Edge-Colorings of Weighted Graphs (Extended Abstract)

Yuji Obata and Takao Nishizeki

Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan {bnb86950,nishi}@kwansei.ac.jp

Abstract. Let G be a graph with a positive integer weight $\omega(v)$ for each vertex v. One wishes to assign each edge e of G a positive integer $f(e)$ as a color so that $\omega(v) \leq |f(e) - f(e')|$ for any vertex v and any two edges e and e' incident to v. Such an assignment f is called an ω -edge-coloring of G, and the maximum integer assigned to edges is called the span of f. The ω -chromatic index of G is the minimum span over all ω -edgecolorings of G. In the paper, we present various upper and lower bounds on the ω -chromatic index, and obtain three efficient algorithms to find an ω -edge-coloring of a given graph. One of them finds an ω -edge-coloring with span smaller than twice the ω -chromatic index.

1 Introduction

An ordinary *edge-coloring* of a graph G assigns different colors to any two adjacent edges. The paper extends the concept to an edge-coloring of a weighted graph.

Let $G = (V, E)$ be a graph with a positive integer weight $\omega(v) \in \mathbb{N}$ for each vertex $v \in V$, where N is the set of all positive integers. Indeed G may be a multigraph. Figure 1 illustrates such a graph G , in which each vertex v is drawn as a circle and the weight $\omega(v)$ is written in it. One wishes to assign each edge $e \in E$ a positive integer $f(e)$ as a color so that $\omega(v) \leq |f(e) - f(e')|$ for any vertex $v \in V$ and any two edges e and e' incident to v. Such a function $f: E \to \mathbb{N}$ is called an *edge-coloring of a graph G with a weight function* ω or simply an ω -edge-coloring of G. An ω -edge-coloring f of a graph G is illustrated in Fig. 1, where $f(e)$ is attached to each edge e.

The *span* span(f) of an ω -edge-coloring f of a graph G is the maximum integer assigned to edges by f, that is, $\text{span}(f) = \max_{e \in E} f(e)$. An ω -edge-coloring f of G is called *optimal* if span(f) is minimum among all ω -edge-colorings of G. The ω -edge-coloring in Fig. 1 is optimal, a[nd](#page-10-0) its span is 7. The span of an optimal ω -edge-coloring of a graph G is called the ω -*chromatic index* $\chi'_{\omega}(G)$ of G. The ω*-edge-coloring problem* is to find an optimal ω-edge-coloring of a given graph.

An ω -edge-coloring often appears in a task scheduling problem [12]. Each vertex v of a graph G represents a processor, while each edge $e = (u, v)$ of G represents a task, which can be executed within a unit time with the cooperation of the two processors represented by vertices u and v. Each processor v needs an

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 32–43, 2015.

c Springer International Publishing Switzerland 2015

Fig. 1. An optimal ω -edge-coloring f of a graph G

idle time $\omega(v)$ between any two tasks executed by v. Then an optimal ω -edgecoloring of G corresponds to a scheduling with the minimum makespan.

If $\omega(v) = 1$ for every vertex v of a graph G, then an ω -edge-coloring of G is merely an ordinary edge-coloring of G and the ω -chromatic index $\chi_{\omega}'(G)$ of G is equal to the ordinary chromatic index $\chi'(G)$ of G. Since an ordinary edgecoloring problem is NP-complete [4], the ω -edge-coloring problem is strongly NP-complete and does not look to be solved in polynomial time or in pseudo polynomial time. So it is desired to obtain an efficient approximation algorithm for the ω -edge-coloring problem.

In this paper we present various upper and lower bounds on the ω -chromatic index, and obtain three efficient approximation algorithms for the ω -edge-coloring problem. The first algorithm **Delta** finds an ω -edge-coloring f of a given graph G such that $\text{span}(f) \leq \Delta'_{1\omega}(G) + 1$, where $\Delta'_{1\omega}(G)$ is the maximum "unidirectional ^ω-edge-degree" of ^G. The second algorithm **Degenerate** finds an ω -edge-coloring f such that span $(f) \leq k+1$ for any "k-edge-degenerated graph." **Delta** and **Degenerate** have approximation ratios smaller than two and four, respectively. We also show that an optimal ω -edge-coloring can be easily obtained for a graph G with the maximum degree $\Delta(G)$ at most two. The third algorithm **Factor** first decomposes a given graph G into several subgraphs $G_1, G_2, ..., G_r$, each having the maximum degree at most two, then finds optimal ω -edgecolorings of $G_1, G_2, ..., G_r$, and finally combines them to an ω -edge-coloring of ^G. The approximation ratio of **Factor** is near to 3/2 for many graphs.

