
Non-repetitive Strings over Alphabet Lists

Neerja Mhaskar1 and Michael Soltys2,�

1 McMaster University
Dept. of Computing & Software

1280 Main Street West
Hamilton, Ontario L8S 4K1, Canada

pophlin@mcmaster.ca
2 California State University Channel Islands

Dept. of Computer Science
One University Drive

Camarillo, CA 93012, USA
michael.soltys@csuci.edu

Abstract. A word is non-repetitive if it does not contain a subword of
the form vv. Given a list of alphabets L = L1, L2, . . . , Ln, we investigate
the question of generating non-repetitive words w = w1w2 . . . wn, such
that the symbol wi is a letter in the alphabet Li. This problem has been
studied by several authors (e.g., [GKM10], [Sha09]), and it is a natural
extension of the original problem posed and solved by A. Thue. While we
do not solve the problem in its full generality, we show that such strings
exist over many classes of lists. We also suggest techniques for tackling
the problem, ranging from online algorithms, to combinatorics over 0-1
matrices, and to proof complexity. Finally, we show some properties of
the extension of the problem to abelian squares.

Keywords: Thue words, non-repetitive, square-free, abelian square.

1 Introduction

A string over a (finite) alphabet Σ is an ordered sequence of symbols from the
alphabet: let w = w1w2 . . . wn, where for each i, wi ∈ Σ. In order to emphasize
the array structure of w, we sometimes represent it as w[1..n]. We say that v
is a subword of w if v = wiwi+1 . . . wj , where i ≤ j. If i = j, then v is a single
symbol in w; if i = 1 and j = n, then v = w; if i = 1, then v is a prefix of
w and if j = n, then v is a suffix of w. We can express that v is a subword
more succinctly as follows: v = w[i..j], and when the delimiters do not have to
be expressed explicitly, we use the notation v ≤ w. We say that v is a subsequence
of w if v = wi1wi2 . . . wik , for i1 < i2 < . . . < ik.

We now define the main concept in the paper, namely a string over an alphabet
list. Let:

L = L1, L2, . . . , Ln ,

� Research supported in part by an NSERC Discovery Grant.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 270–281, 2015.
c© Springer International Publishing Switzerland 2015

Non-repetitive Strings over Alphabet Lists 271

be an ordered list of (finite) alphabets. We say that w is a string over the list L
if w = w1w2 . . . wn where for all i, wi ∈ Li. Note that we impose no conditions
on the Li’s: they may be equal, disjoint, or have elements in common. The only
condition on w is that the i-th symbol of w must be selected from the i-th
alphabet, i.e., wi ∈ Li. Let Σk denote a fixed generic alphabet of k symbols and
let ΣL = L1 ∪ L2 ∪ · · · ∪ Ln.

Given a list L of finite alphabets, we can define the set of strings w over L
with a regular expression RL: RL := L1 · L2 · . . . · Ln.

Let L+ := L(RL) be the language of all the strings over the list L. For
example, if L0 = {{a, b, c}, {c, d, e}, {a, 1, 2}}, then

RL0 := {a, b, c} · {c, d, e} · {a, 1, 2},

and ac1 ∈ L+
0 , but 2ca �∈ L+

0 . Also, in this case |L+
0 | = 33 = 27. We should point

out that {a, b, c} is often written as (a + b + c), but we use the curly brackets since
it is reminiscent of indeterminate strings, which is yet another way of looking at
strings over alphabet lists. See, for example, [Abr87] or [SW09] for a treatment
of indeterminates.

We say that w has a repetition (or a square) if there exists a v such that
vv ≤ w. We say that w is non-repetitive (or square-free) if no such subword
exists. An alphabet list L is admissible if L+ contains a non-repetitive string.
Let L represent a class of lists; the intention is for L to denote lists with a given
property. For example, we are going to use LΣk

to denote the class of all lists
L = L1, L2, . . . Ln, where for each i ∈ [n] = {1, 2, . . . , n}, Li = Σk, and Lk will
denote the class of all lists L = L1, L2, . . . , Ln, where for each i ∈ [n], |Li| = k,
that is, those lists consisting of alphabets of size k. Note that LΣk

⊆ Lk. We say
that a class of lists L is admissible if every list L ∈ L is admissible. For ease of
reference, we include a table summarizing the notation for classes with different
properties in a table at the end of the paper.

