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Preface

This volume contains the proceedings of EWSN 2015, the 12th European Confer-
ence on Wireless Sensor Networks. The conference took place in Porto, Portugal,
during February 9–11, 2015.

This edition of EWSN featured an updated scope, which resulted in a diverse
program covering a wide range of topics grouped into five sessions: Services and
Applications, Mobility and Delay-Tolerance, Routing and Data Dissemination,
and two sessions on Human-centric Sensing. We also introduced a short-paper
presentation session for validated early ideas that can be described as a concise
contribution. These contributions are included in the proceedings with a shorter
(8 pages) paper format.

EWSN 2015 received 85 paper submissions. In the full-paper category, it
received a total of 65 papers, of which 14 were selected for publication and
presentation as a full paper, yielding an acceptance rate of 21.5%. In the short
paper category, nine papers were selected for publication and presentation.

EWSN 2015 adopted a double-blind review process. A total of 318 reviews
were written. All papers were evaluated by at least three independent reviewers,
and most received four reviews. Following the written reviews, the papers were
selected after a very active weeklong online discussion.

The conference program also included two keynote talks, an industry session,
and a poster and research demonstration session. The latter attracted numerous
submissions for which separate proceedings are available.

We would like to thank everyone who contributed to EWSN 2015. In particu-
lar, we would like to thank the 36 members of the Technical Program Committee
for their reviews and active participation in the discussions. We would like to
thank the entire Organizing Committee, and particularly the general chair, Ed-
uardo Tovar, for all the support provided. Finally, we would also like to thank the
local organization team, Filipe Pacheco, Inês Almeida, Sandra Almeida, André
Ribeiro, and Cristiana Barros, for their help.

February 2015 Tarek Abdelzaher
Nuno Pereira
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PyFUNS: A Python Framework

for Ubiquitous Networked Sensors

Stefano Bocchino1, Szymon Fedor2,�, and Matteo Petracca3

1 Scuola Superiore Sant’Anna, Pisa, Italy
s.bocchino@sssup.it

2 United Technologies Research Centre Ireland, Ltd. Cork, Republic Of Ireland
3 National Inter-University Consortium for Telecommunications, Pisa, Italy

Abstract. In recent years Wireless Sensor Networks (WSNs) have been
deployed in wide range of applications from the health and environment
monitoring to building and industrial control. However, the pace of preva-
lence of WSN is slower than anticipated by the research community due
to several reasons including required embedded systems expertise for de-
veloping and deploying WSNs; use of proprietary protocols; and limits in
scalability and reliability. In this paper we propose PyFUNS (Python-
based Framework for Ubiquitous Networked Sensors) to address these
challenges. PyFUNS handles low level and networking functionalities,
using the services provided by Contiki, and leaves to the user only the
task of application development in the form of Python scripts. This ap-
proach reduces required expertise in embedded systems to develop WSN
based applications. PyFUNS also uses 6LoWPAN and CoAP standard
protocols to enable interoperability and ease of integration with other
systems, pursuing the Internet of Things vision. Through a real imple-
mentation of PyFUNS in two constrained platforms we proved its fea-
sibility in mote devices, as well as its performance in terms of control
delay, energy consumption and network traffic in several network topolo-
gies. As it is possible with PyFUNS to easily compare performance of
different deployments of distributed application, PyFUNS can be used
to identify optimal design of distributed application.

1 Introduction

Research in Wireless Sensor Networks (WSNs) has started over a decade ago with
great enthusiasm and community expectations to revolutionize our daily life. In
those years WSNs have been described as ”distributed systems of numerous
smart sensors and actuators connecting computational capabilities to the phys-
ical world which have the potential to revolutionize a wide array of application
areas by providing an unprecedented density and fidelity of instrumentation”.
Since the first testbeds, numerous deployments of WSNs have been described
for a wide range of applications (e.g., climatic monitoring, structural monitoring

� Szymon Fedor is currently affiliated with MIT Media Lab.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 1–18, 2015.
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2 S. Bocchino, S. Fedor, and M. Petracca

of building), with the aim of introducing enhancements, and underlining open
issues in the WSNs research field.

After numerous deployments in research projects, WSNs are nowadays reach-
ing the industrial and consumer markets for large scale deployments. As matter
of example it is possible to cite the GINSENG and SmartSantander projects
where the potential of WSNs have been proved through real large scale de-
ployments. Distributed smart sensors able to interact with the physical world
exchanging data through wireless communications are nowadays considered the
key components in the envisioned Smart City scenario.

However, to reach a wide adoption of the WSNs in several domains still several
limitations persist. In this respect some of the main issues are: interoperability,
ease of reprogramming and reliability. New generation of standards for WSN en-
ables interoperability with Internet world (using IP and HTTP-type of protocols)
and they need to be adopted in future smart sensors in order to reduce required
effort for integration of WSN with other systems. The ease of reprogramming
is a main requirement to be taken into account in large scale systems where
the application logic must be changed remotely and without physical access to
nodes. Network reliability is another key point to consider, in fact, this issue
affects the real capability of the WSN to sense and interact with the physical
world. Single point of failure must be avoided in order to prevent the possibility
of losing data from several devices deployed in the field.

In respect of the above mentioned issues some progress has been made in WSN
interoperability. In particular, it has been improved by adopting low level stan-
dard protocols (e.g., IEEE802.15.4), and by adapting IPv6 to the WSN scenario,
thus really enabling the so called Internet of Things (IoT) vision. The IPv6 for
WSN (i.e., 6LoWPAN) is only the first step towards a global interoperability,
further improvements have been reached by enabling HTTP-based transactions
in WSNs. CoAP is nowadays a standard protocol solution to enable the REST-
ful architecture in IoT-based WSNs. Progress has also been made in facilitating
nodes reprogramming and programming although the proposed approaches are
either not so easy, limited to a specific scope, and not really suitable for con-
strained devices such as those used in WSNs. In this direction a very promising
and challenging approach is that following a virtual machine based design where
Python scripts can be installed through RESTful transactions.

To address all the above mentioned issues we propose PyFUNS, a Python
framework for ubiquitous sensor networks. By leveraging on IoT-based protocols
(i.e., 6LoWPAN and CoAP) PyFUNS guarantees a higher interoperability and
reliability with respect to old-style WSNs. Moreover, PyFUNS enables ease of
reprogramming by introducing a virtual machine design based on Pymite, a
reduced Python virtual machine for embedded systems.

The rest of the paper is structured as follows. Related works are described
in Section 2, followed by the design of PyFUNS framework in Section 3. In
Section 4 PyFUNS performance is presented in various network topologies and
distributed application configurations. Section 5 concludes the paper.
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2 Related Work

PyFUNS provides a number of features and several relevant solutions which
have been described in WSN literature. We have divided them into (i) techniques
for remote reprogramming, and (ii) frameworks enabling easier programming.

2.1 Techniques for Remote Reprogramming of WSNs

System Reprogramming. Such a method consists of replacing the node full
firmware. It is very inefficient because even a minor application change requires
reloading node binary image. Therefore they require more power and time to
reprogram a node than other approaches in which only a reduced set of mod-
ules or functions is modified. Moreover, during the updating process, the new
firmware must be stored in an external flash memory before being copied into
the internal flash memory when the system restarts. Therefore, the nodes must
have available external flash to store full software image. System level repro-
gramming technique are used in some existing WSN monolithic operating sys-
tems (e.g., TinyOS [HC1]) in which the whole application consists of a single
image file.

