
Chapter 9
Implementation of QTLC Systems

9.1 Introduction

Optical communications appear as a natural evolution of digital radio frequency
(RF) communications. This evolution implied a change of the frequency range of the
carrier from about 109 Hz for radio and microwave communications to about 1015

Hz for optical communications (see also Sect. 4.4). The major advantage in using
optical frequencies is related to the possibility of utilizing the enormous bandwidths
available in the optical spectrum. Of course, owing to the very small wavelengths
involved, a completely different technology was needed for the development of opti-
cal communications.

A fundamental role in optical technology has been played by the invention of
laser around 1960. This component is a high-powered, almost monochromatic and
very directive source, whose advent suggested the possibility of its use in long-
distance optical transmissions. Indeed, the high directivity of this new source allows
huge antenna gains. On the other hand, the hope related to the advent of the laser
appeared somewhat cooled down by the presence of the atmospheric turbulence, a
phenomenon caused by interaction of the light with the atoms. The development of
optical fibers enabled the experimenters to use a waveguided channel, practically
insensitive to interferences with the surrounding environment. This fact gave new
impetus to optical communications, with a wide range of practical applications in
the field of terrestrial communications.

Another fundamental difference between radio and optical communications arises
from the fact that at optical frequencies it is not possible the use of antennas extracting
an electrical signal from the electromagnetic field and only detectors sensitive to
the field intensity, as photodetectors, are available. Fortunately, the development of
photodetection devices as the avalanche photodetectors (APD) combined with the
high energy of laser beammade possible the combination of the simplest modulation
(intensity modulation) with the direct detection of the signal energy. This approach,
not possible at radio frequency, has been largely utilized in terrestrial fiber optics.
Moreover, usual means of the radio frequency communications as phase modulation
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422 9 Implementation of QTLC Systems

and coherent detection can be employed in optical communications to improve the
performances of the direct detection.

9.1.1 The System Model

The first optical communication systems mimicked the well-known radio frequency
techniques. This gave rise to classical optical systems as incoherent detection and
homodyne detection. These systems are perfectly adequate to the needs of the optical
communications as long as the received field is so large that the quantum effects are
negligible. On the other hand, in applications as deep space communications, the
received field may be so weak that quantum effects dominate and a clear advantage
is obtained using quantum detection approaches. Moreover, in other applications as
quantum key distribution, the use of weak fields with quantum detection becomes
essential to guarantee the security of the transmission.

As we have seen in the previous chapters, the block diagram of a point-to-point
optical communications system is by no means different from the standard model
and is given by the cascade of a transmitter, a physical channel, and a receiver.

The optical transmitter is composed of the cascade of an optical source,
a modulator, and a coupling device adapting the beam to the optical transmission
medium. The source (a laser) generates an electromagnetic field in the optical range.
The modulator, on the basis of the digital information to be transmitted, modifies a
parameter (usually the amplitude or the phase) of the electromagnetic field.

The physical transmission channel may be the free space or an optical fiber. On
the choice of the medium is based a rough classification into guided and unguided
optical transmission systems.

Finally, the optical receiver is the cascade of a coupling device, a demodulator,
and a photodetector. The demodulating device, if any, combines the received optical
field with a locally generated field. The photodetector converts the optical signal into
an electric signal for the postdetection processing.

The main difference between free space and guided transmission systems resides
in the coupling approach of the laser beam to the optical medium. In free space
systems (Fig. 9.1) at the transmitter side an optical antenna focuses the field into
a narrow beam. At the receiver side, another optical antenna refocuses the electro-
magnetic beam, possibly spread by the medium, into the detection surface (see also
Sect. 4.4.5). In optical fiber transmissions (Fig. 9.2) the couplings laser–fiber and
fiber–detector are realized via fiber connections, adapters, or optical lenses.

laser
beam

focalizer

free space

focalizer detector

Fig. 9.1 Scheme of quantum optical system in the free space
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Fig. 9.2 Scheme of quantum optical guided system

9.1.2 Outline of the Chapter

In Sect. 9.2 we present the basic components of optical communication systems,
namely, laser, modulators, beam splitters, and photodetectors. In particular, we give
their models both from the classical and the quantum point of view. In Sect. 9.3,
the major classical optical communication schemes (direct detection and homodyne
detection) are presented with their quantum equivalent models.The limits of classical
optical communications (shot noise limit and standard quantum limit) are introduced.
In Sect. 9.4 the most popular binary quantum communication schemes are presented,
starting from the Kennedy and the Sasaki–Hirota receivers. Particular attention is
devoted to the analysis and interpretation of the Dolinar receiver, that attains the
Helstrom bound. In Sect. 9.5 recent evolutions toward suboptimal K -ary systems
are presented. In particular, multidisplacement receivers for K -PSK and K -QAM
are outlined. Finally, some results on possible implementations of PPM receivers are
presented.

Advice to the reader. Some topics of this chapter imply the knowledge of the con-
tinuous variables, whose fundamentals are developed in Chap.11. Then, we strongly
recommend the reader to revisit the present chapter after an adequate comprehen-
sion of some topics of Chap.11, as bosonic operators and displacement and rotation
transformations.

9.2 Components for Quantum Communications Systems

As noted in the introduction, the main components of the optical communication
systems are the laser and the photodetector. Other components, asmodulators, lenses,
and mirrors, are used in order to improve the communication performances through
modulation and demodulation techniques.

In this section, a summary description of the main components of the transmitter
and the receiver of quantum communications systems is given.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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9.2.1 Laser

The key component of all quantum communications systems is the laser, that pro-
vides the physical carrier for the information transmission. For a detailed analysis of
principles and applications the reader may see for instance [1].

From a physical point of view, the laser is a narrow band optical amplifier with
amplification provided by an active medium excited by an external source of energy
(the pump in the technical jargon). As in many electrical oscillators, optical oscil-
lation arises as a combined effect of the spontaneous photon emission of the active
medium and of the feedback provided by an optical cavity. In order that the oscilla-
tion may start, the pump power must be above a threshold assuring that the gain of
the active medium is greater than the loss. Moreover, the length of the cavity must
be matched to the natural laser wavelength.