Since any string of length at least 4 over Σ2 = {0, 1} contains a square, it
follows that L2 is not admissible. On the other hand, [Thu06] showed using
substitutions that LΣ3 is admissible. Using a probabilistic algorithm, [GKM10]
showed that L4 is admissible; the algorithm works as follows: in its i-th iteration,
it selects randomly a symbol from Li, and continues if the string created thus
far is square-free, and otherwise deletes the suffix consisting of the right side of
the square it just created, and restarts from the appropriate position.

Our paper is motivated by the following question, already posed in [GKM10]:
is the class L3 admissible? That is, given any list L = L1, L2, . . . , Ln, where for
all i ∈ [n], |Li| = 3, can we always find a non-repetitive string over such a list?
We conjecture with [GKM10] that the answer to this question is affirmative, but
we only show that certain (large) subclasses of L3 are admissible (Theorem 8).
In Section 4 we propose different approaches for attacking this conjecture in its
full generality.

272 N. Mhaskar and M. Soltys

2 Combinatorial Results

Consider the alphabet Σ3 = {1, 2, 3}, and the following substitution scheme, i.e.,
morphism, due to A. Thue, as presented in [GKM10]:

S =

⎧
⎪⎨

⎪⎩

1 �→ 12312

2 �→ 131232

3 �→ 1323132

(1)

Given a string w ∈ Σ∗
3 , we let S(w) denote w with every symbol replaced by its

corresponding substitution: S(w) = S(w1w2 . . . wn) = S(w1)S(w2) . . . S(wn).

Lemma 1. If w ∈ Σ∗
3 is a square-free string, then so is S(w).

Thue’s substitution (1) is not the only one; for example, [Lee57] proposes a
different substitution1. [Ber95, Theorem 3.2], which is a translation of Thue’s
work on repetitions in words, gives a characterization of the properties of such
substitutions (called therein iterated morphism). It requires the morphism to
be square free for any w of length 3 over Σ3. Our proof does not require this
assumption.

Corollary 2 (A. Thue). LΣ3 is admissible.

We are interested in the question whether L3 is admissible, i.e., whether every
list L = L1, L2, . . . , Ln, with |Li| = 3, is admissible. Experimental data, with
lists of length 20, seems to confirm it. Since we are not able to answer this
question in its full generality, we examine different sub-classes of L3 for which
it is true. The goal of this approach is to eventually show that L3 is admissible.

Recall that a System of Distinct Representatives (SDR) of a collection of sets
{L1, L2, . . . , Ln} is a selection of n distinct elements {a1, a2, . . . , an}, ai ∈ Li.

Claim 3. If L has an SDR, then L is admissible.

Proof. Simply let w = a1a2 . . . an be the string consisting of the distinct repre-
sentatives; as all symbols are distinct, w is necessarily square-free. 	

It is a celebrated result of P. Hall ([Hal87]) that a necessary and sufficient
condition for a collection of sets to have an SDR is that they have the union
property: for any sub-collection {Li1 , . . . , Lik}, 1 ≤ k ≤ n, |Li1 ∪ · · · ∪ Lik | ≥ k.

Corollary 4. If L has the union property, then L is admissible.

Given a list L, we say that the mapping Φ : L −→ Σ3, Φ = 〈φi〉, is consistent
if for all i, φi : Li −→ Σ3 is a bijection, and for all i �= j, if a ∈ Li ∩ Lj, then
φi(a) = φj(a). In other words, Φ maps all the alphabets to the single alphabet
Σ3, in such a way that the same symbol is always mapped to the same unique
symbol in Σ3 = {1, 2, 3}.
1 Leech’s substitutions are longer than Thue’s, and they are defined as follows
(see [Tom10]): 1 �→ 1232132312321; 2 �→ 2313213123132; 3 �→ 3121321231213.

