
Chapter 1
Introduction

1.1 A Brief History of Quantum Mechanics

A Few Milestones in Quantum Mechanics

1900: Black body radiation law (Max Planck)

1905: Postulation of photons to explain photoelectric effect (Albert Einstein)

1909: Interference experiments (Geoffrey Ingram Taylor)

1913: Quantization of angular momentum of hydrogen (Niels Bohr)

1923: Compton effect (Arthur Holly Compton)

1924: Wave–particle duality extended to incorporate matter (Louis de Broglie)

1925: Matrices as basis for Quantum Mechanics (Werner Heisenberg)

1926: Probabilistic interpretation of the wavefunction (Max Born)

1926: Gilbert Lewis coined the word photon

1926: Wave equation to explain the hydrogen atom (Erwin Schrödinger)

1927: Uncertainty principle (Werner Heisenberg)

1927: Copenhagen interpretation (Niels Bohr)

1928: First solution of Quantum Mechanics explaining spin (Paul Dirac)

1930: Principles of Quantum Mechanics (Paul Dirac)

1930: Interference, how quantized light interacts with atoms (Enrico Fermi)

1932: Mathematical foundations of Quantum Mechanics (John von Neumann)

1935: EPR paradox (Einstein, Podolsky, and Rosen)

1950s: Theory of photon statistic and counting (Hanbury Brown, and Twiss)

1960s: Quantum theory of coherence (Glauber, Wolf, Sudarshan, and others)

1970: (early 1970s) Tunable lasers
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2 1 Introduction

1.1.1 The Dawn

In the last decade of the nineteenth century Newton’s mechanics, Maxwell’s electro-
magnetic theory, and Boltzmann’s statistical mechanics seemed capable of exhaus-
tively explaining any relevant physical phenomenon. However, some phenomena,
initially deemed as marginal, did not completely fit in the structure of these classic
disciplines. It all began with the discoveries of a Physics student called Max Planck
(1858–1947).1 Planck’s research was triggered by the study of the emission and
absorption of light by physical bodies. At that time, the founding theory of radiation
emission by a black body was based on classical electromagnetism. Applying this
theory, the phenomenon was well explained for relatively low frequencies of the
emitted radiation (visible or near infrared and downwards); however, for high fre-
quencies (ultraviolet and upwards) classical theory would predict an infinite increase
in the energy of the emitted radiation, which, as matter of fact, does not happen in
reality. To overcome such a problem, Planck formulated the hypothesis that the radi-
ating energy could only exist in the form of discrete quantities, or “packets”, which
he called quanta. To set the framework of Planck’s problem, we must recall the
previous research of the physicist J.W. Strutt Lord Rayleigh (1842–1919), who
studied the radiation of the black body from a classical point of view, modeling it
as a collection of electromagnetic oscillators, and considering the presence of the
radiation at frequency ν as the consequence of the excitation of the oscillator at such
frequency. With some contribution by Sir James Hopwood Jeans (1877–1946), he
arrived at the formulation of the Rayleigh-Jeans Law, given by the expression

E(ν) = 8πkT ν4

c4 = 8πkT

λ4 , (1.1)

which gives the value E(ν) of energy density per frequency unit emitted by a black
body at frequency ν. In (1.1) k = 1.38 10−23JK−1 is Boltzmann’s constant, T is
the absolute temperature of the black body, c is the speed of light, and λ = c/ν is
the wavelength. This law shows that the energy density irradiated by a black body
increases linearly with temperature and with the fourth power of the frequency of the
emitted radiation. Experimental measurements demonstrate that this law is perfectly
adequate at low frequencies: in fact, it is well known that, with increasing temperature,
the irradiated energy increases proportionally, at least up to the infrared. However,
measurements carried out at higher frequencies, for example in the ultraviolet range,
clearly show that the emitted energy values diverge considerably from those foreseen
by the theory. In addition, from a careful analysis of Eq. (1.1), one can see that
the expected result in this spectral interval has no physical meaning. In fact, this
equation states that, with increasing frequency, energy density increases indefinitely.
As a consequence, the equation asserts that the high-frequency oscillators (very
low wavelength, corresponding to the ultraviolet radiation, to the X-rays, and to

1 On December 14, 1900, Planck publishes his first paper on Quantum Theory in Verh. Deut. Phys.
Ges. 2,237–45.
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the γ -rays) should be excited even at room temperature. Such absurd result, which
posits the emission of a large amount of energy in the high-frequency region of the
electromagnetic spectrum, went under the name of ultraviolet catastrophe.

