
Chapter 13
Applications of Quantum Information

Main Acronyms

PTNG Pseudo-random number generation
QRNG Quantum random number generation
LCG Linear congruential generators
QKD Quantum key distribution
DV–QKD QKD with discrete variables
CV–QKD QKD with continuous variables

13.1 Introduction

Besides the problem of reliably transmitting classical information through quantum
means, which is the focus of this book, Quantum Information has seen an impressive
diversity of applications, ranging fromquantumcomputing to quantumcryptography,
and from quantum teleportation to quantum metrology (for an extensive review see
[1]). In this chapter we briefly present some examples of application, with the sole
purpose of illustrating the many potential uses of Quantum Information.

In fact, the inherent randomness in quantummeasurements lends itself to devising
methods for the fast automatic generation of true random numbers with quantum
devices. Similarly, the possibility (granted by Postulate 3) of detecting that some
measurement operation has been performed on a single quantum system by employ-
ing a different measurement on the same system, has opened the way to quantum
cryptography. This constitutes anunconditionally secure replacement for the schemes
that currently lie at the core of many protocols for securing the transmission and stor-
ing of information from a rational attacker. Eventually, we devote a paragraph to the
topic of quantum teleportation, that is, the transfer of an unknown quantum state
between two different locations that is achieved by making use of entanglement and
only transmitting classical information.
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640 13 Applications of Quantum Information

13.2 Quantum Random Number Generation

One of the most striking applications of QuantumMechanics in the field of Quantum
Information is the generation of true random numbers. Random numbers represent a
resource inmanyareas of science and technology.Theyprovide themain ingredient of
Monte Carlo methods and cryptographic protocols. In particular, for what concerns
the former, whenever it is too difficult to solve a problem analytically, numerical
simulations provide the most viable solution.

Regarding cryptographic applications, random numbers are fundamental to the
ciphering of information. At the time of writing, most of the random numbers used
in the cited fields, are obtained by means of pseudo-random number generators
(PRNG). The adjective pseudo stands for false because PRNGs can only mimic
the task of a generator, that is, to yield an identical and independent distribution
of random variables. PRNGs are indeed nothing more that algorithms recursively
executed by computers, which output a number at every operation. Unfortunately,
these numbers seem random if one does not know the initial state, the so-called
seed, of the generator, or if one has not exceeded its period, that is, the number of
times the algorithm can be run before it goes back to outputting the same numbers.
Clearly, when PRNGs are used in cryptography one has to take all the precautions
to prevent a possible eavesdropper from predicting the generated number and then
getting a copy of the key. In addition, a third problem is related to the way RNG
algorithms are often engineered. More in detail, it happens that only after many
years of use some widely employed PRNGs reveal dramatic nonrandom features,
as was the case for the RAND-U generator, which belongs to the class of Linear
Congruential Generators (LCG). In this generator a random number sn is obtained
according to the algorithm sn = (65,539 sn−1)mod231 with the initial state s0 being
an arbitrary seed. The dangerous feature of this generator is that it lacks randomness
in a subtle way: indeed, if one maps consecutive triplets {sn, sn−1, sn−2} in 3D space,
one can see that the numbers mainly fall on parallel planes, as shown in Fig. 13.1.1

It is then clear that PRNGs not only represent a very weak point in cryptographic
protocols but may also be the cause for erroneous results in simulations. Indeed John
Von Neumann, one of the fathers of modern Computer Science and one of the first
to employ random numbers in simulations, pointed out that anyone who attempts to
generate random numbers by deterministic means is, of course, living in a state of
sin.

Now, we will present two recipes showing how Quantum Mechanics can solve
the problem of the generation of random numbers impossible to be forecast in any
way.

1 Citing the paper of Marsaglia [2] the mathematician that was the first to discover this weird
behavior.
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Fig. 13.1 Left Triplets of random numbers produced by employing the Linear Congruential
Generator RAND-U are mapped in the space. Right If the point of sight is conveniently tilted,
one can see that the points have the tendency to distribute along planes, a clear mark of lack of
spatial uniformity

13.2.1 A Discrete Variable Quantum RNG

A solution to the issue of predictability is given by considering a physical quantum
system. The latest step in the technology of random number generation devices is
indeed the quantum random number generation (QRNG). The underlying principle
of a QRNG is the impossibility of predicting the outcome of a measurement on a
quantum system S prepared in a proper state ρS . As a simple example to understand
how a QRNGworks, one can consider a single photon state |1〉 impinging on a 50:50
beam-splitter. Let us suppose that the photon enters through input arm 1, whereas the
unused port 2 carries the vacuum state |0〉. The overall input state is then given by

ψ = |1, 0〉1,2 = |1〉1 ⊗ |0〉2 (13.1)

which is equivalent to

ψ = a∗
1 |0, 0〉1,2 (13.2)

having introduced the field creation operator a∗
1 for the mode of input 1. Considering

that the beam splitter is modeled as a unitary transformation Ub.s(θ) on the field
operators (see Sects. 9.2.2 and 11.18), one has that in the balanced case the field
creation operator transforms according to

http://dx.doi.org/10.1007/978-3-319-15600-2_9
http://dx.doi.org/10.1007/978-3-319-15600-2_11
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a∗
1 = 1√

2

(
i a∗

1 + a∗
4

)
(13.3)

so that the output state is then given by

ψ ′ = 1√
2

(
i |1, 0〉3,4 + |0, 1〉3,4

)
. (13.4)

The stateψ ′ is an entangled state of the modes 3 and 4: the photon is at the same time
in both and none of the output arms of the beam splitter. By placing in front of the two
outputs a pair of single-photon detectors, one realizes the following measurement
operators:

Pno
out = |0〉〈0|out , P

yes
out = |1〉〈1|out (13.5)

which measure, respectively, the absence or the presence of the photon in the respec-
tive output arm with out ∈ {3, 4}. Since the two measurements are independent, after
the interaction of the single photon with the beam-splitter, the detectors perform the
two possible bit-generating measurements

Π0 = Pno
3 ⊗ P

yes
4 , Π1 = Pno

4 ⊗ P
yes
3 . (13.6)

By computing the outcome probability from (13.6) on the state ρS = |ψ ′〉〈ψ ′|,

Tr [Π0ρS] = Tr[Π1ρS] = 1

2
(13.7)

one sees that in a completely unpredictable way, as stated by the Born probability
rule, it is possible to get 0 or 1 with exactly the same probability.