Non-repetitive Strings over Alphabet Lists 273

Lemma 5. If L has a consistent mapping, then L is admissible.

Proof. Suppose that L has a consistent mapping Φ = 〈φi〉. By Corollary 2 we
pick a non-repetitive w = w1w2 . . . wn of length n. Let

w′ = φ−1
1 (w1)φ

−1
2 (w2) . . . φ

−1
n (wn),

then w′ is a string over L, and it is also non-repetitive. If it were the case that
vv ≤ w′, then the subword vv of w′ under Φ would be a square in w, which is a
contradiction. 	

Let CMP = {〈L〉 : L has a consistent mapping} be the “Consistent Mapping
Problem,” i.e., the language of lists L = L1, L2, . . . , Ln which have a consistent
mapping. We show in Lemma 6 that this problem is NP-complete. It is clearly
in NP as a given mapping can be verified efficiently for consistency.

Lemma 6. CMP is NP-hard.

Proof. A graph G = (V,E) is 3-colorable if there exists an assignment of three
colors to its vertices such that no two vertices with the same color have an
edge between them. The problem 3-color is NP-hard, and by [GJS76] it remains
NP-hard even if the graph is restricted to be planar.

We show that CMP isNP-hard by reducing the 3-colorability of planar graphs
to CMP. Given a planar graph P = (V,E), we first find all its triangles, that
is, all cliques of size 3. There are at most

(
n
3

) ≈ O(n3) such triangles, and note
that two different triangles may have 0, 1, or 2 vertices in common. If the search
yields no triangles in P , then by [Grö59] such a P is 3-colorable, and so we map
P to a fixed list with a consistent mapping, say L = L1 = {a, b, c}. (In fact,
by [DKT11] it is known that triangle-free planar graphs can be colored in linear
time.)

Otherwise, denote each triangle by its vertices, and let T1, T2, . . . , Tk be the
list of all the triangles, each Ti = {vi1, vi2, vi3}; note that triangles may overlap.
We say that an edge e = (v1, v2) is inside a triangle if both v1, v2 are in some
Ti. For every edge e = (v1, v2) not inside a triangle, let E = {e, v1, v2}. Let
E1, E2, . . . , E� be all such triples, and the resulting list is:

LP = T1, T2, . . . , Tk, E1, E2, . . . , E�.

See example given in Figure 1.
We show that LP has a consistent mapping if and only if P is 3-colorable.
Suppose that P is 3-colorable. Let the colors be labeled with Σ3 = {1, 2, 3};

each vertex in P can be labeled with one of Σ3 so that no edge has end-points
labeled with the same color. This clearly induces a consistent mapping as each
triangle Ti = {vi1, vi2, vi3} gets 3 colors, and each E = {e, v1, v2} gets two colors
for v1, v2, and we give e the third remaining color.

Suppose, on the other hand, that LP has a consistent mapping. This induces
a 3-coloring in the obvious way: each vertex inside a triangle gets mapped to one
of the three colors in Σ3, and each vertex not in a triangle is either a singleton,
in which case it can be colored arbitrarily, or the end-point of an edge not inside
a triangle, in which case it gets labeled consistently with one of Σ3. 	

274 N. Mhaskar and M. Soltys

6

v v v

v

v

v1
2

3

4
5

Fig. 1. In this case the list LP is composed as follows: there are two triangles,
{v2, v3, v4}, {v2, v6, v4}, and there are two edges not inside a triangle giving rise to
{v1, v2, (v1, v2)}, {v4, v5, (v4, v5)}. Note that this planar graph is 3-colorable: v1 �→ 1,
v2 �→ 2, v3 �→ 3, v6 �→ 3, v4 �→ 1, and v5 �→ 2. And the same assignment can also be
interpreted as a consistent mapping of the list LP .

