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Abstract. Let G be a graph with a positive integer weight w(v) for each
vertex v. One wishes to assign each edge e of G a positive integer f(e) as
a color so that w(v) < |f(e) — f(€')| for any vertex v and any two edges
e and €’ incident to v. Such an assignment f is called an w-edge-coloring
of G, and the maximum integer assigned to edges is called the span of
f. The w-chromatic index of G is the minimum span over all w-edge-
colorings of G. In the paper, we present various upper and lower bounds
on the w-chromatic index, and obtain three efficient algorithms to find an
w-edge-coloring of a given graph. One of them finds an w-edge-coloring
with span smaller than twice the w-chromatic index.

1 Introduction

An ordinary edge-coloring of a graph G assigns different colors to any two ad-
jacent edges. The paper extends the concept to an edge-coloring of a weighted
graph.

Let G = (V, E) be a graph with a positive integer weight w(v) € N for each
vertex v € V, where N is the set of all positive integers. Indeed G may be a
multigraph. Figure 1 illustrates such a graph G, in which each vertex v is drawn
as a circle and the weight w(v) is written in it. One wishes to assign each edge
e € E a positive integer f(e) as a color so that w(v) < |f(e) — f(e’)] for any
vertex v € V and any two edges e and e’ incident to v. Such a function f : E — N
is called an edge-coloring of a graph G with a weight function w or simply an
w-edge-coloring of G. An w-edge-coloring f of a graph G is illustrated in Fig. 1,
where f(e) is attached to each edge e.

The span span(f) of an w-edge-coloring f of a graph G is the maximum integer
assigned to edges by f, that is, span(f) = max.cg f(e). An w-edge-coloring f
of G is called optimal if span(f) is minimum among all w-edge-colorings of G.
The w-edge-coloring in Fig. 1 is optimal, and its span is 7. The span of an optimal
w-edge-coloring of a graph G is called the w-chromatic index x.,(G) of G. The
w-edge-coloring problem is to find an optimal w-edge-coloring of a given graph.

An w-edge-coloring often appears in a task scheduling problem [12]. Each
vertex v of a graph G represents a processor, while each edge e = (u,v) of G
represents a task, which can be executed within a unit time with the cooperation
of the two processors represented by vertices u and v. Each processor v needs an
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Fig. 1. An optimal w-edge-coloring f of a graph G

idle time w(v) between any two tasks executed by v. Then an optimal w-edge-
coloring of G corresponds to a scheduling with the minimum makespan.

If w(v) = 1 for every vertex v of a graph G, then an w-edge-coloring of G is
merely an ordinary edge-coloring of G and the w-chromatic index x.,(G) of G
is equal to the ordinary chromatic index x'(G) of G. Since an ordinary edge-
coloring problem is NP-complete [4], the w-edge-coloring problem is strongly
NP-complete and does not look to be solved in polynomial time or in pseudo
polynomial time. So it is desired to obtain an efficient approximation algorithm
for the w-edge-coloring problem.

In this paper we present various upper and lower bounds on the w-chromatic
index, and obtain three efficient approximation algorithms for the w-edge-coloring
problem. The first algorithm Delta finds an w-edge-coloring f of a given graph
G such that span(f) < A},(G) + 1, where A} (G) is the maximum “uni-
directional w-edge-degree” of G. The second algorithm Degenerate finds an
w-edge-coloring f such that span(f) < k+1 for any “k-edge-degenerated graph.”
Delta and Degenerate have approximation ratios smaller than two and four,
respectively. We also show that an optimal w-edge-coloring can be easily obtained
for a graph G with the maximum degree A(G) at most two. The third algorithm
Factor first decomposes a given graph G into several subgraphs G1,Go, ..., G,
each having the maximum degree at most two, then finds optimal w-edge-
colorings of G1,Ga, ..., G, and finally combines them to an w-edge-coloring of
G. The approximation ratio of Factor is near to 3/2 for many graphs.

2 Preliminaries

In this section, we define several terms, present simple lower and upper bounds
on the w-chromatic index, and show that an optimal w-edge-coloring of a graph
G can be easily obtained if A(G) < 2.

