
Edge-Colorings of Weighted Graphs

(Extended Abstract)

Yuji Obata and Takao Nishizeki

Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
{bnb86950,nishi}@kwansei.ac.jp

Abstract. Let G be a graph with a positive integer weight ω(v) for each
vertex v. One wishes to assign each edge e of G a positive integer f(e) as
a color so that ω(v) ≤ |f(e)− f(e′)| for any vertex v and any two edges
e and e′ incident to v. Such an assignment f is called an ω-edge-coloring
of G, and the maximum integer assigned to edges is called the span of
f . The ω-chromatic index of G is the minimum span over all ω-edge-
colorings of G. In the paper, we present various upper and lower bounds
on the ω-chromatic index, and obtain three efficient algorithms to find an
ω-edge-coloring of a given graph. One of them finds an ω-edge-coloring
with span smaller than twice the ω-chromatic index.

1 Introduction

An ordinary edge-coloring of a graph G assigns different colors to any two ad-
jacent edges. The paper extends the concept to an edge-coloring of a weighted
graph.

Let G = (V,E) be a graph with a positive integer weight ω(v) ∈ N for each
vertex v ∈ V , where N is the set of all positive integers. Indeed G may be a
multigraph. Figure 1 illustrates such a graph G, in which each vertex v is drawn
as a circle and the weight ω(v) is written in it. One wishes to assign each edge
e ∈ E a positive integer f(e) as a color so that ω(v) ≤ |f(e) − f(e′)| for any
vertex v ∈ V and any two edges e and e′ incident to v. Such a function f : E → N

is called an edge-coloring of a graph G with a weight function ω or simply an
ω-edge-coloring of G. An ω-edge-coloring f of a graph G is illustrated in Fig. 1,
where f(e) is attached to each edge e.

The span span(f) of an ω-edge-coloring f of a graphG is the maximum integer
assigned to edges by f , that is, span(f) = maxe∈E f(e). An ω-edge-coloring f
of G is called optimal if span(f) is minimum among all ω-edge-colorings of G.
The ω-edge-coloring in Fig. 1 is optimal, and its span is 7. The span of an optimal
ω-edge-coloring of a graph G is called the ω-chromatic index χ′

ω(G) of G. The
ω-edge-coloring problem is to find an optimal ω-edge-coloring of a given graph.

An ω-edge-coloring often appears in a task scheduling problem [12]. Each
vertex v of a graph G represents a processor, while each edge e = (u, v) of G
represents a task, which can be executed within a unit time with the cooperation
of the two processors represented by vertices u and v. Each processor v needs an

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 32–43, 2015.
c© Springer International Publishing Switzerland 2015

Edge-Colorings of Weighted Graphs 33

�

�
�

�

�

�
� �

�

�
�

�
�

�
�

�
�

�
��

�

�

�

�
�

�
�

�
�

�
�

�
�

�

�

�

Fig. 1. An optimal ω-edge-coloring f of a graph G

idle time ω(v) between any two tasks executed by v. Then an optimal ω-edge-
coloring of G corresponds to a scheduling with the minimum makespan.

If ω(v) = 1 for every vertex v of a graph G, then an ω-edge-coloring of G is
merely an ordinary edge-coloring of G and the ω-chromatic index χ′

ω(G) of G
is equal to the ordinary chromatic index χ′(G) of G. Since an ordinary edge-
coloring problem is NP-complete [4], the ω-edge-coloring problem is strongly
NP-complete and does not look to be solved in polynomial time or in pseudo
polynomial time. So it is desired to obtain an efficient approximation algorithm
for the ω-edge-coloring problem.

In this paper we present various upper and lower bounds on the ω-chromatic
index, and obtain three efficient approximation algorithms for the ω-edge-coloring
problem. The first algorithm Delta finds an ω-edge-coloring f of a given graph
G such that span(f) ≤ Δ′

1ω(G) + 1, where Δ′
1ω(G) is the maximum “uni-

directional ω-edge-degree” of G. The second algorithm Degenerate finds an
ω-edge-coloring f such that span(f) ≤ k+1 for any “k-edge-degenerated graph.”
Delta and Degenerate have approximation ratios smaller than two and four,
respectively. We also show that an optimal ω-edge-coloring can be easily obtained
for a graph G with the maximum degree Δ(G) at most two. The third algorithm
Factor first decomposes a given graph G into several subgraphs G1, G2, ..., Gr,
each having the maximum degree at most two, then finds optimal ω-edge-
colorings of G1, G2, ..., Gr, and finally combines them to an ω-edge-coloring of
G. The approximation ratio of Factor is near to 3/2 for many graphs.