From a classical point of view, the radiation produced by a laser can be modeled
as an electromagnetic wave with electric field

E(r, t) = E0[ α(r, t)ei2πνt + α∗(r, t)e−i2πνt ]p(r, t) (9.1)

originating as a single mode solution of the wave equation into the cavity and
propagating in the external space along some direction z, with optical frequency ν.
The vector p(r, t) takes into account the field polarization. The complex amplitude
α(r, t) can be written as

α(r, t) = α0(r)eiφ(r,t), (9.2)

where φ(r, t) is the time and space-dependent phase. In the simplest case, known as
Gaussian beam, the amplitude α0(r) has circular symmetry in the plane orthogonal
to the propagation axis z and is given by

α0(r) = α0

z + iz0
exp

(
− i(x2 + y2)

2(z + iz0)

)
, r = (x, y, z), (9.3)

where α0 and z0 are real constants. The corresponding intensity is

I (r) = α2
0

z2 + z20
exp

(
− z20(x2 + y2)

z2 + z20

)
. (9.4)

This beam has the nice property that its shape remains unchanged in reflection and
diffraction.

The field (9.1) may be put in the form

E(r, t) = [ x1(r, t) cos(2πνt) + x2(r, t) sin(2πνt)]p(r, t), (9.5)
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where the quadrature components x1 and x2 are in evidence. It can be proved that x1
and x2 have the same properties of the position q and the momentum p of a mechan-
ical harmonic oscillator (see Sect. 11.3). Then, from a quantum point of view, after
a suitable normalization, the components x1 and x2 are substituted by two quan-
tum observables q and p satisfying the canonical correlation condition [ q, p ] = 2i.
Equivalently, α(r, t) and its conjugate are substituted by the bosonic operators a
and a∗ satisfying the correlation condition [ a, a∗ ] = 1 and operating in the Fock
space. The formalization of these ideas will be seen in the context of continuous
variables (Chap. 11), where the radiation emitted by a laser is modeled as a coherent
state.

9.2.2 Beam Splitter

The beam splitter is a partially transmitting mirror (Fig. 9.3) which combines two
optical beams impinging orthogonally on the mirror surface. In the case of fiber
links, the device with the same role is called fiber combiner or fiber coupler, and it
is usually obtained by fusing together the core of two fiber patches.

The classical model of the beam splitter, known from the nineteenth century, is as
follows. We assume that the input beams have the same frequency and amplitudes α

and β. Then the output beams α′ and β ′ are related to α and β by the relations

α′ = √
1 − τα + √

τβ

β ′ = √
τα − √

1 − τβ (9.6)

where phases have been neglected for simplicity. Since

|α′|2 + |β ′|2 = |α|2 + β|2, (9.7)

the device is lossless. The meaning of the parameter τ is apparent. If β = 0, one gets
|α′|2 = (1−τ)|α|2 and |β ′|2 = τ |α|2. Then τ is the fraction of the power transmitted

Fig. 9.3 Beam splitter with
the input kets |α〉 and |β〉 and
the output kets |α′〉 and |β ′〉

|β |α

|α

|β
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through the mirror and is called the transmissivity of the beam splitter. If the device
introduces losses due to absorption and scattering, the previous equation becomes

|α′|2 + |β ′|2 = (1 − L)(|α|2 + β|2). (9.8)

On the other hand values of L below 10−4 have been achieved, so that in a first
approximation losses may be neglected.

For a detailed analysis of the quantum model of the beam splitter in the context
of continuous variables the reader is referred to Sect. 11.17.5. Here we confine us to
observe that the Heisenberg representation of the input–output relations of the beam
splitter is obtained by the classical model by substituting the field amplitudes with
the annihilation operators corresponding to the beams, namely,

a′ = √
1 − τa + √

τb

b′ = √
τa − √

1 − τb (9.9)

where a and b are the annihilation operators of the input beams and a′ and b′ are the
annihilation operators of the output beams.

Note that in the quantum model the presence of both beams is mandatory to
correctly describe such a two-input two-output device. Indeed, if we ignore the
annihilator b, we would have for instance [ a′, a′∗ ] = (1 − τ)[ a, a∗] = (1 − τ) in
contradiction with the bosonic commutation rule. Taking into account b one gets

[ a′, a′∗ ] = (1 − τ)[ a, a∗ ] + τ [ b, b∗ ] = 1 (9.10)

and the commutation relation is satisfied.

In the Schrödinger representation corresponding to the Heisenberg representation
(9.9) (see Sect. 3.4) in the case of coherent states, the beam splitter transforms the
input joint state |α〉 ⊗ |β〉 to the output joint state |α′〉 ⊗ |β ′〉 with

|α′〉 = |√1 − τα + √
τβ〉

|β ′〉 = |√τα − √
1 − τβ〉 (9.11)

in perfect analogy with the classical interpretation.
One of the most important application of the beam splitter in optical technique

is the approximate realization of the quantum displacement. If we apply to the
second input the coherent state |γ 〉 = |β/

√
τ 〉, the coherent state at the first output

becomes

|√1 − τα + γ 〉 (9.12)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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|α
=

|α + γ
D(γ)

|α

displacement

|α + γ

|γ

Fig. 9.4 Approximate realization of a displacement through a beam splitter (the second output of
the beam splitter is not used)

approximating |α + γ 〉 = D(γ )|α〉 as τ → 0 (Fig. 9.4). Then, a displacement of
amplitude γ may be obtained, at least approximately, with a beam splitter of low
transmissivity τ driven at the second input by a high level coherent state |β/

√
τ 〉.

The theory of the beam splitter, formulated as a two-mode unitary operator, will
be seen in Sect. 11.17.

9.2.3 Modulators

Essentially, we have phase modulators and amplitude modulators, which provide the
relations

|ψ〉 → |eiφ ψ〉 , |ψ〉 → |A ψ〉. (9.13)

The corresponding graphical representation is illustrated in Fig. 9.5. The amplitude
modulators are obtained with attenuation (A < 1).

In quantum transmission systems, intensity andphasemodulationmaybeobtained
by exploiting electro-optical properties of particular crystals, in which the refractive
index depends on the intensity of the electric field applied to the material. Then, the

|ψ

phase
modulator

|eiφ ψ |ψ

amplitude
modulator

|Aψφ A

Fig. 9.5 Graphical representation of phase and amplitude modulators
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phase of the output beam may be modulated by varying an electric voltage applied
to the device.

