
Chapter 2
Vector and Hilbert Spaces

2.1 Introduction

The purpose of this chapter is to introduce Hilbert spaces, and more precisely the
Hilbert spaces on the field of complex numbers, which represent the abstract envi-
ronment in which Quantum Mechanics is developed.

To arrive at Hilbert spaces, we proceed gradually, beginning with spaces mathe-
matically less structured, tomove towardmore andmore structuredones, considering,
in order of complexity:

(1) linear or vector spaces, inwhich the points of the space are called vectors, and the
operations are the sum between two vectors and the multiplication by a scalar;

(2) normed vector spaces, in which the concept of norm of a vector x is introduced,
indicated by ||x ||, from which one can obtain the distance between two vectors
x and y as d(x, y) = ||x − y||;

(3) vector spaces with inner product, in which the concept of inner product between
two vectors x , y is introduced, and indicated in the form (x, y), from which the
norm can be obtained as ||x || = (x, x)1/2, and then also the distance d(x, y);

(4) Hilbert spaces, which are vector spaces with inner product, with the additional
property of completeness.

We will start from vector spaces, then we will move on directly to vector spaces
with inner product and, eventually, to Hilbert spaces. For vectors, we will initially
adopt the standard notation (x , y, etc.), and subsequently we will switch to Dirac’s
notation, which has the form |x〉, |y〉, etc., universally used in Quantum Mechanics.
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22 2 Vector and Hilbert Spaces

2.2 Vector Spaces

2.2.1 Definition of Vector Space

Avector space on afieldF is essentially anAbelian group, and therefore a set provided
with the addition operation +, but completed with the operation of multiplication by
a scalar belonging to F.

Here we give the definition of vector space in the field of complex numbers C, as
it is of interest to Quantum Mechanics.

Definition 2.1 A vector space in the field of complex numbers C is a nonempty set
V, whose elements are called vectors, for which two operations are defined. The first
operation, addition, is indicated by + and assigns to each pair (x, y) ∈ V × V a
vector x + y ∈ V. The second operation, called multiplication by a scalar or simply
scalar multiplication, assigns to each pair (a, x) ∈ C × V a vector ax ∈ V. These
operations must satisfy the following properties, for x, y, z ∈ V and a, b ∈ C:

(1) x + (y + z) = (x + y) + z (associative property),
(2) x + y = y + x (commutative property),
(3) V contains an identity element 0 with the property 0 + x = x, ∀x ∈ V,
(4) V contains the opposite (or inverse) vector −x such that −x + x = 0, ∀x ∈ V,
(5) a(x + y) = ax + ay,
(6) (a + b)x = ax + bx . �

Notice that the first four properties assure that V is an Abelian group or commutative
group, and, globally, the properties make sure that every linear combination

a1x1 + a2x2 + · · · + an xn ai ∈ C, xi ∈ V

is also a vector of V.

2.2.2 Examples of Vector Spaces

Afirst example of a vector space onC is given byCn , that is, by the set of the n-tuples
of complex numbers,

x = (x1, x2, . . . , xn) with xi ∈ C

where scalar multiplication and addition must be intended in the usual sense, that is,

ax = (ax1, ax2, . . . , axn) , ∀a ∈ C

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) .
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A second example is given by the sequence of complex numbers

x = (x1, x2, . . . , xi , . . .) with xi ∈ C.

In the first example, the vector space is finite dimensional, in the second, it is
infinite dimensional (further on, the concept of dimension of a vector space will be
formalized in general).

A third example of vector space is given by the class of continuous-time or
discrete-time, and alsomultidimensional, signals (complex functions).Wewill return
to this example with more details in the following section.

2.2.3 Definitions on Vector Spaces and Properties

We will now introduce the main definitions and establish a few properties of vector
spaces, following Roman’s textbook [1].

Vector Subspaces

A nonempty subset S of a vector space V, itself a vector space provided with the
same two operations on V, is called a subspace of V. Therefore, by definition, S is
closed with respect to the linear combinations of vectors of S.

Notice that {0}, where 0 is the identity element of V, is a subspace of V.

Generator Sets and Linear Independence

Let S0 be a nonempty subset of V, not necessarily a subspace; then the set of all the
linear combinations of vectors of S0 generates a subspace S of V, indicated in the
form

S = span (S0) = {a1x1 + a2x2 + · · · + an xn | ai ∈ C, xi ∈ S0}. (2.1)

In particular, the generator set S0 can consist of a single point of V. For example, in
C
2, the set S0 = {(1, 2)} consisting of the vector (1, 2), generates S = span (S0) =

{a(1, 2)|a ∈ C} = {(a, 2a)|a ∈ C}, which represents a straight line passing through
the origin (Fig. 2.1); it can be verified that S is a subspace of C2. The set S0 =
{(1, 2), (3, 0)} generates the entire C2, that is,1

span ((1, 2), (3, 0)) = C
2.

The concept of linear independence of a vector space is the usual one. A set
S0 = {x1, x2, . . . , xn} of vectors of V is linearly independent, if the equality

1 If S0 is constituted by some points, for example S0 = {x1, x2, x3}, the notation span(S0) =
span({x1, x2, x3}) is simplified to span(x1, x2, x3).
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• (1,2)

span((1,2))

•
(3,0)

• (1,2)

span ((1,2), (3,0))= C
2

Fig. 2.1 The set {(1, 2)} ofC2 generates a straight line trough the origin,while the set {(3, 0), (1, 2)}
generates C2 (for graphical reason the representation is limited to R

2)

a1 x1 + a2 x2 + · · · + an xn = 0 (2.2)

implies
a1 = 0, a2 = 0, . . . , an = 0.

Otherwise, the set is linearly dependent. For example, in C
2 the set {(1, 2), (0, 3)}

is constituted by two linear independent vectors, whereas the set {(1, 2), (2, 4)} is
linearly dependent because

a1(1, 2) + a2(2, 4) = (0, 0) for a1 = 2 e a2 = −1.

2.2.4 Bases and Dimensions of a Vector Space

A subsetB of a vector space V constituted by linearly independent vectors is a basis
of V if B generates V, that is, if two conditions are met:

(1) B ⊂ V is formed by linearly independent vectors,
(2) span (B) = V.

It can be proved that [1, Chap.1]:

(a) Every vector space V, except the degenerate space {0}, admits a basis B.
(b) If b1, b2, . . . , bn are vectors of a basis B of V, the linear combination

a1b1 + a2b2 + · · · + anbn = x (2.3)

is unique, i.e., the coefficients a1, a2, . . . , an , are uniquely identified by x .
(c) All the bases of a vector space have the same cardinality. Therefore, if B1 and

B2 are two bases of V, it follows that |B1| = |B2|.
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The property (c) is used to define the dimension of a vector space V, letting

dim V := |B|. (2.4)

Then the dimension of a vector space is given by the common cardinality of its bases.
In particular, if B is finite, the vector space V is of finite dimension; otherwise V is
of infinite dimension.

In Cn the standard basis is given by the n vectors

(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). (2.5)

Therefore, dim C
n = n. We must observe that in C

n there are infinitely many other
bases, all of cardinality n.

In the vector space consisting of the sequences (x1, x2, . . .) of complex numbers,
the standard basis is given by the vectors

(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, . . .), . . . (2.6)

which are infinite. Therefore this space is of infinite dimension.

2.3 Inner-Product Vector Spaces

2.3.1 Definition of Inner Product

In a vector space V on complex numbers, the inner product, here indicated by the
symbol 〈·, ·〉, is a function

〈·, ·〉 : V × V → C

with the following properties, for x, y, z ∈ V and a, b ∈ C:

(1) it is a positive definite function, that is,

〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0;

(2) it enjoys the Hermitian symmetry

〈x, y〉 = 〈y, x〉∗;

(3) it is linear with respect to the first argument

〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉. �
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From properties (2) and (3) it follows that with respect to the second argument the
so-called conjugate linearity holds, namely

〈z, ax + by〉 = a∗〈z, x〉 + b∗〈z, y〉.

We observe that within the same vector spaceV it is possible to introduce different
inner products, and the choice must be made according to the application of interest.

2.3.2 Examples

In C
n , the standard form of inner product of two vectors x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) is defined as follows:

〈x, y〉 = x1 y∗
1 + · · · + xn y∗

n =
n∑

i=1

xi y∗
i (2.7a)

and it can be easily seen that such expression satisfies the properties (1), (2), and (3).
Interpreting the vectors x ∈ C

n as column vectors (n × 1 matrices), and indicating
with y∗ the conjugate transpose of y (1 × n matrix), that is,

x =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ , y∗ = [
y∗
1 , . . . , y∗

n

]
(2.7b)

and applying the usual matrix product, we obtain

〈x, y〉 = y∗x = x1 y∗
1 + · · · + xn y∗

n (2.7c)

a very handy expression for algebraic manipulations.
The most classic example of infinite-dimensional inner-product vector space,

introduced by Hilbert himself, is the space �2 of the square-summable complex
sequences x = (x1, x2, . . .), that is, with

∞∑

i=1

|xi |2 < ∞ (2.8)

where the standard inner product is defined by

〈x, y〉 =
∞∑

i=1

xi y∗
i = lim

n→∞

n∑

i=1

xi y∗
i .
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The existence of this limit is ensured by Schwartz’s inequality (see (2.12)), where
(2.8) is used.

Another example of inner-product vector space is given by the continuous func-
tions over an interval [a, b], where the standard inner product is defined by

〈x, y〉 =
∫ b

a
x(t) y∗(t) dt.

2.3.3 Examples from Signal Theory

These examples are proposed because they will allow us to illustrate some concepts
on vector spaces, in view of the reader’s familiarity with the subject.

We have seen that the class of signals s(t), t ∈ I , defined on a domain I , form a
vector space. If we limit ourselves to the signals L2(I ), for which it holds that 2

∫

I
dt |s(t)|2 < ∞, (2.9)

we can obtain a space with inner product defined by

〈x, y〉 =
∫

I
dt x(t) y∗(t) (2.10)

which verifies conditions (1), (2), and (3).
A first concept that can be exemplified through signals is that of a subspace. In the

space L2(I ), let us consider the subspace E(I ) formed by the even signals. Is E(I )
a subspace? The answer is yes, because every linear combination of even signals is
an even signal: therefore E(I ) is a subspace of L2(I ). The same conclusion applies
to the class O(I ) of odd signals. These two subspaces are illustrated in Fig. 2.2.

2.3.4 Norm and Distance. Convergence

From the inner product it is possible to define the norm ||x || of a vector x ∈ V through
the relation

||x || = √〈x, x〉. (2.11)

Intuitively, the norm may be thought of as representing the length of the vector. A
vector with unit norm ||x || = 1, is called unit vector (we anticipate that in Quantum
Mechanics only unit vectors are used). In terms of inner product and norm, we can

2 To proceed in unified form, valid for all the classes L2(I ), we use the Haar integral (see [2]).
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Fig. 2.2 Examples of vector
subspaces of the signal class
L2(I )

E(I)O(I)

L2(I)

E(I): class of even signals

O(I): class of odd signals

write the important Schwartz’s inequality

|〈x, y〉| ≤ ||x || ||y|| (2.12)

where the equal sign holds if and only if y is proportional to x , that is, y = kx for
an appropriate k ∈ C.

From (2.11) it follows that an inner-product vector space is also a normed space,
with the norm introduced by the inner product.