2 Preliminaries

In this section, we define several terms, present simple lower and upper bounds
on the ω-chromatic index, and show that an optimal ω-edge-coloring of a graph
G can be easily obtained if Δ(G) ≤ 2.

We denote by G = (V,E) a graph with vertex set V and edge set E. G
is a so-called multigraph, which has no selfloops but may have multiple edges.

34 Y. Obata and T. Nishizeki

We denote by (u, v) an edge joining vertices u and v. Let n = |V | and m = |E|
throughout the paper. One may assume that G has no isolated vertex and hence
m ≥ n/2. Let ω : V → N be a weight function of G.

We denote by E(v) the set of all edges incident to a vertex v in a graph
G = (V,E). The degree of a vertex v is |E(v)| and is denoted by d(v,G) or
simply d(v). The maximum degree of vertices in G is called the maximum degree
of G, and denoted by Δ(G) or simply Δ. Every ω-edge-coloring f of G satisfies

1 + (d(v) − 1)ω(v) ≤ max
e∈E(v)

f(e)

for every vertex v. We thus define the ω-degree dω(v) of a vertex v as follows:

dω(v) = 1 + (d(v) − 1)ω(v). (1)

The maximum ω-degree of vertices in G is called the maximum ω-degree Δω(G)
of G. It should be noted that Δω(G) = Δ(G) if ω(v) = 1 for every vertex
v. Clearly Δω(G) ≤ span(f) for every ω-edge-coloring f of G. Therefore, the
following lower bound holds for the ω-chromatic index χ′

ω(G):

Δω(G) ≤ χ′
ω(G). (2)

The graph G in Fig. 1 satisfies Δω(G) = dω(v1) = 7, the ω-edge-coloring f in
Fig. 1 has span 7, and hence f is optimal. In Section 3 we will present an upper
bound: χ′

ω(G) ≤ 2Δω(G) − 1 for every graph G.

Since the weight of a vertex of degree 1 is meaningless, we define the largest
weight ωl(G) of a graph G as follows:

ωl(G) = max{ω(v) | v ∈ V, d(v) ≥ 2}

where ωl(G) is defined to be zero if Δ(G) = 1. Since 1 + ωl(G) ≤ Δω(G), Eq.
(2) implies the following lower bound:

1 + ωl(G) ≤ χ′
ω(G) (3)

We often denote ωl(G) simply by ωl.

Suppose that a graph G is ordinarily edge-colored by colors 1, 2, ..., c, where
c ≥ χ′(G). Replace colors 1, 2, ..., c by 1, 1 + ωl, ..., 1 + (c− 1)ωl, respectively.
Then the resulting coloring is an ω-edge-coloring of G. Thus we have an upper
bound:

χ′
ω(G) ≤ 1 + (χ′(G)− 1)ωl (4)

for every graph G.

Edge-Colorings of Weighted Graphs 35

V. G. Vizing showed that χ′(G) ≤ Δ(G) + 1 for every simple graph G, which
has no multiple edges [14,15]; and it is known that such an edge-coloring of G
can be found in time O(mn), O(mΔ logn) or O(m

√
n logn) [3]. Therefore, by

Eq. (4) we have
χ′
ω(G) ≤ 1 +Δωl

for every simple graph G, and such an ω-edge-coloring can be found in time
O(mn), O(mΔ logn) or O(m

√
n logn).

D. König showed that χ′(G) = Δ(G) for every bipartite graph G [14,15], and
it is known that such an edge-coloring can be found in time O(m logΔ) [1].
Therefore, by Eq. (4) we have

χ′
ω(G) ≤ 1 + (Δ− 1)ωl

for every bipartite graph G, and such an ω-edge-coloring can be found in time
O(m logΔ). Since Δω(G) ≤ χ′

ω(G) by Eq. (2), such an ω-edge-coloring of a
bipartite graph G is optimal if

Δω(G) = 1 + (Δ− 1)ωl. (5)

A graph G satisfies Eq. (5) if and only if G has a vertex v such that d(v) = Δ
and ω(v) = ωl, and does for example if either G is a regular graph or ω(v) = 1
for every vertex v.