We denote by G = (V, E) a graph with vertex set V' and edge set E. G
is a so-called multigraph, which has no selfloops but may have multiple edges.
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We denote by (u,v) an edge joining vertices v and v. Let n = |V| and m = |E|
throughout the paper. One may assume that G has no isolated vertex and hence
m >n/2. Let w:V — N be a weight function of G.

We denote by E(v) the set of all edges incident to a vertex v in a graph
G = (V,E). The degree of a vertex v is |E(v)| and is denoted by d(v,G) or
simply d(v). The maximum degree of vertices in G is called the mazimum degree
of G, and denoted by A(G) or simply A. Every w-edge-coloring f of G satisfies

1+ (d(v) — Dw(w) < max f(e)

€ E(v)

for every vertex v. We thus define the w-degree d,(v) of a vertex v as follows:
d,(v) =14 (d(v) — 1)w(v). (1)

The maximum w-degree of vertices in G is called the mazimum w-degree A, (G)

of G. It should be noted that A,(G) = A(G) if w(v) = 1 for every vertex

v. Clearly A,(G) < span(f) for every w-edge-coloring f of G. Therefore, the
following lower bound holds for the w-chromatic index x/,(G):

Au(G) < xu(G). (2)
The graph G in Fig. 1 satisfies A, (G) = d,(v1) = 7, the w-edge-coloring f in
Fig. 1 has span 7, and hence f is optimal. In Section 3 we will present an upper

bound: x/,(G) < 24,(G) — 1 for every graph G.

Since the weight of a vertex of degree 1 is meaningless, we define the largest
weight w;(G) of a graph G as follows:

wi (@) = max{w(v) | v € V,d(v) > 2}

where w;(G) is defined to be zero if A(G) = 1. Since 1 + w;(G) < A,(G), Eq.
(2) implies the following lower bound:

1+ wi(G) < x4, (G) (3)

We often denote w;(G) simply by w;.
Suppose that a graph G is ordinarily edge-colored by colors 1, 2, ..., ¢, where
¢ > X'(G). Replace colors 1, 2, ..., ¢ by 1, 1 + wy, ..., 1 4+ (¢ — 1)wy, respectively.

Then the resulting coloring is an w-edge-coloring of G. Thus we have an upper
bound:

Xo(@) <14 (X'(G) = D (4)

for every graph G.
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V. G. Vizing showed that x'(G) < A(G) + 1 for every simple graph G, which
has no multiple edges [14,15]; and it is known that such an edge-coloring of G
can be found in time O(mn), O(mAlogn) or O(m+y/nlogn) [3]. Therefore, by
Eq. (4) we have

Xo(G) < 1+ Aw

for every simple graph G, and such an w-edge-coloring can be found in time
O(mn), O(mAlogn) or O(my/nlogn).

D. Konig showed that x'(G) = A(G) for every bipartite graph G [14,15], and
it is known that such an edge-coloring can be found in time O(mlogA) [1].
Therefore, by Eq. (4) we have

X (G) <14 (A— 1w

for every bipartite graph G, and such an w-edge-coloring can be found in time
O(mlog A). Since A,(G) < x,(G) by Eq. (2), such an w-edge-coloring of a
bipartite graph G is optimal if

A(G) =1+ (A— Dy, (5)

A graph G satisfies Eq. (5) if and only if G has a vertex v such that d(v) = A
and w(v) = w;, and does for example if either G is a regular graph or w(v) =1
for every vertex v.

We then present another lower bound 1 + ws(G) on x.,(G). An odd cycle C
in G has an odd number of vertices. We define w;(C) as follows:

ws(C) = min{w(u) + w(v) | vertices u and v consecutively appear in C'}.
We define w,(G) as follows:
ws(G) = max{w,(C) | C'is an odd cycle in G}

where w;(G) is defined to be zero if G has no odd cycle. We often denote w;(G)
simply by ws. One can easily prove the following lemma for a lower bound on

Xu(G).
Lemma 1. For every graph G
1 + max{w;, ws} < xL,(G).