In an inner-product vector space we can also introduce the distance d(x, y)

between two points x, y ∈ V, through the relation

d(x, y) = ||x − y|| (2.13)

andwe can verify that this parameter has the properties required by distance inmetric
spaces, in particular the triangular inequality holds

d(x, y) ≤ d(x, z) + d(y, z). (2.14)

So an inner-product vector space is also a metric space.
Finally, the inner product allows us to introduce the concept of convergence. A

sequence {xn} of vectors of V converges to the vector x if

lim
n→∞ d(xn, x) = lim

n→∞ ||xn − x || = 0. (2.15)

Now, suppose that a sequence {xn} has the property (Cauchy’s sequence or
fundamental sequence)

d(xm, xn) → 0 for m, n → ∞.
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In general, for such a sequence, the limit (2.15) is not guaranteed to exist, and, if
it exists, it is not guaranteed that the limit x is a vector of V. So, an inner-product
vector space in which all the Cauchy sequences converge to a vector of V is said to
be complete. At this point we have all we need to define a Hilbert space.

2.4 Definition of Hilbert Space

Definition 2.2 A Hilbert space is a complete inner-product vector space.

It must be observed that a finite dimensional vector space is always complete, as
it is closed with respect to all its sequences, and therefore it is always a Hilbert
space. Instead, if the space is infinite dimensional, the completeness is not ensured,
and therefore it must be added as a hypothesis, in order for the inner-product vector
space to become a Hilbert space.

At this point, we want to reassure the reader: the theory of optical quantum com-
munications will be developed at a level that will not fully require the concept of a
Hilbert space, but the concept of inner-product vector space will suffice. Nonethe-
less, the introduction of the Hilbert space is still done here for consistency with the
Quantum Mechanics literature.

From now on, we will assume to operate on a Hilbert space, but, for what we just
said, we can refer to an inner-product vector space.

2.4.1 Orthogonality, Bases, and Coordinate Systems

In a Hilbert space, the basic concepts, introduced for vector spaces, can be expressed
by using orthogonality.

Let H be a Hilbert space. Then two vectors x, y ∈ H are orthogonal if

〈x, y〉 = 0. (2.16)

Extending what was seen in Sect. 2.2, we have that a Hilbert space admits orthogonal
bases, where each basis

B = {bi , i ∈ I } (2.17)

is formed by pairwise orthogonal vectors, that is,

〈bi , b j 〉 = 0 i, j ∈ I, i �= j

and furthermore, B generates H

span(B) = H.
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The set I in (2.17) is finite, I = {1, 2, . . . , n}, or countably infinite, I = {1, 2, . . .},
and may even be a continuum (but not considered in this book until Chap.11).

Remembering that a vector b is a unit vector if ||b||2 = 〈b, b〉 = 1, a basis
becomes orthonormal, if it is formed by unit vectors. The orthonormality condition
of a basis can be written in the compact form

〈bi , b j 〉 = δi j , (2.18)

where δi j is Kronecker’s symbol, defined as δi j = 1 for i = j and δi j = 0 for i �= j .
In general, a Hilbert space admits infinite orthonormal bases, all, obviously, with the
same cardinality.

For a fixed orthonormal basisB = {bi , i ∈ I }, every vector x ofH can be uniquely
written as a linear combination of the vectors of the basis

x =
∑

i∈I

ai bi (2.19)

where the coefficients are given by the inner products

ai = 〈x, bi 〉. (2.20)

In fact, we obtain

〈x, b j 〉 =
〈∑

i

ai bi , b j

〉
=

∑

i

ai 〈bi , b j 〉 = a j

where in the last equality we used orthonormality condition (2.18).
The expansion (2.19) is called Fourier expansion of the vector x and the coeffi-

cients ai the Fourier coefficients of x , obtained with the basis B.
Through Fourier expansion, every orthonormal basis B = {bi , i ∈ I } defines a

coordinate system in theHilbert space. In fact, according to (2.19) and (2.20), a vector
x uniquely identifies its Fourier coefficients {ai , i ∈ I }, which are the coordinates
of x obtained with the basis B. Of course, if the basis is changed, the coordinate
system changes too, and so do the coordinates {ai , i ∈ I }. Sometimes, to remark the
dependence on B, we write (ai )B.

For a Hilbert space H with finite dimension n, a basis and the corresponding
coordinate system establish a one-to-one correspondence between H and C

n : the
vectors x ofH become the vectors ofCn composed by the Fourier coefficients of ai ,
that is,

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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x ∈ H
coordinates−−−−−−−→ xB =

⎡

⎢⎢⎢⎣

a1
a2
...

an

⎤

⎥⎥⎥⎦ ∈ C
n . (2.21)

Example 2.1 (Periodic discrete signals) Consider the vector space L2 = L2(Z(T )/

Z(N T )) constituted by periodic discrete signals (with spacing T and period N T );
Z(T ) := {nT |n ∈ Z} is the set of multiples of T . A basis for this space is formed by
the signals

bi = bi (t) = 1

T
δZ(T )/Z(N T )(t − iT ), i = 0, 1, . . . , N − 1,

where δZ(T )/Z(N T ) is the periodic discrete impulse [2]

δZ(T )/Z(N T )(t) =
{
1/T t ∈ Z(N T )

0 t /∈ Z(N T )
t ∈ Z(T ).

This basis is orthonormal because

〈bi , b j 〉 =
∫

Z(T )/Z(N T )

dt bi (t) b∗
j (t) = δi j .

A first conclusion is that this vector space has finite dimension N .
For a generic signal x = x(t), coefficients (2.20) provide

ai = 〈x, bi 〉 =
∫

Z(T )/Z(Tp)

dt x(t) b∗
i (t) = 1

T
x(iT ),

and therefore the signal coordinates are given by a vector collecting the values in
one period, divided by T .

2.4.2 Dirac’s Notation

In Quantum Mechanics, where systems are defined on a Hilbert space, vectors are
indicated with a special notation, introduced by Dirac [3]. This notation, although
apparently obscure, is actually very useful, and will be adopted from now on.

A vector x of a Hilbert space H is interpreted as a column vector, of possibly
infinite dimension, and is indicated by the symbol

|x〉 (2.22a)
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which is called ket. Its transpose conjugate |x〉∗ should be interpreted as a row vector,
and is indicated by the symbol

〈x | = |x〉∗ (2.22b)

which is called bra.3 As a consequence, the inner product of two vectors |x〉 and |y〉
is indicated in the form

〈x |y〉. (2.22c)

We now exemplify this notation for the Hilbert space C
n , comparing it to the

standard notation

x =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ becomes |x〉 =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦

x∗ = [
x∗
1 , . . . , x∗

n

]
becomes 〈x | = |x〉∗ = [

x∗
1 , . . . , x∗

n

]

〈x, y〉 = y∗x becomes 〈y|x〉 = x1 y∗
1 + · · · + xn y∗

n .

(2.23)

Again, to become familiar with Dirac’s notation, we also rewrite some relations, pre-
viously formulated with the conventional notation. A linear combination of vectors
is written in the form

|x〉 = a1|x1〉 + a2|x2〉 + · · · + an|xn〉.

The norm of a vector is written as ||x || = √〈x |x〉. The orthogonality condition
between two vectors |x〉 and |y〉 is now written as

〈x |y〉 = 0,

and the orthonormality of a basis B = {|bi 〉, i ∈ I } is written in the form

〈bi |b j 〉 = δi j .

The Fourier expansion with a finite-dimensional orthonormal basisB = {|bi 〉|i =
1, . . . , n} becomes

|x〉 = a1|b1〉 + · · · + an|bn〉 (2.24)

where
ai = 〈bi |x〉, (2.24a)

and can also be written in the form

|x〉 = (〈b1|x〉) |b1〉 + · · · + (〈bn|x〉) bn〉. (2.25)

3 These names are obtained by splitting up the word “bracket”; in the specific case, the brackets
are 〈 〉.
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Schwartz’s inequality (2.12) becomes

|〈x |y〉|2 ≤ 〈x |x〉〈y|y〉 or 〈x |y〉〈y|x〉 ≤ 〈x |x〉〈y|y〉. (2.26)

Problem 2.1 � A basis in H = C
2 is usually denoted by {|0〉, |1〉}. Write the

standard basis and a nonorthogonal basis.

Problem 2.2 �� An important basis in H = C
n is given by the columns of the

Discrete Fourier Transform (DFT) matrix of order n, given by

|wi 〉 = 1√
n

[
1, W −i

n , W −2i
n , . . . , W −i(n−1)

n

]T
, i = 0, 1, . . . , n − 1 (E1)

where Wn := exp(i2π/n) is the nth root of 1. Prove that this basis is orthonormal.

Problem 2.3 � Find the Fourier coefficients of ket

|x〉 =
⎡

⎣
1
i
2

⎤

⎦ ∈ C
3

with respect to the orthonormal basis (E1).

Problem 2.4 � Write the Fourier expansion (2.24) and (2.25) with a general ortho-
normal basis B = {|bi 〉|i ∈ I }.

2.5 Linear Operators

2.5.1 Definition

An operator A from the Hilbert spaceH to the same spaceH is defined as a function

A : H → H. (2.27)

If |x〉 ∈ H, the operator A returns the vector

|y〉 = A|x〉 with |y〉 ∈ H. (2.28)

To represent graphically the operator A, we can introduce a block (Fig. 2.3) con-
taining the symbol of the operator, and in (2.28) |x〉 is interpreted as input and |y〉 as
output.

The operator A : H → H is linear if the superposition principle holds, that is, if

A(a1|x1〉 + a2|x2〉) = a1A|x1〉 + a2A|x2〉
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Fig. 2.3 Graphical
representation of a linear
operator A

|x |y |x ,|y ∈H

Fig. 2.4 The linear operator
for “bras”; A∗ is the adjoint
of A A∗

x| y| x|, y|∈H∗

for every |x1〉, |x2〉 ∈ H and a1, a2 ∈ C.
A trivial linear operator is the identity operator IH on H defined by the relation

IH |x〉 ≡ |x〉, for any vector |x〉 ∈ H. Another trivial linear operator is the zero
operator, 0H, which maps any vector onto the zero vector, 0H|x〉 ≡ 0.

In the interpretation of Fig. 2.3 the operator A acts on the kets (column vectors)
of H: assuming as input the ket |x〉, the operator outputs the ket |y〉 = A|x〉. It is
possible to associate toH a Hilbert spaceH∗ (dual space) creating a correspondence
between each ket |x〉 ∈ H and its bra 〈x | in H∗. In this way, to each linear operator
A ofH a corresponding A∗ ofH∗ can be associated, and the relation (2.28) becomes
(Fig. 2.4)

〈y| = 〈x |A∗.

The operator A∗ is called the adjoint4 of A. In particular, if A = [ai j ]i, j=1,...,n is a
square matrix, it results that A∗ = [a∗

j i ]i, j=1,...,n is the conjugate transpose.

2.5.2 Composition of Operators and Commutability

The composition (product)5 AB of two linear operators A and B is defined as the
linear operator that, applied to a generic ket |x〉, gives the same result as would be
obtained from the successive application of B followed by A, that is,

{AB}|x〉 = A{B|x〉}. (2.29)

In the graphical representation the product must be seen as a cascade of blocks
(Fig. 2.5).

In general, like for matrices, the commutative property AB = BA does not hold.
Instead, to account for noncommutativity, the commutator between two operators

4 This is not the ordinary definition of adjoint operator, but it is an equivalent definition, deriving
from the relation |x〉∗ = 〈x | (see Sect. 2.8).
5 We take for granted the definition of sum A + B of two operators, and of multiplication of an
operator by a scalar k A.
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B A = AB

Fig. 2.5 Cascade connection of two operators

A and B is introduced, defined by

[A, B] := AB − BA. (2.30)

In particular, if two operators commute, that is, if AB = BA, the commutator results
in [A, B] = 0. Also an anticommutator is defined as

{A, B} := AB + BA. (2.31)

Clearly, it is possible to express the product between two operators A and B in terms
of the commutator and anticommutator

AB = 1

2
[A, B] + 1

2
{A, B}. (2.31a)

In Quantum Mechanics, the commutator and the anticommutator are exten-
sively used, e.g., to establish Heisenberg’s uncertainty principle (see Sect. 3.9). Since
most operator pairs do not commute, specific commutation relations are introduced
through the commutator (see Chap.11).