Modular Reprogramming. According to this approach the node applica-
tion is composed of independent, re-loadable modules. Contiki [DG1] is an ex-
ample of a modular system which consists of two main components: system
core and loaded program. The Contiki Core, with the boot loader exception,
is a non-reprogrammable component. Therefore, any change in the code of the
kernel, program loader, symbol table and communication interfaces is not sup-
ported. However, enhanced functionalities (e.g., file system support, shell sup-
port, power management) are loaded modules and are reprogrammable. The
modular reprogramming is suitable for over-the-air reprogramming. Unlike the
monolithic method, any system change is local, only the updated modules need
to be transmitted. However, a large-memory footprint and slow system execution
are disadvantages of any modular system. There are also other solutions imple-
menting modular reprogramming (e.g., Dynamic TinyOS [MA1], LiteOS [CA1],
RETOS [HS1]), similarly to Contiki their use requires embedded system experts.

Virtual Machine. In Virtual Machine (VM) based WSN, every node runs
an instance of the virtual machine. The VM is used for the execution of both
on-network applications and byte code instructions. In the literature there are
several VM based approaches proposed for WSN [LC1][SC1]. Mate [LC1] is a
VM built on TinyOS which uses the concept of capsules - a small set of high level
primitives of up to 23 bytes. Mate-based applications are composed of several
capsules which can propagate throughout the network to deliver an objective.
Another VM for WSN is Squawk [SC1], a scale-down version of Java VM that
runs without an OS on memory constrained devices. Squawk allows deployment
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and execution of multiple, isolated applications on a node. The use of a VM-based
approach requires sensor nodes with improved resources with respect to well-
known target platforms. This is because the virtual machine could be demanding
in terms of CPU and memory. Considering the general trend in providing sensor
nodes with higher performance at lower costs, the VM approach can be nowadays
considered an effective and powerful solution in WSNs.

Differential. The use of a differential reprogramming is mainly based on the
use of code patches: a patch is generated using the difference between the old
and the updated program. Rsync [TM1] is a differential update scheme, and
its functionalities has been demonstrated in WSNs [JC1]. As working principle,
Rsync divides the program into different blocks and calculates their hash values.
The evaluated hash values are then matched to determine the block insertion,
deletion, or modification. There are many other examples of differential repro-
gramming systems [KP1][RL1], and in general it has been shown that the size of
the deltas produced by the differential-based approaches is very small compared
to the full binary image. However, most of them poorly perform when there is a
change of both program and variable layout. This is because such update requires
full flash memory writing, and large amount of additional external flash memory.
Differential solutions can be easily used only by embedded system experts.

2.2 Frameworks Enabling Easier Programming of WSN

Many solutions for enabling an easier WSN programming have been described
in the literature [MP1]. They were designed with different objectives, including
energy-efficiency, scalability, failure-resilience or collaborative data processing.
In this respect it must be underlined that one of PyFUNS main goals is to
reduce required expertise in embedded systems for programming WSNs, as this
has been previously identified by domain experts [MD1] as one of the major
barriers for deploying WSNs. In that study the authors implemented the BASIC
programming language for sensor networks and conducted a user study with
novice programmers. Half of users with no previous programming experience
of any kind were able to program simple network tasks using developed BASIC
programs while only 0-17% could do so in TinyScript. Therefore the authors con-
cluded that current WSN languages require knowledge of either very low-level
systems development (including the details of sensor hardware and embedded
system design), or high-level programming concepts and abstractions that are
not obvious to most application domain experts. And because application do-
main experts have little programming experience, most of which is with simple
single-threaded imperative programmingmodels, the authors have ported a small
BASIC interpreter to a WSN platform. Authors motivations are coherent with
ours although our solution provides more features (e.g., interoperability due to
IP and CoAP protocols) and is based on Python interpreter.
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Recently several publications [AP1][C1] described solutions to programWSNs
in Python language, due to its popularity and ease-of-use. In fact, according
to [P1], Python requires no more than half as much time as writing in C, and it
appears to be more intuitive with respect to C for new students [F1]. Regarding
previously cited Python-based solutions, they must be considered at the early
stage of development and incomplete to be used nowadays in real applications,
though the most promising in this respect is T-Res. In fact, T-Res enables pro-
gramming of the node to execute simple data-processing tasks performing the
following actions: (i) monitoring one or more resources, (ii) executing some pro-
cessing on their values, and (iii) sending the resulting output to other resources.
The main lack of T-Res is in the possibility of monitor resources only: a method
to retrieve the current resource state by using Python scripts is not supported.

3 PyFUNS Design

Having identified the limitations of literature of systems aiming at enabling
remote reprogramming and an easier programming in WSNs, we have designed
PyFUNS, a framework that can be used in a easy way to reprogramWSNs. Our
framework leaves to the user only the application development task in the form
of Python scripts, while abstracting low level and networking functionalities.

3.1 Dynamic Services over WSN

Traditional WSNs enable the development and deployment of pervasive networks
aiming at providing many simple services, such as the environmental monitoring
or the basic actuation control through basic operations. With the introduction of
the IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) protocol
and Constrained Application Protocol (CoAP), following the IoT vision, WSNs
have acquired enough resources to accomplish more complex services, such as
the capability of exposing equipped sensors in Internet to perform automatic
control operations. The next natural step in the WSNs domain is to build a
smart management of dynamic services, thus enabling the possibility of remotely
reprogramming the services provided by an IoT-based WSN.

In general terms a service provided by a WSN is a set of operations to be
performed to accomplish a specific task. For instance, a service can be the auto-
matic light control in a room and the operations to be performed are: (i) check
the light value periodically, (ii) check the presence of people in the room, (iii)
switch on the lamp while setting the power according to the desired light value,
and (iv) switch off the lamp when people leave the room.

As previously stated, PyFUNS enables the management of dynamic services
in WSNs. In the rest of paper we follow the aforementioned definition of service
(i.e., a set of operations) calling the operations to be performed applications.
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3.2 Application Components

An application deployed on a sensor node has several components:

– Name: string of characters that uniquely identifies the application;

– Period: it is related to the periodicity of the application execution. Values
bigger than zero mean periodicity, equal to zero is for one time executions,
while less than zero mean application blocked waiting for an answer. Appli-
cation flow changes based on the Period value;

– Timer: used for periodic applications, it fires when executing the application;

– State: indicates the current state of the application in its internal Finite
State Machine (FSM);

– Script: it contains the Python byte code performing the specific task which
the application has to provide;

– Variables: list of variables required to store data to be exchanged among
different scripts of the same application or among different applications;

– Requests: list of active requests. A request is used to retrieve the current
representation of a resource through network messages. Each request is as-
sociated to both a callback function, called when a reply is received, and a
variable, which is used to store the received data.

To the end of building an abstract framework that allows to implement
applications able to perform data communication through the network (e.g.,
request/reply paradigm), we decomposed the application in three sub-scripts:
PreScript (optional), MainScript (mandatory) and PostScript (optional). Pre-
Script allows to send data request messages to a specific node in the network,
and the answer will be processed in the MainScript. Moreover, it allows to set
up the application environment (e.g., to create the variables required), and to
retrieve the resource representation. PostScript is executed when the applica-
tion has been stopped, and is mainly used to clean the application environment
(e.g., to delete active requests). PreScript runs once at the application start,
whereas PostScript runs once at the application stop. MainScript is the only
mandatory byte code to be installed on the nodes, and represents the applica-
tion core. It can be run once or several times according to the Period value.
The MainScript execution can be triggered by a periodic event, the expiration
of a timer, or by a sporadic event, the reception of a message. Fig. 1.a illustrates
the script flow for an application using all the three described scripts.

