
Enumerating Eulerian Trails

via Hamiltonian Path Enumeration

Hiroyuki Hanada1, Shuhei Denzumi2, Yuma Inoue2, Hiroshi Aoki2,
Norihito Yasuda1, Shogo Takeuchi1, and Shin-ichi Minato1,2

1 ERATO Minato Discrete Structure Manipulation System Project,
Japan Science and Technology Agency, Sapporo, Hokkaido, Japan

2 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Hokkaido, Japan

hana-hiro@live.jp

Abstract. Given an undirected graph G, we consider enumerating all
Eulerian trails, that is, walks containing each of the edges in G just once.
We consider achieving it with the enumeration of Hamiltonian paths
with the zero-suppressed decision diagram (ZDD), a data structure that
can efficiently store a family of sets satisfying given conditions. First we
compute the line graph L(G), the graph representing adjacency of the
edges in G. We also formulated the condition when a Hamiltonian path
in L(G) corresponds to an Eulerian trail in G because every trail in G
corresponds to a path in L(G) but the converse is not true. Then we
enumerate all Hamiltonian paths in L(G) satisfying the condition with
ZDD by representing them as their sets of edges.

Keywords: Eulerian trail, Hamiltonian path, path enumeration, line
graph, zero-suppressed binary decision diagram.

1 Introduction

In the graph theory, an Eulerian trail of an undirected graph G is a walk that
contains each of the edges in G just once. We can easily judge whether a con-
nected undirected graph G has an Eulerian trail: G has an Eulerian trail if and
only if it has no or just two vertices of odd degree [1, 2]. In addition, it is also
known that we can obtain an Eulerian trail of G in a simple manner called
Fleury’s algorithm [1]. However, it is considered difficult to enumerate all Eule-
rian trails: its time complexity is proved to be “#P-complete” (roughly speaking,
time complexity “P-complete” for each trail) [3–5].

To solve such a problem with feasible computational time and space, we con-
sider enumerating Eulerian trails by way of enumerating Hamiltonian paths. A
Hamiltonian path of an undirected graph G is a walk that contains each of
the vertices in G just once. Although enumerating all Hamiltonian paths is not
so easy in general, either, many approaches have been proposed to enumerate
them [6–10], and we especially focus on the algorithm using zero-suppressed
binary decision diagram (ZDD) [11] with the advantage described next.

M.S. Rahman and E. Tomita (Eds.): WALCOM 2015, LNCS 8973, pp. 161–174, 2015.
c© Springer International Publishing Switzerland 2015

162 H. Hanada et al.

Here we consider enumerating all Eulerian trails in a simple graph G, that is,
there exists at most one edge between every pair of vertices and there does not
exist any loop (an edge whose two ends are the same vertex) [1]. The algorithm
is explained as the following three parts:

– First we compute the line graph L(G) so that every Eulerian trail in a graphG
correspond to a Hamiltonian path in L(G) (Sect. 3.1). Note that the converse
does not hold, that is, not all paths in L(G) correspond to trails in G.

– Then we derive the condition when a path in L(G) corresponds to a trail in G
(Sect. 3.2). We formulate the condition by the “labels” defined for the edges in
L(G).

– Finally we enumerate Hamiltonian paths in L(G) satisfying the condition
above with the algorithm based on ZDD [11]. ZDD is a data structure that
can store a family of sets with small memory. We store such paths as sets of
edges in a ZDD (Sect. 4.1).We also use the operation on ZDD of excluding sets
satisfying a given condition, in order to exclude Hamiltonian paths that do not
satisfy the condition above.

If the graph G is not simple, in order to obtain a simple one, we insert some
vertices to G (Sect. 4.2).

2 Definitions

We denote by (V,E) the graph whose set of vertices is V and whose set of edges
is E, respectively.

For an undirected graphG, a pair of a sequence of vertices (v1, v2, . . . , vm) and a
sequence of edges (e1, e2, . . . , em−1) is called a walk if the two ends of ei are vi and
vi+1 for i ∈ {1, 2, . . . ,m− 1}. We call a sequence of either vertices or edges also a
walk if there exists the other sequence satisfying the condition above.