2.5.3 Matrix Representation of an Operator

As we have seen, a linear operator has properties very similar to those of a square
matrix and, more precisely, to the ones that are obtained with a linear transformation
of the kind y = Ax , where x and y are column vectors, and A is a square matrix, and
it can be stated that linear operators are a generalization of square matrices. Also, it
is possible to associate to each linear operator A a square matrix AB of appropriate
dimensions, n × n, if the Hilbert space has dimension n, or of infinite dimensions if
H has infinite dimension.

To associate a matrix to an operator A, we must fix an orthonormal basis B =
{|bi 〉, i ∈ I } of H. The relation

ai j = 〈bi |A|b j 〉, |bi 〉, |b j 〉 ∈ B (2.32)

allows us to define the elements ai j of a complex matrix AB = [ai j ]. In (2.32), the
expression 〈bi |A|b j 〉 must be intended as 〈bi |{A|b j 〉}, that is, as the inner product

http://dx.doi.org/10.1007/978-3-319-15600-2_3
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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of the bra 〈bi | and the ket |A|b j 〉 that is obtained by applying the operator A to the
ket |b j 〉. Clearly, the matrix AB = [ai j ], obtained from (2.32), depends on the basis
chosen, and sometimes the elements of the matrix are indicated in the form ai j B to
stress such dependence on B. Because all the bases ofH have the same cardinality,
all the matrices that can be associated to an operator have the same dimension.

From the matrix representation AB = [ai j B] we can obtain the operator A using
the outer product |bi 〉〈b j |, which will be introduced later on. The relation is

A =
∑

i

∑

j

ai j B|bi 〉〈b j | (2.33)

and will be proved in Sect. 2.7.
The matrix representation of an operator turns out to be useful as long as it allows

us to interpret relations between operators as relations between matrices, with which
we are usually more familiar. It is interesting to remark that an appropriate choice
of a basis for H can lead to an “equivalent” matrix representation, simpler with
respect to a generic choice of the basis. For example, we will see that a Hermitian
operator admits a diagonal matrix representation with respect to a basis given by the
eigenvectors of the operator itself.

In practice, as previously mentioned, in the calculations we will always refer to
the Hilbert space H = C

n , where the operators can be interpreted as n × n square
matrices with complex elements (the dimension of H could be infinite), keeping in
mind anyhow that matrix representations with different bases correspond to the usual
basis changes in normed vector spaces.

2.5.4 Trace of an Operator

An important parameter of an operator A is its trace, given by the sum of the diagonal
elements of its matrix representation, namely

Tr[A] =
∑

i

〈bi |A|bi 〉. (2.34)

The operation Tr[·] appears in the formulation of the third postulate of Quantum
Mechanics, and it is widely used in quantum decision.

The trace of an operator has the following properties, which will be often used in
the following:

(1) The trace of A is independent of the basis with respect to which it is calculated,
and therefore it is a characteristic parameter of the operator.

(2) The trace has the cyclic property
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Tr[AB] = Tr[BA] (2.35)

which holds even if the operators A and B are not commutable; such property
holds also for rectangular matrices, providing that the products AB and BA make
sense.

(3) The trace is linear, that is,

Tr[a A + bB] = a Tr[A] + b Tr[B], a, b ∈ C. (2.36)

For completeness we recall the important identity

〈u|A|u〉 = Tr[A|u〉〈u|] (2.37)

where |u〉 is an arbitrary vector, and |u〉〈u| is the operator given by the outer product,
which will be introduced later.

2.5.5 Image and Rank of an Operator

The image of an operator A of H is the set

im(A) := AH = {A|x〉 | |x〉 ∈ H}. (2.38)

It can be easily proved that im(A) is a subspace of H (see Problem2.6).
The dimension of this subspace defines the rank of the operator

rank(A) = dim im(A) = |AH|. (2.39)

This definition can be seen as the extension to operators of the concept of rank of a
matrix. As it appears from (2.38), to indicate the image of an operator of H we use
the compact symbol AH.

Problem 2.5 � Prove that the image of an operator on H is a subspace of H.

Problem 2.6 � Define the 2D operator that inverts the entries of a ket and write its
matrix representation with respect to the standard basis.

Problem 2.7 �� Find the matrix representation of the operator of the previous
problem with respect to the DFT basis.
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Fig. 2.6 Interpretation of
eigenvalue and eigenvector
of a linear operator A

A
|x0 λ |x0

2.6 Eigenvalues and Eigenvectors

An eigenvalue λ of a given operator A is a complex number such that a vector
|x0〉 ∈ H exists, different from zero, satisfying the following equation:

A|x0〉 = λ|x0〉 |x0〉 �= 0 . (2.40)

The vector |x0〉 is called eigenvector corresponding to the eigenvalue λ.6 The inter-
pretation of relation (2.40) is illustrated in Fig. 2.6.

The set of all the eigenvalues is called spectrum of the operator and it will be
indicated by the symbol σ(A).

From the definition it results that the eigenvector |x0〉 associated to a given eigen-
value is not unique, and in fact from (2.40) it results that also 2|x0〉, or i|x0〉 with i
the imaginary unit, are eigenvectors of λ. The set of all the eigenvectors associated
to the same eigenvalue

Eλ = {|x0〉
∣∣ A|x0〉 = λ|x0〉} (2.41)

is always a subspace,7 which is called eigenspace associated to the eigenvalue λ.

2.6.1 Computing the Eigenvalues

In the space H = C
n , where the operator A can be interpreted as an n × n matrix,

the eigenvalue computation becomes the procedure usually followed with complex
square matrices, consisting in the evaluation of the solutions to the characteristic
equation

c(λ) = det[A − λ IH] = 0

where c(λ) is a polynomial. Then, for the fundamental theorem of Algebra, the
number r ≤ n of distinct solutions is found: λ1, λ2, . . . , λr , forming the spectrum
of A

σ(A) = {λ1, λ2, . . . , λr }.

6 The eigenvector corresponding to the eigenvalue λ is often indicated by the symbol |λ〉.
7 As we assume |x0〉 �= 0, to complete Eλ as a subspace, the vector 0 of Hmust be added.
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The solutions allow us to write c(λ) in the form

c(λ) = a0(λ − λ1)
p1(λ − λ2)

p2 . . . (λ − λr )
pr , a0 �= 0

where pi ≥ 1, p1+p2+· · ·+pr = n, and pi is called themultiplicityof the eigenvalue
λi . Thenwe can state that the characteristic equation has always n solutions, counting
the multiplicities.

As it is fundamental to distinguish whether we refer to distinct or to multiple
solutions, we will use different notations in the two cases

λ1, λ2, . . . , λr for distinct eigenvalues
λ̃1, λ̃2, . . . , λ̃n for eigenvalueswith repetitions

(2.42)

Example 2.2 The 4 × 4 complex matrix

A = 1

4

⎡

⎢⎢⎣

7 −1 + 2 i −1 −1 − 2 i
−1 − 2 i 7 −1 + 2 i −1

−1 −1 − 2 i 7 −1 + 2 i
−1 + 2 i −1 −1 − 2 i 7

⎤

⎥⎥⎦ (2.43)

has the characteristic polynomial

c(λ) = 6 − 17 λ + 17 λ2 − 7 λ3 + λ4

which has solutions λ1 = 1 with multiplicity 2, and λ2 = 2 and λ3 = 3 with
multiplicity 1. Therefore, the distinct eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 3,
whereas the eigenvalues with repetition are

λ̃1 = 1, λ̃2 = 1, λ̃3 = 2, λ̃4 = 3.

The corresponding eigenvectors are, for example,

|λ̃1〉 =

⎡

⎢⎢⎣

1 + i
i
0
1

⎤

⎥⎥⎦ |λ̃2〉 =

⎡

⎢⎢⎣

−i
1 − i
1
0

⎤

⎥⎥⎦ |λ̃3〉 =

⎡

⎢⎢⎣

−1
1

−1
1

⎤

⎥⎥⎦ |λ̃4〉 =

⎡

⎢⎢⎣

−i
−1
i
1

⎤

⎥⎥⎦ . (2.44)

As we will see with the spectral decomposition theorem, it is possible to associate
different eigenvectors to coincident, or even orthogonal, eigenvalues. In (2.44) |λ̃1〉
and |λ̃2〉 are orthogonal, namely, 〈λ̃1|λ̃2〉 = 0.

What was stated above for Cn can apply to any finite dimensional space n, using
matrix representation. For an infinite dimensional space the spectrum can have infi-
nite cardinality, but not necessarily. In any case it seems that no general procedures
exist to compute the eigenvalues for the operators in an infinite dimensional space.
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Trace of an operator from the eigenvalues It can be proved that the sum of the
eigenvalues with coincidences gives the trace of the operator

n∑

i=1

λ̃i =
r∑

i=1

pi λi = Tr[A]. (2.45)

It is also worthwhile to observe that the product of the eigenvalues λ̃i gives the
determinant of the operator

λ̃1 λ̃2 . . . λ̃n = λ
p1
1 λ

p2
2 . . . λ

pr
r = det(A) (2.46)

and that the rank of A is given by the sum of the multiplicities of the λ̃i different
from zero.

2.7 Outer Product. Elementary Operators

The outer product of two vectors |x〉 and |y〉 in Dirac’s notation is indicated in
the form

|x〉〈y|,

which may appear similar to the inner product notation 〈x |y〉, but with factors
inverted. This is not the case: while 〈x |y〉 is a complex number, |x〉〈y| is an operator.
This can be quickly seen if |x〉 is interpreted as a column vector and 〈y| as a row
vector, referring for simplicity to the space Cn , where

|x〉 =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ , 〈y| = [
y∗
1 , . . . , y∗

n

]
.

Then, using the matrix product, we have

|x〉〈y| =
⎡

⎢⎣
x1
...

xn

⎤

⎥⎦
[
y∗
1 , . . . , y∗

n

] =
⎡

⎢⎣
x1y∗

1 · · · x1y∗
n

...
...

xn y∗
1 · · · xn y∗

n

⎤

⎥⎦

that is, |x〉〈y| is an n × n square matrix.
The outer product8 makes it possible to formulate an important class of linear

operators, called elementary operators (or rank 1 operators) in the following way

8 Above, the outer product was defined in the Hilbert space C
n . For the definition in a generic

Hilbert space one can use the subsequent (2.48), which defines C = |c1〉〈c2| as a linear operator.
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Fig. 2.7 Interpretation of the
linear operator C = |c1〉〈c2| |c1 c2|

|x k|c1 k= c2 |x

C = |c1〉〈c2| (2.47)

where |c1〉 and |c2〉 are two arbitrary vectors of the Hilbert space H. To understand
its meaning, let us apply to C = |c1〉〈c2| an arbitrary ket |x〉 ∈ H (Fig. 2.7), which
results in

C |x〉 = (|c1〉〈c2|)|x〉 = (〈c2|x〉)|c1〉, ∀ |x〉 ∈ H, (2.48)

namely, a vector proportional to |c1〉, with a proportionality constant given by the
complex number k = 〈c2|x〉.

