
Chapter 6
Quantum Decision Theory: Suboptimization

6.1 Introduction

In the previous chapter we have seen that optimization is very difficult, and exact
solutions are only known in few cases (binary systems and systems where the state
constellation have the geometrically uniform symmetry, GUS). To overcome the
difficulty, suboptimization is considered.

In quantum communications the most important suboptimal criterion is based
on the minimization of the quadratic error between the states and the measurement
vectors, known by the acronym LSM (least squares measurements), and also SRM
(square root measurements), because its solution is based on the square root of an
operator.

From a historical point of view, we must start from quantum SRM (square root
measurement), introduced byHausladen and other authors in 1996 [1], who proposed
as measurement matrix M = T −1/2Γ , where T is Gram’s operator and T −1/2 is its
inverse square root. With this choice, the quantum decision is not in general optimal,
but it gives a good approximation of the performance (“pretty good” is the judgment
given by the authors and very often echoed in the literature).

The quantum least squares measurements (LSM) were subsequently developed
by Eldar and Forney, in two articles [2, 3], deserving particular attention, because
they formalize the whole problem in a very clear and general way, establishing a
connection between the LSM and other types of measurements. In particular, they
proved that the LSM technique produces the same results as the SRM technique,
and precisely that the optimal measurement matrix (which minimizes the quadratic
error) can be obtained both from Gram’s operator and from Gram’s matrix in the
following way.

M0 = T − 1
2 Γ = Γ G− 1

2 . (6.1)

An important result is concerned with the SRM in the presence of GUS, which gives
the optimal decision for pure states, allowing the exact evaluation of the error
probability. Recently [4, 5], the SRM technique has been systematically applied to
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252 6 Quantum Decision Theory: Suboptimization

the performance evaluation ofmost popular quantumcommunications systems. From
a computational viewpoint, the SRM can be improved with the technique of quantum
compression [6], which has been introduced at the end of the previous chapter.

Organization of the Chapter

The SRM technique is mainly based on the SVD of the state matrix Γ and on the
EID of the Gram matrix G and of the Gram operator T , developed in Sect. 5.12
of the previous chapter. For this reason these decompositions are recalled before
developing the SRM.

The SRM for pure states is developed in Sects. 6.2 and 6.3 and extended to mixed
states in Sect. 6.4. In Sects. 6.5 and 6.6 the SRM is developed assuming that the state
constellations have the GUS.

In Sect. 6.7 the SRM technique is combined with the compression technique,
showing the advantage of working in a compressed space, mainly in the presence
of GUS. Finally, in Sect. 6.8 the quantum Chernoff bound is introduced as a further
technique of suboptimization in quantum detection.

Recall from the Previous Chapter

For convenience we reconsider the main matrices and the related decompositions
seen in Sect. 5.12 of the previous chapter, which are useful to SRM.

• State and measurement matrices

pure states Γ

n×K

= [|γ0〉, |γ1〉, . . . , |γK−1〉] , M
n×K

= [|μ0〉, |μ1〉, . . . , |μK−1〉].

mixed states Γ
n×H

= [γ0, γ1, . . . , γK−1] , M
n×H

= [μ0, μ1, . . . , μK−1].

Relations
M = Γ A , M = C Γ. (6.2)

In particular, the second relation gives

|μi 〉 = C |γi 〉 or μi = C γi . (6.2a)

Singular value decomposition of Γ

Γ = UΣV ∗ =
r∑

i=1

σi |ui 〉〈vi | = UrΣr V ∗
r (6.3)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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• Gram’s matrix and Gram’s operator

pure states G
K×K

= Γ ∗ Γ , T
n×n

= Γ Γ ∗ (6.4a)

mixed states G
H×H

= Γ ∗ Γ , T
n×n

= Γ Γ ∗ (6.4b)

Relations

pure states Gi j = 〈γi |γ j 〉 , T =
K−1∑

i=0

|γi 〉〈γi | (6.5a)

mixed states Gi j = γ ∗
i γ j , T =

K−1∑

i=0

ρi . (6.5b)

Eigendecompositions

T = UΛT U∗ =
r∑

i=1

σ 2
i |ui 〉〈ui | = UrΣ

2
r U∗

r (6.6a)

G = V ΛG V ∗ =
r∑

i=1

σ 2
i |vi 〉〈vi | = VrΣ

2
r V ∗

r . (6.6b)

6.2 Square Root Measurements (SRM)

6.2.1 Formulation

Considering the equivalence between LSM and SRM, we find it convenient to intro-
duce the topic in the sense of LSM, but we will use the more consolidated acronym
SRM.

In the case of pure states, the measurement vectors |μi 〉 are chosen with the
criterion of making the differences between the states and the measurement vectors,
|ei 〉 = |γi 〉 − |μi 〉, as “small” as possible (Fig. 6.1), and more specifically we look

Fig. 6.1 In the LSM method
the quadratic average of the
“errors” |ei 〉 = |γi 〉 − |μi 〉 is
minimized

|μi

|γ i

|ei
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for the measurement vectors |μi 〉 that minimize the quadratic error

E =
K−1∑

i=0

〈ei |ei 〉 =
K−1∑

i=0

(〈γi | − 〈μi |)(|γi 〉 − μi 〉)

with the constraint of resolution of the identity

M M∗ =
K−1∑

i=0

|μi 〉〈μi | = IH → PU (6.7)

where IH can be replaced by PU (see Proposition 5.5).
Introducing the difference between the state matrix and the measurement matrix:

E = [|e0〉, |e1〉, . . . , |eK−1〉] = Γ − M , the quadratic error can be written in the
form

E = Tr[E∗E] = Tr[E E∗] . (6.8)

We observe that if the vectors |γi 〉 were orthonormal, the minimum of E, satisfying
the constraint (6.7), would be trivially |μi 〉 = |γi 〉, 1 ≤ i ≤ K , which yields E = 0.

The above can be extended to mixed states, for which the error is considered
between the state factors and themeasurement factors, ei = γi −μi , and the quadratic
error is still given by (6.8). In any case we assume equiprobable symbols, that is,
with equal a priori probabilities, qi = 1/K , but the SRMmethod can be extended to
generic a priori probabilities qi substituting the states |γi 〉 with the weighted states√

qi |γi 〉 (see [2]).
As we will see, the SRM method always leads to explicit results and, in general,

provides a good overestimation of the error probability.