3.3 Application Life-Cycle

The FSM model has been used to implement the application life-cycle, that can
be dynamically installed, started, stopped, updated and uninstalled. To enable
the aforementioned operations, five different states have been defined: (i) NEW,
all the memory required to store the application structure has been allocated
successfully; (ii) INSTALLED, scripts have been installed on the node; (iii) RE-
SOLVED, application is ready to execute; (iv) RUNNING, application is active
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Fig. 1. (a) Scripts flow chart. (b) Application finite state machine.

and performs its operations; and (v) UNINSTALLED, the application struc-
ture has been deleted and the memory has been released. Fig. 1.b depicts the
application life-cycle and the possible transitions among states.

The application life starts in the NEW state, in which the necessary memory
is allocated to store the components described in Section 3.2. All the compo-
nents are set to a default value, except for the name which is filled when the
application is created. In the NEW state it is possible to install PreScript, Main-
Script and PostScript on the node. As previously statedMainScript is mandatory
for each application and installing it implies a change of state to INSTALLED.
In the NEW state it has been enabled the possibility to uninstall the applica-
tion through a defined uninstall event. In the INSTALLED state all necessary
components for the application are set, even though they are still waiting for
a control check aiming at verifying the compatibility among scripts (e.g., check
scripts version). The check is triggered by a defined check event, and in case all
the tests are passed, the state changes to RESOLVED. Also in the INSTALLED
state it is possible to trigger an uninstall event to delete the application. Once
the application reaches the RESOLVED state it has been successfully checked
and it is ready to be executed. Three different events can be triggered from this
state: (i) start, to run the application, PreScript is executed in case it is present,
otherwise MainScript is interpreted, as result the state moves to RUNNING; (ii)
update, to perform any changes concerning the scripts (e.g., install, update or
delete scripts on the node), in this case the state moves to INSTALLED and
the check compatibility on the new installed scripts must be redone; and (iii)
uninstall, to remove the whole application and release the memory used by the
application, next triggered state is UNINSTALLED. In RUNNING state the ap-
plication can be executed one or many times according to the Period, and can be
stopped through a dedicated stop event. PostScript, if present, is executed during
the transition from RUNNING to RESOLVED. Last state is UNINSTALLED
where the application is deleted from the node. Table 1 summarizes the state
transitions of the above described FSM.
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Table 1. Application state transition

CurrentState Input fNextState Output

NEW install INSTALLED At least MainScript has been installed
uninstall UNINSTALLED Application deleted

INSTALLED check RESOLVED Application ready to execute
uninstall UNINSTALLED Application deleted

RESOLVED start RUNNING PreScript executed, if installed
update INSTALLED Changes in installed scripts
uninstall UNINSTALLED Application deleted

RUNNING run RUNNING None
stop RESOLVED PostScript executed, if installed

3.4 Application Flow

As mentioned in Section 3.2, the application flow, in particular when Main-
Script is executed, depends on the value of the application period. Two different
period categories have been defined: period equal to zero when MainScript runs
one time, and period not equal to zero when MainScript can run zero, one or
many times. Fig. 2 shows different flow chart depending on the value of period,
Fig. 2.a is for the first category, while Fig. 2.b and Fig. 2.c for the second.

PostScript

PreScript

MainScript
run

start

stop

(a)

run

PreScript

start

WAIT

MainScript PostScriptstop

stop

(b)

PreScript
start

WAIT

MainScript

PostScript
stop

run

stop

(c)

Fig. 2. Script flow chart for period equal to zero (a), period not equal to zero (b) and
period less than zero, particular implementation (c)

In case of period equal to zero (Fig. 2.a), the application goes from Pre-
Script to PostScript directly, running MainScript one time. It is not possible
to stop the application once it is started. This setting of period is useful for
applications changing the resource representation only one time.

With period not equal to zero (Fig. 2.b), after PreScript, the application waits
for an event to continue its execution. We have defined two types of events that
trigger MainScript: periodic and sporadic. Periodic applications have a period
greater than zero and they wait the timer expiration before to interpret Main-
Script. This setting is useful to implement applications changing the resource
representation periodically. For sporadic applications the period is less than zero
and MainScript is called when a sporadic event happens (e.g., message received).
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This type of setting is useful to implement applications that perform activities
when observed resources change. A particular application flow based on a period
less than zero has been implemented, Fig. 2.c, to provide applications able to
run MainScript once after resources representation are retrieved.

3.5 Application RESTful Interface

The goal of PyFUNS is to enable easy management (in terms of parameter
reconfiguration and code deployment) of dynamic application installed in ubiq-
uitous WSNs. To reach a seamless integration of the framework in motes it is
necessary to abstract the application and its attributes. This can be done by us-
ing the REST paradigm in the context of IoT-based WSNs, or in other words by
using the CoAP protocol, thus allowing sensor nodes to abstract resources and
run embedded web services. Abstracting application and its attributes as CoAP
resources enables the use of well known HTTP methods, GET, PUT, POST and
DELETE, to administer code installed in a WSN. Moreover management of the
application, (e.g., start or stop) can be performed by a user through a web site,
or by another application through simple CoAP messages.

As described in Section 3.2, an application is defined by its components which
are managed in PyFUNS as sub-resources of /apps. The resulting application
structure is shown in Table 2. Resource /apps is created statically during the
start up phase. This resource is the container of all applications installed on the
node and it can be managed through CoAP methods to list currently installed
applications and check their validity. The methods of /[app name] provide the
services to create/delete a specific application, retrieve the current state of the
application, and start/stop its execution. The /[app name] resource and its sub-
resources are created by allocating the required memory only once, when the
application is installed. The use of CoAP methods to manage the execution
of a specific application (start/stop) enables the possibility to install on a node
several applications related to each other in order to implement complex services.

Resource /period represents the current application period value, and must
be set following the rules described in Section 3.4. A set of methods are provided

Table 2. The structure of an application resource

/apps # list currently installed apps [GET]

# check a specific app [POST]

/[app name] # retrieve the application state [GET]

# create/delete a specific app [PUT|DELETE]

# start/stop a specific app [POST]

/period # retrieve/update the period [GET|PUT]

/preScript # retrieve/update/delete the PreScript [GET|PUT|DELETE]

/version # retrieve/update the PreScript version [GET|PUT]

/mainScript # retrieve/update/delete the MainScript [GET|PUT|DELETE]

/version # retrieve/update the MainScript version [GET|PUT]

/postScript # retrieve/update/delete the PostScript [GET|PUT|DELETE]

/version # retrieve/update the PostScript version [GET|PUT]

/variables # list currently variables [GET]

/[var name] # retrieve/observe/update the value [GET|PUT]
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to manage the scripts: for each script, PreScript, MainScript and PostScript,
it is possible to retrieve/update/delete the byte code and retrieve/update the
version of them. /variables resource is the container of the variables used by
the application to accomplish its functionalities. By interacting with it, the list
of current variables can be retrieved. For each variable a new resource is created
and it is possible to retrieve/update the value. The purpose of this resource
is to exchange data among different scripts of the same application, or among
different applications. Each /[var name] resource can be observed, even by other
applications, enabling a smart functionality to be used in complex systems.

3.6 PyFUNS Implementation

Native code replacement and loadable modules on the one hand enable services
updates, on the other hand imply a higher cost since downloaded modules are
more coarse-grained compared to a virtual machine application. Moreover, these
methods require to maintain information about the software version in each node,
and the implementation is hardware dependent. To fully decouple applications
from the sensing infrastructure we use a virtual machine to run the applications.