From this interpretation it is evident that the image of the elementary operator C
is a straight line through the origin identified by the vector |c1〉

im(|c1〉〈c2|) = {h |c1〉|h ∈ C}

and obviously the elementary operator has unit rank.
Within the class of the elementary operators, a fundamental role is played, espe-

cially in Quantum Mechanics, by the operators obtained from the outer product of a
ket |b〉 and the corresponding bra 〈b|, namely

B = |b〉〈b|. (2.49)

For these elementary operators, following the interpretation of Fig. 2.7, we realize
that B transforms an arbitrary ket |x〉 into a ket proportional to |b〉. As we will see,
if |b〉 is unitary, then |b〉〈b| turns out to be a projector.

2.7.1 Properties of an Orthonormal Basis

The elementary operators allow us to reinterpret in a very meaningful way the prop-
erties of an orthonormal basis in a Hilbert space H. If B = {|bi 〉, i ∈ I } is an
orthonormal basis onH, thenB identifies k = |I | elementary operators |bi 〉〈bi |, and
their sum gives the identity

∑

i∈I

|bi 〉〈bi | = IH for every orthonormal B = {|bi 〉, i ∈ I }. (2.50)
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In fact, if |x〉 is any vector of H, its Fourier expansion (see (2.24)), using the basis
B (see (2.24)), results in

∑

i

|bi 〉〈bi |x〉 =
∑

i

|bi 〉
∑

j

ai 〈bi |b j 〉

=
∑

i

|bi 〉 ai = |x〉

and, recalling that 〈bi |b j 〉 = δi j , we have

∑

i

|bi 〉〈bi |x〉 =
∑

i

ai |bi 〉 = |x〉.

In other words, if we apply to the sum of the elementary operators |bi 〉〈bi | the ket |x〉,
we obtain again the ket |x〉 and therefore such sum gives the identity. The property
(2.50), illustrated in Fig. 2.8, can be expressed by stating that the elementary operators
|bi 〉〈bi | obtained from an orthonormal basis B = {|bi 〉, i ∈ I } give a resolution of
the identity IH on H.

The properties of an orthonormal basis B = {|bi 〉, i ∈ I } on the Hilbert spaceH
can be so summarized:

(1) B is composed of linearly independent and orthonormal vectors

〈bi |b j 〉 = δi j ;

(2) the cardinality of B is, by definition, equal to the dimension ofH

|B| = dim H;

|b1 b1 |

|bN bN |

Σ
|x

=
|x

IH
|x |x

|bi bi |

...

...

Fig. 2.8 The elementary operators |bi 〉〈bi | obtained from an orthonormal basis B = {|b1〉,
. . . , |bN 〉} provide a resolution of the identity IH
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(3) the basis B, through its elementary operators |bi 〉〈bi |, gives a resolution of the
identity on H, as stated by (2.50);

(4) B makes it possible to develop every vector |x〉 of H in the form (Fourier
expansion)

|x〉 =
∑

i

ai |bi 〉 with ai = 〈bi |x〉. (2.51)

Continuous bases Above we have implicitly assumed that the basis consists of
an enumerable set of kets B. In Quantum Mechanics also continuous bases, which
consist of a continuum of eigenkets, are considered. This will be seen in the final
chapters in the context of Quantum Information (see in particular Sect. 11.2).

2.7.2 Useful Identities Through Elementary Operators

Previously, we anticipated two identities requiring the notion of elementary operator.
A first identity, related to the trace, is given by (2.37), namely

〈u|A|u〉 = Tr[A|u〉〈u|]

where A is an arbitrary operator, and |u〉 is a vector, also arbitrary. To prove this
relation, let us consider an orthonormal basis B = {|bi 〉, i ∈ I } and let us apply the
definition of a trace (2.34) to the operator A|u〉〈u|. We obtain

Tr[A|u〉〈u|] =
∑

i

〈bi |A|u〉〈u|bi 〉

=
∑

i

〈u|bi 〉〈bi |A|u〉 = 〈u|
∑

i

|bi 〉〈bi |A|u〉

= 〈u|IHA|u〉 = 〈u|A|u〉

where we took into account the fact that
∑

i |bi 〉〈bi | coincides with the identity
operator IH on H (see (2.50)).

A second identity is (2.33)

A =
∑

i

∑

j

ai j |bi 〉〈b j |

which makes it possible to reconstruct an operator A from its matrix representation
AB = [ai j ] obtained with the basis B. To prove this relation, let us write A in the
form IHAIH, and then let us express the identity IH in the form (2.50). We obtain

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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A = IHAIH =
∑

i

|bi 〉〈bi |A
∑

j

|b j 〉〈b j |

=
∑

i

∑

j

|bi 〉〈bi |A|b j 〉〈b j |

where (see (2.32)) 〈bi |A|b j 〉 = ai j .

2.8 Hermitian and Unitary Operators

Basically, in Quantum Mechanics only unitary and Hermitian operators are used.
Preliminary to the introduction of these two classes of operators is the concept of an
adjoint operator.

The definition of adjoint is given in a very abstract form (see below). If we want
to follow a more intuitive way, we can refer to the matrices associated to operators,
recalling that if A = [ai j ] is a complex square matrix, then:

• A∗ indicates the conjugate transpose matrix, that is, the matrix with elements a∗
j i ,• A is a Hermitian matrix, if A∗ = A,

• A is a normal matrix, if AA∗ = A∗ A,
• A is a unitary matrix, if AA∗ = I , where I is the identity matrix.

Note that the class of normal matrices includes as a special cases both Hermitian
and unitary matrices (Fig. 2.9). It is also worthwhile to recall the conjugate transpose
rule for the product of two square matrices

(AB)∗ = B∗ A∗. (2.52)

2.8.1 The Adjoint Operator

The adjoint operator A∗ was introduced in Sect. 2.5.1 as the operator for the bras 〈x |,
〈y|, whereas A is the operator for the kets |x〉, |y〉 (see Figs. 2.3 and 2.4). But the
standard definition of adjoint is the following.

Fig. 2.9 The class of normal
matrices includes Hermitian
matrices and unitary
matrices

normal
matrices

Hermitian
matrices unitary

matrices
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Given an operator A : H → H, the adjoint (or Hermitian adjoint) operator A∗
is defined through the inner product from the relation9

(A|x〉, |y〉) = (|x〉, A∗|y〉) , |x〉, |y〉 ∈ H. (2.53)

It can be proved that the operator A∗ verifying such relation exists and is unique and,
also, if AB = [ai j ] is the representative matrix of A, the corresponding matrix of A∗
is the conjugate transpose of AB, namely the matrix A∗

B = [a∗
j i ].

In addition, between two operators A and B and their adjoints the following
relations hold:

(A∗)∗ = A

(A + B)∗ = A∗ + B∗

(AB)∗ = B∗ A∗

(a A)∗ = a∗ A∗ a ∈ C

(2.54)

that is, exactly the same relations that are obtained interpreting A and B as complex
matrices.

2.8.2 Hermitian Operators

An operator A : H → H is called Hermitian (or self-adjoint) if it coincides with its
adjoint, that is, if

A∗ = A.

As a consequence, every representative matrix of A is a Hermitian matrix.
A fundamental property is that the spectrum of a Hermitian operator is composed

of real eigenvalues. To verify this property, we start out by observing that for each
vector |x〉 it results

〈x |A|x〉 ∈ R, ∀|x〉 ∈ H, A Hermitian. (2.55)

In fact, the conjugate of such product gives (〈x |A|x〉)∗ = 〈x |A∗|x〉 = 〈x |A|x〉.
Now, if λ is an eigenvalue of A and |x0〉 the corresponding eigenvector, it results that
〈x0|A|x0〉 = 〈x0|λx0〉 = λ〈x0|x0〉. Then λ = 〈x0|A|x0〉/〈x0|x0〉 is real, being a ratio
between real quantities.

Another important property of Hermitian operators is that the eigenvectors cor-
responding to distinct eigenvalues are always orthogonal. In fact, from A|x1〉 =
λ1|x1〉 and A|x2〉 = λ2|x2〉, remembering that λ1 and λ2 are real, it follows that
λ2〈x1|x2〉 = 〈x1|A|x2〉 = 〈λ1x1|x2〉 = λ1〈x1|x2〉. Therefore, if λ1 �= λ2, then nec-

9 In most textbooks the adjoint operator is indicated by the symbol A† and sometimes by A+.
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essarily 〈x1|x2〉 = 0. This property can be expressed in terms of eigenspaces (see
(2.41)) in the form: Eλ = {|x0〉

∣∣ A|x0〉 = λ|x0〉}, λ ∈ σ(A), that is, the eigenspaces
of a Hermitian operator are orthogonal and this is indicated as follows:

Eλ ⊥ Eμ, λ �= μ.

Example 2.3 The matrix 4 × 4 defined by (2.43) is Hermitian in C
4. As σ(A) =

{1, 2, 3}, we have three eigenspaces E1, E2, E3. For the eigenvalues indicated in
(2.44) we have

|λ̃1〉, |λ̃2〉 ∈ E1, |λ̃3〉 ∈ E2, |λ̃4〉 ∈ E3.

It can be verified that orthogonality holds between eigenvectors belonging to different
eigenspaces. For example,

〈λ1|λ4〉 = [1 − i,−i, 0, 1]

⎡

⎢⎢⎣

−i
−1
i
1

⎤

⎥⎥⎦ = (1 − i)(−i) + (−i)(−1) + 1 = 0.

2.8.3 Unitary Operators

An operator U : H → H is called unitary if

U U∗ = IH (2.56)

where IH is the identity operator. Both unitary and Hermitian operators fall into the
more general class of normal operators, which are operators defined by the property
AA∗ = A∗ A.

From definition (2.56) it follows immediately that U is invertible, that is, there
exists an operator U−1 such that UU−1 = IH, given by

U−1 = U∗. (2.57)

Moreover, it can be proved that the spectrum ofU is always composed of eigenvalues
λi with unit modulus.

We observe that, if B = {|bi 〉, i ∈ I } is an orthonormal basis of H, all the other
bases can be obtained through unitary operators, according to {U |bi 〉, i ∈ I }.

An important property is that the unitary operators preserve the inner product.
In fact, if we apply the same unitary operator U to the vectors |x〉 and |y〉, so that
|u〉 = U |x〉 and |v〉 = U |y〉, from 〈u| = 〈x |U∗, we obtain

〈u|v〉 = 〈x |U∗U |y〉 = 〈x |y〉.
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Example 2.4 A remarkable example of unitary operator in H = L2(I ) is the oper-
ator/matrix F which gives the discrete Fourier transform (DFT)

F =
(
1/

√
N

)
[W −(r−s)

N ]r,s=0,1,...,N−1 (2.58)

where WN = ei2π/N . Then F is the DFT matrix. The inverse matrix is

F−1 = F∗ =
(
1/

√
N

)
[W r−s

N ]r,s=0,1,...,N−1. (2.59)

The columns of F , like for any unitarymatrix, form an orthonormal basis ofH = C
N .

Problem 2.8 � Classify the so-called Pauli matrices

σ0 = I =
[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(E2)

which have an important role in quantum computation.

2.9 Projectors

Orthogonal projectors (briefly, projectors) areHermitian operators of absolute impor-
tance for Quantum Mechanics, since quantum measurements are formulated with
such operators.

2.9.1 Definition and Basic Properties

A projector P : H → H is an idempotent Hermitian operator, that is, with the
properties

P∗ = P, P2 = P (2.60)

and therefore Pn = P for every n ≥ 1.
Let P be the image of the projector P

P = im(P) = P H = {P|x〉 ∣∣ |x〉 ∈ H}, (2.61)

then, if |s〉 is a vector of P, we get

P|s〉 = |s〉, |s〉 ∈ P. (2.62)
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In fact, as a consequence of idempotency, if |s〉 = P|x〉weobtain P|s〉 = P(P|x〉) =
P|x〉 = |s〉. Property (2.62) states that the subspace P is invariant with respect to
the operator P .