We say that a collection of sets {L1, L2, . . . , Ln} is a partition if for all i, j,
Li = Lj or Li ∩ Lj = ∅.
Corollary 7. If L is a partition, then L is admissible.

Proof. We show that when L is a partition, we can construct a consistent Φ,
and so, by Lemma 5, L is admissible. For each i in [n] in increasing order, if
Li is new i.e., there is no j < i, such that Li = Lj, then let φi : Li −→ Σ3 be
any bijection. If, on the other hand, Li is not new, there is a j < i, such that
Li = Lj, then let φi = φj . Clearly Φ = 〈φi〉 is a consistent mapping. 	

Note that by Lemma 5, the existence of a consistent mapping guarantees the
existence of a square-free string. The inverse relation does not hold: a list L may
not have a consistent mapping, and still be admissible. For example, consider
L = {{a, b, c}, {a, b, e}, {c, e, f}}. Then, in order to have consistency, we must
have φ1(a) = φ2(a) and φ1(b) = φ2(b). In turn, by bijectivity, this implies that
φ1(c) = φ2(e). Again, by consistency:

φ3(c) = φ1(c) = φ2(e) = φ3(e),

and so φ3(c) = φ3(e), which violates bijectivity. Hence L does not have a con-
sistent mapping, but w = abc ∈ L+, and w is square-free.

Let LSDR,LUnion,LConsist, and LPart, be classes consisting of lists with: an
SDR, the union property, a consistent mapping, and the partition property, re-
spectively. Summarizing the results in the above lemmas we obtain the following
theorem.

Theorem 8. LSDR,LUnion,LConsist, and LPart are all admissible.

A natural way to construct a non-repetitive string over L is as follows: pick
any w1 ∈ L1, and for i + 1, assuming that w = w1w2 . . . wi is non-repetitive,
pick an a ∈ Li+1, and if wa is non-repetitive, then let wi+1 = a. If, on the other
hand, wa has a square vv, then vv must be a suffix (as w is non-repetitive by
assumption). Delete the right copy of v from w, and restart.

Non-repetitive Strings over Alphabet Lists 275

The above paragraph describes the gist of the algorithm for computing a
non-repetitive string over L4, presented in [GKM10]. The correctness of the
algorithm relies on a beautiful probabilistic argument that we present partially
in the proof of Lemma 11. For the full version of this result the reader is directed
to the source [GKM10]. On the other hand, the correctness of the algorithm
in [GKM10] also relies on Lemma 9 shown below, which was assumed but not
shown [GKM10, line 7 of Algorithm 1, on page 2].

Incidentally, suppose that there is an L ∈ L4 with the following property:
there exists an Li = {a, b, c, d} such that if w is a non-repetitive string in L+,
then wi = a. That is, all non-repetitive strings in L+ must select a from Li. Then
L3 would be inadmissible, since we could construct an inadmissible L′ ∈ L3 as
follows: L′

i = {b, c, d}, and for j �= i, L′
j any 3-element subset of Lj .

Lemma 9. If w is non-repetitive, then for any symbol a, either w′ = wa is still
non-repetitive, or w′ has a unique square (consisting of a suffix of w′).

Proof. Suppose that w′ = wa has a square; denote this square v�vr, where
v� = vr, and v�vr is a suffix of w′. Suppose that there is another square v′�v

′
r. We

examine the following cases:

1. If |v′r| ≤ � |vr |
2 �, then v′�v

′
r is a suffix of vr, and hence v′�v

′
r is also a suffix of

v�, and hence w has a square — contradiction.

2. If � |vr |
2 � < |v′r| < |vr|, then let x be the (unique) suffix of v′� that corresponds

to a prefix of vr. Note that the case |v′r| = |vr| is superfluous, as it means
that v′r = vr, and since |v′r | < |vr|, |x| > 0. Since x is a suffix of v′�, it also
must be a suffix of v′r, and so x is also a suffix of vr, and hence a suffix of
v�. Thus, we must have xx straddling v�vr, and thus we have a square in w
— contradiction.