The solution of the problem was in fact due to Max Planck, who tackled it in mathe-
matical terms. Instead of integrating the energies of the “elementary oscillators” (that
is, in practice, of the electrons “oscillating” around the nucleus) considering them as
continuous quantities, he performed a summation of the energies, hypothesizing that
they could assume only discrete values, proportional to the characteristic oscillation
frequency ν of the electrons, by an appropriate constant h

E = hν. (1.2)

The relation discovered by Planck for the energy density per frequency unit of the
black body turns out to be (Planck’s relation)

E(ν) = 8π

c3

hν3

ehν/kT − 1

and it appears to be in perfect agreement with the experimental distribution for each
temperature, assuming h = 6.63 10−34 Js; h is known as Planck’s constant.

Planck’s theoretical discovery on quanta became accepted by the classical physi-
cists only when Albert Einstein (1879–1955)2 succeeded in explaining the photo-
electric effect, speculating that light radiation was constituted by energy packets,
subsequently called “photons”. Einstein showed that, thanks to quanta, other physi-
cal phenomena could be explained, in addition to the black body emission proposed
by Planck, and at that point the discrete nature of electromagnetic radiation became
a fundamental and generally accepted concept.

Another problem that could not be explained by classical mechanics was the
regularity of the emission spectrum of an atom, that is, the fact that it always appeared
as formed by the same characteristic frequencies, independently of its origin and of
possible excitation processes it had undergone, a fact that could not be convincingly
explained by the model proposed by Ernest Rutherford (1871–1937) in 1911. The
first one to address the problem in mathematical terms was Niels Bohr (1885–1962)
in 1913. Bohr hypothesized that the lines of an atomic spectrum were originated
by the transition of an electron between two discrete states of an atom. This theory
correctly interpreted, for the first time, the emission and absorption properties of an
atom of hydrogen.

The next step in the development of Quantum Mechanics was due to Louis-
Victor Pierre Raymond de Broglie3 (1892–1987), who extended to the particles
with mass the wave–particle duality that had been evidenced for electromagnetic

2 In 1905 he published on the Annalen der Physik three articles, the first on light quanta, the second
on Brownian motion, which would definitely confirm the atomicity of matter, the third on the
foundations of restricted relativity.
3 After publishing a few papers, he developed in full form this original idea in his Ph.D. thesis
(1924): Recherches sur la théorie des quanta.
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radiations. Louis de Broglie surmised that not only would light, generally modeled
as a wave, sometimes behave as a particle, but also electrons, usually modeled as
particles, could at times behave as waves. De Broglie suggested that the key for the
description of electrons in terms of wave–particle could be given by the relation

λ = h

mv
(1.3)

where λ is the wavelength of the wave associated to the electron, and m e v are,
respectively, the mass and the velocity of the electron itself. For example, a wave is
associated to an electron moving along a closed orbit around the atomic nucleus. In
this particular case, the wave is stationary and its wavelength is linked to mass and
velocity by relation (1.3).

We can say that de Broglie’s contribution marks the end of the pioneering phase
of Quantum Mechanics, whose various phenomena were examined and explained
individually, without attempting to formulate a general theory.

1.1.2 The Maturity of Quantum Mechanics

Quantum Mechanics reached maturity in the 1920s and in the 1930s, moving from
Quantum Theory to Quantum Mechanics, thanks to the work of Schrödinger, Heisen-
berg, Dirac, Pauli, and others.

Shortly after de Broglie’s conjecture, almost simultaneously, Quantum Mechan-
ics was presented by Erwin Schrödinger (1887–1961) and Werner Heisenberg
(1902–1976).4 Among the greatest physicists of the century, Schrödinger, stated the
fundamental equation of Undulatory Mechanics, known nowadays as Schrödinger’s
equation

Hψ = E ψ, (1.4)

where ψ is an eigenfunction describing the state of the system, H is an operator,
called Hamiltonian, and E is the eigenvalue accounting for the system’s energy.5

This equation, stated for non relativistic energies, is the basis for the description of
the various phenomena of molecular, atomic, and quantum nuclear physics.