Expression (2.62) establishes that each |s〉 ∈ P is an eigenvector of P with
eigenvalue λ = 1; the spectrum of P can contain also the eigenvalue λ = 0

σ(P) ⊂ {0, 1}. (2.63)

In fact, the relation P|x〉 = λ|x〉, multiplied by P gives

P2|x〉 = λP|x〉 = λ2|x〉 → P|x〉 = λ2|x〉 = λ|x〉.

Therefore, every eigenvalue satisfies the condition λ2 = λ, which leads to (2.63).
Finally, (2.63) allows us to state that projectors are nonnegative or positive semi-

definite operators (see Sect. 2.12.1). This property is briefly written as P ≥ 0.

2.9.2 Why Orthogonal Projectors?

To understand this concept we must introduce the complementary projector

Pc = I − P (2.64)

where I = IH is the identity onH. Pc is in fact a projector because it is Hermitian,
and also P2

c = I 2 + P2 − IP − PI = I − P = Pc. Now, in addition to the subspace
P = PH, let us consider the complementary subspace Pc = PcH. It can be verified
that (see Problem2.9):

(1) all the vectors of Pc are orthogonal to the vectors of P, that is,

〈s⊥|s〉 = 0 |s〉 ∈ P, |s⊥〉 ∈ Pc (2.65)

and then we write Pc = P⊥.
(2) the following relations hold:

P|s⊥〉 = 0, |s⊥〉 ∈ Pc Pc|s〉 = 0, |s〉 ∈ P. (2.66)

(3) the decomposition of an arbitrary vector |x〉 of H

|x〉 = |s〉 + |s⊥〉 (2.67)

is uniquely determined by

|s〉 = P|x〉, |s⊥〉 = Pc|x〉. (2.67a)
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Fig. 2.10 Projection of the
vector |x〉 on P along P⊥

u

v

P

P⊥

|s|s⊥

|x

Property (3) establishes that the space H is given by the direct sum of the subspaces
P and P⊥, and we write H = P ⊕ P⊥. According to properties (1) and (2), the
projector P “projects the space H on P along P⊥”.

Example 2.5 Consider the space H = R
2, which is “slightly narrow” for a Hilbert

space, but sufficient to graphically illustrate the above properties. In R2, let us intro-

duce a system of Cartesian axes u, v (Fig. 2.10), and let us indicate by |x〉 =
[

u
v

]
the

generic point of R2.
Let Ph be the real matrix

Ph = 1

1 + h2

[
1 h
h h2

]
(2.68)

where h is a real parameter. It can be verified that P2
h = Ph , therefore Ph is a

projector. The space generated by Ph is

P =
{

Ph

[
u
v

]
|(u, v) ∈ R

2
}

=
{[

u
hu

]
|u ∈ R

}

This is a straight line passing through the origin, whose slope is determined by h.
We can see that the complementary projector

P(c)
h = I − Ph

has the same structure as (2.68) with the substitution h → −1/h, and therefore P⊥
is given by the line through the origin orthogonal to the one above. The conclusion
is that the projector Ph projects the space R2 onto the line P along the line P⊥.

It remains to verify that the geometric orthogonality here implicitly invoked,
coincides with the orthogonality defined by the inner product. If we denote by |s〉
the generic point of P, and by |s⊥〉 the generic point of P⊥, we get
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|s〉 =
[

u
hu

]
|s⊥〉 =

[
u1

(−1/h)u1

]

for given u and u1. Then

〈s⊥|s〉 = [
u1, (−1/h)u1

] [
u

hu

]
= 0.

Finally, the decomposition R
2 = P ⊕ P⊥ must be interpreted in the following

way (see Fig. 2.10): each vector of R2 can be uniquely decomposed into a vector
of P and a vector of P⊥.

Example 2.6 Wenowpresent an example less related to the geometric interpretation,
a necessary effort if we want to comprehend the generality of Hilbert spaces.

Consider the Hilbert space L2 = L2(I ) of the signals defined in I (see Sect. 2.3,
Examples from Signal Theory), and let E be the subspace constituted by the even
signals, that is, those verifying the condition s(t) = s(−t). Notice that E is a sub-
space because every linear combination of even signals gives an even signal. The
orthogonality condition between two signals x(t) and y(t) is

∫

I
dt x(t) y∗(t) = 0.

We state that the orthogonal complement of E is given by the class O of the odd
signals, those verifying the condition s(−t) = −s(t). In fact, it can be easily verified
that if x(t) is even and y(t) is odd, their inner product is null (this for sufficiency;
for necessity, the proof is more complex). Then

E⊥ = O.

We now check that a signal x(t) of L2, which in general is neither even nor odd,
can be uniquely decomposed into an even component x p(t) and an odd component
xd(t). We have in fact (see Unified Theory [2])

x(t) = x p(t) + xd(t)

where

x p(t) = 1

2
[x(t) + x(−t)], xd(t) = 1

2
[x(t) − x(−t)].

Then (Fig. 2.11)

L2 = E ⊕ O.

Notice that E ∩ O = {0}, where 0 denotes the identically null signal.
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Fig. 2.11 The space L2 is
obtained as a direct sum of
the subspaces E and O= E⊥

EO

L2 =E ⊕ O

E: class of even signals

O: class of odd signals

2.9.3 General Properties of Projectors

We summarize the general properties of a projector P:

(1) the spectrum is always σ(P) = {0, 1},
(2) the multiplicity of eigenvalue 1 gives the rank of P and the dimension of the

subspace P = PH,
(3) P ≥ 0: is a positive semidefinite operator (see Sect. 2.12),
(4) Tr[P] = rank(P): the trace of P gives the rank of the projector.

(1) has already been seen. (3) is a consequence of (1) and of Theorem2.6.
(4) follows from (2.45).

2.9.4 Sum of Projectors. System of Projectors

The sum of two projectors P1 and P2

P = P1 + P2

is not in general a projector. But if two projectors are orthogonal in the sense that

P1P2 = 0,

the sum results again in a projector, as can be easily verified. An example of a pair
of orthogonal projectors has already been seen above: P and the complementary
projector Pc verify the orthogonality condition PPc = 0, and their sum is

P + Pc = I,

where I = IH is the identity on H, which is itself a projector.
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The concept can be extended to the sum of several projectors:

P = P1 + P2 + · · · + Pk (2.69)

where the addenda are pairwise orthogonal

PiPj = 0, i �= j. (2.69a)

To (2.69) one can associate k + 1 subspaces

P = PH and Pi = PiH, i = 1, . . . , k

and, generalizing what was previously seen, we find that every vector |s〉 of P can
be uniquely decomposed in the form

|s〉 = |s1〉 + |s2〉 + · · · + |sk〉 with |si 〉 = Pi |s〉. (2.70)

Hence P is given by the direct sum of the subspaces Pi

P = P1 ⊕ P2 ⊕ · · · ⊕ Pk .

If in (2.69) the sum of the projectors yields the identity I

P1 + P2 + · · · + Pk = I (2.71)

we say that the projectors {Pi } provide a resolution of the identity on H and form a
complete orthogonal class of projectors. In this case the direct sum gives the Hilbert
space H

P1 ⊕ P2 ⊕ · · · ⊕ Pk = H, (2.72)

as illustrated in Fig. 2.12 for k = 4, where each point |s〉 ofP is uniquely decomposed
into the sumof 4 components |si 〉 obtained from the relations |si 〉 = Pi |s〉, also shown
in the figure.

For later use we find it convenient to introduce the following definition:

Definition 2.3 A set of operators {Pi , i ∈ I } of the Hilbert space H constitutes a
complete system of orthogonal projectors, briefly projector system, if they have the
properties:

(1) the Pi are projectors (Hermitian and idempotent),
(2) the Pi are pairwise orthogonal (Pi Pj = 0) for i �= j ,
(3) the Pi form a resolution of the identity on H (

∑
i Pi = IH).

The peculiarities of a projector system have been illustrated in Fig. 2.12.

Rank of projectors A projector has always a reduced rank with respect to the
dimension of the space, unless P coincides with the identity I
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P1
|s1

P4

Σ

|s4

|s
=

|s
IH

|s |s
P2

|s2

P3
|s3

P1

P2P4

P3

H

Pi = Pi H

Fig. 2.12 The subspaces Pi give the space H as a direct sum. The projectors Pi give a resolution
of the identity IH and form a projector system

rank(P) = dimP < dimH (P �= I ).

In the decomposition (2.71) it results as

rank(P1) + · · · + rank(Pk) = rank(I ) = dimH,

and therefore in the corresponding direct sum we have that

dimP1 + · · · + dimPk = dimH.

2.9.5 Elementary Projectors

If |b〉 is any unitary ket, the elementary operator

B = |b〉〈b| with ||b|| = 1 (2.73)

is Hermitian and verifies the condition B2 = |b〉〈b|b〉〈b| = B, therefore it is a unit
rank projector. Applying to B any vector |x〉 of H we obtain

B|x〉 = |b〉〈b|x〉 = k |b〉 with k = 〈b|x〉.

Hence B projects the space H on the straight line through the origin identified by
the vector |b〉 (Fig. 2.13).

If two kets |b1〉 and |b2〉 are orthonormal, the corresponding elementary projectors
B1 = |b1〉〈b1| and B2 = |b2〉〈b2| verify the orthogonality (for operators)

B1B2 = |b1〉〈b1|b2〉〈b2| = 0
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Fig. 2.13 The elementary
projector |b〉〈b| projects an
arbitrary ket |x〉 of H on the
line of the ket |b〉

H

|b
0

|x

and therefore their sum

B1 + B2 = |b1〉〈b1| + |b2〉〈b2|

is still a projector (of rank 2).
Proceeding along this way we arrive at the following:

Theorem 2.1 If B = {|bi 〉, i ∈ I } is an orthonormal basis of H, the elementary
projectors Bi = |bi 〉〈bi | turn out to be orthogonal in pairs, and give the identity
resolution ∑

i∈I

Bi =
∑

i∈I

|bi 〉〈bi | = IH.

In conclusion, through a generic basis of a Hilbert space H of dimension n it is
always possible to “resolve” the space H through n elementary projectors, which
form a projector system.

Problem 2.9 � Prove properties (2.65), (2.66) and (2.67) for a projector and its
complement.

Problem 2.10 � Prove that projectors are positive semidefinite operators.

2.10 Spectral Decomposition Theorem (EID)

This theorem is perhaps the most important result of Linear Algebra because it sums
up several previous results and opens the door to get so many interesting results. It
will appear in various forms and will be referred to in different ways, for example,
as diagonalization of a matrix and also as eigendecomposition or EID.

2.10.1 Statement and First Consequences

Theorem 2.2 Let A be a Hermitian operator (or unitary) on the Hilbert space H,
and let {λi }, i = 1, 2, . . . , k be the distinct eigenvalues of A. Then A can be uniquely
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Fig. 2.14 Spectral decomposition of an operator A with four distinct eigenvalues

decomposed in the form

A =
k∑

i=1

λi Pi (2.74)

where the {Pi } form a projector system.

The spectral decomposition is illustrated in Fig. 2.14 for k = 4.

The theorem holds both for Hermitian operators, in which case the spectrum of the
operator is formed by real eigenvalues λi , and for unitary operators, the eigenvalues
λi have unit modulus.

We observe that, if pi is the multiplicity of the eigenvalue λi , the rank of the
projector Pi is just given by pi

rank(Pi ) = pi .