Most of the virtual machine based approaches enable highly efficient updates:
low cost for transmitting new code and abstraction from the platform. The
software updates sent from front-end-device to different nodes (based on differ-
ent platform) are always the same. However, VMs introduce overhead in term
of memory and computational overhead, which is overcome by more powerful
devices present on the market. Python, Java and JavaScript are the most com-
mon interpreted languages used for virtual machine approaches with substan-
tial libraries of pre-written code. The last two are object-oriented languages;
whereas Python supports multiple programming paradigms, including object-
oriented, imperative and functional programming styles. JavaScript script is
too big to be installed in a WSN node and it cannot be compiled into byte
code. Using byte code for reprogramming leads to an extremely powerful sys-
tem in which microcontrollers can be programmed interactively without the
typical compile/link/flash/run cycle. Both Python and Java allow for platform-
independent processing functions that can be freely exchanged among nodes,
but we preferred the former approach because, as discussed in Section 2.1, pro-
gramming in Python is really simple and supports multiple programming styles.

We implemented PyFUNS on top of Contiki OS [DG1] that provides native
support for 6LoWPAN and CoAP. A Python interpreter has been ported to the
target operating system to enable script interpretation on constrained devices.
We ported PyMite [PM1], a reduced Python interpreter that runs a significant
subset of the Python language on microcontrollers with very few resources.

PyFUNS provides a set of APIs, summarized in Tab. 3, that can be used
in Python scripts to implement applications. Such APIs allow: (i) to manage
variables (create/delete/get/set); (ii) to send a generic CoAP message specify-
ing the method (GET, POST, PUT, DELETE), the node address, the URI of
target resource, the eventually payload and the eventually variable where store
the result of the operation; (iii) to set/unset observation to a specific resource
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defined by its IPv6 address and URI; and finally (iv) to stop the execution of the
application. The IPv6 address parameters are expressed without the prefix (e.g.,
[0,0,0,2]), as we have provided the messages exchanged among different applica-
tions that can be performed only inside the same network. Notice that sendMsg
and obs functions have a parameter var to be associated with the request. In
case of var is not present, it is automatically created inside the functions.

Table 3. PyFUNS APIs

Function Description

newVar(name, value) Create new variable
delVar(name) Delete variable
getVar(name) Get variable value
setVar(name) Set variable value
sendMsg(met, addr, uri, payload, var) Send CoAP message
obs(addr, uri, var) Send CoAP observe
delObs(addr, uri) Delete CoAP observe
exit() Stop the application

A prerequisite of PyFUNS is that each node runs a web service to expose
its resources, since the framework uses CoAP methods to interact with them.
Instead, PyFUNS framework can be installed only on a subset of nodes.

3.7 Example of Usage

To evaluate PyFUNS performance, we implemented a Security service applica-
tion which has the purpose to detect any motion in a room and trigger an alarm.
In such example the network is composed of three PIR sensors, on nodes 2, 3 and
4 with the URI coap://[aaaa::2]/sen/pir, coap://[aaaa::3] /sen/pir and
coap://[aaaa::4]/sen/pir respectively, and one alarm, on node 5 with URI
coap://[aaaa::5]/act/alarm. The application implementing the service can
be installed in any node inside the network using the RESTful interface defined
in Section 3.5. The intent of Security service is to observe the PIR sensors, and
trigger the alarm whenever a notification of motion detection is received. To im-
plement such envisioned application we need to write and install the PreScript,
MainScript and PostScript. PreScript, Listing 1.1, issues OBSERVE messages to
all three PIR sensors and associates the requests to variables, p1, p2 and p3, used
to maintain the representation of the sensors. Since the MainScript runs when-
ever a notification is received, the period of the application is set with a number
less than zero: execute MainScript after a sporadic event happens (Fig. 2.c).

Listing 1.1. The PreScript of Security application

from pyfuns import ∗
obs ( [ 0 , 0 , 0 , 2 ] , ” sen/ p i r ” , ”p1” )
obs ( [ 0 , 0 , 0 , 3 ] , ” sen/ p i r ” , ”p2” )
obs ( [ 0 , 0 , 0 , 4 ] , ” sen/ p i r ” , ”p3” )
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MainScript(Listing 1.2) is called whenever a notification from observed sensors
is received. The operations carried out are very simple: retrieve the representa-
tion of the variable associated to each PIR sensors and issue a POST request
to coap://[aaaa::5]/act/alarm to trigger the alarm, if one of the variables is
equal to one, or to stop the alarm otherwise. Listing 1.3 shows the Python script
related to PostScript. It sends messages to the PIR resources in order to delete
the subscription when the application has stopped. The scrips byte code to be
installed on nodes can be obtained by compiling the presented Python scripts.

Listing 1.2. The MainScript of Security application
from pyfuns import ∗
i f getVar ( ”p1” ) or getVar ( ”p2” ) or getVar ( ”p3” ) :

sendMsg (2 , [ 0 , 0 , 0 , 5 ] , ” ac t /alarm” , ”1” )
else :

sendMsg (2 , [ 0 , 0 , 0 , 5 ] , ” ac t /alarm” , ”0” )

Listing 1.3. The PostScript of Security application
from pyfuns import ∗
delObs ( [ 0 , 0 , 0 , 2 ] , ” sen/ p i r ” )
delObs ( [ 0 , 0 , 0 , 3 ] , ” sen/ p i r ” )
delObs ( [ 0 , 0 , 0 , 4 ] , ” sen/ p i r ” )

4 Performance Evaluation

To evaluatePyFUNS performance we implemented it on top of Contiki OS by in-
tegrating/porting PyMite on two constrained platforms: (i) WiSMote, equipped
with a MSP430F5 microcontroller having 16 kB of RAM and 256 kB of flash, and
(ii) CC2538dk, equipped with an ARM CortexTM M3 microcontroller having 32
kB of RAM and 512 kB of flash. In the rest of the section we first prove the feasibil-
ity of PyFUNS by checking that in both selected target platforms the performed
implementation requires flash memory and RAM which are within the physical
limits. Then we evaluatePyFUNS overhead in terms of run time and energy con-
sumption. Finally we present an extensive evaluation of PyFUNS framework by
implementing one real service: Security. To deploy the system bases on real plat-
form, and test it in a real life scenario, we integrated: (i) sensors, such as PIRs, and
(ii) actuators, such as alarms, on target platforms.

4.1 Flash and RAM Requirements

To assess the possibility of deplying PyFUNS on the selected devices we mea-
sured both the flash and RAM occupation. Table 4 shows the memory occupied
by the software for both platforms, the WiSMote and the CC2538dk. The soft-
ware installed on each WSN node includes the Contiki OS, the PyMite inter-
preter, PyFUNS, plus the possibly required memory to install two PyFUNS
applications. In case of WiSMote platform the whole firmware occupies 93% of
the available RAM and 38% of the available flash. In case of the CC2538dk
platform the firmware requires the 62% of the available RAM and the 19% of
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Table 4. Code size and RAM requirements for a WiSMote and CC2538dk devices

Nodetype RAM [bytes] F lash[bytes]

WiSMote 14 918 (93%) 98 077 (38%)
CC2538dk 19 904 (62%) 96 732 (19%)

the available flash. Such a notable occupation of memory, especially RAM, is
mainly due to PyMite, which alone requires 45 kB of flash and 8 kB of RAM.
In order to reduce the RAM occupation we are planning to implement a tool to
store Python byte codes into the flash. The current version of PyFUNS stores
the Python scripts in RAM, which is usually more constrained comparing to the
flash memory.

4.2 Native Code versus Python Script

PyFUNS overhead in terms of run time and energy consumption has been eval-
uated with respect to a native code solution. Both performance figures have
been measured by using two different set of benchmarks: (i) five test applica-
tions implementing algorithms showing a different complexity level; (ii) three
applications implementing CoAP methods. Each benchmark has been executed
by considering a C language based native code solution, and its Python version.

