
Chapter 7
Quantum Communications Systems

7.1 Introduction

The quantum decision theory, developed in the previous two chapters, is now applied
to quantum communications systems where the nature of the states that carry the
information is specified. A constellation of K quantum states, to which to commit
a symbol belonging to a K-ary alphabet, corresponds, in the classical version, to a
K-ary modulation format. We still consider states that operate at optical frequencies
(optical quantum systems), because at radio frequencies quantum phenomena are not
appreciable. In practice, the quantum states are usually treated as coherent states of
a coherent monochromatic radiation emitted by a laser. For these states there exists
a universal model, proposed by Glauber, that will be introduced in the next section.

Also squeezed states as a candidate carrier for quantum communications are
considered. Squeezed light is an efficient form of optical radiation, which is obtained
from a laser radiation in several ways, mainly based on parametric amplifiers.

In this chapter, we shall first examine binary systems, presenting the quantum
versions of the OOK (on–off keying) and 2PSK (phase-shift keying) modulations.
Then we shall move to multilevel systems, and examine the quantum versions of the
QAM (quadrature amplitude), PSK, and PPM (pulse position) modulations. All the
above-mentioned systems will be examined in the absence of thermal noise, which,
instead, will be considered in the next chapter. Thus, in this chapter, the scheme
of Fig. 7.1 will be followed, in which the channel is ideal and the received state is
directly given by the transmitted state. As already observed, neglecting thermal noise
does not mean that the analysis will be done in the absence of noise; because we shall
take into account the fact that quantum measurements are affected by an intrinsic
randomness, corresponding, in the classical model, to shot noise.

Organization of the Chapter

The next two sections deal with the definition and properties of coherent states
and how to provide a constellation of coherent states. Section 7.5 develops the the-
ory of classical optical systems where the decision is based on photon counting.
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Fig. 7.1 Quantum communications system for digital transmission. {An} is a sequence of classical
symbols of information that Alice conveys into a sequence of quantum states {|γAn 〉}. Bob, in each
symbol period, performs a quantum measurement to argue, from the result m of the measurement,
which symbol was transmitted

The subsequent sections, from Sects. 7.9 to 7.13, develop the specific quantum com-
munications system with the modulation format listed above.

In the two final sections, we will develop quantum communications with squeezed
states with a comparison of the performance with that obtained with coherent states.

As explained in Chap. 4, only digital systems will be considered. For binary sys-
tems, we shall use the general theory of binary optimization, essentially Helstrom’s
theory, developed in Sect. 5.4. For multilevel systems, for which an explicit opti-
mization theory is not available, we shall use the square root measurements (SRM)
decision developed in Chap. 6 and, when convenient, we compare SRM results with
the ones obtained with convex semidefinite programming (CSP).

7.2 Overview of Coherent States

A general model of the quantum state created by an electromagnetic field at a cer-
tain (optical) frequency is given by a coherent quantum state according to Glauber’s
theory. This model is now formulated in detail in a form suitable to deal with quan-
tum communications systems, but without entering in theoretical considerations.
In Chap. 11 coherent states will be fully developed in the framework of quantum
information as continuous quantum states and also as Gaussian quantum states.

7.2.1 Glauber’s Representation

The coherent radiation emitted by a laser is modeled as a coherent state. It has been
demonstrated [1–3] that the coherent states of a single mode can be represented
in a Hilbert space of infinite dimensions, through an orthonormal basis {|n〉, n =
0, 1, 2, . . .}, where the states are called number states, because |n〉 contains exactly
n photons. They are also called number eigenstates and Fock states.

To this basis, the number operator is associated, which is defined by

N =
∞∑

n=0

n|n〉〈n. (7.1)

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Then N has eigenvectors |n〉 with eigenvalues n and the spectrum of N is given by
the set of naturals, σ(N) = {0, 1, 2, . . .}.

In this mathematical context, a generic coherent state (or Glauber state) is
expressed as follows:

|α〉 = e− 1
2 |α|2

∞∑

n=0

αn

√
n! |n〉. (7.2)

where α is a complex amplitude whose meaning is

|α|2 = average number of photons in the state |α〉. (7.3)

Therefore, according to (7.2), to each point α of the complex plane C, a coherent
state is associated whose physical meaning is given by (7.3). Thus, the more α moves
away from the origin of C, the higher becomes the photonic intensity associated to
the state |α〉.

The set of coherent states will be indicated by

G = {|α〉, α ∈ C} : coherent states (7.4)

and then the notation |α〉 ∈ G will be used to distinguish one of these specific kets
from the other numerous kets that we will meet. It is interesting to observe that letting
α = 0 in (7.2) we obtain

|α〉α=0 = |n〉n=0 (7.5)

that is, with α = 0 we obtain the state |0〉 of the Fock basis, called ground state.

Remark The notations of Quantum Mechanics are powerful, but sometimes subtle.
In this context, it is important to distinguish the complex number α ∈ C from the
coherent state |α〉 ∈ G, which is a ket of the infinite dimensional Hilbert space H,
generated by the basis { |n〉|n = 0, 1, 2, . . . }. The fundamental relation (7.2) is a
mapping C → G, where G ⊂ H. For instance, α = 3 − i4 ∈ C is mapped onto the
coherent state |3 − i4〉 ∈ G, whose full expression is

|3 − i4〉 = exp

[
−1

2
|3 − i4|2

] ∞∑

n=0

(3 − i4)n

√
n

|n〉.

7.2.2 Link with Poisson’s Regime

To find the relationship between the representation of a coherent state |α〉 ∈ G and
Poisson’s regime, we set up a quantum measurement (Fig. 7.2) with the number
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Fig. 7.2 Quantum
measurement in a Hilbert
space of the coherent state
|α〉 with an observable given
by the number operator N .
The elementary projectors
|n〉〈n| are formed by the
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operator N , interpreted as an observable (see Sect. 3.6). The outcome m of the
measurement gives the number of photons of the quantum system in the state |α〉.
Then the probability that the measurement gives the outcome m = i turns out to be

P[m = i|α] = |〈i|α〉|2 =
∣∣∣∣∣

∞∑

n=0

e− 1
2 |α|2 αn

√
n! 〈i|n〉

∣∣∣∣∣

2

=
∣∣∣∣e

− 1
2 |α|2 αi

√
i!
∣∣∣∣
2

= e−|α|2 |α|2i

i! .

(7.6)

Therefore,

P[m = i|α] = e−Nα
(Nα)i

i! with Nα = |α|2. (7.7)

It can also be verified that the average of m is

E[m|α] = 〈α|N |α〉 = |α|2 = Nα. (7.8)

In conclusion, the outcome of the measurement m is a Poisson random variable with
average Nα = |α|2.

7.2.3 Degree of Superposition of Coherent States

It is important to evaluate the degree of superposition of two distinct coherent states
|α〉 and |β〉, within the geometry given by the inner product. We have

Proposition 7.1 The inner product of two coherent states is given by

〈α|β〉 = e− 1
2 (|α|2+|β|2−2α∗β). (7.9)

Hence two distinct coherent states are never orthogonal (Fig.7.3).

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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Fig. 7.3 Two distinct coherent states are never orthogonal: 〈α|β〉 
= 0

In fact, from (7.2) we have

〈α|β〉 =e− 1
2 (|α|2+|β|2)

∞∑

m=0

∞∑

n=0

(α∗)mβn

√
m!n! 〈m|n〉

=e− 1
2 (|α|2+|β|2)

∞∑

m=0

(α∗β)m

m! = e− 1
2 (|α|2+|β|2)eα∗β.

and (7.9) follows �

The (quadratic) degree of superposition of two states is expressed by

|X|2 := |〈α|β〉|2 = e−|α−β|2 , |α〉, |β〉 ∈ G (7.10)

where X = 〈α|β〉.

7.2.4 Tensor Product of Coherent States ⇓

The tensor product of two or more coherent states will be particularly relevant to
PPM modulation and in general for vector modulations.

Let |α〉 be the tensor product of two coherent states

|α〉 = |α1〉 ⊗ |α2〉 , |α1〉, |α2〉 ∈ G.

Then, for each of the two factors, the previous result holds: To the state |αi〉 a Poisson
variable mi can be associated, with average E[mi| αi] = |αi|2. The global number of
photons m associated to the composite state |α〉 is given by the sum of the two random
variables m = m1 + m2, where m1 and m2 are statistically independent. Therefore,
m is again a Poisson variable with average E[m| α] = E[m1| α1] + E[m2| α2] =
|α1|2 +|α2|2. This result can be easily generalized to the tensor product of N Glauber
states

|α〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉
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and we find, in particular, that the total number of photons m = m1 + m2 + · · · mN

associated to the composite state |α〉 is still a Poisson variable with average given by

E[m| α] = |α1|2 + |α2|2 + · · · + |αN |2. (7.11)

7.2.5 Coherent States as Gaussian States ∇

In Chap. 11, in the framework of continuous quantum variables, coherent states will
be defined as eigenkets of the annihilator operator, acting in an infinite dimensional
bosonic Hilbert space H. Then, from this abstract definition, the infinite dimensional
representation (7.2) is obtained. An alternative representation is considered in the
so-called phase space, where a quantum state, pure or mixed, is represented by its
Wigner function W (x, y), a real function of two real variables, having properties
similar to the joint probability density of two continuous random variables. Thus we
pass from an infinite dimensional Hilbert space H to the two-dimensional real space
R

2, with notable advantages.
The Wigner function W (x, y) allows us to define Gaussian quantum states, as the

quantum states having as Wigner function the Gaussian bivariate form

W (x, y) = 1

2π
√

det V
exp

[
−1

2

V22(x − q)2 + V11(y − p)2 − 2V12(x − q)(y − p)

det V

]

(7.12)

where Vij are the covariances and q , p are the mean values (det V = V11V22 −
V 2

12). Hence a Gaussian state is completely specified by the mean vector and by the
covariance matrix

X̄ =
[

q
p

]
, V =

[
V11 V12
V12 V22

]
. (7.13)

To emphasize this property, a Gaussian state in general represented by a density
operator is symbolized as ρ(X̄, V ).

We shall see that a coherent state |α〉 is a special case of Gaussian states with the
simple specification

X̄ =
[

q
p

]
=
[�α


α

]
, V =

[
1 0
0 1

]
= I2. (7.14)

Then the Wigner function of a coherent state results in

W (x, y) = 1

2π
exp

[
−1

2

(
(x − q)2 + (y − p)2

)]
(7.15)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Fig. 7.4 Contour level of
the Wigner function W (x, y)
of a pure coherent state |α〉
(in red). The mean vector
(q̄, p̄) = (�α,
α) gives the
center of the contour

and in the x, y plane it is often represented by a contour level obtained by the equation
W (x, y) = L, where L > 0 is a reference level. For a coherent state, this contour is
a circle centered at (q, p), as shown in Fig. 7.4.

Problem 7.1 � Prove that the inner product X = 〈α|β〉 of two coherent states is
real if and only if arg α − arg β = 0 or arg α − arg β = ±π .

Problem 7.2 �� The map (7.2) gives for any α ∈ C a coherent state |α〉. Given
|α〉 is it possible to find the complex number α?

Problem 7.3 �� Examine the effect of the introduction of a phasor z = eiϕ into
the complex parameter α that identifies the state |α〉, that is, evaluate |eiϕα〉.
Problem 7.4 ��� Let |α〉 = |α1〉⊗|α2〉be a two-mode coherent states. The number
of photons mi associated to each component state is a Poisson variable with mean
Λi = |αi|2. Considering that m1 and m2 are statistically independent (see Sect. 3.10),
prove that the total number of photons m = m1 + m2 is a Poisson variable.

Hint: use the characteristic function given by (4.23).

7.3 Constellations of Coherent States

We recall that the target of a quantum communications system is the transmission of
a sequence of classical symbols {An} through a sequence of quantum states {|γAn〉},
which in practice are often coherent states. Thus, in general, with a K-ary alphabet
A = {0, 1, . . . , K − 1}, Alice must be able to prepare a constellation of K coherent
states

S = {|γ0〉, |γ1〉, . . . , |γK−1〉} (7.16)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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to realize the c → q mapping

An ∈ A → |γAn〉 ∈ S,

which must be bijective. This operation may be called quantum encoding.
Now a problem to investigate is the choice of the constellation, of course, with

the purpose of realizing a high-performance quantum transmission system. One way
to decide about the choice, as we shall see in this section, is to get the “inspiration”
from the optical transmission systems that we shall briefly call classical systems.
This approach has also the advantage of allowing us a comparison between the
performances of two kinds of systems, classical and quantum.

In Sect. 4.4, we have seen that optical communications use two kinds of mod-
ulations, incoherent and coherent; but in the present context, the right comparison
is with classical coherent modulations which make use just of a coherent radiation
emitted by a laser, as done in quantum communications. A classical K-ary coherent
modulation, in general nonlinear, is specified by K complex waveforms

γ0(t), γ1(t), . . . , γK−1(t) (7.17)

of duration limited1 to the signaling interval [0, T ], with the rule that if An ∈ A is
the nth source symbol, the modulator forms a signal with complex envelope2 [4]

c(t) = γAn(t) 0 ≤ t < T .

With a sequence of symbols {An}, the complete expression of the complex envelope
becomes

c(t) =
+∞∑

n=−∞
γAn(t − nT) , (7.18)

from which a real modulated signal is obtained as

v(t) = � c(t) ei2πνt (7.19)

where ν is the carrier optical frequency. The comparison between a classical modu-
lator and a quantum encoder is depicted in Fig. 7.5.

To proceed from the classical system, characterized by the waveforms γi(t), i ∈
A, to the quantum system with coherent state constellation |γi〉, i ∈ A, we must
“remove” in some way the time dependence, which is not present in coherent states.
For some kinds of modulations the solution is straightforward; for others, it is less
obvious.

1 Some classical coherent modulations use a duration greater than one symbol period.
2 See Sect. 4.7 for the definition of complex envelope.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.5 Comparison of a classical modulator (left) with a quantum encoder

7.3.1 State Constellations from Scalar Modulations

In some modulations, like PSK and QAM, the waveforms (7.17) are of the form

γi(t) = γi h(t) , i ∈ A = {0, 1, . . . , K − 1}, (7.20)

where h(t) is a real pulse; for example, rectangular between 0 and T , and γi are com-
plex numbers. The complex envelope c(t) of the modulated signal is then produced
by an encoder, mapping the symbols i ∈ A into the complex symbols γi, and by an
interpolator with impulse response h(t). The resulting complex envelope becomes

c(t) =
+∞∑

n=−∞
Cn h(t − nT) , (7.21)

where {Cn} is the sequence of complex symbols obtained by the mapping An = i →
Cn = γi (Fig. 7.6).

In this way, a constellation of complex symbols is identified

C = {γ0, γ1, . . . , γK−1} , γi ∈ C (7.22)

from which one can form the constellation of coherent states

S = {|γ0〉, |γ1〉, . . . , |γK−1〉} , |γi〉 ∈ G (7.23)

that are in a one-to-one correspondence with the constellation of complex symbols
C (Fig. 7.7).

