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Preface

This volume contains the proceedings of EWSN 2015, the 12th European Confer-
ence on Wireless Sensor Networks. The conference took place in Porto, Portugal,
during February 9-11, 2015.

This edition of EWSN featured an updated scope, which resulted in a diverse
program covering a wide range of topics grouped into five sessions: Services and
Applications, Mobility and Delay-Tolerance, Routing and Data Dissemination,
and two sessions on Human-centric Sensing. We also introduced a short-paper
presentation session for validated early ideas that can be described as a concise
contribution. These contributions are included in the proceedings with a shorter
(8 pages) paper format.

EWSN 2015 received 85 paper submissions. In the full-paper category, it
received a total of 65 papers, of which 14 were selected for publication and
presentation as a full paper, yielding an acceptance rate of 21.5%. In the short
paper category, nine papers were selected for publication and presentation.

EWSN 2015 adopted a double-blind review process. A total of 318 reviews
were written. All papers were evaluated by at least three independent reviewers,
and most received four reviews. Following the written reviews, the papers were
selected after a very active weeklong online discussion.

The conference program also included two keynote talks, an industry session,
and a poster and research demonstration session. The latter attracted numerous
submissions for which separate proceedings are available.

We would like to thank everyone who contributed to EWSN 2015. In particu-
lar, we would like to thank the 36 members of the Technical Program Committee
for their reviews and active participation in the discussions. We would like to
thank the entire Organizing Committee, and particularly the general chair, Ed-
uardo Tovar, for all the support provided. Finally, we would also like to thank the
local organization team, Filipe Pacheco, Inés Almeida, Sandra Almeida, André
Ribeiro, and Cristiana Barros, for their help.

February 2015 Tarek Abdelzaher
Nuno Pereira
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PyFUNS: A Python Framework
for Ubiquitous Networked Sensors

Stefano Bocchino!, Szymon Fedor?*, and Matteo Petracca3

! Scuola Superiore Sant’Anna, Pisa, Italy
s.bocchino@sssup.it
2 United Technologies Research Centre Ireland, Ltd. Cork, Republic Of Ireland
3 National Inter-University Consortium for Telecommunications, Pisa, Italy

Abstract. In recent years Wireless Sensor Networks (WSNs) have been
deployed in wide range of applications from the health and environment
monitoring to building and industrial control. However, the pace of preva-
lence of WSN is slower than anticipated by the research community due
to several reasons including required embedded systems expertise for de-
veloping and deploying WSNs; use of proprietary protocols; and limits in
scalability and reliability. In this paper we propose PYFUNS (Python-
based Framework for Ubiquitous Networked Sensors) to address these
challenges. PYFUNS handles low level and networking functionalities,
using the services provided by Contiki, and leaves to the user only the
task of application development in the form of Python scripts. This ap-
proach reduces required expertise in embedded systems to develop WSN
based applications. PYFUNS also uses 6LoWPAN and CoAP standard
protocols to enable interoperability and ease of integration with other
systems, pursuing the Internet of Things vision. Through a real imple-
mentation of PYFUNS in two constrained platforms we proved its fea-
sibility in mote devices, as well as its performance in terms of control
delay, energy consumption and network traffic in several network topolo-
gies. As it is possible with PYFUNS to easily compare performance of
different deployments of distributed application, PYFUNS can be used
to identify optimal design of distributed application.

1 Introduction

Research in Wireless Sensor Networks (WSNs) has started over a decade ago with
great enthusiasm and community expectations to revolutionize our daily life. In
those years WSNs have been described as ”distributed systems of numerous
smart sensors and actuators connecting computational capabilities to the phys-
ical world which have the potential to revolutionize a wide array of application
areas by providing an unprecedented density and fidelity of instrumentation”.
Since the first testbeds, numerous deployments of WSNs have been described
for a wide range of applications (e.g., climatic monitoring, structural monitoring

* Szymon Fedor is currently affiliated with MIT Media Lab.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 1-18, 2015.
© Springer International Publishing Switzerland 2015



2 S. Bocchino, S. Fedor, and M. Petracca

of building), with the aim of introducing enhancements, and underlining open
issues in the WSNs research field.

After numerous deployments in research projects, WSNs are nowadays reach-
ing the industrial and consumer markets for large scale deployments. As matter
of example it is possible to cite the GINSENG and SmartSantander projects
where the potential of WSNs have been proved through real large scale de-
ployments. Distributed smart sensors able to interact with the physical world
exchanging data through wireless communications are nowadays considered the
key components in the envisioned Smart City scenario.

However, to reach a wide adoption of the WSNs in several domains still several
limitations persist. In this respect some of the main issues are: interoperability,
ease of reprogramming and reliability. New generation of standards for WSN en-
ables interoperability with Internet world (using IP and HTTP-type of protocols)
and they need to be adopted in future smart sensors in order to reduce required
effort for integration of WSN with other systems. The ease of reprogramming
is a main requirement to be taken into account in large scale systems where
the application logic must be changed remotely and without physical access to
nodes. Network reliability is another key point to consider, in fact, this issue
affects the real capability of the WSN to sense and interact with the physical
world. Single point of failure must be avoided in order to prevent the possibility
of losing data from several devices deployed in the field.

In respect of the above mentioned issues some progress has been made in WSN
interoperability. In particular, it has been improved by adopting low level stan-
dard protocols (e.g., IEEE802.15.4), and by adapting IPv6 to the WSN scenario,
thus really enabling the so called Internet of Things (IoT) vision. The IPv6 for
WSN (i.e., 6LoWPAN) is only the first step towards a global interoperability,
further improvements have been reached by enabling HT'TP-based transactions
in WSNs. CoAP is nowadays a standard protocol solution to enable the REST-
ful architecture in IoT-based WSNs. Progress has also been made in facilitating
nodes reprogramming and programming although the proposed approaches are
either not so easy, limited to a specific scope, and not really suitable for con-
strained devices such as those used in WSNs. In this direction a very promising
and challenging approach is that following a virtual machine based design where
Python scripts can be installed through RESTful transactions.

To address all the above mentioned issues we propose PyFUNS, a Python
framework for ubiquitous sensor networks. By leveraging on IoT-based protocols
(i.e., 6LOWPAN and CoAP) PyFUNS guarantees a higher interoperability and
reliability with respect to old-style WSNs. Moreover, PYFUNS enables ease of
reprogramming by introducing a virtual machine design based on Pymite, a
reduced Python virtual machine for embedded systems.

The rest of the paper is structured as follows. Related works are described
in Section 2, followed by the design of PYFUNS framework in Section 3. In
Section 4 PYFUNS performance is presented in various network topologies and
distributed application configurations. Section 5 concludes the paper.
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2 Related Work

PYFUNS provides a number of features and several relevant solutions which
have been described in WSN literature. We have divided them into (i) techniques
for remote reprogramming, and (ii) frameworks enabling easier programming.

2.1 Techniques for Remote Reprogramming of WSNs

System Reprogramming. Such a method consists of replacing the node full
firmware. It is very inefficient because even a minor application change requires
reloading node binary image. Therefore they require more power and time to
reprogram a node than other approaches in which only a reduced set of mod-
ules or functions is modified. Moreover, during the updating process, the new
firmware must be stored in an external flash memory before being copied into
the internal flash memory when the system restarts. Therefore, the nodes must
have available external flash to store full software image. System level repro-
gramming technique are used in some existing WSN monolithic operating sys-
tems (e.g., TinyOS [HC1]) in which the whole application consists of a single
image file.

Modular Reprogramming. According to this approach the node applica-
tion is composed of independent, re-loadable modules. Contiki [DG1] is an ex-
ample of a modular system which consists of two main components: system
core and loaded program. The Contiki Core, with the boot loader exception,
is a non-reprogrammable component. Therefore, any change in the code of the
kernel, program loader, symbol table and communication interfaces is not sup-
ported. However, enhanced functionalities (e.g., file system support, shell sup-
port, power management) are loaded modules and are reprogrammable. The
modular reprogramming is suitable for over-the-air reprogramming. Unlike the
monolithic method, any system change is local, only the updated modules need
to be transmitted. However, a large-memory footprint and slow system execution
are disadvantages of any modular system. There are also other solutions imple-
menting modular reprogramming (e.g., Dynamic TinyOS [MA1], LiteOS [CA1],
RETOS [HS1]), similarly to Contiki their use requires embedded system experts.

Virtual Machine. In Virtual Machine (VM) based WSN, every node runs
an instance of the virtual machine. The VM is used for the execution of both
on-network applications and byte code instructions. In the literature there are
several VM based approaches proposed for WSN [LC1][SC1]. Mate [LC1] is a
VM built on TinyOS which uses the concept of capsules - a small set of high level
primitives of up to 23 bytes. Mate-based applications are composed of several
capsules which can propagate throughout the network to deliver an objective.
Another VM for WSN is Squawk [SC1], a scale-down version of Java VM that
runs without an OS on memory constrained devices. Squawk allows deployment
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and execution of multiple, isolated applications on a node. The use of a VM-based
approach requires sensor nodes with improved resources with respect to well-
known target platforms. This is because the virtual machine could be demanding
in terms of CPU and memory. Considering the general trend in providing sensor
nodes with higher performance at lower costs, the VM approach can be nowadays
considered an effective and powerful solution in WSNs.

Differential. The use of a differential reprogramming is mainly based on the
use of code patches: a patch is generated using the difference between the old
and the updated program. Rsync [TM1] is a differential update scheme, and
its functionalities has been demonstrated in WSNs [JC1]. As working principle,
Rsync divides the program into different blocks and calculates their hash values.
The evaluated hash values are then matched to determine the block insertion,
deletion, or modification. There are many other examples of differential repro-
gramming systems [KP1][RL1], and in general it has been shown that the size of
the deltas produced by the differential-based approaches is very small compared
to the full binary image. However, most of them poorly perform when there is a
change of both program and variable layout. This is because such update requires
full flash memory writing, and large amount of additional external flash memory.
Differential solutions can be easily used only by embedded system experts.

2.2 Frameworks Enabling Easier Programming of WSIN

Many solutions for enabling an easier WSN programming have been described
in the literature [MP1]. They were designed with different objectives, including
energy-efficiency, scalability, failure-resilience or collaborative data processing.
In this respect it must be underlined that one of PYFUNS main goals is to
reduce required expertise in embedded systems for programming WSNs, as this
has been previously identified by domain experts [MD1] as one of the major
barriers for deploying WSNs. In that study the authors implemented the BASIC
programming language for sensor networks and conducted a user study with
novice programmers. Half of users with no previous programming experience
of any kind were able to program simple network tasks using developed BASIC
programs while only 0-17% could do so in TinyScript. Therefore the authors con-
cluded that current WSN languages require knowledge of either very low-level
systems development (including the details of sensor hardware and embedded
system design), or high-level programming concepts and abstractions that are
not obvious to most application domain experts. And because application do-
main experts have little programming experience, most of which is with simple
single-threaded imperative programming models, the authors have ported a small
BASIC interpreter to a WSN platform. Authors motivations are coherent with
ours although our solution provides more features (e.g., interoperability due to
IP and CoAP protocols) and is based on Python interpreter.
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Recently several publications [AP1][C1] described solutions to program WSNs
in Python language, due to its popularity and ease-of-use. In fact, according
to [P1], Python requires no more than half as much time as writing in C, and it
appears to be more intuitive with respect to C for new students [F1]. Regarding
previously cited Python-based solutions, they must be considered at the early
stage of development and incomplete to be used nowadays in real applications,
though the most promising in this respect is T-Res. In fact, T-Res enables pro-
gramming of the node to execute simple data-processing tasks performing the
following actions: (i) monitoring one or more resources, (ii) executing some pro-
cessing on their values, and (iii) sending the resulting output to other resources.
The main lack of T-Res is in the possibility of monitor resources only: a method
to retrieve the current resource state by using Python scripts is not supported.

3 PyFUNS Design

Having identified the limitations of literature of systems aiming at enabling
remote reprogramming and an easier programming in WSNs, we have designed
PYFUNS, a framework that can be used in a easy way to reprogram WSNs. Our
framework leaves to the user only the application development task in the form
of Python scripts, while abstracting low level and networking functionalities.

3.1 Dynamic Services over WSN

Traditional WSNs enable the development and deployment of pervasive networks
alming at providing many simple services, such as the environmental monitoring
or the basic actuation control through basic operations. With the introduction of
the IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) protocol
and Constrained Application Protocol (CoAP), following the IoT vision, WSNs
have acquired enough resources to accomplish more complex services, such as
the capability of exposing equipped sensors in Internet to perform automatic
control operations. The next natural step in the WSNs domain is to build a
smart management of dynamic services, thus enabling the possibility of remotely
reprogramming the services provided by an IoT-based WSN.

In general terms a service provided by a WSN is a set of operations to be
performed to accomplish a specific task. For instance, a service can be the auto-
matic light control in a room and the operations to be performed are: (i) check
the light value periodically, (ii) check the presence of people in the room, (iii)
switch on the lamp while setting the power according to the desired light value,
and (iv) switch off the lamp when people leave the room.

As previously stated, PYFUNS enables the management of dynamic services
in WSNs. In the rest of paper we follow the aforementioned definition of service
(ie., a set of operations) calling the operations to be performed applications.
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3.2 Application Components

An application deployed on a sensor node has several components:

— Name: string of characters that uniquely identifies the application;

— Period: it is related to the periodicity of the application execution. Values
bigger than zero mean periodicity, equal to zero is for one time executions,
while less than zero mean application blocked waiting for an answer. Appli-
cation flow changes based on the Period value;

— Timer: used for periodic applications, it fires when executing the application;

— State: indicates the current state of the application in its internal Finite
State Machine (FSM);

— Script: it contains the Python byte code performing the specific task which
the application has to provide;

— Variables: list of variables required to store data to be exchanged among
different scripts of the same application or among different applications;

— Requests: list of active requests. A request is used to retrieve the current
representation of a resource through network messages. Each request is as-
sociated to both a callback function, called when a reply is received, and a
variable, which is used to store the received data.

To the end of building an abstract framework that allows to implement
applications able to perform data communication through the network (e.g.,
request/reply paradigm), we decomposed the application in three sub-scripts:
PreScript (optional), MainScript (mandatory) and PostScript (optional). Pre-
Script allows to send data request messages to a specific node in the network,
and the answer will be processed in the MainScript. Moreover, it allows to set
up the application environment (e.g., to create the variables required), and to
retrieve the resource representation. PostScript is executed when the applica-
tion has been stopped, and is mainly used to clean the application environment
(e.g., to delete active requests). PreScript runs once at the application start,
whereas PostScript runs once at the application stop. MainScript is the only
mandatory byte code to be installed on the nodes, and represents the applica-
tion core. It can be run once or several times according to the Period value.
The MainScript execution can be triggered by a periodic event, the expiration
of a timer, or by a sporadic event, the reception of a message. Fig. 1.a illustrates
the script flow for an application using all the three described scripts.