2 Preliminaries

In this section, we define several terms, present simple lower and upper bounds on the ω -chromatic index, and show that an optimal ω -edge-coloring of a graph G can be easily obtained if $\Delta(G) \leq 2$.

We denote by $G = (V, E)$ a graph with vertex set V and edge set E. G is a so-called *multigraph*, which has no selfloops but may have multiple edges. We denote by (u, v) an edge joining vertices u and v. Let $n = |V|$ and $m = |E|$ throughout the paper. One may assume that G has no isolated vertex and hence $m > n/2$. Let $\omega : V \to \mathbb{N}$ be a *weight function* of G.

We denote by $E(v)$ the set of all edges incident to a vertex v in a graph $G = (V, E)$. The *degree* of a vertex v is $|E(v)|$ and is denoted by $d(v, G)$ or simply d(v). The maximum degree of vertices in G is called the *maximum degree* of G, and denoted by $\Delta(G)$ or simply Δ . Every ω -edge-coloring f of G satisfies

$$
1 + (d(v) - 1)\omega(v) \le \max_{e \in E(v)} f(e)
$$

for every vertex v. We thus define the ω -degree $d_{\omega}(v)$ of a vertex v as follows:

$$
d_{\omega}(v) = 1 + (d(v) - 1)\omega(v).
$$
 (1)

The maximum ω -degree of vertices in G is called the *maximum* ω -degree $\Delta_{\omega}(G)$ of G. It should be noted that $\Delta_{\omega}(G) = \Delta(G)$ if $\omega(v) = 1$ for every vertex v. Clearly $\Delta_{\omega}(G) \leq \text{span}(f)$ for every ω -edge-coloring f of G. Therefore, the following lower bound holds for the ω -chromatic index $\chi'_{\omega}(G)$:

$$
\Delta_{\omega}(G) \le \chi_{\omega}'(G). \tag{2}
$$

The graph G in Fig. 1 satisfies $\Delta_{\omega}(G) = d_{\omega}(v_1) = 7$, the ω -edge-coloring f in Fig. 1 has span 7, and hence f is optimal. In Section 3 we will present an upper bound: $\chi_{\omega}'(G) \leq 2\Delta_{\omega}(G) - 1$ for every graph G.

Since the weight of a vertex of degree 1 is meaningless, we define the *largest weight* $\omega_l(G)$ of a graph G as follows:

$$
\omega_l(G) = \max\{\omega(v) \mid v \in V, d(v) \ge 2\}
$$

where $\omega_l(G)$ is defined to be zero if $\Delta(G) = 1$. Since $1 + \omega_l(G) \leq \Delta_{\omega}(G)$, Eq. (2) implies the following lower bound:

$$
1 + \omega_l(G) \le \chi'_\omega(G) \tag{3}
$$

We often denote $\omega_l(G)$ simply by ω_l .

Suppose that a graph G is ordinarily edge-colored by colors 1, 2, ..., c , where $c \geq \chi'(G)$. Replace colors 1, 2, ..., c by 1, 1 + ω_l , ..., 1 + $(c-1)\omega_l$, respectively. Then the resulting coloring is an ω -edge-coloring of G. Thus we have an upper bound:

$$
\chi_{\omega}'(G) \le 1 + (\chi'(G) - 1)\omega_l \tag{4}
$$

for every graph G .

V. G. Vizing showed that $\chi'(G) \leq \Delta(G) + 1$ for every *simple* graph G, which has no multiple edges [14,15]; and it is known that such an edge-coloring of G can be found in time $O(mn)$, $O(m\Delta \log n)$ or $O(m\sqrt{n \log n})$ [3]. Therefore, by Eq. (4) we have

$$
\chi_{\omega}'(G) \le 1 + \Delta \omega_l
$$

for every simple graph G, and such an ω -edge-coloring can be found in time $O(mn)$, $O(m\Delta \log n)$ or $O(m\sqrt{n \log n})$.

