
Chapter 5
Quantum Decision Theory:
Analysis and Optimization

5.1 Introduction

We consider the transmission of classical information through a quantum
channel, where the information carrier is given by quantum states. A system that
achieves this target is called Quantum Communications system. Like in classical
communications, in quantum communications the usual configuration applies: trans-
mitter, channel, and receiver. Analog quantum transmission systems have been con-
sidered too [1], but, as seen in the previous chapter, according to the current trend,
we limit ourselves exclusively to digital systems. So Fig. 5.1 illustrates a quantum
digital system, emphasizing its essential components.

In this chapter we will develop the theory of decision applied to the combination
of the quantum measure and the decision element, without any specification on the
nature of the quantum states. In the following chapters the quantum decision theory
will be applied to the systems in which the states are physically produced by a
coherent monochromatic radiation (coherent or Glauber states).

5.1.1 General Description of a Digital Transmission System

We consider the transmission of a single1 classical symbol A ∈ A. Thus, a classical
source emits a symbol among K possible symbols, A ∈ A ={0, 1, . . . , K −1}, with
assigned a priori probabilities

qi := P[A = i], i ∈ A. (5.1)

1 In Sect. 4.2 we justified the advantage of dealing with a single symbol instead of a sequence of
symbols.
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Fig. 5.1 Quantum communication system for the transmission of classical information through a
quantum channel. The transmission of a single digital symbol A ∈ A is considered. In transmission
a pure state |γA〉 is assumed, while in reception the quantum state may be a pure state, |γ̂A〉, or a
mixed state, ρ̂A

The transmitter (Alice) encodes the symbol A into a quantum state |γA〉 of a Hilbert
spaceHT , thus realizing the classical-to-quantummapping A → |γA〉. This implies
that Alice is capable of preparing the quantum system HT in K distinct quantum
states

|γ0〉, |γ1〉, . . . , |γK−1〉 (5.2)

whichmust be considered aspure, since they are known toAlice, because sheprepares
the specific state |γi 〉 when the source emits the symbol A = i . The pure state (ket)
prepared by Alice is alternatively described by the density operator ρi = |γi 〉〈γi |.

The channel, be it an optical fiber or the free space, modifies the density operators,
introducing noise and distortion, so that the received state is in general a mixed state
described by a density operator ρ̂A. Then the channel performs the quantum-to-
quantum mapping ρA → ρ̂A. As we shall see in Chap.12, a quite general model to
represent explicitly this mapping is given by the the Kraus representation [2]

ρ̂A =
∑

k

V ∗
k ρA Vk (5.3)

where {Vk} is a class of operators.
The receiver (Bob) performs a quantum measurement on the received state ρ̂A,

and, to this end, he must choose a system of measurement operators {Pk, k ∈ M},
which in general are POVM, and, in particular, projectors (seeSect. 3.8). The outcome
of the measurement m is a new discrete random variable with alphabetM, which can
be seen as the received signal, or better, in the language of telecommunications, the
signal at the decision point. Finally, according to the outcomem of the measurement,
a decision must be made, based on a decision criterion, to select the symbol ̂A ∈ A

thatwas presumably transmitted.Globally, the quantummeasurement combinedwith
the decision element provides the quantum-to-classical mapping ρ̂A → ̂A.

Note on symbolism. The alphabet A of the symbols is indicated in the form

A = {0, 1, . . . , K − 1}

but it can take other forms (also with complex symbols) related to the modulation
format. The alphabet of the measurements M can be different, even in cardinality,
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from the alphabet of the source, but as will be seen in the next section, it is not
restrictive to assume that the two alphabets coincide, then, in the analysis of specific
systems, we will assumeM = A.

Guidelines and Preview of the Chapter

As we want to adopt a very general and complete approach, the chapter may appear
long and complex. We encourage the reader to tackle it gradually, restricting the first
reading to the concepts related to decision with pure states, and skipping decision
based on mixed states. So the study of Chap.7 is quite feasible, as, for its compre-
hension, the decision theory based on pure states is sufficient. Later on, the study
can be resumed and completed, going through the decision with mixed states, a
subject necessary for a full understanding of Chap. 8. Another suggestion is to read
this chapter again after viewing the applications of quantum decision to quantum
communications systems, developed in Chaps. 7 and 8.

We now detail the line followed in this chapter for the Quantum Decision
Theory, but before we remark that this theory, here presented in the language of
Telecommunications, is an important and autonomous field of Quantum Mechan-
ics, which could be presented independently of quantum communications systems
(and, in fact, in QuantumMechanics the quantum communications systems are often
ignored).

The chapter is organized in four topics.

Analysis of Quantum Decision (Sects. 5.2 to 5.7)

We begin with the Analysis of a general quantum communications system, where the
target is the evaluation of the system’s performance in terms of probabilities. Then,
we deal with a specific case to let the reader become familiar with the main concepts
introduced: the optimization of a binary system following Helstrom’s theory.

Optimization of Quantum Decision (Sects. 5.8 to 5.11)

We give a general formulation of Quantum Optimization, which has the target of
finding the measurement operators that ensure the “best performance,” that is, the
maximum correct decision probability.Optimizationmaybeviewed in the framework
of convex linear programming and appears to be a formidable problem because the
unknowns are the measurement operators, which have severe constraints. Two main
results are Holevo’s and Kennedy’s theorems, which provide conditions that the
measurement operators must meet to be optimal.

Geometrically Uniform Symmetry (GUS) (Sects. 5.13 and 5.14)

The GUS is verified in several quantum communications systems and facilitates, in
general, analysis and performance evaluation, in particular, optimization and subop-
timization. We first consider the GUS for pure states and then for mixed states.

State Compression in Quantum Detection (Sect. 5.15)

In general, quantum states and measurement operators are “redundant,” but it is
possible and convenient to perform a compression onto a “compressed” space, where
redundancy is removed. Quantum detection can be reformulated in the “compressed”
space, getting properties simpler than in the original Hilbert space.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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5.2 Analysis of a Quantum Communications System

In the Analysis of a general quantum communications system, it is assumed that both
the transmitter (Alice) and the receiver (Bob) are assigned and the target consists in
finding the statistical description of the system’s behavior in terms of probabilities,
exactly as in a classical communications system.

In a quantum system, probabilities come into play in two ways, and, in fact we
have two sources of randomness. One is related to the source of information, which
emits a symbol A = i ∈ A with a given probability qi = P[A = i], which is
called a priori probabilities. Therefore, we have a probability distribution qi , i ∈ A

of the random variable A. The other form of randomness is related to the quantum
measurement, which produces another random variable m ∈ M, whose statistical
description is provided by Postulate 3 of QuantumMechanics seen in Sect. 3.5. Then
the Analysis of the system will be necessarily based on Probability Theory.

Next, we have to study the viewpoint of Bob,who receives a “signal” and performs
the measurement. About this we can make two different hypotheses:

(1) The signal has not been contaminated, so that Bob receives the state |γA〉 that
Alice associated to the symbol A.

(2) The signal has been contaminated by the channel and by thermal noise (also
called background noise), and therefore Bob does not see the pure state |γA〉 any
more, but instead a mixed state represented by a density operator ρA.

The two cases are illustrated in Fig. 5.2.
Case (1) corresponds to a transmission with an ideal noiseless channel, whereas

case (2) accounts for the fact that the channel can fail to be ideal and noiseless. It is
important to observe that also in case (1) Bob will not be able to make with certainty
a correct decision, because it would be based on quantum measurements, which, as
already seen, do not give error-free results; in the classical case, the randomness of
the measurement with pure states corresponds to shot noise.

Alice ideal
channel|γA

A quantum
measurement

(Bob)|γA

{Pk , k∈M}

decision
element

m A

noisy
channel|γA

A

ρA

Fig. 5.2 Transmission of a classical symbol A through a quantum channel. At reception Bob
performs the measurement in a quantum system in a pure state |γA〉 (ideal channel) or in a quantum
system in a mixed state ρA (noisy channel)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The two cases can be unified considering that also in case (1), to the pure state
|γA〉 one can associate the degenerate density operator ρA = |γA〉〈γA|.

5.2.1 Quantum Measurement

To perform a quantum measurement, Bob chooses a measurement operator system

{Pk, k ∈ M}.

From Postulate 3, if we know that the system under measurement is in the state |γA〉,
the probability that the result of the measurement be m = k, is given by (see (3.26)
and (3.50))

P[m = k| γA] = 〈γA|Pk |γA〉, k ∈ M. (5.4)

Clearly, this result holds if the state |γA〉 is known with certainty (pure state). If,
instead, the system state is only statistically known through the density operator
ρA (mixed state), the probability that the result of the measurement be m = k is
calculated according to (see (3.32) and (3.51))

P[m = k| ρA] = Tr[ρA Pk], k ∈ M. (5.5)

Relation (5.5) includes relation (5.4), because it holds even when the system state
is known, thus ρA = |γA〉〈γA| and then it suffices to recall the identity on the trace
(2.37), to obtain (5.4) from (5.5).

In quantum communications systems, we must apply (5.4) when we neglect ther-
mal noise, and (5.5) when we take it into account.

5.2.2 The Digital Channel from the Source
to the Measurement

The steps that go from the transmitted symbol A ∈ A to the outcome of the mea-
surement m ∈ M identify a digital channel, as shown in Fig. 5.3. The alphabet at the
input of this channel is that of the possible symbols of the source

A = {0, 1, . . . , K − 1}, (5.6)

whereas at the output we have the alphabet M, which gives the possible outcomes
of the measurements and can be indicated in the form

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Fig. 5.3 Source-to-measurement digital channel with transition probabilities p(k|i) = P[m =
k|A = i]. In the graph, the source alphabet is A = {0, 1} and the measurement alphabet is M =
{1, 2, 3, 4}

M = {1, 2, . . . , K ′} (5.7)

where the cardinality K ′ may be different from K .
The transition probabilities of this channel are given by (5.4) or by (5.5). In fact,

in the former case, thinking in terms of Probability Theory, the event {|γA〉 = |γi 〉}
coincides with the event {A = i}, because Alice has “prepared” the quantum system
in the state |γi 〉, having observed that A = i . Therefore, P[m = k| A = i] = P[m =
k| |γ 〉 = |γi 〉] and the transition probabilities of the channel become

p(k|i) := P[m = k| A = i] = 〈γi |Pk |γi 〉, k ∈ M, i ∈ A. (5.8a)

Even in the latter case, Alice has prepared the system in the state |γA〉. However,
because of the presence of noise, the state is not pure any more, but it is described by
the density operator ρA. However, at the level of events, we still have that to {A = i}
it uniquely corresponds {ρA = ρi }, thus

p(k|i) := P[m = k| A = i] = Tr[ρi Pk], k ∈ M, i ∈ A. (5.8b)

As usual, (5.8b) represents the general case, as it yields (5.8a) assumingρi = |γi 〉〈γi |.
It remains to observe that, for the sake of generality, we have chosen a measure-

ment alphabet M, in general different from the source alphabet A of the symbols.
For example, in Fig. 5.3 we have A = {0, 1} and M = {1, 2, 3, 4}. The important
constraint is that the cardinality of M must not be smaller than that of A

|M| ≥ |A| → K ′ ≥ K .

As we will see, the two alphabets are often chosen coincident.
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5.2.3 Post-measurement Decision. Correct
Decision Probability

Remaining in the general case, the decision criterion after the measurement must
be expressed by partitioning the measurement alphabet in correspondence with the
symbol alphabet, i.e., by finding a partition ofM of the type

M0,M1, . . . ,MK−1. (5.9)

Then the decision criterion becomes

m ∈ Mi ⇐⇒ ̂A = i. (5.10)

For example, in Fig. 5.4, where A = {0, 1} and M = {1, 2, 3, 4}, we have chosen
the partitions M0 = {1, 2} and M1 = {3, 4}.

Once chosen the decision criterion, we complete the global digital channel of
the quantum system, whose input is the symbol A ∈ A, and output the symbol
̂A ∈ A obtained after the decision (Fig. 5.4). The transition probabilities of this
global channel become

pc( j |i) = P[̂A = j | A = i] = P[m ∈ M j | A = i]
=

∑

k∈Mj

P[m = k| A = i]. (5.11)

Therefore, using (5.8b), we have

p(|)A∈A
decision

m∈M
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A∈A
pc(|)

A

global channel

A∈A

A A A A

0

1

0

1

0

1

0

1

pc(0|0)

m

p(1|0) 1

2

3

4

Fig. 5.4 Global digital channel with transition probability pc( j |i) = P[ Â = j |A = i]



190 5 Quantum Decision Theory: Analysis and Optimization

pc( j |i) =
∑

k∈Mj

Tr[ρi Pk], i, j ∈ A. (5.12)

From the global transition probabilities, being also known the a priori probabilities
qi = P[A = i], we can calculate the correct decision probability as

Pc = P[̂A = A] =
∑

i∈A
qi pc(i |i)

=
∑

i∈A

∑

k∈Mi

qi Tr[ρi Pk] (5.13)

from which we obtain the error probability2 as Pe = 1 − Pc.

5.2.4 Combination of Measurement and Post-measurement
Decision

To the purpose of optimization, the decision criterion can be combined with the
system of the measurement operators.

Then, given the system of the measurement operators {Pk, k ∈ M}, and the
decision criterion determined by the partition (5.9), a set of new operators is defined
as follows:

Qi =
∑

k∈Mi

Pk, i ∈ A. (5.14)

The set of the operators {Qi , i ∈ A} forms a system of POVMs, that is, with the
properties (see Sect. 3.7):

(1) they are Hermitian operators, Q∗
i = Qi ,

(2) they are PSD, Qi ≥ 0,
(3) they resolve the identity,

∑

i∈A Qi = IH.

The proof of these properties is based on the fact that the initial operators Pk also
have such properties; in particular, (3) is obtained according to

∑

i∈A
Qi =

∑

i∈A

∑

k∈Mi

Pk =
∑

k∈M
Pk = IH.

Substituting the new operators (5.14) in (5.12) for the transition probabilities, we
obtain simply

2 In practice, the performance of a telecommunication system (classical or quantum) is often
expressed in terms of the error probability, but in theoretical formulation it is more convenient
to refer to the correct decision probability.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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pc( j | i) = Tr[ρi Q j ], j, i ∈ A. (5.15)

Analogously, the correct decision probability becomes

Pc =
∑

i∈A
qiTr[ρi Qi ]. (5.16)

In particular, when the system in reception is in a pure state (absence of thermal
noise), letting ρi = |γi 〉〈γi | we obtain

Pc =
∑

i∈A
qi 〈γi |Qi |γi 〉. (5.16a)

At this point, conceptually, the quantum measurement can be performed directly
with the new measurement operators Qi (global measurement operators), and we
obtain directly, as its result, the decided symbol ̂A, as illustrated in Fig. 5.5.

In conclusion, we have seen that in principle, in reception, we perform a quantum
measurement, followed by a decision, but it is not restrictive to include in the
measurement also the final post-measurement decision, therefore the choice to make
for a good performance affects only the global measurement operators.

We finally remark the following statement:

Proposition 5.1 If the measurement operators {Pk , k ∈ M} form a projector system,
also the global operators {Qi , i ∈ A} form a projector system.

Problem 5.1 �� Prove Proposition5.1. Hint: see Sect. 3.6.4.