In particular, if the eigenvalues have all unitmultiplicity, that is, if A is nondegenerate,
the projectors Pi have unit rank and assume the form

Pi = |λi 〉〈λi |

where |λi 〉 is the eigenvector corresponding to eigenvalue λi . In this case the eigen-
vectors define an orthonormal basis forH.

Example 2.7 The 4 × 4 complex matrix considered in Example2.1

A = 1

4

⎡

⎢⎢⎣

7 −1 + 2 i −1 −1 − 2 i
−1 − 2 i 7 −1 + 2 i −1

−1 −1 − 2 i 7 −1 + 2 i
−1 + 2 i −1 −1 − 2 i 7

⎤

⎥⎥⎦ (2.75)
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is Hermitian. It has been found that the distinct eigenvalues are

λ1 = 1, λ2 = 2, λ3 = 3

with λ1 of multiplicity 2. Then it is possible to decompose A through 3 projectors,
in the form

A = λ1 P1 + λ2 P2 + λ3 P3

with P1 of rank 2 and P2, P3 of rank 1. Such projectors result in

P1 = 1

4

⎡

⎢⎢⎣

2 1 − i 0 1 + i
1 + i 2 1 − i 0
0 1 + i 2 1 − i

1 − i 0 1 + i 2

⎤

⎥⎥⎦ P2 = 1

4

⎡

⎢⎢⎣

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎤

⎥⎥⎦

P3 = 1

4

⎡

⎢⎢⎣

1 i −1 −i
−i 1 i −1
−1 −i 1 i
i −1 −i 1

⎤

⎥⎥⎦ .

We leave it to the reader to verify the idempotency, the orthogonality, and the com-
pleteness of these projectors. In other words, to prove that the set {P1, P2, P3} forms
a projector system.

2.10.2 Interpretation

The theorem can be interpreted in two ways:

• as resolution of a given Hermitian operator A, which makes it possible to identify
a projector system {Pi }, as well as the corresponding eigenvalues {λi },

• as synthesis, in which a projector system {Pi } is known, and, for so many fixed
distinct real numbers λi , a Hermitian operator can be built based on (2.74), having
the λi as eigenvalues.

It is very interesting to see how the spectral decomposition acts on the input |x〉
and on the output |y〉 of the operator, following Fig. 2.14. The parallel of projec-
tors decomposes in a unique way the input vector into orthogonal components (see
(2.70)).

|x〉 = |x1〉 + |x2〉 + · · · + |xk〉 (2.76)

where |xi 〉 = Pi |x〉. In fact, as a consequence of the orthogonality of the projectors,
we have

〈xi |x j 〉 = 〈x |PiPj |x〉 = 0, i �= j
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while (2.76) is a consequence of completeness. In addition, each component |xi 〉 is
an eigenvector of A with eigenvalue λi . In fact, we have

A|xi 〉 =
∑

j

λ j Pj |xi 〉 = λi |xi 〉

where we have taken into account that Pj |xi 〉 = PjPi |x〉 = 0 if i �= j .
Yet fromFig. 2.14, it appears that the decomposition of the input (2.76) is followed

by the decomposition of the output in the form

|y〉 = λ1|x1〉 + λ2|x2〉 + · · · + λk |xk〉

namely, as a sum of eigenvectors multiplied by the corresponding eigenvalues.
Going back to the decomposition of the input, as each component |xi 〉 = Pi |x〉

belongs to the eigenspace Eλi , and as |x〉 is an arbitrary ket of the Hilbert space H,
it results that

Pi H = Eλi

is the corresponding eigenspace. Furthermore, for completeness we have (see (2.72))

Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk = H.

The reader can realize that the Spectral Decomposition Theorem allows us to refine
what we saw in Sect. 2.9.4 on the sum of orthogonal projectors.

2.10.3 Decomposition via Elementary Projectors

In the statement of the theorem the eigenvalues {λi } are assumed distinct, so the
spectrum of the operator A is

σ(A) = {λ1, λ2, . . . , λk} with k ≤ n

where k may be smaller than the space dimension.
Aswe have seen, if k = n all the eigenvalues have unitmultiplicity and the decom-

position (2.74) is done with elementary projectors. We can obtain a decomposition
with elementary projectors even if k < n, that is, not all the eigenvalues have unit
multiplicity. In this case we denote with

λ̃1, λ̃2, . . . , λ̃n

the eigenvalues with repetition (see (2.42)). Then the spectral decomposition (2.74)
takes the form
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A =
n∑

i=1

λ̃i |bi 〉〈bi | (2.77)

where now the projectors Bi = |bi 〉〈bi | are all elementary, and form a complete
system of projectors.

To move from (2.74) to (2.77), let us consider an example regarding the space
H = C

4, with A a 4 × 4 matrix. Suppose now that

σ(A) = {λ1, λ2, λ3} p1 = 2, p2 = 1, p3 = 1.

Then Theorem2.2 provides the decomposition

A = λ1P1 + λ2P2 + λ3P3

with
P1 of rank 2, P2 = |λ2〉〈λ2|, P3 = |λ3〉〈λ3|.

Consider now the subspaceP1 = P1H having dimension 2, which in turn is a Hilbert
space, and therefore with basis composed of two orthonormal vectors, say |c1〉 and
|c2〉. Choosing such a basis, the sum of the corresponding elementary projectors
yields (see Theorem2.1)

P1 = |c1〉〈c1| + |c2〉〈c2|.

In this way we obtain (2.77) with (λ̃1, λ̃2, λ̃3, λ̃4) = (λ1, λ1, λ2, λ3) and |b1〉 = |c1〉,
|b2〉 = |c2〉, |b3〉 = |λ2〉, |b4〉 = |λ3〉. Notice that the |ci 〉 and the |λi 〉 are independent
(orthogonal) because they belong to different eigenspaces.

Example 2.8 In Example2.1 we have seen that the eigenvalues with repetition of
the matrix (2.75) are

λ̃1 = 1, λ̃2 = 1, λ̃3 = 2, λ̃4 = 3

and the corresponding eigenvectors are

|λ̃1〉 =

⎡

⎢⎢⎣

1 + i
i
0
1

⎤

⎥⎥⎦ |λ̃2〉 =

⎡

⎢⎢⎣

−i
1 − i
1
0

⎤

⎥⎥⎦ |λ̃3〉 =

⎡

⎢⎢⎣

−1
1

−1
1

⎤

⎥⎥⎦ |λ̃4〉 =

⎡

⎢⎢⎣

−i
−1
i
1

⎤

⎥⎥⎦ . (2.78)

These vectors are not normalized (they all have norm 2). The normalization results in

|bi 〉 = 1

2
|λ̃i 〉 (2.79)
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and makes it possible to build the elementary projectors Qi = |bi 〉〈bi |. Therefore
the spectral decomposition of matrix A via elementary projectors becomes

A = λ̃1Q1 + λ̃2Q2 + λ̃3Q3 + λ̃4Q4. (2.80)

We encourage the reader to verify that with choice (2.79) the elementary operators
Qi are idempotent and form a system of orthogonal (elementary) projectors.

2.10.4 Synthesis of an Operator from a Basis

The Spectral Decomposition Theorem in the form (2.77), revised with elementary
projectors, identifies an orthonormal basis {|bi 〉}.

The inverse procedure is also possible: given an orthonormal basis {|bi 〉}, a Her-
mitian (or unitary) operator can be built choosing an n-tuple of real eigenvalues λ̃i

(or with unit modulus to have a unitary operator). In this way we obtain the synthesis
of a Hermitian operator in the form (2.77).

Notice that with synthesis we can also obtain non-elementary projectors, thus
arriving at the general form (2.74) established by the Spectral Decomposition The-
orem. To this end, it suffices to choose some λ̃i equal. For example, if we want a
rank 3 projector, we let

λ̃1 = λ̃2 = λ̃3 = λ1

and then
λ̃1|b1〉〈b1| + λ̃2|b2〉〈b2| + λ̃3|b3〉〈b3| = λ1P1

where P1 = |b1〉〈b1| + |b2〉〈b2| + |b3〉〈b3| is actually a projector, as can be easily
verified.

2.10.5 Operators as Generators of Orthonormal Bases

In Quantum Mechanics, orthonormal bases are usually obtained from the EID of
operators, mainly Hermitian operators. Then, considering a Hermitian operator B,
the starting point is the eigenvalue relation

B|b〉 = b |b〉 (2.81)

where |b〉 denotes an eigenket of B and b the corresponding eigenvalue; B is given,
while b and |b〉 are considered unknowns. The solutions to (2.81) provide the spec-
trum σ(B) of B and also an orthonormal basis

B = {|b〉, b ∈ σ(B)}
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where |b〉 are supposed to be normalized, that is, 〈b|b〉 = 1. Note the economic
notation (due to Dirac [3]), where a single letter (b or B) is used to denote the
operator, the eigenkets, and the eigenvalues.

The bases obtained from operators are used in several ways, in particular to rep-
resent kets and bras through the Fourier expansion and operators through the matrix
representation. A systematic application of these concepts will be seen in Chap.11
in the context of Quantum Information (see in particular Sect. 11.2).

2.11 The Eigendecomposition (EID) as Diagonalization

In the previous forms of spectral decomposition (EID) particular emphasis was given
to projectors because those are the operators that are used in quantummeasurements.
Other forms are possible, or better, other interpretations of the EID, evidencing other
aspects.

Relation (2.77) can be written in the form

A = UΛ̃U∗ (2.82)

whereU is the n ×n matrix having as columns the vectors |bi 〉, and Λ̃ is the diagonal
matrix with diagonal elements λ̃i , namely

U = [|b1〉, |b2〉, . . . , |bn〉], Λ̃ = diag [λ̃1, λ̃2, . . . , λ̃n] , (2.82a)

and U∗ is the conjugate transpose of U having as rows the bras 〈bi |. As the kets |bi 〉
are orthonormal, the product UU∗ gives identity

UU∗ = IH. (2.82b)

Thus U is a unitary matrix.
The decomposition (2.82) is a consequence of the Spectral Decomposition Theo-

rem and is interpreted as diagonalization of the Hermitian matrix A. The result also
holds for unitary matrices and more generally for normal matrices. Furthermore,
from diagonalization one can obtain the spectral decomposition, therefore the two
decompositions are equivalent.

Example 2.9 The diagonalization of the Hermitian matrix A, defined by (2.75), is
obtained with

U = 1

2

⎡

⎢⎢⎣

1 + i −i −1 −i
i 1 − i 1 −1
0 1 −1 i
1 0 1 1

⎤

⎥⎥⎦ , Λ̃ =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎥⎥⎦ (2.83)

http://dx.doi.org/10.1007/978-3-319-15600-2_11
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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2.11.1 On the Nonuniqueness of a Diagonalization

Is the diagonalization A = UΛ U∗ unique? A first remark is that the eigenvalues and
also their multiplicity are unique. Next, consider two diagonalizations of the same
matrix

A = UΛ U∗, A = U1Λ U∗
1 . (2.84)

By a left multiplication by U∗ and a right multiplication by U , we find

U∗UΛ U∗U = Λ = U∗U1Λ U∗
1 U.

Hence, a sufficient condition for the equivalence of the two diagonalizations is

U∗ U1 = IH (2.85)

which reads: if the unitary matrices U and U1 verify the condition (2.85), they both
diagonalize the same matrix A.

But, we can also permute the order of the eigenvalues in the diagonal matrix Λ,
combined with the same permutation of the eigenvectors in the unitary matrix, to
get a new diagonalization. These, however, are only formal observations. The true
answer to the question is given by [4]:

Theorem 2.3 A matrix is uniquely diagonalizable, up to a permutation, if and only
if its eigenvalues are all distinct.