The first benchmark set is composed of five algorithms, characterized by dif-
ferent complexity levels, and chosen from ”dada’s perl lab”1. More specifically,
we selected the following algorithms, listed in function of their complexity (from
lower to higher): (i) ACK - Ackermann’s Function(3, N) that is a classic recur-
sive function with N=3; (ii) FIB - Fibonacci Numbers(N) that computes the
Fibonacci sequence with N=17; (iii) MAT - Matrix Multiplication(N) that per-
forms the multiplication between two matrices with size 5 and N=10; (iv) HEAP
- Heapsort(N) that sorts a vector with a size N=100 of integer numbers, and ini-
tialized with strictly decreasing value; and (v) MET - Method Calls(N) that
implements activation of class methods using object-oriented style. The second
benchmark test, instead, includes: (i) an application that issues a POST request
to a resource installed in a neighbor node (POST); (ii) an application that is-
sues a POST request to a resource installed in a neighbor node and waits the
acknowledgement message from the resource (POST2); and (iii) an application
that issues a GET request to one resource installed in a neighbor node, waits
the reply, processes it and sends a POST request to another resource installed
in a neighbor node (GET). All performance results are reported in Table 5.

All results have been obtained by running each test 1000 times in Cooja, the
Contiki network simulator. Cooja allows to run the same binary files to be used
on real platforms while enabling a quick testing and debugging of the system. In
the simulator all tests have been performed by using only the WiSMote platform

1 A benchmark comparison of a number of programming languages:
http://dada.perl.it/shootout/craps.html
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Table 5. Performance benchmarks in Cooja

C Python Python/C
T ime(ms) Energy(μJ) T ime(ms) Energy(μJ) T imeratio Energyratio

ACK 4.08 0.029 645.25 4.765 158.1 164.3
FIB 9.95 0.072 1344.84 9.932 135.2 137.9
MAT 5.06 0.037 687.31 5.076 135.8 137.1
HEAP 1.95 0.014 379.68 2.804 194.7 197.7
MET 1.16 0.009 207.28 1.531 178.8 177.2
POST 1.22 0.009 5.35 0.039 4.4 4.3
POST2 8.61 0.328 12.68 0.357 1.4 1.1
GET 17.26 0.604 26.19 0.671 1.5 1.1

(CC2538dk is not supported at time of writing), moreover to prove the Cooja
accuracy we ran also two benchmark tests on a realWiSMote platform. In Table 5
the C and Python columns show the run times and the energy consumption for all
benchmark applications, while the last column labeled as Python/C reports the
ratio between PyFUNS and native code approaches. For the first benchmark set
the time performance penalty of PyMite is between 135 and 195, while showing a
performance gap between 137 and 198 in energy consumption. Such a difference
between C and Python is mainly caused by the extensive use of the heap memory
in PyMite when performing complex operations such as recursive calls. On the
contrary, in CoAP methods tests the run time performance penalty is between
1.5 and 4.4 with an energy consumption performance gap between 1.1 and 4.3.
This is the overhead introduced by PyMite to perform CoAP methods in WSNs,
while enabling a powerful tool providing platform abstraction and reconfigurable
in-network processing that can compensate the overhead. To prove the validity
of the aforementioned results obtained with Cooja simulator, we also ran the
Python version of Ackermann’s Function and POST method on a real WiSMote
platform. The obtained results are reported in Table 6, and they are very similar
to those obtained by using the Cooja simulator.

Table 6. Performance benchmark on WiSMote

T ime(ms) Energy(μJ)

ACK 649.79 4.799
POST 5.52 0.040

4.3 Real Case Evaluation

Performance of a distributed application depends on the network topology and
in-network distribution of application components. We evaluated PyFUNS per-
formance in terms of energy consumption, actuation delay and network traffic,
to provide real services such as the one presented in Section 3.7. The application
components were distributed among the nodes or centrally placed at the border
router. For the energy consumption we considered the overall network consump-
tion. The actuation delay represents the elapsed time between the detection of
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the event and the associated actuation, while network traffic measures the total
amount of bytes exchanged in the network. As we want to evaluate the impact
of PyFUNSonly, we take into account only CoAP messages without counting
traffic generated by underlying layers (e.g. RPL messages).
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Fig. 3. Network topologies: star (a-b-c), mesh (d) and tree (e-f-g-h-i)

To avoid impact of the changing environment and measurement overhead of
real world experiments we installed PyFUNS on Cooja simulator. The Security
service was deployed on multi-hop, IoT-based WSN, configured with nine net-
work topologies shown in Fig. 3: three star topologies with 5, 9, and 13 nodes;
one mesh topology with 13 nodes; and 5 tree topologies each one of them with
9 nodes and different transmission links. The power transmission of nodes was
fixed for all the topologies except for the topology from Fig. 3.a which was evalu-
ated also with a higher transmission power. This was done to compare topology
having multi-hop transmissions (Fig. 3.b) with a network having smaller number
of nodes but covering similar geographical area.

For the security service scenario nodes 2, 3 and 4 in Fig. 3 were simulated
with an attached PIR sensor and the node 5 with an attached buzzer. We tested
different placements of security service components as depicted in Table 7.

Table 7. Security Control service deployment configurations

(a) (b) (c)(d) (e)(f)(g)(h)(i)

BR (1) BR (1) BR (1) BR (1)
PIR2 (2) PIR2 (2) PIR2 (2) PIR2 (2)
Alarm (5) Alarm (5) Alarm (5) PIR4 (4)

Node 6 Node 6 Alarm (5)
Node 9 Node 9 Node 6

Node 10 Node 7
Node 13 Node 8

Node 9

Figure 4 shows the energy consumption measurement for all topologies. As
we expected the minimum energy consumption for star topology is when Py-
FUNS application is installed on the Border Router. This is because the amount
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Fig. 4. Energy consumption in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies.
The label on the x-axis indicates in which node the Security application is installed.

x102 x102

Fig. 5. Network traffic in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies. The
label on the x-axis indicates in which node the Security application is installed.

of data exchanged in such configuration is minimum (Fig. 5). In fact, when the
transmission is between nodes distant by more than one hop an additional 6LoW-
PAN header overhead (due to the addressing and hop limit fields) is observed.

However, in case of mesh topology (Fig. 4 right side) the minimum energy
consumption of the overall network is observed when the service is distributed
among the nodes rather than placed on the Border Router. For all topologies it
is the number of transmission hops that plays dominant role in the total amount
of network traffic, and consequently in energy consumption. For instance, in
topology (e) (purple columns) it is possible to see that the energy consumed
when the application is installed in nodes PIR2 and 6 (which are closely located)
is bigger than a centralized approach (application on BR). On the basis of energy
consumption parameter the best choice for (e) (f) (g) is node 8, with a consumed
energy equal to 7.47 mJ, 7.12 mJ and 5.43 mJ respectively, for (h) is node 4 with
5.36 mJ, and for (d) and (i) is node 5 with 5.85 mJ and 7.39 mJ respectively.

We also evaluated delay introduced by the framework in triggering the actua-
tor node when a motion detection event happens. Figure 6 presents the delay for
all topologies, it depends on the number of hops between sensor and actuator.
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Fig. 6. Delay time (ms) in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies. The
label on the x-axis indicates in which node the Security application is installed.