6.2.2 Computation of the Optimal Measurement Matrix

Now we search for the optimal measurement matrix, M = M0, that minimizes the
quadratic error E. Even though in quantum communications the states are always
independent and so the rank of the state matrix is r = K , for greater generality (and
for the interest that the general case will have with the extension of the method to
mixed states), we suppose that Γ has a generic rank r . We obtain:

Theorem 6.1 The measurement matrix M that minimizes the quadratic error E with
the constraint (6.7), is given by

M0 =
r∑

i=1

|ui 〉〈vi | = Ur V ∗
r , (6.9)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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that is, by the sum of the r transjectors |ui 〉〈vi | seen in the (reduced) SVD of the state
matrix Γ . The minimum quadratic error is

Emin =
K−1∑

i=0

(1 − σi )
2 ,

where σi are the square roots of the eigenvalues (i.e., the singular values) of the
Gram operator and of the Gram matrix (see (6.6)).

Note that here we indicate as optimum the measurement matrix giving the min-
imum square error (representing the “best” solution in this context). In general this
does not provide the optimum decision, which minimizes the error probability.

Proof Wefollow the demonstration by [2]with some simplification. In the expression
(6.8) of the quadratic error we take explicitly the tracewith respect to the orthonormal
basis |ui 〉, seen in the EID of Gram’s operator in the previous chapter (see (5.109a)).
In this way we find

E = Tr[E E∗] =
n∑

i=1

〈ui |E E∗|ui 〉 =
n∑

i=1

〈di |di 〉 (6.10)

where
|di 〉 := E∗|ui 〉 = (Γ − M)∗|ui 〉 . (6.10a)

Let us now consider the reduced SVD of Γ ∗ (see (6.3))

Γ ∗ = VrΣr U∗
r =

r∑

i=1

σi |vi 〉〈ui |

which gives Γ ∗|ui 〉 = σi |vi 〉. Now, letting

|ai 〉 = M∗|ui 〉 , i = 1, . . . , r (6.11)

(6.10a) becomes |di 〉 = (Γ − M)∗|ui 〉 = σi |vi 〉 − |ai 〉 and the i th component of the
quadratic error results in

Ei = 〈di |di 〉 = σ 2
i 〈vi |vi 〉 + 〈ai |ai 〉 − σi 〈vi |ai 〉 − σi 〈ai |vi 〉

= σ 2
i + 1 − σi 〈vi |ai 〉 − σi 〈ai |vi 〉 .

The minimum of Ei is reached when the quantity σi 〈vi |ai 〉 + σi 〈ai |vi 〉 is maximum.
Because of the constraint |〈vi |ai 〉| ≤ 1, this quantity is maximum when |ai 〉 = |vi 〉,
that is, when (6.11) becomes |vi 〉 = M∗|ui 〉 for an appropriate M = M0. From this
relation, (6.9) follows.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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6.2.3 Consequences of the Result

From the expression (6.9) of the optimal measurement matrix, it can be soon verified:

Corollary 6.1 If the states |γi 〉 are linearly independent, that is, if the rank of Γ

is r = K , the optimal measurement vectors result orthonormal, 〈μi |μ j 〉 = δi j ,
and therefore the corresponding measurement operators Qi = |μi 〉〈μi | constitute a
projector system.

In fact, let us consider the (optimal) Gram’s matrix of the measurement vectors

M∗
0 M0 =

K−1∑

i=0

|vi 〉〈ui |
K−1∑

j=0

|u j 〉〈v j | =
K−1∑

i=0

|vi 〉〈vi | = IK

where (5.116) has been used. To conclude, it suffices to observe thatGram’s matrix of
the measurement vectors M has as elements the inner products 〈μi |μi 〉 (see (5.107)).

In addition, we find what was anticipated by (6.1):

Corollary 6.2 The optimal measurement matrix M0 = Ur V ∗
r can be calculated

also from the expressions

M0 = Γ (Γ ∗Γ )
−1/2 = Γ G−1/2 (6.12a)

M0 = (Γ Γ ∗)−1/2
Γ = T −1/2Γ (6.12b)

where G−1/2 and T −1/2 are the inverse square roots of G and T that are obtained
from the corresponding reduced EIDs in the following way

G−1/2 = Vr Σ−1
r V ∗

r , T −1/2 = Ur Σ−1
r U∗

r . (6.13)

For example, the proof of (6.12a) is carried out using the expression G−1/2 intro-
duced above, and the reduced SVD of Γ . We obtain

Γ G−1/2 = UrΣr V ∗
r VrΣ

−1
r V ∗ = Ur V ∗

r = M0

where we took into account that V ∗
r Vr = Ir and that ΣΣ−1

r = Ir .

On the inverse square roots. In (6.13) we have formally introduced the inverse
square roots G−1/2 and T −1/2 of G and of T . To obtain these roots we start from
the corresponding reduced EIDs and we operate on the common diagonal matrix

Σ2
r = diag[σ 2

1 , . . . , σ 2
r ], taking its inverse square rootΣ−1

r = diag[1/σ1, . . . , 1/σr ],
where the σ 2

i are all positive, and therefore there are no indeterminacy problems.
In general, G−1/2 and T −1/2 should be intended as pseudoinverses (according to
Moore–Penrose formula [7, 8]). The Moore–Penrose pseudoinverse is based on the
full EID (not reduced) UΛU∗, by taking the reciprocal of each nonzero element on

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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the diagonal, leaving the zeros in place. Here we prefer to use the reduced EID,
where the diagonal matrix is regular and has no problem for its inversion. In any case
note that the inversion can bring about some surprising result. For example, it can be
verified that the relation T −1/2T 1/2 = Ur U∗

r does not yield, in general, the identity
IH, but it gives the projector PU = Ur U∗

r and only if r = K one actually produces
the identity IH.

The path followed so far to introduce the inverse square roots, based on the
reduced EIDs, is slightly unusual; in fact, the EIDs are normally considered full, and
this entails the complication of having to introduce several diagonal matrices [2].

Problem 6.1 Prove that T −1/2T 1/2 does not yield, in general, the identity IH, but
the projector PU = Ur U∗

r . Only if r = K one actually produces the identity IH.

Problem 6.2 		 Consider the following state matrix of H = C
4

Γ =

⎡

⎢⎢⎢⎢⎣

1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

⎤

⎥⎥⎥⎥⎦

Find the inverse square root G−1/2 and T −1/2 based on the two approaches: (1) the
Moore–Penrose pseudoinverse and (2) the reduced EID.

6.3 Performance Evaluation with the SRM Decision

With the SRMmethod, we have seen that the optimal measurement matrix has three
distinct expressions

M0 = Ur V ∗
r = T −1/2Γ = Γ G−1/2 . (6.14)

The first expression is bound to the reduced SVD of the measurement matrix Γ ,
while the other two are obtained from the reduced EIDs of T and G, respectively.