Fig. 7.6 Scheme of a classical scalar modulator. The encoder maps the source symbols An ∈ A

into the complex symbols Cn ∈ C. The interpolator maps the complex symbols into the complex
envelope c(t)
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Fig. 7.7 Constellation of complex symbols C and corresponding constellation of coherent states
S: each complex symbol γ ∈ C is mapped into a coherent state |γ 〉 ∈ G

7.3.2 State Constellations from Vector Modulations ⇓

The previous procedure, consisting in directly creating the constellation of coherent
states from the constellation of symbols, is not always possible, because in general
the K waveforms (7.17) cannot be expressed in the form (7.20). To remove the time
dependence, we can proceed in the following way [4]. We take a basis of functions,
h1(t), . . . , hN (t), orthonormal in the interval [0, T), where, in general, N ≤ K , and
we expand the waveforms (7.17) on this basis, namely

γi(t) =
N∑

j=1

γij hj(t) , i = 0, 1, . . . , K − 1 (7.24a)

where the coefficients are given by

γij =
∫ T

0
γi(t) h∗

j (t) d t , j = 1, . . . , N . (7.24b)

The vectors of the complex coefficients

γi = (γi1, . . . , γiN ) , i = 0, 1, . . . , K − 1 (7.25)

uniquely identify the waveform γi(t).
The classical modulator can be implemented as in Fig. 7.8, where the encoder

makes the map

An = i ∈ A → Cn = γi ∈ C
N
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Fig. 7.8 Scheme of a classical vector modulator. The encoder maps the source symbols An ∈ A

into a vector of complex symbols Cn = [Cn1, . . . , Cni, . . . , CnN ]T. The bank of interpolators maps
the vectors Cn into the complex envelope c(t)

with

Cn = [Cn1, . . . , CnN ] , γi = [γi1, . . . , γiN ].

Then from the vector Cn, a bank of interpolators forms the complex envelope c(t) of
the modulated signal, as

c(t) =
∞∑

n=−∞

N∑

i=1

Cni hi(t − nT). (7.26)

This generalizes the scalar modulation, which is obtained with N = 1.
The general procedure just described allows us to identify a constellation of com-

plex vectors {γi, i = 0, . . . , K − 1} with γi ∈ C
N . Now, to introduce the coherent

states, we must consider a composite Hilbert space, given by the tensor product
H = H0 ⊗ H0 ⊗ · · · ⊗ H0 of N equal Hilbert spaces H0. In this composite space,
the states become the tensor product of coherent states and, through (7.25), to each
symbol i ∈ A the tensor product of coherent states is associated

|γi〉 = |γi1〉 ⊗ |γi2〉 ⊗ · · · ⊗ |γiN 〉 (7.27)

that, with i varying in A, forms the desired constellation of coherent states. In the
context of continuous variables of Chap. 11, the tensor product of N coherent states
(7.27) is called N-mode coherent state.

An example in which we use this method of forming a composite constellation
of coherent states will be seen in PPM modulation developed in Sect. 7.13 (see also
Problem 7.5).

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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7.3.3 Construction of a Symmetric Constellation

An innovative way to obtain a state constellation is based on the geometrically uni-
form symmetry (GUS), introduced in Sect. 5.13. To this end, it is sufficient finding a
unitary operator S having the property of a symmetry operator S

SK = IH (7.28)

that is, S must be a K th root of the identity operator. Then, fixing an arbitrary state
|γ0〉 ∈ H, one gets a K-ary constellation of states as

|γi〉 = Si |γ0〉 , i = 0, 1, . . . , K − 1. (7.29)

More generally, one can fix an arbitrary density operator ρ0 acting on the Hilbert
space H to get a constellation of density operators as (see (5.123))

ρi = Si ρ0 (Si)∗ , i = 0, 1, . . . , K − 1. (7.30)

In this way, we can generate infinitely many constellations having the very useful
property represented by the GUS. After the choice of S and of the reference state
|γ0〉 or ρ0, one achieves “interesting practical properties” for the quantum commu-
nications system based on the corresponding constellation. A nontrivial problem is
finding a unitary operator with the property (7.28), especially in the case of infinite
dimensions, as is for coherent states.

Problem 7.5 �� Show that the PPM must be considered a vector modulation. Find
explicitly the waveform γi(t) and the vector γi of the coefficients.

Problem 7.6 �� The n-DFT matrix W[n] is unitary and has the property W n[n] =
In. Then it allows for the construction of n-ary constellations in H = C

n. Find a
quaternary constellation using S = W[4] and reference state |γ0〉 = [1, 1, 0, 0]T.
Also prove that the four states are linearly independent.

7.4 Parameters in a Constellation of Coherent States

In the previous section, we have investigated how to form interesting constellations
of coherent states for quantum communications systems. In this section, we want to
clarify how a given constellation format can be parametrized to modify the photonic
flux therein, expressed, e.g., in terms of the number of signal photons per symbol. In
fact, we are interested in the evaluation of the system performance in a given range
of this parameter.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Note that the constellation of coherent states S given by (7.23) can be structured
in matrix form as

Γ = [|γ0〉, |γ1〉, . . . , |γK−1〉] (7.31)

and becomes the state matrix. In practical modulation formats (that will be considered
further on), the states of S are always independent (in the sense of vector spaces),
and then the state matrix has always full rank, i.e., rank(Γ ) = K . From the state
matrix, we obtain the Gram’s matrix, a K × K matrix formed by the inner products
between the couples of states

G = Γ ∗Γ = [〈γi|γj〉
]

, |γi〉, |γj〉 ∈ G

that can be calculated using (7.9). Also G has always full rank and, because the states
are not orthogonal, all the entries of G are different from zero.

Even in the N-dimensional case, when the states are given by the tensor product
of N component states (see (7.27)), to calculate the state superposition, we evaluate
the inner products

〈γi|γj〉 = 〈γi1|γj1〉 〈γi2|γj2〉 · · · 〈γiN |γjN 〉. (7.32)

In this relation we have borne in mind that the inner product of states, given by
a tensor product, is obtained as a product of the inner products of the component
states (see relation (2.100)). Each of the inner products of the component states is
evaluated from (7.9).

7.4.1 Number of Signal Photons in a Constellation

From (7.8) we have that the average number of photons associated to the coherent
state |γ 〉 ∈ G is given by the squared norm of the complex amplitude γ

Nγ = |γ |2.

In a constellation of coherent states, we introduce the signal photons per symbol.
To this end, we observe that the generic symbol of the constellation, C ∈ C, must
be considered as a random variable with probability P[C = γ ], γ ∈ C, and also
the average number of photons NC associated to C becomes a random variable; the
statistical average of NC ,

Ns = E[NC] =
∑

γ∈C
P[C = γ ]Nγ =

∑

γ∈C
P[C = γ ]|γ |2, (7.33)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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defines the average number of photons per symbol, briefly number of signal photons
per symbol. Now, given the one-to-one correspondence A = i ⇔ C = γi, the
probability of these two events turns out to be equal to the prior probability qi.
Therefore, we have

Ns =
∑

i∈A
qi|γi|2 (photons/symbol).

In particular, with equally likely symbols, the number of signal photons per symbol
becomes

Ns = 1

K

∑

i∈A
|γi|2 = 1

K

∑

γ∈C
|γ |2. (7.34)

Finally, remembering that, with equiprobable symbols, there are log2 K bit/symbol,
we find that the number of signal photons per bit is given by

NR = Ns

log2 K
(photons/bit). (7.35)

⇓ We have seen above that in an N-dimensional constellation C, whose states
are N-mode coherent states, |γ 〉 = |γ1〉 ⊗ |γ2〉 ⊗ . . . ⊗ |γN 〉, the average number of
photons associated to the composite state |γ 〉 results in (see (7.11))

Nγ = |γ1|2 + |γ2|2 + · · · + |γN |2 (7.36)

where γ = [γ1, γ2, . . . , γN ]. Consequently, the number of signal photons per symbol
must be evaluated according to

Ns =
∑

γ∈C
P[C = γ ] Nγ (7.37)

with Nγ given by (7.36), and the sum is extended to the N-dimensional constellation.
Of course, with equiprobable symbols we have P[C = γ ] = 1/K and the number of
signal photons per bit is still given by (7.35).

Sensitivity of a receiver. In telecommunications an important parameter is the sen-
sitivity, which is defined as the minimum value of a parameter of the receiver that
guarantees a given value of the error probability Pe, typically Pe = 10−9. In optical
communications (classical or quantum), the parameter is often given by the number
of photons per bit NR. Thus we say, e.g., that a quantum receiver has the sensitivity
of NR = 11.5 photons/bit.
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7.4.2 Scale Factor and Shape Factor of a Constellation

The constellation (7.22) of complex symbolsC, from which we can directly obtain the
constellation (7.23) of coherent states S, contains a scale factor linked to the photonic
intensity, but modulation formats are usually specified in a normalized form. In the
evaluation of a system’s performance, it is worthwhile to underline this aspect by
expressing the symbols γi in the form γ̄iΔ, where γ̄i are normalized symbols and Δ

is the scale factor. Then it is convenient to introduce a normalized constellation

C0 = {γ̄0, γ̄1, . . . , γ̄K−1}

from which one obtains the scaled constellation as C = {γ̄0Δ, γ̄1Δ, . . . , γ̄K−1Δ}
and hence the constellation of coherent states as

S = {|γ̄0Δ〉, |γ̄1Δ〉, . . . , |γ̄K−1Δ〉}.

The scale factor appears in the number of signal photons per symbol, given by (7.34),
which can be written in the form

Ns = 1

K

∑

γ∈C
|γ |2 = Δ2 1

K

∑

γ̄∈C0

|γ̄ |2 = μKΔ2 (7.38)

where

μK := 1

K

∑

γ̄∈C0

|γ̄ |2 (7.39)

is a characteristic parameter of the constellation, which we call shape factor. For
example, in the PSK modulation, the normalized constellation consists of K points
on the unit circle

C0 = {ei2πm/K | m = 0, 1, . . . , K − 1}

whereas the scaled constellation is given by K points on the circle of radius Δ

C = {Δ ei2πm/K | m = 0, 1, . . . , K − 1}.

In this case, the shape factor is μK = 1. An example where μK 
= 1 is given by the
QAM modulation.
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7.4.3 Summary of Constellation Formats

To conclude these two sections on constellations of coherent states, it is convenient
to recall that the target of a quantum communications system is the transmission
of a classical information, encoded in a classical symbol sequence {An}, through a
sequence of quantum states {|γAn〉}, as illustrated in Fig. 7.1. Thus, a key operation is
the c → q mapping An → |γAn〉. This finally explains why we have constellations
in both classical and quantum domain.

Here, we wish to summarize the constellations introduced above which are all
useful to proceed on. Starting from a symbol alphabet, which was indicated in the
form A = {0, 1, . . . , K − 1}, we have introduced:

• a constellation of normalized complex symbols C0 = {γ̄0, γ̄1, . . . , γ̄K−1},
• a constellation of scaled complex symbolsC = {γ0, γ1, . . . , γK−1}, with γi = γ̄0Δ,

where Δ is a scale factor,
• a constellation of coherent states S = {|γ0〉, |γ1〉, . . . , |γK−1〉}, where |γi〉 is the

coherent state uniquely determined by the scaled complex symbol γi, according
to relation (7.2).

Note that C0 and C live in the field of complex numbers C, while S lives in the infinite
dimensional Hilbert space H.

Problem 7.7 �� ∇ Find the shape factor μk of the 16-QAM constellation (see
Fig. 7.28).

7.5 Theory of Classical Optical Systems

We want to compare the performance of a quantum communications system with that
of the corresponding classical communications system, i.e., not based on quantum
measurements, but on an optical detection (see semiclassical detection in Chap. 4).

In the formulation of the transmitter and the receiver, it is convenient to introduce
two distinct schemes: One working at the level of instantaneous optical power and
the other one working on the complex envelope. In fact in the semiclassical theory of
an optical system, both the optical power and the complex envelope must be jointly
considered, as remarked in Sect. 4.7.

7.5.1 Scheme for Instantaneous Optical Powers

We recall that a monochromatic radiation at the optical frequency ν can be modeled
as an instantaneous optical power, which is formed by the energy quanta of size hν

and has the impulsive expression

http://dx.doi.org/10.1007/978-3-319-15600-2_4
http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.9 Scheme of a classical modulator and demodulator for the instantaneous optical power. In
the figure, the initial encoder An → Cn and the final decoder Ĉn → Ân are omitted

p(t) =
∑

k

(hν) δ(t − tk) (7.40)

where the arrival instants {tk} are represented by a doubly stochastic Poisson process,
specified by its random intensity λ(t).

Referring to digital systems, the information to be transmitted is first conveyed in
a sequence of symbols {An} , An ∈ {0, 1, . . . , K −1} and then, for convenience, in a
sequence of complex symbols {Cn} belonging to a given (normalized) constellation
C0. Then the first part of the transmitter is an encoder, which provides the map
An → Cn. The task of a digital modulator is to modify the laser beam in each
symbol period (nT , nT + T) in dependence of the symbol Cn falling in this period.3

If there are no further processing, as we suppose, the output of the modulator gives
the instantaneous transmitted power pT (t), as shown in Fig. 7.9.

In the receiver, the incoming instantaneous power pR(t), an attenuated version of
pT (t), is combined with the instantaneous power pL(t) of a local laser tuned at the
same frequency ν as the laser in the transmitter (homodyne detection) or at a different
frequency (etherodyne detection). The task of the demodulator is the production of
two distinct instantaneous powers pa(t) and pb(t) to feed two photon counters, which
count the photon numbers in each symbol period as

na = 1

hν

∫ nT+T

nT
pa(t) d t , nb = 1

hν

∫ nT+T

nT
pb(t) d t.

The reason of this double path is due to the fact that na and nb are real (integer) and
the receiver has to give an estimated version {Ĉn} of the complex sequence {Cn}.

In the case of binary systems, where the symbols Cn are real, the double path is
not necessary and the detection is based only on a single photon counting. In the
following, for brevity, we will consider only homodyne detection.

3 The practical implementation of this operation will be seen in Sect. 9.2.

http://dx.doi.org/10.1007/978-3-319-15600-2_9
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7.5.2 Scheme for Complex Envelopes

In an optical system, the complex envelope V (t) (denoted by cv(t) in Sect. 4.7)
contains all the information useful both for the signal analysis and the statistical
analysis. In fact from V (t), we can obtain the signal v(t), present in the form of
electric field, as

v(t) = �V (t) ei 2π ν t . (7.41)

Also, the average power P(t) is proportional to |V (t)|2 and, by appropriate normal-
ization of the electric field, it can be directly written as

P(t) = |V (t)|2 . (7.42)

On the other hand, the average power is connected to the instantaneous power, mod-
eled as a doubly stochastic filtered Poisson process, through Campbell’s theorem
according to

P(t) = E[p(t)|λ] = (hν) λ(t) , (7.43)

where E[·|λ] denotes the conditional expectation “with a given λ(t).” This holds for
the powers pT (t), pR(t), pa(t), and pb(t) in the scheme of Fig. 7.9. The fundamental
remark is that from the complex envelope V (t), we can obtain the intensity λ(t)
which gives the full statistical description of the doubly stochastic Poisson processes
involved.

At the level of complex envelope, the modulator scheme is essentially the one
anticipated in Fig. 7.6, where, starting from the complex sequence {Cn}, the complex
envelope of the modulated signal is obtained with an interpolator according to (7.21),
that is,

VT (t) =
+∞∑

n=−∞
CnV0 h(t − nT) (7.44)

where V0 is the amplitude of the carrier produced by the laser. This corresponds to
the transmitter instantaneous power pT (t).