We then show that if A(G) < 2 then x/,(G) is equal to the rather trivial lower
bound in Lemma 1 and an optimal w-edge-coloring of G can be easily obtained.
One may assume that G is connected. Then G is a path or cycle. If G is a path
or an even cycle, then a coloring of G in which edges are colored alternately by 1
and 14wy is an optimal w-edge coloring and hence x/,(G) = 14w;. One may thus
assume that G is an odd cycle. Let the vertices vy, va, ..., v, appear in G in this
order, where n (> 3) is an odd number. One may further assume that ws(G) =
w(v2) + w(vs). Color the consecutive three edges e; = (v1,v2),€2 = (v2,v3)
and es = (vs,vq) by 1, 1 4+ w(vz) and 1 + max{w;,ws}, respectively, and color
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the remaining n — 3 edges alternately by 1 and w;. Then the resulting coloring
f of G is obviously an w-edge-coloring of G, and span(f) = 1 + max{w;,ws}.
Since x.,,(G) > 1 + max{w;,ws} by Lemma 2.1, f is optimal and x.,(G) =
1+ max{w, ws}.

We thus have the following theorem.

Theorem 1. If G is a graph with A(G) < 2, then x_,(G) = 1 + max{w;, ws}
and an optimal w-edge-coloring of G can be found in linear time.

For two integers a and 3, we denote by [a, (] the set of all integers z with
a <z < f. Let f be an w-edge-coloring of a graph G. Let e = (u,v) be an edge
in G, let ¢’ be an edge adjacent to e, and let x be a vertex to which both e and
¢’ are incident. Then x is u or v. Neither the consecutive w(z) integers greater
than or equal to f(e’) nor those smaller than or equal to f(e’) can be assigned
to e. Therefore

f(e) & Ble,¢',x)
where
Be,e',x) = [f(e/) —w(z) + 1, f(e') + w(z) — 1].

Clearly |B(e, €', z)| = 2w(z) — 1. G has d(u) — 1 edges adjacent to e at end u and
d(v) — 1 edges adjacent to e at end v. Therefore, there are at most (d(u) — 1)
(2w(u) — 1) + (d(v) — 1)(2w(v) — 1) integers that cannot be assigned to e. This
number is called a bi-directional w-edge-degree da,, (e, G) of e, and hence

daw(e, G) = (d(u) = 1)(2w(u) — 1) + (d(v) — 1)(2w(v) — 1). (6)

The maximum bi-directional w-edge-degree of edges in G is called the mazimum
bi-directional edge-degree Al (G) of G. Then one can easily prove by induction
on the number m of edges that the following upper bound on x/,(G) holds for
every graph G:

Xo(G) < Ay (G) + 1.

For the graph G in Fig. 1, A, (G) = daw(e1) = 19.

Let f be an w-edge-coloring of a graph G. Let e = (u,v), let €’ be adjacent
to e, and let = be a vertex to which both e and €’ are incident. Suppose that
f(e') < f(e). Then

f(e) ¢ Bl(ea elvx)
where
Bi(e,e',z) = [f(e'), f(€') + w(z) — 1]
and
|Bi(e, e, x)| = w(z).

Therefore we have

7€) ¢ (UBite.e',w) )U(UBs (e, ') (™)
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where €’ runs over every edge such that e’ is adjacent to e and f(e’) < f(e). In
this sense we define the uni-directional w-edge-degree dy.,(€) of an edge e = (u,v)
as follows:

diw(e) = (d(u) = Dw(u) + (d(v) = Dw(v). (8)

The maximum uni-directional w-degree of edges in G is called the mazimum
uni-directional w-edge-degree A}, (G) of G:
Al (G) = max dyy(e).

ecE

AL, (G) = diw(er) = 12. We will show in Section 3 that the following upper
bound holds for every graph G:

Clearly A}, (G) < AL (G) for every graph G. For the graph G in Fig. 1,

X6(G) < 41,(G) + 1.

3 Algorithm Delta

In this section we present an algorithm Delta to find an w-edge-coloring f of a
given graph G such that span(f) < A}, (G) + 1, and show that the approxima-
tion ratio of Delta is smaller than two.