From the measurement matrix, which collects the measurement vectors |μi 〉, the
measurement operators can be computed as Qi = |μi 〉〈μi | and from these the
performance of the quantum system. The transition probabilities result in

pc( j | i) = Tr[ρi Q j ] = |〈μ j |γi 〉|2 (6.15)

and the correct decision probability (with equiprobable symbols)

Pc = 1

K

K−1∑

i=0

|〈μi |γi 〉|2. (6.16)
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We now discuss the three possible methods, expressing them in a form suitable
for computation.

6.3.1 Method Based on the SVD of the State Matrix

The optimal measurement matrix, evaluated according to the expression

M0 = Ur V ∗
r , (6.17)

can be obtained directly from the reduced SVDof the statematrix, which has the form
(see (5.110)): Γ = UrΣr V ∗

r . Therefore, in this expression it suffices to suppress the
diagonal matrix to obtain the optimal measurement matrix. This is the most direct
method as it does not require to calculate the inverse root square of a matrix.

6.3.2 Method Based on Gram’s Operator

Let us start from Gram’s operator,

T = Γ Γ ∗ =
K−1∑

i=0

|γi 〉〈γi | , (6.18)

which is a positive semidefinite Hermitian operator (see Sect. 2.10.4). Then it is
possible to define its square root, using the EID (5.109a), which is, in the reduced
form, T = Ur Σ2

r U∗
r and gives

T − 1
2 = Ur Σ−1

r U∗
r (6.19)

from which we obtain the optimal measurement matrix as

M0 = T − 1
2 Γ. (6.20)

At this point we observe that (6.20) falls into the form (5.103), that is, M = C Γ ,
and then the measurement vectors are simply obtained according to

|μi 〉 = T − 1
2 |γi 〉 (6.21)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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from which we get the elementary measurement operators as

Qi = |μi 〉〈μi | = T − 1
2 |γi 〉〈γi |T − 1

2 . (6.22)

6.3.3 Method Based on Gram’s Matrix

We start from Gram’s matrix

G
K×K

= Γ ∗ Γ =
⎡

⎢⎣
〈γ0|γ0〉 . . . 〈γ0|γK−1〉

...
. . .

...

〈γK−1|γ0〉 . . . 〈γK−1|γK−1〉

⎤

⎥⎦ (6.23)

which is obtained by computing the inner products 〈γi |γ j 〉. We then evaluate the
reduced EID, which has the form

G = VrΣ
2
r V ∗

r (6.24)

where the diagonal matrix Σ2
r is the same as the one appearing in the previous EID.

From this we compute the inverse square root

G− 1
2 = VrΣ

−1
r V ∗

r (6.25)

and then we obtain the optimal measurement matrix as

M0 = Γ G− 1
2 . (6.26)

This form is of the type (5.102), that is, M = Γ A, which expresses in a compact form
the fact that the (optimal) measurement vectors are given by a linear combination of
the states, that is,

|μi 〉 =
K−1∑

j=0

ai j |γ j 〉 .

Now, as A = G−1/2 and therefore ai j = (G−1/2)i j , the measurement vectors result
explicitly in

|μi 〉 =
K−1∑

j=0

(G−1/2)i j |γ j 〉 . (6.27)

The transition probabilities are computed from the mixed inner products bi j =
〈μi |γ j 〉, which define the K × K matrix B = M∗Γ (see (5.74)). Now, from (6.24)
and (6.25) we have

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5


260 6 Quantum Decision Theory: Suboptimization

B := M∗Γ = G−1/2Γ ∗Γ = G−1/2G = G1/2 . (6.28)

Then the matrix of the mixed inner products becomes simply G1/2 and since
pc( j |i) = |bi j |2 we have

pc( j | i) =
∣∣∣(G

1
2 )i j

∣∣∣
2

(6.29)

from which we obtain the correct decision probability with equiprobable symbols

Pc = 1

K

K−1∑

i=0

∣∣∣(G
1
2 )i i

∣∣∣
2
. (6.30)

Example 6.1 Consider a binary system (K = 2) onH = C
4, in which the two states

are specified by the matrix

Γ = [|γ1〉, |γ2〉
] = 1

2
√
13

⎡

⎢⎢⎢⎣

5 1
3 − 2 i 3 + 2 i

1 5

3 + 2 i 3 − 2 i

⎤

⎥⎥⎥⎦ (6.31)

which has rank r = K = 2. The reduced SVD of Γ becomes: Γ = UrΣV ∗
r , where

Ur = 1

2

⎡

⎢⎢⎢⎣

1 1

1 −i

1 −1

1 i

⎤

⎥⎥⎥⎦ , Σr =
⎡

⎣

√
18
13 0

0
√

8
13

⎤

⎦ , V = Vr = 1√
2

[
1 1

1 −1

]
.

Then, from (6.17) we get the optimal measurement matrix

M0 = Ur V ∗ = 1

2

⎡

⎢⎢⎢⎣

1 1

1 −i

1 −1

1 i

⎤

⎥⎥⎥⎦
1√
2

[
1 1

1 −1

]
= 1

2
√
2

⎡

⎢⎢⎣

2 0
1 − i 1 + i
0 2

1 + i 1 − i

⎤

⎥⎥⎦ . (6.32)

The measurement vectors become then

|μ1〉 = 1

2
√
2

⎡

⎢⎢⎣

2
1 − i
0

1 + i

⎤

⎥⎥⎦ , |μ2〉 = 1

2
√
2

⎡

⎢⎢⎣

0
1 + i
2

1 − i

⎤

⎥⎥⎦
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and their orthonormality can be verified, in particular 〈μ1|μ2〉 = 0, in agreement
with Corollary 6.1. We can now compute the transition probabilities from (6.15),
that is, pc( j | i) = |〈μ j |γi 〉|2. We obtain the matrix

pc =
[
25
26

1
26

1
26

25
26

]
(6.33)

from which we have that the error probability with equiprobable symbols results in
Pe = 1 − Pc = 1

26 .
We leave it to the reader to verify that the other two performance evaluation

methods, based on the reduced EIDs of G and of T , lead to the same results found
with the SVD of Γ .

Problem 6.3 		 Consider the state matrix Γ given by (6.31) of Example 6.1.
Check that the methods based on the EIDs of G and T give the same transition
probabilities as obtained with the SVD of Γ .

Problem 6.4 		 With the data of the previous problem, find the relations

μ1 = C γ1 , μ2 = C γ2.

These relations are somewhat intriguing since they lead to think that μ1 depends
only on γ1 and not on γ2 and μ2 only on γ2. Explain why not.