The scheme of the demodulator is extremely simple. To the incoming complex
envelope VR(t), corresponding to the received instantaneous power pR(t), the ampli-
tude VL is added for the upper path and the amplitude i VL to the lower path to
get

Va(t) = VR(t) + VL, Vb(t) = VR(t) + i VL (7.45)

as shown in Fig. 7.10.

http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.10 Scheme of a classical modulator and demodulator for the complex envelopes

In the following, we make the assumption that the interpolator impulse response
h(t) is unitary in (0, T), so that VT (t) is simplified as

VT (t) = C0 V0, 0 < t < T . (7.46)

Correspondingly (7.45) become

Va(t) = C0 VR + VL, Vb(t) = C0 VR + iVL (7.47)

where VR is the amplitude of the received carrier.

7.5.3 Scheme for Signals. Quadrature Modulator

The scheme for the complex envelope is sufficient for the analysis of an optical
system. Now we consider the scheme for the signal, which is more detailed and may
have interest for the implementation of the system.

Signals are obtained from complex envelopes according to relation (7.41). Letting
Cn = An + iBn, from (7.44); we find that the modulated signal results in

vT (t) = �
+∞∑

n=−∞
(An + iBn) h(t − nT) V0 e i 2πνt

=
+∞∑

n=−∞
[AnV0 h(t − nT) cos 2πν t − BnV0 h(t − nT) sin 2πν t] . (7.48)

The interpretation of these relations leads to the scheme of Fig. 7.11, called quadra-
ture modulator. The carrier VT cos 2πνt is produced by a laser tuned at the fre-
quency ν and the quadrature carrier −VT sin 2πνt is obtained by shifting the carrier
VT cos 2πνt.
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Fig. 7.11 Implementation of a coherent optical system based on a quadrature modulator. On the
left the transmitter and on the right the homodyne receiver

With the simplification of (7.46), (7.48) gives

vT (t) = A0V0 cos 2πνt − B0V0 sin 2πνt , 0 < t < T . (7.49)

At reception, the modulated signal becomes

vR(t) = A0VR cos 2πνt − B0VR sin 2πνt , 0 < t < T , (7.50)

and the constant complex envelopes VL and i VL give

� VLei 2π ν t = VL cos 2πνt , � i VLei 2π ν t = −VL sin 2πνt.

These carriers are provided by a local laser, tuned with the transmission laser (homo-
dyne reception). Finally, (7.47) gives for 0 < t < T

va(t) = � [C0VR + VL] ei2πνt = (A0VR + VL) cos 2πνt − B0VR sin 2πνt

vb(t) = � [C0VR + i VL)] ei2πνt = A0VR cos 2πνt − (B0VR + VL) sin 2πνt.
(7.51)

These signals feed the photon counters.

7.5.4 Photon Counting and Detection

The count in the interval (0, T ] yields two values, na and nb, from which a decision
must be taken on the transmitted symbol C0; na and nb are conditioned Poisson
variables and therefore characterized by their averages n̄a(C0) := E[na|C0] and
n̄b(C0) := E[nb|C0], the condition being “given a transmitted symbol C0.” These
averages are obtained dividing the corresponding energies in a symbol period T by
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the quantum hν. Considering that the complex envelopes are constant in (0, T), we
have Ea = PaT = |Va|2T and Eb = PbT = |Vb|2T , and then

n̄a(C0) = H|C0 VR + VL|2 = H
[
(A0VR + VL)2 + (B0VR)2

]

n̄b(C0) = H|C0 VR + i VL|2 = H
[
(A0VR)2 + (B0VR + VL)2

]
(7.52)

where H = T/(hν).
At this point, we assume that the local carrier has an amplitude VL much greater

than VR, which allows us to get the following approximations

n̄(A0) = H(2A0VRVL + V 2
L ) , n̄(B0) = H(2B0VRVL + V 2

L ), (7.53a)

where now the upper counting depends only on A0 and the lower counting only on B0.
The averages can be expressed in “numbers” by letting NL = HV 2

L and NR = HV 2
R

to get

n̄(A0) = 2
√

NL NR A0 + NL , n̄(B0) = 2
√

NL NR B0 + NL. (7.53b)

The numbers of photons na and nb can be decomposed as

na = n̄(A0) + ua = A0 U0 + NL + ua

nb = n̄(B0) + ub = B0 U0 + NL + ub
, U0 := 2

√
NL NR (7.54)

where

• U0 A0 and U0 B0 are the useful signals,
• NL is a bias,
• ua and ub are the shot noises.

We compose for convenience the two countings into a complex one to get

z0 = na + inb = C0 U0 + NL + i NL + ua + iub (7.55)

which is the standard form of the “signal at the decision point” in a quadrature
modulator. Note that

n̄(C0) := n̄(A0) + i n̄(B0) = C0 U0 + NL(1 + i) , C0 ∈ C0

generates a constellation of “received values”, with center the point NL(1 + i) of the
complex plane C. The constellation is illustrated in Fig. 7.12 in the case of 8-PSK.
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Fig. 7.12 Constellation of
“received values” in the
complex plane of optical
8-PSK. The points of the
constellations are given
by NL(1 + i) + U0 ei 2πk/8 ,

k = 0, 1 . . . , 7

NL

NL

NL +U0NL +U0

7.5.5 Correct Decision Probability

In principle, it is possible to evaluate the correct decision probability Pc = P[Ĉ0 = C0]
from the statistical description of the integer random variables na and nb. These vari-
ables can be considered statistically independent, and therefore described by two
conditioned Poisson distributions pna(k|A0) and pnb(k|B0), which in turn are speci-
fied by their averages n̄(A0) and n̄(B0) given by (7.53). The preliminary step is the
choice of the decision regions {R(γ )|γ ∈ C0}, which has to form a partition of the set
of integer pairs {(k1, k2)|k1, k2 = 0, 1, 2, . . .}. Then we have the decision criterion

Ĉ0 = γ if (na, nb) ∈ R(γ ). (7.56)

Correspondingly, the transition probabilities are given by

p(γ ′|γ ) := P[Ĉ0 = γ ′| C0 = γ ]
∑

(k1,k2)∈R(γ ′)
pna(k1|�γ ) pnb(k2|
γ ) (7.57)

and the correct decision probability, with equally likely symbols, by

Pc = 1

K

∑

γ∈C
p(γ |γ ). (7.58)

The decision regions should be optimized to maximize Pc.
This procedure will be applied in the next chapter (Sect. 8.6) to a specific case

(a BPSK system). In general, it is cumbersome and does not give readable results
because only numerical evaluations are possible. The alternative is the Gaussian
approximation, where it is assumed that the photon numbers na and nb are inde-
pendent Gaussian random variables. This allows us to simplify the analysis and to
arrive at very simple results.

Note that na and nb are Poisson random variables and it may appear to be strange
that discrete random variables, described by (mass) probability distributions, are

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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approximated by continuous random variables, described by probability densities.
The approximation does not work in counting, but in the evaluation of the transition
probabilities and of the error probability. In Sect. 8.6, we will compare the exact
evaluation of probabilities, obtained with the Poisson statistics, and the approximate
evaluation, obtained with the Gaussian assumption. We will see that the Gaussian
approximation gives a very accurate evaluation of the exact probabilities. This con-
clusion holds in general in the presence of a strong photonic intensity [5] (here
ensured by the assumption VL � V0).

With the Gaussian approximation, na and nb become specified by their conditional
means n(A0) := E[n|A0] and n(B0) := E[nb|B0] and by their variances σ 2(A0) =
n(A0) and σ 2(B0) = n(B0). For the latter, a further simplification4 can be introduced
by neglecting in (7.53) 2A0

√
NR NL and 2B0

√
NR NL with respect to NL , so that

they become equal, σ 2
n := σ 2(B0) = σ 2(B0) = NL , and independent of the symbols.

Then their joint probability density results in

fna(a|A0) fnb(a|B0) = 1

2πσ 2
n

exp

[
− (a − n(A0))

2 + (b − n(B0))
2

2σ 2
n

]

= 1

σn
φ

(
a − n(A0)

σn

)
1

σn
φ

(
b − n(B0)

σn

)
. (7.59)

The decision regions {R(γ ) | γ ∈ C0} become a partition of the complex plane. Then
the transition probabilities are given by

pc(γ
′|γ ) := P[Ĉ0 = γ ′| C0 = γ ] =

∫

R(γ
′
)

fna(a|�γ ) fnb(a|
γ ) da db. (7.60)

The correct decision probability Pc, with equally likely symbols, is still given
by (7.58).

The above probabilities depend only on the SNR, which results in

Λ = U2
0

σ 2
n

= 4 NR (7.61)

and is related to the number of signal photons contained in the received power
PR = V 2

R . In fact, considering that VR(t) = C0 VR, the received power is given by
PR = |C0|2V 2

R , and therefore the number of signal photons associated to the symbol
C0 is |C0|2HV 2

R = |C0|2 NR. This can be related to the number of signal photons
per symbol Ns as (see (7.34))

Ns = 1

K

∑

γ∈C0

|γ |2 NR = μK NR (7.62)

4 This simplification is not possible for the means given by (7.53) because they represent the useful
signal. Otherwise the information on symbols would be lost.

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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where μK is the shape factor of the constellation (see (7.39)). Then Λ = 4 Ns/μK .
As we will see, in the cases of interest, with an optimized choice of the decision
region, the error probability is a function of the SNR Λ expressed by function Q(x)
(see Problem 7.8).

The above theory on classical optical systems is quite long and contains a lot of
relations, but the net result for the evaluation of the performance is extremely simple.

Proposition 7.2 In a classical optical system, where the local carrier has an ampli-
tude VL much greater than the received carrier amplitude VR, the shot noise may
be considered Gaussian. With equally likely symbols and optimized decision regions
{R(γ ), γ ∈ C0}, the minimum error probability turns out to be a simple function of
the SNR

Λ = 4Ns

μK
(7.63)

expressed through the complementary normalized Gaussian distribution Q(x). In
(7.63) Ns is the number of signal photons per symbol and μK is shape factor of the
constellation.

Problem 7.8 � Consider the 4-QAM (which is equivalent to 4-PSK) where the
normalized constellation is C0 = {γ = ±1 + ±i} and the constellation of received
values is given by

{(±1 + ±i)U0 + (1 + i)NL}.

Find the optimal decision regions and prove that the minimum error probability Pc

is given by Pc = 1 −
(

1 − Q(
√

Λ)2
)

with Λ = 4NR.

7.6 Analysis of Classical Optical Binary Systems

In classical optical systems, the transmitted symbol C0 has in general a complex
format; but in the binary case, without restrictions, we can assume a real format.
Then the general schemes of the previous section (Figs. 7.9, 7.10, and 7.11) are
simplified because the double path is reduced to a single path.

For the sake of comparison with other schemes, it is convenient to express the
system performance (error probability) in terms of the average number of photons
per bit NR, which is given in general by

NR = q0 NR(0) + q1 NR(1) , q0 + q1 = 1

where qi = P[A0 = i] are the a priori probabilities and NR(i) = E[n|A0 = i] the
average number of photons associated to the symbol A0 = i. Usually we will consider
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equiprobable symbols, so that the average number of photon per bit becomes

NR = 1

2
NR(0) + 1

2
NR(1). (7.64)

In the following analysis, we will use the notations for signals and complex
envelopes:

• v0(t) V0 optical carrier at the transmitter,
• vT (t) VT (t) transmitted optical signal,
• vR(t) VR(t) received optical signal,
• vL(t) VL local optical carrier at the reception.

We assume that the channel is ideal, so that

vR(t) = vT (t).

7.6.1 Binary System with Incoherent Detection
(OOK Modulation)

In the classical formulation, a monochromatic wave at frequency ν emitted by a laser
can be represented by a sinusoidal signal

v0(t) = V0 cos 2πνt (7.65)

where the amplitude V0 gives the optical power as (see Sect. 7.5)

P = V 2
0 . (7.66)

The simplest optical communications system uses amplitude modulation (OOK)
and incoherent detection, as shown in Fig. 7.13. The OOK modulator is a special
case of the general modulator of Fig. 7.10 with the encoding mapping the identity,
A0 → C0 = A0, which gives the modulated signal

vT (t) = �C0 V0 ei 2πν t = A0 V0 cos 2πνt , 0 < t < T .

In practice, in the symbol period (0, T) the transmitter associates a zero field to the
symbol A0 = 0 and the field V0 cos 2πνt to the symbol A0 = 1.

Figure 7.14 shows a sequence of binary symbols and the corresponding modulated
signal. This is obtained by amplitude modulating the laser beam of frequency ν or,
more simply, by switching on and off the laser itself according to the source symbol
to be transmitted. At the receiver, a photodetector transforms the incident field into an
electrical current from which a photon counting can be obtained, as seen in Sect. 4.8.

http://dx.doi.org/10.1007/978-3-319-15600-2_4


306 7 Quantum Communications Systems

t

vT (t)
0 0 1 0 1 1 0 1

V0

Fig. 7.13 A realization of a binary sequence and corresponding OOK signal
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Fig. 7.14 Binary optical system with amplitude on–off modulation and uncoherent detection

Considering that with the transmission of the symbol A0 = 0, the number of
photons is null, n = 0, in (7.64) we have NR(0) = 0, and therefore

NR = 1

2
NR(1).

At reception the photon count receiver uses the decision criterion

Â0 =
{

0 if n = 0
1 if n ≥ 1,

(7.67)

where n is the number of photons counted in a symbol period. Then, with the trans-
mission of the symbol A0 = 0, we always have a correct decision

Pe(0) = 0. (7.68a)

When A0 = 1 the number of arrivals n is a Poisson variable with average NR(1), and
therefore with (conditioned) distribution

pn(k|1) = e−NR(1) NR(1)k

k! , k = 0, 1, . . .
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and we have an error when n = 0, which occurs with probability

Pe(1) = pn(0|1) = e−NR(1) = e−2NR . (7.68b)

The average error probability in the classical system is therefore

Pe,classical = 1

2
e−2NR (7.69)

where equally likely symbols are assumed.
In optical communications this probability is called the quantum limit [6] or shot

noise limit, and it is the optimum for any detection that does not exploit the coherence
property of the optical beam. Notice, in fact, that in this classical context the decision
criterion (7.67) is optimal (see Problem 5.4). The receiver scheme is called direct
detection of the incident light pulses. The main advantage of this approach is its
simplicity. In particular, phase and frequency instabilities of the laser source are
well tolerated. Moreover, at the receiver direct detection is used and phase sensitive
devices are avoided.

7.6.2 Quantum Interpretation of Photon Counting in OOK

The above scheme, known as on–off keying (OOK) modulation, has a simple quan-
tum equivalent, employing the coherent states |0〉 and |α〉, with α > 0, where the
photon counting can be treated as a quantum measurement with not optimal mea-
surement operators.

The quantum measurement realized by the photon counter is obtained with the
elementary projectors |n〉〈n|, where |n〉 is the number state (see Fig. 7.2), and the
outcome of the measurement is given by the number of photons n. The transition
probabilities in the measurement are

p(i|α) = P[n = i|α] = e−|α|2 |α|2i

i! , p(i|0) = P[n = i|0] = δi0.

