aim at representing the tree TG space efficiently, similar to the LOUDS
of Sect. 2.2. Since we need to distinguish between real nodes and shadow nodes,
we cannot construct a bit -vector anymore. Instead, we construct B as a sequence
of trits, namely values from {0, 1, 2}, as follows: again, B is initially empty, and
we visit the nodes of TG in level-order. For each visited node, the sequence
appended to B is constructed as in the original LOUDS, but now using a ‘2’
instead of a ‘1’ for shadow nodes. The shadow nodes are not visited again during
the level-order traversal and hence not represented by 0’s.3 We call the resulting

3 Listing the shadow nodes by 0’s would not harm, but does not yield any extra
information; hence we can omit them.



70 J. Fischer and D. Peters

Function children(i): find the nodes directly reachable from i.

x ← select0(B, i) + 1; // start of the list of i’s children

while B[x] �= 0 do
if B[x] = 1 then output rank1(B, x); // actual node

else output H [rank2(B,x)]; // shadow node

x ← x+ 1;
endw

Function parents(i): find the nodes from which i is directly reachable.

output rank0(B, select1(B, i)); // tree parent

j ← 1;
x ← selecti(H, j);
while x < k do

output rank0(B, select2(B, x+ 1)); // non-tree parent

j ← j + 1;
x ← selecti(H, j);

endw

trit-vector B the ternary LOUDS. The ternary LOUDS consists of n+m+ c+1
trits. See Fig. 2c for an example.

We also need an additional arrayH that lists the non-tree nodes in the order in
which they appear in B. This array will be used for the navigational operations,
as shown in Sect. 3.1. For the operations, besides accessing H , we will also
need select-support on H . For this, we use the data structures mentioned in
Sect. 2.1 [3, 14].

3.1 Algorithms

The algorithms for listing the children and parents of a node are shown in Func-
tions children(i) and parents(i). These functions follow the original LOUDS-
functions as closely as possible. Listing the children just needs to make the
distinction if there is a ‘1’ or a ‘2’ in the ternary LOUDS B; in the latter case,
array H storing the shadow nodes needs to be accessed.

Listing the parents is only slightly more involved. First, the (only) tree parent
can be obtained as in the original LOUDS. Then we iterate through the occur-
rences of i in H in a while-loop, using select-queries. For each occurrence found,
we go to the corresponding ‘2’ in B and count the number of ‘0’s before that ‘2’
as usual.

As in the original LOUDS, counting the number of children is faster than
traversing them: simply calculate select0(B, i+1)−select0(B, i)+1; this computes
the desired result in O(1) time.4

4 For calculating the number of parents in O(1) time, we would need to store those
numbers explicitly for hybrid nodes; for all other nodes it is 1.



A Practical Succinct Data Structure for Tree-Like Graphs 71

3.2 Space Analysis

The trit-vector B can be stored in (n + m + c)(lg 3 + o(1)) bits [27], while
supporting O(1) access on its elements. Support for rank and select-queries needs
additional o(n+m) bits [25].

There are several ways to store H . Storing it in plain form uses k lgn bits.
Using another k lgn(1 + o(1)) bits, we can also support selecta(H, i)-queries on
H in constant time [14]. This sums up to 2k lgn+ o(k lgn) bits.

On the other hand, since the number h of non-tree nodes can be much smaller
than k (the number of non-tree edges), this can be improved with a little bit of
more work: we store a translation table T [0, h) such that T [i] is the level order
number of the i’th non-tree node. Then H [0, k) can be implemented by a table
H ′[0, k) that only stores values from [0, h), such that H [i] = T [H ′[i]]. The space
for T and H ′ is k lg h+h lgn bits. To also support select-queries on H within less
than k lg n bits of space, we use the indexable dictionaries of Raman et al. [28]:
store a bit vector C[0, n) such that C[i] = 1 iff the i’th node in level order is a
non-tree node. C can be stored in h lgn+ o(h) + O(lg lg n) bits [28, Thm. 3.1],
while supporting select- and partial rank-queries (only rank1(C, i) with C[i] = 1,
which is what we need here) in constant time. Now we only need to prepare
H ′ for select-queries, this time using k lg h+ o(k lg h) bits. Queries selecta(H, i)
can be answered by selectrank1(C,a)(H

′, i), so H can be discarded. Since the data
structure of Raman et al. [28] automatically supports select-queries, we also do
not need to store T in plain form anymore, since T [i] = select1(C, i). Thus, the
total space for H using this second approach is h lgn + k lg h + o(h + k lg h) +
O(lg lg n) bits.