6.3.4 Properties of the SRM

We have seen that the operators of the SRM can always be calculated in a rather
simple manner for any constellation of states |γi 〉 and therefore for any quantum
communications system. This is already a first advantage. It remains to understand
whether the SRM are optimal or close to optimal. It has been proved by Holevo
in 1979 [9] that the SRM are asymptotically optimal, in the sense that they become
optimal in practicewhen the averagenumber of photons is large enough. Furthermore,
these measurements become optimal when the constellation of the states enjoys the
geometrically uniform symmetry (GUS) (see below).

Another advantage of the SRM regards their practical implementation. In fact,
receivers based on the SRM have already been implemented (in 1999), using QED
cavities [10].
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6.4 SRM with Mixed States

The SRM method is normally used for decision in the presence of pure states, but
recently [11] this method was extended to systems described by density operators
(mixed states), allowing for the evaluation of the performance of quantum commu-
nications systems even in the presence of thermal noise.

The technique behind this generalization, consisting in passing from pure states
to density operators, is the usual factorization of the density operators

ρi = γiγ
∗
i

which allows us to proceed in basically the same way as seen with pure states, using
the following correspondence

state |γi 〉 → state factor γi

measurement vector |μi 〉 → measurement factor μi

whose consequences are summarized in Table6.1. As done with pure states, we keep
the hypothesis of equiprobable symbols.

Table 6.1 The SRM method with pure states and with mixed states

Operation Pure states Mixed states

Density operators ρ0, . . . , ρK−1

States/factor states |γ0〉, . . . , |γK−1〉 γ0, . . . , γK−1

State matrix Γ = [|γ0〉, . . . , |γK−1〉] Γ = [γ0, . . . , γK−1]
Gram’s matrix G = Γ ∗ Γ = [〈γi |γ j 〉

]
G = Γ ∗ Γ = [

γ ∗
i γ j

]

Gram’s operator T = Γ Γ ∗ =
K−1∑

i=0

|γi 〉〈γi | T = Γ Γ ∗ =
K−1∑

i=0

γi γ
∗
i

Measurement vectors/factors |μi 〉 = T − 1
2 |γi 〉 μi = T − 1

2 γi

Measurement matrix M = T − 1
2 Γ = Γ G− 1

2 M = T − 1
2 Γ = Γ G− 1

2

Mixed product matrix B = M∗ Γ = [〈μi |γ j 〉
] =

G1/2
B = M∗ Γ = [

μ∗
i γ j

] = G1/2

Measurement operators Qi = |μi 〉〈μi | Qi = μi μ∗
i

Transition probabilities
p( j |i)

|〈μ j |γi 〉|2 = |b ji |2 Tr[μ j μ
∗
j γi γ

∗
i ] = Tr[b∗

j i b ji ]

Correct decision probability Pc
1

K

K−1∑

i=0

|bii |2 1

K

K−1∑

i=0

Tr[b∗
i i bii ]
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6.4.1 Discussion of the Method

Having obtained the factors γi of the density operators ρi , we form the state matrix

Γ
n×H

= [
γ0, γ1, . . . , γK−1

]
(6.34)

where H is the total number of columns, and from this we obtain Gram’s operator
(see (5.118)) and Gram’s matrix (see (5.119))

T
n×n

= Γ Γ ∗ , G
H×H

= Γ ∗ Γ.

Theorem 6.1 and the subsequent corollaries still hold, so the optimal measurement
matrix can be calculated from three distinct expressions

M0 = Ur V ∗
r = T −1/2Γ = Γ G−1/2 . (6.35)

The first expression is bound to the reduced SVD of the measurement matrix Γ ,
while the other two are obtained from the reduced EIDs of T and G.

From M0 = [
μ0, μ1, . . . , μK−1

]
we get the measurement factors μi and, from

these, the measurement operators Qi = μiμ
∗
i . The relation giving the mixed product

matrix B = [bi j ] = [μ∗
i γ j ] still holds

B = M∗ Γ = G1/2. (6.36)

Finally, we obtain the transition probabilities and the correct decision probability
from (5.75)

pc( j |i) = Tr[b∗
j i b ji ] , Pc =

∑

i∈A
qiTr[b∗

i i bii ]. (6.37)

where now bi j is the i, j block of the matrix G1/2.

Example 6.2 Let us consider Problem 5.9 of the previous chapter, where starting
from two density operators ρ0 and ρ1 of H = C

4, we found the factors γ0 of
dimensions 4 × 2 and γ1 of dimensions 4 × 3. From these factors, the 4 × 5 state
matrix is formed

Γ = [
γ0, γ1

] =

⎡

⎢⎢⎣

−0.54117 −0.02018 −0.47937 −0.06934 0.03124
−0.54117 −0.02018 i 0.51339 0.0 i 0.02917
−0.54117 −0.02018 0.479370 −0.06934 −0.03124
−0.33238 0.09857 −i 0.51339 0.0 −i 0.02917

⎤

⎥⎥⎦ .

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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From Γ we obtain the 4 × 4 Gram’s operator

T = Γ Γ ∗ =

⎡

⎢⎢⎣

0.52885 0.29327 + i 0.24519 0.06731 0.17788 − i 0.24519
0.29327 − i 0.24519 0.55769 0.29327 + i 0.24519 −0.08654

0.06731 0.29327 − i 0.24519 0.52885 0.17788 + i 0.24519
0.17788 + i 0.24519 −0.08654 0.17788 − i 0.24519 0.38462

⎤

⎥⎥⎦

and the 5 × 5 Gram’s matrix

G = Γ ∗ Γ =

⎡

⎢⎢⎢⎢⎣

0.98906 0.0 −i 0.10719 0.07505 −i 0.00609
0.0 0.01094 −i 0.06096 0.00280 −i 0.00346

i 0.10719 i 0.06096 0.98673 0.0
0.07505 0.00280 0.00962
i 0.00609 i 0.00346 0.0 0.0 0.00365

⎤

⎥⎥⎥⎥⎦
.

The four eigenvalues of T are all positive and precisely

1.04854 0.941288 0.101754 0.0647906

and it can be verified that G has the same positive eigenvalues (the fifth eigenvalue
of G is null).

As T has full rank, its inverse square root must be intended in the ordinary sense,
and results in

T −1/2 =

⎡

⎢⎢⎣

6.55880 −3.71728 − i 3.44423 −0.73775 + i 1.90902 −1.85711 + i 2.39197
−3.71728 + i 3.44423 8.04954 −3.71728 − i 3.44423 0.66455
−0.73775 − i 1.90902 −3.71728 + i 3.44423 6.55880 −1.85711 − i 2.39197
−1.85711 − i 2.39197 0.66455 −1.85711 + i 2.39197 6.11094

⎤

⎥⎥⎦ .