3. The case |vr| < |v′r| < |v�vr| is symmetric to the previous case, with the roles
of vr, v

′
r and v�, v

′
� reversed.

4. Finally, |v′r| ≥ |v�vr| means that v�vr is also a subword of v′�, giving us a
repetition v′� ≤ w, and hence a contradiction.

Thus, the only possible case is v� = v′�, vr = v′r, and this means that w′ must
have a unique repetition, if it has one at all. 	

An open question is how to de-randomize [GKM10, Algorithm 1]. The näıve
way to de-randomize it is to employ an exhaustive search algorithm: given an
L in L4, examine every w ∈ L+ in lexicographic order until a non-repetitive is
found, which by [GKM10, Theorem 1] must happen. In that sense, the correct-
ness of the probabilistic algorithm implies the correctness of the deterministic
exhaustive search algorithm. However, such an exhaustive search algorithm takes
4|L| steps in the worst case; is it possible to de-randomize it to a deterministic
polytime algorithm? Also, what is the expected running time of the probabilistic
algorithm?

276 N. Mhaskar and M. Soltys

3 Abelian Squares

There are generalizations of the notion of a square in a string. For example, while
a square in w is a subword vv ≤ w, an overlap is a subword of the form avava,
where a is a single symbol, and v is an arbitrary word (see [Sha09, pg. 37], and
the excellent [Ram07]). The point is that the string avava can be seen as two
overlapping occurrences of the word ava. While there are no arbitrarily long
square-free words over Σ2 = {0, 1}, there are arbitrarily long overlap-free words
over Σ2 (see [Sha09, Theorem 2.5.1, pg. 38]).

An abelian square is a word of the form ww′ where |w| = |w′|, and where w′ is
a permutation of w. That is, if w = w1w2 . . . wn, then w′ = wπ(1)wπ(2) . . . wπ(n),
where π : [n] −→ [n] is a bijection. A word w is abelian-square-free if there
is no vv′ ≤ w such that vv′ is an abelian square. While there are arbitrarily
long square-free words over Σ3, the question was posed in [Sha09, Section 2.9,
Problem 1(a), pg. 47] whether there are infinite abelian-square-free words (where
aa is not counted as an abelian square, that is, abelian-square-of-size-at-least-2-
free words). We show in Lemma 10 that there are no abelian-square-free words
of size 8 or bigger; but allowing abelian squares of size 1 makes the problem
more difficult. Here is a word of size 25, with no abelian-square-free but allowing
abelian squares of size 1: aaabaaacaaabbbaaacaa.

Lemma 10. If w is a word over Σ3 such that |w| ≥ 8, then w must have an
abelian square.

Proof. We show that if w ∈ Σ≥8
3 , i.e., w is a word over Σ3 of size at least 8, then

w necessarily has an abelian square.
Let τ : Σ3 −→ Σ3 be a bijection, that is, τ is a permutation of {a, b, c}. (Note

that this is not the same as the π above, which is a permutation of a string w.)
It is easy to see that for each of the six possible τ ’s, w is an abelian square if
and only if τ(w) is an abelian square. Therefore, if we show that for any w of
the form w = abx, where x ∈ Σ∗

3 , w has an abelian square, it will follow that
every w has an abelian square. (If w = aax, bbx, ccx then w has a square, which
is also an abelian square, and for the six cases that arise from two distinct initial
characters we apply a τ to reduce it to the w = abx case.)

Consider Figure 2 which represents with a tree the prefixes of all the strings
over Σ3. Think of the labels on the nodes on any branch starting at the root (ε)
as spelling out such a prefix. Note that all the branches starting with ab end in
a ×-leaf, which denotes that adding any symbol in Σ3 = {a, b, c} would yield an
abelian square. This proves the Lemma, as the other prefixes (starting with one
of {ba, bc, ca, cb}) would also eventually yield an abelian square. 	

Adapting the method of [GKM10] we can also show that there are infinite
abelian-square-free words over lists of size 4.