Summing up and simplifying (c ≤ n), the main theoretical result of this article
can be formulated as follows:

Theorem 1. A directed graph G with n nodes, m edges, and h non-tree nodes
(k = m− n+ 1 is the number of non-tree edges) can be represented in

(2n+m) lg 3 + h lgn+ k lg h+ o(m+ k lg h) +O(lg lg n)

bits such that listing the x incoming or y outgoing edges of any node can be done
in O(x) or O(y) time, respectively. Counting the number of outgoing edges can
be done in O(1) time.

4 Implementation Details

We now give some details of our implementation of the data structure from
Sect. 3, sometimes sacrificing theoretical worst-case guarantees for better results
in practice.

4.1 Representing Trit-Vectors

We first explain how we store the trit sequence B such that constant time access,
rank and select are supported. We group 5 trits together into one tryte, and store



72 J. Fischer and D. Peters

this tryte in a single byte. This results in space �(n+m+c)/5�·8 = �1.6 (n+m+
c)� bits for B, which is only ≈ 1% more than the optimal �(n +m + c) lg 3� ≈
�1.585 (n+ m + c)� bits. The individual trits are reconstructed using Horner’s
method, in just one calculation.5

For rank and select on B, we use an approach similar to the bit -vectors of
González et al. [15], but with a three-level scheme (instead of only 2), thus
favoring space over time. This scheme basically stores rank-samples at increasing
sample rates, and the fact that the bits are now intermingled with 2’s does not
cause any troubles. We used sample rates 25, 275, and 65725 trits, respectively,
which enable a fast byte-aligned layout in memory. On the smallest level we
divided a 25-trit block into five trytes. Using the table lookup technique [22] on
the trytes the calculation for rank on a 25-trit block is done in at most five steps
with an overhead of 35 = 243 bytes of space.

As in the original publication [15], select queries are solved by binary searches
on rank-samples, again favoring space over time.

4.2 Other Data Structures

Instead of the complex representation of H as described in Sect. 3.2, needed
for an efficient support of the parent-operation, we used a simpler array-based
approach: we store the positions of 1-bits (in B) of the first occurrences of non-
tree nodes in an array P [0, h). (In the example of Fig. 2, we have P = [5, 11, 14]
for the non-tree nodes 4,7, and 8.) A second array Q[0, k) lists the positions
of the other occurrences of the non-tree nodes, in level order (In the example,
Q = [7; 13, 19; 16]). A final third array N [0, h) stores the starting positions of the
non-tree nodes in Q (in the example, N = [0, 1, 3]). Then with a binary search
on P (or a bit-vector marking the respective positions) we can find out if a node
i has further shadow copies, and if so, list them using Q and N . Note that with
these arrays, we can also efficiently list (in O(1) time) the number of parents of
non-tree nodes.

We also added a bit-vector D = [0, n) with D[i] = 1 iff node i is a leaf node.
This way, the question if a node has children can be quickly answered by just
one look-up to D, omitting rank and select queries.

5 Practical Results

The aim of this section is to show the practicality of our approach on the ex-
ample of phylogenetic networks. Such networks arise in computational biology.
They are a generalization of the better known phylogenetic trees, which model
the (hypothetic) ancestral relationships between species. In particular for fast re-
producing organisms like bacteria, networks can better explain the observed data

5 We did not investigate codes that exploit the fact that the distribution of the 0’s,
1’s, and 2’s in B is not necessarily uniform. Some further space could be saved here,
probably at the cost of increased access times. We leave this as a direction for future
research.



A Practical Succinct Data Structure for Tree-Like Graphs 73

than trees. Quoting Huson and Scornavacca [18], phylogenetic networks “may
be more suitable for data sets where evolution involves significant amounts of
reticulate events, such as hybridization, horizontal gene transfer, or recombina-
tion.”