From T −1/2 we obtain the measurement factors

μ0 = T −1/2γ0 =

⎡

⎢⎢⎣

0.48977 + i 0.01653 −0.25565 − i 0.26963
0.54077 −0.00921

0.48977 − i 0.01653 −0.25565 + i 0.26963
0.47493 0.60823

⎤

⎥⎥⎦

μ1 = T −1/2γ1 =

⎡

⎢⎢⎣

−0.02278 − i 0.49923 −0.40600 + i 0.18138 0.09726 − i 0.40602
0.50687 0.48486 − i 0.07894 −0.45743

−0.02278 + i 0.49923 −0.44257 − i 0.04322 0.09726 + i 0.40602
−0.49203 0.26908 − i 0.04381 0.29679

⎤

⎥⎥⎦ .

Finally, from (6.37) we obtain the transition probabilities pc( j |i), whose matrix is

pc =
[
0.986242 0.013758
0.01084 0.013758

]
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hence, with equiprobable symbols, we have

Pc = 0.986242 Pe = 0.013758.

Computation of Pe from the eigenvalues (Helstrom). Having considered a binary
case,we knowhow to compute the optimal projectors according toHelstrom’s theory,
which is based on the eigenvalues of the decision operator D = 1

2 (ρ1 − ρ0). The
eigenvalues of D become

{−0.977483, 0.977145, 0.00422318,−0.00388438}

So, applying (5.22), we obtain

Pc = 0.981368 Pe = 0.018632

and we realize that the SRM gives an underestimate of the error probability.

6.5 SRM with Geometrically Uniform States (GUS)

The geometrically uniform symmetry (GUS) has been introduced in Sect. 5.13. Now,
it is evident that the GUS on a constellation of states leads to a symmetry also on
the measurement vectors, with remarkable simplifications, but the most important
consequence is that, with pure states, the SRM method in the presence of GUS
provides the optimal decision (maximizing the correct decision probability), as will
be seen toward the end of this section.

6.5.1 Symmetry of Measurement Operators
Obtained with the GUS

In Proposition 5.9 we have seen that if the state constellation has the GUS, also the
optimal measurement operators have the same symmetry. We now prove that this
property also holds for the measurement operators obtained with the SRM, which
are not optimal in general. 1

1 It is useful to recall that we call optimal the measurement operators obtained with the maximiza-
tion of the correct decision probability, while the measurement operators obtained with the SRM
minimize the quadratic error between the measurement vectors and the state vectors.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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In Proposition 5.8 we have seen that the Gram operator T and the symmetry
operator S commute and therefore they are simultaneously diagonalizable

T S = S T ⇐⇒ T = UΛT U∗ , S = UΛSU∗. (6.38a)

Then, also the powers of T and of S are simultaneously diagonalizable and therefore
commute

T α = UΛα
T U∗ , Sβ = UΛ

β
SU∗ ⇐⇒ T α Sβ = Sβ T α. (6.38b)

In particular T − 1
2 commutes with Si for every i

T − 1
2 Si = Si T − 1

2 , i = 0, 1, . . . , K − 1 . (6.39)

Then, combining (6.21) with (6.39) we obtain

|μi 〉 = T − 1
2 |γi 〉 = T − 1

2 Si |γ0〉 = Si T − 1
2 |γ0〉 .

The above result can be formulated as follows:

Theorem 6.2 If a constellation of states |γi 〉 has the GUS with symmetry operator
S, also the measurement vectors obtained with the SRM have the GUS with the same
symmetry operator, namely

|μi 〉 = Si |μ0〉 , i = 0, 1, . . . , K − 1 (6.40)

where
|μ0〉 = T − 1

2 |γ0〉 . (6.40a)

Thus, from (6.40), all themeasurement vectors can be obtained from the reference
vector |μ0〉. This property is then transferred to the measurement operators Qi with
the usual rules.

6.5.2 Consequences of the GUS on Gram’s Matrix

When the states have the GUS, Gram’s matrix becomes circulant and the SRM
methodology can be developed to arrive at explicit results.

We recall that a matrix G = [Gi j ] of dimensions K × K is called circulant if its
elements depend only on the difference of the indexes, modulo K , that is, they are
of the type

Gi j = ri− j (mod K ). (6.41)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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For example for K = 4 we have the structure

G =

⎡

⎢⎢⎣

r0 r1 r2 r3
r3 r0 r1 r2
r2 r3 r0 r1
r1 r2 r3 r0

⎤

⎥⎥⎦

and the elements of the rows are obtained as permutations of those of the first row.
Therefore, a circulant matrix is completely specified by its first row, which for con-
venience we will call circulant vector.

Now, from (5.120) it results that the inner products

Gi j = 〈γi |γ j 〉 = 〈γ0|(S∗)i S j |γ0〉
= 〈γ0|S j−i |γ0〉 = ri− j (mod K )

depend upon the difference i − j (mod K ), so ensuring that Gram’s matrix is (Her-
mitian) circulant with circulant vector

[r0, r1, . . . , rK−1] = [1, 〈γ0|S|γ0〉, . . . , 〈γ0|SK−1|γ0〉].

The EID of a circulant Gram’s matrix is expressed through the matrix of the DFT
(Discrete Fourier Transform), given by

W[K ] = 1√
K

⎡

⎢⎢⎢⎣

1 10 1−1 . . . 1−(K−1)

1 W −1
K W −2

K . . . W −2(K−1)
K

...
...

1 W −(K−1)
K W −2(K−1)

K . . . W −(K−1)(K−1)
K

⎤

⎥⎥⎥⎦ (6.42)

where WK = ei2π/K . From the orthonormality condition

K−1∑

s=0

1

K
W rs

K = δr0 (6.43)

it can be verified that the columns of W[K ]

|wp〉 = 1√
K

[
W −p

K , W −2p
K , . . . , W −p(K−1)

K

]T
, p = 0, 1, . . . , K − 1 (6.44)

form an orthonormal basis of CK , i.e., 〈wp|wq〉 = δpq .

Theorem 6.3 A circulant Gram’s matrix G = [Gi j ] = [ri− j (mod K )] has the fol-
lowing EID

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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G = W ∗ΛW =
K−1∑

p=0

λp|wp〉〈wp| with W := W[K ] (6.45)

where the eigenvalues are given by the DFT of the circulant vector

λp =
K−1∑

q=0

G0q W −pq
K =

K−1∑

q=0

rq W −pq
K (6.45a)

and Λ = diag [λ0, λ1, . . . , λK−1].
The theorem is proved in Appendix section “On the EID of a Circulant Matrix”.