Heisenberg, instead, introduced into Physics the uncertainty of physical entities.
His Uncertainty Principle, in fact, asserts that it is impossible to know, simultaneously
and exactly, couples of physical entities, like position and velocity of a particle. In
essence, the more precisely we know the position of a particle, the less information
we have on momentum, and vice versa, according to:

4 In 1927, he published on Zeitschrift fur Physik his famous paper on the uncertainty principle,
entitled: Über den anschaulichen Inhalt der quanten theoretischen Kinematik und Mechanik.
5 Equation (1.4) is Schrödinger’s time-independent equation, where ψ is an eigenfunction.
Schrödinger’s equation can also include the time to take into account system evolution.
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ΔxΔp ≥ h

4π
. (1.5)

This principle is of general validity, but it is particularly appreciable at the atomic or
subatomic scale.

The statistical laws related to the concept of probability became a reality: uncer-
tainty is a fundamental fact, and the relations connected to the principle evidence an
insuperable limit to our knowledge of nature.

The more precisely the position is determined, the less precisely the momentum is known
in this instant, and vice versa. (Heisenberg, Uncertainty Paper, 1927)

To conclude this historical note, we find it appropriate to mention the fundamen-
tal contribution, albeit indirect, given by the mathematician David Hilbert (1862–
1943), since the modern version of Quantum Mechanics requires a Hilbert space as
mathematical context.

1.2 Revolutionary Concepts of Quantum Mechanics

In describing reality, Quantum Mechanics presents a few concepts that appear revo-
lutionary with respect to Classical Physics, and even seem in contrast with common
sense. These concepts will be briefly summarized below.

1.2.1 Randomness

The fundamental difference between Classical Mechanics and Quantum Mechanics
lies in the fact that, while Classical Mechanics is a deterministic theory, Quantum
Mechanics envisages and formalizes indeterminate aspects of reality.

In the mathematical models of Classical Mechanics, once the initial state of
a system is known, and so are the forces acting on it, the system’s evolution is
perfectly predictable and deterministically measurable. Resort to probabilistic mod-
els is then justified exclusively by the need to account for lack of information on
entities characterizing the system.

In Quantum Mechanics, instead, randomness is an intrinsic element of the the-
ory. In fact, it states that the measurements performed on a system, starting from
exactly the same initial conditions, may produce different results. This is not due to
measurement imprecision, but rather to the fact that the result of any measurement
is intrinsically random and must be dealt with the Theory of Probability.

Randomness in Quantum Mechanics is expressed by the fact that the measure
of an entity is described by a complex function (the wave function), whose squared
modulus gives the probability density of the result (intended as a random variable).
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1.2.2 Indeterminacy

Another peculiar aspect of Quantum Mechanics is that in any experiment the mea-
surement procedure interferes with the system, altering it. In Classical Physics there is
no such problem, because measurement errors can be acknowledged and estimated,
but the measurement itself, if accurately performed, does not modify the system.
In Quantum Mechanics this is not possible any more, because, as established by
the above-mentioned Heisenberg’s principle, the accuracy in the knowledge of one
quantity (e.g., the position of a particle) inhibits an equal accuracy in the knowledge
of another quantity (e.g., velocity). This should be interpreted not only in the sense
that two quantities cannot be measured simultaneously with an arbitrary degree of
accuracy. As we shall see, they are conceptually undetermined with an uncertainty
whose lower bound is given by Heisenberg’s inequality.

1.2.3 Complementarity

The above example of position and momentum is a typical case of conjugate or com-
plementary entities. This corresponds to a distinctive feature of Quantum Mechanics,
whose fundamental example is the case of the wave function ψ(x) of position and the
wave function of momentum ψ̃(p): there exists no wave function ψ(x, p) providing
a joint statistical description of both entities. The same applies to other couples of
complementary variables.