A walk is called to be closed if its sequence of vertices (v1, v2, . . . , vm) satisfies
v1 = vm. A trail is a walk whose edges in the sequence are distinct. A path is
a walk whose vertices in the sequence are distinct (except for the precondition
v1 = vm if the walk is closed). Note that any path is also a trail. A closed path
is called a cycle. [1]

For a connected undirected graph G, it is called a semi-Eulerian graph (or an
Eulerian graph) if there exists a trail (or a closed trail) containing all edges in
G. Such a trail is called an Eulerian trail. Similarly, for a connected undirected
graph G, it is called a semi-Hamiltonian graph (or a Hamiltonian graph) if there
exists a path (or a cycle) containing all vertices in G. Such a path is called a
Hamiltonian path. [1]

3 Representing Eulerian Trails as Hamiltonian Paths in
the Line Graph

3.1 Line Graph

Given a connected undirected graph G, we use its line graph L(G) so that every
Eulerian trail in G gives a Hamiltonian path in L(G). The line graph L(G) is a

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 163

Fig. 1. An example of a line graph. In
the line graph, characters on edges rep-
resent the vertices in the original graph
where the edges in the original graph
are adjacent (see the “label” defined in
Definition 2).

Fig. 2. An example of a trail in a graph
and the corresponding path in the line
graph

graph characterizing the adjacency of the edges in G as follows: L(G) has vertices
corresponding one-to-one to the edges in G, and there exists an edge in L(G)
between the two vertices u and v if and only if two edges in G corresponding
to u and v are adjacent [2, 12]. An example is shown in Fig. 1. In this paper we
define it formally as follows:

Definition 1. Given two undirected graphs G = (V,E) and G′ = (V ′, E′), G′

is called the line graph of G, denoted by L(G), if

– V ′ corresponds to E one-to-one, that is, there exists a bijection l : E → V ′,
and

– For any v′1, v
′
2 ∈ V ′, there exists an edge between v′1 and v′2 if l−1(v′1),

l−1(v′2) ∈ E are adjacent in G, or no edge otherwise.

It is known in 1960s that L(G) is a (semi-)Hamiltonian graph if G is a (semi-)
Eulerian graph [13, 14]. Moreover, a sufficient and necessary condition for G is
known when L(G) is (semi-)Hamiltonian.

Property 1. [13] For an undirected graphG = (V,E), L(G) is either Hamiltonian
or semi-Hamiltonian1 if and only if G is sequential, where G is called sequential
if there exists a permutation of E: (e1, e2, . . . , em) (ei ∈ E, m = |E|) such that
ei and ei+1 are adjacent for all i ∈ {1, 2, . . . ,m− 1}.

If the sequence of edges (e1, e2, . . . , em) is an Eulerian trail of G then it is also
sequential, but the converse does not always hold. Therefore, every Eulerian trail
in G corresponds to a Hamiltonian path in L(G) but the converse does not always
hold. For example of Fig. 1, an Eulerian trail inG “1→2→5→4→3→8→7→6”cor-
responds to a Hamiltonian path inL(G) (Fig. 2); however, “1→2→4→3→8→6→7
→5” is a Hamiltonian path in L(G) but not an Eulerian trail in G.

1 The original work [13] treats only Hamiltonian case, however, it is easy to prove
semi-Hamiltonian case with the similar way.

164 H. Hanada et al.

Fig. 3. An example of a path in the line graph L(G) of a simple graph G that does
not have a corresponding trail in the original graph

Thus, to enumerate Eulerian trails in G as Hamiltonian paths in L(G), we
consider excluding such excessive paths. However, the condition of exclusion has
not been derived as far as the authors know. (For directed graphs, it is known in
1963 at latest that there is a one-to-one correspondence between the trails in G
and the paths in L(G), that is, no exclusion is needed2 [6].) In the next section
we derive the condition when G is a simple graph.

3.2 The Condition When a Path in a Line Graph Represents a
Trail in the Original Graph

Let us assume G is a connected undirected simple graph and consider when a
path p in L(G) does not correspond to a trail in G (not limited to Hamiltonian
or Eulerian). An example is shown in Fig. 3. In this case, the path in L(G) with
three vertices does not correspond to a trail in the original graph because three
successive edges in G share a vertex.

In this section we prove that a path in L(G) does not correspond to a trail in
G only if the case above occurs, that is, three edges in G corresponding to three
successive vertices in the path in L(G) shares a vertex.