3.3 Application Life-Cycle

The FSM model has been used to implement the application life-cycle, that can
be dynamically installed, started, stopped, updated and uninstalled. To enable
the aforementioned operations, five different states have been defined: (i) NEW,
all the memory required to store the application structure has been allocated
successfully; (ii) INSTALLED, scripts have been installed on the node; (iii) RE-
SOLVED, application is ready to execute; (iv) RUNNING, application is active
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MainScript I
PostScript

uninstall
uninstall

update check
C start ) 2
RESOLVED RUNNING
- stop s
uninstall

UNINSTALLED

(@) (b)

Fig. 1. (a) Scripts flow chart. (b) Application finite state machine.

and performs its operations; and (v) UNINSTALLED, the application struc-
ture has been deleted and the memory has been released. Fig. 1.b depicts the
application life-cycle and the possible transitions among states.

The application life starts in the NEW state, in which the necessary memory
is allocated to store the components described in Section 3.2. All the compo-
nents are set to a default value, except for the name which is filled when the
application is created. In the NEW state it is possible to install PreScript, Main-
Script and PostScript on the node. As previously stated MainScript is mandatory
for each application and installing it implies a change of state to INSTALLED.
In the NEW state it has been enabled the possibility to uninstall the applica-
tion through a defined uninstall event. In the INSTALLED state all necessary
components for the application are set, even though they are still waiting for
a control check aiming at verifying the compatibility among scripts (e.g., check
scripts version). The check is triggered by a defined check event, and in case all
the tests are passed, the state changes to RESOLVED. Also in the INSTALLED
state it is possible to trigger an uninstall event to delete the application. Once
the application reaches the RESOLVED state it has been successfully checked
and it is ready to be executed. Three different events can be triggered from this
state: (i) start, to run the application, PreScript is executed in case it is present,
otherwise MainScript is interpreted, as result the state moves to RUNNING; (ii)
update, to perform any changes concerning the scripts (e.g., install, update or
delete scripts on the node), in this case the state moves to INSTALLED and
the check compatibility on the new installed scripts must be redone; and (iii)
uninstall, to remove the whole application and release the memory used by the
application, next triggered state is UNINSTALLED. In RUNNING state the ap-
plication can be executed one or many times according to the Period, and can be
stopped through a dedicated stop event. PostScript, if present, is executed during
the transition from RUNNING to RESOLVED. Last state is UNINSTALLED
where the application is deleted from the node. Table 1 summarizes the state
transitions of the above described FSM.
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Table 1. Application state transition

CurrentState Input fNextState Output

NEW install INSTALLED At least MainScript has been installed

uninstall UNINSTALLED Application deleted

INSTALLED  check RESOLVED  Application ready to execute
uninstall UNINSTALLED Application deleted

RESOLVED  start RUNNING  PreScript executed, if installed
update INSTALLED Changes in installed scripts
uninstall UNINSTALLED Application deleted

RUNNING run RUNNING  None
stop RESOLVED  PostScript executed, if installed

3.4 Application Flow

As mentioned in Section 3.2, the application flow, in particular when Main-
Script is executed, depends on the value of the application period. Two different
period categories have been defined: period equal to zero when MainScript runs
one time, and period not equal to zero when MainScript can run zero, one or
many times. Fig. 2 shows different flow chart depending on the value of period,
Fig. 2.a is for the first category, while Fig. 2.b and Fig. 2.c for the second.

(a) (b)

Fig. 2. Script flow chart for period equal to zero (a), period not equal to zero (b) and
period less than zero, particular implementation (c)

In case of period equal to zero (Fig. 2.a), the application goes from Pre-
Script to PostScript directly, running MainScript one time. It is not possible
to stop the application once it is started. This setting of period is useful for
applications changing the resource representation only one time.

With period not equal to zero (Fig. 2.b), after PreScript, the application waits
for an event to continue its execution. We have defined two types of events that
trigger MainScript: periodic and sporadic. Periodic applications have a period
greater than zero and they wait the timer expiration before to interpret Main-
Script. This setting is useful to implement applications changing the resource
representation periodically. For sporadic applications the period is less than zero
and MainScript is called when a sporadic event happens (e.g., message received).
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This type of setting is useful to implement applications that perform activities
when observed resources change. A particular application flow based on a period
less than zero has been implemented, Fig. 2.c, to provide applications able to
run MainScript once after resources representation are retrieved.

3.5 Application RESTful Interface

The goal of PYFUNS is to enable easy management (in terms of parameter
reconfiguration and code deployment) of dynamic application installed in ubiq-
uitous WSNs. To reach a seamless integration of the framework in motes it is
necessary to abstract the application and its attributes. This can be done by us-
ing the REST paradigm in the context of IoT-based WSNs, or in other words by
using the CoAP protocol, thus allowing sensor nodes to abstract resources and
run embedded web services. Abstracting application and its attributes as CoAP
resources enables the use of well known HTTP methods, GET, PUT, POST and
DELETE, to administer code installed in a WSN. Moreover management of the
application, (e.g., start or stop) can be performed by a user through a web site,
or by another application through simple CoAP messages.

As described in Section 3.2, an application is defined by its components which
are managed in PYFUNS as sub-resources of /apps. The resulting application
structure is shown in Table 2. Resource /apps is created statically during the
start up phase. This resource is the container of all applications installed on the
node and it can be managed through CoAP methods to list currently installed
applications and check their validity. The methods of /[app name] provide the
services to create/delete a specific application, retrieve the current state of the
application, and start/stop its execution. The / [app name] resource and its sub-
resources are created by allocating the required memory only once, when the
application is installed. The use of CoAP methods to manage the execution
of a specific application (start/stop) enables the possibility to install on a node
several applications related to each other in order to implement complex services.

Resource /period represents the current application period value, and must
be set following the rules described in Section 3.4. A set of methods are provided

Table 2. The structure of an application resource

list currently installed apps [GET]
check a specific app [POST]

retrieve the application state [GET]
create/delete a specific app [PUT|DELETE]
start/stop a specific app [POST]

/apps

/ [app name]

/period retrieve/update the period [GET|PUT]

/preScript retrieve/update/delete the PreScript [GET|PUT|DELETE]

/mainScript retrieve/update/delete the MainScript [GET|PUT|DELETE]
/version retrieve/update the MainScript version [GET|PUT]

/postScript retrieve/update/delete the PostScript [GET|PUT|DELETE]
/version retrieve/update the PostScript version [GET|PUT]

/variables list currently variables [GET]

#
#
#
#
#
#
#
/version  # retrieve/update the PreScript version [GET|PUT]
#
#
#
#
#
#

/[var name] # retrieve/observe/update the value [GET|PUT]
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to manage the scripts: for each script, PreScript, MainScript and PostScript,
it is possible to retrieve/update/delete the byte code and retrieve/update the
version of them. /variables resource is the container of the variables used by
the application to accomplish its functionalities. By interacting with it, the list
of current variables can be retrieved. For each variable a new resource is created
and it is possible to retrieve/update the value. The purpose of this resource
is to exchange data among different scripts of the same application, or among
different applications. Each / [var name] resource can be observed, even by other
applications, enabling a smart functionality to be used in complex systems.

3.6 PyFUNS Implementation

Native code replacement and loadable modules on the one hand enable services
updates, on the other hand imply a higher cost since downloaded modules are
more coarse-grained compared to a virtual machine application. Moreover, these
methods require to maintain information about the software version in each node,
and the implementation is hardware dependent. To fully decouple applications
from the sensing infrastructure we use a virtual machine to run the applications.
Most of the virtual machine based approaches enable highly efficient updates:
low cost for transmitting new code and abstraction from the platform. The
software updates sent from front-end-device to different nodes (based on differ-
ent platform) are always the same. However, VMs introduce overhead in term
of memory and computational overhead, which is overcome by more powerful
devices present on the market. Python, Java and JavaScript are the most com-
mon interpreted languages used for virtual machine approaches with substan-
tial libraries of pre-written code. The last two are object-oriented languages;
whereas Python supports multiple programming paradigms, including object-
oriented, imperative and functional programming styles. JavaScript script is
too big to be installed in a WSN node and it cannot be compiled into byte
code. Using byte code for reprogramming leads to an extremely powerful sys-
tem in which microcontrollers can be programmed interactively without the
typical compile/link/flash/run cycle. Both Python and Java allow for platform-
independent processing functions that can be freely exchanged among nodes,
but we preferred the former approach because, as discussed in Section 2.1, pro-
gramming in Python is really simple and supports multiple programming styles.
We implemented PYFUNS on top of Contiki OS [DG1] that provides native
support for 6LOWPAN and CoAP. A Python interpreter has been ported to the
target operating system to enable script interpretation on constrained devices.
We ported PyMite [PM1], a reduced Python interpreter that runs a significant
subset of the Python language on microcontrollers with very few resources.
PYFUNS provides a set of APIs, summarized in Tab. 3, that can be used
in Python scripts to implement applications. Such APIs allow: (i) to manage
variables (create/delete/get/set); (ii) to send a generic CoAP message specify-
ing the method (GET, POST, PUT, DELETE), the node address, the URI of
target resource, the eventually payload and the eventually variable where store
the result of the operation; (iii) to set/unset observation to a specific resource
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defined by its IPv6 address and URI; and finally (iv) to stop the execution of the
application. The IPv6 address parameters are expressed without the prefix (e.g.,
[0,0,0,2]), as we have provided the messages exchanged among different applica-
tions that can be performed only inside the same network. Notice that sendMsg
and obs functions have a parameter var to be associated with the request. In
case of var is not present, it is automatically created inside the functions.

Table 3. PYFUNS APIs

Function Description

newVar (name, value) Create new variable
delVar (name) Delete variable
getVar (name) Get variable value
setVar (name) Set variable value
sendMsg(met, addr, uri, payload, var) Send CoAP message
obs(addr, uri, var) Send CoAP observe
delObs(addr, uri) Delete CoAP observe
exit() Stop the application

A prerequisite of PYFUNS is that each node runs a web service to expose
its resources, since the framework uses CoAP methods to interact with them.
Instead, PYFUNS framework can be installed only on a subset of nodes.

3.7 Example of Usage

To evaluate PYFUNS performance, we implemented a Security service applica-
tion which has the purpose to detect any motion in a room and trigger an alarm.
In such example the network is composed of three PIR sensors, on nodes 2, 3 and
4 with the URI coap://[aaaa: :2]/sen/pir, coap://[aaaa: :3] /sen/pir and
coap://[aaaa: :4]/sen/pir respectively, and one alarm, on node 5 with URI
coap://[aaaa: :5]/act/alarm. The application implementing the service can
be installed in any node inside the network using the RESTful interface defined
in Section 3.5. The intent of Security service is to observe the PIR sensors, and
trigger the alarm whenever a notification of motion detection is received. To im-
plement such envisioned application we need to write and install the PreScript,
MainScript and PostScript. PreScript, Listing 1.1, issues OBSERVE messages to
all three PIR sensors and associates the requests to variables, pl, p2 and p3, used
to maintain the representation of the sensors. Since the MainScript runs when-
ever a notification is received, the period of the application is set with a number
less than zero: execute MainScript after a sporadic event happens (Fig. 2.c).

Listing 1.1. The PreScript of Security application

from pyfuns import =

obs ([0,0,0,2], ”sen/pir”, "pl”)
obs ([0,0,0,3], ”sen/pir”, "p2”)
obs ([0,0,0,4], ”sen/pir”, 7p3”)
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MainScript(Listing 1.2) is called whenever a notification from observed sensors
is received. The operations carried out are very simple: retrieve the representa-
tion of the variable associated to each PIR sensors and issue a POST request
to coap://[aaaa: :5]/act/alarm to trigger the alarm, if one of the variables is
equal to one, or to stop the alarm otherwise. Listing 1.3 shows the Python script
related to PostScript. It sends messages to the PIR resources in order to delete
the subscription when the application has stopped. The scrips byte code to be
installed on nodes can be obtained by compiling the presented Python scripts.

Listing 1.2. The MainScript of Security application

from pyfuns import =
if getVar(”pl”) or getVar(”’p2”) or getVar(”p3”):

sendMsg (2, [0,0,0,5], “act/alarm”, ”17)
else:
sendMsg (2, [0,0,0,5], “act/alarm”, 70”)

Listing 1.3. The PostScript of Security application

from pyfuns import =

delObs ([0,0,0,2], ”sen/pir”)
delObs ([0,0,0,3], ”sen/pir”)
delObs ([0,0,0,4], ”sen/pir”)

4 Performance Evaluation

To evaluate PYFUNS performance we implemented it on top of Contiki OS by in-
tegrating /porting PyMite on two constrained platforms: (i) WiSMote, equipped
with a MSP430F5 microcontroller having 16 kB of RAM and 256 kB of flash, and
(i) CC2538dk, equipped with an ARM Cortex™ M3 microcontroller having 32
kB of RAM and 512 kB of flash. In the rest of the section we first prove the feasibil-
ity of PYFUNS by checking that in both selected target platforms the performed
implementation requires flash memory and RAM which are within the physical
limits. Then we evaluate PYFUNS overhead in terms of run time and energy con-
sumption. Finally we present an extensive evaluation of PYFUNS framework by
implementing one real service: Security. To deploy the system bases on real plat-
form, and test it in a real life scenario, we integrated: (i) sensors, such as PIRs, and
(ii) actuators, such as alarms, on target platforms.

4.1 Flash and RAM Requirements

To assess the possibility of deplying PYFUNS on the selected devices we mea-
sured both the flash and RAM occupation. Table 4 shows the memory occupied
by the software for both platforms, the WiSMote and the CC2538dk. The soft-
ware installed on each WSN node includes the Contiki OS, the PyMite inter-
preter, PYFUNS, plus the possibly required memory to install two PYFUNS
applications. In case of WiSMote platform the whole firmware occupies 93% of
the available RAM and 38% of the available flash. In case of the CC2538dk
platform the firmware requires the 62% of the available RAM and the 19% of
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Table 4. Code size and RAM requirements for a WiSMote and CC2538dk devices
Nodetype RAM [bytes] Flash[bytes]

WiSMote 14918 (93%) 98077 (38%)
CC2538dk 19904 (62%) 96 732 (19%)

the available flash. Such a notable occupation of memory, especially RAM, is
mainly due to PyMite, which alone requires 45 kB of flash and 8 kB of RAM.
In order to reduce the RAM occupation we are planning to implement a tool to
store Python byte codes into the flash. The current version of PYFUNS stores
the Python scripts in RAM, which is usually more constrained comparing to the
flash memory.

4.2 Native Code versus Python Script

PYFUNS overhead in terms of run time and energy consumption has been eval-
uated with respect to a native code solution. Both performance figures have
been measured by using two different set of benchmarks: (i) five test applica-
tions implementing algorithms showing a different complexity level; (ii) three
applications implementing CoAP methods. Each benchmark has been executed
by considering a C language based native code solution, and its Python version.