1.2.4 Quantization

Differently from Classical Mechanics, in Quantum Mechanics, the states of a quan-
tum system can only correspond to discrete energy levels. In other words, the granular
nature of matter can be extended to energy.

This fact is in good agreement with the requirements of telecommunications,
where digital information is represented by quantities that can assume a finite number
of values.

1.2.5 Linearity and Superposition

Paradoxically, the states of a quantum system, although characterized by discrete
energy levels, have a continuous nature, in the sense that wave functions are contin-
uous functions. In addition, if ψ(x) and φ(x) are two possible wave functions, also
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their linear combination a ψ(x) + b φ(x), with a and b complex numbers, is still a
wave function.

Linearity is then another feature of Quantum Mechanics. The algebraic structure
in which its models are represented is constituted by Hilbert spaces, that are linear
spaces, and Schrödinger’s equation, which governs the evolution of the state, is a
linear differential equation.

Linearity and superposition, very simple mathematical concepts, are actually the
basis of Quantum Information and Computation and have practical consequences of
great importance.

1.2.6 Entanglement

The entanglement is a phenomenon of Quantum Mechanics in blatant contradiction
with physical intuition, as Classical Physics would suggest, to the point that its
meaning itself is still open to discussion.

Two particles emitted from the same source, when in the entanglement condition,
show strictly correlated characteristics that are preserved even when they move away
from each other. And when the state of one of them is measured, the state of the
other changes immediately with a “spooky action at a distance,” in total contrast
with common sense.

1.3 Quantum Information

The natural field of application of Quantum Mechanics is within Physics. However, in
the last 20 years (starting from the 1980s) it has exceptionally expanded into the area
of Information science and technologies. The main ideas come from the Postulates
of Quantum Mechanics, which in the last 100 years have never been disproved, and,
after a substantial reformulation, envisage extremely innovative applications, like the
quantum computer, quantum coding, quantum cryptography, and quantum commu-
nications. Many of these innovations, consequences of the Postulates, have already
had experimental verification and are the subject of a frenzied research activity.

It is worthwhile to introduce these innovations by adding some more histori-
cal notes.

1.3.1 The Discovery of Laser and the Theory of Quantum TLC

In the 1960s, after the discovery of laser, Ronny J. Glauber of Harvard University
formulated the quantum theory of optical coherence [1, 2]. The possibility of pro-
ducing coherent light led Helstrom [3], and other scientists from the Massachusetts
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Institute of Technology (MIT), to formulate the Theory of Quantum Telecommu-
nications, that is, a theory where the information is related to quantum states and
the analysis and design is based on the rules of Quantum Mechanics. This theory,
which we will develop in Chaps. 7 and 8, aimed to realize optical transmissions in
free air, as optical fibers were not yet available at that time; unfortunately it did not
generate appreciable applications, because the technology was not mature enough,
and mostly because the appearance of optical fibers, with their enormous through-
put, obscured the interest toward quantum telecommunications. Nevertheless, these
pioneering investigations may be considered the beginning of Quantum Information.

Recently, the QTLCs (Quantum Telecommunications) have been vigorously
revived at the Jet Propulsion Laboratory (JPL) of NASA, where the Deep Space
Network is in operation, and, in fact, it is in the area of deep space transmissions that
Quantum Communications are expected to play a crucial role. We are dealing, for
the time being, with niche applications, but it should be remembered that other fields,
like the application of error-correction codes, started precisely at JPL, and they led
to fully fledged applications many years later.

1.3.2 Quantum Information Based on Discrete
Quantum Variables. The Qubit

To understand the motivations that, in the early 1980s, led to studying information
in the context of Quantum Mechanics, we can start from Moore’s Law of electronic
circuit technology. As we know, this law, stated by Gordon Moore in 1965, asserts
that the complexity of electronic circuits (chips), at equal size, doubles approximately
every18 months, and this prediction has been substantially confirmed in the last 50
years. However, it assumes an indefinite reduction in the size of components, down
to the limit of atomic dimensions, where quantum effects become predominant. At
this point, a natural development is to try to reformulate Information Theory in the
framework of Quantum Mechanics. Following this line of thought, Benioff, Manin,
and Feynman postulated the idea of a Quantum Computer, for the simulation of
Quantum Systems. Differently from the classical computer, which, as is well known,
is a power-consuming device, the quantum computer, in theory, does not require
power consumption (this theoretical possibility had already been demonstrated by
Charles Bennett within IBM). Subsequently, in 1985 David Deutsch proved that a
Quantum Computer can naturally operate in parallel mode (quantum parallelism), in
the sense that it makes it possible to evaluate any function f (x), for every value of
x , in a single step. With this parallelism, the theoretical superiority of the quantum
computer with respect to the conventional one was demonstrated.