First, to state the fact formally, we define labels of the edges in L(G) as follows:

Definition 2. For an undirected simple graph G and an edge e′ = (u′, v′) (e′ ∈
E′, u′, v′ ∈ V ′) in the line graph L(G) = (V ′, E′), we define the label of e′,
denoted by λ(e′), by the only vertex in G where the two edges in G: l−1(u′) and
l−1(v′) are adjacent.

Note that the label must be unique for any e′ because no two edges in a simple
graph G exist between the same pair of vertices. See Fig. 1 in Sect. 3.1 for an
example.

From the definition of the label, in case three edges in G share a vertex like
in Fig. 3, the labels in the corresponding two edges in L(G) must be the same.
The fact can be formulated as follows:
2 In this paper we omit the definition of the line graph of a directed graph. See the
reference.

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 165

Theorem 1. Let G = (V,E) be a connected undirected simple graph and p be a
path in L(G) = (V ′, E′) whose sequence of vertices is (v′1, v

′
2, . . . , v

′
m) (v′i ∈ V ′).

Then the followings are equivalent: (A) there exists a trail in G whose sequence
of edges is (l−1(v′1), l

−1(v′2), . . . , l
−1(v′m)) (l−1(v′i) ∈ E), and (B) the same edge

label does not appear successively in the sequence of edges for p.

Proof. Let v′a
e′a→ v′b

e′b→ v′c (v′i ∈ V ′, e′i ∈ E′) be a subpath of p. Then we prove
the corresponding sequence of edges (l−1(v′a), l

−1(v′b), l
−1(v′c)) is a subtrail in G

if and only if the condition (B) is satisfied.
We focus on how l−1(v′a), l

−1(v′b), l
−1(v′c) ∈ E are connected in G, which is

classified to the following three cases:

(X) In case the labels of e′a and e′b are the same, the three edges l−1(v′a), l
−1(v′b),

l−1(v′c) ∈ E shares the vertex of the label. Thus these three edges are
connected at a vertex in G (Case 1 in Fig. 4).

(Y) In case the labels of e′a and e′b are different,
(Y1) If the two edges l−1(v′a) and l−1(v′c) are adjacent in G, then there

exists an edge between v′a and v′c in L(G), where its label is differ-
ent from the other two. Thus the three edges yield a cycle (Case 2
in Fig. 4).

(Y2) If the two edges l−1(v′a) and l−1(v′c) are not adjacent in G, then they
yield a non-cycle path (Case 3 in Fig. 4).

From the consideration, we prove (A) and (B) are equivalent.

Proof of (A) ⇒ (B): Suppose p, a path in L(G), has two successive edges with

the same label, that is, there exist a subpath v′a
e′a→ v′b

e′b→ v′c in L(G) with
λ(e′a) = λ(e′b). In this case l−1(v′a), l

−1(v′b) and l−1(v′c), three edges inG, must
be adjacent with the form of (X) among (X), (Y1) and (Y2) above. This con-
tradicts the precondition that (l−1(v′a), l−1(v′b), l

−1(v′c)) is a subtrail in G.
Proof of (B) ⇒ (A): Let p be a path in L(G) without any two successive edges

with the same label. Then, for any three successive vertices in p, corresponding
three edges inGmust take the form of (Y1) or (Y2). This implies no branching
edges exist in the sequence of edges and thus the whole p corresponds to a trail
in G. ��

4 Enumerating Hamiltonian Paths in the Line Graph
Corresponding to Eulerian Trails

4.1 Representing Hamiltonian Paths by Zero-Suppressed Binary
Decision Diagram

As an algorithm of enumerating Hamiltonian paths satisfying given conditions,
we use an enumeration algorithm based on the zero-suppressed binary decision
diagram (ZDD) [11], a data structure originally for representing binary functions
and also for storing families of sets. A famous algorithm for the enumeration with
ZDD is proposed by Knuth [15], called SIMPATH in his website [16]. First we
show the outline of ZDD.

166 H. Hanada et al.

Fig. 4. All possible relationships of connections of three edges l−1(v′a), l
−1(v′b), l

−1(v′c)
given as a subpath in the line graph (v′a, v

′
b, v

′
c) of a simple graph

Definition 3. [11,15] Given a sequence of boolean variablesA = (a1, a2, . . . , an) :
{0, 1}n anda boolean function f(a1, a2, . . . , an) : {0, 1}n → {0, 1}, zero-suppressed
binary decision diagram (ZDD) for f is a minimal directed acyclic graph (DAG)
such that:

– There are two vertices “0-terminal” and “1-terminal”. These vertices are sinks,
that is, they do not have any outgoing edges.