6.5.3 Performance Evaluation

From Theorem 6.3 we soon find the square roots

G± 1
2 =

K−1∑

p=0

λ
± 1

2
p |wp〉〈wp| = W ∗Λ± 1

2 W (6.46)

whose elements are given by

(G± 1
2 )i j = 1

K

K−1∑

p=0

λ
± 1

2
p W −p(i− j)

K . (6.46a)

We can then evaluate the transition probabilities from (6.29), where the element i j
is computed from (6.46a); thus

pc( j |i) =
∣∣∣
1

K

K−1∑

p=0

λ
1
2
p W −p(i− j)

K

∣∣∣
2
, i, j = 0, 1, . . . , K − 1 (6.47)

in particular, the diagonal transition probabilities are found to be all equal

pc(i |i) =
⎡

⎣ 1

K

K−1∑

p=0

λ
1
2
p

⎤

⎦
2

(independent of i) (6.47a)

and therefore the correct decision probability (6.30) becomes explicitly

Pc =
⎡

⎣ 1

K

K−1∑

p=0

λ
1
2
p

⎤

⎦
2

. (6.48)
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The measurement vectors |μi 〉 are obtained as linear combination of the states
(see (6.27)), but considering that they have the GUS, their evaluation can be limited
to the reference vector, given by

|μ0〉 =
K−1∑

j=0

(G−1/2)i j |γ j 〉. (6.49)

In conclusion, when Gram’s matrix G is circulant, to evaluate the measurement
vectors and their performance, it suffices to compute their eigenvalues, given simply
by the DFT of the first row of G. This methodology will be applied to PSK and PPM
modulations in the next chapter.

6.5.4 Optimality of SRM Decision with Pure
States Having the GUS

We now prove that the SRM decision, when the states have the GUS, realizes the
minimum error probability.

Proposition 6.1 When the constellation of pure states verifies the GUS, the SRM
becomes optimum, achieving the minimum error probability.

For the poof we use Holevo’s theorem, in the version given by Corollary 5.1.With
equiprobable symbols, the first conditions of Holevo’s theorem result from (5.97)

bi j b∗
j j − bii b∗

j i = 0 , ∀i,∀ j (6.50)

where bi j = 〈μi |γ j 〉 are the mixed products. Their matrix is given by (see (6.28))

B = G1/2 = W ∗Λ1/2W

and it is symmetric. Its elements bi j depend only upon the difference i − j , as
indicated also by (6.46a), and then they can be expressed in the form

bi j = f ( j − i) with b∗
i j = f (i − j) .

Therefore, from (6.50) it follows f ( j − i) f ∗(0) − f (0) f ( j − i) = 0, which is
verified because f (0) is real.

For a proof of the second condition, we address the reader to [2].

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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6.5.5 Helstrom’s Bound with SRM

In Sect. 5.13 we have seen that a binary constellation always satisfies the GUS, and
hence the SRM gives the optimal decision. Then with the SRM approach we have to
obtain the Helstrom bound.

In the binary case the state matrix is Γ = [|γ0〉, |γ1〉] and Gram’s matrix is

G = Γ ∗ Γ =
[
1 X

X∗ 1

]
, X := 〈γ0|γ1〉.

and in general is not circulant because X∗ �= X and hence we cannot apply the
approach based on the DFT.

We evaluate the square roots of G by hand. Assuming that G1/2 has the form2

G1/2 =
[

a b
b∗ a

]

we find the conditions
a2 + |b|2 = 1 , 2ab = X

which give

a2 + |X |2
4a2 = 1 → a4 − 1

4
|X |2 = 0.

The solution is

a = 1√
2

√
1 +

√
1 − |X |2

and

b = X

2a
= X√

2|X |
√
1 −

√
1 − |X |2 = eiβ√

2

√
1 −

√
1 − |X |2

where β = arg X . As a check

G1/2G1/2 =
[
1 X

X∗ 1

]
= G.

From G1/2we have the correct decision probability from (6.30) as

Pc = 1

2

[
|(G1/2)00|2 + |(G1/2)00|2

]
= 1

2

[
1 +

√
1 − |X |2

]

that is, the Helstrom bound.

2 The assumption that the diagonal elements are equal is in agreement with a Sasaki’s et al. [12]
theorem, which states that in a optimal decision the square root of the Gram matrix must have all
the diagonal elements equal.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Next we evaluate the optimal measurement vectors. Considering that det G1/2 =√
1 − |X |2, the inverse of G1/2 is

G−1/2 = 1√
1 − |X |2

[
a −b

−b∗ a

]
.

Using the identities

1

1 − |X | ± 1

1 + |X | = √
2

√
1 ± √

1 − |X |2
√
1 − |X |2

we find (with β = arg X )

G−1/2 = 1

2

[ 1
1−|X | + 1

1+|X | eiβ( 1
1−|X | − 1

1+|X | )

e−iβ( 1
1−|X | − 1

1+|X | )
1

1−|X | + 1
1+|X |

]

which gives the measurement matrix as M = Γ G−1/2.
When the inner product is real the Gram matrix turns out to be circulant and

the approach based on the DFT can be applied to get the Helstrom bound (see
Problem 6.5).

Table 6.2 The SRM method in general, and with geometrically uniform symmetry (GUS)

Operation General case With GUS

Constellation of states |γ0〉, . . . , |γK−1〉 |γi 〉 = Si |γ0〉
State matrix Γ [|γ0〉, . . . , |γK−1〉] [|γ0〉, . . . , SK−1|γ0〉]
Gram’s matrix G = Γ ∗ Γ

[〈γi |γ j 〉
] [〈γ0|S j−i |γ0〉

] = W ∗ΛW

Gram’s operator T = Γ Γ ∗
K−1∑

i=0

|γi 〉〈γ j |
K−1∑

i=0

Si |γ0〉〈γ0|S−i

Measurement vectors |μi 〉 = T − 1
2 |γi 〉 |μ0〉 = T − 1

2 |γ0〉 ,

|μi 〉 = Si |μ0〉
Measurement matrix M T − 1

2 Γ = Γ G− 1
2 T − 1

2 Γ = Γ W ∗Λ− 1
2 W

Mixed product matrix B M∗ Γ = G
1
2 G

1
2 = W ∗Λ 1

2 W

Transition probabilities pc( j |i) |〈μ j |γi 〉|2 = |bji|2
∣∣∣
1

K

K−1∑

p=0

λ
1
2
p W −p(i− j)

K

∣∣∣
2

Correct decision probability Pc = 1

K

K−1∑

i=0

|bii|2 Pc =
⎡

⎣ 1

K

K−1∑

p=0

λ
1
2
p

⎤

⎦
2
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Summary of the SRM Method

Table6.2 summarizes the computation procedure of the SRM method, on the left in
the general case, and on the right in the presence of GUS.