The first benchmark set is composed of five algorithms, characterized by dif-
ferent complexity levels, and chosen from “dada’s perl lab”!. More specifically,
we selected the following algorithms, listed in function of their complexity (from
lower to higher): (i) ACK - Ackermann’s Function(3, N) that is a classic recur-
sive function with N=3; (ii) FIB - Fibonacci Numbers(N) that computes the
Fibonacci sequence with N=17; (iii) MAT - Matrix Multiplication(N) that per-
forms the multiplication between two matrices with size 5 and N=10; (iv) HEAP
- Heapsort(N) that sorts a vector with a size N=100 of integer numbers, and ini-
tialized with strictly decreasing value; and (v) MET - Method Calls(N) that
implements activation of class methods using object-oriented style. The second
benchmark test, instead, includes: (i) an application that issues a POST request
to a resource installed in a neighbor node (POST); (ii) an application that is-
sues a POST request to a resource installed in a neighbor node and waits the
acknowledgement message from the resource (POST2); and (iii) an application
that issues a GET request to one resource installed in a neighbor node, waits
the reply, processes it and sends a POST request to another resource installed
in a neighbor node (GET). All performance results are reported in Table 5.

All results have been obtained by running each test 1000 times in Cooja, the
Contiki network simulator. Cooja allows to run the same binary files to be used
on real platforms while enabling a quick testing and debugging of the system. In
the simulator all tests have been performed by using only the WiSMote platform

1A benchmark comparison of a number of programming languages:
http://dada.perl.it/shootout/craps.html
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Table 5. Performance benchmarks in Cooja

C Python Python/C
Time(ms)  Energy(uJ) Time(ms) Energy(pJ) Timeratio  Energyratio
ACK 4.08 0.029 645.25 4.765 158.1 164.3
FIB 9.95 0.072 1344.84 9.932 135.2 137.9
MAT 5.06 0.037 687.31 5.076 135.8 137.1
HEAP 1.95 0.014 379.68 2.804 194.7 197.7
MET 1.16 0.009 207.28 1.531 178.8 177.2
POST 1.22 0.009 5.35 0.039 4.4 4.3
POST2 8.61 0.328 12.68 0.357 1.4 1.1
GET 17.26 0.604 26.19 0.671 1.5 1.1

(CC2538dk is not supported at time of writing), moreover to prove the Cooja
accuracy we ran also two benchmark tests on a real WiSMote platform. In Table 5
the C and Python columns show the run times and the energy consumption for all
benchmark applications, while the last column labeled as Python/C reports the
ratio between PYFUNS and native code approaches. For the first benchmark set
the time performance penalty of PyMite is between 135 and 195, while showing a
performance gap between 137 and 198 in energy consumption. Such a difference
between C and Python is mainly caused by the extensive use of the heap memory
in PyMite when performing complex operations such as recursive calls. On the
contrary, in CoAP methods tests the run time performance penalty is between
1.5 and 4.4 with an energy consumption performance gap between 1.1 and 4.3.
This is the overhead introduced by PyMite to perform CoAP methods in WSNs,
while enabling a powerful tool providing platform abstraction and reconfigurable
in-network processing that can compensate the overhead. To prove the validity
of the aforementioned results obtained with Cooja simulator, we also ran the
Python version of Ackermann’s Function and POST method on a real WiSMote
platform. The obtained results are reported in Table 6, and they are very similar
to those obtained by using the Cooja simulator.

Table 6. Performance benchmark on WiSMote

Time(ms) Energy(uJ)

ACK  649.79 4.799
POST  5.52 0.040

4.3 Real Case Evaluation

Performance of a distributed application depends on the network topology and
in-network distribution of application components. We evaluated PYFUNS per-
formance in terms of energy consumption, actuation delay and network traffic,
to provide real services such as the one presented in Section 3.7. The application
components were distributed among the nodes or centrally placed at the border
router. For the energy consumption we considered the overall network consump-
tion. The actuation delay represents the elapsed time between the detection of
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the event and the associated actuation, while network traffic measures the total
amount of bytes exchanged in the network. As we want to evaluate the impact
of PYFUNSonly, we take into account only CoAP messages without counting
traffic generated by underlying layers (e.g. RPL messages).
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Fig. 3. Network topologies: star (a-b-c), mesh (d) and tree (e-f-g-h-i)

To avoid impact of the changing environment and measurement overhead of
real world experiments we installed PYFUNS on Cooja simulator. The Security
service was deployed on multi-hop, ToT-based WSN, configured with nine net-
work topologies shown in Fig. 3: three star topologies with 5, 9, and 13 nodes;
one mesh topology with 13 nodes; and 5 tree topologies each one of them with
9 nodes and different transmission links. The power transmission of nodes was
fixed for all the topologies except for the topology from Fig. 3.a which was evalu-
ated also with a higher transmission power. This was done to compare topology
having multi-hop transmissions (Fig. 3.b) with a network having smaller number
of nodes but covering similar geographical area.

For the security service scenario nodes 2, 3 and 4 in Fig. 3 were simulated
with an attached PIR sensor and the node 5 with an attached buzzer. We tested
different placements of security service components as depicted in Table 7.

Table 7. Security Control service deployment configurations

(a) (®) @@ (E@N9H)E)
BR (1) BR (1) BR (1) BR (1)
PIR2 (2) PIR2 (2) PIR2(2)  PIR2(2)
Alarm (5) Alarm (5) Alarm (5) PIR4 (4)

Node 6 Node 6 Alarm (5)
Node 9 Node 9 Node 6
Node 10 Node 7
Node 13 Node 8
Node 9

Figure 4 shows the energy consumption measurement for all topologies. As
we expected the minimum energy consumption for star topology is when Py-
FUNS application is installed on the Border Router. This is because the amount
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Fig. 4. Energy consumption in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies.
The label on the x-axis indicates in which node the Security application is installed.

x10 - x10
15 0 (a) __ 15 Ezfe))
%] (%]
g £ O (g)
Ko a [ (h)
© 104 2104 [ X0l
¥ ¥
o %]
% | H % | d |_|_|_‘
= ( [
0 . . 0 . . . . . . .
S P 2> 4/5%7 Yo Mo 4/10 73 3 8 p,'?e p/,?q 4/‘9,,)7 Ve N> N Mg
Application Application

Fig. 5. Network traffic in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies. The
label on the x-axis indicates in which node the Security application is installed.

of data exchanged in such configuration is minimum (Fig. 5). In fact, when the
transmission is between nodes distant by more than one hop an additional 6LoW-
PAN header overhead (due to the addressing and hop limit fields) is observed.
However, in case of mesh topology (Fig. 4 right side) the minimum energy
consumption of the overall network is observed when the service is distributed
among the nodes rather than placed on the Border Router. For all topologies it
is the number of transmission hops that plays dominant role in the total amount
of network traffic, and consequently in energy consumption. For instance, in
topology (e) (purple columns) it is possible to see that the energy consumed
when the application is installed in nodes PIR2 and 6 (which are closely located)
is bigger than a centralized approach (application on BR). On the basis of energy
consumption parameter the best choice for (e) (f) (g) is node 8, with a consumed
energy equal to 7.47 mJ, 7.12 mJ and 5.43 mJ respectively, for (h) is node 4 with
5.36 mJ, and for (d) and (i) is node 5 with 5.85 mJ and 7.39 mJ respectively.
We also evaluated delay introduced by the framework in triggering the actua-
tor node when a motion detection event happens. Figure 6 presents the delay for
all topologies, it depends on the number of hops between sensor and actuator.
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Fig. 6. Delay time (ms) in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies. The
label on the x-axis indicates in which node the Security application is installed.

5 Conclusions

As WSNs moved from the academic world to the industrial scenario new chal-
lenges have been raised up to reach a wide adoption of the WSNs in several do-
mains. Some of the main issues are: interoperability, ease of reprogramming and
reliability. To address such issues we propose PYFUNS, a Python framework for
ubiquitous sensor networks. By leveraging on IoT-based protocols (i.e., 6LoW-
PAN and CoAP) PYFUNS guarantees a higher interoperability and reliability
with respect to old-style WSNs. Moreover, thanks to its adopted virtual machine
design based on Pymite, a reduced Python interpreter, PYFUNS enables ease
of reprogramming in WSNs. In a real scenario PYFUNS can be used as com-
plementary tool of a framework able to allow users to easily write Python-based
ToT applications (e.g., through a graphical interface) to be remotely installed on
WSN nodes hiding the whole installation process. This feature can be provided
by PyoT, a system for macro-programming and managing IoT-based WSNs.

In the paper we first presented PYFUNS by detailing its design and im-
plementation choices by carefully explaining its usage in building simple and
complex services. Then we evaluated PYFUNS performance considering the
WiSMote and CC2538dk platforms with the aim of proving its feasibility in real
constrained devices, and its overhead in terms of run time and energy consump-
tion with respect to native code solutions. Finally PYFUNS performance in star,
mesh and tree network topologies were evaluated for a Security service by con-
sidering both centralized and distributed application logic solutions. Presented
results, aside of proving PYFUNS feasibility and performance, highlight further
possible optimization to be investigated: RAM memory requirement reduction,
scripts execution time and energy consumption, communication failures han-
dling. While RAM memory occupancy can be merely solved by saving Python
scripts in flash and leaving the RAM for regular applications, other optimizations
require a deeper analysis, and they will be addressed in future investigations.
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Abstract. Counting and tracking multiple targets by binary proximity
sensors (BPS) is known difficult because a BPS in “on” state cannot dis-
tinguish how many targets are presenting in its sensing range. Existing
approaches investigated target counting by utilizing joint readings of a
network of BPSs, called a snapshot [2,11]. A recent work [14] presented a
snapshot-based target counting lower bound. But counting by individual
snapshot has not fully utilized the information between the sequential
readings of BPSs. This paper exploits the spatial and temporal depen-
dency introduced by a sequence of snapshots to improve the counting
bounds and resolution. In particular, a dynamic counting scheme which
considers the dependency among the snapshots were developed. It leads
to a dynamic lower bound and a dynamic upper bound respectively.
Based on them, an improved precisely counting condition was presented.
Simulations were conducted to verify the improved counting limits, which
showed the improvements than the snapshot-based methods.

1 Introduction

Binary proximity sensors (BPS) is an extracted model for a large category of
sensors, such as infrared, ultrasound, microwave, and magnetic sensors. It has
an extremely simple sensing model, which outputs a single bit “1” when one or
more mobile targets are in its sensing range and “0” otherwise. A BPS sensor
cannot distinguish the targets, decides how many distinct targets are presenting
in its range, nor judges the targets’ moving directions.

Despite of the very limited information provided by one BPS, prior works [11][9]
showed the feasibility to track a single target using a collaborative network of BPSs.
In [9], the authors showed that if only one target was presenting, the worst case
location error is bounded by £2( R}i—l ), where p is the sensor density, R is the sens-
ing range, and d is the dimension of the space. However, significant difficulties are
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encountered for tracking multiple targets because each “on” sensor cannot distin-
guish how many targets are presenting in its sensing range. Therefore, a fundamen-
tal challenge is to count the number of targets precisely.

Existing approach investigated the target counting problem by exploiting in-
dividual snapshot captured from a network of BPS. We call such case static
counting. In [11], Singh et al. presented that accurate target counting could be
achieved by a snapshot if the targets are separated by at least 4R, where R is
a sensor’s sensing radius. Recent work in [14] presented a lower bound of static
counting, which stated that the number of presenting targets equals to the min-
imum clique partition of the UDG formed by the “on” sensors. However, static
counting has not fully utilized the information provided by the sensors’ reading
sequences. In this paper, we show that the upper and lower bounds on target
counting can be further improved by exploiting the temporal, spatial dependen-
cies between the sequential snapshots.

Different from the existing approaches, we take the sequential events reported
from sensors during a period as the problem’s input. In this case, a dynamic
counting technique to infer the lower bound of the target number was designed.
We showed theoretically and numerically that the lower bound given by dynami-
cally counting can effectively improve the existing lower bound in static counting.
For estimating the upper bound of the number of targets, we firstly propose a
packing-based upper bound for snapshot cases under an assumption of minimum
pair-wise separation distance between targets. Later on, a dynamic counting al-
gorithm is designed to improve the static upper bound, whose effectiveness is
also verified by simulations.

Furthermore, the condition for precisely target counting is discussed in our
work. In [12], J. Singh et al. proved that at least 4R pairwise separation among
targets was required for precisely static counting. In this work, by the upper
bound and lower bound obtained from dynamic counting, a new separation dis-
tance for precise counting was derived, which reduced the 4R separation re-
quirement by approximately {f. It shows that dynamic counting can relax the
pair-wise separation condition for precisely target counting.

The rest of the paper is organized as follows. Section 2 presents the problem
model and the most related works. Section 3 and Section 4 present the lower
bound and the upper bound of the target number by dynamic counting, re-
spectively. In Section 5, the condition for precise target counting is discussed.
Section 6 provides simulation results which correspond to our algorithm pro-
posed in Section 3 and Section 4. The paper is concluded in Section 7 with
discussion of future directions.

2 Problem Model and Background

2.1 Preliminaries

We consider N binary sensors which are deployed in 2-D area of interest (AOI).
Each sensor detects objects within its sensing radius R, and generates one bit
of information: “1” for presence of targets and “0” for absence. We assume
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that the binary sensing is ideal, noiseless, and provides no other information
about the location, speed, or direction information of the targets. All sensors
are assumed timely synchronized and their locations are assumed calibrated in
an initialization process [8]. We also assume that the AOI is fully covered by
the sensing areas of BPSs. Sensors work collaboratively to track the targets.
Since the targets move continuously in the AOI, the binary readings of a BPS
are efficiently encoded by the time intervals between the BPS’s “on” and “off”
events. Each BPS reports “1” or “0” when a corresponding transition between 1
and 0 happens, which is enough for a centralized processor to interpolate the real-
time states of all sensors at any snapshot. We assume that all “on”, “off” events
are successively collected via some supporting routing and MAC protocols. At
the server side, it receives the sequential events reported from the BPS sensors
and reconstructs the sensing snapshots at each event. Each snapshot is a length-
M binary vector S; € [0,1]™ at time ¢. Although the presented techniques are
applicable for sensors with non-ideal sensing models, such as non-regular sensible
region, we focus our analysis on the disk-shape ideal sensing model.

Patch-based Location Description: Traditionally, the underlying locations of tar-
gets are described by “patches” formed by the sensing regions of BPSs. M BPSs
can partition the AOI to at most L < M? — M + 2 patches [10,9]. Each patch indi-
cates a region which is covered by the same set of sensors and each patch is coded
by a length-M vector based on the coverage situations of M sensors. For example,
in a network of four sensors, a patch with code “1100” means the patch is covered
by the first two sensors, but is not covered by the other two sensors.