D. König showed that $\chi'(G) = \Delta(G)$ for every bipartite graph G [14,15], and it is known that such an edge-coloring can be found in time $O(m \log \Delta)$ [1]. Therefore, by Eq. (4) we have

$$
\chi_{\omega}'(G) \le 1 + (\Delta - 1)\omega_l
$$

for every bipartite graph G , and such an ω -edge-coloring can be found in time $O(m \log \Delta)$. Since $\Delta_{\omega}(G) \leq \chi_{\omega}'(G)$ by Eq. (2), such an ω -edge-coloring of a bipartite graph G is optimal if

$$
\Delta_{\omega}(G) = 1 + (\Delta - 1)\omega_l. \tag{5}
$$

A graph G satisfies Eq. (5) if and only if G has a vertex v such that $d(v) = \Delta$ and $\omega(v) = \omega_l$, and does for example if either G is a regular graph or $\omega(v)=1$ for every vertex v .

We then present another lower bound $1 + \omega_s(G)$ on $\chi'_{\omega}(G)$. An *odd cycle* C in G has an odd number of vertices. We define $\omega_s(C)$ as follows:

 $\omega_s(C) = \min{\omega(u) + \omega(v)}$ vertices u and v consecutively appear in C.

We define $\omega_s(G)$ as follows:

$$
\omega_s(G) = \max\{\omega_s(C) \mid C \text{ is an odd cycle in } G\}
$$

where $\omega_s(G)$ is defined to be zero if G has no odd cycle. We often denote $\omega_s(G)$ simply by ω_s . One can easily prove the following lemma for a lower bound on $\chi_{\omega}'(G)$.

Lemma 1. *For every graph* ^G

$$
1 + \max\{\omega_l, \omega_s\} \le \chi'_\omega(G).
$$

We then show that if $\Delta(G) \leq 2$ then $\chi_{\omega}(G)$ is equal to the rather trivial lower bound in Lemma 1 and an optimal ω -edge-coloring of G can be easily obtained. One may assume that G is connected. Then G is a path or cycle. If G is a path or an even cycle, then a coloring of G in which edges are colored alternately by 1 and $1+\omega_l$ is an optimal ω -edge coloring and hence $\chi'_\omega(G) = 1+\omega_l$. One may thus assume that G is an odd cycle. Let the vertices $v_1, v_2, ..., v_n$ appear in G in this order, where $n \geq 3$ is an odd number. One may further assume that $\omega_s(G)$ $\omega(v_2) + \omega(v_3)$. Color the consecutive three edges $e_1 = (v_1, v_2), e_2 = (v_2, v_3)$ and $e_3 = (v_3, v_4)$ by 1, $1 + \omega(v_2)$ and $1 + \max\{\omega_l, \omega_s\}$, respectively, and color the remaining $n-3$ edges alternately by 1 and ω_l . Then the resulting coloring f of G is obviously an ω -edge-coloring of G, and span $(f) = 1 + \max{\{\omega_l, \omega_s\}}$. Since $\chi'_{\omega}(G) \geq 1 + \max{\omega_l, \omega_s}$ by Lemma 2.1, f is optimal and $\chi'_{\omega}(G)$ = $1 + \max{\{\omega_l, \omega_s\}}$.

We thus have the following theorem.

Theorem 1. *If* G *is a graph with* $\Delta(G) \leq 2$, *then* $\chi'_{\omega}(G) = 1 + \max\{\omega_i, \omega_s\}$
and an optimal ω -edge-coloring of G can be found in linear time *and an optimal* ω*-edge-coloring of* G *can be found in linear time.*

For two integers α and β , we denote by $[\alpha, \beta]$ the set of all integers z with $\alpha \leq z \leq \beta$. Let f be an ω -edge-coloring of a graph G. Let $e = (u, v)$ be an edge in G , let e' be an edge adjacent to e , and let x be a vertex to which both e and e' are incident. Then x is u or v. Neither the consecutive $\omega(x)$ integers greater than or equal to $f(e')$ nor those smaller than or equal to $f(e')$ can be assigned to e. Therefore

$$
f(e) \notin B(e, e', x)
$$

where

$$
B(e, e', x) = [f(e') - \omega(x) + 1, f(e') + \omega(x) - 1].
$$

Clearly $|B(e, e', x)| = 2\omega(x) - 1$. G has $d(u) - 1$ edges adjacent to e at end u and $d(v) - 1$ edges adjacent to e at end v. Therefore, there are at most $(d(u) - 1)$ $(2\omega(u) - 1) + (d(v) - 1)(2\omega(v) - 1)$ integers that cannot be assigned to e. This number is called a *bi-directional* ω -edge-degree $d_{2\omega}(e, G)$ of e, and hence

$$
d_{2\omega}(e, G) = (d(u) - 1)(2\omega(u) - 1) + (d(v) - 1)(2\omega(v) - 1).
$$
 (6)