Problem 6.5 		 Apply the SRM approach to find the optimal decision in a binary
system with equiprobable symbols and with a real inner product X .

6.6 SRM with Mixed States Having the GUS

We have seen that the (GUS) can be extended from pure states to density operators,
with the condition

ρi = Siρ0 (Si )∗ , i = 0, 1, . . . , K − 1. (6.51)

This extension entails, for the factors, the relation

γi = Si γ0 , i = 0, 1, . . . , K − 1

and the same symmetry is transferred to the measurement operators,

Qi = Si Q0 (Si )∗ , i = 0, 1, . . . , K − 1 (6.52)

as well as to the measurement factors

μi = Siμ0 , i = 0, 1, . . . , K − 1.

With the SRM method in the presence of GUS, the performance evaluation
becomes simpler, as already seen with the pure states, but some complication arises,
due to the fact that Gram’s matrix is not circulant, but block circulant [4]. However,
we can still manage to formulate the computation based on the DFT, arriving at
results explicit enough.

Relation (6.35) still holds, in particular

M0 = T −1/2Γ = Γ G−1/2

so that we have two possible approaches.

6.6.1 Gram Operator Approach

This approach is based on the evaluation of the inverse square root T −1/2 of the
Gram operator T , and the reference measurement operator is given by (see (6.40a))
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Q0 = T −1/2 ρ0 T −1/2. (6.53)

Proposition 6.2 The transition probabilities with mixed states having the GUS can
be obtained from the reference density operator and the inverse square root of the
Gram operator as

pc( j |i) = Tr
[

Si− j ρ0 S−(i− j) Q0

]
(6.54)

with Q0 given by (6.53). The correct decision probability is given by the synthetic
formula

Pc = Tr
[
(ρ0 T −1/2)2

]
. (6.55)

In fact,

pc( j |i) = Tr[ρi Q j ] = Tr
[

Si ρ0 S−i S j Q0 S− j
]

= Tr
[

Si− j ρ0 S−(i− j) Q0

]
.

Then, using (6.53), we obtain

Pc = Tr
[
ρ0T −1/2ρ0 T −1/2

]
= Tr

[
T −1/2ρ0T −1/2ρ0

]

and (6.55) follows at once.

6.6.2 Gram Matrix Approach

With the Gram matrix it is less trivial to get useful results, because they need the
EID of the symmetry operator, given by (5.128)

S =
K−1∑

i=0

W i
k Pi ,

where Pi are projectors. The Gram matrix is formed by the blocks of order h0

Gi j = γ ∗
i γ j = γ ∗

0 S j−iγ0 =
K−1∑

k=0

W k( j−i)
K γ ∗

0 Pkγ0 = 1

K

K−1∑

k=0

W k( j−i)
K Dk (6.56)

where
Dk := Kγ ∗

0 Pk γ0. (6.57)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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Then we find that the (i, j) block of G has the structure

Gi j = ri− j (mod K ). (6.58)

Since Gi j depends only on the difference ( j − i) mod K , the matrix G turns out
to be block circulant, with blocks of the same order hk = h0. Then one can extend
what seen with pure states in Sect. 6.5.3, operating on the blocks, instead of on the
scalar elements, to get the explicit factorization of G, namely3

G = W(h0) D W ∗
(h0)

where D = diag[D0, . . . , DK−1] and W(h0) is the K h0 × K h0 block DFT matrix

W(h0) = 1√
K

⎡

⎢⎢⎢⎣

1 1 1 . . . 1
1 W −1

K W −2
K . . . W −2(K−1)

K
...

...

1 W −(K−1)
K W −2(K−1)

K . . . W −(K−1)(K−1)
K

⎤

⎥⎥⎥⎦ ⊗ Ih0 . (6.59)

As a consequence, the diagonal blocks are given as the DFT of the first block row
of G, namely

Dk =
K−1∑

s=0

W −ks
K G0s . (6.60)

Now we have to find the square root of G and this can be done as seen with pure
states, but acting on blocks instead of on scalars. We find

G1/2 = W(h0) D1/2 W ∗
(h0)

where
D1/2 = diag[D1/2

0 , . . . , D1/2
K−1].

In particular, the (i, j) block is given by

(G1/2)i j = 1

K

K−1∑

k=0

W k( j−i)
K D1/2

k . (6.61)

Note that we have found the alternative expressions (6.57) and (6.60) for the
diagonal blocks Dk , where the first is based on the EID of the symmetry operator.

3 This is not a standard EID, because the diagonal blocks Di are not diagonal matrices.
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This EID is used in the proof, but we can use the alternative expression (6.57) to
avoid its evaluation (which may be difficult).

To summarize:

Proposition 6.3 With the GUS the (i, j) block of the Gram matrix can be written in
the forms

Gi j = γ ∗
i γ j = γ ∗

0 S j−iγ0 = 1

K

K−1∑

k=0

W k( j−i)
K Dk (6.62)

where the matrices Dk of order h0 are Hermitian PSD given by

Dk =
K−1∑

i=0

γ ∗
0 γi W

−ki
K . (6.63)

The (i, j) block of the matrix G1/2 is given by relation (6.61).

Now, using expression (6.61), one can obtain the transition probabilities from
(6.37) with bi j = (G1/2)i j . For the correct decision probability one finds

Pc = Tr

[
1

K

K−1∑

k=0

D1/2
k

]2

. (6.64)

The reference measurement factor μ0 can be obtained as in (6.29), that is,

μ0 =
K−1∑

j=0

(G−1/2)i jγ j . (6.65)

Remark on optimality. Differently from the case of pure states, the SRM method
with GUS is not optimal in general with mixed states. In fact, for optimality, the
further condition is required for the reference factors [11]

b00 = μ∗
0γ0 = α I (6.66)

where I is the identity matrix, and α a proportionality constant. Note that b00 =
(G1/2)00. As we will see, the PSK and PPM systems verify the GUS even in the
presence of noise, but do not verify the further condition (6.66), hence the SRM
method is not optimal.

Application to generalized GUS. The above theory of SRM for mixed states with
GUS can be used for pure states having the first form of generalized GUS introduced
in Sect. 5.13.4. This possibility will be applied in Sect. 7.11 to Quantum Communi-
cations systems using the QAM modulation.

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_7
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Problem 6.6 	 Write explicitly the blockDFTmatrix, definedby (6.59), for K = 4
and h0 = 2 and prove that it is a unitary matrix.

Problem 6.7 		 Prove in general that the block DFT matrix, defined by (6.59), is
a unitary matrix.