5 Conclusions

As WSNs moved from the academic world to the industrial scenario new chal-
lenges have been raised up to reach a wide adoption of the WSNs in several do-
mains. Some of the main issues are: interoperability, ease of reprogramming and
reliability. To address such issues we propose PyFUNS, a Python framework for
ubiquitous sensor networks. By leveraging on IoT-based protocols (i.e., 6LoW-
PAN and CoAP) PyFUNS guarantees a higher interoperability and reliability
with respect to old-style WSNs. Moreover, thanks to its adopted virtual machine
design based on Pymite, a reduced Python interpreter, PyFUNS enables ease
of reprogramming in WSNs. In a real scenario PyFUNS can be used as com-
plementary tool of a framework able to allow users to easily write Python-based
IoT applications (e.g., through a graphical interface) to be remotely installed on
WSN nodes hiding the whole installation process. This feature can be provided
by PyoT, a system for macro-programming and managing IoT-based WSNs.

In the paper we first presented PyFUNS by detailing its design and im-
plementation choices by carefully explaining its usage in building simple and
complex services. Then we evaluated PyFUNS performance considering the
WiSMote and CC2538dk platforms with the aim of proving its feasibility in real
constrained devices, and its overhead in terms of run time and energy consump-
tion with respect to native code solutions. Finally PyFUNS performance in star,
mesh and tree network topologies were evaluated for a Security service by con-
sidering both centralized and distributed application logic solutions. Presented
results, aside of proving PyFUNS feasibility and performance, highlight further
possible optimization to be investigated: RAM memory requirement reduction,
scripts execution time and energy consumption, communication failures han-
dling. While RAM memory occupancy can be merely solved by saving Python
scripts in flash and leaving the RAM for regular applications, other optimizations
require a deeper analysis, and they will be addressed in future investigations.
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Abstract. Counting and tracking multiple targets by binary proximity
sensors (BPS) is known difficult because a BPS in “on” state cannot dis-
tinguish how many targets are presenting in its sensing range. Existing
approaches investigated target counting by utilizing joint readings of a
network of BPSs, called a snapshot [2,11]. A recent work [14] presented a
snapshot-based target counting lower bound. But counting by individual
snapshot has not fully utilized the information between the sequential
readings of BPSs. This paper exploits the spatial and temporal depen-
dency introduced by a sequence of snapshots to improve the counting
bounds and resolution. In particular, a dynamic counting scheme which
considers the dependency among the snapshots were developed. It leads
to a dynamic lower bound and a dynamic upper bound respectively.
Based on them, an improved precisely counting condition was presented.
Simulations were conducted to verify the improved counting limits, which
showed the improvements than the snapshot-based methods.

1 Introduction

Binary proximity sensors (BPS) is an extracted model for a large category of
sensors, such as infrared, ultrasound, microwave, and magnetic sensors. It has
an extremely simple sensing model, which outputs a single bit “1” when one or
more mobile targets are in its sensing range and “0” otherwise. A BPS sensor
cannot distinguish the targets, decides how many distinct targets are presenting
in its range, nor judges the targets’ moving directions.

Despite of the very limited information provided by one BPS, prior works [11][9]
showed the feasibility to track a single target using a collaborative network ofBPSs.
In [9], the authors showed that if only one target was presenting, the worst case
location error is bounded byΩ( 1

ρRd−1 ), where ρ is the sensor density,R is the sens-
ing range, and d is the dimension of the space. However, significant difficulties are
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encountered for tracking multiple targets because each “on” sensor cannot distin-
guish howmany targets are presenting in its sensing range.Therefore, a fundamen-
tal challenge is to count the number of targets precisely.

Existing approach investigated the target counting problem by exploiting in-
dividual snapshot captured from a network of BPS. We call such case static
counting. In [11], Singh et al. presented that accurate target counting could be
achieved by a snapshot if the targets are separated by at least 4R, where R is
a sensor’s sensing radius. Recent work in [14] presented a lower bound of static
counting, which stated that the number of presenting targets equals to the min-
imum clique partition of the UDG formed by the “on” sensors. However, static
counting has not fully utilized the information provided by the sensors’ reading
sequences. In this paper, we show that the upper and lower bounds on target
counting can be further improved by exploiting the temporal, spatial dependen-
cies between the sequential snapshots.

Different from the existing approaches, we take the sequential events reported
from sensors during a period as the problem’s input. In this case, a dynamic
counting technique to infer the lower bound of the target number was designed.
We showed theoretically and numerically that the lower bound given by dynami-
cally counting can effectively improve the existing lower bound in static counting.
For estimating the upper bound of the number of targets, we firstly propose a
packing-based upper bound for snapshot cases under an assumption of minimum
pair-wise separation distance between targets. Later on, a dynamic counting al-
gorithm is designed to improve the static upper bound, whose effectiveness is
also verified by simulations.

Furthermore, the condition for precisely target counting is discussed in our
work. In [12], J. Singh et al. proved that at least 4R pairwise separation among
targets was required for precisely static counting. In this work, by the upper
bound and lower bound obtained from dynamic counting, a new separation dis-
tance for precise counting was derived, which reduced the 4R separation re-
quirement by approximately R

4 . It shows that dynamic counting can relax the
pair-wise separation condition for precisely target counting.

The rest of the paper is organized as follows. Section 2 presents the problem
model and the most related works. Section 3 and Section 4 present the lower
bound and the upper bound of the target number by dynamic counting, re-
spectively. In Section 5, the condition for precise target counting is discussed.
Section 6 provides simulation results which correspond to our algorithm pro-
posed in Section 3 and Section 4. The paper is concluded in Section 7 with
discussion of future directions.

2 Problem Model and Background

2.1 Preliminaries

We consider N binary sensors which are deployed in 2-D area of interest (AOI).
Each sensor detects objects within its sensing radius R, and generates one bit
of information: “1” for presence of targets and “0” for absence. We assume
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that the binary sensing is ideal, noiseless, and provides no other information
about the location, speed, or direction information of the targets. All sensors
are assumed timely synchronized and their locations are assumed calibrated in
an initialization process [8]. We also assume that the AOI is fully covered by
the sensing areas of BPSs. Sensors work collaboratively to track the targets.
Since the targets move continuously in the AOI, the binary readings of a BPS
are efficiently encoded by the time intervals between the BPS’s “on” and “off”
events. Each BPS reports “1” or “0” when a corresponding transition between 1
and 0 happens, which is enough for a centralized processor to interpolate the real-
time states of all sensors at any snapshot. We assume that all “on”, “off” events
are successively collected via some supporting routing and MAC protocols. At
the server side, it receives the sequential events reported from the BPS sensors
and reconstructs the sensing snapshots at each event. Each snapshot is a length-
M binary vector St ∈ [0, 1]M at time t. Although the presented techniques are
applicable for sensors with non-ideal sensing models, such as non-regular sensible
region, we focus our analysis on the disk-shape ideal sensing model.

Patch-basedLocationDescription: Traditionally, the underlying locations of tar-
gets are described by “patches” formed by the sensing regions of BPSs. M BPSs
can partition the AOI to at most L ≤ M2−M +2 patches [10,9]. Each patch indi-
cates a region which is covered by the same set of sensors and each patch is coded
by a length-M vector based on the coverage situations ofM sensors. For example,
in a network of four sensors, a patch with code “1100” means the patch is covered
by the first two sensors, but is not covered by the other two sensors.