Different mechanisms are used to modify the refractive index of the crystal.
Electro-optic modulators exploit the so-called Pockels cells, waveguide made of
nonlinear crystal material which can be considered equivalent to voltage-controlled
waveplates. The variable electric voltage drives the phase delay induced to the optical
beam traveling through the modulator.

Depending on the direction of the applied electric field, the type and the orientation
of the nonlinear crystal, the phase delay may be different in the two direction of
the polarization axes. The result is a polarization modulation. With the addition of
polarizers at the input and output of the modulator, the change in the polarization
leads to a variation of the amplitude of the output beam.

An alternative configuration, very common in fiber modulators and in integrated
devices, employs this mechanism in a Mach–Zehnder interferometer. An input
waveguide is split into two paths, i.e. the two arms of the interferometer, and then
recombined into an output waveguide. The variable electric voltage is applied on one
of these paths, resulting in an optical index modulation of one arm. The interference
at the output waveguide builds the phase or intensity modulation of the beam.

Simplifying the model, the relation between the input and output beam power of
an intensity modulator can be expressed as

Iout = τ Iin

[
1 + cos

(
π

Vπ

V + Φ

)]
(9.14)

where Iin is the input intensity, Iout is the output intensity, Vπ is the half-wave voltage,
that is the voltage required for inducing a phase change of π , and V is the modulation
voltage. The coefficients τ and Φ describe a transmissivity and a phase term which
take into account for losses and a mismatch between the two interferometer arms.

In the case of phase modulators, the phase variation obtained at the output is given
by the affine equation

φ = π

Vπ

V + Φ (9.15)

which involves the half-wave voltage Vπ and the correction coefficient Φ.
Other type of modulators use analogous acousto-optical effects. Exploiting a

piezoelectric transducer attached to the crystal, a sound wave is generated to provide
a periodic refractive index grating. The traveling optical beam undergoes Bragg
diffraction and propagates in a slightly different direction, enabling the possibility
to build intensity (on–off) switching.
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9.2.4 Photodetectors

While the other components of the optical transmission systems (laser, modula-
tor and demodulator, transmitting and receiving antennas, and channel) have direct
counterparts in a radiofrequency system, the detection in optical communications is
performed almost exclusively by a photodetector, which is a very peculiar component
of the optical technology, exploiting the photoelectric effect explained in quantum
terms by Einstein in 1905.

The photodetection is the result of an interaction process between light andmatter.
Roughly speaking, a single photon in the optical beam releases an electron in the
photosensitivematerial,which generates a pulse of electric current, converting optical
power into an electric quantity. Before conversion, the electrons released by the
photoelectric effect may be subjected to a multiplication procedure in which each
electron generates a random number of secondary electrons.

From the classical point of view, the model may be the following. At the input,
we get the instantaneous power

p(t) =
∑

k

(hν) δ(t − tk)

where the instants tk are the arrivals of a doubly stochastic Poisson process with
intensity λ(t) (see Fig. 4.28). The current produced by the photodetection can be
modeled as a filtered and marked Poisson process, as discussed in Sects. 4.6 and 4.7,
namely

i(t) =
∑

k

gk i0(t − tk), (9.16)

where i0(t) is the current pulse generated by a single electrons satisfying the condition

∫ ∞

0
i0(t)dt = e (9.17)

with e electric charge of the electron. The coefficients gk are independent and iden-
tically distributed random variables giving the number of electrons generated by the
photon arrived at time tk . They may take into account the random gain (if any) of
the photomultiplication or the loss of photons in the material, caused by reflection
and spreading, or both. In the first case the random variables gi have mean G > 1,
called the photomultiplication gain. In the second case gk are binary random variable,
whose mean η gives the photodetection efficiency.

The intensity λ(t) of the Poisson process is proportional to the area A of the
photodetector and to the intensity J (t) = |α(t)|2 of the electric field. In digital
communications applications, λ(t) turns out to be a random process, depending on
the transmitted symbol. Then, the model of the photon arrivals is a doubly stochastic
Poisson process.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Among practical impairments to the ideal behavior of the photodetectors, a role
is played by the so-called dark current due to spontaneous emission of electrons in
the photosensitive material. This is taken into account by a constant term λ0 added
to the useful intensity λ(t).

In the decision process, the current (9.16) is integrated on the interval, say (0, T ],
corresponding to a symbol slot, giving the quantity under decision

Q =
∫ T

0
i(t)dt =

n∑
k

gk

∫ T

0
i0(t − tk)dt = e nT , (9.18)

where nT gives the electrons counting, i.e., the random number of electrons emitted
in the slot symbol by the photodetector. The general statistics of nT for a filtered
and marked doubly stochastic Poisson process has been discussed in Chap. 4 (see
also Fig. 4.28 for the detail of counting starting from the instantaneous power and
current). On the value of the detected charge Q, depending on the particular symbol
transmitted, is based the decision process of the digital transmission scheme.

In the quantum communications applications the aim of the photodetector is
limited in general to detect the presence of a positive number of photons in the
optical beam, formulated as a quantum state |ψ〉. Thus a photodetector plays the
role of counting the photons present in a given state |ψ〉 (Fig. 9.6). As discussed in
Sect. 7.9.3, from a quantum point of view it must discriminate the vacuum state |0〉
from a coherent state

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉. (9.19)

The ideal quantum model of the detector reduces to a simple von Neumann mea-
sure with measurement operators (see (7.70))

Q1 =
∞∑

n=1

|n〉〈n| , Q0 = |0〉〈0| = I − Q1 (9.20)

Pc
|ψ n

Fig. 9.6 Graphical symbol of a photon counter. The output n gives the number of photons present
in the state |ψ〉

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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detecting 0 if and only the input state is |0〉. The resulting conditional probabilities
are given by

p(0|0) = 〈0|Q0|0〉 = 1 , p(1|1) = 〈α|Q1|α〉 = 1 − e−|α|2/2. (9.21)

If reduced efficiency and dark current are taken into account, the measurement
operators becomes (see Problem 9.1)

Q1 = e−μ
∞∑

n=0

(1 − η)n |n〉 〈n| , Q0 = I − Q1 (9.22)

whereμ = λ0T is the average number of dark current electrons and η is the detection
efficiency. The quantum state |0〉 is guessed if no dark electrons are present (with
probability e−μ) and, for any n , n photons are missed (with probability (1 − η)n).
Note that in this case the measurement operators are POVM and not von Neumann
projectors.