For an w-edge-coloring f of a graph G = (V, E), one may assume that

fler) < flea) < ... < flem) (9)

for some numbering ey, es, ..., e, of the edges in E. Let 2 < i < m, and let
e; = (u,v). We define E;(u) as follows:

Ei(u)={ej € E(u)|1<j<i}.
We similarly define E;(v). Then Eq. (7) implies that

Fle) 2 max{_max (f(e;) +w(u)). max (flej) +w(@)}.  (10)

Algorithm Delta finds a numbering ey, e, ..., e,, satisfying Eq. (9) and deter-
mines f(e1), f(e2), ..., f(em) in this order so that f(e;) = 1 and Eq. (10) holds
in equality, that is,
i) = ; + 5 ] + .
o)) = max{_max (f(e;) +w(w). max (f(e;) +w(0)}
Delta is similar to the Dijkstra’s shortest path algorithm [2], and its details are
as follows, where P is the set of edges e for which f(e) have been decided.
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Algorithm. Delta(G, f)
for every edge e € E, let f(e) := 1; (initialization)
P:=0:;
for i1 until m do

{

let e; = (u,v) be an edge e € E\ P with minimum f(e);

P :=P U {ei}; (f(e;) is decided)

for every edge e € E(u)\P, let f(e):= max{f(e), f(e:) + w(u)}; (update f(e))
gor every edge e € E(v)\P, let f(e) := max{f(e), f(e:) + w(v)}; (update f(e))

end for

Clearly Delta correctly finds an w-edge-coloring f of G. For the graph G in
Fig. 1, Delta finds the coloring f in Fig. 1 such that span(f) = 7 = A,(G),
and hence f happens to be optimal. Delta decides f(e1), f(e2), ..., f(e7) in this
order for the edge-numbering e, es, ..., e7 depicted in Fig. 1.

We then prove that the coloring f obtained by Delta satisfies

span(f) < Al (G) + 1.

Obviously f(e;) = 1 and span(f) = f(em). Let em, = (u,v), and let j be any
integer in [1, span(f) — 1]. Since j is not assigned to e,, by f, either f(e;) <j <
flei) +w(u) — 1 for some edge e; € Ep,(u) or f(e;) < j < f(e;) +w(v) — 1 for
some edge e; € E,,(v). Therefore,

[1,span(f)—1]§< U Bl(em,ei,u)>U< U Bl(em,ei,v)>

€€ B (u) € €Em (v)

and hence
span(f) — 1 < (d(u) — Dw(u) + (d(v) = Dw(v) = diw(em)-
We have thus proved
span(f) < di(em) + 1 < A} (G) + 1. (11)
From Egs. (1), (2), (8) and (11) we have
span(f) < diw(em) + 1
<d,(u) + d,(v) —1

< QAW(G) -1
< 2x,(G) — 1.

Thus Delta has an approximation ratio smaller than two.

Using a binary heap [2], one can implement Delta so that it takes time
O(mAlogm), similarly as the Dijkstra’s shortest path algorithm.

We thus have the following theorem.
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Theorem 2. For every graph G
XL (G) < ALL(G) +1<2A,(G) - 1.

Algorithm Delta finds in time O(mAlogm) an w-edge-coloring of G such that
span(f) < A1, (G) + 1, and its approzimation ratio is smaller than two.

4 Edge-Degenerated Graphs

It is known that a “k-degenerated graph” has a vertex-coloring with k+ 1 colors
[5]. In this section, we define a “k-edge-degenerated graph,” and present an
algorithm Degenerate to find an w-edge-coloring f of a k-edge-degenerated
graph such that span(f) < k + 1.

A graph G is called k-edge-degenerated for a non-negative integer k if G has
an edge-numbering ey, ea, ..., ey, such that day,(e;, G;) < k for every index i,
1 < i < m, where G; is a subgraph of G induced by edges €1, €3, ..., €;.

Since (7 consists of a single edge e1, we have da,,(e1,G1) = 0 < k and hence
span(f) = 1 < k + 1 for an w-edge-coloring f of Gy such that f(e;) = 1.
This coloring f of G; can be extended to an w-edge-coloring f of G5 such that
span(f) < k + 1. Repeating such an extention, Degenerate obtains an w-edge-
coloring f of G = G, such that span(f) < k + 1.