This approachwas suggested and realized for the first time in [3] and it superseded
the first attempts to generate random numbers by employing radioactive sources.
Indeed, by using controllable optical photon sources as LEDs or lasers, one can
easily prepare the state to be measured and fit both the sources and the detectors into
compact and small devices (see for example [4] or [5]).

A drawback of these QRNGs is that they are limited by the count rate of the
single photon counters, which at the present time do not allow one to extract random
numbers at a rate higher than tens of gigabits per second. A way to overcome this
limit is by changing the paradigm from discrete to continuous variables.

13.2.2 A Continuous Variable QRNG

The vacuum state of the electromagnetic field represents a source of entropy which
has recently been employed to extract random numbers. When the quadratures of a
pure vacuum state of the electromagnetic state are measured, one can collect a set
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of unpredictable random variables distributed according to the normal distribution.
This becomes evident when one considers the Wigner function of the vacuum state

W (q, p) = 1

2π
exp

(
−1

2
(q2 + p2)

)
(13.8)

where q and p are the eigenvalues relative to the momentum and position operators,
respectively. When the state is measured along a given quadrature q, the possible
measurement outcomes are distributed as follows:

w(q) =
∫ +∞

−∞
dp W (q, p) = 1√

2π
exp

(
−1

2
q2

)
. (13.9)

In the experiment, quadrature measurements are performed by means of homo-
dyne detection, according to the scheme of Fig. 13.2. A coherent electromagnetic
field, the so called local oscillator is mixed to the vacuum field entering through the
unused port of a 50:50 beam splitter. More specifically, with respect to the single-
photon discrete-variable approach, here the local oscillator is so intense that it can
be treated as a classical field with amplitude α = |α|ei θ , playing the role of a vac-
uum fluctuations amplifier. The mixed fields exiting from the beam splitter outputs
are intercepted by a couple of large bandwidth photodiodes which generate a cur-
rent signal ΔI proportional to the light intensity hitting them. The two currents are
respectively subtracted, so that one is left with a signal whose fluctuations are propor-
tional to the quantum fluctuations of the field Fig. 13.3. In addition, local oscillator
noise of classical origin, which would affect both incoming beams, is thus elimi-
nated. In particular, if we denote by A and B the detectors intercepting the fields
at the output of arms 3 and 4, respectively, we have that the output current of the

local oscillator

Fig. 13.2 Generic scheme to generate random numbers by homodyning the vacuum
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Fig. 13.3 On the left, the fluctuating current signal obtained by subtracting the outputs of the two
photodiodes. On the right, the amplitude distribution of the signal is shown: in order to obtain
numbers with a uniform distribution rather than a Gaussian one, the range of possible outcomes is
split into a series of equal probability intervals. In the example of the picture, one has four possible
intervals, each one with probability 1

4 for a number in the range [0, 4]

setup is proportional to the difference of photon numbers given by the homodyne
measurement operator Δ̂ = n̂ A − n̂B , where n̂ A = a a∗

3 a a3 and n̂B = a a∗
4a a4. By

expressing the output operators as functions of the input ones, and considering the
local oscillator classically, one has explicitly

Δ = n A − nB

= 1
2

(
(α∗ + a a∗

1)(α + a a1) − (a a∗
1 − α∗)(a a1 − α)

)

= 1
2

(
(a a∗

1α) + (a a1α
∗)

)
(13.10)

= 1
2 |α|

(
a a1e

i θ + a a1e
−i θ

)
.

At this point it is easy to see that if the local oscillator is in- (out) phase, θ = 0
(respectively θ = π

2 ), with the field entering at input 1 it is possible to measure its
q (respectively p) quadrature. For example if θ = 0, and the input state at arm 1 is
the vacuum, one will get a ΔI proportional to Δ = √

2|α|q. Random numbers are
then obtained by sampling the ΔI signal with an analog-to-digital converter (ADC).
However, since the quadrature values are normally distributed according to (13.9),
it is necessary to make equal the appearance probability of every number. For this
purpose, a post-processing algorithm splits the range of possible current values into
equal probability intervals, as shown in Fig. 13.3, and then outputs a given number
according to the interval within which the measured value falls. This approach for
random number generation was presented in [6] and for further details see [7].
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13.3 Introduction to Quantum Cryptography

Nowadays, cryptography represents the general instrument for protecting informa-
tion against a rational adversary. Cryptographic algorithms lie at the core of most
security protocols and mechanisms, such as: encryption of data to ensure confiden-
tiality, data authentication to detect forged messages, or integrity protection against
illegitimate modification of messages in transit.

The majority of classic cryptographic algorithms can only offer computational
security, that is, they guarantee that an adversary with limited computational capa-
bilities has a low probability of success in attacking the security protocol within a
reasonable amount of time. Such is the case, for instance, of all public-key cryptog-
raphy, e.g., RSA encryption [8] and DSA signatures [9], as well as most symmetric
schemes, e.g., AES encryption [10], and deterministic hashing, e.g., SHA [11]. If
the amount of computational time that is needed by any adversary to break the
security scheme considerably exceeds the useful life span of the relevant informa-
tion, the scheme can be deemed properly secure. However, such schemes do not
offer long-term protection of secured information from possible future technological
or algorithmic breakthroughs. In particular, some public-key schemes, such as the
above-mentioned RSA and DSA, have already been proven vulnerable to quantum
computing attacks, since Shor’s quantum algorithm [12] allows one to solve the task
of finding the periodicity of a function with limited error probability and in poly-
nomial time. In fact, that task is crucial in solving the integer factorization and the
finite logarithm problems, the hardness of which (for classical computers) ensures
the computational security of RSA and DSA, respectively.