The alphabet of the measurement is then M = {0, 1, 2, . . .}, and it is different from
the alphabet A = {0, 1} of the source (see Sect. 5.2). To find the global perfor-
mance, we must introduce a decision criterion consisting in the partitioning of M
into two decision regions M0 and M1 to obtain two global measurement operators
(see Sect. 5.2.3). The optimal partition is M0 = {0} and M1 = {1, 2, . . .} (Fig. 7.15)
and so we have the global projectors

Q0 = |0〉〈0| Q1 =
∞∑

n=1

|n〉〈n|. (7.70)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Fig. 7.15 Quantum interpretation of the decision made via a photon counter in an OOK system.
The outcome of quantum measurement is given by the number of photons n present in the state |α〉
or |0〉. The decision converts the measurement alphabet M= {0, 1, 2, . . .} into the binary alphabet
A= {0, 1}, thus realizing a binary channel

The global transition probabilities, from (5.15), are pc(0|0) = Tr[ρ0 Q0] and
pc(0|1) = Tr[ρ1 Q0], where ρ1 = |α〉〈α| and ρ0 = |0〉〈0|. Then

pc(0|0) = 〈0|0〉〈0|0〉 = 1

pc(0|1) = 〈α|Q0|α〉 = |〈α|0〉|2 = e−|α|2 = e−2NR . (7.71)

The performance is lower than that of the quantum version of the OOK, which
will be seen in Sect. 7.9, because the projectors (7.70) are suboptimal. We recall,
in fact, that with pure states, the optimal measurement operators must be elemen-
tary with measurement vectors arranged symmetrically with respect to the coherent
states (Fig. 7.16); whereas (7.70) Q1 has infinite rank and Q0 is elementary with
measurement vector |μ0〉 coinciding with the state |0〉.

|2
number states

|1|3···

···
|0

ground state

|γ1

α

|μ0

|μ1

|0
ground state

|γ1

θ

θ

π/2

α

Fig. 7.16 Decision with a photon counter (left) and optimal decision

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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7.6.3 Binary System with Coherent Detection
(BPSK Modulation)

A more sophisticated scheme of classical optical communications uses binary phase-
shift keying (BPSK) modulation (Fig. 7.17). The BPSK modulator is a special case
of the general modulator of Fig. 7.10 with the encoding mapping

A0 → C0 = eiA0 π =
{

+1 A0 = 0

−1 A0 = 1

which gives the modulated signal

vT (t) = � C0 V0 e i 2π ν t = V0 cos(2πνt + A0π) , 0 < t < T (7.72)

where V0 is the amplitude of the carrier v0(t) = V0 cos 2πνt. Figure 7.18 shows
a sequence of binary symbols and the corresponding BPSK signal, which in the
interval (nT , nT + T) is given by V0 cos(2πνt + An π).

BPSK with Homodyne Detection

Since the modulated signals vR(t) = vT (t) for different symbols have the same optical
energy, and hence the same photon counting, direct detection cannot discriminate
between them. Then the receiver adds to the incoming field vR(t) = VR cos(2πνt +
An π) the field VL cos 2πνt, generated by a “local” laser tuned at the same frequency
as v0(t), to get the signal

phase
modulator

A0 vT (t)
Σ

vR(t) photon
counter

v(t) n

laser local
laser

v0(t) =V0 cos2πνt vL(t) =VL cos2πνt

Fig. 7.17 Scheme of a binary coherent optical system with BPSK modulation. The receiver is called
homodyne because the frequency of the local laser is the same as the frequency of modulation carrier

t

vT (t)
0 0 1 0 1 1 0 1

V0

Fig. 7.18 A realization of a binary sequence and corresponding BPSK signal
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t

Pv (t)

0 T 2T 3T 4T 5T

0 0 1 0 1 1

Fig. 7.19 Example of the optical power PR(t) after the introduction of the local carrier in a homo-
dyne receiver

v(t) = VR cos (2πνt + A0π) + VL cos (2πνt) . (7.73)

As in Sect. 7.5.4, we assume that the local carrier has an amplitude VL much
greater than that of the received signal, VL � V0. Since cos (2πνt + A0π) =
cos A0π cos 2πνt, the power becomes

Pv(t) = (VR cos πA0 + VL)2 = V 2
R + V 2

L + 2VRVL cos A0π (7.74)

which is illustrated in Fig. 7.19 for a sequence of source symbols. Applying this
power to a photon counter, we obtain a number of arrivals n in a symbol period,
which can be decomposed in the form

n = n̄(A0) + u

where n̄(A0) = E[n|A0] is the useful signal and the fluctuation u is the shot noise.
Now, from the theory of semiclassical detection developed in the previous section,
the number of signal photons is given by the photonic intensity Pv(t)/hν integrated
over (0, T), and therefore it results in

n̄(A0) = H
(

V 2
L + V 2

R + 2VRVL cos πA0

)
= NL + NR + U0 cos πA0 (7.75)

where NL + NR = H(V 2
L + V 2

R ) is a bias term, U0 = 2
√

NLNR, and U0 cos πA0 is
the symbol-dependent part. The variance, coinciding with the average, is

σ 2
n (A0) = NL + NR + U0 cos πA0 ∼= NL, (7.76)

where the approximation follows from the hypothesis VL � V0. In conclusion, the
decision on the transmitted symbol A0 is made on the value

n = NL + NR + U0 cos(πA0) + u. (7.77)
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At this point we introduce the Gaussian approximation, where it is assumed
that the photon number n is a Gaussian random variable and hence specified by the
mean n̄(A0) and by the variance σ 2(A0) = NL , which is independent of the symbol
A0. As seen in the previous section, the Gaussian assumption allows us to simplify
the analysis and to arrive at a very simple result.

By choosing the decision rule as

Â0 =
{

1 n ≤ NL + NR

0 n > NL + NR
(7.78)

we obtain the error probability

Pe = Q

(
U0

σn

)
= Q

(√
Λ
)

, (7.79)

where the SNR is given by Λ = U2
0/σ 2

n = 4 NR. Note that NR = NR(0) = NR(1)

gives the number of signal photons per bit. In conclusion, the error probability in the
classical BPSK with homodyne receiver is given by

Pe,classical = Q
(√

4NR

)
. (7.80)

This error probability is known as the standard quantum limit. The result is in
agreement with Proposition 7.2.

Comparison with incoherent detection (OOK) shows that the performances of the
homodyne detection are better, as illustrated in Fig. 7.20, where the error probability
Pe is plotted versus the average number of signal photons per bit NR. On the other
hand, the implementation of an efficient homodyne scheme implies some complica-
tions, in that it requires the presence of a local laser that must be accurately tuned in
frequency and phase with the source laser.

BPSK with Superhomodyne Reception

We suppose that at the reception we have available a laser (local oscillator) producing
a radiation vL(t) with the same amplitude, frequency and phase of the carrier at the
transmitter, that is,

vL(t) = VL cos (2πνt) with VL = V0. (7.81)

This local carrier is added to the received modulated signal, yielding (Fig. 7.21)

v(t) = V0 cos (2πνt + A0π) + V0 cos (2πνt)

=
{

2V0 cos (2πνt) A0 = 0

0 A0 = 1.
(7.82)
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Fig. 7.20 Comparison of
error probability Pe versus
average number of signal
photons per bit NR in
classical binary optical
systems
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Then the number of signal photons in a symbol period becomes

Nv(0) = 4PRT

hν
, Nv(1) = 0. (7.83)

Using a photon counter, the decision is based on the number of arrivals n by the rule

Â0 =
{

1 if n = 0

0 if n > 0.
(7.84)

Then, similarly to relation (7.69), we get the error probability

Pe,classical = 1

2
Pe(0) = 1

2
e−Nv(0) (7.85)

The interesting thing is that the number of signal photons per bit at the reception,
i.e., before adding the carrier, is NR = PR T/(hν) and it is equal to one fourth of
Nv(0), so that the relation (7.85) becomes

Pe,classical = 1

2
e−4NR (7.86)

which represents the super quantum limit [6]. So we have a great improvement over
the homodyne detection, as shown in Fig. 7.20; because the power introduced by
the local oscillator creates a more favorable situation for a correct decision. But the
implementation of superhomodyne is very difficult in that it requires the presence of
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t

vR(t)
0 0 1 0 1 0 0 0

V0

t

vL (t) VL=V0

t

v(t)
2V0

Fig. 7.21 Signals in classical BPSK superhomodyne reception

a local laser that must be accurately tuned with the source laser, not only in frequency
and phase but also in amplitude.

Problem 7.9 ��� The error probability in classical homodyne BPSK has been
evaluated assuming equiprobable symbols. When the symbols are not equiprobable
the number of signal photons per bit NR is still independent of the symbols and gives
the SNR as Λ = 4NR. The only change is in the evaluation is the decision element,
given for equiprobable symbol by (7.78), as

Â0 =
{

1 n ≤ S

0 n > S

where S is the threshold to be optimized.
Find the optimal decision threshold and prove that the minimum error probability

is given by

Pe = q1 Q

(√
Λ + 1

2
√

Λ
log

q1

q0

)
+ q0 Q

(√
Λ − 1

2
√

Λ
log

q1

q0

)
. (7.87)
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7.7 Quantum Decision with Pure States

In a K-ary quantum communications system, in the absence of thermal noise, we use
the quantum decision theory developed in the previous two chapters, limited to pure
states. We recall the main ideas and the available methods.

The source (Alice) is characterized by a constellation of coherent states S =
{|γ0〉, |γ1〉, ..., |γK−1〉}, which can be collected in the state matrix

Γ
n×K

= [|γ0〉, |γ1〉, ..., |γK−1〉] (7.88)

where n is the dimension of the underlying Hilbert space (n may be infinite, and it
really is infinite in Glauber’s representation). The specification of the source requires
also the definition of the prior probabilities qi = P[A0 = i] = P[C0 = γi], but usually
throughout the chapter we shall assume equiprobable symbols qi = 1/K .

The goal is to find an optimal system of measurement operators Qi, i ∈ A , that
is, minimizing error probability. Kennedy’s theorem (Theorem 5.3) states that, with
pure states, the optimal measurement operators must be elementary, i.e., in the form
Qi = |μi〉〈μi|. We can then limit our search to the measurement vectors, specified
by the measurement matrix

M
n×K

= [|μ0〉, |μ1〉, . . . , |μK−1〉]. (7.89)

These vectors are given as a linear combination of the states, as established by the
relation

M = Γ A (7.90)

where A is a K × K complex matrix.
Kennedy’s theorem states also that the optimal measurement vectors |μi〉 must

be orthogonal, and therefore the corresponding measurement operators Qi =
|μi〉〈μi|, i ∈ A must form a system of projectors. Unfortunately, Kennedy’s the-
orem, as well as Holevo’s theorem, do not provide explicit solutions. To compute
optimal solutions, we could resort to the numeric programming methods outlined
in Sect. 5.8, but, luckily enough, we can get help from the geometrically uniform
symmetry (GUS), which is verified in the majority of quantum communications
systems. In fact, square root measurement (SRM) decision, which is, in general,
suboptimal, with pure states and in the presence of GUS becomes optimal (see
Sect. 6.5.4). It is then appropriate to explicitly recall the SRM methodology, that
gives good results even in the absence of GUS.

From the measurement vectors, we calculate the transition probabilities p(j|i) =
|〈μj|γi〉|2 and then the probability of correct decision.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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7.7.1 Recall of SRM Approach

We summarize the main steps of the SRM theory developed in Sect. 6.3.
Starting from the constellation of K coherent states C = {|γ0〉, . . . , |γK−1〉}, we

evaluate in sequence

(1) Gram’s matrix of the inner products G = [〈γi|γj〉|], i, j = 0, 1, . . . , K − 1,
calculated according to (7.9). In the cases of interest, the matrix G, which is
K × K , has rank K .

(2) The spectral decomposition (EID) of G

G = V ΛGV ∗ =
K−1∑

i=0

σ 2
i |vi〉〈vi| . (7.91)

From this EID we find the eigenvalues σ 2
i and the orthonormal basis {|vi〉}.

(3) The square roots of G

G± 1
2 = V Λ

± 1
2

G V ∗. (7.92)

(4) The transition probabilities according to (see (6.29))

pc(i|j) =
∣∣∣
(
G

1
2
)

ij

∣∣∣
2

(7.93)

and the error probabilities (with equiprobable symbols)

Pe = 1 − 1

K

K−1∑

i=0

∣∣∣
(
G

1
2
)

ii

∣∣∣
2
. (7.94)

(5) The measurement vectors as linear combination of the states according to

M = Γ G
1
2 → |μi〉 =

K−1∑

j=0

(
G− 1

2
)

ij|γj〉. (7.95)

With geometrically uniform symmetry (GUS). If the states |γi〉 have the GUS,
Gram’s matrix becomes circulant and its EID is given by

G = W[K] ΛG W ∗[K] =
K−1∑

i=0

σ 2
i |wi〉〈wi|, (7.96)

where the vectors |wi〉 are the columns of the DFT matrix W[K]

http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_6
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|wi〉 = 1√
K

[
W −i

K , W −2i
K , . . . , W −i(K−1)

K

]T

, i = 0, 1, . . . , K − 1 (7.97)

and the eigenvalues are given by the DFT of the first row [r0, r1, . . . , rK−1] of the
matrix G

λi = σ 2
i =

K−1∑

k=0

rk W −ki
K , rk = 〈γ0|γk〉. (7.98)

The square roots of G have elements

(
G± 1

2
)

ij = 1

K

K−1∑

p=0

λ
± 1

2
p W −p(i−j)

K (7.99)

and in particular the diagonal elements are all equal. Therefore, the error probability
is simply given by

Pe = 1 −
∣∣∣
(
G

1
2
)

00

∣∣∣
2

. (7.100)

7.8 Quantum Binary Communications Systems

We develop the analysis of a quantum binary system, in which the information is
carried by two coherent states. In this section, we assume that the constellation of the
two states be generic; whereas, in the subsequent sections, two specific modulation
formats will be developed (OOK and BPSK).

In the binary case, the optimal decision can be obtained in explicit form by
Helstrom’s theory and also by the geometric approach, seen in Sect. 5.4. With
equiprobable symbols, we can also use the SRM method, which provides an optimal
decision (see Sect. 6.5).

7.8.1 Binary Systems with Coherent States

To implement a Quantum Communications binary system, the transmitter (laser) is
placed in one of two distinct coherent states |γ0〉 , |γ1〉 ∈ G, which can be collected
in the state matrix Γ = [|γ0〉, |γ1〉] . The geometry is completely specified by the
inner product X := 〈γ0|γ1〉, which can be calculated explicitly from (7.9).

The optimal decision is based on two measurement operators Q0 and Q1, with
Q0 + Q1 = I , which, by Kennedy’s theorem (see Sect. 5.11), must be in the form
Q0 = |μ0〉〈μ0| e Q1 = |μ1〉〈μ1|, and therefore are identified by two measurement

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_6
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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vectors |μ0〉 and |μ1〉, which form the measurement matrix

M opt = [|μ0〉, |μ1〉].

Still by Kennedy’s theorem, the two measurement vectors must be orthogonal,
〈μ0|μ1〉 = 0, so that the quantum measurement is always projective.