We then present another lower bound 1 + ωs(G) on χ′
ω(G). An odd cycle C

in G has an odd number of vertices. We define ωs(C) as follows:

ωs(C) = min{ω(u) + ω(v) | vertices u and v consecutively appear in C}.
We define ωs(G) as follows:

ωs(G) = max{ωs(C) | C is an odd cycle in G}
where ωs(G) is defined to be zero if G has no odd cycle. We often denote ωs(G)
simply by ωs. One can easily prove the following lemma for a lower bound on
χ′
ω(G).

Lemma 1. For every graph G

1 + max{ωl, ωs} ≤ χ′
ω(G).

We then show that if Δ(G) ≤ 2 then χ′
ω(G) is equal to the rather trivial lower

bound in Lemma 1 and an optimal ω-edge-coloring of G can be easily obtained.
One may assume that G is connected. Then G is a path or cycle. If G is a path
or an even cycle, then a coloring of G in which edges are colored alternately by 1
and 1+ωl is an optimal ω-edge coloring and hence χ′

ω(G) = 1+ωl. One may thus
assume that G is an odd cycle. Let the vertices v1, v2, ..., vn appear in G in this
order, where n (≥ 3) is an odd number. One may further assume that ωs(G) =
ω(v2) + ω(v3). Color the consecutive three edges e1 = (v1, v2), e2 = (v2, v3)
and e3 = (v3, v4) by 1, 1 + ω(v2) and 1 + max{ωl, ωs}, respectively, and color

36 Y. Obata and T. Nishizeki

the remaining n − 3 edges alternately by 1 and ωl. Then the resulting coloring
f of G is obviously an ω-edge-coloring of G, and span(f) = 1 + max{ωl, ωs}.
Since χ′

ω(G) ≥ 1 + max{ωl, ωs} by Lemma 2.1, f is optimal and χ′
ω(G) =

1 +max{ωl, ωs}.
We thus have the following theorem.

Theorem 1. If G is a graph with Δ(G) ≤ 2, then χ′
ω(G) = 1 + max{ωl, ωs}

and an optimal ω-edge-coloring of G can be found in linear time.

For two integers α and β, we denote by [α, β] the set of all integers z with
α ≤ z ≤ β. Let f be an ω-edge-coloring of a graph G. Let e = (u, v) be an edge
in G, let e′ be an edge adjacent to e, and let x be a vertex to which both e and
e′ are incident. Then x is u or v. Neither the consecutive ω(x) integers greater
than or equal to f(e′) nor those smaller than or equal to f(e′) can be assigned
to e. Therefore

f(e) /∈ B(e, e′, x)

where

B(e, e′, x) = [f(e′)− ω(x) + 1, f(e′) + ω(x) − 1].

Clearly |B(e, e′, x)| = 2ω(x)−1. G has d(u)−1 edges adjacent to e at end u and
d(v) − 1 edges adjacent to e at end v. Therefore, there are at most (d(u) − 1)
(2ω(u)− 1) + (d(v) − 1)(2ω(v)− 1) integers that cannot be assigned to e. This
number is called a bi-directional ω-edge-degree d2ω(e,G) of e, and hence

d2ω(e,G) = (d(u)− 1)(2ω(u)− 1) + (d(v)− 1)(2ω(v)− 1). (6)

The maximum bi-directional ω-edge-degree of edges in G is called the maximum
bi-directional edge-degree Δ′

2ω(G) of G. Then one can easily prove by induction
on the number m of edges that the following upper bound on χ′

ω(G) holds for
every graph G:

χ′
ω(G) ≤ Δ′

2ω(G) + 1.

For the graph G in Fig. 1, Δ′
2ω(G) = d2ω(e1) = 19.

Let f be an ω-edge-coloring of a graph G. Let e = (u, v), let e′ be adjacent
to e, and let x be a vertex to which both e and e′ are incident. Suppose that
f(e′) < f(e). Then

f(e) /∈ B1(e, e
′, x)

where
B1(e, e

′, x) = [f(e′), f(e′) + ω(x)− 1]

and
|B1(e, e

′, x)| = ω(x).