Still around those times, Charles Bennett and Gilles Brassard explored the pos-
sibility of secure information transmission based on the laws of Quantum Mechanics.
The principle is related to quantum measurements (Postulate 3 of Quantum Mechan-
ics) according to which, if the information is intercepted, the receiver is automatically

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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and securely alerted. This marks the birth of Quantum Cryptography. On the other
hand, in 1991 Arthur Eckert proposes another form of secure transmission based
on entanglement, a phenomenon predicted by Postulate 4 of Quantum Mechanics.

In any case, Quantum Cryptography, as a quantum key distribution, is one of the
most concrete applications of Quantum Mechanics in the information area, in that it
already shows significant implementations.

The phenomenon of entanglement, typical of quantum mechanics, and totally
unforeseen by the classical theory, gave origin to another research thread: Superdense
Coding, according to which, by sending a single bit of quantum information (qubit),
two bits of classical information can be transmitted. This originated a very promising
new field, Quantum Coding, steadily growing, as witnessed by the numerous papers
appearing on the IEEE Trans. on Information Theory. It should be noticed that, in this
context, Shannon’s Information Theory is being reviewed, giving way to Quantum
Information Theory. Superdense Coding was invented by Bennett and Wiesner [4]
and experimentally implemented by Mattle et al. [5].

Bennett et al. [6] found another use of entanglement, quantum teleportation, in
which separate experiments sharing two halves of entangled systems can make use
of entanglement to transfer a quantum state from one to another using only classical
communications. Teleportation was later experimentally realized by Boschi et al. [7]
using optical techniques and by Bouwmeester et al. [8] using photon polarization.

Going back to Quantum Computing, we must mention the milestone achieved
by Peter Shor of AT&T in 1994, who demonstrated that a Quantum Computer
can decompose an integer number into prime factors with polynomial complexity,
whereas it is conjectured that the classic computer requires exponential complexity.
It is an alarming discovery, because the majority of current cryptographic security
systems are based on the (exponential) difficulty of prime factor decomposition. On
the other hand, this confirms the importance of investing in ideas and resources on
Quantum Cryptography.

The above history (1990–2010) on quantum computers, quantum cryptography,
and quantum teleportation refers to the manipulation of individual quanta of infor-
mation, known as quantum bits or qubits; in other words, based on discrete quantum
variables.

1.3.3 Quantum Information Based on Continuous
Quantum Variables

Very recently it was realized that the use of continuous quantum variables, instead of
qubits, represents a powerful alternative to quantum information processing [9]. In
this context, on the theoretical side, simple analytical tools are available (Gaussian
states, Gaussian operators, and Gaussian measurements) and, on the practical side, the
corresponding laboratory implementation is readily available. Hence, the continuous
state approach opens the way to a variety of tasks and applications, in competition
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with the discrete state approach. Furthermore, these new possibilities provide a new
challenge to the implementation of Quantum Communications systems.

In conclusion, Quantum Information comes in two forms, discrete and continuous.
From a historic viewpoint, the continuous form was developed in pioneering works
for Quantum Communications systems (1970) and the discrete form in the last two
decades, but now continuous and discrete forms are in competition.

1.4 Content of the Book

This book is a collection of ideas for an “educational experiment” on the teaching
of Quantum Information and particularly Quantum Telecommunications to students
of the Departments of Engineering and Physics, hence with the twofold objective
of opening a cross-disciplinary field of study and possibly providing a common
background for scientific collaboration.