It must be noted that in any case the measurement performed by the photodetector
is destructive in that, after the detection, the field is completely absorbed.

Problem 9.1 �� Consider the model of a photon counter where the dark current
and the nonunitary efficiency are taken into account. Prove that the measurement
operators are given by (9.22).

9.3 Classical Optical Communications Systems

9.3.1 Incoherent Detection

The simplest optical communication system uses amplitude modulation and inco-
herent detection (see Sect. 7.9). The transmitter associates a zero field to the binary
symbol 0 and the field

v(t) = V0 cos 2πνt , 0 < t < T (9.23)

to the binary symbol 1, where T is the symbol period. This is obtained by amplitude
modulating the laser beam of frequency ν or, more simply, by switching on and off
the laser itself according to the source symbol to be transmitted. At the receiver, a
photodetector transforms the incident field into an electrical current, as discussed in
Sect. 9.2.4.

In the absence of thermal noise, if the transmitted symbol is 0, the number of
photons detected is zero; otherwise, it is a Poisson random variable n with mean
value n proportional to V 2

0 . An error may happen if and only if the symbol 1 is
transmitted and the number of detected photons is 0. Then, the error probability
turns out to be

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Pe = 1

2
e−n (9.24)

where equally likely symbols are assumed. For the sake of comparison with other
schemes it is convenient to express the error probability in terms of the average
number of photons per bit NR , given by NR = 1

2n. Then

Pe = 1

2
e−2 NR . (9.25)

The received scheme is called direct detection of the incident light pulses. The
main advantage of this approach is its simplicity. In particular, phase and frequency
instability of the laser source is well tolerated. Moreover, at the receiver direct detec-
tion is used and phase-sensitive devices are avoided.

This scheme, known as on–off keying (OOK) modulation, has a simple quantum
equivalent, employing the coherent states |0〉 and |α〉. As shown in Sect. 9.2.4, the
photodetector can be modeled by a von Neumann measurement with projectors
Q0 = |0〉 〈0| e Q1 = I − |0〉 〈0|. The cross transition probabilities are

p(1|0) = Tr[|0〉 〈0| Q1] = 0 , p(0|1) = Tr[|α〉〈α|Q0] = e−|α|2 (9.26)

so that the error probability becomes Pe = 1
2 e

−|α|2 . In terms of average number of
photons per bit NR , with equiprobable symbols one gets NR = |α|2/2, so that we
find again

Pe = 1

2
e−2NR . (9.27)

This result is known as the quantum limit (or shot noise limit) and is the optimum
for any detection that does not exploit the coherence property of the optical beam.

9.3.2 Coherent Homodyne Detection

A more sophisticated scheme of classical optical communication uses binary phase
shift keying (BPSK) modulation (see Sect. 7.10.2). The laser beam is applied to a
π -phasemodulator driven by the binary symbol source. As a consequence, the optical
field at the receiver assumes one of the values

v(t) = V0 cos(2πνt + A0π) (9.28)

depending on the source symbol A0 ∈ A = {0, 1}.
Since the signals for different symbols have the same optical energy, direct detec-

tion cannot discriminate between them. In the coherent homodyne detection scheme
the receiver sums to the field a high level field VL cos 2πνt with the same frequency

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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as v(t) but with larger amplitude (VL � V0) generated by a local laser. The global
field

V0 cos(2πνt + A0 π) + VL cos 2πνt = (V0 cos A0π + VL) cos 2πνt (9.29)

applied to a photodetector produces a number of electrons which is a Poisson random
variable with mean and variance proportional to

V 2
L + V 2

0 + 2 cos A0π V0VL = V 2
L + V 2

0 + 2 B0 V0VL (9.30)

where

B0 = cos A0π =
{

+1 A0 = 0

−1 A0 = 1.
(9.30a)

Then, having subtracted the bias termV 2
L +V 2

0 independent of the symbol, one obtains
the useful signal proportional to 2 B0 V0VL . As the amplitude VL of the local laser
field increases, an approximate Gaussian characterization of signal and noise may
be adopted, so that the receiver must discriminate between two signal proportional
to 2 B0 V0VL with Gaussian noise having variance

√
V 2

L + V 2
0 + 2 B0 V0VL ≈ VL . (9.31)

This can be obtained by a threshold decision device [2], that is, a device which
sets a threshold and estimates the received symbol depending on whether the mea-
sured signal is above or below such a threshold. With equiprobable symbols the
optimal threshold is 0 and the error probability becomes (see homodyne receiver in
Sect. 7.10.2)

Pe = Q(2V0) = Q(
√
4NR), (9.32)

where Q(x) is the Gaussian complementary distribution and NR is the average num-
ber of photons per bit. This error probability is known as the standard quantum
limit.

Comparison with incoherent detection shows that the performances of the homo-
dyne detection are largely better. On the other hand the implementation of an efficient
homodyne scheme implies some complications, in that it requires the presence of a
local laser that must be accurately tuned in frequency and phase with the source laser.

9.4 Binary Quantum Communications Systems

The simplest quantum communication systems use binary schemes in which Alice
associates to the symbol A0 of a classical binary source, A0 ∈ {0, 1}, with prior
probabilities q0 and q1, two coherent quantum states |γ0〉 and |γ1〉 and Bob performs

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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a measurement on the system by using two measurement operators Q0 and Q1. The
most common choices are |γ0〉 = |0〉 and |γ1〉 = |β〉 for the On–Off Keying (OOK)
scheme (see Fig. 7.22) and |γ0〉 = |−β〉 and |γ1〉 = |β〉 for the Binary Phase Shift
Keying (BPSK) scheme (see Fig. 7.25).

For the sake of comparison with practical systemswe begin by reviewing the ideal
detection approach leading to the Helstrom bound. Next we consider in detail the
OOKwith direct detection and the BPSKwith Kennedy’s detection. Particular atten-
tion will be given to the Dolinar’s receiver which promises to achieve the optimum
performance, i.e., the Helstrom bound.