The maximum bi-directional ω -edge-degree of edges in G is called the *maximum* $bi\text{-}directional\ edge\text{-}degree\ \Delta'_{2\omega}(G)$ of G. Then one can easily prove by induction on the number m of edges that the following upper bound on $\chi'_{\omega}(G)$ holds for every graph G:

$$
\chi_{\omega}'(G) \le \Delta_{2\omega}'(G) + 1.
$$

For the graph G in Fig. 1, $\Delta'_{2\omega}(G) = d_{2\omega}(e_1) = 19$.

Let f be an ω -edge-coloring of a graph G. Let $e = (u, v)$, let e' be adjacent to e , and let x be a vertex to which both e and e' are incident. Suppose that $f(e') < f(e)$. Then

$$
f(e) \notin B_1(e,e',x)
$$

where

$$
B_1(e, e', x) = [f(e'), f(e') + \omega(x) - 1]
$$

and

$$
|B_1(e, e', x)| = \omega(x).
$$

Therefore we have

$$
f(e) \notin \left(\bigcup_{e'} B_1(e, e', u)\right) \bigcup \left(\bigcup_{e'} B_1(e, e', v)\right) \tag{7}
$$

where e' runs over every edge such that e' is adjacent to e and $f(e') < f(e)$. In this sense we define the *uni-directional* ω -edge-degree $d_{1\omega}(e)$ of an edge $e = (u, v)$ as follows:

$$
d_{1\omega}(e) = (d(u) - 1)\omega(u) + (d(v) - 1)\omega(v).
$$
 (8)

The maximum uni-directional ω -degree of edges in G is called the *maximum* $uni\text{-}directional$ $\omega\text{-}edge\text{-}degree$ $\Delta'_{1\omega}(G)$ of G :

$$
\Delta'_{1\omega}(G) = \max_{e \in E} d_{1\omega}(e).
$$

Clearly $\Delta'_{1\omega}(G) \leq \Delta'_{2\omega}(G)$ for every graph G. For the graph G in Fig. 1, $\Delta'_{1\omega}(G) = d_{1\omega}(e_1) = 12$. We will show in Section 3 that the following upper bound holds for every graph G:

$$
\chi_{\omega}'(G) \le \Delta'_{1\omega}(G) + 1.
$$

3 Algorithm Delta

In this section we present an algorithm **Delta** to find an ω -edge-coloring f of a given graph G such that $\text{span}(f) \leq \Delta'_{1\omega}(G) + 1$, and show that the approximation ratio of **Delta** is smaller than two.

For an ω -edge-coloring f of a graph $G = (V, E)$, one may assume that

$$
f(e_1) \le f(e_2) \le \dots \le f(e_m) \tag{9}
$$

for some numbering $e_1, e_2, ..., e_m$ of the edges in E. Let $2 \leq i \leq m$, and let $e_i = (u, v)$. We define $E_i(u)$ as follows:

$$
E_i(u) = \{e_j \in E(u) \mid 1 \le j < i\}.
$$

We similarly define $E_i(v)$. Then Eq. (7) implies that

$$
f(e_i) \ge \max\{\max_{e_j \in E_i(u)} (f(e_j) + \omega(u)), \max_{e_j \in E_i(v)} (f(e_j) + \omega(v))\}.
$$
 (10)

Algorithm **Delta** finds a numbering $e_1, e_2, ..., e_m$ satisfying Eq. (9) and determines $f(e_1), f(e_2), ..., f(e_m)$ in this order so that $f(e_1) = 1$ and Eq. (10) holds in equality, that is,

$$
f(e_i) = \max\{\max_{e_j \in E_i(u)} (f(e_j) + \omega(u)), \max_{e_j \in E_i(v)} (f(e_j) + \omega(v))\}.
$$

Delta is similar to the Dijkstra's shortest path algorithm [2], and its details are as follows, where P is the set of edges e for which $f(e)$ have been decided.