Therefore we have

f(e) /∈
(⋃

e′
B1(e, e

′, u)
)⋃(⋃

e′
B1(e, e

′, v)
)

(7)

Edge-Colorings of Weighted Graphs 37

where e′ runs over every edge such that e′ is adjacent to e and f(e′) < f(e). In
this sense we define the uni-directional ω-edge-degree d1ω(e) of an edge e = (u, v)
as follows:

d1ω(e) = (d(u)− 1)ω(u) + (d(v) − 1)ω(v). (8)

The maximum uni-directional ω-degree of edges in G is called the maximum
uni-directional ω-edge-degree Δ′

1ω(G) of G:

Δ′
1ω(G) = max

e∈E
d1ω(e).

Clearly Δ′
1ω(G) ≤ Δ′

2ω(G) for every graph G. For the graph G in Fig. 1,
Δ′

1ω(G) = d1ω(e1) = 12. We will show in Section 3 that the following upper
bound holds for every graph G:

χ′
ω(G) ≤ Δ′

1ω(G) + 1.

3 Algorithm Delta

In this section we present an algorithm Delta to find an ω-edge-coloring f of a
given graph G such that span(f) ≤ Δ′

1ω(G) + 1, and show that the approxima-
tion ratio of Delta is smaller than two.

For an ω-edge-coloring f of a graph G = (V,E), one may assume that

f(e1) ≤ f(e2) ≤ ... ≤ f(em) (9)

for some numbering e1, e2, ..., em of the edges in E. Let 2 ≤ i ≤ m, and let
ei = (u, v). We define Ei(u) as follows:

Ei(u) = {ej ∈ E(u) | 1 ≤ j < i}.

We similarly define Ei(v). Then Eq. (7) implies that

f(ei) ≥ max{ max
ej∈Ei(u)

(f(ej) + ω(u)), max
ej∈Ei(v)

(f(ej) + ω(v))}. (10)

Algorithm Delta finds a numbering e1, e2, ..., em satisfying Eq. (9) and deter-
mines f(e1), f(e2), ..., f(em) in this order so that f(e1) = 1 and Eq. (10) holds
in equality, that is,

f(ei) = max{ max
ej∈Ei(u)

(f(ej) + ω(u)), max
ej∈Ei(v)

(f(ej) + ω(v))}.

Delta is similar to the Dijkstra’s shortest path algorithm [2], and its details are
as follows, where P is the set of edges e for which f(e) have been decided.

38 Y. Obata and T. Nishizeki

Algorithm. Delta(G, f)

for every edge e ∈ E, let f(e) := 1; (initialization)
P:=∅;
for i1 until m do

{
let ei = (u, v) be an edge e ∈ E\P with minimum f(e);
P := P

⋃ {ei}; (f(ei) is decided)
for every edge e ∈ E(u)\P , let f(e) := max{f(e), f(ei) + ω(u)}; (update f(e))
for every edge e ∈ E(v)\P , let f(e) := max{f(e), f(ei) + ω(v)}; (update f(e))
}

end for

Clearly Delta correctly finds an ω-edge-coloring f of G. For the graph G in
Fig. 1, Delta finds the coloring f in Fig. 1 such that span(f) = 7 = Δω(G),
and hence f happens to be optimal. Delta decides f(e1), f(e2), ..., f(e7) in this
order for the edge-numbering e1, e2, ..., e7 depicted in Fig. 1.

We then prove that the coloring f obtained by Delta satisfies

span(f) ≤ Δ′
1ω(G) + 1.

Obviously f(e1) = 1 and span(f) = f(em). Let em = (u, v), and let j be any
integer in [1, span(f)− 1]. Since j is not assigned to em by f , either f(ei) ≤ j ≤
f(ei) + ω(u)− 1 for some edge ei ∈ Em(u) or f(ei) ≤ j ≤ f(ei) + ω(v) − 1 for
some edge ei ∈ Em(v). Therefore,

[1, span(f)− 1] ⊆
(

⋃

ei∈Em(u)

B1(em, ei, u)

)
⋃

(
⋃

ei∈Em(v)

B1(em, ei, v)

)

and hence

span(f)− 1 ≤ (d(u)− 1)ω(u) + (d(v) − 1)ω(v) = d1ω(em).

We have thus proved

span(f) ≤ d1ω(em) + 1 ≤ Δ′
1ω(G) + 1. (11)

From Eqs. (1), (2), (8) and (11) we have

span(f) ≤ d1ω(em) + 1

≤ dω(u) + dω(v) − 1

≤ 2Δω(G)− 1

≤ 2χ′
ω(G)− 1.

Thus Delta has an approximation ratio smaller than two.
Using a binary heap [2], one can implement Delta so that it takes time

O(mΔ logm), similarly as the Dijkstra’s shortest path algorithm.
We thus have the following theorem.