– All other vertices are named by elements in A. (Two or more vertices with the
same name may exist.) Each of them has two outgoing edges named “0-edge”
and “1-edge”. For any vertex named ai, the edges are connected to a vertex
named aj (j > i), “0-terminal” or “1-terminal”.

– f(a1, a2, . . . , an) takes 1 for the arguments defined by paths from the root ver-
tex to “1-terminal” in the diagram as follows: for every path above, ai (i =
1, 2, . . . , n) takes 1 if there exists a vertex named ai which is a source of “1-
edge” in the path, otherwiseai takes 0.For the other arguments f(a1, a2, . . . , an)
takes 0.

ZDD can represent a family of sets by regarding A as the universal set, the
assignments for variables a1, a2, . . . , an as the existence of the elements in a set,
and the function value f(a1, a2, . . . , an) as taking 1 if the set is contained in the
family or 0 otherwise. ZDD is invented as a variant of BDD (binary decision
diagram) [17] so that the diagram becomes smaller when f takes zero for most
of the elements in A, that is, the number of sets stored in the family is much
fewer than 2n (the number of all possible sets). An example is shown in Fig. 5.

As stated in the definition, ZDD must be minimal, that is, the vertices in
ZDD must be removed or merged as long as the resulted binary function (or
family of sets) is not changed. Concretely, we apply the operations in Fig. 6 to
make the ZDD minimal [11].

Not only expressing a family of sets by a ZDD, we can conduct set operations
like “excluding sets containing certain elements” on it [11,15]. We use the opera-
tions to implement the condition when a Hamiltonian path in L(G) corresponds
to an Eulerian trail in G (Theorem 1(B)).

4.2 Algorithm for Enumerating Eulerian Trails

To represent paths in a graph with a ZDD, we represent every path as a set
of edges, with the universal set for the ZDD being the set of all edges in the

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 167

Fig. 5. An example of ZDD for a family of sets. It represents the family of
five sets {‘c’, ‘d’}, {‘b’, ‘c’, ‘d’}, {‘a’}, {‘a’, ‘d’} and {‘a’, ‘c’} over the universal set
{‘a’, ‘b’, ‘c’, ‘d’}.

Fig. 6. The reduction rules of ZDD [11]. The first one is to remove an excessive vertex:
in case there is a vertex whose 1-edge is connected to 0-term, remove it and connect its
parent to its destination of 0-edge. The second one is to merge two vertices contributing
to the same binary function.

graph [15] (Fig. 7(B)(C)). Note that different paths have different sets of edges,
which is not the case for trails.

To enumerate all Hamiltonian paths in L(G) satisfying the condition of The-
orem 1(B), however, the condition cannot be directly applied because the orders
of the edges the paths traverse are not stored in the ZDD. Thus, for each Hamil-
tonian path p in L(G) given as a set of edges, we instead examine the condition
of Theorem 1(B) by “for every pair of adjacent edges in L(G) with the same
label, they does not appear simultaneously in a path” rather than examining
every pair of adjacent edges only in the path. We can apply the condition in the
following two manners:

1. A straightforward manner is that we first store all Hamiltonian paths in
L(G) to a ZDD with SIMPATH algorithm, and then remove all paths not
satisfying the condition. Concretely, we repeat the following for every pair
of adjacent edges X,Y in L(G) with the same label: remove all paths (set of
edges) in the ZDD containing both X and Y .

2. The other manner is based on the behavior of SIMPATH algorithm: for each
edge in L(G) (sorted in a certain order), it adds edges to a ZDD one by one
with excluding sets of edges that cannot be paths. Thus we simultaneously

168 H. Hanada et al.

Fig. 7. An example of ZDD representation of Hamiltonian paths satisfying Theorem
1 in a line graph. In the figure of (D), unspecified ZDD edges are regarded as being
connected to 0-terminal. (For example, the destination of 0-edge for ‘B6’ is 0-terminal.