Other classical schemes offer unconditional security (also known as information
theoretic security), where the limit to the success probability of the attacker is no
longer set by his/her computational capabilities, but rather by the information that is
available to him/her. However, this is typically done at the expense of requiring the
legitimate users to preshare a large quantity of secret material, as in the one-time-pad
scheme, where the encrypted message is obtained by summing the secret message
with a random secret key with the same entropy as the message. Alternatively, some
information is required at the legitimate terminals about the attacker channel, as
in designing wiretap coding schemes, and in this case the diversity between the
legitimate and the attacker channel is leveraged to provide the required security.
However, it should be noted that the assumption of knowing the attacker channel is
unrealistic in general, since it cannot rely on any collaboration from the adversary.

By contrast, quantumcryptography canoffer unconditional, information theoretic,
security, as it is based on:

• the inherent randomness in the outcomes of quantum measurements,
• the possibility of statistically bounding the amount of measurements taken by the
adversary, from the statistics of nonorthogonal measurements by the legitimate
parties.

From the above two properties, one can state that there is no such thing as a purely
passive, undetectable attacker in the realm of quantum information.
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Starting from the pioneering work of Wiesner [13] who, as early as 1970 (even
if his paper was only published many years later), set forth the possibility to cre-
ate unforgettable quantum money, quantum counterparts have been subsequently
developed for many cryptographic primitives, such as bit commitment, oblivious
transfer, coin flipping, and random number generation (as was seen in Sect. 13.2.1).
In the following sections, however, we will limit ourselves to describing the quantum
cryptographic primitive that has been the earliest andmost successfully implemented,
that is, quantum key agreement (aka quantum key distribution).

13.4 Quantum Key Distribution (QKD)

A key agreement protocol is a security mechanism upon which two parties, Alice
and Bob, jointly generate a common random variable or string (the key) K ∈ K

that is uniformly distributed and unknown to any other party. Thus, K can securely
be used as a cryptographic key for symmetric algorithms between them, e.g., for
encryption or message authentication. To this purpose Alice and Bob can locally
process separate secret random variables A and B, respectively, at each terminal,
and exchange messages mA, mB over a public and authenticated channel (public
discussion), where all transmissions can be observed, but not forged or altered, by
any third party.

Themost widely known and adopted key agreement scheme is the Diffie-Hellman
protocol [14], which allows for separate and independent generation of the initial
random variables A and B at Alice and Bob, and offers computational security based
on the hardness of the discrete logarithm problem.

On the other hand, information theoretic key agreement schemes offer uncon-
ditional security, but require that some randomness is shared beforehand between
Alice and Bob, that is to say, their initial random variables A and B must be corre-
lated. This can be obtained either by separate noisy observations of the same random
quantity (in the so-called source model), or by generating a random signal at one
end (say, A at Alice) and transmitting it to the other end (say, Bob) through a noisy
channel (in the channel model). However, when such interaction is allowed for the
legitimate terminals, the same must be granted to a generic eavesdropper Eve, who
will therefore have access to a third variable C , itself correlated with A and B.

The performance measure of an information theoretic key agreement scheme is
given by the secret key rate Rk, that is, the information rate (in bit/s) of the final
output key under the asymptotic constraints

P[KA 
= KB] < ε (correctness)

log2 |K| − H(K ) < ε (uniformity) (13.11)

I (K ; C, mA, mB) < ε (secrecy).
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Fig. 13.4 Quantum cryptographic implementation of information theoretic key agreement in the
channel model via a prepare-and-measure QKD system

If the random variables initially available to Alice, Bob, and Eve are symbol
sequences, denoted by An , Bn , and Cn , respectively, generated by a memoryless
source or noisy channel with symbol rate Rs, and joint symbol probability distri-
bution p(A, B, C), it can be shown that the maximum achievable secret key rate
satisfies the bounds

Rs [I (A; B) − min{I (A; C), I (B; C)}] ≤ Rk ≤ Rs min{I (A; B), I (A; B|C)}
(13.12)

Quantum cryptography allows for an effective implementation of information
theoretic key agreement schemes,2 leading to the development of quantum key dis-
tribution (QKD) protocols. In particular, channel model schemes can be imple-
mented through prepare-and-measure protocols as illustrated in Fig. 13.4, while
source model schemes find a proper embodiment in entanglement-based protocols,
as shown in Fig. 13.5.

When considering a quantum environment, the secrecy notion in (13.11) should
be stated in quantum information terms, e.g., by bounding the accessible information
at Eve, as Iacc < ε, since, in general Eve may optimize her measurement after Alice
and Bob have performed their agreement protocol.

Traditionally, QKD protocols are divided into discrete variable (DV-) and con-
tinuous variable (CV-) QKD, according to the nature of the initial random vari-
ables An, Bn and of the quantum states that represent them. In the following, we
shall examine an example of both prepare-and-measure and entanglement-based,
DV-QKD. Eventually, we shall also briefly outline a QKD protocol with continuous
variables.

2 Historically, the first formulation of a QKD protocol [15] preceded that of general information
theoretic key agreement schemes [16].
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Fig. 13.5 Quantum cryptographic implementation of information theoretic key agreement in the
source model via an entanglement-based QKD system

13.4.1 A Discrete-Variable-QKD Prepare-and-Measure
Protocol

In this section we describe a prepare-and-measure protocol for DV-QKD that was
proposed in [17] and is known as efficient BB84. It represents a variation of the
original BB84 protocol, the first to be proposed for DV-QKD in [15], and lends itself
to a compact description and a precise security analysis [18, 19].

Transmission and Detection

According to this protocol, four states |γ +
0 〉, |γ +

1 〉, |γ ×
0 〉, |γ ×

1 〉 ∈ H are used for
transmission along the qubit channel. They are chosen to be pairwise orthogonal
with 〈γ +

0 |γ +
1 〉 = 0 and 〈γ ×

0 |γ ×
1 〉 = 0 and hence make up two distinct bases for H.