Arc-based Location Description: By taking the event time into consideration,
targets’ locations can be further narrowed down to arcs. When a sensor reports
a state transition event, the target that triggers this event must be presenting
on the edge of this sensor’s sensing region. By jointly considering the states of
surrounding sensors, we can infer the target’s location to be on an arc between
two patches whose state change. Each arc can be uniquely encoded by the codes
of two neighboring patches. E.g., the arc between “100” and “110” can be coded
by “100110”. Fig.1 shows an example trace of a target represented by patch
sequence and arc-time sequence respectively. The arc representation can specify
the location of the target at a given time. We will show in following sections that

Fig. 1. Location traces of a target rep-
resented by patch index and time-arc
index respectively

 

 

 

Fig. 2. A snapshot, where feasible ar-
eas are partitioned into three isolated
islands
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Table 1. Notation List

Notation Meaning

R Radius of each sensor

M Number of sensors in the area of interest (AOI)

N Number of snapshots given in input

v Total number of isolated feasible islands

Li The ith isolated feasible island

P (s) Coverage area of sensor s

fa Feasible Crossing Arc (at a certain time ta)

T = {t1, · · · , tk} Set of time corresponding to given snapshots

U All t ∈ T whose snapshot triggers on a previous “off” sensor

D All t ∈ T whose snapshot triggers off a previous “on” sensor

Stk Snapshot at time tk
Gk Patch graph at time tk

this property of arc representation can help to improve the counting resolution
by dynamic counting.

Problem specification: Under above system model, we consider multiple target
counting problem by sequential snapshots. Each snapshot at t is the captured
states of M BPSs when some sensor in the region reports a change. That is,
a snapshot at time t ∈ T := {t|St �= St−ε for sufficiently small ε > 0}. The
problem input is a sequence of N snapshots {St1 ,St2 , · · · ,StN }. Without loss of
generality, we assume t1 < t2 < · · · < tN . We also assume the number of targets
participating in the AOI will not change during t1 to tN and each target’s moving
speed is upper bounded by Vmax. The problem output is a lower bound and an
upper bound of the number of targets.

Notation list: Notations used in our paper are listed in Table 1.

2.2 Background

Target counting problem by one snapshot has been investigated intensively in the
literature. A notable concept presented in [11,14] is the feasible area. Given a snap-
shot, the feasible areawhere targetsmaypresent canbe determinedbyF= P (A)−
P (A)∩P (E), where P (A) is the coverage area of the “on” sensors and P (E) is the
coverage area of the “off” sensors. An example of the feasible area is shown in Fig.2,
inwhich the sensing regions of “on” sensors are inwhite and sensing regions of “off”
sensors are in grey. In the figure, the feasible area is partitioned into three feasible
islands L1, L2, L3, which are called isolated feasible islands.

Existing Lower Bounds. For point model of targets, the target number in
the feasible area have no upper bound. Estimating the lower bound of target
number is the foundation of target counting.

• In [11], a lower bound is given by Singh et al. for counting targets moving
in one dimensional space, i.e., on a line. In their method, if “on” sensors can
be partitioned into at most X positively independent sets, where the positively
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Fig. 3. Examples to illustrate and compare different lower bounds for target counting

independent sensors are “on” sensors whose sensing regions do not overlap, or
separated by at least one “off” sensors, Theorem 4 in [11] stated that the number
of targets is not less than the cardinarity of X , i.e., |X |.

• A recent work in [14] investigated the target number lower bound in 2-D
space. They showed that the lower bound given in [11] was conservative in 2-D
space. A unit disc graph (UDG) model was proposed to model the structure of
the feasible area, based on which an improved lower bound was given. It equals

to
v∑

i=1

ci, where ci is the minimum number of cliques partitioning the UDG of

the ith feasible isolated island.
• In this paper, we show that the lower bound in [14] can be further improved

if the temporal and spatial dependences between snapshots are taken into consid-
eration. The basic intuition is shown in Fig.3, which compares the lower bounds
mentioned above. In Fig.3a), we can see the four “on” sensors are in one posi-
tively dependent set, so that the lower bound given by [11] will be one. But the
lower bound given by [14] will be two because the UDG formed by the “on” sen-
sors has at least two cliques. So the lower bound in [14] ismore accurate in 2-D space
than that in [11], but it can be further improved. As illustrated in Fig.3(b), at t2,
from the UDG structure, the lower bound given by [14] will be one. But by consid-
ering the event sequence from t0 to t2 and the limitedmoving speed of the target, we
can judge that the target triggers the sensorA at t1 cannot trigger the sensorB at
t2. Consequently, the lower bound of the target number should be two in dynamic
counting.

Other Related Works. Most other related works focused on the multiple tar-
get tracking algorithms. To deal with the difficulty of multiple targets, Busnel et
al. [2][1] investigated the trajectory identification properties. They converted the
BPS network into a state graph and presented trajectory identifiable and uniden-
tifiable properties on the state graph. In other works, the number of targets were
either assumed known or online estimated by the trajectory disaggregation al-
gorithms. FindingHuMo [4] proposed Hidden Markov Model (HMM) to track a
known number of targets by a BPS network. MiningTraMo [17] proposed mul-
tiple pairs shortest path algorithm based on walking speed variance to infer the
most possible trajectories or targets. In [19], compressive sensing based method
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was proposed to count and track the multiple targets, when the targets were
known to be sparse, i.e., well separated. In [6], a hybrid multiple target tracking
scheme was proposed by He et al., which conducted coarse-scale tracking by bi-
nary proximate sensors to narrow down search area, and used high-end sensors
for fine-grained tracking. In [3], Cao et al. presented collaborative scheme for
tracking groups of targets using BMSs. A distributed PIR-based people num-
ber counting system in office environment was developed in [16]. Algorithms
and systems for indoor locating using ultrasound systems were investigated in
[18][20]. Without going into details of target locating and tracking, we focus on
the basic properties of multiple target counting by the sequential snapshots of a
BPS network.

3 Lower Bound of Target Number by Dynamic Counting

3.1 Preliminary

Wefirstly investigate lower bound of target number by utilizing a sequence of snap-
shots capturedbyBPSs.For convenience,wedivide the time setT ={t1, t2, · · · , tN}
corresponding to the given snapshots into two sets U and D, namely up-set and
down-set. tk ∈ U, k ∈ N if and only if an “off” sensor in Stk−1

is triggered on in Stk ,
and tk ∈ D, k ∈ N if and only if an “on” sensor in Stk−1

is triggered off in Stk . Next,
we define feasible crossing arc to indicate the possible locations of the targets that
trigger a state transition event.

Definition 1 (Feasible Crossing Arc (FCA)). When a sensor’s state change
is detected, the feasible crossing arc indicates the arc segments where the targets
are traversing to trigger the event without violating the states of other sensors.

Based on FCA, we propose Theorem 1 to specify the necessary time-space
restriction for two events being triggered by the same target. The theorem is
based on the fact that a target’s moving speed is limited. Therefore, only if the
distance between the FCAs of these two events are not beyond the moving scope
of the target, can the two events be triggered by the same target.

Theorem 1 (Time-Space Restriction). If a sensor A is triggered “on” by
one target at time tA and the FCA is fA; another sensor B is triggered on by the
same target at time tB ≥ tA with FCA fB, then ‖fA − fB‖2 ≤ (tB − tA)Vmax,
where Vmax is the maximum moving speed of the target.

3.2 Dynamic Counting Using the Time-space Restriction

The time-space restriction could improve the lower bound of the number of
targets. An example to show the basic idea is illustrated in Fig.4. It shows six
snapshots captured from a BPS network. The ground truth happened during
this period is that: three targets, in terms of “red”, “green”, and “orange” are
presented as shown in Snapshot 1. At Snapshot 2, the red target moves outside
a little bit, and then turns back quickly as shown in Snapshot 3. Then in a very
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Fig. 4. Improvement by time-space restriction

close snapshot, the orange target moves outside a little bit as shown in Snapshot
4, and then turns back quickly as shown in Snapshot 5. Then in another close
by snapshot, the green target moves outside.