Lemma 11. Let L be any list where for all i, |Li| = 4. Then, there is an abelian-
square-free word over L.

Non-repetitive Strings over Alphabet Lists 277

ε

a

b

a

c

a

b

a

×

b

a

b

×

c

×

c

a

b

a

×

c

×

b

a

b

c

×

c

b

a c

c

a b

Fig. 2. No abelian squares of length greater than 8

Proof. Fix an ordering inside each Li, and let r = r1, r2, . . . , rm be a sequence
over {1, 2, 3, 4}. We use r to build an abelian-square-free word as follows: starting
with w = ε, in the i-th step, add to the right end of w the symbol in position ri in
L|w|+1. If the resulting w′ is abelian-square-free, continue. Otherwise, there is an
abelian square (which, unlike in the case of regular squares, does not have to be
unique — see Lemma 9). Let vv′ be the longest abelian square so that w′ = xvv′.
Delete v′ and restart the process. Let (D, s) be a log of the procedure, whereD is
a sequence of integers keeping track of the differences in size of the w’s from one
step to the next; let s be the final string after the entire r has been processed.
Following the same technique as in [GKM10], we show that given (D, s) there
is a unique r corresponding to it. By assuming that the total number of s’s are
less than a given n0, we get a contradiction by letting r be sufficiently large, and
bounding the number of logs with Catalan numbers [Sta99]. 	

The authors have written a short Python program for checking abelian squares;
you may find it on the second author’s web page.

4 Future Directions

4.1 Online Algorithms and Games

In the online version of the problem, L is presented piecemeal, one alphabet at
a time, and we select the next symbol without knowing the future, and once
selected, we cannot change it later. More precisely, the Li’s are presented one
at a time, starting with L1, and when Li is presented, we must select wi ∈ Li,
without knowing Li+1, Li+2, . . ., and without being able to change the selections
already committed to in L1, L2, . . . , Li−1.

278 N. Mhaskar and M. Soltys

We present the online problem in a game-theoretic context. Given a class
of lists L, and a positive integer n, the players take turns, starting with the
adversary. In the i-th round, the adversary presents a set Li, and the player
selects a wi ∈ Li; the first i rounds can be represented as:

G = L1, w1, L2, w2, . . . , Li, wi.

The condition imposed on the adversary is that L = L1, L2, . . . , Ln must be a
member of L.

The player has a winning strategy for L, if ∀L1∃w1∀L2∃w2 . . . ∀Ln∃wn, such
that L = L1, L2, . . . , Ln ∈ L and w = w1w2 . . . wn is square-free. For example,
the player does not have a winning strategy for L1 and L2; see Figure 3. On
the other hand, the player has a winning strategy for LΣ3 : simply pre-compute
a square-free w, and select wi from Li. However, this is not a bona fide online
problem, as all future Li’s are known beforehand. In a true online problem
we expect the adversary to have the ability to “adjust” the selection of the Li’s
based on the history of the game.

{a} a �� {a} a �� × {a, b} b �� {a, b} a �� {a, b} b �� ×

{a, b}

a

�����������

b

���
��

���
��

�

{a, b} a �� {a, b} b �� {a, b} a �� ×

Fig. 3. Player loses if adversary is allowed subsets of size less than 3: the moves of the
adversary are represented with subsets {a} and {a, b} and the moves of the player are
represented with labeled arrows, where the label represents the selection from a subset

We present another class of lists for which the player has a winning strategy.
Let sizeL(i) = |L1 ∪ . . . ∪ Li|. We say that L has the growth property if for all
1 ≤ i < n = |L|, sizeL(i) < sizeL(i + 1). We denote the class of lists with the
growth property as LGrow.

Lemma 12. The player has a winning strategy for LGrow.

Proof. In the i-th iteration, select wi that has not been selected previously; the
existence of such a wi is guaranteed by the growth property. 	