7.8.2 Recall of Helstrom’s Theory and of Geometric Approach

We briefly recall the theory of optimal binary decision developed in Sects. 5.3 and
5.4. The results of this theory are completely specified by the a priori probabilities
q0 and q1 and by the (quadratic) superposition degree of the states |X|2 = |〈γ0|γ1〉|2,
which can be calculated in explicit form from (7.9), obtaining

|X|2 = e−|γ0−γ1|2 . (7.101)

The optimal measurement matrix is related to the state matrix as M = Γ A where
the matrix A is given explicitly by (5.39).

The error probability, known as the Helstrom bound, is given by

Pe = 1

2

(
1 −

√
1 − 4q0q1|X|2

)
. (7.102)

Case of Equiprobable Symbols

When the symbols are equiprobable, which is the case of main interest, we have a
few simplifications. The matrix A becomes

A = 1

2

⎡

⎣
1√

1+|X| + 1√
1−|X|

1√
1+|X| − 1√

1−|X|
1√

1+|X| − 1√
1−|X|

1√
1+|X| + 1√

1−|X|

⎤

⎦ . (7.103)

The error probability is simplified as

Pe = 1
2

[
1 −

√
1 − |X|2

]
. (7.104)

Problem 7.10 �� Prove that with the optimization the a posteriori probabilities
q(i|i) := P[A0 = i|Â0 = i] are equal and coincide with the correct decision proba-
bility Pc.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Problem 7.11 � Prove that in a binary system with equiprobable symbols, the
error probability can be expressed as function of NR(0), NR(1), and of the relative
phase of the complex parameters γ0 and γ1. that determine the coherent states.

7.9 Quantum Systems with OOK Modulation

The constellation consists of the states (Fig. 7.22)

|γ0〉 = |0〉 , |γ1〉 = |Δ〉 ∈ G (7.105)

where |0〉 is the ground state and the state |Δ〉 is determined by the number Δ which
is not restrictive to assume real and positive. The quadratic superposition of the two
states is |〈0|Δ〉|2 = e−Δ2

. The number of signal photons associated to the symbol
A0 = 0 is NR(0) = 0, while the one associated to the symbol A0 = 1 is NR(1) = Δ2.
The number of signal photons per bit is then

NR = 1
2 NR(0) + 1

2 NR(1) = 1
2 NR(1)

and the quadratic superposition of the two states can be written in the meaningful
form

|X|2 = e−2NR .

From (7.104), we obtain that the error probability of the OOK quantum system
with equiprobable symbols becomes

Pe = 1
2

[
1 −

√
1 − e−2NR

]
. (7.106)

Δ
•

0
•

|Δ
••

|0

ground state

C

H

Fig. 7.22 Constellation of symbols and states in OOK modulation
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The evaluation of the measurement vectors does not exhibit any specific simpli-
fication in (7.103), where now the inner product X can be expressed in the form
X = e−NR .

7.9.1 Comparison with Classical OOK Optical Systems

The classical OOK system was developed in Sect. 7.6.1, where we found that the
error probability, with equiprobable symbol, is given by

Pe,classical = 1
2 e−2NR . (7.107)

The comparison between the Pe,classical of the classical receiver, given by (7.107),
and the Pe of the quantum receiver, given by (7.106), is shown in Fig. 7.23 as a
function of the average number of photons per bit NR. The asymptotic behavior of
(7.106) becomes (by the approximation 1 − √

1 − x � 1
2 x for x small)

Pe = 1
4 e−2NR NR � 1

classical OOK

quantum OOK
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Fig. 7.23 Comparison of quantum and classical OOK



320 7 Quantum Communications Systems

0

1

A0 A0

0

1

ε
ε

0

1

A0 A0

0

1

ε1ε= 1
2

1−
√

1−e−2NR ε1=e−2NR

Fig. 7.24 Symmetric binary channel realized by the quantum optimal decision and asymmetric
binary channel realized by photon count decision

that is, one half of the classical case. Thus we not have a great improvement in quan-
tum OOK with respect to classical OOK (in error probability a relevant improvement
is expressed in decades). The sensititvities in the two kinds of OOK are

NR = 9.668 photons/bit , NR,classical = 10.015 photons/bit.

Another comparison is between the channels realized by the two kinds of receiver:
With the quantum receiver (optimized with equiprobable symbols) we obtain a sym-
metric channel, notwithstanding that the constellation is unbalanced, while, with
the receiver based on photon count, the channel turns out to be very asymmetric
(Fig. 7.24).

7.10 Quantum Systems with BPSK Modulation

In the BPSK quantum system, the symbol A0 = 0 (phase ϕ = 0) is encoded into a
coherent state |Δ〉 with a given amplitude Δ and the symbol A0 = 1 (phase ϕ = π )
into the coherent state | − Δ〉 (Fig. 7.25)

|γ0〉 = |Δ〉 , |γ1〉 = | − Δ〉 ∈ G. (7.108)

Δ
•

−Δ
•

|Δ
••

|−Δ

C

H

Fig. 7.25 Constellation of symbols and states in 2-PSK modulation
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Obviously, the number of signal photons associated to the two states is equal

NR(0) = NR(1) = |Δ|2 = NR

and the (quadratic) superposition degree of the two states becomes

|X|2 = e−|Δ−(−Δ)|2 = e−4|Δ|2 = e−4NR

which yields the error probability

Pe = 1

2

[
1 −

√
1 − e−4NR

]
. (7.109)

Compared to the quantum OOK modulation, we have an improvement, because the
term at the exponent 4NR in place of 2NR.

7.10.1 Comparison with Classical BPSK Optical System

The classical BPSK system was developed in Sect. 7.6.2, where we found that the
error probability, with equiprobable symbols, is given by

Pe,classical = Q
(√

4NR

)
(7.110)

where Q(x) is the normalized complementary Gaussian distribution. The Fig. 7.26
shows the comparison between the Pe of the classical homodyne receiver and the Pe

of the quantum receiver.
In this case, the improvement is relevant. For instance for NR = 5 photons per

bit, we have Pe = 0.515 10−9 and Pe,classical = 0.387 10−5, and the improvement is
of the order of four decades! The sensititvities in the two kinds of BPSK are

NR = 4.837 photons/bit , NR,classical = 8.913 photons/bit.

Generic a Priori Probabilities

Usually we consider equally probable symbols, but it may be interesting to see the
comparison when the a priori probabilities q0 and q1 = 1 − q0 are different.

In both quantum and classical BPSK we have NR(0) = NR(1) and then the
number of signal photons per bit NR = q0NR(0) + q1NR(1) is independent of q0. In
the classical BPSK, the error probability is given by (7.87) of Problem 7.9, that is,
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Fig. 7.26 Comparison
between quantum and
classical BPSK (with equal a
priori probabilities)
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Pe,classical = q1 Q

(√
4NR + 1

2
√
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log
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)
+ q0 Q

(√
4NR − 1

2
√

4NR
log

q1

q0

)
.

(7.111)
In the quantum BPSK (7.109) becomes

Pe = 1

2

[
1 −

√
1 − q0q1e−4NR

]
. (7.112)

The comparison is shown in Fig. 7.27. Note in particular that for NR = 0 in both
systems the error probability becomes Pe = q0, so that it reduces with q0 and also
for NR > 0 it is reduced when q0 becomes smaller. This may lead to think that
the performance of a quantum BPSK improves when the a priori probabilities are
unbalanced. This is not true because the performance of a system is given not only
by the error probability, but also by the entropy and by the capacity (see Chap. 12).
With q0 = 1

2 the entropy H of a binary source is H = 1 bit per symbol, while with
q0 = 0.01 the entropy is reduced to H = 0.08 bit per symbol.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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Fig. 7.27 Comparison
between quantum and
classical BPSK with non
equiprobable symbols. The
error probability Pe is
reduced when q0 becomes
smaller
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7.11 Quantum Systems with QAM Modulation

Quadrature amplitude modulation (QAM) is one of the most interesting format in
radio frequency (RF) transmission, and can also be proposed for coherent optical
modulation (classical system) and for quantum modulation.

QAM is the first example of multilevel modulation we are considering, with typ-
ically K = L2 levels, that is, K = 4, K = 9, K = 16, and so on. For this format,
the optimal quantum detection is not available, and suboptimal solutions must be
adopted. We will apply the SRM technique which gives a good overestimate of the
error probability [7], with a check by convex semidefinite programming (CSP).

7.11.1 Classical and Quantum QAM Formats

The alphabet of QAM modulation consists of a constellation of K = L2 equally
spaced points on a square grid of the complex plane, which can be defined starting
from the L–ary balanced alphabet

AL = {−(L − 1) + 2(i − 1)| i = 1, 2, . . . , L} with L = 2, 3, 4, . . .
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Fig. 7.28 Constellation of 16-QAM with scale factor Δ

In particular

A3 = {−2, 0,+2}
A4 = {−3,−1,+1,+3}
A5 = {−4,−2, 0,+2,+4}.

The K-ary QAM constellation is then formed by the complex numbers

C = {Δ(u + iv)| u, v ∈ AL}

where Δ is the scale factor and 2Δ gives the spacing of symbols in the constellation,
with Δ real and positive. Figure 7.28 illustrates the constellation for L = 4 (16-
QAM). Notice that the 4-QAM, obtained with L = 2, is equivalent to the 4-PSK,
which will be developed in the next section.

To obtain the constellation of the coherent states in quantum QAM it suffices to
assign to each symbol γ of the constellation C the corresponding coherent state |γ 〉.
Then the constellation of the coherent states becomes

S = {|γuv〉 = |Δ(u + iv)〉 ∣∣ u, v ∈ AL
}
.

For example, for the 16-QAM, where L = 4 and A4 = {−3,−1,+1,+3}, we have
the following coherent states listed in lexicographic order (see Sect. 2.13)

u = −3 v = −3 |γ0〉 = |γ−3,−3〉 = |Δ(−3 − 3i)〉
u = −3 v = −1 |γ1〉 = |γ−3,−1〉 = |Δ(−3 − i)〉
u = −3 v = +1 |γ2〉 = |γ−3,+1〉 = |Δ(−3 + i)〉

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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u = −3 v = +3 |γ3〉 = |γ−3,+3〉 = |Δ(−3 + 3i)〉
u = −1 v = −3 |γ4〉 = |γ−1,−3〉 = |Δ(−1 − 3i)〉

...
...

u = +3 v = −3 |γ12〉 = |γ+3,−3〉 = |Δ(3 − 3i)〉
u = +3 v = −1 |γ13〉 = |γ+3,−1〉 = |Δ(3 − i)〉
u = +3 v = +1 |γ14〉 = |γ+3,+1〉 = |Δ(3 + i)〉
u = +3 v = +3 |γ15〉 = |γ+3,+3〉 = |Δ(3 + 3i)〉

7.11.2 Performance of Quantum QAM Systems

We consider the decision based on the SRM method, recalled in Sect. 7.7.1. We start
from the construction of Gram’s matrix G, whose elements are the inner products

〈γuv|γu′v′ 〉 = 〈Δ(u + iv)|Δ(u′ + iv′)〉.

Remembering (7.9), we get

〈γuv|γu′v′ 〉 = exp{− 1
2Δ2[(u′ − u)2 + (v′ − v)2 − 2i(u′v − v′u)]}

u, v, u′, v′ ∈ AL. (7.113)

The only problem in building the Gram matrix G is the ordering of the four-index ele-
ments in a standard (bidimensional) matrix. To this end, we can use the lexicographic
order indicated above.

The main point of the SRM technique is the spectral decomposition of G, accord-
ing to (7.91), namely,

G = V ΛGV ∗ =
K−1∑

i=0

σ 2
i |vi〉〈vi|

which identifies the eigenvalues σ 2
i and the orthonormal basis |vi〉, i = 1, 2, . . . , K ,

and also the square roots G± 1
2 = V Λ

± 1
2

G V ∗. We can then compute the transition
probabilities from (7.93) and the error probability from (7.94), that is,

p(j|i) = |(G 1
2 )ij|2 , Pe = 1 − 1

K

K−1∑

i=0

[
(G

1
2 )ii

]2
. (7.114)
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As usual, the performance is evaluated as a function of the number of signal
photons per symbol Ns, given in general by (7.34). For the QAM we find

Ns = 1

K

K−1∑

i=0

|γi|2 = 1

K

∑

u∈AL

∑

v∈AL

|γuv|2

= 1

K
Δ2

∑

u∈AL

∑

v∈AL

(u2 + v2) = 2L

K
Δ2

∑

u∈AL

u2

= 2L

K
Δ2

L∑

i=1

[−(L − 1) + 2(i − 1)]2.

The result is5

Ns = 2

3
(L2 − 1)Δ2 = 2

3
(K − 1)Δ2 (7.115)

so that the shape factor (7.39) of the QAM constellation is given by

μK = 2

3
(K − 1). (7.115a)

For example, for the 16-QAM we have Ns = 10Δ2 and μK = 10.
Finally, from Ns, we get the number of signal photons per bit as

NR = Ns/ log2 K .

Remark As noted above, the 4-QAM may be viewed as a 4-PSK, for which an exact
(non-numerical) evaluation of the SRM is possible. This exact evaluation can be used
as a test to check the numerical accuracy of higher order QAM.

7.11.3 An Alternative Evaluation Using the Generalized GUS

The QAM modulation has not the ordinary GUS, but it verifies the first form of gener-
alized GUS introduced in Sect. 5.13, where there are L reference states |γ0〉, . . . , |γL〉,
instead of a single state |γ0〉, and the K-ary constellation is subdivided into L subcon-
stellations generated by a common symmetry operator S in the form |γik〉 = Si|γk〉,
k = 1, . . . , L, i = 0, 1, . . . , K/L − 1.

5 Using the identities [8]

n∑

i=1

i = 1

2
n(n + 1) ,

n∑

i=1

i2 = 1

6
n(n + 1)(2n + 1).

.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Fig. 7.29 Constellation of 16-QAM and its decomposition into four 4-PSK constellations

In particular, the 16-QAM constellation can be decomposed into 4-PSK constel-
lations, as shown in Fig. 7.29. The reference states are the states belonging to the first
quadrant of the complex plane, namely

|γ0〉 = |Δ(1 + i)〉 , |γ1〉 = |Δ(3 + 3i)〉 , |γ2〉 = |Δ(3 + i)〉 , |γ3〉 = |Δ(1 + 3i)〉.
(7.116)

The symmetry operator is the rotation operator of 4-PSK, S = R(π/2), which allows
us to generate all the other states of the 16-QAM by rotating the reference states
into the other three quadrants. In fact, if we consider the state vector of the reference
states γ̃0 = [|γ0〉, |γ1〉, |γ2〉, |γ3〉] and apply the rotation operator in the form

Γ̃ = [γ̃0, Sγ̃0, S2γ̃0, S3γ̃0]

we obtain a 16×16 Gram matrix G̃ = Γ̃ ∗Γ̃ , which contains the same inner products
of the Gram matrix of the previous approach. But, for the different ordering, G̃ turns
out to be block circulant.
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At this point, although we are dealing with pure states, we can represent the 16
states through four density operators, ρ0, ρ1, ρ2, and ρ3, where ρ0 collects the four
reference states with a fictitious probability 1/4, that is,

ρ0 = γ0 γ ∗
0 = 1

4 (|γ0〉〈γ0| + |γ1〉〈γ1| + |γ2〉〈γ2| + |γ3〉〈γ3|)

and the other density operators are obtained by the GUS relation

ρi = Si ρ0 S−i , i − 1, 2, 3.