Arc-based Location Description: By taking the event time into consideration,
targets’ locations can be further narrowed down to arcs. When a sensor reports
a state transition event, the target that triggers this event must be presenting
on the edge of this sensor’s sensing region. By jointly considering the states of
surrounding sensors, we can infer the target’s location to be on an arc between
two patches whose state change. Each arc can be uniquely encoded by the codes
of two neighboring patches. E.g., the arc between “100” and “110” can be coded
by “100110”. Fig.1 shows an example trace of a target represented by patch
sequence and arc-time sequence respectively. The arc representation can specify
the location of the target at a given time. We will show in following sections that

Patch-based Arc-based
Location trace  Location trace

010 t, 000:010
110 t, 010:110
t, 110:111
111
t,111:101
101
t; 101:001
001 t; 001:000
Fig. 1. Location traces of a target rep- Fig. 2. A snapshot, where feasible ar-
resented by patch index and time-arc eas are partitioned into three isolated

index respectively islands
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Table 1. Notation List

Notation Meaning

R Radius of each sensor

M Number of sensors in the area of interest (AOI)

N Number of snapshots given in input

v Total number of isolated feasible islands

L; The ith isolated feasible island

P(s) Coverage area of sensor s

fa Feasible Crossing Arc (at a certain time ¢,)

T={t1, - ,tx} Set of time corresponding to given snapshots

U All t € T whose snapshot triggers on a previous “off” sensor
D All t € T whose snapshot triggers off a previous “on” sensor
Sty Snapshot at time tj

Gy, Patch graph at time ¢

this property of arc representation can help to improve the counting resolution
by dynamic counting.

Problem specification: Under above system model, we consider multiple target
counting problem by sequential snapshots. Each snapshot at t is the captured
states of M BPSs when some sensor in the region reports a change. That is,
a snapshot at time ¢ € T := {t|S; # S;_. for sufficiently small € > 0}. The
problem input is a sequence of N snapshots {S¢,,S¢,, -+ , Sty }. Without loss of
generality, we assume t1 < to < --- < ty. We also assume the number of targets
participating in the AOI will not change during ¢; to ¢ty and each target’s moving
speed is upper bounded by V4. The problem output is a lower bound and an
upper bound of the number of targets.

Notation list: Notations used in our paper are listed in Table 1.

2.2 Background

Target counting problem by one snapshot has been investigated intensively in the
literature. A notable concept presented in [11,14] is the feasible area. Given a snap-
shot, the feasible area where targets may present can be determined by F = P(A)—
P(A)NP(E), where P(A) is the coverage area of the “on” sensors and P(E) is the
coverage area of the “off” sensors. An example of the feasible area is shown in Fig.2,
in which the sensing regions of “on” sensors are in white and sensing regions of “off”
sensors are in grey. In the figure, the feasible area is partitioned into three feasible
islands L1, Lo, L3, which are called isolated feasible islands.

Existing Lower Bounds. For point model of targets, the target number in
the feasible area have no upper bound. Estimating the lower bound of target
number is the foundation of target counting.

e In [11], a lower bound is given by Singh et al. for counting targets moving
in one dimensional space, i.e., on a line. In their method, if “on” sensors can
be partitioned into at most X positively independent sets, where the positively
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to. All sensors t,: Sensor Ais t,: Sensor B is

@ ( @ ~

(a) One positively independent set,
but need at least two targets are (b) Lower bound of static counting VS. lower bound of dynamic
presenting counting

Fig. 3. Examples to illustrate and compare different lower bounds for target counting

independent sensors are “on” sensors whose sensing regions do not overlap, or
separated by at least one “off” sensors, Theorem 4 in [11] stated that the number
of targets is not less than the cardinarity of X, i.e., | X|.

e A recent work in [14] investigated the target number lower bound in 2-D
space. They showed that the lower bound given in [11] was conservative in 2-D
space. A unit disc graph (UDG) model was proposed to model the structure of
the feasible area, based on which an improved lower bound was given. It equals

v
to . ¢;, where ¢; is the minimum number of cliques partitioning the UDG of

thel itlh feasible isolated island.

e In this paper, we show that the lower bound in [14] can be further improved
if the temporal and spatial dependences between snapshots are taken into consid-
eration. The basic intuition is shown in Fig.3, which compares the lower bounds
mentioned above. In Fig.3a), we can see the four “on” sensors are in one posi-
tively dependent set, so that the lower bound given by [11] will be one. But the
lower bound given by [14] will be two because the UDG formed by the “on” sen-
sors has at least two cliques. So the lower bound in [14] is more accurate in 2-D space
than that in [11], but it can be further improved. As illustrated in Fig.3(b), at to,
from the UDG structure, the lower bound given by [14] will be one. But by consid-
ering the event sequence from ¢ to t5 and the limited moving speed of the target, we
can judge that the target triggers the sensor A at ¢t cannot trigger the sensor B at
t2. Consequently, the lower bound of the target number should be two in dynamic
counting.

Other Related Works. Most other related works focused on the multiple tar-
get tracking algorithms. To deal with the difficulty of multiple targets, Busnel et
al. [2][1] investigated the trajectory identification properties. They converted the
BPS network into a state graph and presented trajectory identifiable and uniden-
tifiable properties on the state graph. In other works, the number of targets were
either assumed known or online estimated by the trajectory disaggregation al-
gorithms. FindingHuMo [4] proposed Hidden Markov Model (HMM) to track a
known number of targets by a BPS network. MiningTraMo [17] proposed mul-
tiple pairs shortest path algorithm based on walking speed variance to infer the
most possible trajectories or targets. In [19], compressive sensing based method
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was proposed to count and track the multiple targets, when the targets were
known to be sparse, i.e., well separated. In [6], a hybrid multiple target tracking
scheme was proposed by He et al., which conducted coarse-scale tracking by bi-
nary proximate sensors to narrow down search area, and used high-end sensors
for fine-grained tracking. In [3], Cao et al. presented collaborative scheme for
tracking groups of targets using BMSs. A distributed PIR-based people num-
ber counting system in office environment was developed in [16]. Algorithms
and systems for indoor locating using ultrasound systems were investigated in
[18][20]. Without going into details of target locating and tracking, we focus on
the basic properties of multiple target counting by the sequential snapshots of a
BPS network.

3 Lower Bound of Target Number by Dynamic Counting

3.1 Preliminary

We firstly investigate lower bound of target number by utilizing a sequence of snap-
shots captured by BPSs. For convenience, we divide the timeset T'={¢;, t3, - ,tn}
corresponding to the given snapshots into two sets U and D, namely up-set and
down-set. ty, € U, k € Nif and only if an “off” sensorin S;, , is triggeredonin S, ,
andt; € D,k € Nifand onlyifan “on” sensorin S;, , istriggered offin Sy, . Next,
we define feasible crossing arc to indicate the possible locations of the targets that
trigger a state transition event.

Definition 1 (Feasible Crossing Arc (FCA)). When a sensor’s state change
1s detected, the feasible crossing arc indicates the arc segments where the targets
are traversing to trigger the event without violating the states of other sensors.

Based on FCA, we propose Theorem 1 to specify the necessary time-space
restriction for two events being triggered by the same target. The theorem is
based on the fact that a target’s moving speed is limited. Therefore, only if the
distance between the FCAs of these two events are not beyond the moving scope
of the target, can the two events be triggered by the same target.

Theorem 1 (Time-Space Restriction). If a sensor A is triggered “on” by
one target at time t4 and the FCA is fa; another sensor B is triggered on by the
same target at time tp > ta with FCA fp, then ||fa — fell2 < (tB — ta)Vmax,
where Ve 18 the mazimum moving speed of the target.

3.2 Dynamic Counting Using the Time-space Restriction

The time-space restriction could improve the lower bound of the number of
targets. An example to show the basic idea is illustrated in Fig.4. It shows six
snapshots captured from a BPS network. The ground truth happened during
this period is that: three targets, in terms of “red”, “green”, and “orange” are
presented as shown in Snapshot 1. At Snapshot 2, the red target moves outside
a little bit, and then turns back quickly as shown in Snapshot 3. Then in a very
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Snapshot 1
UDG:

Snapshot 3

UDG: UDG:

MCP=1

Snapshot 6

UDG: UDG:

UDG:

MCP=2

Fig. 4. Improvement by time-space restriction

close snapshot, the orange target moves outside a little bit as shown in Snapshot
4, and then turns back quickly as shown in Snapshot 5. Then in another close
by snapshot, the green target moves outside.

By static counting method, the UDGs besides each scenario show the static
counting result. The number of MCP for UDG from snapshot 1 to snapshot 6 are
one, two, one, two, one, two respectively. Therefore, the estimated lower bound
of the number of targets during this period, given by static counting is two.

However, since the procedure finishes in ephemeral time, by considering the
spatial and temporal dependency between the snapshots we know that the sen-
sors which are triggered on in Snapshot 2, 4 and 6 must be triggered by totally
different targets due to the limited speed of the targets. Therefore, in Snapshot
6, we could deduce that a disparate target other than the two targets triggering
events at Snapshot 2 and 4 must be presenting. Therefore, the lower bound of
the target number is three by utilizing time-space restriction.

Based on the idea above, we develop a dynamic counting method to estimate
the target lower bound more precisely. To initialize the algorithm, the beginning
patch graph Gy is built based on the UDG model in static counting. Count
is defined as the estimated lower bound of the target number, which is set to
MCP(Gy) initially. After that, a loop runs from the first snapshot to the last
snapshot in order to construct patch graphs dynamically. More specifically, for a
snapshot at time ¢ € U, assume the sensor [ is triggered from “off” to “on”. In
this case, we will firstly construct all edges between sensor [ and other intersected
“on” sensors whose common intersection is not fully covered by the regions of
the “off” sensors. After that, we examine all these edges: if an edge violates the
time-space restriction, the edge will be deleted.

For a snapshot at time ¢ € D, we need to delete the vertex of the sensor from
the UDG, which is just turned from “on” to “off” in the graph, and delete all
its corresponding edges. In addition, it is a necessity to delete the edges whose
corresponding intersection area is fully covered by this newly “off” sensor.

After finishing each loop, we calculate the MCP of the new patch graph. count
would be updated if this MCP is larger than the previous count. The algorithm
ends after looking at all snapshots in time sequential order. The whole procedure
is named as dynamic counting of targets, and we develop Algorithm 1 for this
method. The dynamic counting algorithm leads to Theorem 2.
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Algorithm 1. Lower Bound Dynamic Counting Algorithm
Input: Set T = {t1,t2, -+ ,tn} =U U D (up-set and down-set);
St,, At , Et, ,V0 < k < N; Patch graph Go of time to;

Output: Lower bound of the number of targets: count;

1 Initialize count <~ MCP(Go);

2 for k< 1to N do

3 if ¢, € U then

4 Define I to be the sensor which is “off” in S;, _, but “on” in Sy, ; Fj to
be the feasible crossing arc of sensor [;

5 Define G = G_1 U {l};

6 fori<+ 1to M,i#1do

7 Define F; to be the feasible crossing arc of sensor ;

8 if D;; <0 AND sensor i and sensor | have intersecting region and
the intersected region is not fully convered by the regions of the “off”
sensors then

9 add an edge in G between i and [

if tx, € D then
10 Define | to be the sensor which is “on” in S;, |, but “off” in S, ;
11 Define G, = Gi—1/{l} by deleting vertex [ and its corresponding edges;
12 if sensor i, 7,1 have intersecting region pairwise and the intersected
region of sensor i and j is fully convered sensor | then
13 delete the edge in G, between ¢ and j
14 count <— max{count, MCP(Gy)};

15 return count;

Theorem 2 (Lower Bound of the Target Number). Let N be the real
number of targets that matches the sequential snapshots of sensors. Then the
return value ‘count’ of Algorithm 1 must not be larger than Ny, i.e., N;, > count.
Proof. Based on the discussion of Algorithm 1, it is clear that G} constitutes
the snapshot at time ¢;. In order to prove the theorem, we suffice to show that
N > MCP(Gy,) for each k since count is the maximum of all MCP(Gj).

Let us assume the contrary that N < MCP(Gy,) for a certain k. As a result,
we could re-partition all “on” sensors of the UDG at time ¢ into MCP(Gy) — 1
groups such that each group of sensors has a common intersection while each pair
of sensors does not violate the time-space restriction. This partition is equivalent
to a clique partition of Gy with MCP(Gy) — 1 cliques, but this contradicts with
the fact that MCP(GYy) is a minimum clique partition of Gy,.

Our algorithm also has a reasonable time complexity. By [5], MCP of a patch
graph could be calculated by a polynomial time approximation scheme (PTAS)
with (1 + €)-approximation and time complexity O(MO(1/62)) where M is the
number of sensors in the area of interest (AOI). In addition, line 2 to line 13 in the
algorithm could be done in O(M) time in each cycle. Therefore, Algorithm 1 is
also a PTAS with (1+¢)-approximation and has time complexity O(N~MO(1/E2))
where N is the number of snapshots.
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Fig. 5. Example of calculating the up- Fig. 6. Example of minimum separa-
per bound of target number tion distance

4 Upper Bound by Dynamic Counting

In real applications, the physical targets, such as humans, animals, vehicles,
are generally not arbitrarily close to each other. In this section, we assume a
minimum separation distance T > 0 between each pair of targets.

4.1 Static Counting

Based on the assumption of minimum separation distance, we can estimate the
upper bound of target number by modeling it as a packing problem, which is a
classical geometric optimization problem in mathematics that attempts to pack
objects together into containers. The goal is to pack the containers as densely
as possible using the objects. In 1910, Thue [15] established a theorem for the
density of circle packing into a connected surface:

Theorem 3. Assume a set of at least two circles with radius r are packed into
a connected surface. Denote the sum of area of all small circles with radius r to
be S" and denote the area of the surface to be S, respectively. Then % < \/7;2.

In our problem, we treat the areas of each feasible island as containers, and
objects are circles with radius . Then the upper bound of the number of targets
equals to the number of circles that can be packed into the feasible area. In
our problem, we only restrict the centers of objects, i.e., the positions of targets
cannot exceed the boundary of the container. Therefore, we allow the objects
to cover at most distance r beyond the boundary of containers, as an example
shown in Fig.5. Given a snapshot as the input, the most number of targets in
the feasible area of the snapshot can be estimated.

Theorem 4 (Upper Bound of the Target Number). Let A; and C; be
the area and circumference of the ith feasible island respectively. Suppose the
minimum separation distance between targets is r, then the number of targets

in the feasible area must be smaller than PORVIES where Vo

bound of target number in the ith feasible island.

i is the upper
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Snapshots Number of Upper bound of Upper bound of Upper bound

isolated islands island 1 island 2 Overall
Binary

Vector

t=1, 100110 *g 2 F(Sy) F(S, U Ss) F(S1)+F(S4 U Ss)

t=2, 100010 * 2 F(S1) F(S4) F(S1)+F(S4)
UL

t=3, 110010 2 F(S1) F(S4) F(S1)+F(S4)

(
PA
NN
t=5, 110111 %&2 1 F(Sy)+F(S,) N/A FIS))+F(Ss)
o0
t=6, 010111 %2 1 F(Sy)+F(S4) N/A F(Sy)+F(S4)
D)

Target
distributions

t=4, 110110 2 F(Sy) F(S4) F(Sy)+F(S3)

Fig. 7. Illustration for dynamic upper bound

Using the similar idea of improving lower bound, we introduce a dynamic
counting method to utilize snapshot dependences to improve the upper bound
of the target number.