Edge-Colorings of Weighted Graphs 39

Theorem 2. For every graph G

χ′
ω(G) ≤ Δ′

1ω(G) + 1 ≤ 2Δω(G) − 1.

Algorithm Delta finds in time O(mΔ logm) an ω-edge-coloring of G such that
span(f) ≤ Δ′

1ω(G) + 1, and its approximation ratio is smaller than two.

4 Edge-Degenerated Graphs

It is known that a “k-degenerated graph” has a vertex-coloring with k+1 colors
[5]. In this section, we define a “k-edge-degenerated graph,” and present an
algorithm Degenerate to find an ω-edge-coloring f of a k-edge-degenerated
graph such that span(f) ≤ k + 1.

A graph G is called k-edge-degenerated for a non-negative integer k if G has
an edge-numbering e1, e2, ..., em such that d2ω(ei, Gi) ≤ k for every index i,
1 ≤ i ≤ m, where Gi is a subgraph of G induced by edges e1, e2, ..., ei.

Since G1 consists of a single edge e1, we have d2ω(e1, G1) = 0 ≤ k and hence
span(f) = 1 ≤ k + 1 for an ω-edge-coloring f of G1 such that f(e1) = 1.
This coloring f of G1 can be extended to an ω-edge-coloring f of G2 such that
span(f) ≤ k + 1. Repeating such an extention, Degenerate obtains an ω-edge-
coloring f of G = Gm such that span(f) ≤ k + 1.

We shall prove that an ω-edge-coloring f of Gi, i ≥ 1, with span(f) ≤ k + 1
can be extended to an ω-edge-coloring f of Gi+1 with span(f) ≤ k + 1. Let
ei+1 = (u, v), then an integer j ∈ [1, k + 1] can be chosen as f(ei+1) for the
extention if and only if

j /∈
(⋃

el

B(ei+1, el, u)
)⋃(⋃

el

B(ei+1, el, v)
)

(12)

where the unions are taken over all edges el of Gi+1 that are adjacent to ei+1,
and hence 1 ≤ l ≤ i. The cardinality of the set in the right hand side of Eq. (12)
is bounded above by

d2ω(ei+1, Gi+1) = (d(u,Gi+1)− 1)(2ω(u)− 1) + (d(v,Gi+1)− 1)(2ω(v)− 1),

and d2ω(ei+1, Gi+1) ≤ k since G is k-edge-degenerated. Therefore, there always
exists an integer j ∈ [1, k + 1] which can be chosen as f(ei+1), and hence f can
be extended to an ω-edge-coloring of Gi+1 with span(f) ≤ k + 1.

Algorithm Degenerate successively finds ω-edge-colorings of G1, G2, ...,
Gm(= G) in this order. Indeed it employs a simple greedy technique; when
extending an ω-edge-coloring of Gi to that of Gi+1, 1 ≤ i ≤ m− 1, Degenerate
always chooses, as f(ei+1), the smallest positive integer j satisfying Eq. (12).
For every edge el adjacent to ei+1 in Gi+1, let

B(ei+1, el, x) = [α(el, x), β(el, x)]

where x is u or v, α(el, x) = f(el)−ω(x)+1 and β(el, x) = f(el)+ω(x)−1. Sorting
the set {α(el, x) | x is u or v, el is adjacent to ei+1 in Gi+1 } of d(u,Gi+1) +

40 Y. Obata and T. Nishizeki

d(v,Gi+1)−2 integers, one can find the smallest integer j above in time O((d(u)+
d(v)) log(d(u) + d(v))). Thus Degenerate takes time O(mΔ logΔ).

The ω-edge-degeneracy kω(G) of a graph G is defined to be the minimum
integer k such that G is k-edge-degenerated. Then, similarly as the case of the
“vertex-degeneracy” [5], one can compute kω(G) as follows. Let Gm = G, and
let em be an edge e in Gm with minimum d2ω(e,Gm). Let Gm−1 be the graph
obtained from Gm by deleting em, and let em−1 be an edge e in Gm−1 with mini-
mum d2ω(e,Gm−1). Repeating the operation, one can obtain an edge-numbering
e1, e2, ..., em of G, and kω(G) = max1≤i≤m d2ω(ei, Gi).