Problem 5.2 �� Optimization of decision element. In a post-measurement decision
the decision element is a mapping: M → A, where |M| ≥ |A|, in which every
point k ∈ M must be associated to a symbol a ∈ A, thus creating a partition
of M into K sets Ma, a ∈ A. For given a priori probabilities {qi } and transition
probabilities {pc( j |i)}, one can optimize the decision element with the criterion to

quantum
measurement

|γA

{Pk , k∈M}

decision
element

m

{Mi , i∈A}

=
A equivalent

quantum
measurement

|γA

{Qi , i∈A}

A

ρA ρA

Fig. 5.5 The quantum measurement with the system of measurement operators {Pk , k ∈ M},
followed by the decision element, is equivalent to the measurement with the system of global
measurement operators {Qi , i ∈ A}

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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get the maximum correct decision probability. Prove the following statement: Define
the K decision functions as

fa(k) := qa pc(k|a), a ∈ A, k ∈ M.

Then, for each k ∈ M, find the decision function fa(k) such that

fa(k) ≥ fb(k), ∀b �= a. (5.17)

The value of a that verifies (5.17) is placed in Ma . This defines the sets Ma that
determine the optimum decision element.

Problem 5.3 �� In a binary system {0, 1}, where the a priori probabilities are
q(0) = 1/3 and q(1) = 2/3, the quantum measurement, obtained with a photon
counting, gives two Poisson variables with averages Λ0 = E[m|A = 0] = 5 and
Λ1 = E[m|A = 1] = 20.

Apply the statement of the previous problem tofind the optimumdecision element.

Problem 5.4 � As in the previous problem but with Λ0 = 0 and Λ1 = 20 and
equally likely symbols.

5.3 Analysis and Optimization of Quantum Binary Systems

To become familiar with the problem, before proceeding with the general theory, it
seems useful to develop explicitly the decision theory in a binary quantum communi-
cations system, following thewell-knownHelstrom theory [1]. This theory represents
one of the few cases in which explicit closed-form results are obtained.

In a quantum binary system with symbols A ∈ {0, 1} the modulator (Alice) puts
the system in one of the two states |γ0〉 and |γ1〉. We assume that the measurement
alphabet M is still binary and coincident with the source alphabet, A = M =
{0, 1}, and therefore we omit the post-measurement decision element. Then, for the
measurement, we need two measurement operators (Hermitian and PSD) Q0 and
Q1 that maximize the correct decision probability (optimal decision). Given that
Q0 + Q1 = I , we can restrict our search to a single operator, for example, to Q1.

5.3.1 Optimization with Mixed States (General Case)

We now proceed with the case in which the system is specified by two density
operators ρ0 and ρ1. To calculate the probability of correct decision we use (5.16),
which, as Q0 = I − Q1, yields
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Pc = q0 Tr[ρ0Q0] + q1 Tr[ρ1Q1]
= q0 Tr[ρ0 I ] + Tr[(q1ρ1 − q0ρ0)Q1] (5.18)

= q0 + Tr[(q1ρ1 − q0ρ0)Q1]

where we have taken into account the fact that the trace of a density operator is
always unitary (see Sect. 3.3.2). The correct decision probability becomes

Pc = q0 + Tr[D Q1]

where
D := q1ρ1 − q0ρ0 = ρ̂1 − ρ̂0 (5.19)

is called for convenience decision operator (ρ̂i = qiρi are weighted density opera-
tors).

Then, tomaximize the correct decision probability, wemust find themeasurement
operator Q1 such that

max
Q1

Tr[(q1ρ1 − q0ρ0)Q1] = max
Q1

Tr[D Q1] q0 + q1 = 1.

To this end, let us consider the eigendecomposition (EID) of the decision operator

D = q1ρ1 − q0ρ0 =
∑

k

ηk |ηk〉〈ηk | (5.20)

where ηk is the generic eigenvalue, and |ηk〉 the corresponding eigenvector (the ηk

are assumed as distinct, so the corresponding vectors |ηk〉 are orthonormal). Note
that D is Hermitian but not PSD, so that the ηk are real, but may be either positive
or negative. We then have

Tr[D Q1] =
∑

k

ηkTr[|ηk〉〈ηk |Q1]

=
∑

k

ηk〈ηk |Q1|ηk〉, (5.21)

where we have used the notable identity (2.37).
Now the crucial point for optimization is to observe that the quantity

εk := 〈ηk |Q1|ηk〉

represents the probability of a measurement obtained through the measurement
operator Q1 when the system is in the state |ηk〉, and therefore 0 ≤ εk ≤ 1. Then the
maximumof the expression (5.21) is obtained by choosing, if possible, the termswith
ηk > 0 and εk = 1. This choice is actually possible if we define the measurement
operator Q1 in the following way

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Q1 =
∑

ηk>0

|ηk〉〈ηk |. (5.22)

In fact, with this operator we obtain εk = 〈ηk |Q1|ηk〉 = 1 and the required maxi-
mum is

Tr[(q1ρ1 − q0ρ0)Q1] =
∑

ηk>0

ηk,

i.e., it is given by the sum of the positive eigenvalues. With this choice, the maximum
correct decision probability becomes

Pc = q0 +
∑

ηk>0

ηk . (5.23)

It remains to verify that the two operators obtained through the optimization

Q1 =
∑

ηk>0

|ηk〉〈ηk |, Q0 = I − Q1 =
∑

ηk<0

|ηk〉〈ηk | (5.24)

really form a measurement operator system. What is more, it can be shown that Q1
and Q0 form a projector system (see Problem5.5).

In conclusion, to obtain the maximum correct decision probability in a binary
system, we must perform a projective measurement with projectors given by (5.24).

Summary of the Optimization Procedure

We summarize the steps required to find the optimal measurement operators in a
quantum binary system:

(1) we start from the EID (5.20) of the decision operator

D = q1ρ1 − q0ρ0 =
∑

k

ηk |ηk〉〈ηk |; (5.25)

(2) the optimal measurement operators (projectors) Q0 and Q1 are calculated
from (5.24);

(3) the maximum probability of a correct decision is simply given by q0 plus the
sum of the positive eigenvalues of the operator D.

It is important to observe that this result is totally general, in the sense that no
hypothesis has been made on the density operators ρ0 and ρ1, which can describe
even mixed states. This general result will be applied in Chap.8 to binary quantum
communications systems in the presence of thermal noise.

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Problem 5.5 �� Prove that the operators Q1 and Q0, defined by (5.24), form a
projector system.

Problem 5.6 �� Consider the following density operators:

ρ0 = 1

208

⎡

⎢

⎢

⎣

46 13 − 37i −16 13 + 37i
13 + 37i 58 13 − 37i −32

−16 13 + 37i 46 13 − 37i
13 − 37i −32 13 + 37i 58

⎤

⎥

⎥

⎦

ρ1 = 1

208

⎡

⎢

⎢

⎣

58 29 − 29i 8 21 + 29i
29 + 29i 58 29 − 21i −8

8 29 + 21i 46 21 − 21i
21 − 29i −8 21 + 21i 46

⎤

⎥

⎥

⎦

First verify that they are “true” density operators. Then, assuming that they are the
states in a binary transmission with a priori probabilities q0 = 1/5 and q1 = 4/5,
find the correct decision probability Pc.

5.4 Binary Optimization with Pure States

The general theory of the previous section is now applied to a binary quantum system
prepared in one of the two pure states |γ0〉 and |γ1〉, therefore described by the density
operators

ρ0 = |γ0〉〈γ0| ρ1 = |γ1〉〈γ1|. (5.26)

We will find explicit and very important results, which be applied in Chap.7 to
quantum binary communications systems in the absence of thermal noise.

5.4.1 Helstrom’s Bound

To find the optimal measurement operators, we must evaluate the EID of the decision
operator, which with pure state is given by

D = q1ρ1 − q0ρ0 = q1|γ1〉〈γ1| − q0|γ0〉〈γ0|. (5.27)

To comprehend the nature of this operator, consider its image

D = im D = D H

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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which is a subspace generated by the linear combination of the two kets |γ0〉 and
|γ1〉, assumed (geometrically) independent, and whose dimension is dim D = 2.
Then the EID of D is limited to two terms (only two eigenvalues are different from
zero) and the two eigenvectors |η)〉 and |η1〉 of D must belong to the subspaceD and
therefore are linear combinations of two states3

|η0〉 = a00|γ0〉 + a01|γ1〉, |η1〉 = a10|γ0〉 + a11|γ1〉. (5.28)

Now, the coefficients ai j are obtained by applying the definition of eigenvector,
that is,

D |η0〉 = η0 |η0〉, D |η1〉 = η1 |η1〉 (5.29)

where η0 and η1 are the eigenvalues. Substituting (5.27) and (5.28) in (5.29), recalling
that 〈γ1|γ1〉 = 〈γ0|γ0〉 = 1 and letting X = 〈γ0|γ1〉, we obtain

q1(a0i X + a1i )|γ1〉 − q0(a0i + a1i X∗)|γ0〉 = η0i (a0i |γ0〉 + a1i |γ1〉), i = 0, 1.
(5.30)

But, because of the assumed independence, in (5.30) the coefficients of |γ1〉 and |γ0〉
must be equal to zeo. Hence

q1(ai 0X∗ + ai 1) = ηi ai 1, −q0(ai 0 + ai 1X) = ηi ai 0, i = 0, 1 . (5.31)

Solving with respect to ηi we get the equation

η2i − ηi (q1 − q0) − q0q1(1 − |X |2) = 0

from which

η0,1 = 1
2 (q1 − q0 ∓ R) , R :=

√

1 − 4q0q1|X |2 (5.32)

where η1 > 0 and η0 < 0.
We have only one positive eigenvalue, and (5.23) gives

Pc = 1
2

(

1 + √

1 − 4q0q1|X |2
)

Pe = 1
2

(

1 − √

1 − 4q0q1|X |2
) (5.33)

where the parameter
|X |2 = |〈γ0|γ1〉|2 (5.33a)

3 This point will be clarified in Sect. 5.11, Proposition5.4. The eigenvectors |ηi 〉 are called mea-
surement vectors because they form the measurement operators as Qi = |ηi 〉〈ηi |.
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represents the (quadratic) superposition degree between the two states. In the liter-
ature expressions (5.33) are universally known as Helstrom’s bound.

The optimal projectors derive from (5.24) and become

Q0 = |η0〉〈η0|, Q1 = |η1〉〈η1| (5.34)

and therefore they are of the elementary type, with measurement vectors given by
the eigenvectors |η0〉 and |η1〉 of the decision operator D.

It remains to complete the computation of these two eigenvectors, identified by
the linear combinations (5.28). Considering (5.31) we find

|η0〉 = a00

(

|γ0〉 + q1X∗

η0 − q1
|γ1〉

)

, |η1〉 = a11

(

− q0X

η1 + q0
|γ0〉 + |γ1〉

)

(5.35)

where a00 and a11 are calculated by imposing the normalization 〈ηi |ηi 〉 = 1. In the
general case, the calculation of the eigenvectors is very complicated4 and we prefer
to carry out the evaluation with the geometric approach developed below.

To consolidate the ideas on quantum detection we anticipate a few definitions and
properties on quantum detection and optimization. The linear combination (5.28)
can be written in the matrix form5

M = Γ A with Γ = [|γ0〉, |γ1〉], M = [|μ0〉, |μ1〉, A =
[

a00 a01
a10 a11

]

where Γ is called state matrix and M is called measurement matrix (see Sect. 5.6).
The target of optimization is to find the (optimal) measurement matrix Mopt that
maximizes the correct decision probability. In Sect. 5.11 we shall see that the optimal
measurement vectors are always orthogonal. This property can be written in the form
M∗

opt Mopt = I2, where I2 is the 2 × 2 identity matrix.
Finally, we note that a quantum systemwith pure states, sayS(q, Γ ), is completely

specified by the vector of the a priori probabilities q and by the state matrix Γ . The
optimization is specified by the measurement matrix Mopt, which allows us to find
the maximum correct decision probability as

Pe,max =
K−1
∑

i=0

|〈μi |γi 〉|2 =
K−1
∑

i=0

|〈Mopt(i)|Γ (i)〉|2 (5.36)

where |μi 〉 = Mopt(i) is the i th element of Mopt.

4 To the author’s knowledge the general expression of the eigenvectors (with X complex and not
equally likely symbols) does not seem to be available in the literature.
5 The measurement vectors, previously obtained as eigenvectors and denoted by |ηi 〉, are hereafter
denoted by |μi 〉.
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5.4.2 Optimization by Geometric Method

The binary optimization with pure states can be conveniently developed by a geo-
metric approach with several advantages. We first assume that the inner product
Y := 〈γ0|γ1〉 is real and then we generalize the approach to the complex case.

The geometry of decision with two pure states |γ0〉 and |γ1〉 is developed in the
subspaceD generated by two states. In this hyperplane, the states are written in terms
of an appropriate orthonormal basis {|u0〉, |u1〉} as (Fig. 5.6)

|γ0〉 = cos θ |u0〉 + sin θ |u1〉
|γ1〉 = cos θ |u0〉 − sin θ |u1〉 (5.37)

where
cos 2θ = 〈γ0|γ1〉 = Y. (5.38)

In (5.37) we have assumed that the basis vector |u0〉 lies in the bisection determined
by the state vectors, which does not represent a restriction. For now we assume the
two measurement vectors |μ0〉 and |μ1〉 not necessarily optimal, but satisfying the
conditions of being orthonormal, in addition to belonging to the Hilbert subspaceD.
Then they can be written as

|μ0〉 = cosφ|u0〉 + sin φ|u1〉
|μ1〉 = sin φ|u0〉 − cosφ|u1〉. (5.39)

Fig. 5.6 Binary decision
with generic state vectors
and measurement vectors

u0

u1

|μ0

|μ1

|γ0

|γ1

π/2
θ

θ
φ

φ
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Note that trigonometric functions take automatically into account the ket normaliza-
tion and allow us to express the ket geometry of the four vectors involved by only
two angles.