Part I: Fundamentals

Chapter 2: Hilbert Spaces

This chapter contains the mathematical foundations required to understand Quantum
Mechanics, which develops over Hilbert spaces on complex numbers. Many notions
(vector spaces, and inner product vector spaces) are already known to students, others,
like the spectral decomposition of a Hermitian operator, are less known and represent
a fundamental subject in Quantum Measurements.

In any case, the collection provides a run-through and a symbolism acquisition,
useful to come to grips with the subsequent subjects.

Chapter 3: Elements of Quantum Mechanics

The formulation of these elements is presented following in sequence the four
Postulates of Quantum Mechanics. The development is partly parallel to Nielsen
and Chuang’s book [10]. However, herein to the four postulates are given differ-
ent emphasis; in particular, Postulate 3 on Quantum Measurements is developed
in great detail, as it represents the most interesting part with respect to Quantum
Communications.

Part II: Quantum Communications

Chapter 4: Introduction to Quantum Communications

The general foundations of telecommunications systems are introduced and the dif-
ference between Classical and Quantum Communications systems is explained.

In the second part of the chapter we introduce the foundations of optical classical
communications, which is the necessary prologue to optical quantum communica-
tions developed in the subsequent chapters. The mathematical framework is given by
Poisson processes, and more specifically by doubly stochastic Poisson processes.
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Chapter 5: Quantum Decision Theory: Analysis and Optimization

Only data transmission is considered, starting from the description and analysis of a
general scheme, shown in Fig. 1.1. For a general K -ary system, the rules are given to
calculate the transition probabilities and the error probabilities, obviously in terms
of quantum parameters. Then we develop, in a fully general way, the best choice of
quantum measurements that minimize the error probability (optimization).

Two important topics are also introduced: the geometrically uniform symmetry
(GUS) of a constellation of states and the compression of quantum states.

Chapter 6: Quantum Decision Theory: Suboptimization

Optimization in quantum decision is very difficult, and exact solutions are only
known in few cases. To overcome such a difficulty suboptimization is considered. In
quantum communications the most important suboptimal decision is called square-
root measurement (SRM), because its solution is based on the square root of an
operator. Particularly attractive is the SRM combined with the GUS of quantum
states.

Chapter 7: Quantum Communications Systems

In this chapter, the general Quantum Decision Theory is applied to systems in which
digital information is carried by the monochromatic radiation produced by a laser
(coherent states). As a preliminary, classic optical telecommunications systems are
outlined in order to provide the background and the inspiration for the transition
from classic to quantum optical telecommunication systems. The quantum version
differs mainly at the receiver, where the analysis and the design are carried out using
the Postulates of Quantum Mechanics.

Then the theory is explicitly applied to the more popular systems, like OOK (on
off keying), PSK (phase shift keying), PPM (pulse position modulation), and QAM
(quadrature amplitude modulation). Anyhow, we shall eventually demonstrate the
net gain in terms of performance that can be obtained by the quantum versions
compared to the classic schemes.

Chapter 8: Quantum Communications Systems in the Presence of Thermal
Noise

In the analysis of Chap. 7, the background noise (or thermal noise) is neglected, and
the uncertainty of the result (the message) is only due to the randomness arising in

classical
source

quantum
encoder

A

Alice

quantum
channel

|ψA quantum
measure

|ψA

Bob

decision
element

m A

Fig. 1.1 Quantum Communications system for digital transmission. A symbol to be transmitted,
|ψA〉 quantum state prepared by Alice, |̂ψA〉 received quantum state, m outcome of the quantum
measurement, and ̂A decided symbol

http://dx.doi.org/10.1007/978-3-319-15600-2_7
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quantum measurements. In this chapter, the analysis of the main quantum transmis-
sion systems, developed in Chap. 7, takes into account background noise, which is
always present in real-world systems.

Chapter 9: Implementation of Quantum Communications Systems

While Quantum Communications theory is reaching a steady state, the implementa-
tion of the corresponding systems is still at an early stage. The chapter describes the
implementations realized so far around the world, a few promising ideas, and some
open problems.

Part III: Quantum Information

Chapter 10: Introduction to Quantum Information

Quantum Information exhibits two forms, discrete and continuous. Discrete quan-
tum information is based on discrete variables, the best known example of which
is the quantum bit or, briefly, qubit. Continuous quantum information is based on
continuous variables, the best known example of which is provided by the quantized
harmonic oscillator, which represents the fundamental tool in quantum optics and
is the basis for the introduction of coherent states and more generally of Gaussian
states.