Using a binary heap, one can compute kω(G) in time O(mΔ logm). Using a
Fibonacci heap [2], one can improve the time complexity to O(mΔ+m logm).

Clearly kω(G) ≤ Δ′
2ω(G). Let Δ′

2ω(G) = d2ω(e) for an edge e = (u, v), then
by Eqs. (1), (2) and (6) we have

Δ′
2ω(G) + 1 = (d(u)− 1)(2ω(u)− 1) + (d(v) − 1)(2ω(v)− 1) + 1

= 2(dω(u) + dω(v)) − d(u)− d(v)− 1

< 4Δω(G)

≤ 4χω(G).

We thus have the following theorem.

Theorem 3. Algorithm Degenerate finds in time O(mΔ logΔ) an ω-edge-
coloring f of a k-edge-degenerated graph G such that span(f) ≤ k + 1. When
k = kω(G), the approximation ratio of Degenerate is smaller than four.

5 Algorithm Factor

C. E. Shannon showed that every graph G can be edge-colored with at most
3Δ(G)/2 colors [13], and it is known that such a coloring can be found in time
O(m(n+Δ)) [9]. Therefore, by Eq. (4) we have

χ′
ω(G) ≤ 1 + (3Δ/2− 1)ωl

for every graphG, and an ω-edge-coloring f of G with span(f) ≤ 1+(3Δ/2−1)ωl

can be found in time O(m(n+Δ)). In this section we present an algorithmFactor
of time complexity O(m logΔ).

One may assume that a graph G = (V,E) is connected. Our third algorithm
Factor finds an ω-edge-coloring f of G as follows.
(Step 1)
Partition E into r(= �Δ/2) subsets Ei, 1 ≤ i ≤ r, so that the subgraph Gi of
G induced by Ei satisfies Δ(Gi) ≤ 2, and hence Gi consists of vertex-disjoint
paths and cycles. (Such a partition is called a factorization of G to subgraphs
Gi with Δ(Gi) ≤ 2.)
(Step 2)
Using the algorithm in Section 2, obtain an optimal ω-edge-coloring fi of Gi for
each index i, 1 ≤ i ≤ r.

Edge-Colorings of Weighted Graphs 41

(Step 3)
Obtain an ω-edge-coloring f of G by combining fi, 1 ≤ i ≤ r.

We now describe the details of these three steps.

[Step 1]
G contains an even number of vertices of odd degree. Join them pairwise by
dummy edges, and let G′ be the resulting Eulerian graph. (G′ may have multi-
ple edges even if G has no multiple edges.) Then the maximum degree Δ(G′) of
G′ is an even number. More precisely, Δ(G′) = 2r for an integer

r = �Δ(G)/2	. (13)

Let C be an Eulerian circuit of G′, which passes through every edge of G′ ex-
actly once. We then construct a bipartite graph B = (VB , EB) according to the
direction of edges in C. The left vertices of B are the vertices of G, and the
right vertices are their copies. All edges of B are copies of the edges of G. B has
an edge joining a left vertex u and a right vertex v if and only if the Eulerian
circuit C passes through an edge (u, v) of G from u to v. (A similar construction
of B has appeared in [6].) For every vertex v ∈ V , at most r edges emanate
from v in C and at most r edges enter to v. Therefore, Δ(B) ≤ r and hence B
has an ordinary edge-coloring with r colors. Let EB1 , EB2 , ..., EBr be the color
classes of the edge-coloring of B. Let E1, E2, ..., Er be the subsets of E which
correspond to EB1 , EB2 , ..., EBr , respectively. Then the subgraph Gi, 1 ≤ i ≤ f ,
of G induced by Ei satisfies Δ(Gi) ≤ 2 since EBi is a matching in B.

[Step 2]
By Theorem 1 one can find an optimal ω-edge-coloring fi : Ei → N of Gi in
linear time, and fi satisfies

span(fi) = 1 +max{ωl(Gi), ωs(Gi)} (14)

for every index i, 1 ≤ i ≤ r.

[Step 3]
When combining fi, 1 ≤ i ≤ r, to f , we shift up fi(e) uniformly for every edge
e ∈ Ei. More precisely, let

fi(e) := fi(e) + span(f1) + (ωl(G) − 1) + span(f2) + (ωl(G)− 1)

+ ...+ span(fi−1) + (ωl(G)− 1)

for each index i, 2 ≤ i ≤ r. Then, simply superimposing f1, f2, ..., fr, one can
obtain an ω-edge-coloring f of G; f(e) = fi(e) if e ∈ Ei.