Considering that 〈μ0|γ0〉 = cos(φ − θ) and 〈μ1|γ1〉 = sin(φ + θ), the transition
probabilities p( j |i) := P[ Â0 = j |A0 = i] are given by

p(0|0) = cos2(φ − θ) = 1
2 [1 + sin 2θ sin 2φ + cos 2θ cos 2φ]

p(1|1) = sin2(φ + θ) = 1
2 [1 + sin 2θ sin 2φ − cos 2θ cos 2φ]

(5.40)

and the correct detection probability turns out to be

Pc = q0 cos
2(φ − θ) + q1 sin

2(φ + θ)

= 1
2 [1 + (q0 − q1)(cos 2θ cos 2φ + sin 2θ sin 2φ)] . (5.41)

Here the angle θ is given through the inner product Y (see (5.38)), while the angle φ

is unknown and is evaluated by optimization. It is immediate to see that the angle φ

giving the maximum of Pc is given by

tan 2φ = 1

q0 − q1
tan 2θ = 1

q0 − q1

√
1 − Y 2

Y
, (5.42)

which gives

sin 2φ = 1

R
sin 2θ, cos 2φ = q0 − q1

R
cos 2θ (5.43)

where R = √

1 − 4q0q1Y 2. The corresponding optimal correct decision probabil-
ity is

Pc = 1
2 (1 + R) = 1

2

(

1 +
√

1 − 4q0q1Y 2

)

, (5.44)

i.e., the Helstrom bound.
The transition probabilities (5.40), with the optimal decision, become

p(0|0) = 1
2

[

1 + (1 − Y 2 + (q0 − q1)Y 2)/R
]

p(1|1) = 1
2

[

1 + (1 − Y 2 − (q0 − q1)Y 2)/R
]

.
(5.45)

Finally, we consider the explicit evaluation of the optimal measurement vectors.
The first step is finding in (5.39) the expression of the basis vectors |u0〉 and |u1〉 in
terms of the given quantum states. For the particular choice made for these vectors
we have that |u0〉 is proportional to |γ0〉 + |γ1〉 and |u1〉 is proportional to |γ0〉 −
|γ1〉 (see Fig. 5.6), that is, |u0〉 = H0(|γ0〉 + |γ1〉) and |u1〉 = H1(|γ0〉 − |γ1〉).
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The normalization gives H0 = 1/
√
2 + 2Y and H1 = 1/

√
2 − 2Y . Next, in (5.39)

the optimal angle is given by (5.42) and then we find the optimal measurement
matrix as6

Mopt = Γ A with A = 1

2

⎡

⎢

⎢

⎢

⎢

⎣

√
1 − L√
1 − Y

+
√
1 + L√
1 + Y

√
1 − L√
1 + Y

−
√
1 + L√
1 − Y

√
1 + L√
1 + Y

−
√
1 − L√
1 − Y

√
1 − L√
1 + Y

+
√
1 + L√
1 − Y

⎤

⎥

⎥

⎥

⎥

⎦

(5.46)

where L = (q0−q1) Y/R. This completes the optimization with a real inner product.
In the general case of a complex inner product

X = |X | ei β

we introduce the new quantum states

|γ̃0〉 = |γ0〉, |γ̃1〉 = e−i β |γ1〉

which give the matrix relation

˜Γ = Γ B, with B =
[

e−i β 0
0 1

]

. (5.47)

Now we have two binary systems, S(q, Γ ) and S(q, ˜Γ ), with the same a priori prob-
abilities, but different inner products, respectively X = |X | ei β and ˜X = 〈γ̃0|γ̃1〉 =
e−i β〈γ0|γ1〉 = |X |. It is immediate to verify (see (5.36)) that if Mopt is the optimal
measurement matrix for S(q, Γ ), the optimal measurement matrix for S(q, ˜Γ ) is
given by

˜Mopt = Mopt B → Mopt = ˜Mopt B−1. (5.48)

But the system S(q, ˜Γ ) has a real inner product and, with the replacement Y →
|X |, we can use the previous theory to find: (1) the Helstrom bound from (5.44),
(2) the transition probabilities from (5.45) and (3) the optimal measurement matrix
˜Mopt = ˜Γ ˜A from (5.46). Hence, from ˜Mopt we can obtain the measurement matrix
for the system S(q, Γ ). In fact, by combination of (5.47) and (5.48) we find

Mopt = Γ A with A = B ˜A B−1

6 To express cosφ and sin φ from tan 2φ we use the trigonometric identities

sin φ = 2−1/2

√

1 − 1/
√

1 + tan2 2φ, cosφ = 2−1/2

√

1 + 1/
√

1 + tan2 2φ

which hold for 0 ≤ φ ≤ π/4. This range of φ covers the cases of interest.
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which gives

A =
[

a00 a01
a10 a11

]

=
[

ã00 ei β ã01
e−i β ã10 ã11

]

.

We summarize the general results as follows:

Proposition 5.2 The optimization of the quantum decision in a binary system pre-
pared in the pure states |γ0〉 and |γ1〉, having inner product 〈γ0|γ1〉 := X = |X |eiβ
and a priori probabilities q0 and q1, gives the transition probabilities

p(0|0) = 1
2

[

1 + (1 − |X |2 + (q0 − q1)|X |2)/R
]

p(1|1) = 1
2

[

1 + (1 − |X |2 − (q0 − q1)|X |2)/R
]

.
(5.49)

and the correct decision probability

Pc = 1
2

(

1 +
√

1 − 4q0q1|X |2
)

. (5.50)

The optimal measurement matrix is obtained as Mopt = Γ A, where

A = 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√
1 − L√
1 − |X | +

√
1 + L√
1 + |X | ei β

( √
1 − L√
1 + |X | −

√
1 + L√
1 − |X |

)

e−iβ

( √
1 + L√
1 + |X | −

√
1 − L√
1 − |X |

) √
1 − L√
1 + |X | +

√
1 + L√
1 − |X |

⎤

⎥

⎥

⎥

⎥

⎥

⎦

with
R = √

1 − 4q0q1, L = |(q0 − q1)X |/R.

5.4.3 Pure States with Equally Likely Symbols

With equally likely symbols (q0 = q1 = 1
2 ) we find several simplifications. In the

trigonometric approach the optimization is obtained by rotating the measurement
vectors until they form the same angle with the corresponding state vectors, specif-
ically, we have θ = π/4, as shown in Fig. 5.7. The expressions of correct decision
probabilities and of the error probability are simplified as

Pc = 1
2

(

1 +
√

1 − |X |2
)

, Pe = 1
2

(

1 −
√

1 − |X |2
)

. (5.51)
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Fig. 5.7 Optimal binary
decision with equally
probable symbols
(q0 = q1 = 1

2 ). The
optimization is obtained by
rotating the measurement
vectors until they form the
same angle with the
corresponding state vectors

u0

u1

|μ1

|μ0

|γ0

|γ1

π/2

θ

θ φ

φ

φ=π/4

The transition probabilities become equal

p(0|0) = p(1|1) = 1
2

(

1 +
√

1 − |X |2
)

= Pc

and hence we get a binary symmetric channel.
The measurement vectors become

|μ0〉 = a |γ0〉 + b ei β |γ1〉, |μ1〉 = b e−i β |γ0〉 + a |γ1〉 (5.52)

where β = arg X and

a = 1

2

[

1√
1 − |X | + 1√

1 + |X |
]

, b = 1

2

[

1√
1 + |X | − 1√

1 − |X |
]

. (5.53)

Problem 5.7 �� Find the coefficients a01 and a11 in the expression of the mea-
surement vectors (5.35), assuming equally likely symbols and X real.

Problem 5.8 �� Write the fundamental relations of the geometrical approach in
matrix form, using the matrices

Γ = [|γ0〉, |γ1〉], U = [|u0〉, |u1〉], M = [|μ0〉, |μ1〉].
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5.5 System Specification in Quantum Decision Theory

After a thorough examination of decision in a binary system, we return to the general
considerations, assuming a K -ary system.

From the general analysis of Sect. 5.2 and from the choice of proceeding with
global measurements, we realize that the system specification in quantum decision
can be limited to the following few parameters (“players”).

On the transmitter side (Alice), the players are:

(a) the a priori probabilities qi , i ∈ A,
(b) the states |γi 〉, i ∈ A, or the density operator ρi , i ∈ A.

The sets {|γi 〉|i ∈ A} and {ρi |i ∈ A} will be called constellations of states.
At the receiver side (Bob) the players are the (global) measurement operators,

which must form a measurement operator system {Qi , i ∈ A} in the sense already
underlined, but worthwhile recalling:

(1) they are Hermitian operators, Q∗
i = Qi ,

(2) they are PSD, Qi ≥ 0,
(3) they give a resolution of the identity,

∑

i∈A Qi = IH.

There are several ways to specify the above parameters, as we shall see in the next
sections, making the usual distinction between pure and mixed states.

5.5.1 Weighted States and Weighted Density Operators

In the above, the transmitter specification is composed by two players, however,
the same specification can be obtained by a single player with the introduction of
weighted states (already used in Sect. 3.11).

The weighted states are defined by

|γ̂i 〉 = √
qi |γi 〉, i ∈ A (5.54)

and contain the information of both the probabilities qi and the states |γi 〉. In fact,
considering that the states are normalized, 〈γi |γi 〉 = 1, one gets

qi = 〈γ̂i |γ̂i 〉, |γi 〉 = (1/
√

qi ) |γ̂i 〉. (5.55)

The weighted density operators are defined by

ρ̂i = qi ρi , i ∈ A. (5.56)

Then, considering that Tr[ρi ] = 1, one gets

qi = Tr[ρ̂i ], ρi = (1/qi ) ρ̂i . (5.57)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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5.6 State and Measurement Matrices with Pure States

If the decision is taken from pure states, that is, from rank-one density operators, also
the measurement operators may be chosen with rank-one, and therefore expressed
by measurement vectors in the form Qi = |μi 〉〈μi |. This was seen in Sect. 5.3 with
a binary system, but it holds in general (see Kennedy’s theorem in Sect. 5.11). Then,
referring to an n-dimensional Hilbert spaceH, the players become vectors (kets) of
H, which can be conveniently represented in the matrix form.

Now, K pure states |γi 〉, interpreted as column vectors of dimension n × 1, form
the state matrix

Γ
n×K

= [|γ0〉, |γ1〉, ..., |γK−1〉]. (5.58)

Analogously, the measurement vectors |μi 〉 form the measurement matrix

M
n×K

= [|μ0〉, |μ1〉, . . . , |μK−1〉]. (5.59)

In particular, the measurement matrix allows us to express the resolution of the
identity

∑

i∈A |μi 〉〈μi | = IH, in the compact form

M M∗ = IH. (5.60)

The specification of the source by the state matrix Γ is sufficient in the case of
equally likely symbols. With generic a priori probabilities qi we can introduce the
matrix of weighted states [3]

̂Γ = [|γ̂0〉, |γ̂1〉1, . . . , |γ̂K−1〉
]

, (5.61)

where |γ̂i 〉 = √
qi |γi 〉.

5.7 State and Measurement Matrices with Mixed States ⇓

The state and the measurement matrices can be extended to mixed states but their
introduction is less natural because the density and the measurement operators are
not presented in a factorized form as in the case of pure states.

With pure states, the density operators have the factorized form ρi = |γi 〉〈γi | and,
with standard notation, ρi = γiγ

∗
i , where the states γi = |γi 〉 must be considered as

column vectors. In the general case, the density operators do not appear as a product
of two factors, but can be equally factorized in the form

ρi = γiγ
∗
i , i = 0, 1, . . . , K − 1 (5.62)
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where the γi become matrices of appropriate dimensions (and not simply column
vectors). As we will see soon, if n is the dimension of the Hilbert space and hi is the
rank of ρi , the matrix γi can be chosen of dimensions n ×hi . It must be observed that
such factorization is not unique, and also the dimensions n × hi are to some extent
arbitrary, because hi has the constraint rank(ρi ) ≤ hi ≤ n. However, the minimal
choice hi = rank(ρi ) is the most convenient (and in the following we will comply
with this choice).

Similar considerations hold for themeasurement operators Qi ,which,with unitary
rank, have the factored form Qi = |μi 〉〈μi |, but alsowith rank hi > 1 can be factored
in the form

Qi = μiμ
∗
i (5.63)

where the factors μi are n × hi matrices. Further on, we will realize (see Kennedy’s
theorem and its generalization in Sect. 5.11) that in the choice of the measurement
operators it is not restrictive to assume that hi be given by the same rank of the
corresponding density operators.

By analogy with the pure states and with the measurement vectors, the factors γi

will be called state factors and the factorsμi measurement factors (this terminology
is not standard and is introduced for the sake of simplicity). The factorization will
be useful in various ways; first of all because, if the rank hi is not full (hi < n), it
removes the redundancy of the operators, by gathering the information in an n × hi

rectangular matrix, instead of an n × n square matrix, and also because it often
makes it possible to extend to the general case some results that are obtained with
pure states.

5.7.1 How to Obtain a Factorization

The factorization of a density operator was developed in Sect. 3.11 in the context of
the multiplicity of an ensemble of probabilities/states. Here the factorization is seen
in a different context and, for clarity, some considerations will be repeated.

Consider a generic density operator ρ of dimensions n × n and rank h, which is
always a PSD Hermitian operator. Then a factorization γ γ ∗ can be obtained using
its reduced EID (see Sect. 2.11 and Proposition3.5)

ρ = Zh D2
h Z∗

h =
h

∑

i=1

d2
i |zi 〉〈zi | (5.64)

where D2
h = diag[d2

1 , . . . , d2
h ] is an h × h diagonal matrix containing the h pos-

itive eigenvalues of ρ and Zh = [|z1〉 · · · |zh〉] is n × h. Letting Dh =
√

D2
h =

diag[d1, . . . , dh], we see immediately that

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3


206 5 Quantum Decision Theory: Analysis and Optimization

γ = Zh Dh (5.65)

is a factor of ρ.
From the EID (5.64) it results that the density operator is decomposed into the sum

of the elementary operators d2
i |zi 〉〈zi |, where d2

i has the meaning of the probability
that the quantum system described by the operator ρ be in the state |zi 〉, exactly in the
form in which the density operator has been introduced (see (3.7)). Then the factor
γ turns out to be a collection of h vectors

γ = [d1 |z1〉, . . . , dh |zh〉] (5.66)

where the |zi 〉 are orthonormal (as taken from a unitary matrix Z of an EID).7

Reconsidering the theory developed in Sect. 3.11, we find that γ is a minimum
factor of ρ and, more specifically, a minimum orthogonal factor.

Example 5.1 Consider the Hilbert space H = C
4, where we assume as basis

|b1〉 =

⎡

⎢

⎢

⎢

⎣

1
2
1
2
1
2
1
2

⎤

⎥

⎥

⎥

⎦

, |b2〉 =

⎡

⎢

⎢

⎢

⎣

1
2

− i
2

− 1
2
i
2

⎤

⎥

⎥

⎥

⎦

, |b3〉 =

⎡

⎢

⎢

⎢

⎣

1
2

− 1
2

1
2

− 1
2

⎤

⎥

⎥

⎥

⎦

, |b4〉 =

⎡

⎢

⎢

⎢

⎣

1
2
i
2

− 1
2

− i
2

⎤

⎥

⎥

⎥

⎦

.

From this basis we build the density operator

ρ = 1

3
|b1〉〈b1| + 2

3
|b2〉〈b2| =

⎡

⎢

⎢

⎢

⎢

⎣

1
4

1
12 − i

6 − 1
12

1
12 + i

6
1
12 + i

6
1
4

1
12 − i

6 − 1
12

− 1
12

1
12 + i

6
1
4

1
12 − i

6
1
12 − i

6 − 1
12

1
12 + i

6
1
4

⎤

⎥

⎥

⎥

⎥

⎦

which has eigenvalues
{ 2
3 ,

1
3 , 0, 0

}

and therefore has rank h = 2. Its reduced EID
ρ = Zh D2

h Z∗
h is specified by the matrices

Zh =

⎡

⎢

⎢

⎢

⎣

i
2

1
2

− 1
2

1
2

− i
2

1
2

1
2

1
2

⎤

⎥

⎥

⎥

⎦

D2
h =

[ 2
3 0
0 1

3

]

Z∗
h =

[

− i
2 − 1

2
i
2

1
2

1
2

1
2

1
2

1
2 .

]

Now, to obtain a factor γ of ρ we use (5.65), which gives the 4 × 2 matrix

7 Another way to obtain a factorization is given by Choleski’s decomposition (see Sect. 2.12.5).

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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γ = Zh

√
D2 =

⎡

⎢

⎢

⎢

⎣

i
2

1
2

− 1
2

1
2

− i
2

1
2

1
2

1
2

⎤

⎥

⎥

⎥

⎦

⎡

⎣

√

2
3 0

0
√

1
3

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

i√
6

1
2
√
3

− 1√
6

1
2
√
3

− i√
6

1
2
√
3

1√
6

1
2
√
3
.