Since large real-life networks are not (yet) available, we chose to create them
artificially for our tests. We did so by creating random tree-like graphs with 10%
non-tree edges (k = n/10), by directly creating random trit-vectors of a given
length, and randomly introducing k 2’s to create non-tree edges. We further
ensured that shadow nodes have different parents, and that all non-tree edges
point only to nodes at the same height (in the BFS-tree), mirroring the structure
of phylogentic networks (no interchange of genetic material with extinct species).

We compared our data structure to a conventional pointer-based data struc-
ture for graphs (where each node stores a list of its descendants, a pointer to
an arbitrary father, and the number of its descendants). While there exist many
implementations of succinct data structures for trees6, we are not aware of any
implementations for graphs, hence we did not compare our data structure to
others.

Our machine was equipped with an Intel Core i7@2.2GHz and 8GB of RAM,
running under Windows 7. We compiled the program for 32 bits, in order not
to make the pointer-based representation unnecessarily large. All programs used
only a single core of the CPU. We averaged the running times over 1 000 tests
for n = 10 000, over 100 tests for 100 000 ≤ n ≤ 1 000 000, over 15 tests for
n = 10 000 000, and over 5 tests for n = 100 000 000.

Table 1. Comparison between a pointer based graph and our succinct LOUDS repre-
sentation for graphs with 10% non-tree edges

space [MByte] time for children [µsec] time for parents [µsec]

n LOUDS pointer LOUDS pointer LOUDS pointer

10 000 0.0159 0.3654 0.3203 0.0295 0.3315 0.0129
100 000 0.1682 3.6533 0.3458 0.0311 0.3472 0.0130

1 000 000 1.6818 36.5433 0.3884 0.0332 0.3614 0.0136
10 000 000 18.8141 365.4453 0.3889 0.03374 0.3812 0.0138

100 000 000 188.1542 3 654.4394 0.4095 — 0.4198 —

Table 1 shows the sizes of the data structures and the average running times
for the children- and parents-operations with either representation.7 It can be
seen that our data structure is consistently about 20–25 times smaller than the
pointer-based structure, while the time for the operations increases by a factor

6 For example, the well-known libraries for succinct data structures
https://github.com/fclaude/libcds and https://github.com/simongog/sdsl

both have well-tuned succinct tree implementations. Other sources are [1,12].
7 For memory reasons, the running times of the pointer-based representation could
not be measured for the last instances.

https://github.com/fclaude/libcds
https://github.com/simongog/sdsl


74 J. Fischer and D. Peters

(a) Listing the children of a node. The
graph shows the relative slow-down of
our LOUDS over a pointer-based repre-
sentation for nodes with varying number
of children.

(b) The same as in (a), but now for list-
ing the parents of a node

Fig. 3. Detailed evaluation of running times

of about 12 in case of the children-operation, and by a factor of about 25 in case
of the parents-operation. Such trade-offs are typical in the world of succinct data
structures.

To further evaluate our data structure, we more closely surveyed the children-
and parents-operations in a graph with 1 000 000 nodes and 10% of non-tree
edges, in which a node has no more than 16 incoming edges. We executed both
operations on every node in the graph and grouped the running times by the
number of children and parents, respectively. The results are shown in Fig. 3. In
(a), showing the results for the children-operations, several interesting points can
be observed. First, for nodes with 0 children (a.k.a. leaves), our data structure
is actually faster than the pointer-based representation (about twice as fast),
because this operation can be answered by simply checking one bit in the bit-
vectorD, mentioned in Sect. 4. Second, for nodes with 5 children the slowdown is
only about 3, then rises to a slowdown of about 7 for nodes with 8 children, and
finally gradually levels off and seems to convert to a slowdown of about 5. We
think that this can be explained by the different distributions of the types of the
nodes listed in the children operation: while for tree-nodes the node numbers can
be simply calculated from the LOUDS, for non-tree nodes this process involves
further look-ups, e.g. to the H-array. Since we tested graphs with 10% non-tree
edges, we think that at about 7–8 children/nodes this effect is most expressed. In
(b) the parents operation on our LOUDS for nodes with one parent is around 30
times slower than the pointer representation. For a greater number of parents it
is about 16 times slower. Our explanation is that at first a rank and select query
is necessary to retrieve the first parent node, afterwards if the node has more
than one parent the H-array is scanned. With our practical implementation of
the H-array from Sect. 4 the select results are directly saved in the Q-array,
hence there is no need for select queries anymore and a rank query seems to be
around 16 times slower than a look-up.