4.2 Improvement by Dynamic Counting

For a feasible region S, we define f(S5) := ‘ygg where A is the area of S and C

is the circumference of S. By Theorem 4, f(.5) is an upper bound of the number
of targets in S. Denote the set of feasible islands of the initial snapshot at time
to to be Sisiand = {51, , Sk }.

The basic idea of dynamic counting to improve the upper bound is based on
the fixed number of targets in a feasible island which is not connected to other
feasible islands during the concerned time. See Fig. 7 as an illustration. This is
an instance of six snapshots, in which the first four snapshots are composed of
two feasible islands and the last two snapshots are composed of a single feasible
island. From snapshot 1 and 2, we know that the number of targets in the first
and second feasible island is at most f(S1) and f(Ss), respectively. Therefore,
the best upper bound of the number of targets in this instance is f(S1) + f(Ss).
However, if we only consider the last snapshot, the upper bound obtained is
f(S2 US4 U S5 U Sg), which could be much worse than the bound given from
the dynamic view. Using this inspiration, we develop Algorithm 2 to improve
the upper bound of the number of targets. Basically, when the number of feasible
islands is not changed in an interval of snapshots, the number of targets in each
feasible island is bounded by its smallest region in this interval. When a feasible
island breaks up into several islands or some feasible islands are combined into
a single feasible island, the set of feasible islands and the upper bound of the
number of targets in each feasible island are both reassigned.
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Algorithm 2. Dynamic Upper Bound Counting Algorithm
Input: Set T = {t1,t2, -+ ,tn} =U U D (up-set and down-set);
Sti., Aty , Et, , V0 < k < N; Feasible islands Sisiana = {51, , Sk} at time to;
Output: Upper bound of the number of targets: countupper;

1 for i+ 1to K do

N

3 Initialize countupper < Zle Ui

4 for k+ 1to N do

5 if ¢, € U then

6 Define | to be the sensor which is “off” in S;, | but “on” in S, ;

7 if P(l) N Sistanda = 0 then

8 Update Sisiand < Sisiand U P(l); U f(P(l));

9 else if P(l) intersects with at least two islands in Sisiana then
10 Define S’ C Sisiana to be islands intersect with P(1);
11 Define S, := S U P(l);
12 Update Sisiand < (Sisland/sl) us;
13 Update w < > g o f(Si) + f(P());
14 else

if ¢, € D then

15 Define I to be the sensor which is “on” in Sy, _, but “off” in Sy, ;
16 Define [ to be in feasible island S;;

17 if S;/P(l) is not connective then

18 Define S;/P(l) to be m > 2 feasible islands S;1,- -+ , Sim;
19 Update Sisland <~ (Sisland/si) u {Sil, e ,Sim};
20 uij + f(Siy) for V1 < j < my;

else

21 u; <— min{u;, f(Si/P(1))};
22 countupper — min{countupper, Y, Ui}

23 return countupper;

In the algorithm, we also divide the time of snapshots into up-set and down-
set. For both cases, the isolation and combination of islands are carefully con-
structed to make the connectivity of all “on” sensors following the truth. In
addition, we update each island’s upper bound of the number of targets every
round. In particular, when an “on” sensor is turned off in a snapshot, we catch
up the possibility of decreasing the upper bound of the target number in line 21.

In Algorithm 2, O(M) time suffices from line 1 to line 3 where M is the
number of sensors in the AOI. In either ¢, € U or t; € D, the cycle could be
finished in O(M) time. In total, the time complexity of Algorithm 2 is O(M N)
where N is the number of snapshots in total.

Based on the lower bound and the upper bound of target number, we can
investigate a more interesting property of the binary target counting problem,
i.e., the minimum separation distance for precisely target counting.
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5 Condition for Precisely Target Counting

A more interesting problem we may ask is: under what condition can we always
precisely count the number of targets without error. This problem was previously
studied by [12], which showed that when the separation distance r between each
pair of targets is larger than 4R, the number of targets can be precisely counted.
This traditional requirement of 4R separation distance is rather large. What we
are interested is that: whether can we find a smaller separation distance r < 4R
such that the number of targets can be precisely counted.

Consider the relationship between the upper bound and lower bound of the
target number in a feasible island. For the ith feasible island, suppose that the
lower bound of the target number is [;. When the separation distance between
each pair of targets is r;, the following relationship must hold:

A; + ;G
Vi12r?

The minimally required separation distance for precisely target counting in island
¢ is the minimum value of r; which restricts the upper bound of target number
not larger than one plus the lower bound of the target number, i.e., the minimum

value of r; to keep I; +1 > A\/‘;;;f‘ > [;. Therefore:

Theorem 5. The minimum required separation distance between each pair of
targets for precisely counting targets is v = max{vy1,¥2, " , Y}, where v; =
Cit/C2+8V3 A, (li+1) )

ov/3(1i41) for all i.

> N; >

Here ; is the solution of the equation v/12(1; + 1)72"2 - C;% — A; = 0, which
is the minimum separation distance to make the upper bound of target number
equal to the lower bound in island i. Moreover, ; could be even smaller if use
the upper bound of the target number by dynamic counting.

Theorem 5 reveals that the separation distance required for precisely target
counting is different in disparate snapshots and even varies at different loca-
tions in a snapshot. If the upper bound is unlimited, the minimum separation
distance is the largest diameter of the cliques formed by the positive sensors.
An example is shown in Fig.6, we can see the minimum separation distance
min{A;, Ay, As} < 4R, which shows a better potential of using BPS network
for precisely target counting than the traditional results.

6 Evaluation

To verify the counting bound, agents based simulation was conducted based
on PSensorSimulator platform[13]. Multiple agents, which simulated the mobile
targets were programmed to move independently along random paths in the
area of interest. The area of interest was a L x L rectangle area. In the area, M
BPS sensors were deployed. We investigated two kinds of sensor deployment. 1)
reqular deployment, as shown in Fig. 8, in which the sensors were deployed in
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Fig. 8. Dynamic counting can fix boundary-pacing error

a grid topology, which fully covered the AOI. 2)random deployment, in which,
enough sensors were deployed randomly in a region and a subregion was selected
as the AOI, as shown in Fig.9(a).

For rendering the target tracking scenario, a graphical interface was developed.
As shown in Fig.8, the feasible area of targets were rendered by the internal
region surrounded by the red arcs. The sensors in the “off” state were in grey
with blue dashed lines. The feasible crossing arcs were colored in black if one
target was entering the sensor region, and was colored green if the sensor was
turned off because of target leaving. The UDG corresponding to the sensor’s
readings was illustrated in Fig.8, in which the vertex denoted the sensors in the
“on” state. The construction of UDG could be referred to [14]. We implemented
Algorithm 1 and 2 on the simulation platform to contrast the upper and lower
bound with the ground-truth number of targets.

6.1 Evaluation on Lower-bound

As a core unit of Algorithm 1, MCP-calculation routine is called every time the
state of a sensor changes. Since MCP-calculation is proved to be NP-Complete
problem, we use a PTAS approximation to implement MCP [7] calculation.
Regular deployment: At first, a particular example is shown in Fig.8 to il-
lustrate the effectiveness of the dynamic counting algorithm on improving the
counting lower bound. The scenario contains 64 sensors. Only the labels of the
“on” sensors are shown, and ten targets are moving in the area. As shown in
Fig.8, at 9.43 second in this scenario, the sensor 36 was “off” and sensor 37 was
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on”. The MCP of the UDG of this scenario indicates the lower bound of the
target number is 9. At the 10.37 second, sensor 36 turned “on” and sensor 37
turned “off” simultaneously. In this case, the target which left sensor 37 could
only enter sensor 29 or sensor 45. After a short duration of 0.21 seconds, at the
10.58 second, the sensor 37 was turned “on” again. Since 0.21 seconds was not
enough for the target which triggered sensor 36 to reach the edge of sensor 37
due to time-space restriction, it must be the return of the previous target in
sensor 37, and this target is different from the target in sensor 36. Therefore, in
the DAG of (a-3), the edge between S36 and S37 was deleted. Deletion of this
edge improved the lower bound from 9 to 10, which verified the effectiveness of
the dynamic counting for lower bound improvement.

Random Deployment: To further investigate the performance of dynamic
counting method, we evaluated the target counting performances when the sen-
sors are randomly deployed. The setting is shown in Fig.9(a), in which sensors are
deployed with density of 0.2 per square meter in an 100m*100m area. A subregion
in the centric part of the area is selected as the AOI. So that in this evaluation,
the number of targets within the AOI may change overtime, therefore, we delete
line 14 in algorithm 3 in simulation. The number of targets in AOI given by both
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dynamic and static counting algorithm were evaluated. The result in a 100 sec-
onds experiment is shown in Fig.9(b). We can see that the lower bound given by
dynamic counting is slightly better than that given by static counting. The CDF
curve in Fig.9(c) summarized the performance difference, in which the counting
gap indicates the gap to the real number of targets. In conclusion, dynamic count-
ing showed better performance than the static counting.

6.2 Evaluation on Upper-bound

To verify the upper bound of counting, Algorithm 2 was implemented in PSen-
sorSimulator. For each isolated island formed by “on” sensors, circumference
and area were calculated with numeric method. According to Theorem 4, ratio
between predefined separation radius and sensing radius matters. Therefore, we
calculated the upper bound with different ratio. As shown in Fig.10, the upper
bound could be twice to 4 times to the ground-truth according to different ratios.

6.3 Evaluation on Separation Distance

Theorem 5 gives a non-trivial minimum separation distance = for precise count-
ing. We compared this « with classical separation distance 4R by simulation. As
shown in Fig.11, during 100 seconds experiment, the -y is always below 4R. This
results told us that, introducing dynamic information can improve the separation
for precisely counting by about {f.

7 Conclusion

This paper investigated target counting problem by a network of binary prox-
imity sensors. For the lower bound of the target number, we considered the
time-space restriction between a sequence of snapshots and proposed a dynamic
counting technique which improved the lower bound given by individual snap-
shot. As for the upper bound of the target number, we showed that if a minimum
separation distance between targets was considered, an upper bound could be
given by packing theorem. Moreover, a dynamic counting algorithm was pro-
posed to improve this upper bound. At last, by matching the upper bound and
lower bound, we investigated the condition for precisely target counting and
showed that the minimum separation distance for precisely counting could be
{f smaller than the previously known limit 4R. In the future work, the dynamic
counting method can be exploited to enhance existing multiple target tracking
algorithms. Apart from theoretical works, dynamic counting technique can be
applied in occupying sensing or enemy detection and tracking.
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Abstract. Sensor networks operating in the 2.4 GHz band often face
cross-technology interference from co-located WiFiand Bluetooth devices.
To enable effective interference mitigation, a sensor network needs to know
the type of interference it is exposed to. However, existing approaches to
interference detection are not able to handle multiple concurrent sources
of interference. In this paper, we address the problem of identifying multi-
ple channel activities impairing a sensor network’s communication, such as
simultaneous WiF1i traffic and Bluetooth data transfers. We present Speck-
Sense, an interference detector that distinguishes between different types of
interference using a unsupervised learning technique. Additionally, Speck-
Sense features a classifier that distinguishes between moderate and heavy
channel traffic, and also identifies WiFi beacons. In doing so, it facilitates
interference avoidance through channel blacklisting. We evaluate Speck-
Sense on common mote hardware and show how it classifies concurrent
interference under real-world settings. We also show how SpeckSense im-
proves the performance of an existing multichannel data collection protocol
by 30%.

1 Introduction

Low-power wireless sensor networks (WSN) operating in the 2.4 GHz spectrum
often face interference from other wireless technologies that share the same
frequency band. Typically, IEEE 802.15.4-compliant sensor nodes compete for
channel access with an increasing number of WiFi and Bluetooth devices such
as laptops, smartphones, and tablet PCs. This results in long contention delays
and collisions that degrade sensor network performance [1,2].

Several mitigation approaches [3,1,4,2] have been proposed to tackle the prob-
lem of external interference in sensor networks. Knowing the type of interference
enables a sensor node to choose a suitable mitigation strategy [5, 6, 1]. In this re-
gard, interference classification is prerequisite towards mitigation. Recent work
on interference classification [6, 7] addresses the problem by mapping RSSI obser-
vations or patterns of corrupted packets to a known class of interference such as
WiFi, Bluetooth or microwave ovens. Such designs are intrinsically constrained by
a direct mapping of channel observations to a fixed number of interference classes.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 35-51, 2015.
© Springer International Publishing Switzerland 2015
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In particular, they do not address the predominant case of multi-source interfer-
ence, i. e., multiple device types and instances that transmit on a channel. For ex-
ample, a combination of WiFi and Bluetooth interference on a channel is likely to
be reported as either WiFi or Bluetooth, depending on the dominant interferer.
In this regard, the detection of multiple interfering sources offers interesting in-
sights on channel utilization. The number of distinct interfering sources on a chan-
nel has a marked influence on its utilization — for example, concurrent traffic over
WiFi and Bluetooth traffic has a greater interference impact than either in isola-
tion. Moreover, interfering channel traffic from multiple sources can be indepen-
dently inspected for temporal patterns such as periodicity. This enables a wireless
device to identify periodic control signals on an active WiFi channel, and blacklist it
for sensor network operation. Lastly, multiple interference detection enables wire-
less devices to disambiguate external interference from in-network channel traffic.
This provides a clearer context for motivating interference mitigation mechanisms
asin [1,2].

We present SpeckSense , a service that enables nodes to detect and classify
multiple sources of interference in the 2.4 GHz band. In doing so, SpeckSense
provides explicit recommendations on which channels are good for use. In con-
trast to earlier work [6,8], SpeckSense performs an explicit interference detection
step prior to classification. The detection step uses RSSI values to account for
channel observations, and clusters them based on pre-determined RSSI intervals
in which they belong and also the time duration for which a sequence of similar
RSSI values persist. Each cluster thus represents a distinct interference pattern,
which is handed to a classification algorithm.

SpeckSense is primarily designed for avoiding WiFi and other forms of severe
interference in indoor WSN deployments. To this end, SpeckSense performs two
main operations — distinguishing between different forms of data traffic (WiFi
beacons, periodic and non-periodic channel traffic) and identifying the number
of sources transmitting periodic signals — for example, WiFi access points. Speck-
Sense uses the average time interval between recurring RSSI patterns to distin-
guish between conditions of moderate (web browsing) and intense (bulk data
transfer) channel traffic. In doing so, SpeckSense provides a channel utilization
measure that determines whether the channel is suitable for reliable commu-
nication. Furthermore, identifying beacons enables a sensor node to effectively
blacklist channels affected by WiF1i interference.