⎤

⎥

⎥

⎥

⎥

⎥

⎦

As regards the factorization of the measurement operator, say Q = μμ∗, similar
considerations hold, provided that the operator Q is known. However, in quantum
detection Q is not known and it should be determined by optimization. In this context
the unknown may become μ, then giving Q as μμ∗ and the factorization is no more
required.

5.7.2 State and Measurement Matrices

The definition of these matrices can be extended to mixed states by expressing the
density operators and the correspondingmeasurement operators through their factors.
The state matrix Γ is obtained by juxtaposing the factors γi , intended as blocks of
columns of dimensions n × hi

Γ
n×H

= [

γ0, γ1, . . . , γK−1
]

(5.67)

where the number of columns H is given by the global number of the columns of
the factors γi

H = h0 + h1 + · · · + hK−1.

We can make explicit Γ bearing in mind that each factor γi is a collection of hi kets
(see (5.66)). For example, for K = 2, h0 = 2, h1 = 3 we have

Γ = [γ0, γ1] = [|γ01〉, |γ02〉, |γ11〉, |γ12〉, |γ13〉] (5.68)

where |γ0i 〉 are the kets of γ0 and |γ1i 〉 are the kets of γ1.
Analogously, the measurement matrix M is obtained by juxtaposing the factors

μi , intended as blocks of columns

M
n×H

= [

μ0, μ1, . . . , μK−1
]

. (5.69)

Even the resolution of the identity (5.60) is extended to mixed states. In fact,

M M∗ =
∑

i∈A
μiμ

∗
i =

∑

i∈A
Qi = IH. (5.70)
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Clearly, these last definitions are the most general and include the previous ones
when the ranks are unitary (hi = 1 and H = K ).

Also the definition of thematrix of weighted states, given by (5.61) for pure states,
can be extended to mixed states [3], namely

̂Γ = [

γ̂0, γ̂1, . . . , γ̂K−1
] = [√

q0γ0,
√

q1γ1, . . . ,
√

qK−1γK−1
]

, (5.71)

where the weighted states can be obtained as a factorization of weighted density
operators, namely ρ̂i = qiρi = √

qiγi
√

qiγ
∗
i = γ̂i γ̂

∗
i .

5.7.3 Probabilities Expressed Through Factors

In quantum decision, probabilities can be computed from the factors γi andμi of the
density operators and of the measurement operators. Recalling the expression of the
transition probabilities, given by (5.15), we obtain explicitly

pc( j |i) = Tr[Q j ρi ] = Tr[μ jμ
∗
j γiγ

∗
i ]. (5.72)

Analogously, from (5.16) we obtain the correct decision probability

Pc =
∑

i∈A
qi Tr[Qi ρi ] =

∑

i∈A
qi Tr[μiμ

∗
i γiγ

∗
i ]. (5.73)

In the evaluation of these probabilities it is convenient to introduce the matrix
of mixed products

B
H×H

:= M∗ Γ =
⎡

⎢

⎣

b0,0 · · · b0,K−1
...

. . .
...

bk−1,0 · · · bK−1,K−1

⎤

⎥

⎦
, bi j := μ∗

i γi (5.74)

where dim bi j = hi × h j . Then, using the cyclic property of the trace, we find

pc( j |i) = Tr[b∗
j i b ji ], Pc =

∑

i∈A
qiTr[b∗

i i bii ]. (5.75)

Finally, it must be observed that state and measurement factors are not uniquely
determined by the corresponding operators. In fact, if γi is a factor of ρi , also γ̃i =
γi Z , where Z is any matrix with the property Z Z∗ = Ihi , is a factor of ρi , as follows
from γ̃i γ̃

∗
i = γi Z Z∗γ ∗

i = γi γ ∗
i = ρi . However, the multiplicity of the factors

has no influence on the computation of the probabilities, as can be verified from the
above expressions.
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Problem 5.9 �� From the following normalized states of H = C
4

|γ1〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2√
13
2√
13
2√
13
1√
13

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|γ2〉 =

⎡

⎢

⎢

⎢

⎣

1
2
1
2
1
2
1
2

⎤

⎥

⎥

⎥

⎦

|γ3〉 =

⎡

⎢

⎢

⎢

⎣

1
2

− i
2

− 1
2
i
2

⎤

⎥

⎥

⎥

⎦

|γ4〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2√
13

− 2i√
13

− 1√
13

2i√
13

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|γ5〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1√
13

− 2i√
13

− 2√
13

2i√
13

⎤

⎥

⎥

⎥

⎥

⎥

⎦

form the density operators

ρ1 = 3

4
|γ1〉〈γ1| + 1

4
|γ2〉〈γ2|, ρ2 = 3

4
|γ3〉〈γ3| + 1

8
|γ4〉〈γ4|1

8
|γ5〉〈γ5|

and find their minimum factors γ1 and γ2. Find also factorizations in which the
matrices γ1 and γ2 have the same dimensions.

Problem 5.10 � Consider the transition probabilities given by (5.72). Prove that,
if γi is replaced by γi Z , with Z Z∗ = Ih , and μ j by μ j W , with W W ∗ = Ih , the
transition probabilities do not change.

Problem 5.11 �� Prove that the measurement matrix M defined by (5.59) and
its generalization to mixed states (5.69), allows us to express the resolution of the
identity in the form M M∗ = IH.

5.8 Formulation of Optimal Quantum Decision

The viewpoint for the Optimal QuantumDecision is the following: the a priori proba-
bilities and the constellation (of pure states or of mixed stated) are assumed as given,
whereas the measurement operator system is unknown and should be determined
to meet the decision criterion, given by the maximization of the correct decision
probability.

Then, considering the general expression of the correct decision probability, given
by (see (5.16))

Pc =
∑

i∈A
qiTr[ρi Qi ]

the optimal measurement operators Qi must be determined from

max{Qi }

K−1
∑

i=0

qi Tr[ρi Qi ]. (5.76)

If the operators are expressed through their factors (see (5.62) and (5.63)), (5.76)
becomes
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max{μi }

K−1
∑

i=0

qi Tr[γiγ
∗
i μiμ

∗
i ]. (5.77)

Finally, if the states are pure, we have the simplification

max{|μi 〉}

K−1
∑

i=0

qi Tr[|γi 〉〈γi |μi 〉〈μi |] = max{|μi 〉}

K−1
∑

i=0

qi |〈γi |μi 〉|2. (5.78)

In the last relation we have used the identity (2.37) over the trace, Tr[A|u〉〈u|] =
〈u|A|u〉, with A = |γi 〉〈γi | and |u〉 = |μi 〉.

5.8.1 Optimization as Convex Semidefinite
Programming (CSP)

Starting from the Hilbert space H on which the quantum decision is defined, it is
convenient to introduce the following classes (Fig. 5.8):

• the class B of the Hermitian operators defined on H,
• the subclass B0 of the PSD Hermitian operators,
• the classM of the K -tuples Q = [ Q0, . . . , QK−1 ], Qi ∈ B of Hermitian opera-
tors,

• the subclassM0 ofM consisting of the K -tuples Q, whose elements Qi are PSD
Hermitian, Qi ∈ B0, and, globally, resolve the identity onH, that is,

∑

i Qi = IH.

K–tuples of Hermitian operatorsHermitian operators

B

B0

•Xopt

Tr(·)•
X

Tr(·)
M

M0
Mott

•Qopt

Tr(·) Jmax

J(·)
J(·)

•
Q

R

0

Fig. 5.8 Classes in the quantum decision for the determination of optimal measurement operators.
On the right, the class M formed by the K -tuples of Hermitian operators and the subclass M0
constituted by systems of measurement operators Q; in M0 the functional J (Q) is defined, which
has a maximum Jmax when Q becomes optimal. On the left, the classBof the Hermitian operators
X and the subclass B0 of the positive semidefinite X ; in general Tr(X) ≥ Jmax, but for particular
X = Xopt it results Tr(Xopt) = Jmax

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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In other words, each K -tuple Q ∈ M0 identifies a valid measurement operator
system.

With these premises, the problem of the optimal decision can be treated in the frame-
workof convex programming. Starting from the data specifiedby theweighteddensity
operators

ρ̂i = qiρi , i = 0, . . . , K − 1, (5.79)

we must determine a measurement operator system Q ∈ K0 that maximizes the
quantity

J (Q) =
K−1
∑

i=0

Tr[ρ̂i Qi ], Q ∈ M0. (5.80)

We are dealing with a problem of convex semidefinite optimization because the K -
tupleQmust be found on a convex set: in fact, given two K -tuplesP andQ ofM0 and
given anyλwith 0 < λ < 1, it can be easily shown that the convex linear combination
λP + (1− λ)Q is still formed by a K -tuple ofM0. Therefore, by definition,M0 is a
convex set. Within such set, it results:

Proposition 5.3 The functional J (Q), which gives the correct decision probability
Pc, in M0 admits the maximum

Jmax = max
Q∈M0

J (Q) = J (Qopt).

This maximum gives the maximum of the correct decision probability, Pc,max =
Jmax = J (Qopt), and Qopt is by definition an optimal system of measurement oper-
ators.

This proposition will be proved in Appendix section “Proof of Holevo’s Theorem”.

5.9 Holevo’s Theorem

The following theorem, stated by Holevo in (1972) [4], completely characterizes the
optimal solution, and is probably one of the most important results of the theory of
quantum decision in the last decades.

Theorem 5.1 (Holevo’s Theorem) In a K -ary system characterized by the weighted
density operators ρ̂i = qiρi , the measurement operators Qi are optimal if and only
if, having defined the operator

L =
K−1
∑

i=0

Qi ρ̂i , (5.81)
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it follows that the operators L − ρ̂i are PSD, that is,

L − ρ̂i ∈ B0 (5.82)

and, for each i = 0, . . . , K − 1,

(L − ρ̂i )Qi = 0H. (5.83)

Holevo’s theorem, which will be proved in Appendix section “Proof of Holevo’s
Theorem”, determines the conditions that must be verified by an optimal system of
measurement operators Qopt, but does not provide any clue on how to identify it.

An equivalent form of Holevo’s theorem, but, as we will see, more appropriate for
numerical computation, has been proved by Yuen et al. [5] and, recently, in a detailed
form, by Eldar et al. [3]. The result is obtained by transforming the original problem
into a dual problem, according to a well-known technique of linear programming.

Theorem 5.2 (Dual theorem) In a K -ary system characterized by the weighted
density operators ρ̂i = qiρi , the measurement operators Qi are optimal if and only
if there exists a PSD operator, X ∈ B0, such that Tr[X ] is minimal,

Tmin = min
X∈B0

Tr[X ] (5.84)

and for every j = 0, . . . , K − 1 the operators X − ρ̂ j are PSD, X − ρ̂ j ∈ B0. The
optimal operators Qi satisfy the conditions

(X − ρ̂i )Qi = 0H. (5.85)

The minimum obtained for Tr[X ] coincides with the requested maximum of J (Q)

Tmin = Jmax = Pc,max. (5.86)

Notice that the conditions imposed on the operators for optimality X − ρ̂i are
the same as those indicated in Holevo’s theorem, imposed on operators X − ρ̂i . To
understandwhy the dual theorem leads to a lower computational complexity, suppose
that the Hilbert space be of finite dimensions n. In Holevo’s theorem we must look
for a K -tuple of Hermitian operators Qi , for a total of K n2 unknowns; instead, in the
dual theorem we must look for the Hermitian matrix X , for a total of n2 unknowns.

Example 5.2 Wewant to check that the projectors Q0 and Q1, evaluated in Sect. 5.3
with Helstrom’s theory, satisfy the conditions of Holevo’s theorem. For K = 2, the
operator (5.81) becomes, bearing in mind the resolution constraint of the identity
Q0 + Q1 = I ,

L = Q0ρ̂0 + Q1ρ̂1 = (I − Q1)ρ̂0 + Q1ρ̂1 = ρ̂0 + Q1D
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where D = ρ̂1 − ρ̂0 is the decision operator introduced in Helstrom’s theory (see
(5.20)). The conditions (5.83) give

Q1DQ0 = 0, Q0DQ1 = 0

which are mutually equivalent. We can verify them using the expressions (5.25) and
(5.24), and the orthonormality. We obtain

Q1DQ0 =
∑

ηk>0

|ηk〉〈ηk |
∑

m

ηm |ηm〉〈ηm |
∑

ηh<0

|ηh〉〈ηh | = 0.

The conditions (5.83) become

L − ρ̂0 = Q1D ≥ 0, L − ρ̂1 = −Q0D ≥ 0.

We have
Q1D =

∑

ηh>0

|ηh〉〈ηh |
∑

m

ηm |ηm〉〈ηm | =
∑

ηh>0

ηh |ηh〉〈ηh |

which is PSD because ηh > 0 and |ηh〉〈ηh | are elementary projectors. Analogously,
it can be proved that −Q0D ≥ 0.

5.10 Numerical Methods for the Search
for Optimal Operators

As already said, only in some particular cases the problem of the determination of
the optimal measurement operators and of the maximum correct decision probability
has closed-form solutions. In the other cases, we either restrict ourselves to search for
near-optimal solutions, with the SRMmeasurements, or we must resort to numerical
computation. As we are dealing with problems of convex programming, which fall
under a very general class of problems, we can use existing very sophisticated soft-
ware packages, like LMI (linear matrix inequalities) and CSP (convex semidefinite
programming), both operating in the MatLab© environment [6, 7].

5.10.1 The MatLab Procedure Cvx

The use of this procedure is conceptually very simple. For the application of Holevo’s
theorem, in the general case, all it takes is to provide, as input data, the K weighted
density operators ρ̂i , with the constraints
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Qi ≥ 0, i = 0, . . . , K − 1,
K−1
∑

i=0

Qi = I

and to request as output the K measurement operators Qi that maximize

J (Q) =
K−1
∑

i=0

Tr[ρ̂i Qi ].

Resorting to the dual theorem reduces the computational complexity. Inputting
the ρ̂i , with the constraints

X − ρ̂i ≥ 0, i = 0, . . . , K − 1

the user asks for the operator X of minimal trace. From X we obtain the optimal
measurement operators as solutions of the equations (X − ρ̂i )Qi = 0. Clearly, the
computation is simplified because the search is limited to the single operator X .

We write the MatLab procedure in the binary case, which is easily extended to
an arbitrary K .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cvx procedure applied to Holevo’s theorem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cvx_begin SDP

variable Q0(dim, dim) hermitian

variable Q1(dim, dim) hermitian

maximize(trace(Q0*R0+Q1*R1))

subject to

Q0>0;

Q1>0;

Q0==eye(dim)-Q1;

cvx_end

Pc_Holevo=trace(Q0*R0+Q1*R1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cvx procedure apply to the dual problem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cvx_begin SDP

variable Q(dim, dim) hermitian

minimize(trace(Q))

subject to

Q>R0;
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Q>R1;

cvx_end

Pc_dual=trace(Q);

5.10.2 Example

We input the weighted density operators

ρ̂0 = 1

2

⎡

⎢

⎢

⎣

0.29327 0.29327 0.29327 0.17788
0.29327 0.29327 0.29327 0.17788
0.29327 0.29327 0.29327 0.17788
0.17788 0.17788 0.17788 0.12019

⎤

⎥

⎥

⎦

ρ̂1 = 1

2

⎡

⎢

⎢

⎣

0.23558 0.24519i −0.22596 −0.24519i
−0.24519i 0.26442 0.24519i −0.26442
−0.22596 −0.24519i 0.23558 0.24519i
0.24519i −0.26442 −0.24519i 0.26442

⎤

⎥

⎥

⎦

.

the “Holevo” procedure gives as output

Pe = 0.009316144.