Algorithm. Delta (G, f)

for every edge $e \in E$, let $f(e) := 1$; (initialization) *P*:=∅; **for** i1 **until** m **do** { let $e_i = (u, v)$ be an edge $e \in E \backslash P$ with minimum $f(e)$; $P := P \cup \{e_i\}; (f(e_i) \text{ is decided})$ for every edge $e \in E(u) \backslash P$, let $f(e) := \max\{f(e), f(e_i) + \omega(u)\}\$; (update $f(e)$) for every edge $e \in E(v) \backslash P$, let $f(e) := \max\{f(e), f(e_i) + \omega(v)\}\;$ (update $f(e)$) } **end for**

Clearly **Delta** correctly finds an ω -edge-coloring f of G. For the graph G in Fig. 1, **Delta** finds the coloring f in Fig. 1 such that $\text{span}(f)=7=\Delta_{\omega}(G)$, and hence f happens to be optimal. **Delta** decides $f(e_1)$, $f(e_2)$, ..., $f(e_7)$ in this order for the edge-numbering $e_1, e_2, ..., e_7$ depicted in Fig. 1.

We then prove that the coloring f obtained by **Delta** satisfies

$$
\mathrm{span}(f) \le \Delta'_{1\omega}(G) + 1.
$$

Obviously $f(e_1) = 1$ and $\text{span}(f) = f(e_m)$. Let $e_m = (u, v)$, and let j be any integer in [1, span(f) – 1]. Since j is not assigned to e_m by f, either $f(e_i) \leq j \leq$ $f(e_i) + \omega(u) - 1$ for some edge $e_i \in E_m(u)$ or $f(e_i) \leq j \leq f(e_i) + \omega(v) - 1$ for some edge $e_i \in E_m(v)$. Therefore,

$$
[1, \operatorname{span}(f) - 1] \subseteq \left(\bigcup_{e_i \in E_m(u)} B_1(e_m, e_i, u)\right) \bigcup \left(\bigcup_{e_i \in E_m(v)} B_1(e_m, e_i, v)\right)
$$

and hence

$$
span(f) - 1 \le (d(u) - 1)\omega(u) + (d(v) - 1)\omega(v) = d_{1\omega}(e_m).
$$

We have thus proved

$$
\text{span}(f) \le d_{1\omega}(e_m) + 1 \le \Delta'_{1\omega}(G) + 1. \tag{11}
$$

From Eqs. $(1), (2), (8)$ and (11) we have

$$
\operatorname{span}(f) \le d_{1\omega}(e_m) + 1
$$

\n
$$
\le d_{\omega}(u) + d_{\omega}(v) - 1
$$

\n
$$
\le 2\Delta_{\omega}(G) - 1
$$

\n
$$
\le 2\chi_{\omega}'(G) - 1.
$$

Thus **Delta** has an approximation ratio smaller than two.

Using a binary heap [2], one can implement **Delta** so that it takes time $O(m\Delta \log m)$, similarly as the Dijkstra's shortest path algorithm.

We thus have the following theorem.

Theorem 2. *For every graph* ^G

$$
\chi_{\omega}'(G) \le \Delta'_{1\omega}(G) + 1 \le 2\Delta_{\omega}(G) - 1.
$$

Algorithm Delta finds in time O(mΔ log ^m) *an* ^ω*-edge-coloring of* ^G *such that* $\text{span}(f) \leq \Delta'_{1\omega}(G) + 1$, and its approximation ratio is smaller than two.

4 Edge-Degenerated Graphs

It is known that a "k-degenerated graph" has a vertex-coloring with $k+1$ colors [5]. In this section, we define a "k-edge-degenerated graph," and present an algorithm **Degenerate** to find an ω -edge-coloring f of a k-edge-degenerated graph such that $\text{span}(f) \leq k+1$.

A graph G is called k*-edge-degenerated* for a non-negative integer k if G has an edge-numbering $e_1, e_2, ..., e_m$ such that $d_{2\omega}(e_i, G_i) \leq k$ for every index i, $1 \leq i \leq m$, where G_i is a subgraph of G induced by edges $e_1, e_2, ..., e_i$.

Since G_1 consists of a single edge e_1 , we have $d_{2\omega}(e_1, G_1)=0 \leq k$ and hence $\text{span}(f)=1 \leq k + 1$ for an ω -edge-coloring f of G_1 such that $f(e_1) = 1$. This coloring f of G_1 can be extended to an ω -edge-coloring f of G_2 such that span(f) $\leq k+1$. Repeating such an extention, **Degenerate** obtains an ω -edgecoloring f of $G = G_m$ such that $\text{span}(f) \leq k+1$.