The basis B+ = {|γ +
0 〉, |γ +

1 〉} is called the majority basis (or bit basis), and is used
to share a common binary string between the two legitimate terminals, whereas the
minority basis B× = {|γ ×

0 〉, |γ ×
1 〉} (sometimes called phase basis) is used to detect

any eavesdropping on the qubit channel. In fact, if eavesdropping is detected, the
protocol aborts, and the eavesdropped key is discarded.

The transmitter (Alice) generates a sequence of independent–identically distrib-
uted binary symbols {An}with equally likely 0 and 1 and encodes each bit randomly
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and independently into either basis, so that the transmitted state at the nth symbol
period is

|τn〉 =
{

|γ +
An

〉 with probability p

|γ ×
An

〉 with probability 1 − p

for some fixed probability p.
On the other side of the channel, the receiver (Bob) measures each incoming state

|τn〉 with a POVM Mn , that is composed of a pair of orthogonal rank-1 projectors
along the states that make up either basis. In fact, the measurement operators are
chosen randomly and independently at each symbol period, and independently of
the encoding choices made by Alice, with

Mn =
{

{Π+
0 ,Π+

1 } with probability p′

{Π×
0 ,Π×

1 } with probability 1 − p′

where Π+
0 = |γ +

0 〉〈γ +
0 | and analogously for Π+

1 ,Π×
0 ,Π×

1 , and for some fixed p′.
We denote by Bn ∈ {0, 1} the corresponding outcome.

Hence, from (3.29) the channel transition probabilities are

pc(i | j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∣∣
∣
〈
γ +

i |γ +
j

〉∣∣
∣
2

when both Alice and Bob useB+
∣∣∣
〈
γ ×

i |γ ×
j

〉∣∣∣
2

when both Alice and Bob useB×
∣∣∣
〈
γ ×

i |γ +
j

〉∣∣∣
2

when Alice usesB+ and Bob usesB×
∣
∣∣
〈
γ +

i |γ ×
j

〉∣∣∣
2

when Alice usesB× and Bob usesB+.

In particular, observe that, due to the orthogonality between states in the same
basis, whenever Alice and Bob choose the same basis they have a correct transition
with probability 1, whereas when the chosen bases differ, there will be a bit error
with probability δ = |〈γ +

0 |γ ×
1 〉|2 = |〈γ +

1 |γ ×
0 〉|2.

Eavesdropping

Now, consider that an eavesdropper (Eve) sitting along the Alice-Bob channel has
observed (measured) each single qubit coming from Alice. Her best chance is to
always use the {Π+

0 ,Π+
1 } measurement operators, as this will give her full informa-

tion on the secret bits that will be shared between Alice and Bob. Let Cn denote the
outcome of her measurement; because of the no-cloning theorem, in order to share
the same information with Bob, she must re-encode it as

|τ̃n〉 = |γ +
Cn

〉

http://dx.doi.org/10.1007/978-3-319-15600-2_3
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and transmit it along the channel to Bob. Whenever both Alice and Bob choose the
majority basis, both measurements by Eve and Bob will yield a correct transition,
and it will be An = Bn = Cn . However, if both Alice and Bob choose the minority
basis, it will be

pCn |An (i | j) =
∣
∣∣
〈
γ +

i |γ ×
j

〉∣∣∣
2

and

pBn |Cn (i | j) =
∣∣∣
〈
γ ×

i |γ +
j

〉∣∣∣
2
.

By conditioning on Cn , and applying the total probability theorem, we then obtain

pc(i | j) =
1∑

=0

pBn |AnCn (i | j, )pCn |An (| j)

=
1∑

=0

pBn |Cn (i |)pCn |An (| j)

= |〈γ ×
i |γ +

0 〉|2
∣∣∣
〈
γ +
0 |γ ×

j

〉∣∣∣
2 + |〈γ ×

i |γ +
1 〉|2

∣∣∣
〈
γ +
1 |γ ×

j

〉∣∣∣
2

=
{

δ2 + (1 − δ)2 for i = j

2δ(1 − δ) for i 
= j.

(13.13)

Therefore, when both Alice and Bob choose the minority basis and Eve performs
the measurement and re-encoding on the transmitted qubit using the majority basis,
Alice and Bob will experience a bit error with probability δ′ = 2δ(1 − δ).

Sifting and Eavesdropping Detection

After the transmission is completed, Alice and Bob can share the following infor-
mation along the public channel, that is, by mA and mB

1. In mA, Alice tells Bob the subset of indices NA = {
n | τn ∈ B+}

in which she
used the majority basis;

2. In mB, Bob tells Alice the subset of indices NB = {
n | Mn = {Π+

0 ,Π+
1 }} in

which he used the majority basis;

so that each of them can infer the subset of indices N = NA ∩ NB in which they
have both used the majority basis, and N ′ = N c

A ∩ N c
B in which they have both used

the minority basis. Then:
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• the bits An, Bn for n 
∈ N ∪ N ′ are discarded (sifting);
• the bits An, Bn for n ∈ N are kept undisclosed and will be used to build the secret
key;

• the bits An, Bn for n ∈ N ′ are exchanged byAlice andBob over the public channel,
so that by comparing their values they can detect any errors.

Assume that ntot total qubits have been transmitted, and that Alice and Bob declare
that eavesdropping has been detected if for some n ∈ N ′, An 
= Bn . The probability
that Eve observing all qubits goes undetected is the probability that there are no
errors in all the bits where both Alice and Bob use the minority basis, that is,

Pmd =
ntot∏

n=1

(
P[n 
∈ N ′] + (1 − δ′)P[n ∈ N ′]) = [

1 − δ′(1 − (p + p′) + pp′)
]ntot .