2.11.2 Reduced Form of the EID

So far, in the EID we have not considered the rank of matrix A. We observe that
the rank of a linear operator is given by the number of nonzero eigenvalues (with
multiplicity) λ̃i . Then, if the n × n matrix A has the eigenvalue 0 with multiplicity
p0, the rank results in r = n − p0. Sorting the eigenvalues with the null ones at the
end, (2.77) and (2.82) become

A =
r∑

i=1

λ̃i |bi 〉〈bi | = Ur Λ̃r U∗
r (2.86)

where

Ur = [|b1〉, |b2〉, . . . , |br 〉], Λ̃r = diag [λ̃1, λ̃2, . . . , λ̃r ]. (2.86a)

Therefore, Ur has dimensions n × r and collects as columns only the eigenvectors
corresponding to nonzero eigenvalues, and the r × r diagonal matrix Λ̃r collects



62 2 Vector and Hilbert Spaces

such eigenvalues. In the form (2.82) the eigenvectors with null eigenvalues are not
relevant (because they are multiplied by 0), whereas in (2.86) all the eigenvectors are
relevant. These two forms will be often used in quantum decision and, to distinguish
them, the first will be called full form and the second reduced form.

2.11.3 Simultaneous Diagonalization and Commutativity

The diagonalization of a Hermitian operator given by (2.82), that is,

A = UΛ̃ U∗ (2.87)

is done with respect to the orthonormal basis constituted by the columns of the
unitary matrix U . The possibility that another operator B be diagonalizable with
respect to the same basis, namely

B = UΛ̃1U∗ (2.88)

is bound to the commutativity of the two operators. In fact:

Theorem 2.4 Two Hermitian operators A and B are commutative, BA = AB, if
and only if they are simultaneously diagonalizable, that is, if and only if they have a
common basis made by eigenvectors.

The sufficiency of the theorem is immediately verified. In fact, if (2.87) and (2.88)
hold simultaneously, we have

BA = UΛ̃1U∗UΛ̃U∗ = UΛ̃1Λ̃U∗

where the diagonal matrices are always commutable, Λ̃1Λ̃ = Λ̃Λ̃1, thus BA = AB.
Less immediate is the proof of necessity (see [5, p. 229]).

Commutativity and non-commutativity of Hermitian operators play a role in
Heisenberg’s Uncertainty Principle (see Sect. 3.9).

2.12 Functional Calculus

One of the most interesting applications of the Spectral Theorem is Functional Cal-
culus, which allows for the introduction of arbitrary functions of an operator A,
such as

Am, eA, cos A,
√

A.

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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We begin by observing that from the idempotency and the orthogonality, in decom-
position (2.74) we obtain

Am =
∑

k

λm
k Pk .

Thus a polynomial p(λ), λ ∈ C over complex numbers is extended to the operators
in the form

p(A) =
∑

k

p(λk)Pk .

This idea can be extended to an arbitrary complex function f : C → C through

f (A) =
∑

k

f (λk)Pk . (2.89)

An alternative form of (2.89), based on the compact form (2.82), is given by

f (A) = U f (Λ̃)U∗ (2.89a)

where
f (Λ̃) = diag [ f (λ̃1), . . . , f (λ̃n)]. (2.89b)

The following theorem links the Hermitian operators to the unitary operators [4]

Theorem 2.5 An operator U is unitary if and only if it can be written in the form

U = eiA with AHermitian operator,

where, from (2.89),
eiA =

∑

k

eiλk Pk . (2.90)

For a proof, see [4]. As a check, we observe that, if A is Hermitian, its eigenvalues
λk are real. Then, according to (2.90), the eigenvalues ofU are eiλk , which, as it must
be, have unit modulus.

Importance of the exponential of an operator In Quantum Mechanics a funda-
mental role is played by the exponential of an operator, in particular in the form
eA+B , where A and B do not commute. This topic will be developed in Sect. 11.6.

http://dx.doi.org/10.1007/978-3-319-15600-2_11
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2.12.1 Positive Semidefinite Operators

We first observe that if A is a Hermitian operator, the quantity 〈x |A|x〉 is always a
real number. Then a Hermitian operator is:

• nonnegative or positive semidefinite and is written as A ≥ 0 if

〈x |A|x〉 ≥ 0 ∀ |x〉 ∈ H (2.91)

• positive definite and is written as A > 0 if

〈x |A|x〉 > 0 ∀ |x〉 �= 0. (2.92)

From the Spectral Theorem it can be proved that [1, Theorem10.23]:

Theorem 2.6 In a finite dimensional space, a Hermitian operator A is positive
semidefinite (positive) if and only if its eigenvalues are nonnegative (positive).

Remembering that the spectrum of a projector P is σ(P) = {0, 1}, we find, as
anticipated in Sect. 2.9.3:

Corollary 2.1 The projectors are always positive semidefinite operators.

2.12.2 Square Root of an Operator

The square root of a positive semidefinite Hermitian operator A ≥ 0 is introduced
starting from its spectral resolution

A = λ1P1 + · · · + λk Pk λ j ≥ 0

in the following way: √
A = √

λ1P1 + · · · + √
λk Pk (2.93a)

or in equivalent form (see (2.89a))

√
A = U

√
Λ̃ U∗ (2.93b)

where
√

Λ̃ = diag [
√

λ̃1, . . . ,
√

λ̃n]. The definition of
√

A is unique and it can be
soon verified that from (2.93) it follows that

(√
A
)2 = A.

The square root of a Hermitian operator will find interesting applications in Quan-
tum Communications starting from Chap.6.

http://dx.doi.org/10.1007/978-3-319-15600-2_6
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2.12.3 Polar Decomposition

These decompositions regard arbitrary operators and therefore not necessarily Her-
mitian or unitary [4]

Theorem 2.7 (Polar decomposition) Let A be an arbitrary operator. Then there
always exists a unitary operator U and two positive definite Hermitian operators J
and K such that

A = UJ = KU

where J and K are unique with

J = √
A∗ A and K = √

AA∗. (2.94)

The theorem can be considered as an extension to square matrices of the polar
decomposition of complex numbers: z = |z| exp(i arg z).

2.12.4 Singular Value Decomposition

So far we have considered operators of the Hilbert space, which in particular become
complex square matrices. The singular value decomposition (SVD) considers more
generally rectangular matrices.

Theorem 2.8 Let A be an m × n complex matrix. Then the singular value decom-
position of A results in

A = UDV∗, (2.95)

where

• U is an m × m unitary matrix,
• V is an n × n unitary matrix,
• D is an m × n diagonal matrix with real nonnegative values on the diagonal.

The positive values di of the diagonal matrix D are called the singular values of
A. It can be proved that the SVD of a matrix A is strictly connected to the EIDs of
the Hermitian matrices AA∗ and A∗ A (see [4] and Chap.5).

If the matrix has rank r , the positive values di are r and a more explicit form can
be given for the decomposition

A = Ur Dr V ∗
r =

r∑

i=1

di |ui 〉〈vi | (2.96)

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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where

• Ur = [|u1〉 · · · |ur 〉] is an m × r matrix,
• Vr = [|v1〉 · · · |vr 〉] is an n × r matrix,
• D is an r × r diagonal matrix collecting on the diagonal the singular values di .

The form (2.96) will be called the reduced form of the SVD. Both forms play a
fundamental role in the theory of quantum decision.

Example 2.10 Consider the 4 × 2 matrix

A = 1

12
√
2

⎡

⎢⎢⎢⎣

5 1

3 − 2 i 3 + 2 i

1 5

3 + 2 i 3 − 2 i

⎤

⎥⎥⎥⎦ .

The SVD UDV∗ of A results in

U =

⎡

⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

1
2

−i
2 − 1

2
i
2

1
2 − 1

2
1
2 − 1

2
1
2

i
2 − 1

2
−i
2

⎤

⎥⎥⎥⎥⎦
, V =

⎡

⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎦ , D =

⎡

⎢⎢⎢⎣

1
2 0

0 1
3

0 0

0 0

⎤

⎥⎥⎥⎦ .

Therefore the singular values are d1 = 1/2 and d2 = 1/3. The reduced form
Ur Dr V ∗

r becomes

Ur =

⎡

⎢⎢⎢⎢⎣

1
2

1
2

1
2

−i
2

1
2 − 1

2
1
2

i
2

⎤

⎥⎥⎥⎥⎦
, Vr = V =

⎡

⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎦ , Dr =
[
1
4 0

0 1
9

]
.

We leave it to the reader to verify that, carrying out the products in these decompo-
sitions, one obtains the original matrix A.

2.12.5 Cholesky’s Decomposition

Another interesting decomposition for Hermitian matrices is given by Cholesky’s
decomposition [4].

Theorem 2.9 (Cholesky’s decomposition) Let A be an n × n positive semidefinite
Hermitian matrix, then there exists an upper triangular matrix U, of dimensions
n × n, with nonnegative elements on the main diagonal, such that
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A = U∗U.

If A is positive semidefinite then the matrix U is unique, and the elements of its main
diagonal are all positive.

For a given matrix A it can turn out to be useful as an alternative to the EID for
the factor decomposition of the density operators (see Chap. 5).

Example 2.11 Consider again the Hermitian matrix of Example2.1

A = 1

4

⎡

⎢⎢⎣

7 −1 + 2i −1 −1 − 2i
−1 − 2i 7 −1 + 2i −1

−1 −1 − 2i 7 −1 + 2i
−1 + 2i −1 −1 − 2i 7

⎤

⎥⎥⎦ .

Cholesky’s decomposition, obtained with Mathematica, is specified by the trian-
gular factor

U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
7
2 −

1
2−i√
7

− 1
2
√
7

−
1
2+i√
7

0
√

11
7 − 2−3i√

77
− 1+i√

77

0 0
√

17
11 − 3−4i√

187

0 0 0 2
√

6
17

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎣

1.32 −0.19 + i 0.38 −0.19 −0.19 − i 0.38
0 1.25 −0.23 + i 0.34 −0.11 − i 0.11
0 0 1.24 −0.22 + i 0.29
0 0 0 1.19

⎤

⎥⎥⎦ .

The decomposition is unique and has positive elements on the main diagonal, as
predicted by Theorem2.9.

Problem 2.11 � � � Let A be an arbitrary operator of the Hilbert space H. Show
that the operator AA∗ is always positive semidefinite.

Hint: use diagonalization of A.

2.13 Tensor Product

The tensor product makes it possible to combine two or more vector spaces to obtain
a larger vector space. In Quantum Mechanics it is used in Postulate 4 to combine
quantum systems.

Before giving the definition, we introduce the symbolism that will be used. If
H1 and H2 are two Hilbert spaces (on complex numbers), their tensor product is
indicated in the form

H = H1 ⊗ H2

http://dx.doi.org/10.1007/978-3-319-15600-2_5
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and, as we will see, the new Hilbert space H has dimension

dim(H1 ⊗ H2) = dim(H1)dim(H2).

If |x〉 ∈ H1 and |y〉 ∈ H2 the kets and the bras of H are indicated, respectively, in
the form

|x〉 ⊗ |y〉 〈x | ⊗ 〈y| , (2.97)

which is sometimes simplified as

|x〉|y〉 〈x |〈y|. (2.97a)

If A is an operator ofH1 and B is an operator ofH2, the operator ofH is indicated
in the form

A ⊗ B.

We now list the abstract definitions of the vectors and of the operators that are
obtained through the tensor product. However, as these definitions are very abstract,
or better, scarcely operational, they can be skipped and the reader may move to the
next section, where the tensor product is developed for matrices and is more easily
understood.