Hence we can apply the theory of the SRM with GUS for mixed states (see
Proposition 6.3), which requires the evaluation of the matrices (where now K
becomes L)

Dk =
L−1∑

i=0

γ ∗
0 γiW

−ki
L (7.117)

and of their square roots D1/2
k , where in the present case L = 4. Finally, one gets the

the correct decision probability as

Pc = Tr

[
1

L

L−1∑

k=0

D1/2
k

]2

.

This new approach gives exactly the same performance that we find with the
previous SRM approach where the generalized GUS was not considered, with the
advantage of a reduced computational complexity. In the specific case of 16-QAM,
the evaluation is confined to the square roots of 4 × 4 matrices, instead of the square
root of a 16 × 16 matrix.

The technique developed for the 16-QAM can be applied to constellations of any
order. In particular, the constellation of 64-QAM can be decomposed into 16-PSK
constellations, and the evaluation of the square roots is still confined to 4×4 matrices,
instead of the square root of a 64 × 64 matrix.

7.11.4 Performance of the Classical Optical QAM System

The scheme of modulation and demodulation falls under the general classical scheme
of Fig. 7.11. We have seen that the signal at the decision point is (see (7.55))

z = C0 U0 + ua + i ub

where C0 = A0 + i B0 is the transmitted symbol, U0 is the amplitude, ua and ub are
statistically independent Gaussian noises with null average and the same variance σ 2

u .

http://dx.doi.org/10.1007/978-3-319-15600-2_6
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Fig. 7.30 Decision regions
for the 16-QAM system
constellation

U0−
U0|

To calculate the error probability, we must choose the decision regions on the
complex plane. With equiprobable symbols, the optimal decision regions are found
in a straightforward way, as illustrated in Fig. 7.30 for the 16-QAM. In particular for
the inner symbols of the constellation, the decision regions are squares with sides of
length 2U0, centered in the corresponding symbols. Using the procedure outlined in
Sect. 7.5, one obtains the following expression for the error probability [9]

Pe,classical = 1 −
[

1 − 2

(
1 − 1

L

)
Q

(
U0

σu

)]2

(7.118)

where Q(x) is the normalized complementary Gaussian distribution.
The result depends on the cardinality K = L2 and on the SNR ratio Λ = U2

0/σ 2
u ,

which can be expressed as a function of the average number of photons per symbol
Ns (see (7.63)), that is,

Λ = 4Ns

μK
with μK = 2

3
(K − 1). (7.119)

This result is in agreement with the conclusions of Proposition 7.2.
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7.11.5 Comparison of Quantum and Classical QAM Systems

We are now able to compare the two QAM systems: The classical optical version,
in which the error probability is given by (7.118) and the quantum optical version,
in which Pe is evaluated numerically from (7.114) by the SRM procedure. In both
cases, the parameters are the number of levels K = L2 and the number of signal
photons/symbol Ns.

The comparison, made in Fig. 7.31 for K = 16 and K = 64, shows the clear
superiority of the quantum QAM system with respect to the classical one. For instance
in 16-QAM with Ns = 50 photons/symbols we find Pe,classical = 1.161 10−5, while in
the quantum system Pe = 1.546 10−9; in 64-QAM with Ns = 200 photons/symbol
we find Pe,classical = 2.231 10−5 and Pe = 4.674 10−9. In both cases the improvement
obtained with the quantum system is of about four decades.

In Fig. 7.32 the 16-QAM is compared to the 64-QAM as a function of the number
of signal photons per bit NR. The sensitivity at Pe = 10−9 is NR = 12.783 photons/bit
in 16-QAM and NR = 36.035 photons/bit in 64-QAM.

7.11.6 Comparison of CSP and SRM Evaluation

The QAM format does not have the GUS, and therefore the SRM approach does not
give the minimum error probability. For this reason, we have evaluated the minimum
error probability also by convex semidefinite programming, implemented in MatLab
by the CVX procedure, which gives (numerically) this minimum. The results of the
two approaches are shown in the following table for the 16-QAM

16–QAM 64–QAM
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Fig. 7.31 Comparison of quantum and classical 16–QAM and 64–QAM



7.11 Quantum Systems with QAM Modulation 331

Fig. 7.32 Error probability
of quantum QAM versus the
number of signal photons per
bit NR

64 QAM
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Ns Pe with CSP Pe with SRM
0.1 0.86919 0.884949
0.5 0.764902 0.784679
1 0.675115 0.690197

1.5 0.597074 0.608958
2.5 0.461457 0.467108
4.5 0.239407 0.240096
6.5 0.0913599 0.0910951
9.5 0.0188974 0.0188975

The two evaluations are very close, especially for large values of Ns, and cannot be
distinguished in a log plot (recall that in the evaluation of Pe, decades are relevant,
not decimals),

The conclusion is that the SRM approach is recommended also for the QAM (for
the other formats the SRM gives the minimum of Pe).

7.12 Quantum Systems with PSK Modulation

Also PSK (phase-shift keying) modulation is one of the best known and most often
used formats at radio frequency and at optical frequencies. The BPSK = 2-PSK
format has been already seen in Sect. 7.10 as a special case of quantum binary systems.
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Quantum K-ary PSK systems were analyzed by several authors and in particular
by Kato et al. [7], using the SRM technique. In this case, the constellation of the
states enjoys the geometrically uniform symmetry and then the SRM technique gives
an optimal quantum receiver.

7.12.1 Classical and Quantum PSK Format

The constellation of the PSK modulation consists of K points uniformly distributed
along a circle of the complex plane

C = {Δ W m
K | m = 0, 1, . . . , K − 1} (7.120)

where the scale factor Δ is given by the radius of the circle and WK = ei2π/K . The
constellation is illustrated in Fig. 7.33 for some values of K .

In the quantum version, the states are obtained by simply associating to every
complex symbol γ of the constellation (7.120) the corresponding coherent state,
which is given by

|γm〉 = |Δ W m
K 〉 = e− 1

2 Δ2
∞∑

n=0

(Δ W m
K )n

√
n! |n〉 , m = 0, 1, . . . , K − 1. (7.121)

In this constellation, all the coherent states have the same number of signal photons
given by

K=4 K=8 K=16

K=32 K=64 K=128

Fig. 7.33 Constellations of PSK modulation
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Ns = Δ2. (7.122)

Constellation (7.121) enjoys the GUS, that is, it satisfies the conditions (5.120a)
and (5.120b) for an appropriate unitary operator S. In this case S is obtained from
the rotation operator, which is defined as

R(φ) := exp(iφN)

where N is the number operator given by (7.1). Specifically we have

S = R
(2π

K

)
= exp

( i2π

K
N
)

= W N
K . (7.123)

The GUS property is verified for all constellations of Gaussian states generated
by the rotation operator, as we will prove in Sect. 11.20. In Problem 7.9 we propose
a specific proof for the PSK constellations where the key is that the operator R(φ)

rotates a coherent state |α〉 in the form (see 11.20)

R(φ) |α〉 = |eiφα〉 , (7.124)

and the result is again a coherent state. In other words, the class of coherent states is
closed under rotations.

7.12.2 Performance of Quantum PSK Systems

For the decision we apply the SRM, which gives an optimal result. Then, for the
performance evaluation, we follow the procedure described in Sect. 7.8.3, taking
into account that the PSK constellation satisfies the GUS.

The generic element p, q of Gram’s matrix G = [Gpq] is the inner product Gpq =
〈γp|γq〉 obtained from (7.9) with α = ΔW p

K and β = ΔW q
K , namely,

Gpq = exp[−Δ2(1 − W q−p
K )] , p, q = 0, 1, . . . , K − 1. (7.125)

As predicted (by the GUS), the element p, q depends only on the difference q−p; and
therefore Gram’s matrix becomes circulant. The eigenvalues are obtained computing
the DFT of the first row of Gram’s matrix, that is,

λi =
K−1∑

k=0

G0k W −ki
K (7.126)

and the corresponding eigenvectors are given by the columns of the DFT matrix

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11


334 7 Quantum Communications Systems

|wi〉 = 1√
K

[
1, W −i

K , W −2i
K , . . . , W −(K−1)i

K

]T

.

Thus the matrices G± 1
2 are obtained from (7.99), where the element i, j is given by

(G± 1
2 )ij = 1

K

K−1∑

p=0

λ
± 1

2
p W (j−i)p

K .

The measurement vectors are computed as linear combination of the states accord-
ing to (7.95), i.e.,

|μi〉 =
K−1∑

j=0

(
G− 1

2
)

ij|γj〉.

Finally, the error probability with equiprobable symbols is simply

Pe = 1 − 1

K2

(
K−1∑

i=0

√
λi

)2

. (7.127)

Therefore, to calculate Pe it suffices to evaluate the eigenvalues according to (7.126)
and to apply (7.127). As usual, Pe can be expressed as a function of the number of
signal photons per symbol Ns, given by (7.122), and of the number of levels K . In
fact, the Gram matrix G depends only on Δ2 = Ns and K , and so is for the square root
of G and subsequent relations. This conclusion is in agreement with Proposition 7.2.

7.12.3 Performance of Classical PSK Systems and Comparison

The classical optical PSK system falls into the general model of quadrature modu-
lation (with homodyne receiver) seen in Sect. 7.5. The signal at the decision point
becomes

z0 = C0 U0 + ua + iub

where C0 is the transmitted symbol, C0 ∈ C0 = {W i
K | i = 1, . . . , K}, ua and ub

are independent zero-mean Gaussian components with the same variance σ 2
u . At this

point, we introduce the count parameters, recalling that

U0 = (2VRVL)H σ 2
u = H V 2

L

and that in this case the number of signal photons contained in the received power is

NR = Ns = H V 2
R .
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So the SNR becomes

Λ = U2
0

σ 2
u

= 4Ns

the shape factor μK being unitary.
To find the error probability, we must partition the complex plane into K decision

regions. Even in this case, with equiprobable symbols, such regions are easily found,
as illustrated in Fig. 7.34 for the 8-PSK, and then we apply the general relation (7.60).
Given the nature of the constellation, it is convenient to do a coordinate change in
the probability density, from Cartesian to polar coordinates. The exact computation
is only known for K = 2 and K = 4 and it yields (see (7.80))

K = 2 Pe,classical = Q(2
√

Ns)

K = 4 Pe,classical = 1 −
[
1 − Q(

√
2Ns)

]2
(7.128)

where we recall that for K = 4 the PSK coincides with the QAM. For K > 4 the
exact computation is not known, and we resort to the inequality [10, Chap.10]

Pe,classical < P′
e = exp

(
−1

2

U2
0

σ 2
u

sin2 π

K

)
= exp

(
−2Ns sin2 π

K

)
. (7.129)

The comparison between the classical and the quantum system has been done in
Fig. 7.26 for the 2-PSK. The comparison of 4-PSK and 8-PSK is done in Fig. 7.35,
where the error probability is plotted as a function of the number of signal photons per
symbol Ns. Even in this case we notice a striking superiority of the quantum system.
For instance in 4-PSK with Ns = 10 photon/symbol we find Pe = 1.030 10−9

and Pe,classical = 7.742 10−6 ; in 8-PSK with Ns = 30 photon/symbol we find Pe =
1.166 10−8 and Pe,classical = 7.742 10−6. In both cases, the improvement of the
quantum system is of several decades.

Fig. 7.34 Decision regions
in 8-PSK
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Fig. 7.35 Comparison of quantum and classical 4-PSK and 8-PSK
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Fig. 7.36 Error probability of quantum PSK versus the number of signal photons per bit NR

Figure 7.36 compares quantum 4-PSK and quantum 8-PSK as a function of the
number of signal photons per bit NR. The sensitivity at Pe = 10−9 is NR = 5.001
photons/bit in 4-PSK and NR = 11.402 photons/bit in 8-PSK.
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Problem 7.12 � � � Prove that the operator S defined by (7.123) is the symmetry
operator of the K-PSK modulation.

Problem 7.13 � Find explicitly the formula for the error probability Pe of quantum
4-PSK system, with the target to show that Pe depends only on Δ2 = Ns.

7.13 Quantum Systems with PPM Modulation

Pulse position modulation (PPM) is widely adopted in free space optical transmission,
and is a candidate for deep-space transmission, also in quantum form [11, 12].

The analysis of a quantum PPM system has been done in a famous article [4]
by Yuen, Kennedy and Lax, who found the optimal elementary projectors using an
algebraic method developed “ad hoc” for this kind of modulation. Here we shall
propose an original method based on the SRM and on the property of quantum PPM
of verifying the GUS [13]. It seems odd that such property has not been remarked
by other authors; because, on one hand, it is very intuitive, and, on the other hand, it
makes it possible to directly achieve the same optimal result.

7.13.1 Classical PPM Format

In the classical version, the symbol period T is subdivided into K parts with spacing
T0 = T/K , obtaining K “positions.” Then, to the symbol i ∈ A = {0, 1, . . . , K − 1}
the waveform is associated consisting of a rectangle in the ith position iT0 of the
symbol period

γi(t) =
{

Δ iT0 < t < (i + 1)T0
0 elsewhere

i = 0, 1, . . . , K − 1 (7.130)

where Δ > 0 is the scale factor (see Fig. 4.12). But, we will adopt the specular format

γi(t) =
{

Δ (K − 1 − i)T0 < t < (K − i)T0
0 elsewhere

i = 0, 1, . . . , K − 1 (7.131)

where the ith position becomes (K −1− i)T0 instead of iT0, as illustrated in Fig. 7.37
for K = 4. The reason of this choice is due to the fact that it simplifies the formulation
of the symmetry operator in the quantum version.

To waveforms (7.131), K binary words can be associated of length K

γi = [γi,K−1, . . . , γi,1, γi,0] , i = 0, 1, . . . , K − 1

http://dx.doi.org/10.1007/978-3-319-15600-2_4
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Fig. 7.37 Realization of transmitted symbols and corresponding optical power in classic 4-PPM
modulation

where γij = Δδij. For example, for K = 4 the words are

γ0 = [
0 0 0 Δ

]
γ1 = [

0 0 Δ 0
]

γ2 = [
0 Δ 0 0

]
γ3 = [

Δ 0 0 0
]
.

As outlined in Problem 7.5, it can be verified that PPM modulation is a special
case of vector modulation seen in Sect. 7.3.2.

7.13.2 Quantum PPM Format

We have seen in Sect. 7.3.2 that the quantum formulation of a vector modulation
must be done over a composite Hilbert space, given by the tensor product H =
H0 ⊗ H0 ⊗ · · · ⊗ H0 of K equal Hilbert spaces H0, into each of which Glauber’s
representation must have been introduced, and the states are given by the tensor
product of K coherent states and become K–mode Gaussian states.