We evaluate SpeckSense in an office corridor characterized by many interfer-
ence sources that include several WiFi and Bluetooth-enabled devices. We show
that SpeckSense distinguishes between the predominant sources of interference,
and in particular, identifies multiple WiFi access points in the presence of data
traffic. We demonstrate the usefulness of SpeckSense by adding it to a multi-
channel data collection protocol [2]. We evaluate the combined solution on a
large-scale indoor testbed and observe a significant improvement in data yield
facilitated by avoiding interfered channels.
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In this paper we make the following contributions:

— We design and develop SpeckSense, a new approach for detecting and clas-
sifying multiple concurrent sources of interference in the 2.4 GHz spectrum.

— We facilitate interference avoidance by distinguishing between different ex-
tremes of channel traffic (web browsing vs. file transfers), and identifying
periodic WiFi beacons.

— We show how an existing data collection protocol can benefit from using
SpeckSense to recommend WiFi-free channels. Our experimental evaluation
on a large testbed comprising 85 nodes shows a 30% improvement in data
yield when using SpeckSense.

2 SpeckSense Design

Indoor environments such as offices or residential areas are witness to concurrent
wireless activity across multiple standards such as WiFi, Bluetooth and IEEE
802.15.4 devices that operate in the 2.4 GHz spectrum. The resulting channel
interference is therefore a combination of multiple transmissions that differ from
each other in radio bit rate, message size, transmit power, channel attenuation
and timing constraints [8]. As a result, their respective emissions exhibit char-
acteristic patterns in intensity, duration, and timing. For example, emissions
from a WiF1i access point are distinctly different from a Bluetooth device’s emis-
sions. The central idea of SpeckSense is to disambiguate the concurrent emissions
from the interferers so that the present interferers can be identified. To do so,
SpeckSense accounts for collective emissions from the interferers by sampling the
received signal strength (RSSI), i.e., the energy in the channel.

SpeckSense comprises two components, that perform interference detection
and classification in sequence. The interference detection uses an RSSI sampler
that captures the emissions from all interferers as a series of RSSI bursts. Inter-
ference detection involves an unsupervised learning approach, i. e., clustering, to
distinguish the bursts from the different interferers. The output of the interfer-
ence detection component is passed to a classification component that inspects
each cluster for periodicity. Doing so enables SpeckSense to identify WiFi bea-
cons on a given channel, as well as periodic traffic from other sources besides
WiFi routers. Additionally, the classification component quantifies channel oc-
cupancy, which enables blacklisting of channels that are severely interfered.

Unlike earlier work [6, 8], SpeckSense decouples interference detection from
explicit classification. This decoupling allows distinguishing the emissions from
multiple interferers, and also classifying them in isolation. We now describe
SpeckSense’s components in more detail.

3 Interference Detection

SpeckSense’s interference detection consists of an RSSI sampler and a clustering
process, which are described in the following subsections.
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3.1 RSSI Sampler

The RSSI sampler captures the energy in the channel due to the interferers’
emissions, e.g., WiFi beacons or Bluetooth data packets. It continuously reads
the RSSI register of the sensor nodes’ radio chip. The readings are quantized,
run-length encoded, and so-called bursts, i. e., contiguous sequence of high RSSI
samples, are identified. The detected bursts are then processed by the clustering
component.

Quantization is motivated by two observations. First, the emissions from a
given interferer may vary slightly over time in their strength. These minor vari-
ations are not relevant to detecting the interferer, and hence they can be ab-
stracted away by quantizing the RSSI reading. Second, storing raw RSSI readings
is prohibitively memory-intense on a constrained sensor node. Storing quantized
readings in memory is a simple means to reduce the memory requirement.

The number of quantization intervals represents a trade-off between the num-
ber of distinctly observable RSSI patterns and memory overhead. Using a higher
number of intervals allows to capture more distinct channel activities, but re-
quires more memory to store the observations. We establish power level 1 for
RSSI values below —90 dBm, and divide the RSSI range above > —90 dBm
evenly over the remaining number of levels. For example, using four quantiza-
tion intervals would require defining the following power levels: power level 1
(RSSI < —90 dBm), power level 2 (—90 dBm < RSSI < —60 dBm), power level
3 (—60 dBm < RSSI < —30 dBm), and power level 4 (—30 dBm < RSSI).

The quantized RSSI readings are then run-length encoded to further reduce
the memory overhead. Run-length encoding works by simply counting the num-
ber of subsequent occurrences of a power level. For example, consider the fol-
lowing RSSI sequence: —92, —91, —57, —58, —57, —29, —28, —59, —59, —59,
—94. Quantization and run-length encoding produces the following sequence of
2D vectors: (1,2),(3,3),(4,2),(3,3),(1,1). The first component of each vector
denotes the power level, and the second component denotes the duration of the
observation.

Finally, the RSSI sampler extracts bursts of activity from the quantized,
run-length encoded vector sequence. A burst is defined by a contiguous sub-
sequence where the channel is not idle, i.e., the power level is greater than
1. The RSSI sampler represents the burst by the weighted mean power level
and the total duration of the subsequence. The previous example contains the
non-idle subsequence (3,3), (4,2), (3,3), which corresponds to the RSSI burst:
(PPTIES,34243) = (3.25,8).

SpeckSense’s interference classification relies on the temporal patterns of an
interferer’s emissions, so it is important that processing a sample on a sensor
node takes a constant amount of time. Otherwise, the duration value in an RSSI
burst would be misleading. In our implementation, processing an RSSI sample
(reading it, quantizing it, and performing run-length encoding) takes 47 ps on
average, giving a sampling rate of 21 KHz. This allows the detection of energy
levels from WiFi beacons and Bluetooth data packets that have transmission
times several magnitudes higher than 47 ps [9,8]. More crucially, the variance
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in the processing delay is 0.04 ps, which is low enough to assume practically
constant sampling speed. As per the suggestions by Boano et al., the RSSI
sampler is implemented to avoid saturation in the radio transceiver’s automatic
gain control [10].

3.2 Clustering Algorithm

The clustering component groups together RSSI bursts that are likely to come
from the same interferer. In a later step, the clusters can then be analyzed
independently from each other to classify the interferer.

Prior to clustering, the RSSI bursts are normalized. Note that the mean power
level of a burst can be at most 4, whereas the duration of a burst can take much
larger values. Thus, normalization is required to avoid burst duration having
a dominating influence on the clustering. Considering that the emissions could
take 10 ms (microwave oven emissions), we scale up the average power level for
all bursts by a factor of 16.

SpeckSense uses the k-means algorithm to group a set of normalized RSSI
bursts B into clusters. k-means clustering is a general algorithm to group a set
of observations into clusters such that similar observations belong to the same
cluster [11]. We briefly describe the algorithm’s operation.

Assume the bursts in B are to be grouped into k clusters. The cluster 4
is represented by a 2D vector u; called its cluster center. The vector’s first
component represents the average power level of bursts in the cluster, and the
second component represents the average duration. Initially, the k cluster centers
are chosen at random from the RSSI bursts in B. Then, the algorithm repeatedly
assigns RSSI bursts to clusters and updates cluster centers until a termination
condition is met.

Cluster assignment. Each RSSI burst is assigned to the cluster that has the
closest center. More specifically, an RSSI burst b; € B is assigned to the cluster
j whose center has the minimal Euclidean distance to b;. We denote the cluster
center to which b; is assigned by m(b;), defined as m(b;) = argmin,, {|b; — p;||-

Cluster center update. After the cluster assignment, the cluster centers are re-
computed. Let M; be the set of bursts that were assigned to the jth cluster in
the preceding step. Then, the cluster center p; is updated to be the average of
all bursts in M. Specifically, p; = Il\/lljl ZbeMj b.

Termination. The preceding two steps are repeated until a cost function (which
is evaluated after each update step) converges, i. e., decreases by less than a fixed
threshold. The cost function C' describes how close the bursts are to the centers of
their assigned clusters, and thus intuitively reflects the quality of the clustering:
C = é‘ > benllbi — m(b;)[|*. We have empirically found that a threshold of
0.001 gives good clustering performance.

The described algorithm groups the RSSI bursts into &k clusters. However, the
number of clusters k, which is related to the number of interferers, is not known
a priori. Therefore, SpeckSense iteratively executes the algorithm for different
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Fig. 1. Clusters detected by SpeckSense in the anechoic chamber for different interfer-
ence scenarios. Each marker represents an RSSI burst, and the marker’s shape indicates
which cluster the burst was assigned to. The number of clusters found by SpeckSense
corresponds to the number of interferers.

values of k. Starting from k& = 1, the cost function at termination is noted and k
is increased by one. When the difference in cost at termination for k and k + 1
is less than 0.001, the algorithm terminates.

In summary, the clustering component arranges the RSSI bursts into groups
such that bursts that are similar in duration and power level are assigned to
the same group. The underlying intuition is that similar bursts are likely to
come from the same interferer. The clustering component outputs the number
of clusters k that yielded the best clustering, the center clusters u1, ..., g, and
which burst was assigned to which cluster. To validate SpeckSense’s ability to
cluster different interference patterns, controlled experiments were performed
in an anechoic chamber. Figures 1(a), 1(b) and 1(c) show the different clusters
detected by SpeckSense in a set of artificially induced interference scenarios. The
specific cases comprise beacons from a WiFi Access Point AP1, a combination
of WiFi beacons from AP1 and Bluetooth traffic between a pair of devices, and
beacons from two WiFi access points AP1 and AP2. Each point in the figures
represents a RSSI burst, and bursts belonging to a cluster have the same marker.
The figures show that it is possible to disambiguate between different emissions
based on average burst size (Figure 1(b)), as well as power level (Figure 1(c)).

Note that emissions from different sources may overlap in time, for exam-
ple, microwave emissions overlapping with Bluetooth bursts. In such cases, the
clustering algorithm detects only the dominant interferer (i.e., the microwave).
SpeckSense addresses this concern by observing RSSI values over a longer du-
ration (i. e., one second), thereby increasing the likelihood of detecting multiple
interference sources.

4 Interference Classification

SpeckSense classifies interference by inspecting each detected cluster for tempo-
ral patterns in RSSI bursts. In doing so, SpeckSense informs link-layer protocols
whether the observed channel activity is periodic, bursty or a combination of
both. This facilitates a meaningful assessment of channel quality and enables
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Fig. 2. Empirical CDFs of the inter-burst separations per detected cluster, for different
interference scenarios. SpeckSense distinguishes between different extremes of channel
traffic, using a 100 ms threshold on the observed average inter-burst separation.

nodes to make informed decisions on channel selection. In this regard, Speck-
Sense deviates from earlier classification work such as SoNIC [6] that maps chan-
nel observations to specific labels such as WiFi, Bluetooth and microwave. This
section elaborates on two aspects of interference classification, namely distin-
guishing different extremes of prevalent 2.4 GHz data traffic and identifying
periodic signals such as WiFi beacons.

4.1 Distinguishing Channel Traffic

Interference in the 2.4 GHz spectrum is largely attributed to concurrent traffic
over WiFi and Bluetooth, as well as electromagnetic emissions from microwave
ovens. The impact from channel interference on a wireless network application
is determined by several factors such as device usage patterns, application data
requests as well as underlying communication protocols in use. Therefore, it
is reasonable to expect that certain applications contribute to a greater degree
towards channel interference than others — for example, a file download over WiFi
causes more channel interference than web browsing. SpeckSense distinguishes
between diverse applications at the physical layer based on their characteristic
contribution to channel traffic. Specifically, SpeckSense computes the average
inter-burst separation for each interference cluster, and checks whether it is below
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a predetermined threshold. If so, the channel is said to be severely interfered and
hence blacklisted for sensor network operation.

To empirically determine the threshold inter-burst separation, we conduct
experiments involving controlled interference, in which SpeckSense gathers RSSI
samples for different scenarios that included a Bluetooth file transfer, WiFi file
download, WiFi web browsing, video streaming over WiFi, WiFi repeater traffic,
and microwave oven emissions. Figure 2 shows the cumulative distribution of
the inter-burst separation for different clusters for some of the aforementioned
cases (for additional details, refer to [12]). We observe that for cases where
bursty traffic is involved, such as in Figures 2(b), and 2(d), 80% of the inter-
burst separations are below 100 ms. Note that channel activity bursts owing
to Bluetooth transfers and WiFi-enabled web browsing are not as frequent as
WiFi file download and repeater traffic. This is attributed to factors such as
Bluetooth frequency hopping that effectively schedules packet transmissions over
non-overlapping channels, as well as temporally sparse patterns in web browsing.
Further, a reduced average inter-burst separation is correlated to an increase in
the number of detected clusters.

Based on these observations, SpeckSense uses an average inter-burst separa-
tion threshold of 100 ms, which has shown good results in distinguishing condi-
tions of light channel traffic (cf. Figures 2(a), and 2(c)) from severe interference
(cf. Figures 2(b) and 2(d)).

4.2 Identifying Periodic Beacons

Concurrent traffic over WiFi constitutes a major part of cross-technology in-
terference in the 2.4 GHz ISM band [1]. Therefore it is necessary that a sensor
node avoids operating on channels that overlap with WiFi activity. While usage
patterns of WiFi may vary over time depending on varying user needs, there is
a stable pattern in control signaling on the WiFi channels. Predominant IEEE
802.11 management frames include WiFi beacons, probe responses from access
points, and probe requests from WiFi clients. Particularly, beacon messages are
sent at a default periodic interval of 100 ms. Identifying them can thus be re-
garded as an indication of WiFi presence. Towards this end, SpeckSense uses the
results from its multi-source interference detector, and classifies a clustered se-
quence of periodically recurring RSSI bursts as WiFi beacons. This is, however,
a non-trivial problem and entails addressing the following challenges. WiFi man-
agement frames such as probe requests and probe responses may have similar
on-air transmission times as beacons, and are also transmitted over non-periodic
intervals (see Figure 3(a)). Moreover, beacons from multiple WiFi access points
within interference range may have similar on-air transmission times and RSSI
values (see Figure 3(b)), and get clustered together. The random occurrences of
WiFi probes and beacons from multiple APs collectively represent a challenge
in identifying periodic patterns.