2.13.1 Abstract Definition ⇓

We want to combine two Hilbert spacesH1 andH2 using the tensor product ⊗, and
let us denote by |x〉, |x1〉, |x2〉 arbitrary kets of H1, and by |y〉, |y1〉, |y2〉 arbitrary
kets of H2. Then, by definition, the tensor product of kets must have the following
properties:

(1) homogeneity

a(|x〉 ⊗ |y〉) = (a|x〉) ⊗ |y〉 = |x〉 ⊗ a(|y〉) (2.98a)

(2) linearity with respect to the first factor

(|x1〉 + |x2〉) ⊗ |y〉 = |x1〉 ⊗ |y〉 + |x2〉 ⊗ |y〉 (2.98b)

(3) linearity with respect to the second factor

|x〉 ⊗ (|y1〉 + |y2〉) = |x〉 ⊗ |y1〉 + |x〉 ⊗ |y2〉. (2.98c)
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Once defined the tensor products between the kets, imposing the above conditions,
the tensor product between bras can be obtained as follows:

〈x | ⊗ 〈y| = (|x〉)∗ ⊗ (|y〉)∗.

Then we can move on to define the tensor product of two operators in this way:

(A ⊗ B)(|x〉 ⊗ |y〉) = (A|x〉) ⊗ (B|y〉) (2.99)

where on the right-hand sidewe find the tensor product of two kets, which has already
been defined.

Finally, the inner product on H = H1 ⊗ H2 is defined by the inner products on
H1 and H2, through the relation

(〈x1| ⊗ 〈y1|)(|x2〉 ⊗ |y2〉) = 〈x1|x2〉 〈y1|y2〉. (2.100)

2.13.2 Kronecker’s Product of Vector and Matrices

Consider two row vectors written in standard notation

x = [x0, . . . , xm−1], y = [y0, . . . , yn−1]

and suppose we want to form a “product” containing all possible products between
the elements of two vectors

xi y j , i = 0, 1, . . . , m − 1, j = 0, 1, . . . , n − 1

The natural procedure would be to build the m × n matrix

[xi y j ]

but with the Kronecker product we want to build a vector containing all the mn
products. The problem is that of passing from a bidimensional configuration (2D),
like the matrix [xi y j ], to a 1D configuration, as a vector is. But, while in 1D there
is a natural order of the indexes, namely 0, 1, 2, . . ., in 2D such order does not exist
for the indexes (i, j). We must then introduce a conventional ordering to establish,
for example, whether (1, 2) comes before or after (2, 1). A solution to the problem
is given by the lexicographical order10 obtained as follows: in the pair of indexes
(i, j) we fix the first index starting from i = 0 and let run the second index j along

10 This name comes from the order given to words in the dictionary: a word of k letters,
a = (a1, . . . , ak) appears in the dictionary before the word b = (b1, . . . , bk), symbolized a < b, if
and only if the first ai which is different from bi comes before bi in the alphabet. In our context the
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its range, obtaining (0, 0), (0, 1), . . . , (1, n − 1), we then move to the value i = 1,
until i = m −1. In this way we associate the pair of integer indexes to a single index
given by

h = j + (i − 1) n, j = 0, 1, . . . , n − 1 i = 0, 1, . . . , m − 1

which gives the required 1D ordering. The resulting vector can be written in the
compact form:

x ⊗ y = [x1y, x2y, . . . , xm y] (2.101)

where the form xi y indicates the n-tuple (xi y1, . . . , xi yn). Relation (2.101) defines
Kronecker’s product of two vectors x and y.

Next we consider two matrices

A = [air ], i = 1, . . . , m, r = 1, . . . , p

B = [bis], j = 1, . . . , n, s = 1, . . . , q

where the dimensions are respectively m × p and n × q. To collect all the products
of the entries of the two matrices we would have to form a 4D matrix

[air b js]

but, if we want a standard 2D matrix, we apply the lexicographical order to the pairs
of indexes (i, j) and (r, s), given by the integers

h = j + i(p − 1), k = s + r(q − 1)

where h goes from 1 to mp and k from 1 to nq. In this way we build an A ⊗ B matrix
of dimension mn × pq.

The compact form for A ⊗ B is

A ⊗ B =
⎡

⎢⎣
a11B . . . a1p B

...
. . .

...

am1B . . . amp B

⎤

⎥⎦ (2.102)

where on the left-hand side we notice the “blocks” ai j B, which are n × q matrices.
Once we expand these blocks, we can see that on the left-hand side the resulting
matrix has dimensions mn × pq.

(Footnote 10 continued)
alphabet is given by the set of integers. Then we find, e.g., that (1, 3) < (2, 1), (0, 3, 2) < (1, 0, 1)
and (1, 1, 3) < (1, 2, 0).
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It can be verified that (2.102) falls into the abstract definition of tensor product,
based on the previous “abstract” conditions (1), (2), and (3).

Relation (2.102) extends to matrices in the compact form (2.101) seen for vectors
and represents the definition of the Kronecker product for matrices. It includes the
case of vectors, provided that vectors are regarded as matrices.

Example 2.12 If

|a〉 =
[

a1
a2

]
, |b〉 =

⎡

⎣
b1
b2
b3

⎤

⎦

the tensor product gives

|a〉 ⊗ |b〉 =
[

a1b
a2b

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1b1
a1b2
a1b3
a2b1
a2b2
a2b3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a 6 × 1 vector. In particular,

|a〉 =
[
1 + i
2 + i

]
, |b〉 =

⎡

⎣
1 + i
2 + 2i
3 + 2i

⎤

⎦ → |a〉 ⊗ |b〉 =

⎡

⎢⎢⎢⎢⎢⎢⎣

2i
4i

5 + i
1 + 3i
2 + 6i
4 + 7i

⎤

⎥⎥⎥⎥⎥⎥⎦
.

If

A =
[

a11 a12
a21 a22

]
, B =

⎡

⎣
b11 b12
b21 b22
b31 b32

⎤

⎦

are two matrices of dimensions, respectively, 2 × 2 and 3 × 2, the tensor product
yields

A ⊗ B =
[

a11B a12B
a21B a22B

]

which is a 6 × 4 matrix. In particular, if
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A =
[

i 3
2 + i 1

]
, B =

⎡

⎣
2i 1
2 i
i 3

⎤

⎦ → A ⊗ B =

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 i 6i 3
2i −1 6 3i
−1 3i 3i 9

−2 + 4i 2 + i 2i 1
4 + 2i −1 + 2i 2 i

−1 + 2i 6 + 3i i 3

⎤

⎥⎥⎥⎥⎥⎥⎦
.

For Kronecker’s product (2.102) the following rules can be established. The trans-
pose and the conjugate transpose simply result in

(A ⊗ B)T = AT ⊗ BT, (A ⊗ B)∗ = A∗ ⊗ B∗ (2.103)

and also the important rule holds (valid if the dimensions are compatiblewith ordinary
products)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D) (2.104)

which contains both the Kronecker product and the ordinary matrix product and
will be called mixed-product law. In addition, for two invertible square matrices
we have

(A ⊗ B)−1 = A−1 ⊗ B−1. (2.105)

2.13.3 Properties of the Tensor Product

Kronecker’s product of matrices allows us now to interpret and verify the definition
and the properties of the tensor product on Hilbert spaces. This is done directly when
H1 = C

m an H2 = C
n and it turns out that H1 ⊗ H2 = C

mn , but using the matrix
representation it can be done for arbitrary Hilbert spaces of finite dimension (and
with some effort even of infinite dimension).

Then, if H1 and H2 have dimensions, respectively, m and n, and if |x〉 ∈ H1,
|y〉 ∈ H2, it results that:

• |x〉 ⊗ |y〉 is a ket of dimension mn (column vector)
• 〈x | ⊗ 〈y| is a bra of dimension mn (row vector).

For example, given the two kets |x〉 ∈ H1 = C
2 and |y〉 ∈ H2 = C

3

|x〉 =
[

x1
x2

]
, |y〉 =

⎡

⎣
y1
y2
y3

⎤

⎦
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the tensor product gives

|x〉 ⊗ |y〉 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1y1
x1y2
x1y3
x2y1
x2y2
x2y3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 〈x | ⊗ 〈y| = [
x∗
1 y∗

1 , x∗
1 y∗

2 , x∗
1 y∗

3 , x∗
2 y∗

1 , x∗
2 y∗

2 , x∗
2 y∗

3

]
.

If A is an operator of H1 and B is an operator of H2, then

• A ⊗ B is an operator to which an mn × mn square matrix must be associated.

The following general properties can also be established:

(1) If {|bi 〉, i ∈ I } is a basis for H1 and {|c j 〉, j ∈ J } is a basis forH2, then

{|bi 〉 ⊗ |c j 〉, i ∈ I, j ∈ J } (2.106)

is a basis forH1 ⊗ H2.
(2) dim(H1 ⊗ dimH2) = dimH1 dimH2.
(3) If {λi , i ∈ I } is the spectrum of A and {μ j , j ∈ J } is the spectrum of B, the

spectrum of A ⊗ B results in

σ(A ⊗ B) = {λi μ j , i ∈ I, j ∈ J }. (2.107)

Analogously, the eigenvalues of A ⊗ B are given by {|λi 〉 ⊗ |μi 〉}.
(4) If A and B are (unitary) Hermitian operators, also A⊗ B is a (unitary) Hermitian

operator.
(5) If A and B are positive definite Hermitian operators, also A ⊗ B is a positive

definite Hermitian operator.
(6) For the trace, the simple rule holds that

Tr[A ⊗ B] = Tr[A] Tr[B]. (2.108)

Final Comment on Tensor Product

Asmentioned, the tensor product appears in Postulate 4 of QuantumMechanics. The
properties of this product, albeit with a rather heavy symbolism, seem natural enough
at first glance. However, just these apparently “intuitive” properties lead to paradox-
ical consequences, which are at the foundations of very interesting applications, as
we will see at the end of the following chapter.
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Problem 2.12 � Prove that if A and B are Hermitian operators, also A ⊗ B is a
Hermitian operator.

Problem 2.13 �� Establish the compatibility conditions for the dimensions of the
matrices in the mixed-product law (2.104).

Problem 2.14 �� Prove property (2.107) of the Kronecker product and, more
specifically, prove that, if λ is an eigenvalue of A with eigenvector |λ〉 and μ is
an eigenvalue of B with eigenvector |μ〉, then λμ is an eigenvalue of A ⊗ B with
eigenvector |λ〉 ⊗ |μ〉.
Problem 2.15 � � � The mixed-product law can be extended in several ways. In
particular,

(A1 ⊗ A2)(B1 ⊗ B2)(C1 ⊗ C2) = (A1B1C1) ⊗ (A2B2C2). (E5)

Prove this relation using (2.104).

Problem 2.16 �� Prove that, if the matrices A1 and A2 have, respectively, the
diagonalizations (see (2.87))

A1 = U1Λ1U∗
1 , A2 = U2Λ2U∗

2

then
A1 ⊗ A2 = (U1 ⊗ U2)(Λ1 ⊗ Λ2)(U

∗
1 ⊗ U∗

2 ) (E6)

is a diagonalization of A1 ⊗ A2.

2.14 Other Fundamentals Developed Throughout the Book

This chapter developed the essential fundamentals necessary for the comprehension
of the elements of QuantumMechanics that will be used in the next chapter, which in
turn are indeed required in the study ofQuantumCommunications systems developed
in Part II.

On the other hand, the mathematics encountered in the field of QuantumMechan-
ics is very extensive and a further development of fundamentals is out of the scope
of this book. Considering our philosophy of introducing the needed preliminaries in
a gradual form, a few fundamentals, which will be needed in Part III on Quantum
Information, will be introduced just before describing the applications. We mention
in particular the EID with a continuous spectrum and the partial trace.
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