In the specific case of PPM, the states become

|γi〉 = |γi,K−1〉 ⊗ · · · ⊗ |γi,1〉 ⊗ |γi,0〉 , i = 0, 1, . . . K − 1 (7.132)

with

|γij〉 =
{ |Δ〉 i = j

|0〉 i 
= j
(7.132a)

where |Δ〉 is a coherent state with parameter Δ, and |0〉 is the “ground state”. For
example, for K = 4 we have the four states

|γ0〉 = |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 |γ1〉 = |0〉| ⊗ 0〉 ⊗ |Δ〉 ⊗ |0〉
|γ2〉 = |0〉 ⊗ |Δ〉 ⊗ |0〉 ⊗ |0〉 |γ3〉 = |Δ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉. (7.133)
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7.13.3 Geometrically Uniform Symmetry (GUS) of PPM

As we shall see in Sect. 11.20, the constellations of Gaussian states generated by
the rotation operator R(φ) verify the GUS, also in the K–mode. This is the case
of K-ary PPM. But the parameter φ becomes a K × K Hermitian matrix and the
exponential defining R(φ) becomes difficult to handle. Here we prefer finding directly
the symmetry operator S, and in Chap. 11 we will prove that S can be expressed by
the K–mode rotation operator.

The symmetry operator S of the quantum PPM format (7.132) can be defined as
follows: S is an operator of the composite Hilbert space H that causes a shift to the
left by one position (modulo K) of the factors of the tensor product of the states,
moving the first factor to second position, the second to third , and the K th factor to
first. For example, for K = 4, the action of S is as follows

S|γi3〉 ⊗ |γi2〉 ⊗ |γi1〉 ⊗ |γi0〉 = |γi2〉 ⊗ |γi1〉 ⊗ |γi0〉 ⊗ |γi3〉. (7.134)

Then, going on with K = 4, with the states of (7.113) we can see that, starting from
the state |γ0〉 = |0〉⊗|0〉⊗|0〉⊗|Δ〉, the other states can be obtained in the following
way:

S |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 = |0〉 ⊗ |0〉 ⊗ |Δ〉 ⊗ |0〉 = |γ1〉
S2|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 = |0〉 ⊗ |Δ〉 ⊗ |0〉 ⊗ |0〉 = |γ2〉
S3|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |Δ〉 = |Δ〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 = |γ3〉

while the application of S4 brings back to the initial state, and therefore S4 = IH.
The considerations we just made “in words” can be translated to “formulas,” but

this is not so simple, because the symmetry operator S is not separable, but it operates
between the K factors of the composite Hilbert space H = H⊗K

0 . For the symmetry
operator, the following result applies, recently demonstrated in [13].

Proposition 7.3 Let n be the dimension of the component Hilbert spaces H0, and
therefore N = nK is the dimension ofH⊗K

0 . Then the symmetry operator of the K-ary
PPM has the following expression

S =
n−1∑

k=0

wn(k) ⊗ IL ⊗ w∗
n(k), (7.135)

where ⊗ is Kronecker’s product, wn(k) is a column vector of length n, with null
elements except for one unitary element at position k, and IL is the identity matrix of
order L = nK−1. �

For example, for n = 2 and K = 3 (3-PPM) we have

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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w2(0) =
[

1
0

]
, w2(1) =

[
0
1

]
, I4 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

and therefore from (7.135)

S = w2(0) ⊗ I4 ⊗ w∗
2(0) + w2(1) ⊗ I4 ⊗ w∗

2(1)

=
[

1
0

]
⊗

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦⊗ [
1 0
]+

[
0
1

]
⊗

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦⊗ [
0 1
]

and, developing the products, we obtain the 16×16 matrix (remember that the tensor
product for matrices becomes Kronecker’s product, see Sect. 2.13)

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.136)

We leave it to the reader to check that, using the properties of Kronecker’s product
of Sect. 2.13, from (7.135) we obtain that the matrix S has dimensions nK × nK , it is
unitary, and has the property SK = InK .

For later use it is important to evaluate explicitly the EID of the symmetry operator
S in the form (5.128)

S =
K−1∑

i=0

W i
K Yi Y∗

i (7.137)

where the columns of the matrices Yk are formed by the eigenvectors corresponding
to the eigenvalues λi = W i

K . The explicit evaluation of such eigenvectors is long and

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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cumbersome, and is developed in [13], using the fact that for the PPM the operator
S is a permutation matrix. The important thing is that this evaluation can be done
“analytically” for every n and K , without resorting to numeric evaluation, which
could be prohibitive for high values of N = nK . For example, for K = 4, n = 2, the
eigenvalues 1, W4, W 2

4 , W 3
4 have multiplicities respectively 6, 3, 4, and 3, and the

corresponding eigenvectors form the matrices

Y0 Y1 Y2 Y3⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1

2 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 1
2 0 0

0 0 1√
2

0 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 1√
2

0 0 0

0 0 0 0 0 1
2

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 0 0 1
2

0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
− i

2 0 0

− 1
2 0 0

0 − i
2 0

i
2 0 0
0 0 0
0 − 1

2 0
0 0 − i

2
1
2 0 0
0 1

2 0
0 0 0
0 0 1

2
0 i

2 0
0 0 i

2

0 0 − 1
2

0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 − 1

2 0 0

0 1
2 0 0

0 0 − 1
2 0

0 − 1
2 0 0

− 1√
2

0 0 0

0 0 1
2 0

0 0 0 − 1
2

0 1
2 0 0

0 0 1
2 0

1√
2

0 0 0

0 0 0 1
2

0 0 − 1
2 0

0 0 0 − 1
2

0 0 0 1
2

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
i
2 0 0

− 1
2 0 0

0 i
2 0

− i
2 0 0

0 0 0
0 − 1

2 0
0 0 i

2
1
2 0 0
0 1

2 0
0 0 0
0 0 1

2
0 − i

2 0
0 0 − i

2

0 0 − 1
2

0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

7.13.4 Performance of Quantum PPM Systems

Considering that the PPM states have the GUS, the SRM gives an optimal detection,
then, in performance evaluation, the same results will have to be found as those of
Yuen et al. [4] with a different methodology.

Applying the method summarized in Sect. 7.7.1, about the SRM detection in the
presence of GUS, the performance evaluation is articulated as follows. Gram’s matrix
G has as element i, j the inner product Gij = 〈γi|γj〉, where now the states |γi〉 are
composite. We recall that the inner product of two states, each generated by the tensor
product of K component states, is given by the product of the K inner products of
the component states, that is,

〈γi|γj〉 = 〈γi0|γj0〉 〈γi1|γj1〉 . . . 〈γiK−1|γjK−1〉. (7.138)

Then, from (7.9), we get
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〈γi|γj〉 =
{

1 i = j

e−|Δ|2 i 
= j.
(7.139)

For example, in the case K = 4 the inner product 〈γ0|γ2〉 results in

〈γ0|γ2〉 = 〈Δ|0〉 〈0|0〉 〈0|Δ〉 〈0|0〉
= e− 1

2 |Δ|2 1 e− 1
2 |Δ|2 1 = e−|Δ|2 .

We observe that the same energy E is associated to all symbols, and, according
to (7.132), to each composite state the same signal photons are associated, given by

Ns = |Δ|2 = number of signal photons/symbol. (7.140)

Therefore Gram’s matrix becomes

G =

⎡

⎢⎢⎢⎣

1 |X|2 . . . |X|2
|X|2 1 . . . |X|2

...
. . .

|X|2 |X|2 . . . 1

⎤

⎥⎥⎥⎦

where |X|2 is the quadratic superposition degree of the component states (X = 〈γiγj〉,
i 
= j), given by

|X|2 = |〈Δ0|2 = e−|Δ|2 = e−Ns〉.

Notice that G is a circulant matrix, as a consequence of the GUS.
Considering the GUS, the eigenvalues of G are given by the DFT of the first row

[1, |X|2, . . . , |X|2], and therefore

λi =
K−1∑

k=0

G0k W −ki
K = 1 + |X|2

K−1∑

k=1

W −ki
K .

Recalling the orthogonality condition

K−1∑

k=0

W −ki
K =

{
K i = 0

0 i 
= 0
(7.141)

we have

λi =
{

1 + (K − 1)|X|2 i = 0

1 − |X|2 i = 1, . . . , K − 1.
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The square roots of G become

G± 1
2 =

K−1∑

i=0

λ
± 1

2
i |wi〉〈wi|.

The transition probabilities are computed from (7.93) and result in

pc(i|j) = 1

K2

∣∣∣
K−1∑

p=0

λ1/2
p W −p(i−j)

K

∣∣∣
2 = 1

K2

∣∣∣λ1/2
0 + λ

1/2
1

K−1∑

p=1

W −p(i−j)
K

∣∣∣
2

and, from (7.141),

pc(j|i) =

⎧
⎪⎨

⎪⎩

K−2
(
λ

1/2
0 − λ

1/2
1

)2
i 
= j

K−2
(
λ

1/2
0 + (K − 1)λ

1/2
1

)2
i = j

(7.142)

where

λ0 = 1 + (K − 1)|X|2 , λ1 = 1 − |X|2 , with |X|2 = e−Ns .

The error probability is computed from (7.94) and becomes

Pe = 1 − 1

K2

(√
1 + (K − 1)|X|2 + (K − 1)

√
1 − |X|2

)2
(7.143)

in perfect agreement with the results of [4].
Finally, the measurement vectors are obtained from (7.95), namely,

|μi〉 =
K−1∑

j=0

aij|γj〉 , aij =

⎧
⎪⎨

⎪⎩

K−2
(
λ

−1/2
0 − λ

−1/2
1

)2
i 
= j

K−2
(
λ

−1/2
0 + (K − 1)λ

−1/2
1

)2
i = j.

7.13.5 Performance of Classical PPM Systems

We use the notations

• A0 transmitted word,
• B0 received word,
• Â0 decided word.
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Let us consider, for simplicity, the case K = 4 with the standard (non specular)
format and with a unitary scale factor (Δ = 1), in which the possible transmitted
words A0 are

γ0 = [
1 0 0 0

]
, γ1 = [

0 1 0 0
]

γ2 = [
0 0 1 0

]
, γ3 = [

0 0 0 1
]
. (7.144)

With a photon counter, the symbol 0 is always received correctly, whereas the symbol
1 may be received as 0, with an error probability e−Ns . Then we have five possible
received words: the four correct words (7.144) and the wrong word

[
0 0 0 0

]
, and

we have to decide to which correct word the wrong word should be associated.
The optimum criterion (with equiprobable symbols) is to associate the wrong word[
0 0 0 0

]
to whatever correct word, for example to γ0 (Fig. 7.38).

Then the decision criterion becomes

Â0 = γ0 if B0 = [
1 0 0 0

]
or B0 = [

0 0 0 0
]

Â0 = γ1 if B0 = [
0 1 0 0

]

Â0 = γ2 if B0 = [
0 0 1 0

]

Â0 = γ3 if B0 = [
0 0 0 1

]

and we can get an error only in the last three cases, each with probability e−Ns . Thus,

0001

0010
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1000

PPM channel decision

A0 B0 A0

0000

1000

0100

0010

0001

1000

0100

0010

0001

Fig. 7.38 Channel and decision criterion of a classical 4-PPM. A0 is the transmitted word, B0 the
received word, and Â0 the decided word
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Pe,classical = 1

4
[Pe(γ1) + Pe(γ2) + Pe(γ3) + Pe(γ4)]

= 1

4
[0 + e−Ns + e−Ns + e−Ns ] = 3

4
e−Ns .

The general result is

Pe,classical = K − 1

K
e−Ns . (7.145)

7.13.6 Comparison in the Binary Case

For binary quantum PPM, from (7.143) we get

Pc = 1

4

[√
1 − |X|2 +

√
1 + |X|2

]2 = 1

2

[
1 +

√
1 − |X|4

]

where |X|4 = e−2Ns = e−2NR , with NR = Ns the number of signal photons per bit.
The error probability is therefore

Pe = 1

2

[
1 −

√
1 − e−2NR

]
, (7.146)

the same result found for the OOK format (see (7.106)).
Instead, in the classical case, from (7.145) we have Pe,classical = 1

2 e−NR . The com-
parison of these results is shown in Fig. 7.39.

7.13.7 Comparison in the K-ary Case

In the quantum case, the error probability is given by (7.143), which can be rewritten
in the form

Pe = K − 1

K2

[
K − (K − 2)(1 − |X|2) + 2

√
(1 − |X|2)(1 + (K − 1)|X|2)

]

where the superposition degree |X|2 can be expressed as a function of the number of
signal photons per symbol Ns, or of the number of signal photons per bit NR

|X|2 = e−Ns = e−NR log2 K .

In the classical case the error probability is given by (7.145).
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Fig. 7.39 Comparison of quantum and classical 2-PPM
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Fig. 7.40 Comparison between quantum and classical 8-PPM and 64-PPM in terms of number of
signal photons per symbol Ns

The comparison between the two systems is illustrated for the 8-PPM and
64-PPM in Fig. 7.40 as a function of the number of signal photons per symbol
Ns. Even in this case we notice a striking superiority of the quantum system.
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Fig. 7.41 Error probability
of quantum PPM as a
function of the number of
signal photons per bit NR
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For instance in 8-PPM with Ns = 10 photon/symbol we find Pe = 3.660 10−9

and Pe,classical = 3.972 10−5; in 64–PPM with Ns = 10 photon/symbol we find
Pe = 3.421 10−9 and Pe,classical = 4.469 10−5. In both cases the improvement of the
quantum system is of several decades.

In Fig. 7.41 the error probability of the quantum PPM is plotted as a function of
the number of signal photons per bit NR for four values of K . We realize that quantum
PPM receivers have an extraordinary sensitivity, specifically

2-PPM NR = 9.66849 photons/bit
4-PPM NR = 5.10889 photons/bit
8-PPM NR = 3.54713 photons/bit
16-PPM NR = 2.75561 photons/bit
32-PPM NR = 2.27708 photons/bit
64-PPM NR = 1.95665 photons/bit
128-PPM NR = 1.72722 photons/bit
256-PPM NR = 1.55486 photons/bit
512-PPM NR = 1.42072 photons/bit
1024-PPM NR = 1.31332 photons/bit
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7.14 Overview of Squeezed States

Up to now we have considered Quantum Communications based on coherent states.
In these last two sections, we consider the promising possibility to use squeezed
states.

We have seen that a coherent state |α〉 is completely determined by a complex
parameter α. A squeezed state, and more precisely, a squeezed-displaced state, say
|z, α〉 may be seen as a generalization of a coherent state, because of the dependence
on two complex parameters, the displacement α and the squeeze factor z = reiθ .
In particular, setting z to zero, the squeezed-displaced state gives back the coherent
state

|0, α〉 = |α〉 ∈ G. (7.147)

This simple property allows us to say that, using squeezed states in quantum commu-
nications with appropriate parameters, the performance cannot be worse than with
coherent states. As we shall see, the squeeze factor z allows us to control the photon
statistic in such a way that, by choosing z in an appropriate range, we get a con-
siderable improvement of the system performance. This opportunity has been long
recognized [14].

The theory of squeezed-displaced states will be formulated in Sect. 11.15 in
the context of continuous variables, where it is shown that they represent the most
general form of Gaussian states. In this section, we give the essential properties of
squeezed states that are needed for Quantum Communications.

We shall use the following notations

• |z, α〉: squeezed-displaced state
• |0, α〉 = |α〉: coherent state
• |z, 0〉: squeezed state or squeezed vacuum state.