Accounting for these challenges, SpeckSense employs an algorithm (see Algo-
rithm 1) that is run once for each cluster obtained from the interference detection
outlined in Section 3.2. In every run, the input to the algorithm is a temporal
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Fig. 3. WiFi beacons may be interspersed by probe messages or beacons from other
access points, making their identification non-trivial

Algorithm 1. Algorithm to detect periodic bursts

1: Inputs 10: for di € (d},d7...d?™ ") do
2: > n is the number of RSSI bursts over 11: s dt
time T 12:  for d € (dit*,di™?...d?7") do
3: > dr = (di,d;...d}"") is the sequence  13: s s—+d
of inter-burst separations 14: UPDATESET(L, s)
4: Outputs 15: end for
5: > P(d,) is the confidence value for every  16: end for
dr € L 17: for each d, € L do
6: > tp is the detected periodicity of the 18: Ny LdTJ
sequence 19:  P(d.) =2C(d)/(n+(n, +1))
7 20: end for
8 L+ 0 21: t, = argmax,_ P(d,)

9: for d € dr ADDTOSET(L, d}) end for

sequence of RSSI bursts from a cluster. Let ¢; denote the time at which the ith
burst in the cluster was recorded by the node, where 1 < ¢ < n. The inter-burst
separation is denoted by the sequence dp = (t1 — to,ta —t1,...,tn — tn—1).

The algorithm populates a set L with values denoting time periods at which
RSSI bursts are captured. This is performed by inspecting every inter-burst
separation value in the sequence dr, and checking to see whether they are already
included in the set L (Procedures 1, line 2 in AddToSet). Specifically, the check
takes the form of a modulus operation, such that an inter-burst separation of
kd, is not added to L, if d, has already been included. The modulo operation
allows a certain variance €5 to account for factors such as clock speed variations
of the node recording RSSI, as well as channel backoffs by the interfering source.
Setting €5 to 7 RSSI sampling intervals allows a jitter of 2e5 =~ 0.65 ms, which
we have found to empirically give good results.

After populating L, the algorithm maps every d, € L to a counter value C(d;).
C(d,) is a measure of how periodic the RSSI sequence is in d,. Intuitively, the
algorithm checks over a time window T, whether there are RSSI bursts at times
dr,2d;,3d;...kd,;, where k = LdT,J Since the entries in L are determined from
dr, this step is performed by scanning every value d¢ € dr in sequence. For every
di, the algorithm adds the inter-burst separations from d:*! to df" !, and checks
at each step, whether the partial sum is periodic in any d, € L (Procedures 1,
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Procedures 1. Updating entries in candidate set L

1: procedure ADDTOSET(L, d) 1: procedure UPDATESET(L, d¢)
2: if vd, € L,d; (modd,) € 2: if 3d, € L|d; (mod d,) ¢
(es,d- — €5) then (ea,dr —€a) then
3: L+ LUd, 3: Cd:)«+C(d)+1
4: C(de) -0 4: else
5: end if 5: L+ LUd;
6: end procedure 6: C(d) «+ 1
T end if
8: end procedure

line 2 in UpdateSet). If not, the sum is added to the list, and its count is set to 1
(Procedures 1, lines 5-6 in UpdateSet). In general, if n, denotes the number of
RSSI bursts that are periodic in d, over time T', then n, = LdTTj This results in
a maximum of énT(nT + 1) summations that are periodic in d,, or equivalently,
C(d:) < in-(nr + 1). Therefore, the fraction P(d.) = 2C(d;)/(n-(n. + 1))
represents a normalized confidence measure for periodicity in d.. Possible values
for P(d,) range from 0 and can also exceed 1, especially when multiple RSSI
bursts occur with the same periodicity, as in Figure 3(b). The periodicity check
in UpdateSet is allowed a greater threshold, i.e., ea > €5, in order to to account
for accumulated variance over summing up inter-burst separations. We find that
setting e to 30 RSSI sampling intervals, or approximately 1.4 ms, gives good
results. SpeckSense uses round(P(d,)) as a measure for the number of distinct
RSSI subsequences that are periodic in d..

The period ¢, of the RSSI sequence is determined to be argmax, P(d.), with
the additional constraint, round(P(d,)) > 1. The value of ¢,, is approximately 100
ms for WiFi beacons, which is the default beaconing interval on most WiFi access
points. Algorithm 1, however, is also generally applicable to detect RSSI bursts
of any period, in contrast to other approaches [9,13] that explicitly check for
predetermined values. This makes it a viable option to detect and classify other
forms of interference that include periodic transmissions in 802.15.4 networks [14]
as well as microwave bursts [12].

5 Evaluation

We implement SpeckSense on the Tmote Sky hardware featuring a CC2420 radio
transceiver. There are, however, no special features that prevent porting Speck-
Sense to other sensor node hardware platforms that allow fast RSSI sampling.
The code for SpeckSense is implemented using the Contiki operating system
and fits within 21 KB of program memory. The overall RAM usage is contained
within 6 KB, of which the clustering algorithm takes only about 4 KB of program
memory and a total of less than 800 bytes of RAM.

We evaluate SpeckSense’s ability to distinguish between multiple sources of
interfering traffic, and its ability to identify the presence of WiF1i access points in
the 2.4 GHz band. We conduct our experiments in two indoor environments: an
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Fig. 4. Experimental setup in the office corridor. We evaluate SpeckSense at locations
A, B and C in the presence of WiFi and Bluetooth interference.

office corridor and a 85-node indoor testbed that spans three floors. These envi-
ronments represent challenging conditions for SpeckSense because they induce
strong multipath fading. We present our results in the following order. First,
we showcase the multi-source interference detection results of SpeckSense from
the office corridor. Then, we show how SpeckSense improves the data gathering
performance of a multichannel protocol [2] on a 85-node testbed.

5.1 Detecting Concurrent Interferers

Indoor environments represent challenging conditions for SpeckSense due to non-
line of sight between nodes that causes multipath fading effects. The extent of
these effects may also vary over time, e.g., due to people moving, thereby increas-
ing the variance in received signal strength on a sensor node. SpeckSense relies
on RSSI observations to detect interference, so it is important to characterize
its performance in such an environment.

Experimental Setup. The setup in the office corridor is shown in Fig. 4. There
are two WiFi access points (operating on WiFi channel 1 and 11, respectively)
a WiFi repeater (operating on channel 1), as well as four Bluetooth devices.
Sensor nodes run SpeckSense at locations A, B and C. Nodes at location A
face interference from WiFi AP 1 and the WiFi repeater, as well as sporadic
Bluetooth interference. Nodes at location B operate on a different channel and
are exposed to Bluetooth interference as well as beacons from WiFi AP 2. Nodes
at location C face interference from Bluetooth and WiFi data transfers.

We perform over 100 experimental runs in sequence. In each run, nodes per-
form RSSI sampling for 1 second, followed by interference detection and clas-
sification. The RSSI sampler uses four power levels to quantize signal strength
information, as described in Sec. 3.1. Each detected interference cluster is classi-
fied as follows: (i) WiFi beacons that have a period of 100 ms, (4) periodic traffic
and (4i) non-periodic traffic. To quantify SpeckSense’s performance, we define
a detection rate for every interference class. The detection rate for an interfer-
ence class is measured as the percentage number of runs in which SpeckSense
identifies it.

Data traffic from IEEE 802.15.4 compliant sensor nodes also contributes to
co-channel interference in the 2.4 GHz spectrum. To validate that SpeckSense
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Fig. 5. Detection rates for the three locations in the office corridor. For window sizes
of three and larger, SpeckSense’s detection rate exceeds 90%.

can classify multiple interferers even in the presence of WSN activity, we perform
our experiments under two scenarios, namely with and without 802.15.4 traffic.
To generate the channel traffic, we add two sensor nodes to the setup — one node
sends packets every 125 ms, while the other receives them. In every setup, the
sender node is co-located with the node running SpeckSense, and the receiver
node is placed 6 m away from the sender. We refer to these nodes as the 802.15.4
sender and the 802.15.4 receiver.

Results. Figure 5 shows the detection rates for SpeckSense at different lo-
cations, both in the presence and absence of 802.15.4 traffic. Accounting for
multipath fading effects that inhibit a seamless classification, we aggregate the
detection rates over a window representing a sequence of runs. An interference
class is detected when it is observed at least once over the window. The plots
show the detection rate of SpeckSense for different window sizes. SpeckSense
achieves a detection rate of over 90% in all cases when using a window size of
3 or greater. Depending upon the specific interference context described in the
experimental setup, non-periodic and periodic traffic relate to different sources
of channel activity. For example, periodic traffic in Figures 5(a), 5(b), and 5(c)
represents periodic TCP bursts in WiFi data transfers. In contrast, periodic
traffic in Figures 5(d), 5(e), and 5(f) also comprises additional 802.15.4 traffic,
which has a period of 125 ms. Non-periodic traffic at location A relates to WiFi
data transfers, and at locations B and C, relates to a combination of WiFi and
Bluetooth data traffic.

Channel activity in the office corridor also includes beacons from additional
WiFi APs outside of our control, such as the university’s WiFi. Table 1 shows
the 50th and 90th percentile of WiFi access points that SpeckSense identifies
at different locations. In general, SpeckSense identifies fewer access points in



Detecting and Avoiding Multiple Sources of Interference 47

Table 1. SpeckSense can detect multiple WiFi access points deployed over different
locations on the office corridor. The values (50" and 90" percentile) indicate that
SpeckSense can detect WiFi activity even in the presence of ambient 802.15.4 traffic.

Number of detected WiFi
access points (percentile)
802.15.4 Location A Location B Location C
traffic 50" 90th 50t 90th 50th 90th
No 3 4 1.5 4 1 3
Yes 1 3 2 4 1 2

the presence of 802.15.4 traffic. We attribute this to an artifact of our experi-
mental setup — the periodic 802.15.4 acknowledgement frames from the 802.15.4
receiver have burst durations similar to WiFi beacons. SpeckSense therefore de-
tects a cluster that has multiple, yet distinct periods, which our approach (see
algorithm 1) does not handle at present. We plan to address this issue in future
work. Nonetheless, the results show that SpeckSense identifies multiple access
points, even in the presence of Bluetooth and 802.15.4 traffic.

5.2 Improving Data Collection Performance

Data collection applications for indoor WSN deployments suffer from degraded
performance on account of WiFi interference. To mitigate the effects of exter-
nal interference, multichannel protocols [2] coordinate node communication on
different radio channels. These approaches achieve resilience against interference
by either hopping through a fixed sequence of channels [15,16], or by switch-
ing channels when interfered [2]. However, they do not address the problem of
finding a relatively interference-free channel.

As a solution, we run SpeckSense independently on every node to perform
a deployment-time assessment of WiFi-free radio channels. We evaluate Speck-
Sense as a link-layer service for Chrysso [2], a multichannel protocol that adap-
tively switches radio channels on interfered nodes. Sensor nodes independently
run SpeckSense at network bootstrap and blacklist channels in which SpeckSense
detects WiFi beacons or interfering channel activity with an average inter-burst
separation less than 100 ms.

We compare SpeckSense’s results against three other strategies that differ
on channel selection policy, namely Chrysso default, Chrysso best channels, and
Chrysso threshold. Chrysso default employs a random channel selection scheme
over all 16 channels, whereas Chrysso best channels performs a random selection
over a restricted set of channels, namely 15, 20, 25 and 26. The channels are
chosen such that they empirically exhibit the best packet reception rates among
all other channels on the testbed [16], and do not overlap with commonly used
WiFi channels 1, 6 and 11. Chrysso threshold is closest in design and objective to
SpeckSense on interference avoidance, and ranks channels based on their quality.
The channel quality is computed as a ratio of the number of channel idle RSSI
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Table 2. Data collection performance (averaged over six runs) on a 85-node testbed,
highlighting the advantages derived from interference avoidance. SpeckSense with
Chrysso performs best compared to other alternatives on avoiding interfered channels.

Data collection performance

Protocol Data Duty  Energy per
yield cycle delivered packet
Chrysso default 733% 29% 4.22 mJ

Chrysso best channels 95.3 % 2.3 % 2.6 mJ
Chrysso + threshold  91.4 % 2.4 % 3.1mJ
Chrysso + SpeckSense 94.8 % 2.3 % 2.9 mJ

samples (RSSI < -90 dBm) over the total number of RSSI samples, as suggested
by Musiloiu-E. et al. [17]. In our implementation, Chrysso threshold uses the
best four channels in decreasing order of channel quality.

We experimentally evaluate the aforestated strategies on the Indriya WSN
testbed [18], using a network of 85 nodes including the sink. Every node generates
one packet per minute over a two-hour duration, and duty cycles its radio wakeup
over an interval of 125 ms, using the X-MAC protocol [19]. We perform six
experimental runs for each variant of Chrysso described above.

Table 2 contrasts data collection performance of the revised Chrysso vari-
ants against its original implementation, Chrysso default. In general, avoiding
interfered channels improves both the average data yield and the energy per
transmitted packet for Chrysso. Specifically, running SpeckSense with Chrysso
increases the average data yield (packets received by the sink) by approximately
30% over Chrysso default. This improvement is mainly attributed to avoidance
of WiFi-interfered channels by SpeckSense. To validate our claim, we find that
SpeckSense blacklists 802.15.4 radio channels that overlap with commonly used
WiF1i channels 1, 6 and 11, in more than 80% of the nodes. For the same reason,
Chrysso SpeckSense performs comparably with Chrysso best channels that ex-
plicitly avoids the aforesaid WiFi channels. The 95% confidence intervals for both
Chrysso SpeckSense and Chrysso best channels overlap on all three performance
metrics. The overlap indicates that neither variant outperforms the other, in
accordance with rules of analysis in [20]. However, SpeckSense presents a more
general solution that applies to indoor environments wherein co-located WiFi
networks may operate on channels other than 1, 6 and 11. Lastly, SpeckSense
outperforms rssi threshold on average data yield and duty cycle. This suggests
that for the same energy cost in RSSI sampling (334.6 mJ on average per node),
SpeckSense is more effective at avoiding WiFi-interfered channels than a simple
approach that computes channel utilization using a threshold. In conclusion, the
results show that an existing multichannel protocol such as Chrysso benefits
from the interference classification output provided by SpeckSense.
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6 Related Work

As the number of wireless devices operating in the license-free frequency bands
is steadily increasing, the problem of interference is receiving more attention. A
few other approaches are similar to ours in that they sample the RSSI. Zacharias
et al. [8] classify interference based on a fixed set of simple conditions. In contrast
to SpeckSense, their classification includes processing of computationally expen-
sive tasks such as FFTs and execution on a PC rather than on motes. Also Boers
et al. [21] sample the spectrum for interferer classification but they only target
interference occurring at regular intervals. Likewise, Zhou et al. [9, 13] propose
an algorithm that is restricted to detecting WiFi beacons from RSSI traces. An-
other approach based on spectrum sampling is by Bloessl et al. [22]. In contrast
to SpeckSense, their approach is limited to the detection of single interference
sources. Ansari et al. [23] propose an approach to detect WiFi networks by using
a synchronized pair of nodes to scan adjacent channels. In contrast, SpeckSense
bases its observations of multiple interferers on a single node. Rayanchu et al. [24]
detect WiFi access points and other non-WiFi devices using commodity WiFi
hardware. However, their approach relies on device-specific WiFi features and
involves computationally intensive processing, making it infeasible for resource-
constrained sensor nodes. Hermans et al. [6] present SONIC interference clas-
sification without spectrum sampling relying only on the information provided
by corrupted packets. As their approach does not rely on spectrum sampling it
is less energy-consuming than SpeckSense but it does not provide higher level
information such as the number of WiFi access points. There are efforts for
channel selection that use the average energy in a channel [25,17,26], or packet
reception counts [27] as selection criteria. In contrast to these approaches, we
take the source of interference into account.