An important remark is that most of the operations in quantum information
processing can be carried out both with discrete and continuous variables (this last
possibility is a quite recent discovery).

Chapter 11: Fundamentals of Quantum Continuous Variables

In Quantum Mechanics formulation of Chaps. 2 and 3 we have considered some
fundamentals, as bases, eigendecompositions, measurements, and operators, in the
discrete case. Specifically, we assumed the bases consisting of finite or enumerable
sets of vectors, the operator eigendecompositions having a finite or enumerable spec-
trum, and quantum measurements having a finite set (alphabet) of possible outcomes.
This formulation was sufficient because in the subsequent chapters we limit ourselves
to the development of digital Quantum Communications.

In this chapter, for a full development of Quantum Information, we extend the
above fundamentals to the continuous case, where the sets become a continuum. A
particular relevance is given to Gaussian states and Gaussian transformations.

Chapter 12: Quantum Information Theory

Information Theory was born in the field of Telecommunication in 1948 with
the revolutionary ideas developed by Shannon [11]. Its purpose is mainly: (1) to
define information mathematically and quantitatively, (2) to represent information in
an efficient way (data compression) for storage and transmission, and (3) to ensure
information protection (encoding) in the presence of noise and other impairments.
Recently, with the interest in quantum information processing, Information Theory
was extended to Quantum Mechanics. Of course, Quantum Information Theory, is
based on quantum mechanical principles and in particular on its intriguing phenom-
ena, like entanglement.

http://dx.doi.org/10.1007/978-3-319-15600-2_7
http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_3
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The chapter provides an overview of Quantum Information Theory starting from
Classical Information Theory, which represents a necessary preliminary. Thus, each
of the three items listed above are developed in the framework of Quantum Mechan-
ics, starting from the classical case.

Chapter 13: Applications of Quantum Information

The list of topics that will be developed in this chapter is:

• quantum random number generation,
• quantum key distribution,
• teleportation,

considered with both discrete and continuous variables.

1.5 Suggested Paths

As mentioned in the Preface, the book is meant to address readers from Physics and
Telecommunications, both graduate students and researchers, providing that they
are familiar with Linear Vector Spaces and Probability Theory. In order to account
for the different backgrounds and academic levels, two different paths through the
book are suggested, as illustrated in Fig. 1.2, with the indication of the difficulties6

probably encountered in each chapter.
Graduate students should begin by checking their mathematical background

while studying carefully Chap. 2, and solving some specific exercises to get famil-
iarity and confidence with the topic. In the study of Part III, they can skip, at least at
the first reading, the description of quantum systems in terms of density operators.
In fact, the formulation in terms of pure states is adequate to tackle the essence of
Quantum Communications and the comparison with classic optical systems. There-
fore Chap. 8 can be completely omitted (the content of this chapter may be regarded
as a very advanced topic). Once completed the comprehension of Part II, students
will have reached a reasonable and adequate mastering level on the subject. But they
might as well consider moving on to the more advanced topics of Part III, if they
have enough time and spirit of inquiry.

Researchers could avoid the study of Part I (or they could quickly browse through
it to acquire the symbolism and references for the next chapter). They will have to
study simultaneously the developments based on pure-state and density-operator
representations. In particular, Chap. 8, which is very advanced, may offer them stim-
ulating hints for original research. Eventually, they will complete their path with the
last three chapters.

6 Of course, the difficulty scale strongly depends on the preparation and on the personality of the
reader.

http://dx.doi.org/10.1007/978-3-319-15600-2_2
http://dx.doi.org/10.1007/978-3-319-15600-2_8
http://dx.doi.org/10.1007/978-3-319-15600-2_8
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Graduate Students