Fig. 8. An example of adding a vertex and an edge for a semi-Eulerian graph to assure
unique start/goal vertices in L(G). In this case, because the degree of the vertex ‘D’ is
3, an odd number larger than 1, we add a dummy vertex ‘*’ and an edge ‘9’.

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 169

exclude sets of edges that do not satisfy the condition above. (We adopted
this way in the experiment.)

Lastly we show the whole algorithm of enumerating Eulerian trails including
for non-simple graphs.

1. Given a connected undirected graph G, make G a simple graph without
changing the number of the Eulerian trails in it so that Theorem 1 can be
applied. Precisely,
– In case there exists a pair of vertices with two or more edges between

them, split each of the edges into two by inserting a vertex except for
arbitrary one edge.

– In case there exists a loop edge (Sect. 2), split it into three by inserting
two vertices3.

2. Add some vertices and edges to G so that the start and goal vertices of
Hamiltonian paths in L(G) become unique, without changing the number of
the Eulerian trails in it. Precisely,
– In case G is semi-Eulerian, for each of the two vertices with odd degree

(Sect. 1), create a dummy vertex and an edge to connect to the vertex of
odd degree unless the degree is 1. This assures the start and goal edges of
the Eulerian trails in G being unique, that is, the start and goal vertices
of the Hamiltonian paths in L(G) being unique (See Fig. 8).

– In case G is Eulerian, (1) we add two new vertices u1 and u2 to G, (2)
remove arbitrary edge (v1, v2) from G and (3) create two edges (u1, v1)
and (u2, v2). (Namely, we “split” an edge in G into two.) As a result, G
becomes semi-Eulerian.

3. Create L(G) from G. Simultaneously, classify all edges in L(G) by their
labels.

4. Enumerate all Hamiltonian paths in L(G) satisfying the condition of Theo-
rem 1(B) stated before.

5 Experiment

5.1 Setting

We implemented the algorithm of Sect. 4.2 with Graphillion [18], a Python
library for graphs and their paths based on ZDD in the manner in Sect. 4.1. We
used the implementation of the Hamiltonian path enumeration in Graphillion
with the default parameter.

We enumerated the Eulerian trails in the four types of graphs shown in Figs.
9 to 12. Their numbers of vertices, edges and degrees are shown in Tables 1 and
2. Because the line graph L(G) has d(d − 1)/2 edges for each vertex of degree

3 In this case we treat two ends of the loop edge are distinguished: for example,
we treat there are two Eulerian trails (not one) in the graph with three vertices
{v1, v2, v3} and three edges {(v1, v2), (v2, v2), (v2, v3)} starting at v1 and ending at
v3. The algorithm for treating them not distinguished is not developed yet.

170 H. Hanada et al.

d in G, the time and space for the computation are expected to grow much for
increasing vertex degree even if the number of edges in G is not so increased.
Thus we experimented graphs with constant maximum degree (Ring, Diamond)
and increasing degree (Bunch, Complete). As seen in Table 2, the number of
edges in Bunch and Complete are multiplied by Θ(k) after the conversions to
the line graphs.

Fig. 9. The graph Ring(k) (k = 3) Fig. 10. The graph Diamond(k) (k = 3).
This graph is a variant of Aztec diamond
[19].

Fig. 11. The graph Bunch(k) (k = 5).
The start and the goal vertices are the two
points if k is odd (i.e. the graph is semi-
Eulerian), otherwise one of the edges are
divided into two to set the start and the
goal (Operation 2 of the whole algorithm
in Sect. 4.2). As a result, number of Eule-
rian trails are the same for Bunch(2m− 1)
and Bunch(2m) for anym.

Fig. 12. The graph Complete(k) (k = 5).
Such a graph is called the complete graph
[1,2,12]. It has Eulerian trails if and only
if k is odd.

We measured the computation times of the enumeration; times for setting up
graph structures (converting given graphs to their line graphs, adding dummy
vertices for making them simple and unique the start and goal vertices) and ob-
taining paths which are Hamiltonian and satisfying the condition of Theorem 1.
The experiment was conducted on a Linux (Xubuntu 14.04) computer with the
CPU “AMD A4-5000 APU” (clock: 1.5GHz) and 4GB RAM. The running time
for each graph is limited to one hour.