Q0 =

⎡

⎢

⎢

⎣

0.502788 0.259735 0.247032 −0.0141425
0.259735 0.278855 0.259735 0.256145
0.247032 0.259735 0.502788 −0.0141425

−0.0141425 0.256145 −0.0141425 0.715569

⎤

⎥

⎥

⎦

Q1 =

⎡

⎢

⎢

⎣

0.497212 −0.259735 −0.247032 0.0141425
−0.259735 0.721145 −0.259735 −0.256145
−0.247032 −0.259735 0.497212 0.0141425
0.0141425 −0.256145 0.0141425 0.284431

⎤

⎥

⎥

⎦

The “dual” procedure gives as the output

Pe = 0.009316139

X =

⎡

⎢

⎢

⎣

0.263349 0.138595 0.0314089 0.0971245
0.138595 0.264951 0.138595 −0.0387083
0.0314089 0.138595 0.263349 0.0971245
0.0971245 −0.0387083 0.0971245 0.199034

⎤

⎥

⎥

⎦
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Hence we find the same minimum error probability, as expected (the Helstrom
procedure gives Pe = 0.00936141). Thenegligible differences are due to the different
way of numerical computations.

5.11 Kennedy’s Theorem

Holevo’s theorem has general validity, because it is concerned with optimal decision
in a system specified through density operators,which does not rule out the possibility
that the statesmay be pure. Instead, Kennedy’s theorem [8] is about a system inwhich
there is a constellation of K pure states

|γ0〉, |γ1〉, . . . , |γK−1〉. (5.87)

Theorem 5.3 (Kennedy’s theorem) In a K -ary system specified by K pure states
|γ0〉, . . . , |γK−1〉, the optimal projectors (which maximize the correct decision prob-
ability) are always elementary, that is, they have the form

Qi = |μi 〉〈μi |, i = 0, 1, . . . , K − 1 (5.88)

where the measurement vectors |μi 〉 must be orthonormal.

The theorem is proved in Appendix section “Proof of Kennedy’s Theorem”.

5.11.1 Consequences of Kennedy’s Theorem

With Kennedy’s Theorem the search for the optimal decision is substantially simpli-
fied, as it is restricted to the search for K orthonormal measurement vectors

|μ0〉, |μ1〉, . . . , |μK−1〉

from which the optimal projectors are built, using (5.88). The simplification lies in
the fact that, instead of searching for K matrices, it suffices to search for K vectors.

Example 5.3 In the binary case, we have seen that the optimal projectors are given
by (5.34), where both Q0 and Q1 are elementary projectors. In addition, |μ0〉 and
|μ1〉 are orthonormal.

From now on, the Hilbert space H will be assumed of finite dimension n, even
though, in the applications to quantum communications systems, the dimensions
become infinite (n = ∞). When the decision is made starting from K pure states, a
fundamental role is played by the subspace generated from the states
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U = span(|γ0〉, |γ1〉, . . . , |γK−1〉) ⊆ H. (5.89)

The dimension of this space, r = dimU, is equal to K if the states |γi 〉 are linearly
independent (not necessarily orthonormal), and lower than K if the states are linearly
independent; so, in general

r = dimU ≤ K ≤ dimH = n.

In any case, it is very important to observe that:

Proposition 5.4 It is not restrictive to suppose that the measurement vectors |μi 〉
belong to the space generated by the states

|μi 〉 ∈ U (5.90)

because any component of the |μi 〉 belonging to the complementary U⊥ has no
influence on the decision probabilities.

In fact, if we decompose |μ j 〉 into the sum

|μ j 〉 = |μ′
j 〉 + |μ′′

j 〉, |μ′
j 〉 ∈ U, |μ′′

j 〉 ∈ U⊥

the transition probabilities become

pc( j |i) = |〈μ j |γi 〉|2 = |〈μ′
j |γi 〉|2

where 〈μ′′
j |γi 〉 = 0 as |μ′′

j 〉 ∈ U⊥ is orthogonal to |γi 〉 ∈ U.
Proposition5.4 is illustrated in Fig. 5.9, where it is evidenced that the states and

themeasurement vectors belong to the common subspaceU. In harmonywith Propo-
sition5.4, we have:

Proposition 5.5 For the measurement operators, the resolution of the identity can
be substituted by the resolution of the generalized identity

Fig. 5.9 The measurement
vectors |μ j 〉 belong to the
subspace U generated by the
constellation of the states
|γi 〉

H

UU⊥

• |γi
• |μ j
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K−1
∑

i=0

|μi 〉〈μi | = PU (5.91)

where PU is the projector of H onto U.

For the proof of this proposition see Sect. 3.7.2. A consequence of the (5.90) is
the following:

Proposition 5.6 The measurement vectors are given by a linear combination of the
states

|μi 〉 =
K−1
∑

j=0

ai j |γ j 〉, (5.92)

where the coefficients ai j are in general complex.

Proposition 5.7 With decision from pure states, the transition probabilities become

pc( j |i) = |〈μi |γ j 〉|2 (5.93)

and the correct decision probability is given by

Pc =
K−1
∑

i=0

qi |〈μi |γ j 〉|2. (5.94)

5.11.2 Applications of Kennedy’s Theorem to Holevo’s
Theorem

In a decision starting from pure states, the optimal measurement vectors must satisfy
Holevo’s theorem with Qi = |μi 〉〈μi | and ρ̂i = qi |γi 〉〈γi |. Then, assuming that the
|μi 〉 belong to the same subspace U of the states, the geometry relative to the two
vector systems is determined by the inner products

bi j = 〈μi |γ j 〉, i, j = 0, 1, . . . , K − 1. (5.95)

Assuming that the |μi 〉 form an orthonormal basis ofU (Fig. 5.10), the inner product
bi j can be seen as the projection of |γi 〉 along the axis |μ j 〉. We observe also that the
bi j have the important probabilistic meaning

pc( j |i) = |bi j |2.

Using the mixed inner products bi j , from Holevo’s theorem we obtain:

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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|μ0

|μ1

|μ2

|μi

|γ j

bi j

U

Fig. 5.10 Coordinate systems of U done by the measurement vectors |μi 〉 and meaning of the
mixed inner product bi j = 〈γ j |μi 〉

Corollary 5.1 In a K -ary system with a constellation of pure states |γ0〉, . . . , |γK−1〉,
the optimal measurement vectors |μi 〉 must verify the conditions

(q j bi j b
∗
j j − qi bii b

∗
j i )|μi 〉〈μ j | = 0, ∀i,∀ j (5.96a)

K−1
∑

j=0

q j b j j |μ j 〉〈γ j | − qi |γi 〉〈γi | ≥ 0, ∀i. (5.96b)

Relation (5.96a) allows us to write the following conditions on the inner products

q j bi j b
∗
j j − qi bii b

∗
j i = 0 (5.97)

which can be seen as a nonlinear systemof (K −1)K/2 equations in the K 2 unknowns
bi j . We can add to this other equations derived from the Fourier expansion of the
states |γi 〉 with basis |μ j 〉 (see (2.51)), which assumes the form

|γi 〉 =
K−1
∑

j=0

(〈μ j |γi 〉)|μ j 〉 =
K−1
∑

j=0

b ji |μ j 〉.

Then, expressing the inner products 〈γi |γ j 〉, which we assumed as known, we obtain
the relations

K−1
∑

k=0

b∗
ki bk j = 〈γi |γ j 〉 (5.98)

which constitute the (K + 1)K/2 equations.
In principle, we can try to solve this nonlinear system, which admits solutions if

the states are linearly independent, and eventually we can verify whether, with these
solutions, even the conditions (5.96b) are verified. However, we can see that even in

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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the binary case the search for an exact solution turns out to be rather complicated.
We could proceed in numerical form, but in this case it is more convenient to adopt
the method derived from the geometric interpretation, as we are going to illustrate.

5.11.3 Geometric Interpretation of Optimization

We consider the subspace U generated by the states |γi 〉 in which an orthogonal
system of coordinate has been introduced, made of the measurement vectors |μ j 〉.
The correct decision probability can be expressed in the forms

Pc =
K−1
∑

i=0

qi pc(i |i) =
K−1
∑

i=0

qi |bii |2

where bi j are the inner products (5.95). If such products are real numbers, we can
define the angle θi between |γi 〉 and |μi 〉 from

sin2θi = 1 − b2i i

and then the error probability can be written as

Pe = 1 − Pc =
K−1
∑

i=0

qi sin
2 θi .

The angles θi are illustrated in Fig. 5.11 for K = 2.

Fig. 5.11 Angles between
measurement vectors and
states

|μ0

|μ1

|γ0

|γ1

θ0

θ1
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To minimize Pe we must rotate the constellation of the vectors |γi 〉 around the
respective axes |μi 〉 until a minimum is reached.

This optimization technique has recently been used by the scientists of JPL
because it makes it possible to obtain useful results even in the presence of ther-
mal noise [9–11].

5.11.4 Generalization of Kennedy’s Theorem

Recently [3], Kennedy’s theorem has been partially extended to mixed states and
precisely:

Theorem 5.4 In a system specified by K density operators ρ0, . . . , ρK−1, the opti-
mal measurement operators Qi (maximizing the correct decision probability) have
rank not higher than that of the corresponding density operators

rank(Qi ) ≤ rank(ρi ), i = 0, 1, . . . , K − 1. (5.99)

The connection with the original theorem can be understood considering the
consequences on the factors of the operators. If hi = rank(ρi ), the corresponding
factor γi is an n × hi matrix and the measurement factor μi has dimensions n × h̃i ,
with h̃i ≤ hi = rank(ρi ), but it is not restrictive to suppose that it has the same
dimensions n × hi as γi (and so we will suppose in the following). In particular, if
the ranks are unitary, the factors become kets, γi = |γi 〉 andμi = |μi 〉, as established
by Kennedy’s theorem.

Also the considerations made on the subspace U generated by the states (see
(5.89) and Proposition5.4) can be generalized. It must be remembered that the state
factors are a collection of kets ofH and the state matrix Γ collects these kets. Then
the subspace U is generated according to

U = span {kets of Γ } = Im Γ

and Proposition5.4 is extended by saying that it is not restrictive to suppose that the
kets of the measurement vectors |μi 〉 belong to the space generated by the states

Imμi ⊆ U. (5.100)

5.12 The Geometry of a Constellation of States

We continue with the study of decision, investigating the geometry generated by the
states in the Hilbert space. The basic tools used herein are the eigendecomposition
(EID) and the singular value decomposition (SVD). We will refer to pure states, and
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only at the end of this section the concepts will be extended to mixed states. Also,
we refer to equal a priori probabilities, which imply that qi = 1/K ; to get general
results the states should be replaced by weighted states.

5.12.1 State Matrix and Measurement Matrix

In Sect. 5.7.2 we introduced the state matrix Γ and the measurement matrix M ,
which, with pure states, result in

Γ
n×K

= [|γ0〉, |γ1〉, ..., |γK−1〉], M
n×K

= [|μ0〉, |μ1〉, ..., |μK−1〉].

With these matrices, the problem of decision becomes: given the state matrix Γ , find
the measurement matrix M . We have seen that the measurement vectors are given
by a linear combination of the states (see (5.92)), that is,

|μi 〉 =
K−1
∑

j=0

ai j |γ j 〉 ; (5.101)

this combination in matrix terms can be written as

M
n×K

= Γ A, A
K×K

= [ai j ]. (5.102)

At this point, the problem is already simplified, because it is sufficient to search for
the coefficient matrix A, which is K × K and therefore of smaller dimensions than
the dimensions n × K of the measurement matrix (where n can become infinite).

It will be useful to compare the matrix expression (5.102) with the following:

M
n×K

= C
n×n

Γ
n×K

, C
n×n

= [ci j ] (5.103)

which, differently from the linear combination (5.102), gives the relation

|μi 〉 = C |γi 〉, (5.103a)

in which the single vector |γi 〉 is transformed to the vector |μi 〉, with same index i .

Example 5.4 We write explicitly relations (5.102) and (5.103) in the binary case
with the purpose of showing how to deal with composite matrices, whose entries are
vectors instead of scalar elements.
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The matrices Γ and M in an n-dimensional Hilbert space, where the kets must
be considered as column vectors of size n, are

Γ = [|γ1〉, |γ2〉] =
⎡

⎢

⎣

γ11 γ12
...

...

γn1 γn2

⎤

⎥

⎦
, M = [|μ1〉, |μ2〉] =

⎡

⎢

⎣

μ11 μ12
...

...

μn1 μn2

⎤

⎥

⎦
.

For K = 2 relation (5.102) becomes

M
1×2

= Γ
1×2

A
2×2

→ [|μ1〉, |μ2〉] = [|γ1〉, |γ2〉]
[

a11 a12
a21 a22

]

(5.104a)

and more explicitly

M
n×2

= Γ
n×2

A
2×2

=
⎡

⎢

⎣

μ11 μ12
...

...

μn1 μn2

⎤

⎥

⎦ =
⎡

⎢

⎣

γ11 γ12
...

...

γn1 γn2

⎤

⎥

⎦

[

a11 a12
a21 a22

]

. (5.104b)

The different dimensions, as appearing in the two writings above, are justified as
follows: in (5.104a) the kets are regarded a single objects of dimensions 1 × 1,
whereas in (5.104b) they become 1 × n column vectors.

For K = 2 relation (5.103) becomes

M
1×2

= C
1×1

Γ
1×2

→ [|μ1〉, |μ2〉] = C [|γ1〉, |γ2〉] (5.105a)

and more explicitly

M
n×2

= C
n×n

Γ
n×2

→
⎡

⎢

⎣

μ11 μ12
...

...

μn1 μn2

⎤

⎥

⎦ =
⎡

⎢

⎣

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

⎤

⎥

⎦

⎡

⎢

⎣

γ11 γ12
...

...

γn1 γn2

⎤

⎥

⎦ (5.105b)

Now in (5.105a) the matrix C must be regarded as a single object of dimension 1×1,
and in fact, using this interpretation, it gives explicitly the relation

|μ1〉 = C |γ1〉, |μ2〉 = C |γ2〉

in agreement with (5.103a).

Problem 5.12 � Write the relations of Example 5.4 using the results of Helstrom’s
theory.
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5.12.2 Matrices of the Inner Products and of the Outer
Products

From the state matrix Γ = [|γ0〉, |γ1〉, . . . , |γK−1〉] two matrices can be formed

G
K×K

= Γ ∗ Γ, T
n×n

= Γ Γ ∗. (5.106)

ThematrixG, calledGram’s matrix, is thematrix of inner productswith elements

Gi j = 〈γi |γ j 〉 (5.107)

while the matrix T gives the sum of the K outer products

T =
K−1
∑

i=0

|γi 〉〈γi |. (5.108)

These statements can be verified indicating with γri the r th element of the column
vector |γi 〉, and performing the operations indicated in (5.106). As T is the sum of
elementary operators in the Hilbert space H, also T can be considered an operator
of H, which is sometimes called Gram’s operator (see [12]).