Choice of the Parameters p′, δ, δ′

So far, we have left the values of parameters p, p′, δ, δ′ unspecified, subject to system
design choices. We will now show that some optimal choice can be made straight
away, with the aim of maximizing the number of bits that can be used to build the
secret key, and at the same time of minimizing the probability that an attack by Eve
goes undetected.

Consider the probability that a particular bit An (and correspondingly, Bn) is used
to build the secret key, called the sifted key rate, which is given by P[n ∈ N ] = pp′.
This is clearly maximized by the choice p = p′ = 1 (always using the majority
basis),which, unfortunately,would eliminate the possibility of detectingEve’s attack,
and yield Pmd = 1. Therefore, a tradeoffmust be sought between increasing the sifted
key rate and the attack detection probability. However, one can notice that for any
fixed value of sifted rate pp′, the value of Pmd is minimized by making the sum
p + p′ as small as possible, that is, by choosing p′ = p, and by maximizing δ′.

As δ′ is a quadratic function of δ, it is easily seen that its maximum is achieved at
δ = 1/2 yielding δ′ = 1/2. Observe that this choice corresponds to having the inner
products

∣∣∣
〈
γ +

i |γ ×
j

〉∣∣∣ = 1√
2

, i, j = 0, 1 (13.14)

that are obtained by choosing the two bases in a symmetric fashion in the qubit space,
which intuitively justifies our B+,B× notation. For instance, if the information is
encoded into the polarization state τn of a single photon, one may choose horizontal,
vertical, and diagonal polarization states as follows:

γ +
0 = | ↑ 〉, γ +

1 = |→〉, γ ×
0 = |↗〉, γ ×

1 = |↖〉
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Fig. 13.6 Illustration of the tradeoff between the expected length of the sifted key E [ns] and the
missed detection probability Pmd, depending on the value of the probability p of the majority basis.
In the lower right corner an expanded view of the upper right corner, which is typically the region
of practical interest. For instance observe that, with ntot = 104 transmitted qubits, if it is required
to keep Pmd < 10−20, one has to choose p ≤ 0.9, and hence obtain no more than 8 200 sifted bits,
on average

From now on, we will therefore assume that (13.14) holds and p′ = p, thus yielding
the missed detection probability and the expected sifted key length

Pmd =
(
1

2
+ p − 1

2
p2

)ntot
, E [ns] = ntot p

2

where the value of p allows us to trade the sifted key length for the attack detection
capabilities of the scheme. The tradeoff is illustrated in Fig. 13.6.

Note that in this ideal setting the sifted keys A′ = [A′
1, . . . , A′

ns ] = [An]n∈N and
B ′ = [B ′

1, . . . , B ′
ns ] = [Bn]n∈N can be directly used as a secret cryptographic key

pair, since they are identical with unit probability, and provided Pmd is sufficiently
low, any eavesdropping would have been detected with high probability.3

3 A somewhat subtle point should be made here. The security of the protocol does not guarantee
that eavesdropping is unlikely, given that no errors have been detected in the minority basis. Rather,
it states that if eavesdropping takes place, it will be detected with high probability. In symbols, let
E denote the event that eavesdropping has taken place and D the event that no errors have been
detected, we can only upper bound Pmd = P[D|E], but nothing can be said about P[E |D], since
no assumption can be made on the probability of event E which is totally under the control of the
attacker.
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13.4.2 A DV-QKD Entanglement-Based Protocol

In this section we present a QKD protocol which makes use of entangled particles to
share a secret key between two parties. The BBM92 protocol (Fig. 13.7), described
here, was first proposed by Bennett, Brassard and Mermin in [20], as a simpler
version of the Ekert protocol [21].

In the BBM92 scheme the channel consists of a source, called Charlie, that emits
entangled particles and sends them to opposite directions.

The particles are received by two users, Alice and Bob, who perform measure-
ments MA

n and MB
n . Both Alice and Bob choose their measurement operators ran-

domly, independently andwith equal probability between {Π+
0 ,Π+

1 } and {Π×
0 ,Π×

1 }.
Similar to BB84, we have that {Π+

0 ,Π+
1 } and {Π×

0 ,Π×
1 } should be selected sym-

metrically in the qubit space. Usually the bases are chosen to be the Pauli operator,
i.e., Π×

0 = σz and Π+
0 = σx , which satisfy the nonorthogonality condition. After

a sequence of ntot entangled particles are received and measured, Alice and Bob
publicly announce which basis they used for each particle, but not the outcomes of
the measurements. During sifting, Alice and Bob discard the events in which they
measured in different bases, or in which themeasurement failed because of imperfect
detection. The remaining instances, in which bothmeasured in the same basis, should
be perfectly correlated if they actually measured entangled pairs. In order to verify
this, Alice and Bob publicly compare their outcomes An, Bn in a subset n ∈ N ′ of
the undiscarded events. If Alice and Bob find perfect correlation on the tested set N ′,
they can state that the transmission was secure and no eavesdropping was performed,
and keep the remaining An, Bn , n ∈ N = NAB N ′ to produce the secret key K .

Security Proof

In examining the security of the BBM92 protocol, it is interesting to notice that this
protocol bears many analogies to the BB84 presented in the previous section. We
consider themost common attacks, i.e., intercept and resend, and source substitution.
The discussion of the protocol robustness against the former kind of attack is analo-
gous to the one given for the BB84 protocol and we refer to the previous section. The
source substitution attack happens when an eavesdropper Eve sends Alice and Bob

Fig. 13.7 BBM92 scheme.
Alice and Bob: receiving
users. Charlie: source of
entangled particles

Alice Bob

Charlie
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pairs that are somehow entangled with systems available to her. The most general
entangled state Eve can prepare is equal to

|Φ〉 = |11〉|e0〉 + |00〉|e1〉 + |10〉|e2〉 + |01〉|e3〉,

where |1〉 and |0〉 form an orthonormal qubit basis and |e0〉,|e1〉,|e2〉 and |e3〉 are
the states of Eve’s system. We can notice that in general Eve does not even have to
decide her measurements until Alice and Bob have published theirs. Eve’s aim is
to be completely invisible, therefore, if Alice and Bob measure in the B+ basis, in
order that they have fully correlated outcomes, the state |Φ〉 must be an eigenstate
of σ a

z σ b
z with eigenvalue −1. This implies that |Φ〉 must assume the form:

|Φ〉 = |10〉|e2〉 + |01〉|e3〉.