We shall prove that an ω -edge-coloring f of G_i , $i \geq 1$, with span $(f) \leq k+1$ can be extended to an ω -edge-coloring f of G_{i+1} with span $(f) \leq k+1$. Let $e_{i+1} = (u, v)$, then an integer $j \in [1, k+1]$ can be chosen as $f(e_{i+1})$ for the extention if and only if

$$
j \notin \left(\bigcup_{e_l} B(e_{i+1}, e_l, u)\right) \bigcup \left(\bigcup_{e_l} B(e_{i+1}, e_l, v)\right) \tag{12}
$$

where the unions are taken over all edges e_l of G_{i+1} that are adjacent to e_{i+1} , and hence $1 \leq l \leq i$. The cardinality of the set in the right hand side of Eq. (12) is bounded above by

$$
d_{2\omega}(e_{i+1},G_{i+1})=(d(u,G_{i+1})-1)(2\omega(u)-1)+(d(v,G_{i+1})-1)(2\omega(v)-1),
$$

and $d_{2\omega}(e_{i+1}, G_{i+1}) \leq k$ since G is k-edge-degenerated. Therefore, there always exists an integer $j \in [1, k+1]$ which can be chosen as $f(e_{i+1})$, and hence f can be extended to an ω -edge-coloring of G_{i+1} with $\text{span}(f) \leq k+1$.

Algorithm **Degenerate** successively finds ω -edge-colorings of G_1 , G_2 , ..., $G_m(= G)$ in this order. Indeed it employs a simple greedy technique; when extending an ω -edge-coloring of G_i to that of G_{i+1} , $1 \leq i \leq m-1$, **Degenerate** always chooses, as $f(e_{i+1})$, the *smallest* positive integer j satisfying Eq. (12). For every edge e_l adjacent to e_{i+1} in G_{i+1} , let

$$
B(e_{i+1},e_l,x) = [\alpha(e_l,x), \beta(e_l,x)]
$$

where x is u or v, $\alpha(e_l, x) = f(e_l) - \omega(x) + 1$ and $\beta(e_l, x) = f(e_l) + \omega(x) - 1$. Sorting the set $\{\alpha(e_l, x) \mid x \text{ is } u \text{ or } v, e_l \text{ is adjacent to } e_{i+1} \text{ in } G_{i+1} \}$ of $d(u, G_{i+1})$ +

 $d(v, G_{i+1})-2$ integers, one can find the smallest integer j above in time $O((d(u))$ $d(v)$) log($d(u) + d(v)$)). Thus **Degenerate** takes time $O(m\Delta \log \Delta)$.

The ω -edge-degeneracy $k_{\omega}(G)$ of a graph G is defined to be the minimum integer k such that G is k-edge-degenerated. Then, similarly as the case of the "vertex-degeneracy" [5], one can compute $k_{\omega}(G)$ as follows. Let $G_m = G$, and let e_m be an edge e in G_m with minimum $d_{2\omega}(e, G_m)$. Let G_{m-1} be the graph obtained from G_m by deleting e_m , and let e_{m-1} be an edge e in G_{m-1} with minimum $d_{2\omega}(e, G_{m-1})$. Repeating the operation, one can obtain an edge-numbering $e_1, e_2, ..., e_m$ of G, and $k_{\omega}(G) = \max_{1 \leq i \leq m} d_{2\omega}(e_i, G_i)$.

Using a binary heap, one can compute $k_{\omega}(G)$ in time $O(m\Delta \log m)$. Using a Fibonacci heap [2], one can improve the time complexity to $O(m\Delta + m \log m)$.

Clearly $k_{\omega}(G) \leq \Delta'_{2\omega}(G)$. Let $\Delta'_{2\omega}(G) = d_{2\omega}(e)$ for an edge $e = (u, v)$, then by Eqs. (1) , (2) and (6) we have

$$
\Delta'_{2\omega}(G) + 1 = (d(u) - 1)(2\omega(u) - 1) + (d(v) - 1)(2\omega(v) - 1) + 1
$$

= 2(d_{\omega}(u) + d_{\omega}(v)) - d(u) - d(v) - 1
< 4\Delta_{\omega}(G)
 $\leq 4\chi_{\omega}(G).$

We thus have the following theorem.

Theorem 3. *Algorithm Degenerate finds in time* $O(m\Delta \log \Delta)$ *an* ω -edge*coloring* f *of a* k-edge-degenerated graph G such that $\text{span}(f) \leq k+1$. When $k = k_{\omega}(G)$, the approximation ratio of **Degenerate** is smaller than four.