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 171

Table 1. Graphs examined in the experiment

Name Structure #Vertices #Edges Maximum degree

Ring(k) Fig. 9 2k + 2 4k + 1 4
Diamond(k) Fig. 10 2k(k + 1) 4k2 4
Bunch(k) Fig. 11 2 k k

Complete(k) Fig. 12 k k(k − 1)

2
k − 1

Table 2. The properties of the graphs after making the graph simple and adding
dummy vertices (Sect. 4.2).

Name #Vertices #Edges #LineGraphEdges Maximum degree

Ring(k) 3k + 3 5k + 2 13k + 1 4

Diamond(k) 2k(k + 1) + 2 4k2 + 1 4k(3k − 2) 4

Bunch(k) k + 3

{
2k + 1 (k: odd)

2k (k: even)

{
k2 − 1 (k: odd)

k2 + 2k − 1 (k: even)

{
k + 1 (k: odd)

k (k: even)

Complete(k) k + 2 k(k − 1)

2
+ 1

k2(k − 1)

2
k − 1

Table 3. Number of Eulerian trails and computation times (sec) of four types of graphs

Ring(k) Diamond(k) Bunch(k) Complete(k)
k #trails time #trails time #trails time #trails time

1 6 0.0093 1 0.0066 1 0.0073 —
2 36 0.0139 40 0.0152 1 0.0065 —
3 216 0.0184 132,160 0.0487 6 0.0099 1 0.0063
4 1,296 0.0222 33,565,612,800 2.6198 6 0.0101 —
5 7,776 0.0266 Memory out 120 0.0224 132 0.0169
6 46,656 0.0309 120 0.0238 —
7 279,936 0.0356 5,040 0.2487 64,988,160 49.6530
8 1,679,616 0.0402 5,040 0.2678 —
9 10,077,696 0.0450 362,880 10.5978 Time out
10 60,466,176 0.0493 362,880 10.5284
11 362,797,056 0.0555 Memory out
12 2,176,782,336 0.0597
13 13,060,694,016 0.0647
14 78,364,164,096 0.0697
15 470,184,984,576 0.0747

20 3.6× 1015 0.1066
30 2.2× 1023 0.1887

172 H. Hanada et al.

Table 4. Numbers of vertices and edges in the line graph. Note that the numbers
of vertices and edges are equivalent to #Edges and #LineGraphEdges in Table 2,
respectively. Underlined numbers denote the cases of failed computations (memory-
out or time-out).

L(Ring(k)) L(Diamond(k)) L(Bunch(k)) L(Complete(k))
k vertices edges vertices edges vertices edges vertices edges

1 7 14 5 4 3 2 —
2 12 27 17 32 4 3 —
3 17 40 37 84 7 14 4 3
4 22 53 65 160 8 15 —
5 27 66 102 269 11 34 11 30
6 32 79 12 35 —
7 37 92 15 62 22 105
8 42 105 16 63 —
9 47 118 19 98 37 252
10 52 131 20 99
11 57 144 23 142
12 62 157
13 67 170
14 72 183
15 77 196
...
20 102 261
30 152 391

5.2 Result

We show the results of computation times and numbers of trails in Table 3.
Table 4 describes the numbers of vertices and edges in the line graph.

From Table 4 with the three graphs Diamond(k), Bunch(k) and Complete(k),
it seems to be possible to enumerate Eulerian trails if there are about 120 edges
or less in the line graph. However, as shown by Ring(k), more edges would be
acceptable according to the shape of graphs. It is easily assumed, but yet to be
examined, that the Hamiltonian paths in L(Ring(k)) satisfying Theorem 1 are
well compressed by ZDD.

As for the computation times, they grow rapidly for increasing k except for
Ring(k) in almost linear against k, which is natural since the number of edges
in the line graphs grow in O(k2) or O(k3) (see also Table 2). However, the linear
time for Ring(k) is unexpectedly fast because, in general, we need O(2n) time
and space to compute ZDD for a universal set of size n.

There remains the problem of what parameter is essential for fast computa-
tion. From the property of ZDD, it is clear that the number of edges affects
much. However, we should examine other parameters from the result of Ring(k):
in fact, Eulerian trails in Ring(20) (102 vertices and 261 edges in the line graph)
is much easier to be computed than that in Diamond(5) (102 vertices and 269
edges in the line graph).