At the same time, if Alice and Bob measure in the B× bases, the state |Φ〉 must be
an eigenstate of σ a

x σ b
x with eigenvalue −1. This further restricts |Φ〉 as follows:

|Φ〉 = (|10〉 − |01〉) |e2〉.

From this, the only Eve’s source that will surely be undetected by Alice’s and Bob’s
test is the one in which Eve’s system is completely uncorrelated with the entangled
particles. Thus, everymeasurement gives her no information about Alice’s and Bob’s
outcomes.

Out of Curiosity

In 1992 there was a heated discussion between Ekert and Bennett, Brassard and
Mermin, about the described protocol. Ekert stated that the security proof must be
based on “non-locality” and “non-reality” tests given by Bell’s theorem. Bennett et
al. demonstrated their protocol without these assumptions using a simpler scheme.
Recently, Vallone et al. [22] proposed a new protocol which uses a simple scheme
as Bennett et al. and bases its security on Bell’s theorem thanks to the use of non-
maximally entangled particles.

13.4.3 Key Processing

In introducing the above protocols, we have ideally supposed that, provided Alice
and Bob choose the same basis and Eve does not interfere, the sharing of a bit through
the quantum channel is error-free. In that case, the sifted keys are also the final secret
keys.

In a more realistic environment, however, distortion introduced by the quantum
channel, temporal or spatial misalignment between the two terminals, and quantum
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noise in the receivermay introduce some errors, even for bits An, Bn with n ∈ N ∪N ′,
and without any attack. This has two potentially fatal consequences:

1. errors An 
= Bn for n ∈ N will propagate to the distilled secret key;
2. errors An 
= Bn for n ∈ N ′ will make Alice and Bob abort the protocol, even in

the absence of an attacker.

The two problems above can be solved with techniques for the processing of random
signals in the classical domain, to yield the final secret keys where both the mismatch
between Alice and Bob’s keys and the information leaked to the attacker have been
removed with high probability.

In the followingweassume that errors in eachbasis are symmetric and independent
across symbols, so that the transformation linking An to Bn for n ∈ N (respectively,
n ∈ N ′) is a binary symmetric channel with error rate ε+ (respectively, ε×).

Information Reconciliation

In order to solve problem 1, techniques similar to traditional forward error correction
coding for the binary symmetric channel can be used, providing they are suit-
ably adapted to the secrecy requirement in the QKD framework. In fact, since the
binary sifted sequence A′ = [A′

1, . . . , A′
ns ] = [An]n∈N , (and the analogous B ′) is

only known after sifting, the redundancy bits that allow error correction must be
transmitted later, along the public classical channel, and can be observed by any
attacker. The amount of redundancy must therefore be kept to a minimum, not for
efficiency reasons, but to limit as far as possible the amount of information that
leaks to an eavesdropper. As is well known, a lower bound on the amount of redun-
dancy that must be transmitted in order to have reliable error correction is given
by r = nsh2(ε

+), with h2(·) denoting the binary entropy function (see Chap. 12)
h2(ε) = −ε log2 ε − (1 − ε) log2(1 − ε).

One possibility is to generate the redundancy bits m′
A by using systematic

encoding for a block channel code, where properly sized blocks taken from the
sifted sequence make up the information words, that is, m′

A = G A′, where A′ and
m′

A are seen as columns vectors, and G denotes the nonidentity portion of the sys-
tematic generating matrix. Thus, upon receiving m̃′

A over the public channel, Bob
can perform minimum distance decoding, that is replace B ′ by

B ′′ = arg min
β∈{0,1}ns

dH([β, Gβ], [B ′, m̃A])

with dH(·, ·) representing the Hamming distance between two binary strings.4

However, typically the public channel is assumederror-free and authenticated (that
is, each message can be verified to actually come from Alice and not having been
altered in transit), so that m̃′

A = m′
A and there is no need to protect the redundancy

bits from channel errors. In this case, it is more efficient in terms of error correction
capability to obtain the redundancy bits as a hash of the sifted sequence, given, for

4 That is, the number of positions at which they differ.

http://dx.doi.org/10.1007/978-3-319-15600-2_12
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instance, through the parity check matrix G ′ of a linear code, yielding m′
A = G ′ A′.

Thus, upon receiving m̃′
A over thepublic channel,Bobcanperformminimumdistance

decoding, that is, replace B ′ by

B ′′ = arg min
β∈{0,1}ns

dH([β, G ′β], [B ′, m̃A]).

The latter approach is currently the most widely used in the QKD literature,
typically by employing LDPC codes (see [23]), especially with stable channels and
long processing blocks, where the code parameters can be precisely tuned to require
an amount of redundancy that is close to the lower bound. On the other hand, when
the channel conditions are varying, and/or shorter blocks need to be used, other ad
hoc solutions are considered that require more interaction between the terminals
along the public channel and intrinsically adapt to the channel conditions (see [19]).

In a symmetric fashion, one can have Alice correct A′ to match Bob’s sifted
sequence B ′ based on a public message mB sent by Bob. Alternatively, one can use
a two-way reconciliation scheme where both Alice and Bob send public messages
and each one partially correct their sifted keys.

Privacy Amplification

The obvious solution to problem 2 above is to allow for some errors in the bits
with n ∈ N ′ without aborting the protocol, as long as the number of errors nerr is
below some specified threshold θ . The threshold is typically chosen depending on
the cardinality of N ′ and the channel error rate.