The matrices (5.106) have the following properties:

(1) they are Hermitian semidefinite positive,
(2) both have the same rank as the matrix Γ ,
(3) they have the same eigenvalues different from zero (and positive).

Let us prove (3). If λ is an eigenvalue of G, it follows that G|v〉 = λ|v〉, where |v〉 is
the eigenvector. Then, multiplying this relation by Γ we have

Γ G|v〉 = Γ Γ ∗Γ |v〉 = T Γ |v〉 = λΓ |ν〉

hence T |u〉 = λ|u〉 with |u〉 = Γ |v〉. Then λ is also an eigenvalue of T with
eigenvector Γ |v〉. Analogously, we can see that if λ �= 0 is an eigenvalue of T with
eigenvector |u〉, we have that λ is also an eigenvalue of G with eigenvector Γ ∗|u〉.

The properties (1), (2), and (3) have obvious consequences on the EID of G and
of T . Indicating with r the rank and with σ 2

1 , . . . , σ 2
r the positive eigenvalues, we

obtain

T = UΛT U∗ =
r

∑

i=1

σ 2
i |ui 〉〈ui | = UrΣ

2
r U∗

r (5.109a)

G = V ΛG V ∗ =
r

∑

i=1

σ 2
i |vi 〉〈vi | = VrΣ

2
r V ∗

r (5.109b)
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where

• U is a n × n unitary matrix,
• {|ui 〉} is an orthonormal basis ofH formed by the columns of the matrix U ,
• ΛT is an n × n diagonal matrix whose first r diagonal elements are the positive
eigenvalues σ 2

i , and the other n − r diagonal elements are null,
• V is an K × K unitary matrix,
• {|vi 〉} is an orthonormal basis of CK formed by the columns of V ,
• ΛG is an K × K diagonal matrix whose first r diagonal elements are the positive
eigenvalues σ 2

i and the other n − r diagonal elements are null,
• Ur and Vr are formed by the first r columns of U and V , respectively,
• Σ2

r = diag[σ 2
1 , . . . , σ 2

r ].
In (5.109) appear both the full form and the reduced form of the EIDs (see Sect. 2.11).

5.12.3 Singular Value Decomposition of Γ

Combining the EIDs of Gram’s operator T and of Gram’s matrix G we obtain the
SVD of the state matrix Γ . The result is (see [13])

Γ = UΣV ∗ =
r

∑

i=1

σi |ui 〉〈vi | = UrΣr V ∗
r (5.110)

where U , V , Ur , Vr , and Σr are the matrices that appear in the previous EIDs, Σ is
an n × K diagonal matrix whose first r diagonal elements are given by the square
root σi of the positive eigenvalues σ 2

i of T and G and the other diagonal elements
are null.

Before discussing and applying the above decompositions, let us develop a couple
of examples.

Example 5.5 Consider a binary system (K = 2) on H = C
4, where the two states

are specified by the matrix

Γ = 1

2

⎡

⎢

⎢

⎣

1 1
−1 1
1 −1

−1 1

⎤

⎥

⎥

⎦

.

The matrices G and T become respectively

G = Γ ∗Γ =
[

1 − i
2

i
2 1

]

T = Γ Γ ∗ = 1

4

⎡

⎢

⎢

⎣

2 −1 − i 1 + i 0
−1 + i 2 −2 1 + i
1 − i −2 2 −1 − i
0 1 − i −1 + i 2

⎤

⎥

⎥

⎦

.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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The eigenvalues of G are σ 2
1 = 3/2 and σ 2

2 = 1/2 and the corresponding EID is

G = V ΛG V ∗ with V = 1

2

[

−1 1

1 1

]

, ΛG = Σ2
r =

[

3
2 0

0 1
2

]

which coincides with the reduced EID, because r = K = 2. The eigenvalues of T
are σ 2

1 = 3/2, σ 2
2 = 1/2, σ3 = σ4 = 0 and the corresponding reduced EID is

T = UrΣ
2
r U∗

r with Ur =

⎡

⎢

⎢

⎢

⎣

0 1
1√
3

0

− 1√
3
0

1√
3

0

⎤

⎥

⎥

⎥

⎦

, U∗
r =

[

0 1√
3

− 1√
3

1√
3

1 0 0 0

]

,

Σ2
r =

[

3
2 0

0 1
2

]

.

The reduced SVD of Γ is: Γ = UrΣr V ∗, where the factors are specified above.

Example 5.6 Consider a constellation composed by two coherent states with real
parameters ±α (see Sect. 3.2.2)

|γ1〉 = | − α〉, |γ2〉 = |α〉, |γ1〉, |γ1〉 ∈ G, α ∈ R

which, as well known, must be defined on an infinite-dimensional Hilbert space.
The purpose of the example is to show that, in spite of the infinite dimensions,
eigenvalues and eigenvectors can be developed in finite terms (at least for the parts
that are connected to the following applications).

The expressions of the two states are (see (3.4))

|γ1〉 =
∞
∑

n=0

e−α2/2 (α)n

√
n! |n〉, |γ2〉 =

∞
∑

n=0

e−α2/2 (−α)n

√
n! |n〉 (5.111)

an so the corresponding matrix becomes

Γ = [|γ1〉, |γ2〉] =
∞
∑

n=0

e−α2/2

√
n! [αn, (−α)n]|n〉 (5.112)

and has dimensions ∞ × 2. We can easily see that these two vectors are linearly
independent and therefore the rank of Γ is r = K = 2.

Gram’s matrix is 2 × 2 and becomes

G =
[〈γ1|γ1〉 〈γ1|γ2〉
〈γ2|γ1〉 〈γ2|γ2〉

]

=
[

1 γ12
γ12 1

]

(5.113)

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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where (see (7.10)) γ12 = e−2α2
, whereas Gram’s operator T is infinite dimensional

and has a rather complicated expression, that can be obtained from (5.111) developing
the outer products as follows:

T = |γ1〉〈γ1| + |γ2〉〈γ2|.

The eigenvalues of G are given by the solution of the equation

det(G − λ I ) = (1 − λ)2 − γ 2
12 = 0

and therefore we have, with the notation of (5.113)

σ 2
1 = 1 + γ12, σ 2

2 = 1 − γ12 (5.114)

and the normalized eigenvectors are

|v1〉 =
[

1√
2
1√
2

]

, |v2〉 =
[

1√
2

− 1√
2

]

.

In this way, we have performed the spectral decomposition of G in the form (5.109b)
with

V = 1√
2

[

1 1
1 −1

]

, ΛG =
[

σ 2
1 0
0 σ 2

2

]

.

The spectral decomposition of T , given by (5.109a), requires the computation of the
eigenvectors |u1〉, |u2〉which are of infinite dimension. In principle, such computation
can be done, but it is very complicated, and so the vectors, for now, are left indicated
in a nonexplicit form.

The singular value decomposition of Γ results in

Γ = σ1|u1〉〈v1| + σ2|u2〉〈v2|

where the singular values are σ1,2 = √
1 ± γ12.

5.12.4 Spaces, Subspaces, Bases, and Operators

In the above decompositions several spaces and subspaces come into play. The ref-
erence environment is the Hilbert space H, which is assumed of dimension n. We
then have the subspace generated by the states

U = span(|γ0〉, |γ1〉, . . . |γK−1〉)

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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of dimension r , which is also the subspace where the measurement vectors |μi 〉
operate (see Fig. 5.9). The unitary operator

U
n×n

= [ |u1〉, . . . , |un〉] : H → H

provides with its n columns an orthonormal basis for H, while its first r columns,
corresponding to the non-null eigenvalues σ 2

i , form a basis for the subspace U

U = span(|u1〉, . . . , |ur 〉) ⊆ H.

These r eigenvectors were collected in the matrixUr that appears in the reduced EID
of T (see (5.109a)); the remaining n − r eigenvectors |ur+1〉, . . . , |un〉 generate the
complementary space U⊥. Then the following resolutions are found

n
∑

k=1

|uk〉〈uk | = U U∗ = IH,

r
∑

k=1

|uk〉〈uk | = Ur U∗
r = PU (5.115)

where PU is the projector on U. Analogously, the unitary operator (K × K matrix)

V = [ |v1〉, . . . , |vK 〉] : C
K → C

K

provides with its K columns a basis for CK , while its first r columns provide a basis
for an r -dimensional subspace V of CK .

span(|v1〉, . . . , |vr 〉) = V ⊆ C
K .

We obtain the resolutions

K
∑

k=1

|vk〉〈vk | = V V ∗ = IK ,

r
∑

k=1

|vk〉〈vk | = Vr V ∗
r = PV. (5.116)

The state matrix defines a linear transformation8

Γ : C
K → H

because it “accepts” at the input a ket |v〉 ∈ C
K and produces the ket Γ |v〉 ∈ H.

The image of Γ is
im Γ = U.

8 The term operator, in practice represented by a squarematrix, is reserved to linear transformations
from one space to the same space.
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H
C
M

U
V

• |γi
• |μ j

|ui •
• |v

|u • • |vi

|ui vi|

|vi ui|

Fig. 5.12 Spaces and subspaces generated by a constellation of states. In red and green the tran-
jectors

Analogously, the adjointmatrixΓ ∗ : H → C
K operates on a ket |u〉 ∈ H and returns

the ket Γ ∗|u〉 ∈ C
K . The image of Γ ∗ is: im Γ ∗ = V. The connection between C

K

and H is made by the elementary operators |ui 〉〈vi | appearing in the SVD (5.110).
These operators transform a ket |v〉 of CK to the ket

|ui 〉〈vi |v〉 = ki |ui 〉 ∈ H, with ki = 〈vi |v〉

and, because they provide a transfer (from C
K to H and from H to C

K ), they are
named “transjectors” in [14] (Fig. 5.12).

Analogously, the connection betweenH and CK is done by the elementary oper-
ators |vi 〉〈ui | of the SVD (5.110).

5.12.5 The Geometry with Mixed States

All the above considerations, referring to pure states, can be extended in a rather
obvious way to mixed states with some dimensional changes. The starting point is
the matrix of the states, which now collects the factors γi of the density operators ρi

Γ
n×H

= [

γ0, γ1, . . . , γK−1
]

(5.117)

where the number of the columns H = h0 + h1 + · · · hK−1 is given by the total
number of columns of the state factors γi . As we have seen in (5.68), this matrix can
be considered as a collection of H kets ofH, which generate the subspace U, whose
dimension r is always given by the rank of Γ .

Gram’s operator has the expressions

T
n×n

= Γ Γ ∗ =
K−1
∑

i=0

γiγ
∗
i =

K−1
∑

i=0

ρi (5.118)
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and therefore can be directly evaluated from the ρi , without finding their factoriza-
tions. Its dimensions remain n × n. Instead, Gram’s matrix becomes H × H and has
the structure

G
H×H

= Γ ∗ Γ =
⎡

⎢

⎣

γ ∗
0 γ0 . . . γ ∗

0 γK−1
...

. . .
...

γ ∗
K−1 γ0 . . . γ ∗

K−1 γK−1

⎤

⎥

⎦ (5.119)

where the γ ∗
i γ j are not ordinary inner products, but matrices of dimensions hi ×h j .

Finally, the subspace V becomes of dimensions H ≥ K . This part concerning
mixed states will be further developed in Chap. 8.

5.12.6 Conclusions

We have seen that a constellation of states (or of state factors) gathered in the matrix
Γ , can be defined on the Hilbert space H and, more precisely, on its subspace U,
generating several operators.

It remains to evaluate the measurement matrix M identifying the measurement
operators. To get specific results we must state the objective, which, in the context of
quantum communications, is the maximization of the correct decision probability.
An alternative objective, which brings to a suboptimal solution, is to minimize the
quadratic error between the states and the corresponding measurement vectors. This
technique, called square root measurement (SRM), will be seen in the next chapter.

5.13 The Geometrically Uniform Symmetry (GUS)

The set of the states (constellation) can have a symmetry that facilitates its study and
its performance evaluation.Thekindof symmetry that allows for these simplifications
is called geometrically uniform symmetry (GUS) and is verified in several quantum
communications systems, like the quantum systems obtained with the modulations
PSK and PPM and all the binary systems.9

5.13.1 The Geometrically Uniform Symmetry with Pure States

A constellation of K pure states

{|γ0〉, |γ1〉, . . . , |γK−1〉}

9 The interest of the GUS is confined to the case in which the a priori probabilities are equal
(qi = 1/K ).

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Fig. 5.13 Constellation of
states with the geometrically
uniform symmetry in the
complex plane C. The
reference state is |γ0〉 = 1
(the complex number 1) and
the symmetry operator is
S = eiπ/4 |γ0

|γ 1

|γ
7

π/4

has the geometrically uniform symmetry when the two properties are verified:

(1) the K states |γi 〉 are obtained from a single reference state |γ0〉 in the following
way

|γi 〉 = Si |γ0〉, i = 0, 1, . . . , K − 1 (5.120a)

where S is a unitary operator, called symmetry operator;
(2) the operator S is a K th root of the identity operator in the sense that

SK = IH. (5.120b)

An elementary example of constellation that verifies the GUS is given by the K roots
of unity in the complex plane, as shown in Fig. 5.13 for K = 8.

In the presence of the GUS, the specification of the constellation is limited to
the reference state |γ0〉 and to the symmetry operator S. In addition, it simplifies
the decision, because, as we shall see for the optimal decision, we can choose the
measurement vectors with the same symmetry as the states, that is,

|μi 〉 = Si |μ0〉, i = 0, 1, . . . , K − 1. (5.121)

In the next chapter we will verify that the PSK and PPM systems have the GUS.
Here we limit ourselves to the binary case.

5.13.2 All Binary Constellations Have the GUS

Aconstellation of two arbitrary states, |γ0〉 and |γ1〉, is always geometrically uniform,
with symmetry operator S defined by [14]



232 5 Quantum Decision Theory: Analysis and Optimization

S = IH − 2
|w〉〈w|
〈w|w〉 (5.122)

where |w〉 = |γ1〉 − |γ0〉 if the two states have inner product X := 〈γ0|γ1〉 real.
In this case S is a “reflector,” which reflects a state with respect to the hyperplane
(bisector) determined by the vectors |γ0〉 and |γ1〉. It can be verified from definition
(5.122) that S is unitary and S2 = IH (see problems).

If the inner product X is complex, X = |X |eiφ , we modify |γ1〉 as |γ̃1〉 = e−iφ |γ1〉
and apply (5.122) to the states |γ0〉 and |γ̃1〉, which have a real inner product. This
does not represent any restriction because |γ1〉 and |γ̃1〉 differ by a phase factor and
therefore represent the same physical state.

5.13.3 The GUS with Mixed States

The definition of GUS is now extended to mixed states. A constellation of K density
operators

{ρ0, ρ1, . . . , ρK−1}

has the geometrically uniform symmetry when the following two properties are ver-
ified:

(1) the K operators ρi are obtained from a single reference operator ρ0 as

ρi = Siρ0 (Si )∗, i = 0, 1, . . . , K − 1 (5.123)

where S is a unitary operator called symmetry operator;
(2) the operator S is a K th root of the identity operator

SK = IH. (5.123b)

This extension is in harmony with the fact that with pure states the density operators
become ρi = |γi 〉〈γi |. In addition, with the factorization of the density operators,
ρi = γiγ

∗
i , relation (5.123) gives

γi = Si γ0, i = 0, 1, . . . , K − 1 (5.124)

which generalizes (5.120a). In the context of optimal decision [3] we will prove
that the same symmetry is transferred to the measurement operators, and also to the
measurement factors, namely,

μi = Siμ0, i = 0, 1, . . . , K − 1. (5.125)
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5.13.4 Generalizations of the GUS

The GUS can be generalized in two ways. We limit ourselves to introducing the two
generalizations in the case of pure states. In the first generalization [3], we have L
reference states |γ01〉, . . . , |γ0L〉, instead of a single state |γ0〉, and the constellation
is subdivided into L subconstellations generated by a single symmetry operator S in
the form |γik〉 = Si |γ0k〉. An example of modulation that has this kind of composite
GUS is theQuadratureAmplitudeModulation (QAM),whichwill be seen inChap.7.