Problem 6.8 			 Extend Theorem 6.3 on circulant matrices to block circulant
matrices.

Problem 6.9 		 To check the fundamental formulas of the SRMwith mixed states
having the GUS, consider the following degenerate case of reference state factor in
a quaternary system

γ0 = 1√
3
[|β0〉, |β0〉, |β0〉]

where |β0〉 is an arbitrary pure state, and the symmetry operator S generates the
other state factor in the form γi = Si γ0, i = 1, 2, 3. Find the correct decision
probability Pc.

6.7 Quantum Compression with SRM

The techniqueof compression seen at the endof the previous chapter, for the reduction
of redundancy in quantum states, can be applied to the detection based on the SRM.
In practice, quantum compression is useful in numerical computations because it
reduces the size of the matrices. For instance in quantum communications using the
PPM format the computational complexity may become huge and the compression
allows us to get results otherwise not reachable.

We recall that compression preserves theGUS and thereforewe can apply the very
efficient technique that combines the SRMwith theGUS, after the state compression.

We now review the main simplifications achieved with the application of the
compression to the SRM.

6.7.1 Simplification with Compression in the General Case

We first recall that all the detection probabilities can be evaluated in the compressed
space exactly as in the uncompressed space, as stated by relations (5.146) and (5.147).
Also, in the compressed space, the Gram operator is always diagonal (see (5.145)).

It is also convenient to recall the dimensions of the quantities involved in the
compression. We refer to mixed states, from which we have the case of pure states
as a particularization. Before compression the dimensions are

γi

n×hi

μi

n×hi

Γ
n×H

M
n×H

G
H×H

T
n×n

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
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where H = h0 + · · · + hK−1 with hi the rank ρi . After compression we have

γ i

r×hi

μi

r×hi

Γ
r×K

M
r×K

G
H×H

T
r×r

.

The case of pure states is obtained by setting

hi = 1 , H = K .

6.7.2 Simplification of Compression in the Presence of GUS

The GUS is preserved in the compressed space, as stated by Proposition 5.10.
The main property in the presence of GUS is that the Gram operator T commutes

with the symmetry operator S, that is, T and S becomes simultaneously diagonaliz-
able, as stated by

T = U Σ2 U∗ , S = U Λ U∗. (6.67)

This allows us to establish simple formulas for both T and S, as in Propositions 5.11
and5.12.A sophisticated technique tofind avery useful simultaneous diagonalization
is descried at the end of Chap.8.

Problem 6.10 		 Solve Problem 6.3 introducing compression.

6.8 Quantum Chernoff Bound

We have seen that the SRM is a suboptimal method that gives an upper bound
of the error probability in a quantum communications system. Another suboptimal
method is given by the quantum Chernoff bound, which recently received a great
attention, especially for Gaussian quantum states [13], as a simple mean to estimate
the performance of quantum discrimination [14–16].

The Chernoff bound is usually employed in Telecommunications and Probability
Theory to establish an upper bound to the error probability [17] or more in general
to bound the probability that a random variable exceeds a certain quantity, based
on the knowledge of the characteristic function or of the moments of the random
variable. The extension of the Chernoff bound to quantum systems, leading to the
quantum Chernoff bound, is considered in several works [13–16, 18], employing the
bound as a tool to estimate the error probability in the discrimination of quantum
states, both for single-mode and for multi-mode states. The Chernoff bound can be

http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_5
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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seen also as a distance measure between operators. The Chernoff distance has been
investigated, for example, in [14–16] and related to other distiguishability measures,
such as fidelity.

In a recent paper [19]Corvaja has compared theChernoff bound, andother bounds,
with the SRM bound in terms of both performance and complexity.

6.8.1 Formulation

The quantum Chernoff bound has the limitation that it can be applied only to binary
quantum systems. For the binary case, where the states are described by the density
operators ρ0 and ρ1, the quantum Chernoff bound states that error probability can
be bounded by the expression

Pe ≤ 1

2
inf

0≤s≤1
Tr

[
ρs
0ρ

1−s
1

]
(6.68)

where s is a real parameter. Therefore, the bound requires the evaluation of the
fractional power of operators (in practice of a square matrix) for all the values of the
minimization parameter s. This is obtained with an eigendecomposition of the kind

ρi = Ui ΛiU
∗
i −→ ρs

i = Ui Λs
i U∗

i . (6.69)

Although in general the bound requires the minimization with respect to the real
value s, when the Gaussian states have the same covariance matrix or the same
thermal noise component and no relative displacement (see Chap.11), the optimum
is attained for s = 1/2. In this case the square root of the density operators must be
evaluated and the bound becomes

Pe ≤ 1

2
Tr

[√
ρ0

√
ρ1

]
. (6.70)

In the comparison reported in [19] it is shown that for mixed states the SRM
solution provides a tighter bound than the Chernoff bound in the binary case, with a
comparable numerical complexity. Moreover, the SRM has the advantage that it can
be applied also to the general K -ary case.

Problem 6.11 		 Consider the binary system specified by the pure states

|γ0〉 = 1√
13

[5, 3 − 2i, 1, 3 + 2i]T , |γ1〉 = 1

2
√
13

[1, 3 + 2i, 5, 3 − 2i]T.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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Check that: (1) Hestrom’s theory gives Pe = 1/26 , (2) the Chernoff bound gives
Pe = 25/338.

Appendix

On the EID of a Circulant Matrix

Let us prove Theorem 6.3. To this end, consider the matrix

Z := W ∗G with W = W[K ]. (6.71)

From inspection of the structure of the element Zi j of Z and bearing in mind the
condition (6.41), we have

Zij = 1√
K

K−1∑

t=0

W it
K Gtj = 1√

K

K−1∑

t=0

W it
K r j−t (mod K )

= 1√
K

( j∑

t=0

W it
K r j−t +

K−1∑

t= j+1

W it
K rK+ j−t

)
.

Letting k = j − t in the first summation, and k = K + j − t in the second, we have

Zi j = 1√
K

( j∑

k=0

W i( j−k)
K rk +

K−1∑

k= j+1

W i(K+ j−k)
K rk

)

= 1√
K

K−1∑

k=0

W i( j−k)
K rk = 1√

K
W ij

K

K−1∑

k=0

W −ik
K rk

= 1√
K

W ij
K λi

where (see (6.45a))

λi := 1√
K

K−1∑

k=0

W −ik
K rk .
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From the above result we infer that the matrix Z can be written in the form

Z = ΛW ∗. (6.72)

Then, to obtain (6.45) from (6.71) and (6.72), it suffices to recall that W is unitary,
then W ∗ = W −1.
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