However, this would introduce a vulnerability in the protocol. It makes it possible
for the eavesdropper to perform a selective intercept and resend attack on a limited,
yet significant, fraction of the qubits shared betweenAlice andBob, by retransmitting
them through an error-free channel. In this way, Eve’s observations may not be
detected, as Alice and Bob will attribute the errors to the channel and tolerate them,
whereas they were actually induced by the eavesdropper measurements.

Therefore, a conservative countermeasure requires Alice and Bob to remove the
partial information thatEvemayhave acquired throughundetectedqubit observations
or by accessing the redundancy transmitted over the public channel for the purpose
of reconciliation. Privacy amplification is the process of removing any information
available to the attacker from the reconciled keys to yield the final secret key K .

This is done through the applicationof a commonhashing function f : {0, 1}ns →
{0, 1} at each reconciled sequence A′′

n and B ′′
n , where  < ns represents the length of

the final key. Clearly, applying the same function allows to maintain correctness. In
fact, since the sequences A′′

n and B ′′
n are supposedly identical with very high proba-

bility, so will be the corresponding outputs KA, KB. On the other hand, compressing
the sequence with a function that is surjective, but not injective, makes it possible to
remove bits that have been learnt by Eve, and the redundancy that has been inserted
for reconciliation purposes, to obtain a key that is as uniform and independent of the
eavesdropper observations as possible.
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Typically, the hash function is simply a multiplication by a matrix F ∈ {0, 1}×ns

on the binary field. Also, a potential eavesdropper knowledge (C, mA, mB) about
the reconciled sequence A′′ = B ′′ can itself be described as a matrix function
M ∈ {0, 1}t×ns . For instance, suppose that Eve has performed selective intercept and
resend so that she knows a subset C ′′ = {A′′

n, n ∈ NE} of the reconciled sequence,
for some NE, and that she has observed the bits m′

A = G A′′ transmitted along the
public channel for reconciliation. Then, we can write

M =
[

INE

G

]

where INE is made of the rows from the ns × ns identity matrix with indices in NE,
and t = r + |NE|.

If the eavesdrop matrix M were known to Alice and Bob, it would in principle
be possible to choose the privacy amplification matrix F to yield a perfectly secret
key. In fact, in this case, since A′′ is uniform over {0, 1}ns (as a consequence of the
fact that An and Bn are assumed to be iid uniform sequences), it can be easily seen
that the final key K is uniform in as {0, 1} and independent of the eavesdropper
observations if and only if the null spaces of F and M satisfy

dimN(M) − dim (N(M) ∩ N(F)) =  . (13.15)

On the other hand, if M is not known, but the value of t is (or can at least be upper
bounded), Alice and Bob can choose the hashing function f randomly after sifting
(so that Eve can not tailor her observations to it) and communicate the choice over
the public channel. It was shown in [24] that the average of the mutual information
in (13.11) over the choice of f can be upper bounded as

I (K ; C, mA, mB, f ) <
1

log 2

1

2ns−t−
(13.16)

by choosing f uniformly within a universal hashing class,5 such as that of all  × ns
binary Toeplitz matrices.

In general, however, it is more realistic to assume that neither the exact position,
nor even the exact amount of the qubits observed by the eavesdropper are known to
the legitimate parties.

Therefore, privacy amplification is usually performed in two steps. First, since the
matrix G of information reconciliation is perfectly known, a matrix F1 ∈ {0, 1}1×ns

5 A classFof functionsmapping the same domain X to the same range Y is called universal hashing
if it maps inputs to outputs “uniformly”, that is,

{
|{ f | f (x) = y}| = |F|/|Y | for all x ∈ X, y ∈ Y

|{ f | f (x1) = f (x2)}| = |F|/|Y | for all x1, x2 ∈ X.
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Fig. 13.8 Minimum amount
of qubits ntot that need to be
transmitted in the efficient
BB84 protocol, as a function
of the quantum BER
(assumed equal on both
bases, ε+ = ε×), for
different target values of the
final secret key length . The
plot is based on an
optimization of the finite key
bound in [18]

0 % 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 %

103

104

105

106

+ = ×

ntot

= 1
= 10

= 100
= 1000

= 104

= 3 · 104
= 105

that satisfies (13.15) with F1 replacing F and G replacing M is applied. Then, the
amount of information that is available to Eve from undetected qubit observations
is upper bounded probabilistically in terms of the abort threshold on the number of
detected errors, that is, tub is chosen so that P[nerr < θ |t > tub] is acceptably low.
Eventually, a matrix F2 ∈ {0, 1}×1 chosen randomly from a universal hashing class
is applied so that (13.16) is satisfied with very high probability.

Clearly, in the limit of ntot, |N ′| → ∞ the rate of information that is available
to Eve can be precisely estimated. On the other hand, when ntot is limited (in the
so-called finite key regime) such estimates have a large amount of uncertainty, and
significant margins must be allowed when choosing tub and . Several bounds for 

have been formulated in the finite key regime [18, 19]. Figure13.8 shows a contour
plot of the final key length as a function of the total transmitted qubits and the error
rates in the channel for the efficient BB84 protocol, according to the bound provided
in [18] and for optimal choices of the threshold θ and the majority basis rate p.
Observe that  decreases rapidly following ntot.

13.4.4 A Continuous Variable QKD Protocol

As an example of CV-QKD, we consider the GG02 protocol [25], as introduced
in [26], a prepare-and-measure scheme, which makes use of coherent states with
Gaussian displacements.
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In fact, the transmitter Alice generates a sequence An of iid complex Gaussian
random variables with circular symmetry.6 Then she encodes each variable An into
the coherent state with displacement given by the corresponding realization of An ,
that is,

An = α ⇒ |τn〉 = |α〉.

Alternatively, this can be viewed as encoding �An into the position and �An into
the momentum displacement of |τn〉.