In the second type of generalization [14], we have K distinct symmetry operators
Si , made up of K unitary matrices forming a multiplicative group, and each state of
the constellation is generated in the form |γi 〉 = Si |γ0〉 from a single reference state
|γ0〉.10

5.13.5 Eigendecomposition of the Symmetry Operator

The EID of the symmetry operator S plays an important role in the analysis of
Communications Systems having the GUS. We give the two equivalent forms of
EIDs of S (see Sects. 2.10 and 2.11)

S =
k

∑

i=1

λi Pi , S = Y Λ Y ∗ =
n−1
∑

i=0

λi |yi 〉〈yi | (5.126)

where {λi , i = 1, . . . , k} are the distinct eigenvalues of S, {Pi , i = 1, . . . , k} form
a projector system, that is, with Pi Pj = δi j Pi , Y is an n × n unitary matrix, and
Λ = diag[λ1, . . . , λn] contains the nondistinct eigenvalues. In general, the distinct
eigenvalues λi have a multiplicity ci ≥ 1.

Considering that S is a unitary operator, theλi have unitary amplitude and, because
SK = IH, the eigenvalues have the form

λi = W ri
K , 0 ≤ ri < K (5.127)

where WK := ei2π/K and ri are integers. Now, in the second EID, collecting the
elementary projectors |y j 〉〈y j | with a common eigenvalue, we arrive at the form

S =
K−1
∑

i=0

W i
K Yi Y ∗

i (5.128)

10 In the literature [3] the set of the states that satisfy (5.120) is called cyclic state set, whereas
the term geometrically uniform symmetry indicates the general case, which is obtained with a
multiplicative group of unitary matrices.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_2
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where Yi are n × ci matrices, with ci the multiplicity of λi = W i
K . Note that the

projectors are given by Pi = Yi Y ∗
i .

Example 5.7 In the PSK the symmetry operator is given by

S = diag[W k
K , k = 0, 1, . . . , K − 1]. (5.129)

As S is diagonal, its EID is immediately found as S = In S I ∗
n , with In the identity

matrix. For example, for K = 3 and n = 6, we have tree distinct eigenvalues

Λ = diag[1, W3, W 2
3 , 1, W3, W 2

3 ]

and the EID results in

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 W3 0 0 0 0
0 0 W 2

3 0 0 0
0 0 0 1 0 0
0 0 0 0 W3 0
0 0 0 0 0 W 2

3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Now, to obtain the form (5.128), we must collect in the matrices Yi the eigenvectors
corresponding to the eigenvalues W i

3. Thus

Y0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0
0 0
0 0
0 1
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Y1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 0
0 1
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Y2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
0 0
1 0
0 0
0 0
0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

5.13.6 Commutativity of S with T

An important property with GUS, proved in Appendix section “Commutativity of
the Operators T and S”, is given by:

Proposition 5.8 Gram’s operator and the symmetry operator of the GUS commute

T S = ST . (5.130)

This leads to the simultaneous diagonalization (see Theorem2.4) of T and S, stated by

T = U Σ2 U∗, S = UΛU∗. (5.131)

http://dx.doi.org/10.1007/978-3-319-15600-2_2
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Note that, in general, the eigenvalues of the symmetry operator are multiple and
then the diagonalization of S is not unique (see Theorem2.3 of Sect. 2.11). This
multiplicity will be used to find useful simultaneous decompositions, as will be seen
at the end of Chap. 8.

Problem 5.13 �� Prove that the quantum states of H = C
4

|γ0〉 = 1

2
[1,−1, 1,−1]T, |γ1〉 = 1

2
[1, 1,−1, 1]T

verify the GUS for a binary transmission. Find the symmetry operator S, verify that
S has the properties of a symmetry operator and that |γ1〉 is obtained from |γ0〉 as
|γ1〉 = S |γ0〉.
Problem 5.14 � Find the EID of the symmetry operator S of the previous problem.

Problem 5.15 �� Prove that the two quantum states of H = C
4

|γ0〉 = 1

2
[1,−1, 1,−1]T, |γ1〉 = 1

2
[1, 1,−i, 1]T

verify the GUS for a binary transmission, and find the corresponding symmetry
operator S. Note that in this case the inner product X := 〈γ0|γ1〉 is complex.

5.14 Optimization with Geometrically Uniform Symmetry

In the general case ofweighteddensity operators the geometrically uniformsymmetry
(GUS) is established by the condition

ρ̂i = Si ρ̂0 (Si )∗, i = 0, 1, . . . , K − 1. (5.132)

In such case, the search for the optimal measurement operators is simplified because
the data are restricted to the reference operator ρ̂0 and to the symmetry operator S,
and in addition the search can be restricted to the measurement operator Q0 only.

5.14.1 Symmetry of the Measurement Operators

The GUS is transferred also to the measurement operators, according to

Proposition 5.9 If the weighted density operators have the GUS, established by
(5.132), it is not restrictive to suppose that also the optimal measurement operators
have the GUS, with the same symmetry operator, namely

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Qi = Si Q0 S−i, i = 0, 1, . . . , K − 1. (5.133)

Proof Holevo’s theorem ensures that there exists a system of optimal measurement
operators Q = Qopt ∈ M0 that maximizes the functional J (Q) defined by (5.80).
The point here is to prove that from this system, which does not necessarily enjoy
the GUS, another system can be obtained Q̃ ∈ M0 that enjoys the GUS and has the
same properties as the original system. To this end, we define

Q̃0 = 1

K

K−1
∑

i=0

S−iQi Si , Q̃i = Si Q̃0S−i , i = 1, . . . , K − 1.

We soon verify that the new operators are PSD. In addition

K−1
∑

i=0

Q̃i = 1

K

K−1
∑

i=0

K−1
∑

j=0

Si− j Q j S−(i− j) = 1

K

K−1
∑

j=0

K−1
∑

k=0

Sk Q j S−k

where the periodicity of the symmetry operator S is used. Then

K−1
∑

i=0

Q̃i = 1

K

K−1
∑

k=0

Sk
K−1
∑

j=0

Q j S−k = 1

K

K−1
∑

k=0

Sk S−k = IH.

We conclude that the new operators Q̃i are legitimate measurement operators. We
have also

J (Q̃) =
K−1
∑

i=0

Tr[ρ̂i Q̃i ] =
K−1
∑

i=0

Tr[Si ρ̂0 Q̃0S−i ]

=
K−1
∑

i=0

Tr[ρ̂0 Q̃0] = KTr[ρ̂0)Q̃0]

= Tr

[

ρ̂0

K−1
∑

i=0

S−i Qi Si

]

=
K−1
∑

i=0

Tr[Si ρ̂0S−i Qi ] = J (Q)

so that even the new measurement operators are optimal. �

We must observe also that, choosing measurement operators that enjoy the GUS,
for the maximum correct decision probability we simply have

Pcmax = J (Qopt) = KTr[ρ̂0Q0,opt] (5.134)

where Q0,opt (to be found) identifies the optimal measurement operator system.
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5.14.2 Holevo’s Theorem with GUS

From the previous results, Holevo’s theorem becomes:

Theorem 5.5 (Holevo’s theoremwith GUS) In a K -ary system characterized by the
weighted density operators ρ̂i = qiρi , that enjoy the GUS according to (5.132), the
optimal measurement operators Qi can be chosen with the same GUS, according to
(5.133). Then the reference operator Q0 produces a system of optimal operators if
and only if, having defined the operator

L =
K−1
∑

i=0

Si Q0ρ̂0S−i , (5.135)

we have that the operator L−ρ̂0 is PSD and verifies the condition (L−ρ̂0)Q0 = 0H.
We also have that S commutes with L.

In fact, the operator L is obtained by (5.83) substituting the symmetry expressions
(5.132) and (5.133). We can also verify that

L = Si L S−i for every integer i (5.136)

from which we obtain, in particular, that S and L commute. From (5.136) we can
prove that, if L − ρ̂0 is PSD, so are L − ρ̂i , and that, if (L − ρ̂0)Q0 = 0H, also
(L − ρ̂i )Qi = 0H, so that all the conditions of Holevo’s theorem are verified.

Even the dual theorem is simplified taking the following form [15]:

Theorem 5.6 (Dual theorem with GUS) In a K -ary system characterized by the
weighted density operators ρ̂i = qiρi that enjoy the GUS with symmetry operators
S, a measurement operator system {Qi } that enjoy the GUS is optimal if there exists
a PSD operator X with the properties: (1) X ≥ ρ0, (2) X S = S X, and (3) Tr[X ] is
minimal. The operator Q0 that generates the optimal operators satisfies the condition
(X −ρ̂0)Q0 = 0H and the minimum obtained forTr[X ] coincides with the requested
maximum of J (Q).

In the assumed conditions we have in fact that X = Si X S−i for every i . Thus
X − ρ̂i = Si (X − ρ̂0)S−i is PSD and (X − ρ̂i )Qi = Si (X − ρ̂0)S−i = 0H, in such
a way that the conditions of the theorem dual to Holevo’s theorem are satisfied.

Note that, in the presence of GUS, the quantum source and the optimal decision
become completely specified by the symmetry operator S and by the reference oper-
ators ρ0 and Q0 (or by their factors γ0 and μ0). This has a consequence also in the
simplification of convex linear programming (CSP).
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5.14.3 Numerical Optimization with MatLab©

In the presence of GUS, referring to Theorem5.6, the input data are reduced to the
weighted density ρ̂0 and to the symmetry operator S. The constraints to be applied
are

X − ρ̂0 ≥ 0, X S = SX

and the requested output is the operator X of minimal trace.
In MatLab the use of the cvx procedure seen in Sect. 5.10 becomes

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cvx procedure applied to the dual problem with GUS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cvx_begin

variables X(dim)

minimize(trace(X))

subject to

X>rho0;

X*S==S*X;

cvx_end

Applications of this simplified procedure to Quantum Communications systems will
be seen in Chaps. 7 and 8.

5.15 State Compression in Quantum Detection

Quantumdetection is formulated in ann-dimensional (possibly infinite)Hilbert space
H, but in general, the quantum states and the corresponding measurement operators
span an r -dimensional subspace U of H, with r ≤ n. Quantum detection could be
restricted to this subspace, but the operations involved are redundant for r < n, since
the kets inU have n components, as the other kets ofH. It is possible and convenient
to perform a compression from the subspace U onto a “compressed” space U, where
the redundancy is removed (kets are represented by r components). We will show
that in the “compressed” space the quantum detection can be perfectly reformulated
without loss of information, and some properties become simpler than in the original
(uncompressed) Hilbert space H [16].

State compression has some similarity with quantum compression, which will
be developed in Chap.12 in the framework of Quantum Information Theory. Both
techniques have the target of representing quantum states more efficiently, but state
compression does not consider the information content (entropy) of the states and is
based only on geometrical properties.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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Before proceeding it is convenient to recall the dimensions, which have a funda-
mental role in this topic:

• n: dimension of the Hilbert space H,
• K : size of the alphabet,
• r : common rank of Γ , G, and T and dimension of the compressed space H.

• pure states Γ
n×K

, G
K×K

, T
n×n

, (5.137a)

• mixed states Γ
H×K

, G
H×H

, T
n×n

, (5.137b)

where H = h0 + · · · hK−1 with hi the number of columns of the factors γi and μi .
We will refer to mixed states since they represent the general case and the most

interesting one with compression.

5.15.1 State Compression and Expansion

To find the compression operation (and also the expansion) we rewrite the SVD of
the state matrix Γ , given by (5.110)

Γ
n×H

= U Σ V ∗
r = Ur Σr V ∗

r =
r

∑

i=1

σi |ui 〉〈vi | (5.138)

where U = [|u1〉, . . . , |un〉] is an n × n unitary matrix, Vr = [|v1〉, . . . , |vr 〉] is an
r × r unitary matrix, Σ is an n × r diagonal matrix whose first r diagonal entries
σ1, . . . σr are the (positive) singular values, and the other diagonal entries are zero,
Σr = diag{σ1, . . . σr } is r × r diagonal, Ur = [|u1〉, . . . , |ur 〉] is formed by the first
r columns of U . We also recall that Ur gives the projector operator onto U as (see
(5.115))

r
∑

i=1

|ui 〉〈ui | = Ur U∗
r = PU. (5.139)

In the r -dimensional subspace U the kets |u〉 have n components, as in the rest of
H, but it is possible to compress each |u〉 ∈ U into a ket |u〉, with r ≤ n components,
without loss of information. The key remark is that for a ket |u〉 of U the projection
coincides with the ket |u〉 itself

PU |u〉 = |u〉, ∀ |u〉 ∈ U. (5.140)

Considering (5.139) we can split the identity (5.140) into the pair
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|u〉 = U∗
r |u〉, |u〉 = Ur |u〉 ∀|u〉 ∈ U

where the first relation represents a compression, with compressor U∗
r , and the

second an expansion, with expander Ur . The compressor U∗
r generates the r -

dimensional subspace

U := U∗
r U = {|u〉 = U∗

r |u〉, |u〉 ∈ U}

and the expander Ur restores the original subspace as U = Ur U. In particular the
compressed Hilbert space is given by

H := U = U∗
r U. (5.141)

Compression and expansion are schematically depicted in Fig. 5.14.
Now, all the detection operations in the original Hilbert spaceH can be transferred

into the compressed space U (here we mark compressed objects with an overline, as
U). In the transition from U onto U the geometry of kets is preserved (isometry). In
fact, if |u〉, |v〉 ∈ U and |u〉, |v〉 ∈ U are the corresponding compressed kets, we find
for the inner products: 〈u|v〉 = 〈u|PU|v〉 = 〈u|v〉. In U the state matrix becomes

Γ
r×r

= U∗
r

r×n

Γ
n×r

(5.142)

and collects the compressed states γ i = U∗
r γi . From Γ we can restore Γ by expan-

sion, as Γ = Ur Γ . Analogously, for the measurement matrix we find M = U∗
r M

H

H: original Hilbert space

U: subspace spanned by state constellation

PU =Ur U∗
r : projector onto U

U∗
r : compressor

Ur: expander

H :=UH=U =U∗
r U: compressed Hilbert space

U

• |γi

• |u

PU projector

• |ū

U∗
rUr

|ui •

Fig. 5.14 The geometry for quantum compression: passage from the subspace U to the “com-
pressed” space U= U∗

r U, where U∗
r is the compressor. U gives the compressed Hilbert space H



5.15 State Compression in Quantum Detection 241

and M = Ur M . For the density operators ρi = γiγ
∗
i and the measurement operators

Πi = μiμ
∗
i the compression/expansion give

ρi
r×r

= U∗
r ρi Ur , ρi

n×n

= Ur ρi U∗
r

Π i
r×r

= U∗
r Πi Ur , Πi

n×n

= Ur Π i U∗
r . (5.143)

Note that, while Ur U∗
r gives the projector PU, U∗

r Ur gives the identities

Ur U∗
r = PU, U∗

r Ur = Ir . (5.144)

In fact U∗
r Ur = ∑r

i=1 |ui 〉〈ui |, where |ui 〉 are orthonormal.