We shall prove that an w-edge-coloring f of G;, ¢ > 1, with span(f) < k+1
can be extended to an w-edge-coloring f of G;11 with span(f) < k + 1. Let
ei+1 = (u,v), then an integer j € [1,k + 1] can be chosen as f(e;1+1) for the
extention if and only if

jé (UB(61‘+1,61,U))U(UB(61+1,617U)) (12)

where the unions are taken over all edges e; of G;41 that are adjacent to e;41,
and hence 1 <[ < 4. The cardinality of the set in the right hand side of Eq. (12)
is bounded above by

2w (€it1, Gig1) = (d(u, Gi1) — 1)(2w(u) — 1) + (d(v, Gig1) — 1)(2w(v) — 1),

and day, (€41, Git1) < k since G is k-edge-degenerated. Therefore, there always
exists an integer j € [1,k + 1] which can be chosen as f(e;+1), and hence f can
be extended to an w-edge-coloring of G; 1 with span(f) <k + 1.

Algorithm Degenerate successively finds w-edge-colorings of Gy, Ga, ...,
Gm(= G) in this order. Indeed it employs a simple greedy technique; when
extending an w-edge-coloring of G; to that of G;11,1 <i < m—1, Degenerate
always chooses, as f(e;+1), the smallest positive integer j satisfying Eq. (12).
For every edge e; adjacent to e; 41 in G411, let

B(€i+1, el 1’) = [Oé(ela 1’), B(elv x)}

where z iswor v, ae;, z) = f(e;)—w(x)+1 and B(e;, ) = f(e;)+w(x)—1. Sorting
the set {a(ey, ) | z is u or v, ¢ is adjacent to e;41 in Gi41 } of d(u,Giy1) +
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d(v, Gi+1)—2 integers, one can find the smallest integer j above in time O((d(u)+
d(v))log(d(u) + d(v))). Thus Degenerate takes time O(mAlog A).

The w-edge-degeneracy k,(G) of a graph G is defined to be the minimum
integer k such that G is k-edge-degenerated. Then, similarly as the case of the
“vertex-degeneracy” [5], one can compute k,(G) as follows. Let G, = G, and
let e, be an edge e in G, with minimum da, (e, G,,). Let G,,,—1 be the graph
obtained from G, by deleting e,,, and let e,;,_1 be an edge e in G,,,—1 with mini-
mum da, (e, Gm—1). Repeating the operation, one can obtain an edge-numbering
€1, €2, ...,em of G, and k., (G) = maxi<i<m daw(€i, Gi).

Using a binary heap, one can compute k,(G) in time O(mAlogm). Using a
Fibonacci heap [2], one can improve the time complexity to O(mA + mlogm).

Clearly k,(G) < A, (G). Let A, (G) = day(e) for an edge e = (u,v), then
by Egs. (1), (2) and (6) we have

5,(G) +1=(du) — 1)2w(u) — 1) + (d(v) — 1)(2w(v) — 1) + 1
= 2(dw(u) + dw(v)) — d(u) — d(v) — 1
< 4A,(G)

< dxw(G).

We thus have the following theorem.

Theorem 3. Algorithm Degenerate finds in time O(mAlogA) an w-edge-
coloring f of a k-edge-degenerated graph G such that span(f) < k + 1. When
k = ky(G), the approximation ratio of Degenerate is smaller than four.

5 Algorithm Factor

C. E. Shannon showed that every graph G can be edge-colored with at most
3A(G)/2 colors [13], and it is known that such a coloring can be found in time
O(m(n + A)) [9]. Therefore, by Eq. (4) we have

XL(G) <1+ (3A/2 —1)w,

for every graph G, and an w-edge-coloring f of G with span(f) < 1+(34/2—1)w;
can be found in time O(m(n+A4)). In this section we present an algorithm Factor
of time complexity O(mlogA).

One may assume that a graph G = (V, F) is connected. Our third algorithm
Factor finds an w-edge-coloring f of G as follows.
(Step 1)
Partition F into r(= [A/2]) subsets E;, 1 < i <7, so that the subgraph G; of
G induced by E; satisfies A(G;) < 2, and hence G; consists of vertex-disjoint
paths and cycles. (Such a partition is called a factorization of G to subgraphs
G; with A(G;) < 2.)
(Step 2)
Using the algorithm in Section 2, obtain an optimal w-edge-coloring f; of G; for
each index 7, 1 <17 <r.
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(Step 3)
Obtain an w-edge-coloring f of G by combining f;, 1 <1i < 7.