5 Algorithm Factor

C. E. Shannon showed that every graph G can be edge-colored with at most $3\Delta(G)/2$ colors [13], and it is known that such a coloring can be found in time $O(m(n + \Delta))$ [9]. Therefore, by Eq. (4) we have

$$
\chi_{\omega}'(G)\leq 1+(3\varDelta/2-1)\omega_l
$$

for every graph G, and an ω -edge-coloring f of G with span $(f) \leq 1+(3\Delta/2-1)\omega_l$ can be found in time $O(m(n+\Delta))$. In this section we present an algorithm **Factor** of time complexity $O(m \log \Delta)$.

One may assume that a graph $G = (V, E)$ is connected. Our third algorithm **Factor** finds an ω -edge-coloring f of G as follows.
(**Step 1**)

Partition E into $r(=\lceil \Delta/2 \rceil)$ subsets E_i , $1 \leq i \leq r$, so that the subgraph G_i of G induced by E_i satisfies $\Delta(G_i) \leq 2$, and hence G_i consists of vertex-disjoint paths and cycles. (Such a partition is called a *factorization* of G to subgraphs G_i with $\Delta(G_i) \leq 2$.)
(Step 2)

Using the algorithm in Section 2, obtain an optimal ω -edge-coloring f_i of G_i for each index $i, 1 \leq i \leq r$.

$(Step 3)$

Obtain an ω -edge-coloring f of G by combining f_i , $1 \leq i \leq r$.

We now describe the details of these three steps.

[Step 1]

G contains an even number of vertices of odd degree. Join them pairwise by dummy edges, and let G' be the resulting Eulerian graph. $(G'$ may have multiple edges even if G has no multiple edges.) Then the maximum degree $\Delta(G')$ of G' is an even number. More precisely, $\Delta(G') = 2r$ for an integer

$$
r = \lceil \Delta(G)/2 \rceil. \tag{13}
$$

Let C be an Eulerian circuit of G' , which passes through every edge of G' exactly once. We then construct a bipartite graph $B = (V_B, E_B)$ according to the direction of edges in C . The left vertices of B are the vertices of G , and the right vertices are their copies. All edges of B are copies of the edges of G . B has an edge joining a left vertex u and a right vertex v if and only if the Eulerian circuit C passes through an edge (u, v) of G from u to v. (A similar construction of B has appeared in [6].) For every vertex $v \in V$, at most r edges emanate from v in C and at most r edges enter to v. Therefore, $\Delta(B) \leq r$ and hence B has an ordinary edge-coloring with r colors. Let $E_{B_1}, E_{B_2}, ..., E_{B_r}$ be the color classes of the edge-coloring of B. Let $E_1, E_2, ..., E_r$ be the subsets of E which correspond to $E_{B_1}, E_{B_2},..., E_{B_r}$, respectively. Then the subgraph G_i , $1 \leq i \leq f$, of G induced by E_i satisfies $\Delta(G_i) \leq 2$ since E_{B_i} is a matching in B.

[Step 2]

By Theorem 1 one can find an optimal ω -edge-coloring $f_i : E_i \to \mathbb{N}$ of G_i in linear time, and f_i satisfies

$$
\text{span}(f_i) = 1 + \max\{\omega_l(G_i), \omega_s(G_i)\}\tag{14}
$$

for every index $i, 1 \leq i \leq r$.

[Step 3]

When combining f_i , $1 \leq i \leq r$, to f, we shift up $f_i(e)$ uniformly for every edge $e \in E_i$. More precisely, let

$$
f_i(e) := f_i(e) + \text{span}(f_1) + (\omega_i(G) - 1) + \text{span}(f_2) + (\omega_i(G) - 1) + \dots + \text{span}(f_{i-1}) + (\omega_i(G) - 1)
$$

for each index $i, 2 \leq i \leq r$. Then, simply superimposing $f_1, f_2, ..., f_r$, one can obtain an ω -edge-coloring f of G; $f(e) = f_i(e)$ if $e \in E_i$.