9.4.1 Recall of Helstrom’s Theory

We reconsider the general theory of binary detection developed in Sect. 5.4.2
according to the geometric approach. The state vectors are written in terms of an
appropriate orthonormal basis {|u0〉, |u1〉} as

|γ0〉 = cos θ |u0〉 + sin θ |u1〉 , |γ1〉 = cos θ |u0〉 − sin θ |u1〉 (9.33)

where cos 2θ = 〈γ0|γ1〉 = X is the superposition coefficient assumed to be real. The
orthonormal measurement vectors are written as

|μ0〉 = cosφ|u0〉 + sin φ|u1〉 , |μ1〉 = − sin φ|u0〉 + cosφ|u1〉. (9.34)

Then the transition probabilities p( j |i) := P[ Â0 = j |A0 = i] are given by

p(0|0) = cos2(φ − θ) , p(1|1) = sin2(φ + θ) (9.35)

and the correct detection probability turns out to be

Pc = q0|〈μ0|γ0〉|2 + q1|〈μ1|γ1〉|2 = q0 cos
2(φ − θ) + q1 sin

2(φ + θ). (9.36)

Here the angle θ is given through the superposition coefficient X , while the angle φ

is unknown and is evaluated by optimization. We have seen that the angle φ giving
the maximum of Pc satisfies the conditions

sin 2φ = 1

R
sin 2φ , cos 2φ = q0 − q1

R
cos 2θ (9.37)

where R = √
1 − 4q0q1X2. The correspondingoptimal correct decisionprobability is

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Pc = 1

2
(1 + R) = 1

2

(
1 +

√
1 − 4q0q1X2

)
, (9.38)

i.e., the Helstrom bound.
We have also seen (see Problem 7.10) that the a posteriori probabilities

q(i | j) := P[A0 = i | Â0 = j] corresponding to the optimal decision are related
to the correct decision probability by

q(0|0) = q(1|1) = Pc. (9.39)

In other words, the measurement modifies the a priori probabilities in the sense that,
independently of the measurement result, the symbol guessed acquires a posteriori
probability coinciding with the probability of correct decision.

Finally, we note that the measurement vectors are entangled linear combinations
of the state vectors. Unfortunately, since in practice only photodetectors and phase-
sensitive devices are available, the optimal measurement vectors are very hard to
be implemented experimentally. So, for a long time suboptimal approaches have
been investigated and experimented and only recently experiments demonstrating
the feasibility of the optimal measurement have been accomplished.

9.4.2 Kennedy’s Receiver

In 1973 Kennedy [3] proposed a very simple quantum receiver for the Binary Phase
Shift Keying (BPSK). The received quantum state (|β〉 or |−β〉) is applied to one of
the inputs of a beam splitter with high transmissivity τ . To the other input of the beam
splitter a quantum state |β〉 is applied, produced by a local laser tuned in frequency
and phase with the laser of the transmitter. The corresponding displacement D(β)

changes the possible input states into |γ0〉 = |0〉 and |γ1〉 = |2β〉, according to an
approach called nulling technique. Then, as in the OOK receiver, one applies to
the displaced state the photodetection with measurement projectors P0 = |0〉 〈0| and
P1 = 1 − P0. The resulting error probability turns out to be

Pe = q1Tr(|γ1〉 〈γ1| P0) = q1e
−4|β|2 , (9.40)

or, with equally likely symbols and in terms of the average number of photons per
bit

Pe = 1

2
e−4NR . (9.41)

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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nT = 0 → Â0 = 0
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decision

Â0

local
laser

|β

displacement D(|β )

Fig. 9.7 Scheme of Kennedy’s receiver. The displacement is obtained with a beam splitter feeded
by the received state |B0 β〉 and the state |β〉 produced by a local laser. The received state takes one
of the two values |±β〉 and, after the displacement, the values |0〉 and |2β〉, respectively. B0 is the

binary symbol B0 = cos A0π =
{+1 A0 = 0

−1 A0 = 1

The transmitter uses aπ phasemodulator driven by the input symbol. The receiver
uses a local laser generating the coherent state |β〉 to be added to the input coherent
state by a beam splitter realizing the displacement D(α). The scheme of the system
is depicted in Fig. 9.7.

The feasibility of the Kennedy receiver has been demonstrated (see f.i. [4]). The
main difficulties in the implementation are related to the presence of two lasers,
the source laser and the local one, whose frequencies, phases, and levels must be
accurately tuned. As a matter of fact, most practical demonstrations use a single
laser source from which both the optical beam and the local beam simulating the
useful carrier are derived through a beam splitter.

The performance of the Kennedy’s receiver is presented in Fig. 9.8 in comparison
with the performance of the OOK scheme and Helstrom’s bound. The relations used
are

Pe,OOK = 1
2 e−NR

Pe,Kennedy = 1
2 e−4NR

Pe,Helstrom = 1
2

[
1 −

√
1 − e−4NR

]

where NR is the average number of photons per bit. The error probability plotted
versus NR shows that the Kennedy’s receiver outperforms the OOK direct receiver,
but is overperformed by the Helstrom’s bound.

On the other hand, the Kennedy receiver does not outperforms the standard quan-
tum limit of the homodyne detection forweek signals (NR < 0.4). But also for greater
values of the number NR of the received photons the performance of Kennedy’s
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Fig. 9.8 Comparison of OOK, Kennedy’s receiver, and Helstrom’s bound in terms of error proba-
bility versus the average number of photons NR

receiver in practical experiments is inferior to the standard quantum limits. Indeed,
impairments of the photodetector, as reduced quantum efficiency and dark current,
has relevant negative effects on the error probability [5].