7.14.1 Definition and Properties of Squeezed-Displaced States

Squeezed states live in the same Hilbert space as coherent states, that is an infinite
dimensional Hilbert space where the Fock basis has been introduced. Squeezed-
displaced states are the result of two distinct operations applied to the vacuum state:
A squeezing and a displacement. They may be specified by the Fock expansion,
whose Fourier coefficients result in

|z, α〉n =
√

n!
μ

(
β

μ

)n

Hn

(
μν

β2

)
exp

(
−1

2
|β|2 − β2 ν∗

2μ

)
. (7.148)

where Hn(x) are the polynomials (of degree �n/2�)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Hn(x) :=
�n/2�∑

j=0

1

(n − 2j)!j! xj. (7.149)

and

μ = cosh r , ν = sinh r exp(i θ) , β = μα − να∗. (7.149a)

The deduction of (7.148) from the operations of squeezing and displaciment is made
in Sect. 11.15.6

The class of squeezed-displaced states has two special subclasses, which are
obtained for z = 0 (absence of squeezing) and for α = 0 (absence of displacement).
In the first case we have coherent states with coefficients (see (7.2))

|0, α〉n = e− 1
2 |α|2 αn

√
n! (7.150)

In the second case we have squeezed vacuum states with coefficients

|z, 0〉n = √
sechr

∞∑

n=0

√
(2n)!

2nn! λn|2n〉 λ = tanh r eiθ (7.151)

that is, the state |z, 0〉 is given by a linear combination of even photon number states,
which means that the probability that the state contains an odd number of photons is
zero.

7.14.2 Statistics of Squeezed-Displaced States

The probability distribution of the number of photons in a squeezed state is obtained
by squaring the Fourier coefficients (7.148), that is,

pn(i) := P[n = i] = ||z, α〉i|2 (7.152)

This distribution is illustrated in Fig. 7.42 for α = 3 and four values of r with θ = 0.
Note that for r = 0, absence of squeezing, pn(i) becomes a Poisson distribution, but
in general it may be far form the Poisson shape, and sometimes this is classified as
sub-Poissonian statistic. Under certain conditions, this statistics may be controlled
acting on the squeeze factor [14].

The mean photon number in a squeezed-displaced state is given by [4]

6 The Fock expansion of squeezed-displaced states was first established by [4], who expressed the
Fourier coefficients in terms of Hermite polynomials Hn(x). The equivalent formulation in terms
of the polynomials Hn(x) appear to be more direct.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Fig. 7.42 The probability distribution of photon number in squeezed-displaced states, pn(i) =
P[n = i

∣∣ |(α, r)〉], for α = 3 and different values of r

n̄|z,α〉 = |α|2 + sinh2 r (7.153)

and the variance of the photon number is given by [15]

σ 2
n|z,α〉 = |α|2

[
e−2r cos2 θ + e2r sin2 θ

]
+ 1

2
sinh2 2r. (7.154)

Clearly these parameters, illustrated in Fig. 7.43, confirm the non-Poissonian statistic,
because the mean and the variance are different.
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Fig. 7.43 Mean photon number n̄ and variance σ 2
n in squeezed-dispaced states versus the squeeze

factor r for three values of |α|2
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7.14.3 Degree of Superposition of Squeezed-Displaced States

The most important parameter for Quantum Communications is given by the inner
product, which must be studied in detail.

Proposition 7.4 The inner product of two squeezed-displaced states was evaluated
by Yuen [4, Eq.3.25] and reads

〈z1, α1z0, α0 = A− 1
2 exp

[
−A

(|β1|2 + |β0|2
)− 2β1β

∗
0 + B β∗2

1 − B∗β2
0

2A

]

(7.155)

where

zi = rie
iθi , i = 0, 1

μi = cosh(ri) , νi = sinh(ri)e
iθi (7.155a)

βi = μiαi − νiα
∗
i

A = μ0μ
∗
1 − ν0ν

∗
1 , B = ν0μ1 − μ0ν1

To study this complicate expression, we begin with remarking the dependence on
the displacements αi and on the squeeze factors zi: The parameters β0 and β1 depend
on both, while all the other parameters depend only on the squeeze factors. We can
write (7.155) as

〈z1, α1|z0, α0〉 = A− 1
2 exp

⎡

⎣−
1∑

i=0

1∑

j=0

(
aij αiαj + bij αiα

∗
j + dij α∗

i α∗
j

)
⎤

⎦

having at the exponent a bi-quadratic structure in α0, α1, α∗
0 , and α∗

1 , whose coeffi-
cients aij, bij, dij depend only on the squeeze factors.

For α0 = α1 = 0 (absence of displacement), (7.155) gives

〈z1, 0|z0, 0〉 = A− 1
2 = (μ0μ

∗
1 − ν0ν

∗
1 )−

1
2

= (cosh r0 cosh r1 − sinh r0 sinh r1ei(θ0−θ1))−
1
2

which is in agreement with the expression obtained in [16] for the inner product of
two squeezed vacuum states

〈z1, 0|z0, 0〉 = √
sech r sech r0

/ √
1 − ei(θ0−θ) tanh r tanh r0. (7.156)
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For z0 = z1 = 0 (absence of squeezing) we get A = 1, B = 0, βi = αi, and then

〈0, α1|0, α0〉 = exp

[
−1

2

(
|α1|2 + |α0|2 − 2α1α

∗
0

)]

which is the formula we got for the inner product of two coherent states (see (7.9)).

7.14.4 Squeezed-Displaced States as Gaussian States

As said above, squeezed-displaced states are the most general Gaussian states. The
state |z, α〉 depends on two complex parameters

z = r eiθ , α = Δ ei ε. (7.157)

We examine in detail the Wigner function W (x, y) of the state (7.157), which
is completely determined by the mean value and by the covariance matrix (see
Sect. 7.2.5). Now, in |z, α〉 the squeezing part does not give any contribution to the
mean value, so we have

[
q
p

]
=
[�α


α

]
=
[
Δ cos ε

Δ sin ε

]
. (7.158)

On the other hand the covariance matrix of the displacement component is the iden-
tity, so that the covariance matrix depends only on the squeeze factor as

V =
[

V11 V12
V12 V22

]

=
[

cosh2 r + sinh2 r + cos θ sinh 2r sin θ sinh 2r
sin θ sinh 2r cosh2 r + sinh2 r − cos θ sinh 2r

]
.

(7.159)

Considering that det V = 1, the Wigner function results in

W (x, y) = 1

2π
exp

{
−1

2

[
V22
(
x − q

)2 + V11
(

y − p
)2 − 2V12

(
x − q

)(
y − p

)]}
.

(7.160)

A convenient representation of W (x, y) in the x, y plane is given by a contour level,
which represents the curve given by the relation W (x, y) = L, with L > 0 real. In
general, these curves are tilted ellipses as shown in Fig. 7.44. The ellipses have the
common center given by the displacement α, and the main axis is tilted by the angle
1
2θ . The lengths of the main axis and of the minor axis are proportional to e2r and to
e−2r , respectively, and so they are independent of the squeeze phase θ .
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Fig. 7.44 Contour level of the Wigner function W(x,y) (in red) of a squeezed-displaced state |z, α〉
with z = r eiθ and α = Δ eiε . The mean vector (q̄, p̄) = (Δ cos ε,Δ sin ε) gives the displacement
amount and determines the center of the elliptic countour. The main axis of the ellipse is tilted with
respect to the x axis of the angle 1

2 θ0

7.14.5 Constellations of Squeezed-Displaced States with GUS

In Sect. 11.20, we will prove that the application of the rotation operator R(φ) to a
squeezed-displaced state |z, α〉, with z = r eiθ and α = Δeiε, gives back the new
squeezed-displaced state

R(φ)|z, α〉 = |ze i 2φ, αe i φ〉 = |re i (2φ+θ),Δe i (φ+ε)〉

that is, with the modification of squeeze factor z → ze i 2φ and of the displacement
α → αe i φ . In other words, the class of squeezed-displaced states is closed under
rotations.

The above properties allow us to construct K-ary PSK constellations having the
GUS, using as symmetry operator S = R(2π/K). If |z0, α0〉 is a reference squeezed-
displaced state, the constellation has the form

S = {Sk |z0, α0〉 = |z0e i 2k 2π/K , α0e i k 2π/K 〉 , k = 0, 1, . . . , K − 1}. (7.161)

Figure 7.45 shows two 8-PSK constellations having the GUS with coherent states
and squeezed-displaced states. The circles and the ellipses around the states represent
the contour levels of the Wigner function of each state; the eccentricity of the ellipse
depends only the squeeze factor r.

As seen for coherent states the GUS will allow us to find an optimal detection
(minimum error probability) with the SRM approach.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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1
2 θ0

Fig. 7.45 8-PSK constellations of coherent states (left) and of squeezed-displaced states (right)
with the GUS. In both constellations the reference state has a real and positive displacement (α = Δ,
ε = 0). The squeeze phase of the reference state is θ0 and the corresponding ellipse is tilted of 1

2 θ0

7.15 Quantum Communications with Squeezed States

In this section, we evaluate the performance (error probability) in quantum com-
munications systems where the information carrier is given by squeezed-displaced
states instead of coherent states. We consider only PSK communications systems7;
and therefore it is natural to choose constellations having the GUS. Then, for a given
modulation order K , we have to choose a reference state of the constellation, |z0, α0〉,
because the other states are generated through the rotation operator, as indicated in
(7.161).

In the choice of the reference state |z0, α0〉 , where z0 = r0 eiθ0 , without restriction
we can assume α0 real and positive. This parameter, together with r0, determines the
average number of photons contained in the state, which is given by

n|z0,α0〉 = |α0|2 + sinh2 r0. (7.162)

This number is very important because, in a PSK constellation with equally likely
symbols, it also gives the average number of signal photons per symbol Ns. Now,
choosing r0 as a parameter that quantify the squeezing amount, it remains to choose
the squeeze phase θ0 and this will be done by taking θ0 that minimizes the error
probability.

Considering that the performance of PSK essentially depends on the quadratic
superposition between the states of the constellation

|X|2 = |〈r0eiθ0 , α0|r1eiθ1 , α1〉|2

7 Recently also the PPM with squeezed-displaced states has been considered [17].
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Fig. 7.46 Square of the inner product X = 〈α0, r0eiθ0 |α1, r1eiθ1 〉, represented by − log10 |X|2,
for a BPSK constellation. On the left, the plot is versus the amplitude α0 of the displacement for
coherent states (red) and for squeezed-displaced states with r0 = 0.9 and two values of θ0. On the
right, the plot is versus θ0 with r0 = 0.9 and two values of α0

it is important to learn how |X|2 depends on squeeze and displacement parameters.
This is considered in Fig. 7.46 for the BPSK, where r1eiθ1 = r0ei(θ0+2π) and α1 =
α0eiπ . On the left of the figure |X|2 is plotted versus α0 for coherent states (red curve)
and also for squeezed-displaced states for a fixed value of r0 and two values of θ0.
It is remarkable the great improvement obtained with squeezed states, especially
at the increase of the displacement amount α0. The right of the figure shows the
strong dependence of |X|2 on the squeeze phase θ0 and hence the importance of an
appropriate choice of this parameter.

7.15.1 BPSK with Squeezed States

The BPSK constellation of squeezed-displaced states is obtained from (7.161) with
K = 2, namely

S = {|r0eiθ0 , α0〉, |r0eiθ0 ei2π , α0eiπ }〉. (7.163)

For the evaluation of the error probability we can apply Helstrom’s theory (see
(7.102)), which gives, with equally likely symbols,

Pe = 1

2

(
1 −

√
1 − |X|2

)
. (7.164)

Thus, the only parameter needed is the quadratic superposition |X|2 between the
two states of the constellation. We have seen that |X|2 is a function of r0, α0, and θ0.
Now, fixing r0 and α0, we have the number of signal photons per symbol Ns as

Ns = |α0|2 + sinh2 r0. (7.165)

and we choose the squeeze phase θ0 that achieves the minimum error probability.
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Fig. 7.47 BPSK system with squeezed-displaced states. On the left, the error probability Pe versus
the squeeze phase θ0 for three values of the number of signal photons per symbol Ns. All the curves
have a minimum for θ0 = π . On the right, the optimal BPSK constellation where the ellipse of the
reference state is tilted of θ0 = π/2 because the optimal squeeze phase is θ0 = π

In Fig. 7.47 the error probability is plotted versus θ0 for three values of Ns. Clearly,
the minimum of Pe is obtained for θ0 = π , which means that in optimal BPSK
constellation the ellipses appear to be vertically tilted, as shown at the right of the
figure.

Finally, in Fig. 7.48 we compare the error probability Pe versus Ns obtained with
coherent states and squeezed-displaced states. It is remarkable that the performance
of the BPSK is highly improved with the presence of squeezing.
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Fig. 7.48 Error probability Pe versus the number of signal photons per symbol Ns in 4-PSK. The
dark curve refers to coherent states, while the colored curves refer to squeezed-displaced states
with different values of the squeeze factor r0 and optimal squeeze phase θ0 = −π/2. The curve do
not start at Ns = 0, because Ns = |α0|2 + sinh2 r0 and for Ns < sinh2 r0 there is no room for the
displacement α0
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7.15.2 4-PSK with Squeezed States

The 4-PSK constellation of squeezed-displaced states is obtained from (7.161) with
K = 4, namely S = {|zi, αi〉}, where

zi = z0e i 2k 2π/4 , αi = α0e i k 2π/2 , i = 0, 1, 2, 3. (7.166)

Considering that the constellation has the GUS, for the evaluation of the error prob-
ability we apply the SRM approach, which turns out to be optimum. From Sect. 7.7
we recall that the evaluation of Pe using the SRM is obtained as follows:

(1) Evaluation of the inner products

Gpq = 〈zp, αp|zq, αq〉 , p, q = 0, 1, 2, 3.

(2) Evaluation of the eigenvalues λi = ∑3
k=0 G0k W −ki

4 , and finally

Pe = 1 −
(

1

4

3∑

i=0

√
λi

)2

. (7.167)

Also in this case Pe is a function of r0, α0, and θ0 and the number of signal photons
per symbol Ns is still given by (7.165). Again, we choose r0 and α0 as parameters
and we search for the squeeze phase θ0 that gives the minimum error probability.

In Fig. 7.49 the error probability is plotted versus θ0 for three values of Ns. Clearly,
the minimum of Pe is obtained for θ0 = −π/2, which means that in the optimal
4-PSK constellation the reference ellipse is tilted of 1

2θ0 = −π/4, as shown on the
right of the figure (see Fig. 7.45).
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Fig. 7.49 4-PSK system with squeezed-displaced states. On the left, the error probability Pe versus
the squeeze phase θ0 for three values of the number of signal photons per symbol Ns All the curves
have a minimum for θ0 = −π/2. On the right the optimal 4-PSK constellation; the ellipse of the
reference state is tilted by 1

2 θ0 = −π/4 because the optimal squeeze phase is θ0 = −π/2
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Finally, in Fig. 7.50 we compare the error probability Pe versus. Ns obtained with
coherent states and with squeezed-displaced states. We realize that also the 4-PSK
is highly improved with the presence of squeezing.

7.15.3 Conclusions

In this chapter, we have considered coherent states as the standard carrier for data
transmission in quantum communications systems. On the other hand, in this last
section, we have seen the possibility of a huge improvement using squeezed light,
but we have limited the analysis only to the systems 2PSK and 4PSK for the rea-
son that squeeze technique is not promising for the immediate future because of
losses and excess noise present in this technique and because of the complexity and
power required. However, quantum optics is making rapid progress so that quantum
communications with squeezed states merits a special attention.
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