Enumerating Eulerian Trails via Hamiltonian Path Enumeration 173

6 Conclusion

In this research we considered enumerating all Eulerian trails in an undirected
graph G, which in general requires high computational cost. We focus on ZDD-
based Hamiltonian path enumeration, which can enumerate not only all Hamil-
tonian paths but also Hamiltonian paths satisfying certain conditions efficiently.
We consider converting G into the line graph L(G), where every Eulerian trail in
G corresponds to a Hamiltonian path in L(G) (Sect. 3.1). In addition, because
not all Hamiltonian paths in L(G) correspond to Eulerian trails in L(G), we
formulated the condition by defining “labels” of the edges in L(G) (Theorem 1
in Sect. 3.2). As a result of the experiment, we could enumerate Eulerian trails
in G if L(G) has 120 or less edges, although more edges can be accepted for
certain type of graphs.

We consider the following problems as future works: finding parameters of
graphs determining the computational time other than the number of vertices
and edges, and developing more memory-efficient data structure.

References

1. Wilson, R.J.: Introduction to Graph Theory, 4th edn. Pearson Education (1996)
2. Harary, F.: Graph Theory, 1st edn. Addison-Wesley (1969)

3. Mihail, M., Winkler, P.: On the number of Eulerian orientations of a graph. In:
Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1992, pp. 138–145 (1992)

4. Creed, P.: Sampling Eulerian orientations of triangular lattice graphs. Journal of
Discrete Algorithms 7(2), 168–180 (2009)

5. Ge, Q., Štefankovič, D.: The complexity of counting Eulerian tours in 4-regular
graphs. Algorithmica 63(3), 588–601 (2012)

6. Kasteleyn, P.W.: A soluble self-avoiding walk problem. Physica 29(12), 1329–1337
(1963)

7. Rubin, F.: A search procedure for Hamilton paths and circuits. Journal of the
ACM 21(4), 576–580 (1974)

8. Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM
Journal on Computing 5(1), 90–99 (1976)

9. van der Zijpp, N.J., Catalano, S.F.: Path enumeration by finding the constrained
k-shortest paths. Transportation Research Part B: Methodological 39(6), 545–563
(2005)

10. Liu, H., Wang, J.: A new way to enumerate cycles in graph. In: International
Conference on Internet andWeb Applications and Services/Advanced International
Conference on Telecommunications, p. 57 (2006)

11. Minato, S.: Zero-suppressed BDDs and their applications. International Journal on
Software Tools for Technology Transfer 3(2), 156–170 (2001)

12. Diestel, R.: Graph Theory, 4th edn. Springer (2010)

13. Chartrand, G.: On Hamiltonian line-graphs. Transactions of the American Math-
ematical Society 134, 559–566 (1968)

14. Harary, F., Nash-Williams, C.S.J.A.: On Eulerian and Hamiltonian graphs and line
graphs. Canadian Mathematical Bulletin 8, 701–709 (1965)

174 H. Hanada et al.

15. Knuth, D.E.: 7.1.4 Binary Decision Diagrams. In: Combinatorial Algorithms,
vol. 4A. The Art of Computer Programming, vol. 4A. Pearson Education (2011)

16. Knuth, D.E.: Don Knuth’s home page, http://www-cs-staff.stanford.edu/~uno/
17. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers C-35(8), 677–691 (1986)
18. Inoue, T., Iwashita, H., Kawahara, J., Minato, S.: Graphillion: Software library

designed for very large sets of graphs in python. Technical Report TCS-TR-A-13-
65, Division of Computer Science, Hokkaido University (2013)

19. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and
domino tilings (part I). Journal of Algebraic Combinatorics 1(2), 111–132 (1992)

http://www-cs-staff.stanford.edu/~uno/

	Enumerating Eulerian Trailsvia Hamiltonian Path Enumeration
	1
Introduction
	2
Definitions
	3
Representing Eulerian Trails as Hamiltonian Paths in the Line Graph
	3.1
Line Graph
	3.2
The Condition When a Path in a Line Graph Represents a Trail in the Original Graph

	4
Enumerating Hamiltonian Paths in the Line Graph Corresponding to Eulerian Trails
	4.1
Representing Hamiltonian Paths by Zero-Suppressed Binary Decision Diagram
	4.2
Algorithm for Enumerating Eulerian Trails

	
5 Experiment
	5.1
Setting
	5.2
Result

	6
Conclusion
	References