9.4.3 Improved Kennedy’s Receiver

Improvements to Kennedy’s receiver have been suggested in recent years by Takeoka
and Sasaki [5]. The basic idea is to apply to the input state a displacement |ε〉 with
ε chosen in such a way that the error probability is minimized. The quantum states
|β〉 and | − β〉 are displaced into the states |γ1〉 = |ε + β〉 and |γ0〉 = |ε − β〉. The
error probability becomes

Pe = q1Tr(|γ1〉 〈γ1| P0) + q0Tr(|γ0〉 〈γ0| P1)

= q1e
−(ε+β)2 + q0(1 − e−(ε−β)2). (9.42)

(For the sake of simplicity we assume that β and ε are real). By nulling the deriva-
tive with respect to ε, we find that the displacement ε0 minimizing Pe satisfies the
transcendental equation
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Fig. 9.9 Comparison of Kennedy’s receiver, improved Kennedy’s receiver, and Helstrom’s bound
in terms of error probability versus the average number of photons NR

q1
q0

= ε − β

ε + β
e4βε. (9.43)

In Fig. 9.9 the performance of the Kennedy receiver and of the improved Kennedy
receiver are compared with the Helstrom bound. The relations used are

Pe,Kennedy = 1
2 e−4NR

Pe,Kennedy improved = 1
2

[
1 + e−(ε0+√

NR) − e−(ε0−√
NR)

]

Pe,Helstrom = 1
2

[
1 −

√
1 − e−4NR

]

where NR = β2 is the average number of photons per bit. For large values of β, the
improvement obtained by optimizing the displacement ε appears to be negligible.
On the other hand, as β goes to 0, the improved Kennedy’s receiver approximates
the Helstrom’s bound very well and outperforms the standard quantum limit also
for weak signals. This has an important consequence in the interpretation of the
optimum Dolinar’s receiver. The feasibility of the improved Kennedy’s receiver has
been recently demonstrated by Wittmann et al. [6].

Further light improvements [5] can be obtained if the input state is subjected to
a displacement D(ε) and to a squeezing Z(r) (to be jointly optimized) before the
photodetection.
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9.4.4 Dolinar’s Receiver

In 1973 Dolinar [7] proposed an adaptive measurement scheme, based on a combina-
tion of photon counting and feedback control, that precisely achieves the Helstrom
bound. However, since the scheme requires a very precise control of an optical–
electrical loop, only in 2007 Dolinar’s idea has obtained a satisfactory practical
implementation [4, 8].

In order to give some insight on Dolinar’s approach, we consider the problem of
discriminating between the states given by multiple copies

|α0〉 = |α〉 ⊗ · · · ⊗ |α〉 , |α1〉 = | − α〉 ⊗ · · · ⊗ | − α〉 (9.44)

in the tensorial product Hilbert space H⊗n where H is the Hilbert space spanned
by the single copies |α〉 and | − α〉. Of course, Helstrom’s theory assures that the
optimum receiver gives the Helstrom’s bound

P(n)
c = 1

2

(
1 +

√
1 − 4q0q1X2n

)
, (9.45)

with X = |〈α|−α〉|, so that |〈α0|α1〉| = Xn . On the other hand, the optimal mea-
surement vectors in H⊗n derived according to the Helstrom’s theory are entangled
vectors difficult to be realized experimentally. However, Acin et al. [9] have shown
that the optimum can be achieved by adaptive local measurements on the single
copies, each one taking into account the results of the previous measurements (for
greater details see [10]).

Confining ourselves to the case n = 2, assume that the optimum measurement
has been performed on the first state with correct decision probability P(1)

c given
by (9.45) with n = 1. Moreover, assume that as a consequence of the measurement
state |α〉 has been guessed. Then, as discussed above, the a posteriori probabilities
of |α〉 and | − α〉 become q ′

0 = P(1)
c and q ′

1 = 1 − P(1)
c . If we perform an optimum

measurement on the second state on the basis of the probabilities q ′
1 and q ′

0 and with
corresponding new measurement vector, after the measurement we get the correct
result with probability

P(2)
c = 1

2

(
1 +

√
1 − 4(1 − P(1)

c )P(1)
c X2

)
= 1

2

(
1 +

√
1 − 4q0q1X4

)
. (9.46)

The same result is obtained if the state guessed after the firstmeasurement is |−α〉. By
iterating the reasoning, the result can be generalized to n-copies states. The process
can be considered as a feedback-assisted detection, in that the measurement on each
copy is chosen on the basis of the result of the previous measurements.

These considerations can be applied to BPSK coherent states |β〉 and |−β〉when
they correspond to wavepackets having temporal extent of duration T . In this case,
the mode can be thought as a sequence of shorter and weaker modes of duration T/n,
namely,
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|β〉 =
∣∣∣∣ β√

n

〉
⊗ · · · ⊗

∣∣∣∣ β√
n

〉
(9.47)

with an analogous decomposition for |−β〉. Moreover, as n increases and the average
number of photons per copy goes to zero, as shown above, the optimal Helstrommea-
surement on each copy may be conveniently approximated by an improved Kennedy
receiver, i.e., a displacement followed by a photon detection.

The multiple-copy approach discussed above is mimicked by the Dolinar’s
receiver. Let be

ψ(t) = ±ψei2πνt , 0 ≤ t ≤ T (9.48)

the input fields corresponding to the coherent states | ± β〉. At the detector from the
input field a time-varying field generated by a local laser is subtracted. The envelope
of this local field is chosen between either u0(t) or u1(t), accordingly to the value of
z(t), a binary signal with possible values 0 and 1, giving the provisional decision at
time t . Then, depending on the value of z(t), the optical signal at the photon counter
has enveloped either±ψ −u0(t) or±ψ −u1(t). The decision signal z(t) is assumed
changing at any photon arrival at the counter.

The mathematical problem is to choose the functions u0(t) and u1(t) that
maximize the correct detection probability P[z(T ) = a], where a is the source
symbol and z(T ) is the final decision. The problem has been solved by Geremia [11]
on the basis of the dynamic programming optimality principle.

A simpler proof based on a semiclassical analysis given by Assalini et al. [10] is
sketched here, under the preliminary assumption that the subtracted envelopes are
opposite, namely u1(t) = −u0(t). Provided that the transmitted symbol is a = 0
and consequently the received envelope is β, the process z(t) can be interpreted as
a telegraph process [12] alternately driven by non-homogeneous Poisson processes
with rates

λ(t) = |β − u0(t)|2 , μ(t) = |β + u0(t)|2. (9.49)

Defined the conditional probability p0(t) = P[z(t) = 0|a = 0] and Nt,Δt the number
of arrivals in the interval [t, t + Δt)

p0(t + Δ) = P[z(t) = 0, Nt,Δt = 0|a = 0] + P[z(t) = 1, Nt,Δt = 1|a = 0] + o(Δt)

= P[Nt,Δt = 0|z(t) = 0]p0(t) + P[Nt,Δt = 1|z(t) = 1](1 − p0(t)) + o(Δt)

= [ 1 − λ(t)Δt ]p0(t) + μ(t)Δt (1 − p0(0)) + o(Δt).