We now describe the details of these three steps.

[Step 1]

G contains an even number of vertices of odd degree. Join them pairwise by
dummy edges, and let G’ be the resulting Eulerian graph. (G’ may have multi-
ple edges even if G has no multiple edges.) Then the maximum degree A(G’) of
G’ is an even number. More precisely, A(G') = 2r for an integer

r=[A(G)/2]. (13)

Let C be an Eulerian circuit of G’, which passes through every edge of G’ ex-
actly once. We then construct a bipartite graph B = (Vg, Ep) according to the
direction of edges in C. The left vertices of B are the vertices of G, and the
right vertices are their copies. All edges of B are copies of the edges of G. B has
an edge joining a left vertex u and a right vertex v if and only if the Eulerian
circuit C passes through an edge (u,v) of G from u to v. (A similar construction
of B has appeared in [6].) For every vertex v € V, at most r edges emanate
from v in C' and at most r edges enter to v. Therefore, A(B) < r and hence B
has an ordinary edge-coloring with r colors. Let Ep,, Ep,, ..., Ep. be the color
classes of the edge-coloring of B. Let F4, Es, ..., E,. be the subsets of £ which
correspond to Ep,, Ep,, ..., Ep,, respectively. Then the subgraph G;, 1 <1i < f,
of G induced by E; satisfies A(G;) < 2 since Ep, is a matching in B.

[Step 2]
By Theorem 1 one can find an optimal w-edge-coloring f; : F; — N of G; in
linear time, and f; satisfies

span(f;) = 1 + max{wi(G;),ws(G;)} (14)
for every index i, 1 < i <.
[Step 3]

When combining f;, 1 <14 < r, to f, we shift up f;(e) uniformly for every edge
e € E;. More precisely, let

fi(e) := fi(e) + span(f1) + (wi(G) — 1) + span(f2) + (wi(G) — 1)
+ .. +span(fi—1) + (wi(G) — 1)

for each index i, 2 < ¢ < r. Then, simply superimposing f1, fo, ..., f-, one can
obtain an w-edge-coloring f of G; f(e) = fi(e) if e € E;.
We then evaluate span(f) for the coloring f obtained by Factor. Clearly

span(f) = Zspan(fi) + (r = 1)(w(GQ) = 1). (15)
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Since ws(G) < 2wi(G) and wi(G;) < wi(G) and w,(G;) < ws(G) for every index
i, 1 <i <r, by Egs. (13), (14) and (15) we have

span(f) < r(1 + max{w)(G),ws(G)}) + (r — D) (wi(G) — 1)
=1+ 7(wi(G) + max{w;(G),ws(G)}) — wi(G)
<14 Br—1w(G)
=1+ (3[A(G)/2] = Dwi(G). (16)

Assume now that G satisfies Eq. (5). Then, by Egs. (5) and (16) we have

3A,/2 4 (wi(G) —1)/2 if Ais even;
span(f) < {3Aw/2 + 2w (G) —1/2  otherwise. (17)
Since A, < X/, by Eq. (2), the approximation ratio of Factor is near to 3/2.
Especially when A is even, one may assume that A > 4, and hence by Egs. (5)
and (17) we have

span(f) < (54, —2)/3 < 5x(,/3

and hence the approximation ratio is smaller than 5/3.

The most time-consuming part of Factor is Step 1, in which one must find
an ordinary edge-coloring of a bipartite graph B = (Vp, Ep) with A(B) colors.
The coloring can be found in time O(|Ep|log A(B)) [1]. Since |Ep| = m and
A(B) <r = [A(G)/2], Factor takes time O(mlog A).

We thus have the following theorem.

Theorem 4. For every graph G, algorithm Factor finds in time O(mlogA)
an w-edge-coloring f of G such that span(f) <14 (3[A/2] — Dw;. If Au(G) =
1+ (A= 1w, then

3A,/24 (wi —1)/24f A is even;
span(f) < {SAW/2 + 2wy — 1/2 otherwise.

If A,(G) =14+ (A—1)w; and A is even, then the approximation ratio is smaller
than 5/3.
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