7 Conclusion

In this paper we have presented SpeckSense, a detection and classification scheme
for concurrent multi-source interference affecting wireless sensor networks. Ex-
periments in a real setting have shown that SpeckSense detects multiple inter-
ferers in over 90% of the cases. We have also evaluated SpeckSense as a low-layer
service to recommend interference-free channels for WSN data collection. Exper-
iments combining the results of SpeckSense with a multichannel protocol have
shown a significant improvement in data yield at lower duty cycle.
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Abstract. In order to provide useful energy saving recommendations,
energy management systems need a deep insight in the context of energy
consumption. Getting those insights is rather difficult. Either exhaus-
tive user questionnaires or the installation of hundreds of sensors are
required in order to acquire this data. Measuring the energy consump-
tion of a household is however required in order to find and realize saving
potentials. Thus, we show how to gain insights in the context of energy
consumption directly from the energy consumption profile. Our proposed
methods are capable of determining the user’s current activity with an
accuracy up to 98% as well as the user’s current place in a house with
an accuracy up to 97%. Furthermore, our solution is capable of detect-
ing anomalies in the energy consumption behavior. All this is mainly
achieved with the energy consumption profile.

1 Introduction

The realization of energy efficiency in buildings has become an important re-
search topic in industrial as well as research community. The main motivation
for this increasing importance is the conservation of energy in a world where
energy prices are always fluctuating and very sensitive to political as well as
natural crises. This is also driven by the wide spread of wireless sensor networks
which made it possible to collect fine-grained data about the building context
as well as the context of its inhabitants. In this paper, we develop three novel
experiments which exploit the huge information provided by the smart home
to achieve the main goal of our research efforts which is to conserve energy in
smart homes while maintaining user comfort. The main focus of our work in
this paper is the analysis of our smart home dataset which we call from now
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on SMARTENERGY.KOM dataset'. SMARTENERGY.KOM dataset is a large
dataset which contains about 42 million data points of sensor readings and user
feedback which we have collected from two smart home environments for the
primary purpose of detecting human activities based on wireless sensor net-
works [2], thus to save unnecessary consumed energy. In the first deployment, a
wireless sensor network was deployed for about 82 days. More than 22 million
activity related sensor events were generated by corresponding sensors. The du-
ration of deployment 2 was about two months, during which about 20 million
sensor readings were recorded. We have used two types of wireless sensor nodes
in both deployments. On one hand we deployed Plugwise? sensors for sensing the
appliance-level power consumption of the household. Each device in the house
was connected to a Plugwise sensor which measures the load of the device. On
the other hand we deployed Pikkerton® sensors for sensing the temperature,
brightness as well as the motion in the environment. In both deployments, nine
daily user activities were monitored:

Deployment 1: Sleeping, Watching TV, Not at Home, Reading, Eating, Cook-
ing, Working at PC, Making Coffee and Cleaning Dishes.

Deployment 2: Sleeping, Watching TV, Not at Home, Reading, Eating, Making
Tea, Listening Radio, Slicing Bread and Ironing.

These activities have been chosen based on the available electrical appliances which
can be monitored at home. Some of these activities like “Watching TV” can be di-
rectly related to the power consumption. Other activities such as “Sleeping” and
“Not at Home” can be indirectly inferred from the power consumption. This list
of activities does not necessarily contain all the activities performed by the user at
home. Therefore, we have provided the user with the option “Ignore” which implies
as a feedback that the user’s current activity does not belong to the list of activ-
ities provided by us. This option helps preserving the privacy of the user as well
by giving her /him the choice whether to report her /his current activity or not. All
sensor readings which are related to the option “Ignore” have been excluded from
the dataset before conducting our experiments. Based on these two deployments,
we have built an activity detection framework which uses the feedback provided by
the user to learn his current activity and relate it to the collected sensor readings.
The remainder of this paper is structured as follows. Section 2 surveys related re-
search projects whose main focus is the analysis of datasets collected by wireless
sensor networks in the context of smart home. In Section 3, we present our novel
concept for user localization in indoor environments based on real-time appliance-
level power consumption. In Section 4, we analyze the temporal relations between
the user activities and examine whether the discovered relations could increase the
accuracy of our activity detection framework. In Section 5, we analyze the user’s
daily power consumption behavior. We conclude the paper in Section 6.

! The dataset is available for download under: http://www.kom.tu-darmstadt.de/
research-results/software-downloads/software/smartenergykom

2 http://www.plugwise.com/

3 http://www.pikkerton.com/
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2 Related Work

Inrecent years, analyzing datasets collected from wireless sensor networks in smart
homes has become of great interest to computer science researchers. This is mainly
driven by the great potential offered by these datasets for developing IT services
which can improve the life quality as well as the energy efficiency of the smart
homes. Data mining techniques have been utilized in order to extract all the possi-
ble useful hidden patterns contained in such datasets. In the work of Chen et al. [4],
they analyzed a dataset which contains more than 100,000 sensor events collected
from two apartments. The primary purpose of their work was to recognize human
activities performed in these two apartments and understand the related energy
usage. They applied clustering techniques for identifying the normal power con-
sumption patterns, thus to detect abnormal energy usage. Using classification tech-
niques, they trained a model for predicting the energy usage of an inhabitant based
on her/his currently performed activities. Another example is given by Hoque et al.
[8], where 26 days of activity related sensor events collected from a single resident
home is analyzed. Based on the hypothesis that each activity will trigger a set of
specific sensors, they applied pattern mining to find all simultaneously fired sen-
sors. In the next step, different to [4], clustering is used for discovering events based
on previously extracted patterns. Besides, they utilized clustering for labeling the
instances. Finally, they build a classification model for recognizing the activities.
Fogarty et al. [6] analyzed 3.4 million sensor readings from a home shared by two
adults. Their goal was to detect water usage related activities by configuring mi-
crophone based sensors that listen for the water flow into and out of a home. They
applied the classification algorithm support vector machine to train a model for
recognizing different types of water usage. Fluctuations of sound waves returned
by the sensors are considered as features for training the classification model. Ac-
tivated sensors together with their temporal characteristics are then combined to
form patterns for identifying the activities. Different from the aforementioned re-
search projects, our analysis is conducted on a much larger dataset. Moreover, the
three experiments conducted in our work have not been covered by any of these
research works although similar data mining techniques are utilized.

3 Sensing Power Consumption for User Localization

User localization has always been one of the central challenges in the design
of smart home environments. A wide variety of sensors such as Passive Infrared
sensors can be used in order to achieve this goal. Currently, the usage of electric-
ity consumption data for occupancy detection started to gain attention among
the research community as we see in [11] where the authors used the data col-
lected from smart meters for the purpose of occupancy detection. This leads us
to the idea of utilizing new kind of sensors for user localization in smart home,
namely the appliance-level power sensors which sense the power consumption of
individual household appliances. Therefore, in this paper we examine the usage
of these sensors for the purpose of user localization in smart home where we aim
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at localizing users with a better resolution than shown in [11]. Usually, users per-
form specific activities in specific places, such as cooking in the kitchen, sleeping
in the sleeping room and so on. Therefore, each activity is associated with cer-
tain appliances which consume energy during this activity. In other words, by
knowing the devices which are consuming energy, we can infer the location of
the user in the smart home. In order to verify this theory, we use supervised
learning techniques where the input of the classification model will be the user’s
real-time appliance-level power consumption and the output is the location of
the user. In the following sections, we explain the construction of the training set
for the supervised learning model and we evaluate the accuracy of this model.

3.1 Construction of the Training Set

The first step in supervised learning is to construct a training set for building
the classification model. As mentioned before, each user’s location in the smart
home is accompanied with a set of sensor readings representing the real-time
appliance-level power consumption. These sensor readings represent the input
for the supervised learning model along with the labels which represent the user’s
location. Sensor readings were recorded every ten seconds during the deployment.
However, activities normally last for several minutes or even hours e.g. sleeping.
In other words, if we directly construct a training set from these sensor readings,
the size of the training set will be extremely large leading to an inefficient model
construction. Therefore, we need to reduce the size of the training set without
affecting the accuracy of the trained classification model. To this end, we di-
vide the whole time series of sensor readings into timeslots of two minutes. We
chose the period of two minutes as it helps achieving a good accuracy while min-
imizing the overlapping between activities in one timeslot. Then, for each sensor,
we extracted its maximum value in each timeslot as one feature for constructing
the feature vector. This means, every two minutes will represent a training in-
stance in which the features are the maximum values of sensor readings during
this timeslot. In order to provide the labels of the training instances, we relied on
the user feedback which informs us about the user current activity. By knowing
the current user activity, we can infer the current location of the user, because
each activity is performed in one and only one location. The labeling process
mainly relies on the time interval between one activity and the next activity,
namely the duration of each activity. Therefore, by examining in which time
interval the timestamp of an instance is falling into, we can assign the location
of the corresponding activity in that time interval to the instance. The final gen-
erated form of the instances is shown in Eq. 1, where S, maz(slot;) means the
maximum sensor value of sensor n in ith timeslot, and m is the total number
of timeslots. Therefore, the training set is composed by a set of such instances
<hL,ls,.. I, >.

It =< 51 maa (SZOti) .52 max (SZOti) yoees O mas (SlOti) )
Class(slot;) > 1€ [1,m]

(1)
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3.2 Building and Evaluation of the Classification Model

After obtaining the training instances, we built the prediction model for both
deployments by applying the random forest classifier provided by Weka [7]. We
have chosen the random forest algorithm as it proved to be the most suitable
algorithm for our dataset as well as other datasets similar to it as shown in
[5][16]. In order to find a good balance between accuracy and size of model e.g.
to prevent overfitting the model, we first build the model with training instances
of one week and then accumulate the training set by one week data points each
testing. This is necessary as in real-life deployments, the learning phase should
be as short as possible. Both deployments have the following four locations to
be predicted, by “Outside”, we refer to the instances where the user was not at
home:

Deployment 1: Kitchen, Living room, Work area, Outside.
Deployment 2: Kitchen, Living room, Sleeping room, Outside.

To evaluate the built model, we applyl0-folds cross validation [12] which parti-
tions the training set into 10 subsets and always uses one subset to test the model
built upon the remaining 9 subsets. This process is repeated 10 times and pro-
duces a mean accuracy over all rounds. Figure 1(a) demonstrates the accuracy of
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Fig. 1. Accuracy of location recognition model built for deployment 2

the model built for deployment 2. As we can see in the figure, the random forest
algorithm reaches its highest accuracy, namely 85.5% with a training set of 8
weeks. However, we can conclude from the figure that a training set of 2 weeks is
already sufficient for acquiring a high accuracy. This conclusion is based on the
fact that the accuracy only rises about 2.5% when the number of weeks included
in the training set increases from 2 weeks to 8 weeks. This conclusion allows us
to shorten the duration of the data collection process in the deployments to come
which lessens the burden on the user in providing feedback and therefore leads
to a more acceptance of the system. In order to obtain a better understanding
of the classification accuracy, we list the precision, recall, and F-measure values
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Table 1. Accuracy by classes for deployment 2 by using two weeks dataset

Classes
(K)itchen 87.40%
(S)leeping room 76.70%
(L)iving room  97.70%

Precision Recall F-Measure

49.30% 64.10%
99.80% 86.80%
94.10% 95.90%

57

(O)utside 0.00%  0.00% 0.00%

Table 2. Confusion matrix for deployment 2 by using two weeks dataset

& 5 @ (0

(K) 49.33% 44.91% 5.76% 0.00%
(S) 0.10% 99.83% 0.07% 0.00%
(L) 2.11% 3.82% 94.08% 0.00%
(0) 0.34% 99.49% 0.17% 0.00%

for each location in Table 1. Moreover, we show the associated confusion ma-
trix in Table 2. The result represents the model built for deployment 2 with a
training set of 2 weeks. Although the overall accuracy reached by this model is
83% (cf. Figure 1(a)), the recall values of the classes “Kitchen” and “Outside”
are very low with 49.3% and 0% respectively as shown in Table 1. In order to
understand the reasons for this phenomenon, we have to look on the confusion
matrix in Table 2. From the confusion matrix, we can see that 44.91% of the
instances of the class “Kitchen” have been falsely classified as “Sleeping room”
instances. Besides, almost all the instances of the class “Outside” have also been
falsely classified as “Sleeping room” instances. This can be explained based on
the following facts. First of all, the confusion between the classes “Outside” and
“Sleeping room” can be returned to the fact that when the user is outside or
sleeping, all Plugwise sensors were almost keeping in silence as no appliances are
required to perform these activities. Although, there are some values of Plug-
wise sensors (e.g. lamp sensor) related to the “Sleeping room” class stored in the
dataset, the lamp was in most cases not turned on while sleeping. Furthermore,
the instance of the class “Outside” were classified as “Sleeping room” and not the
other way around because “Sleeping room” is a dominant class. This is due to the
fact that the duration of sleeping is much longer than that of being outside in this
deployment which leads to more training instances for the class “Sleeping room”
than for the class “Outside”. The activity of “Eating” was the major reason of
falsely classifying instances of “Kitchen” into “Sleeping room”. This activity is
supposed to be identified through the Plugwise sensor connected to the radio in
the kitchen. However, the radio was not always turned on or only turned on for
a part of time during the activity of “Eating”. To solve this problem, we need
a strong discriminator which can help distinguishing the classes “Outside” and
“Sleeping room”. We thought about a feature which can be used in the learning
process in order to achieve this task. One feature which can fully perform this
role is the time of the day. By using the time of the day as a feature for building
the machine learning model, we add a strong discriminator especially between
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Table 3. Accuracy by classes for deployment 2 by using two weeks dataset (with time)

Classes Precision Recall F-Measure
(K)itchen 81.80% 73.30% 73.30%
(S)leeping room 98.20%  99%  98.60%
(L)iving room  96.10%  96.80% 96.50%
(O)utside 83.50% 86.30% 84.90%

Table 4. Confusion matrix for deployment 2 by using two weeks dataset (with time)

® 6 ®© (0
(K) 73.32% 9.59% 4.99% 12.09%
(S) 0.99% 98.97% 0.03%  0.0%
(L) 0.65% 0.0% 96.84% 2.50%
(0) 7.77% 0.33% 5.57% 86.31%

the classes “Outside” and “Sleeping room”. We use the “hh:mm:ss” time format
as Weka can deal with this time format automatically. After using the time as
a feature in a