Hence the differential equation

p′
0(t) = μ(t) − [ λ(t) + μ(t) ]p0(t) (9.50)
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follows. In a similar way can be shown that p1(t) = P[z(t) = 1|a = 1] satisfies
the same differential equation, so that the probability of correct decision satisfies the
differential equation

P ′
c(t) = q0 p′

0(t) + q1 p′
1(t) = μ(t) − [ λ(t) + μ(t) ]Pc(t) (9.51)

independent of the symbol probabilities q0 and q1. If we impose

Pc(t) = 1

2

[
1 +

√
1 − 4q0q1e−4β2t

]
(9.52)

coinciding with Helstrom’s bound, a simple algebra shows that the differential equa-
tion is satisfied by setting

u0(t) = β√
1 − 4q0q1e−4β2t

, 0 < t < T . (9.53)

This gives the control optical signal achieving Dolinar’s bound.
A conceptual scheme of Dolinar’s receiver is depicted in Fig. 9.10. An amplitude-

modulated local laser produces the optical beam with complex envelope u0(t) to be
added or subtracted to the input beam. The choice between ±u0(t) is performed by

|B0 β

displacement D(ut eiπzt )

Pc
|B0β +ut

photon
counter

zt ⊕1
on click

nt zT = 0 → Â0 = 0

zT = 1 → Â0 = 1

zt ∈ {0,1}

decision

Â0

local
laser

eiπ zt

π

A

|ut

Fig. 9.10 Scheme of Dolinar’s receiver: note that zt ⊕ 1 represents a change of 0 and 1 at every
click. zt represents the provisional symbol estimation. At the end of the symbol period, the final
decision zT is taken
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a π phase modulator driven through a feedback control by the photon arrivals at the
photodetector.

Of course the problems of tuning in frequency and phase the lasers encountered
in Kennedy’s receiver stay on. Another difficulty arises in amplitude modulating
the local laser in such a way that the local envelope (9.53) is obtained. Finally, the
unavoidable delays introduced by the optical–electrical feedback control may greatly
reduce the performance of the system. As a consequence, the implementation of the
optimal receiver out of the laboratories appears to be at present a very difficult task.

9.4.5 The Sasaki–Hirota Receiver

Sasaki and Hirota have shown [13] that in principle it is possible to achieve the
Helstrom bound by considering the problem in the two-dimensional Hilbert space
spanned by the states | − α〉 and |α〉.

Since to the input state it may be applied a displacement |α〉 as in the Kennedy
receiver, we may consider as input states |0〉 and |2α〉. It may be easily verified that
the states

|η1〉 = |0〉 , |η2〉 = 1√
1 − X2

(|2α〉 − X |0〉) (9.54)

with X = 〈0|2α〉 (α is assumed to be real) form an orthonormal basis of the Hilbert
space H0 spanned by |0〉 and |2α〉. Then, consider the operator

U (θ) = cos θ(|η1〉 〈η1| + |η2〉 〈η2|) + sin θ(|η1〉 〈η2| − |η2〉 〈η1|). (9.55)

A simple algebra shows that U (θ)U∗(θ) = |η1〉 〈η1| + |η2〉 〈η2| coincides with the
identity operator inH0, so that U (θ) is a unitary operator inH0. The Sasaki–Hirota
approach assumes that the unitary operatorU (θ) is applied to the displaced state (|0〉
or |2α〉) and that the transformed state is subjected to a von Neumann measurement
with projectors

Q1 = |η1〉 〈η1| , Q2 = |η2〉 〈η2| . (9.56)

If the error probability is computed and optimized with respect to the angle θ , the
Helstrom bound is achieved. For greater mathematical details see [11, 13].

Note that, while the measurement state |η1〉 = |0〉 is a coherent state, |η2〉 is not.
On the other hand, since 〈0|η2〉 = 0, it is innocuously substitutes the measurement
operator |η2〉 〈η2| with

∞∑
n=1

|n〉 〈n| (9.57)
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and the detection may be realized in the Glauber space with an ideal photodetec-
tor. On the contrary, the unitary operator U (θ) is not Gaussian (see Chap. 11), so
that it is not realizable with usual linear optics and requires nonlinear unpractical
components [13].

9.5 Multilevel Quantum Communications Systems

In spite of the fact that K -ary quantum systems can in principle achieve greater
capacity than binary systems, only recently attention has been paid to implementable
receivers for K -ary quantum communications with K > 2. Indeed, simple modula-
tions as K -PSQ, QAM, and PPM have been frequently considered from a theoretical
point of view but practical receivers are very difficult to be realized. In this section,
we present some recent ideas concerning possible suboptimal receivers, in particular
for K -PSK and PPM quantum systems.

9.5.1 Multiple PSK and QAM Quantum Systems

The coherent states of a K -PSK constellation are

|αk〉 = |α0e
i2πk/K 〉 , k = 0, . . . , K − 1 (9.58)

and may be written as |αk〉 = Sk |α0〉 with S = ei2π N/K , where N is the number
operator (see Sect. 7.12.1). As shown above (see also [14]), this constellation enjoys
geometrical uniform symmetry so that the SRM derived by the Gram matrix is
optimal. However, the optimalmeasurement vectors turn to be entangled and difficult
to realize. Similar considerations hold for QAM systems.