5.15.2 Properties in the Compressed Space

We review some properties in the compressed space, starting from the corresponding
properties in the original Hilbert space.

Gram operator. The Gram operator T := Γ Γ ∗ acting on the original Hilbert space
H has dimension n × n. In the compressed Hilbert space H it becomes

T
r×r

= U∗
r Ur Σ2

r U∗
r Ur = Σ2

r , (5.145)

and therefore the compressed Gram operator is always diagonal. On the other hand,
theGrammatrixG := Γ ∗ Γ does not change:G = G. In fact, compression preserves
inner products (see Property (1) in the next subsection).

Probabilities. The relation giving the transition probabilities is exactly preserved
in the transition to the compressed space, namely (see Problem5.16)

p( j |i) = Tr[Π j ρi ] = Tr[Π j ρi ]. (5.146)

Hence the relation for the probability of a correct detection

Pc =
K−1
∑

i=0

qiTr[Πi ρi ] =
K−1
∑

i=0

qiTr[Π i ρi ]. (5.147)

This result is very important: it states that, once obtained the compressed operators,
for the evaluation of the system performance, it is not required to return back
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to the original uncompressed space. This conclusion is particularly important in
the optimization with convex semidefinite programming (CSP), where the numerical
evaluations can be completely carried out in the compressed space.

5.15.3 Compression as a Linear Mapping

Relation (5.144) defines a linear mapping connecting the subspace U to the com-
pressed space H

U∗
r : ρ ∈ U → ρ ∈ H. (5.148)

This mapping has several interesting properties:

(1) the compressor U∗
r preserves inner products11: 〈x |y〉 = 〈x |y〉, |x〉, |y〉 ∈ U,

(2) the compression preserves the PSD condition: ρ ≥ 0 → ρ ≥ 0,
(3) the compression is trace preserving: Tr[ρ] = Tr[ρ].
(4) the compression preserves the quantum entropy: S(ρ) = S(ρ) (see Chap.12).

We prove statement (1). If |x〉, |y〉 ∈ U, we get 〈x |y〉 = 〈x |Ur U∗
r |y〉 = 〈x |PU|y〉,

where PU|y〉 = |y〉 by the fundamental property (5.140). Hence 〈x |y〉 = 〈x |y〉.
Similar is the proof of statement (2). The proof of (3) and (4)will be seen in Sect. 12.6.

A final comment. In the context of quantum channels, which will be seen in
Sect. 12.8, a compressionmappingmay be classified as a noiseless quantum channel.
This is essentially due to the fact that compression is a reversible transformation.

5.15.4 State Compression with GUS

The GUS is preserved in the compressed space (see Problem5.17 for the proof).

Proposition 5.10 If the states γi have the GUS with generating state γ0 and sym-
metry operator S, then the compressed states γ i have the GUS with generating state
γ 0 = U∗

r γ0 and symmetry operator S = U∗
r S Ur .

The simultaneous diagonalization ofT and S seen inProposition5.10 is also useful
to establish other properties related to the GUS. In fact, by choosing the compressor
U∗

r from the common eigenvector matrices U as in Eq. (5.131), we find the further
properties:

Proposition 5.11 With the simultaneous diagonalization the compressed symmetry
operator becomes diagonal, with diagonal entries formed by the first r diagonal
entries of the matrix Λ.

11 An operator from one space to another space is called isometric if it preserves norms and inner
products [17].

http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_12
http://dx.doi.org/10.1007/978-3-319-15600-2_12
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In fact, decomposing Λ in the form diag[Λr ,Λc], where Λr is r × r and Λc is
(n − r) × (n − r), we get

S = U∗
r U Λ U∗ Ur = [Ir 0]

[

Λr 0
0 Λc

] [

Ir

0

]

= Λr .

Proposition 5.12 With the simultaneous diagonalization the compressed Gram
operator is simply given by

T = diag[K ρ0(i, i), i = 1, . . . , r ]

where ρ0(i, i) are the diagonal entries of the compressed generating density operator
ρ0.

In fact, T = ∑K−1
i=0 S

i
ρ0 S

−i
, where S is diagonal. Then, the i, j entry is given by

T (i, j) =
K−1
∑

k=0

S
k
(i, i) ρ0(i, j) S

−k
( j, j).

In particular, considering that S is unitary diagonal, the diagonal entries are

T (i, i) =
K−1
∑

k=0

S
k
(i, i) ρ0(i, i) S

−k
(i, i) = K ρ0(i, i)

and the evaluation can be limited to these diagonal entries, since T is diagonal (see
(5.145)) (in general ρ0 is not diagonal).

5.15.5 Compressor Evaluation

The leading parameter in compression is the dimension of the compressed space
r , which is given by the rank of the state matrix Γ , but also by the rank of the Gram
matrix G and of the Gram operator T . For the evaluation of the compressor we can
use the reduced SVD of Γ , or the reduced EID of G and of T . In any case, for the
choice, it is important to have in mind the dimensions of these matrices shown in
(5.27).

With pure states, where often the dimension n of the Hilbert space is greater than
the alphabet size K and the kets of Γ are linearly independent, r is determined by
the alphabet size K and the EID of the Grammatrix, of dimension K × K , becomes
the natural choice.

With mixed states the choice depends on the specific application. In several cases
of practical interest, n may be very large, so that the decompositions represent a very
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hard numerical task. But, in the presence of GUS, the computational complexity
can be reduced, using the commutativity of the Gram operator T with the symmetry
operator S. This will be seen in detail in the next chapters in correspondence with
the specific applications (see the last two sections of Chap. 8).

Problem 5.16 �� Prove that the evaluation of the transition probabilities in the
compressed space is based on the same formula as in the uncompressed space, that is,

p( j |i) = Tr[Π j ρi ] = Tr[Π j ρi ].

Hint: Use orthonormality relationship U∗
r Ur = Ir , where Ir is the r × r identity

matrix.

Problem 5.17 ��� Prove Proposition5.10, which states that the GUS is preserved
after a compression. Hint: Use orthonormality relationship U∗

r Ur = Ir , where Ir is
the r × r identity matrix.

Problem 5.18 �� Consider the state matrix of H = C
4

Γ = 1

2

⎡

⎢

⎢

⎣

1 1
−1 1
1 −1

−1 1

⎤

⎥

⎥

⎦

Find the compressor U∗
r and the compressed versions of the state matrix Γ and of

the Gram operator T .

Problem 5.19 �� Consider a binary transmission where the quantum states are
specified by the state matrix of the previous problem. Apply Helstrom’s theory with
q0 = 1/3 to find the probability of a correct decision Pc. Then apply the compression
and evaluate Pc from the compressed states.

Problem 5.20 �� Consider the binary constellation of Problem5.13, where we
determined the symmetry operator S. Find the compressorU∗

r showing, in particular,
that the compressed symmetry operator S is diagonal.

Appendix

Proof of Holevo’s Theorem

We refer to the classes introduced at the beginning of Sect. 5.8 and illustrated in
Fig. 5.8. We start by proving Proposition5.3. The setM of the K -tuples of Hermitian
operators is closed with respect to addition and multiplication by a real number (the
sum of two Hermitian operators and the product of a Hermitian operator by a real

http://dx.doi.org/10.1007/978-3-319-15600-2_8
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scalar are Hermitian operators), so it is in fact a real (Kn2)-dimensional vector space.
In such a space, the operation

(P, Q) =
K−1
∑

i=0

Tr[Pi Qi ], P, Q ∈ M,

enjoys the property (P, Q) = (Q, P), a consequence of the cyclic property of the
trace, as well as of the property (P, P) ≥ 0 with (P, P) = 0, only if P is formed by
null operators. Therefore, we are dealing with an operation of inner product and so
M is a Hilbert space. In this space, the subset M0, formed by the K -tuples of PSD
operators and resolving the identity, is closed and bounded, and therefore compact.
From the classicalWeierstrass theorem, in such a set, the continuous functional J (Q)

admits a maximum.
We now move on to Holevo’s theorem, proving that the conditions indicated are

sufficient conditions for maximization. Let Q = [Q0, . . . , QK−1] ∈ M0, where
the Qi satisfy the conditions (5.83) and (5.82), and let P = [P0, . . . , PK−1] be an
arbitrary K -tuple ofM0. Then, recalling the definition of L given by (5.81)

K−1
∑

i=0

Tr[Pi ρ̂i ] = Tr[L] +
K−1
∑

i=0

Tr[Pi (ρ̂i − L)]

=
K−1
∑

i=0

Tr[Qi ρ̂i ] −
K−1
∑

i=0

Tr[Pi (L − ρ̂i )].

On the other hand, because the trace of the product of PSD operators is nonnegative,
for every i we have Tr[Pi (L − ρ̂i )] ≥ 0 and J (P) ≤ J (Q). Therefore, the system Q
is optimal and the sufficiency of the hypothesis of Holevo’s theorem is proved.

We can also prove that the definition of L and the condition (5.82) imply the
condition (5.83). In fact, we can write

0 = Tr[L] −
K−1
∑

i=0

Tr[Qi ρ̂i ] =
K−1
∑

i=0

Tr[Qi (L − ρ̂i )].

As all the terms of the last sum are nonnegative, it must be Tr[(L − ρ̂i )Qi ] = 0 for
every i , then (L − ρ̂i )Qi = 0H.

The necessity of the conditions of Holevo’s theorem is based on continuity con-
siderations. Let Q ∈ M0 be an optimal system and let U jk , j, k = 0, . . . , K − 1 be
operators such that

K−1
∑

j=0

U∗
jmU jn = δmn IH.
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Then, having defined the operators Pj = S∗
j S j , with

S j =
K−1
∑

k=0

U jk Q1/2
k ,

it is easy to verify that P = [P0, . . . , PK−1] ∈ M0 and, from the optimality of Q, it
must be J (P) ≤ J (Q).

We now appropriately particularize the operators U jk , j, k = 0, . . . , K − 1,
imposing that U j j = IH for j = 2, . . . , K − 1, and

[

U00 U01
U10 U11

]

= exp

(

ε

[

0H −A∗
A 0H

])

with ε > 0 arbitrarily small and A arbitrary linear operator. Finally, we suppose that
all the other operators U jk be null. We then verify that

[

U00 U01
U10 U11

]∗ [

U00 U01
U10 U11

]

=
[

IH 0H
0H IH

]

so that the operators U jk satisfy the above conditions. The operators Pj , j =
2, . . . , K − 1 coincide with the operators Q j , while, neglecting the infinitesimals ε2

and those of higher order, we obtain

U00 = U11 = IH, U01 = −εA∗, U10 = εA

S0 = Q1/2
0 − εA∗Q1/2

1 , S1 = Q1/2
1 + εAQ1/2

0

and eventually

P0 = Q0 − ε(Q1/2
1 AQ1/2

0 + Q1/2
0 A∗Q1/2

1 )

P1 = Q1 + ε(Q1/2
0 A∗Q1/2

1 + Q1/2
1 AQ1/2

0 ).

It follows that

J (P) − J (Q) =
K−1
∑

j=0

Tr[ρ̂ j (Pj − Q j ]

= Tr[ρ̂0(P0 − Q0)] + Tr[ρ̂1(P1 − Q1)]
= ε Tr[(ρ̂1 − ρ̂0) (Q1/2

1 AQ1/2
0 + Q1/2

0 A∗Q1/2
1 )]

= ε Tr[Q1/2
0 (ρ̂1 − ρ̂0)Q1/2

1 A + Q1/2
1 (ρ̂1 − ρ̂0)Q1/2

0 A∗].
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As the coefficient of ε must be null to ensure that the difference be non positive for
every value of the arbitrary operator A, it must be Q1/2

0 (ρ̂1 − ρ̂0)Q1/2
1 = 0H or,

equivalently, Q0(ρ̂1 − ρ̂0)Q1 = 0H. As the reasoning can be repeated for every
couple of indexes i and j , it follows that it must be Qi (ρ̂ j − ρ̂i )Q j = 0H, that is,
Qi ρ̂ j Q j = Qi ρ̂i Q j . Summing both sides with respect to i , we obtain for every j ,
ρ̂ j Q j = L Q j , coinciding with (5.83). At this point, it should be proved that the
operators L − ρ̂ j are PSD. For a rigorous (and very technical) proof of the result,
please refer to [3].

Proof of Kennedy’s Theorem

Kennedy’s theorem (Theorem5.3) can be derived in a generalized form from
Holevo’s theorem. We recall that this requires in the first place that the operators
L − ρ̂i be PSD for every i . If we assume that the eigenvalues of the operators ρ̂i span
over the entire Hilbert space H, the operator L is positive definite and has rank n.
From the optimality conditions of Holevo’s theorem

(L − ρ̂i )Qi = 0H,

we have first of all that, if |y〉 belongs to the image of the operator Qi , that is, if there
exists |x〉 ∈ H such that |y〉 = Qi |x〉, then (L − ρ̂i )|y〉 = 0, and |y〉 belongs to the
null space of the operator L − ρ̂i . We then have that the image of Qi is a subspace
contained in the null spaceN(L − ρ̂i ) of L − ρ̂i , therefore its dimension, coinciding
with the rank of Qi , is not greater than the dimension of the null space N(L − ρ̂i )

and this yields the inequality

rank(Qi ) ≤ dim(N(L − ρ̂i )) = n − rank(L − ρ̂i ).

From the subadditivity of the rank, i.e., from rank(A + B) ≤ rank(A) + rank(B),
letting A = L − ρ̂i and B = ρ̂i , we obtain n = rank(L) ≤ rank(L − ρ̂i )+ rank(ρ̂i ),
which, substituted in the above inequality, yields rank(Qi ) ≤ rank(ρ̂i ).

Let us now consider the special case in which we have n pure states |γi 〉, linearly
independent, generating the n-dimensional space H, so that the operators ρ̂i have
rank 1. Then the optimal measurement operators Qi must have rank not greater than
1, and therefore either be null, or have the form Qi = |μi 〉〈μi |. As it must be

n−1
∑

i=0

Qi =
n−1
∑

i=0

|μi 〉〈μi | = IH,

the vectors |μi 〉 cannot be null and must be linearly independent. Furthermore, as,
for every j ,
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|μ j 〉 =
n−1
∑

i=0

|μi 〉〈μi |μ j 〉

from the comparison of the two sides, we obtain 〈μi |μ j 〉 = δi j and the measurement
vectors are orthonormal.

Commutativity of the Operators T and S

Let us prove Proposition5.10. Using (5.120a) in the definition of Gram’s operator
(5.108) and remembering that S is a unitary operator, so that S∗ = S−1, we obtain

T =
K−1
∑

i=0

|γi 〉〈γi | =
K−1
∑

i=0

Si |γ0〉〈γ0|S−i

hence

T S =
K−1
∑

i=0

Si |γ0〉〈γ0|S−i+1 = SS−1
K−1
∑

i=0

Si |γ0〉〈γ0|S−i+1

= S
K−1
∑

i=0

Si−1|γ0〉〈γ0|S−i+1 = S
K−1
∑

k=0

Sk |γ0〉〈γ0|S−k = S T

where in the last step we exploited the periodicity of Si with respect to i .
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