We then evaluate $\text{span}(f)$ for the coloring f obtained by **Factor**. Clearly

$$
span(f) = \sum_{i=1}^{r} span(f_i) + (r-1)(\omega_l(G) - 1).
$$
 (15)

Since $\omega_s(G) \leq 2\omega_l(G)$ and $\omega_l(G_i) \leq \omega_l(G)$ and $\omega_s(G_i) \leq \omega_s(G)$ for every index i, $1 \le i \le r$, by Eqs. (13), (14) and (15) we have

$$
\text{span}(f) \le r(1 + \max\{\omega_l(G), \omega_s(G)\}) + (r - 1)(\omega_l(G) - 1) \n= 1 + r(\omega_l(G) + \max\{\omega_l(G), \omega_s(G)\}) - \omega_l(G) \n\le 1 + (3r - 1)\omega_l(G) \n= 1 + (3\lceil\Delta(G)/2\rceil - 1)\omega_l(G).
$$
\n(16)

Assume now that G satisfies Eq. (5) . Then, by Eqs. (5) and (16) we have

$$
\text{span}(f) \le \begin{cases} 3\Delta_{\omega}/2 + (\omega_l(G) - 1)/2 & \text{if } \Delta \text{ is even;}\\ 3\Delta_{\omega}/2 + 2\omega_l(G) - 1/2 & \text{otherwise.} \end{cases} \tag{17}
$$

Since $\Delta_{\omega} \leq \chi'_{\omega}$ by Eq. (2), the approximation ratio of **Factor** is near to 3/2.
Especially when Λ is even one may assume that $\Lambda > 4$ and hence by Eqs. (5) Especially when Δ is even, one may assume that $\Delta \geq 4$, and hence by Eqs. (5) and (17) we have

$$
\mathrm{span}(f) \leq (5\Delta_\omega - 2)/3 < 5\chi_\omega'/3
$$

and hence the approximation ratio is smaller than 5/3.

The most time-consuming part of **Factor** is Step 1, in which one must find an ordinary edge-coloring of a bipartite graph $B = (V_B, E_B)$ with $\Delta(B)$ colors. The coloring can be found in time $O(|E_B| \log \Delta(B))$ [1]. Since $|E_B| = m$ and $\Delta(B) \le r = [\Delta(G)/2]$, **Factor** takes time $O(m \log \Delta)$.

We thus have the following theorem.

Theorem 4. For every graph G, algorithm **Factor** finds in time $O(m \log \Delta)$ *an* ω -edge-coloring f of G such that $\text{span}(f) \leq 1 + (3[\Delta/2] - 1)\omega_l$. If $\Delta_{\omega}(G)$ $1+(\Delta-1)\omega_l$, then

$$
\text{span}(f) \le \begin{cases} 3\Delta_{\omega}/2 + (\omega_l - 1)/2 \text{ if } \Delta \text{ is even;}\\ 3\Delta_{\omega}/2 + 2\omega_l - 1/2 \text{ otherwise.} \end{cases}
$$

If $\Delta_{\omega}(G) = 1 + (\Delta - 1)\omega_l$ *and* Δ *is even, then the approximation ratio is smaller than* 5/3*.*

References

- 1. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in $O(E \log D)$ time. Combinatorica 21(1), 5–12 (2001)
- 2. Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press and McGraw Hill, Cambridge (2001)
- 3. Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edgecoloring graphs, Tech. Rept. TRECIS 41-85, Tohoku Univ. (1985)
- 4. Holyer, I.J.: The NP-completeness of edge coloring. SIAM J. on Computing 10, 718–721 (1981)
- 5. Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, New York (1995)
- 6. Karloff, H., Shmoys, D.B.: Efficient parallel algorithms for edge-coloring problems. J. of Algorithms 8(1), 39–52 (1987)
- 7. McDiamid, C.: On the span in channel assignment problems: bounds, computing and counting. Discrete Math 266, 387–397 (2003)
- 8. McDiamid, C., Reed, B.: Channel assignment on graphs of bounded treewidth. Discrete Math 273, 183–192 (2003)
- 9. Nakano, S., Nishizeki, T.: Edge-coloring problems for graphs. Interdisciplinary Information Sciences 1(1), 19–32 (1994)
- 10. Nishikawa, K., Nishizeki, T., Zhou, X.: Bandwidth consecutive multicolorings of graphs. Theoretical Computer Science 532, 64–72 (2014)
- 11. Obata, Y., Nishizeki, T.: Approximation Algorithms for Bandwidth Consecutive Multicolorings. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 194–204. Springer, Heidelberg (2014)
- 12. Pinedo, M.L.: Scheduling: Theory. Springer Science, New York (2008)
- 13. Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Physics 28, 148–151 (1949)
- 14. Stiebitz, M., Scheide, D., Toft, B., Favrholdt, L.M.: Graph Edge Coloring. Wiley, Hoboken (2012)
- 15. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)