In [15], a suboptimal receiver for K -ary quantum systems is suggested based
on suitable combinations of beam splitters, displacements, and photodetectors and
following the ideas lying behind the Kennedy and Kennedy-improved detectors.
Since the extensions to K > 3 appear intuitive, we confine ourselves to the case
K = 3 (with possible states |α0〉, |α1〉 and |α2〉) and follow the scheme of Fig. 9.11.
The input state is applied to a beam splitter with transmissivity τ . The first output of
the beam splitter is displaced by a displacement D(−√

1 − τα0), the second one by
a displacement D(−√

τα1). The displaced states enter two photodetectors. Provided
that the input state is |αi 〉, the outputs of the beam splitter are given by|b1〉 =
|√1 − ταi 〉 and |b2〉 = |√ταi 〉 and the output of the displacements are |c1〉 =
|√1 − τ(αi − α0〉 and |c2〉 = |√τ(αi − α1〉. In conclusion, we have the following
states in correspondence with the possible input state

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Fig. 9.11 Scheme of a ternary quantum system. C0 is the transmitted complex (random) symbol
and |C0〉 the corresponding quantum state

|α0〉 → |0〉 ⊗ |√τ(α0 − α1)〉
|α1〉 → |√1 − τ(α1 − α0)〉 ⊗ |0〉
|α2〉 → |√1 − τ(α2 − α0)〉 ⊗ |√τ(α2 − α1)〉. (9.59)

Denoting by (i, j), i, j ∈ {0, 1} the output of the photodetectors, the transition
probabilities p(i, j |αk) can be computed. For instance, if the input state is |α1〉, the
probability that the first detector does not detect photons is e−(1−τ)|α1−α0|2 , while the
probability that the second detectors does not detect photons is 1, so that

p(0, 0|α1) = e−(1−τ)|α1−α0|2 .

On the basis of the transition probabilities, one computes the optimum decision rule
minimizing the error probability. Of course, this error probability depends on the
transmissivity τ . Then a second optimization with respect to τ may be performed.
The resulting error probability outperforms the standard quantum limit. Better per-
formances can be achieved if, as in the improved Kennedy receiver, the nulling
displacements | − α0〉 and | − α1〉 are substituted by optimized displacements [15].

Further improvements are possible by suitably squeezing the signals after the
displacements [16].

9.5.2 Pulse Position Modulation Systems

A quantum modulation scheme that enjoys large popularity owing to its simplicity
is the pulse position modulation (PPM) scheme. In this scheme, a K -ary classical
symbol with alphabet {0, . . . , K − 1} is encoded into the position of a coherent state
|α〉 in a sequence of K − 1 null states. The natural environment for such modulation
is the tensor Hilbert space H⊗K

0 , where H0 is the Fock space. The possible states
are the tensor states
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|α0〉 = |α〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 · · · |αK−1〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |α〉.

The corresponding modulation technique is very simple and requires only the
switching of the source laser.

The symmetry of the constellation is clear, even though it is by no means trivial
to evaluate the symmetry operator in the Hilbert spaceH⊗K

0 [17]. The optimal error
probability (see Sect. 7.12.4) turns out to be

Pe = K − 1

K 2

(√
1 + (K − 1)p + √

1 − p
)2

(9.60)

where p = e−|α|2 is the probability that the state |α〉 is not detected. The optimal
measurement, coinciding with the SRM, enjoys the same symmetry of the states but
is strongly entangled and appears very difficult to implement.

Note that in the K -PPM scheme each of the K symbols is carried by a state with
average number of photons given by |α|2. The number of photons per bit is given bt
NR = |α|2/ log2 K and the error probability in terms of number of photons per bit
is given by (9.60) with

p = e−NR log2 K .

Several suboptimal measurements have been proposed. The simplest idea is to
measure the single pulses with direct detection. In the absence of impairments in the
photodetector, the error happens only when the single nonzero state is not detected,
so that, guessing at random the symbol, the error probability is

Pe = K − 1

K
p.

A more sophisticated approach [18], known as conditionally nulling receiver,
uses the following adaptive decision strategy. During the first signaling slot, a nulling
state |−α〉 is added. If the photodetector does not detect a photon, one provisionally
decides for |α0〉, then the photodetection continues without nulling and the decision
is maintained unless some photon is detected in the subsequent slots. If some photon
is detected in the first interval, the hypothesis |α0〉 is discarded and the procedure
is iterated. The error probability is computed recursively. For K = 2, one gets
P(2)
e = p2/2 because error occurs if and only if the state is |α1〉 and two pulses are

undetected. For K > 2, no error occurs if the state is |α0〉, whereas in any other case
(with probability K/(K − 1)) error may occur if the nulling pulse in the first slot
and the subsequent pulse are missed or if the nulling pulse is detected and an error
happens in the remaining K − 1 slots. In conclusion, the recursive relation

P(K )
e = K − 1

K
[ p2 + (1 − p)P(K−1)

e ]

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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follows. In closed form one gets [19]

P(K )
e = 1

K
[(1 − p)K − 1 + K p].

Slight performance improvements are obtained applying a nonexact (and opti-
mized) nulling pulse as in the improved Kennedy’s receiver [20]. The algorithm of
the conditionally nulling receiver ismimicked applying a constant displacement D(ε)

with ε �= −α in place of the nulling operation. A numerical optimization of the value
of the displacement shows an improvements in the performance, as demonstrated in
the experimental test reported in [21].

Further performance enhancements can be obtained by considering different dis-
placement εi in place of the nulling operations in the slots i = 0, . . . , M − 1, which
in general may depend on all the outcomes in the previous measurements, rather than
only the last o ne.

The general structure of such a receiver is an adaptive scheme with local mea-
surement in each Fock space H0 optimized upon all the previous outcome. Each
local measurement implements a binary discrimination between the ground state |0〉
and the coherent state |α〉, which may be performed with direct detection, Kennedy
or Dolinar schemes depending on the design limitations or constraints.

Due to the binary outcome of each localmeasurement, the overall receiver strategy
can be described with a binary tree, where each node corresponds to a measurement
and each edge to an outcome. The binary tree is covered from the root node to the
final one following the path dictated by the outcomes, performing the measurement
defined in the node that come across.

Since the total number of the measurement employed grows exponentially in the
cardinality K of the alphabet, a global optimization of the measurement parameter
may be really demanding. However, the required numerical optimization may be
lightened using a dynamic programming approach [22].

The adaptive receiver shows an improvement in the performance due to the greater
flexibility of the binary discrimination scheme employed and the more general mea-
surement sequencing, whichmay depend upon all the previous partial outcomes. The
improvement is seen for all the alphabet cardinalities K , and in particular for K = 2
this receiver precisely reaches the Helstrom bound of the error probability [22].
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