A Practical Succinct Data Structure for Tree-Like Graphs 75

6 Conclusions

We presented a framework and implementation for a new succinct data structure
for “tree-like” graphs based on the LOUDS representation for trees. The practical
evaluation confirmed that our succinct data structure achieves a significant space
reduction. A trade-off between space and time can be observed, which is common
in the world of succinct data structures.

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. ALENEX, pp. 84–97. SIAM (2010)

2. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-
resentations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183.
Springer, Heidelberg (2010)

3. Belazzougui, D., Navarro, G.: New lower and upper bounds for representing
sequences. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 181–192. Springer, Heidelberg (2012)

4. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

5. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: Proc. SODA, pp. 679–688. ACM/SIAM (2003)

6. Blandford, D.K., Blelloch, G.E., Kash, I.A.: An experimental analysis of a compact
graph representation. In: ALENEX/ANALC, pp. 49–61. SIAM (2004)

7. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for
range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) CO-
COON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

8. Farzan, A., Fischer, J.: Compact representation of posets. In: Asano, T.,
Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 302–311. Springer, Heidelberg (2011)

9. Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer, Hei-
delberg (2008)

10. Farzan, A., Munro, J.I.: A uniform approach towards succinct representation of
trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184.
Springer, Heidelberg (2008)

11. Gavoille, C., Hanusse, N.: On compact encoding of pagenumber k graphs. Discrete
Mathematics & Theoretical Computer Science 10(3), 23–34 (2008)

12. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

13. Gog, S., Ohlebusch, E.: Fast and lightweight LCP-array construction algorithms.
In: Proc. ALENEX, pp. 25–34. SIAM (2011)

14. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proc. SODA, pp. 368–373. ACM/SIAM (2006)

15. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Poster Proceedings Volume of 4th Workshop on
Efficient and Experimental Algorithms (WEA), Greece, pp. 27–38. CTI Press and
Ellinika Grammata (2005)



76 J. Fischer and D. Peters

16. Grossi, R., Ottaviano, G.: Design of practical succinct data structures for large
data collections. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.)
SEA 2013. LNCS, vol. 7933, pp. 5–17. Springer, Heidelberg (2013)

17. Gurevich, Y., Stockmeyer, L., Vishkin, U.: Solving NP-hard problems on
graphs that are almost trees and an application to facility location problems.
J. ACM 31(3), 459–473 (1984)

18. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic
networks. Genome Biology and Evolution 3, 23 (2011)

19. Jacobson, G.J.: Space-efficient static trees and graphs. In: Proc. FOCS,
pp. 549–554. IEEE Computer Society (1989)

20. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R.
(ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)

21. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
crete Math. 5(4), 596–603 (1992)

22. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

23. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

24. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: Proc. FOCS, pp. 118–126. IEEE Computer Society
(1997)

25. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

26. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
J. Comput. 31(2), 353–363 (2001)

27. Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313. IEEE Computer Society
(2008)

28. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. ACM Transactions on Algorithms 3(4),
Article No. 43 (2007)

29. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst 41(4), 589–607 (2007)


	A Practical Succinct Data Structure for Tree-Like Graphs
	1 Introduction
	1.1 Our Contribution
	1.2 Further Theoretical Work on Succinct Graphs

	2 Preliminaries
	2.1 Succinct Data Structures
	2.2 The Level Order Unary Degree Sequence (LOUDS)

	3 New Data Structure
	3.1 Algorithms
	3.2 Space Analysis

	4 Implementation Details
	4.1 Representing Trit-Vectors
	4.2 Other Data Structures

	5 Practical Results
	6 Conclusions
	References