The protocol is based on the fact that the uncertainty principle prevents measuring
both quadratures with full accuracy. On the other side of the quantum channel, Bob
measures either the position or momentum of each incoming state |τn〉, by randomly
and independently choosing each measurement observable as

Mn =
{

q with probability 1/2

p with probability 1/2

and we denote by Bn ∈ R the corresponding continuous-valued outcome.
Thus, Bn will be a Gaussian random variable correlated with either �An of �An

according to whether Mn = q or Mn = p. After the transmission is completed, Bob
tells Alice via the message mB the sequence of measurements {Mn} so that Alice
can sift her sequence and obtain

A′
n =

{
�An if Mn = q

�An if Mn = p.

Themutual information between An (or equivalently A′
n) and Bn is therefore given by

I (A; B) = 1

2
log2

(

1 + σ 2
A

σ 2
0

)

where σ 2
0 represents the fluctuations of the coherent state around its displacement.

The possibility of detecting an intercept and resend attack by Eve lies in the
impossibility for Eve to perform both a position and momentum observation on τn ,
analogously to what was shown for discrete variable protocols.

13.5 Teleportation

Quantum teleportation is one of the many important applications of entanglement. It
allows an unknown quantum state to be transported fromAlice to Bob by transmitting
only classical information. In particular, a qubit can be teleported by using two

6 A complex-valued random variable X is called circular symmetric Gaussian if �X and �X are
independent Gaussian variables with zero mean and the same variance σ 2

X .
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classical bits. Let us consider the simplest example, given by a single qubit in a
generic state unknown to Alice

|ϕ〉C = α|0〉C + β|1〉C. (13.17)

Due to the no-cloning theorem, Alice cannot clone such state and cannot know
all the quantum information by measuring the qubit. Indeed, the parameters α and
β can only be obtained if Alice has many copies of the state |ϕ〉C and performs
several measurements on them. It is important to note that the state |ϕ〉C contains an
infinite amount of classical information, parameterized by the complex (continuous)
parameters α and β.

Quantum teleportation [27] allows Alice to send such qubit by sending Bob only
twobits of classical information. The key resource to achieve such goal is amaximally
entangled state between Alice and Bob. We recall the four Bell states, which are
maximally entangled states forming a basis in the Hilbert space of two qubits

|φ±〉 = 1√
2

(|00〉AB ± |11〉AB) , |ψ±〉 = 1√
2

(|01〉AB ± |10〉AB) . (13.18)

Any Bell state can be used for quantum teleportation. Here we show how to achieve
it with the state |ψ−〉AB. Alice holds the unknown qubit |ϕ〉C and her part of the
entangled state, A. The total state shared by Alice and Bob can be written as

|Ψ 〉CAB = |ϕ〉C ⊗ |ψ−〉AB (13.19)

By expanding the state we obtain

|Ψ 〉CAB = 1√
2

(α|001〉CAB − α|010〉CAB + β|101〉CAB − β|110〉CAB) (13.20)

with the easy notation |001〉CAB ≡ |0〉C ⊗|0〉A ⊗|1〉B . From the definition of the Bell
states, it is possible to show that the following equalities hold

|00〉CA = 1√
2

(|φ+〉 + |φ−〉) , |11〉CA = 1√
2

(|φ+〉 − |φ−〉)

|01〉CA = 1√
2

(|ψ+〉 + |ψ−〉) , |10〉CA = 1√
2

(|ψ+〉 − |ψ−〉) .

Thus the total state can be written in the following form:

|Ψ 〉CAB = 1
2

(|φ+〉CA ⊗ σxσz |ϕ〉B + |φ−〉CA ⊗ σx |ϕ〉B

−|ψ+〉CA ⊗ σz |ϕ〉B − |ψ−〉CA ⊗ |ϕ〉B
)
.

(13.21)

The above equation contains all the information needed to understand quantum
teleportation. To complete the protocol, Alice needs to perform a measurement on
the two qubits C and A. Indeed, she performs a Bell measurement, consisting in a
projective measurement that distinguishes between the four orthogonal Bell states
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{|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}. If she obtains |φ+〉, relation (13.21) indicates that Bob
obtains the state σxσz |ϕ〉B . If she obtains |φ−〉, |ψ+〉 or |ψ−〉, Bob is left with the
state σx |ϕ〉B , σz |ϕ〉B , or |ϕ〉B , respectively. Then Alice communicates to Bob which
state she has measured (since she has four possibilities, two classical bits are suffi-
cient). Bob performs a different unitary transformationU depending on the outcomes
obtained by Alice to recover the input state (unknown to both Alice and Bob). The
operation performed by Bob is summarized in the following table:

Alice outcome Bob Operation (U)

|φ+〉 σzσx
|φ−〉 σx
|ψ+〉 σz
|ψ−〉 11

It is important to underline that the Bell measurement gives no information on
the input state |ϕ〉C and that for any input state Alice has equal probability, 1/4, of
obtaining each of the four Bell states.

In the quantum teleportation protocol (Fig. 13.9), the input quantum state is not
traveling between Alice and Bob: what is “traveling” is the quantum information
contained in the parameters α and β. Indeed, it is worth noticing that the input and
the teleported qubits can be implemented in different physical systems. For instance,
the input qubit can be encoded in the polarization of a photon, while the teleported
qubit can be represented by a two-energy-level atom system. Moreover, there is no

Fig. 13.9 Teleportation environment
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contradiction with the no-cloning theorem: indeed, the unknown state vanishes at
Alice’s side and appears at Bob’s location. Then there is no “cloning” of the input
state.

Finally, even if the collapse of the wave function is instantaneous (at the moment
in which Alice obtains her outcome), Bob’s state immediately collapses to σxσz |ϕ〉B ,
σx |ϕ〉B , σz |ϕ〉B , or |ϕ〉B , a classical communication is necessary between Alice and
Bob to correctly recover the input qubit. Then teleportation does not violate the “no
faster than light” communication principle.

The first experimental demonstrations were performed with photons in Rome and
Vienna in 1997 [28, 29]. Further experiments were realized with coherent states
[30] and nuclear magnetic resonance [31]. Recent experiments reported quantum
teleportation of photons along distances of more than 100km [32, 33].
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