The growth property places a rather strong restriction on L, as it allows the
construction of square-free strings where all the symbols are different, and hence
they are trivially square-free. Note that the growth property implies the union
property discussed in Corollary 4. To see this note that the growth property

Non-repetitive Strings over Alphabet Lists 279

implies the existence of an SDR (discussed in Claim 3), in the stronger sense of
every Li containing an ai such that for all j �= i, ai �∈ Lj.

It would be interesting to study the relationship between admissible L in the
original sense, and those L for which the player has a winning strategy in the
online game sense. Clearly, if there exists a winning strategy for L, then L is
admissible; what about the converse?

4.2 Boolean Matrices

Instead of considering alphabets, we consider sets of natural numbers, i.e., each
Li ⊆ N, and L = L1, L2, . . . Ln, and L is a class of lists as before. We say that
w ∈ L+ if w = j1, j2, . . . , jn, i.e., w is a sequence of numbers, such that for all
i ∈ [n], ji ∈ Li. The definition of repetitive (square) is analogous to the alphabet
of symbols case.

Note that any L = L1, L2, . . . , Ln can be normalized to be L̂, where each Li

is replaced with L̂i ⊆ [3n]. This can be accomplished by mapping all integers
in ∪L, at most 3n many of them, in an order preserving way, to [3n]. Clearly,
L is admissible iff L̂ is admissible, and given a list L, it can be normalized in
polynomial time. This allows us to restate the game theoretic approach given in
the previous section with bounded quantification; this in turn places the problem
in the polytime hierarchy, and hence in PSPACE. This is not surprising as many
two-player zero-sum games are in this class (see [Pap94, Chapter 19]).

The integer restatement suggests an approach based on 0-1 matrices. Given a
normalized list L = {L1, L2, . . . , Ln}, we define the 0-1 n× 3n matrix AL where
row i of AL is the incidence vector of Li: AL(i, j) = 1 ⇐⇒ j ∈ Li.

The attraction of this setting is that it may potentially allow us to use the
machinery of combinatorial matrix theory to show that L3 is admissible.

It is easy to see that L is admissible iff there is a selection S that picks a
single 1 in each row in such a way that there are no i consecutive rows equal
to the next i consecutive rows. More precisely, L is admissible iff there does
not exist i, j, such that 1 ≤ i ≤ j ≤ �n

2 �, and such that the submatrix of AL

consisting of rows i through j is equal to the submatrix of AL consisting of rows
j + 1 through 2(j + 1)− i.

Suppose that ΣL is re-ordered bijectively by Γ , and let

LΓ = {Γ (L1), Γ (L2), . . . , Γ (Ln)}.

Then L is admissible iff LΓ is admissible. Note that a bijective re-ordering of
ΣL is represented by a permutation of the columns of AL. Thus, permuting
the columns of AL does not really change the problem; the same is not true of
permuting the rows, which actually re-orders the list L, changing the constraints,
and therefore changing the problem.

Consider the matrices S = ALA
t
L and T = At

LAL. The element [sij] record
the number of elements common in the sets Li and Lj , where 1 ≤ i, j ≤ n .
The diagonal elements [sii] record the cardinality of the set Li, which is 3. The
element [tij] record the number of times the numbers i and j, where 1 ≤ i, j ≤ 3n,

280 N. Mhaskar and M. Soltys

occur together in the sets of L. The diagonal elements of T display the total
number of times each number in [3n] appears in L. The properties of these
matrices are studied to possibly use them in the construction of Φ(consistent
mapping).

4.3 Proof Complexity

By restating the generalized Thue problem in the language of 0-1 matrices, as
we did in Section 4.2, we can more easily formalize the relevant concepts in the
language of first order logic, and use its machinery to attack the problem.

We are going to adopt the logical theoryV0 as presented in [CN10], whose lan-
guage is L2

A = [0, 1,+, ·, ||; =1,=2,≤,∈] (see [CN10, Definition IV.2.2, pg. 76]).
Without going into all the details, this language allows the indexing of a 0-1
string X ; on the other hand, a 0-1 matrix AL can be represented as a string
XL with the definition: XL(3n(i − 1) + j) = AL(i, j). Hence, L2

A is eminently
suitable for expressing properties of strings.