Chapter 2

Vector and Hilbert Spaces

Chapter 3

Elements of Quantum Mechanics

Chapter 4

Introduction to Quantum Communications

Chapter 5
Quantum Decision Theory
Analysis and Optimization

Chapter 6
Quantum Decision Theory

Suboptimization

Chapter 7
Quantum Communications Systems

Chapter 8
Quantum Communications Systems

in the Presence of Noise

Chapter 9
Implementation of

Quantum Communications Systems

Chapter 10

Introduction to Quantum Information

Chapter 11
Fundamentals of

Quantum Continuous Variables

Chapter 12

Quantum Information Theory

Chapter 13

Applications of Quantum Information

Researchers

Chapter 2

Vector and Hilbert Spaces

Chapter 3

Elements of Quantum Mechanics

Chapter 4

Introduction to Quantum Communications

Chapter 5
Quantum Decision Theory
Analysis and Optimization

Chapter 6
Quantum Decision Theory

Suboptimization

Chapter 7
Quantum Communications Systems

Chapter 8
Quantum Communications Systems

in the Presence of Noise

Chapter 9
Implementation of

Quantum Communications Systems

Chapter 10

Introduction to Quantum Information

Chapter 11
Fundamentals of

Quantum Continuous Variables

Chapter 12

Quantum Information Theory

Chapter 13

Applications of Quantum Information

Part I
Fundamentals

Part II
Quantum Communications

Part III
Quantum Information

Fig. 1.2 The two suggested paths with the difficulties indicated by a gray level in the blocks

1.6 Conventions on Notation

Sections of advanced topics that can be omitted at the first reading are marked by
⇓. Problems are marked by asterisks indicating difficulty (* = easy, ** = medium,
*** = difficult). Sections and problems marked with the symbol � require notions
that are developed further on.
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Throughout the book, notations are explicitly specified at the first use and are
frequently recalled. Matrices and operators are denoted by uppercase letters, e.g., A,
Ψ . For quantum states, Dirac’s notation bra and ket is used, as 〈x | and |x〉.

List of Symbols

:= Equal by definition
⊗ Tensor product
⊕ Direct sum
Tr[·] Trace
TrA[·] Trace over the subsystem A
E[·] Expectation (of a random variable)
P[·] Probability (of an event)
qi := P[A = i] Source probabilities
pc( j |i) or p( j |i) Transition probabilities
V Vector space
H Hilbert space
Z Set of integer numbers
R Set of real numbers
C Set of complex numbers
A Alphabet (source)
M Alphabet of a quantum measurement
|x〉 Ket
〈x | Bra
〈x |y〉 Inner product of vectors |x〉 and |y〉
|x〉〈y| Outer product of vectors |x〉 and |y〉
|x〉 ⊥ |y〉 |x〉 and |y〉 are orthogonal (〈x |y〉 = 0)
‖x‖ Norm of vector |x〉
[xi j ] Matrix with entries xi j

[A, B], {A, B} Commutator and anticommutator of operators A and B
IH Identity operator of H
In Identity matrix of size n
|z| Absolute value of complex number z
|A| Dimension of set A
z∗ Conjugate of complex number z
A∗ Adjoint of operator A or conjugate transpose of matrix A
AT Transpose of matrix A
a, a∗ Annihilator and creation operators
q, p Quadrature operators
δi j Kronecker’s symbol
δ(x) Dirac delta function
h Planck’s constant
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� := h/(2π) Reduced Planck’s constant
k Boltzmann’s constant
WN := ei 2π/N N th radix of unity
W[N ] DFT matrix of order N

• for the list of symbols on Continuous Variables, see the beginning of Chap. 11
• for the list of symbols on Information Theory, see the beginning of Chap. 12

List of Acronyms

A/D Analog-to-digital
D/A Digital-to-analog
CFT Complex Fourier transform
CSP Convex semidefinite programming
DFT Discrete Fourier transform
EID Eigendecomposition
EPR Einstein-Podolsky-Rosen
FT Fourier transform
GUS Geometrically uniform symmetry
IID Independent Identically Distributed
LMI Linear matrix inequality
OOK On–off keying
POVM Positive Operator-Valued Measurements
PSD Positive semidefinite
PSK Phase shift keying
BPSK Binary PSK
PPM Pulse position modulation
QAM Quadrature amplitude modulation
QKD Quantum Key Distribution
SNR Signal to noise ratio
SRM Square root measurement
SVD Singular-value decomposition
TLC Telecommunications
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