We then evaluate span(f) for the coloring f obtained by Factor. Clearly

span(f) =

r∑
i=1

span(fi) + (r − 1)(ωl(G)− 1). (15)

42 Y. Obata and T. Nishizeki

Since ωs(G) ≤ 2ωl(G) and ωl(Gi) ≤ ωl(G) and ωs(Gi) ≤ ωs(G) for every index
i, 1 ≤ i ≤ r, by Eqs. (13), (14) and (15) we have

span(f) ≤ r(1 + max{ωl(G), ωs(G)}) + (r − 1)(ωl(G)− 1)

= 1 + r(ωl(G) + max{ωl(G), ωs(G)})− ωl(G)

≤ 1 + (3r − 1)ωl(G)

= 1 + (3�Δ(G)/2	 − 1)ωl(G). (16)

Assume now that G satisfies Eq. (5). Then, by Eqs. (5) and (16) we have

span(f) ≤
{
3Δω/2 + (ωl(G) − 1)/2 if Δ is even;
3Δω/2 + 2ωl(G) − 1/2 otherwise.

(17)

Since Δω ≤ χ′
ω by Eq. (2), the approximation ratio of Factor is near to 3/2.

Especially when Δ is even, one may assume that Δ ≥ 4, and hence by Eqs. (5)
and (17) we have

span(f) ≤ (5Δω − 2)/3 < 5χ′
ω/3

and hence the approximation ratio is smaller than 5/3.
The most time-consuming part of Factor is Step 1, in which one must find

an ordinary edge-coloring of a bipartite graph B = (VB , EB) with Δ(B) colors.
The coloring can be found in time O(|EB| logΔ(B)) [1]. Since |EB| = m and
Δ(B) ≤ r = �Δ(G)/2	, Factor takes time O(m logΔ).

We thus have the following theorem.

Theorem 4. For every graph G, algorithm Factor finds in time O(m logΔ)
an ω-edge-coloring f of G such that span(f) ≤ 1 + (3�Δ/2	 − 1)ωl. If Δω(G) =
1 + (Δ− 1)ωl, then

span(f) ≤
{
3Δω/2 + (ωl − 1)/2 if Δ is even;
3Δω/2 + 2ωl − 1/2 otherwise.

If Δω(G) = 1+(Δ−1)ωl and Δ is even, then the approximation ratio is smaller
than 5/3.

References

1. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD)
time. Combinatorica 21(1), 5–12 (2001)

2. Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press and McGraw Hill, Cambridge (2001)

3. Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edge-
coloring graphs, Tech. Rept. TRECIS 41-85, Tohoku Univ. (1985)

4. Holyer, I.J.: The NP-completeness of edge coloring. SIAM J. on Computing 10,
718–721 (1981)

5. Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, New York
(1995)

Edge-Colorings of Weighted Graphs 43

6. Karloff, H., Shmoys, D.B.: Efficient parallel algorithms for edge-coloring problems.
J. of Algorithms 8(1), 39–52 (1987)

7. McDiamid, C.: On the span in channel assignment problems: bounds, computing
and counting. Discrete Math 266, 387–397 (2003)

8. McDiamid, C., Reed, B.: Channel assignment on graphs of bounded treewidth.
Discrete Math 273, 183–192 (2003)

9. Nakano, S., Nishizeki, T.: Edge-coloring problems for graphs. Interdisciplinary In-
formation Sciences 1(1), 19–32 (1994)

10. Nishikawa, K., Nishizeki, T., Zhou, X.: Bandwidth consecutive multicolorings of
graphs. Theoretical Computer Science 532, 64–72 (2014)

11. Obata, Y., Nishizeki, T.: Approximation Algorithms for Bandwidth Consecutive
Multicolorings. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS,
vol. 8497, pp. 194–204. Springer, Heidelberg (2014)

12. Pinedo, M.L.: Scheduling: Theory. Springer Science, New York (2008)
13. Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Physics 28,

148–151 (1949)
14. Stiebitz, M., Scheide, D., Toft, B., Favrholdt, L.M.: Graph Edge Coloring. Wiley,

Hoboken (2012)
15. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)

	Edge-Colorings of Weighted Graphs
	1 Introduction
	2 Preliminaries
	3 Algorithm Delta
	4 Edge-Degenerated Graphs
	5 Algorithm Factor
	References