Define the following auxiliary predicates:

– Let Three(XL) be a predicate which states that the matrix AL corresponding
to XL has exactly three 1s per row.

– Let Sel(YL, XL) be a predicate which states that YL is a selection of XL, in
the sense that YL corresponds to the 0-1 matrix which selects a single 1 in
each row of AL.

– Let SF(YL) be a predicate which states that YL is square-free (i.e., non-
repetitive).

Lemma 13. All three predicates Three, SF, Sel are ΣB
0 .

Our conjecture can be stated as a ΣB
1 formula over L2

A as follows:

α(XL) := ∃YL ≤ |XL|(Three(XL) ∧ Sel(YL, XL) ∧ SF(YL)).

Suppose we can prove that V0 � α(XL); then, we would be able to conclude
that given any L, we can compute a non-repetitive string over L in AC0. Like-
wise, if V1 � α(XL), then we would be able to conclude that the non-repetitive
string can be computed in polynomial time.

References

[Abr87] Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6),
1039–1051 (1987)

[Ber95] Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. Technical
report, Université du Québec a Montréal (1995)

[CN10] Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge
Univeristy Press (2010)

[DKT11] Dvořák, Z., Kawarabayashi, K.-I., Thomas, R.: Three-coloring triangle-free
planar graphs in linear time. ACM Trans. Algorithms 7(4), 41:1–41:14 (2011)

Non-repetitive Strings over Alphabet Lists 281

[GJS76] Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete
graph problems. Theoretical Computer Science 1(3), 237–267 (1976)

[GKM10] Grytczuk, J., Kozik, J., Micek, P.: A new approach to nonrepetitive se-
quences. arXiv:1103.3809 (December 2010)

[Grö59] Grötzsch, H.: Ein dreifarbensatz für dreikreisfreie netze auf der kugel 8, 109–
120 (1959)

[Hal87] Hall, P.: On representatives of subsets. In: Gessel, I., Rota, G.-C. (eds.) Clas-
sic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 58–62. Birkhäuser,
Basel (1987)

[Lee57] Leech, J.: A problem on strings of beads. Mathematical Gazette, 277 (Decem-
ber 1957)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
[Ram07] Rampersad, N.: Overlap-free words and generalizations. PhD thesis, Waterloo

University (2007)
[Sha09] Shallit, J.: A second course in formal languages and automata theory. Cam-

bridge Univeristy Press (2009)
[Sta99] Stanley, R.P.: Exercises on catalan and related numbers. Enumerative Combi-

natorics 2 (1999)
[SW09] Smyth, W.F., Wang, S.: An adaptive hybrid pattern-matching algorithm on

indeterminate strings. Int. J. Found. Comput. Sci. 20(6), 985–1004 (2009)
[Thu06] Thue, A.: Über unendliche zeichenreichen. Skrifter: Matematisk-

Naturvidenskapelig Klasse. Dybwad (1906)
[Tom10] Robinson Tompkins, C.: The morphisms with unstackable image words.

CoRR, abs/1006.1273 (2010)

Summary of classes of lists

L denotes a class of lists

L = L1, L2, . . . , Ln denotes a (finite) list of alphabets

Li denotes a finite alphabet

Class name Description Admissible

LΣk for all i ∈ [n], Li = Σk for Σk, yes for k ≥ 3; no for k < 3

Lk for all i ∈ [n], |Li| = k yes for k ≥ 4; no for k ≤ 2; for k = 3 ?

LSDR L has an SDR yes

LUnion L has the union property yes

LConsist L has a consistent mapping yes

LPart L is a partition yes

LGrow for all i, | ∪i
j=1 Lj | < | ∪i+1

j=1 Lj | yes, even for online games

	Non-repetitive Strings over Alphabet Lists
	1 Introduction
	2 Combinatorial Results
	3 Abelian Squares
	4 Future Directions
	4.1 Online Algorithms and Games
	4.2 Boolean Matrices
	4.3 Proof Complexity

	References