By static counting method, the UDGs besides each scenario show the static
counting result. The number of MCP for UDG from snapshot 1 to snapshot 6 are
one, two, one, two, one, two respectively. Therefore, the estimated lower bound
of the number of targets during this period, given by static counting is two.

However, since the procedure finishes in ephemeral time, by considering the
spatial and temporal dependency between the snapshots we know that the sen-
sors which are triggered on in Snapshot 2, 4 and 6 must be triggered by totally
different targets due to the limited speed of the targets. Therefore, in Snapshot
6, we could deduce that a disparate target other than the two targets triggering
events at Snapshot 2 and 4 must be presenting. Therefore, the lower bound of
the target number is three by utilizing time-space restriction.

Based on the idea above, we develop a dynamic counting method to estimate
the target lower bound more precisely. To initialize the algorithm, the beginning
patch graph G0 is built based on the UDG model in static counting. Count
is defined as the estimated lower bound of the target number, which is set to
MCP(G0) initially. After that, a loop runs from the first snapshot to the last
snapshot in order to construct patch graphs dynamically. More specifically, for a
snapshot at time tk ∈ U , assume the sensor l is triggered from “off” to “on”. In
this case, we will firstly construct all edges between sensor l and other intersected
“on” sensors whose common intersection is not fully covered by the regions of
the “off” sensors. After that, we examine all these edges: if an edge violates the
time-space restriction, the edge will be deleted.

For a snapshot at time tk ∈ D, we need to delete the vertex of the sensor from
the UDG, which is just turned from “on” to “off” in the graph, and delete all
its corresponding edges. In addition, it is a necessity to delete the edges whose
corresponding intersection area is fully covered by this newly “off” sensor.

After finishing each loop, we calculate the MCP of the new patch graph. count
would be updated if this MCP is larger than the previous count. The algorithm
ends after looking at all snapshots in time sequential order. The whole procedure
is named as dynamic counting of targets, and we develop Algorithm 1 for this
method. The dynamic counting algorithm leads to Theorem 2.
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Algorithm 1. Lower Bound Dynamic Counting Algorithm

Input: Set T = {t1, t2, · · · , tN} = U ∪D (up-set and down-set);
Stk ,Atk ,Etk ,∀0 ≤ k ≤ N ; Patch graph G0 of time t0;
Output: Lower bound of the number of targets: count;

Initialize count ←MCP(G0);1

for k ← 1 to N do2

if tk ∈ U then3

Define l to be the sensor which is “off” in Stk−1 but “on” in Stk ; Fl to4

be the feasible crossing arc of sensor l;
Define Gk = Gk−1 ∪ {l};5

for i ← 1 to M ,i �= l do6

Define Fi to be the feasible crossing arc of sensor i;7

if Di,l ≤ 0 AND sensor i and sensor l have intersecting region and8

the intersected region is not fully convered by the regions of the “off”
sensors then

add an edge in Gk between i and l9

if tk ∈ D then
Define l to be the sensor which is “on” in Stk−1 but “off” in Stk ;10

Define Gk = Gk−1/{l} by deleting vertex l and its corresponding edges;11

if sensor i, j, l have intersecting region pairwise and the intersected12

region of sensor i and j is fully convered sensor l then
delete the edge in Gk between i and j13

count ← max{count, MCP(Gk)};14

return count;15

Theorem 2 (Lower Bound of the Target Number). Let NL be the real
number of targets that matches the sequential snapshots of sensors. Then the
return value ‘count’ of Algorithm 1 must not be larger than NL, i.e., NL ≥ count.
Proof. Based on the discussion of Algorithm 1, it is clear that Gk constitutes
the snapshot at time tk. In order to prove the theorem, we suffice to show that
N ≥ MCP(Gk) for each k since count is the maximum of all MCP(Gk).

Let us assume the contrary that N < MCP(Gk) for a certain k. As a result,
we could re-partition all “on” sensors of the UDG at time tk into MCP(Gk)− 1
groups such that each group of sensors has a common intersection while each pair
of sensors does not violate the time-space restriction. This partition is equivalent
to a clique partition of Gk with MCP(Gk)− 1 cliques, but this contradicts with
the fact that MCP(Gk) is a minimum clique partition of Gk.

Our algorithm also has a reasonable time complexity. By [5], MCP of a patch
graph could be calculated by a polynomial time approximation scheme (PTAS)

with (1 + ε)-approximation and time complexity O(MO(1/ε2)) where M is the
number of sensors in the area of interest (AOI). In addition, line 2 to line 13 in the
algorithm could be done in O(M) time in each cycle. Therefore, Algorithm 1 is

also a PTAS with (1+ε)-approximation and has time complexity O(N ·MO(1/ε2))
where N is the number of snapshots.
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Fig. 5. Example of calculating the up-
per bound of target number

island1 island2 island3

Fig. 6. Example of minimum separa-
tion distance

4 Upper Bound by Dynamic Counting

In real applications, the physical targets, such as humans, animals, vehicles,
are generally not arbitrarily close to each other. In this section, we assume a
minimum separation distance r > 0 between each pair of targets.

4.1 Static Counting

Based on the assumption of minimum separation distance, we can estimate the
upper bound of target number by modeling it as a packing problem, which is a
classical geometric optimization problem in mathematics that attempts to pack
objects together into containers. The goal is to pack the containers as densely
as possible using the objects. In 1910, Thue [15] established a theorem for the
density of circle packing into a connected surface:

Theorem 3. Assume a set of at least two circles with radius r are packed into
a connected surface. Denote the sum of area of all small circles with radius r to
be S′ and denote the area of the surface to be S, respectively. Then S′

S ≤ π√
12
.

In our problem, we treat the areas of each feasible island as containers, and
objects are circles with radius r. Then the upper bound of the number of targets
equals to the number of circles that can be packed into the feasible area. In
our problem, we only restrict the centers of objects, i.e., the positions of targets
cannot exceed the boundary of the container. Therefore, we allow the objects
to cover at most distance r beyond the boundary of containers, as an example
shown in Fig.5. Given a snapshot as the input, the most number of targets in
the feasible area of the snapshot can be estimated.

Theorem 4 (Upper Bound of the Target Number). Let Ai and Ci be
the area and circumference of the ith feasible island respectively. Suppose the
minimum separation distance between targets is r, then the number of targets

in the feasible area must be smaller than
v∑

i=1

Ai+rCi√
12r2

, where Ai+rCi√
12r2

is the upper

bound of target number in the ith feasible island.
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Fig. 7. Illustration for dynamic upper bound

Using the similar idea of improving lower bound, we introduce a dynamic
counting method to utilize snapshot dependences to improve the upper bound
of the target number.

4.2 Improvement by Dynamic Counting

For a feasible region S, we define f(S) := A+rC√
12r2

where A is the area of S and C

is the circumference of S. By Theorem 4, f(S) is an upper bound of the number
of targets in S. Denote the set of feasible islands of the initial snapshot at time
t0 to be Sisland = {S1, · · · , SK}.

The basic idea of dynamic counting to improve the upper bound is based on
the fixed number of targets in a feasible island which is not connected to other
feasible islands during the concerned time. See Fig. 7 as an illustration. This is
an instance of six snapshots, in which the first four snapshots are composed of
two feasible islands and the last two snapshots are composed of a single feasible
island. From snapshot 1 and 2, we know that the number of targets in the first
and second feasible island is at most f(S1) and f(S5), respectively. Therefore,
the best upper bound of the number of targets in this instance is f(S1)+ f(S5).
However, if we only consider the last snapshot, the upper bound obtained is
f(S2 ∪ S4 ∪ S5 ∪ S6), which could be much worse than the bound given from
the dynamic view. Using this inspiration, we develop Algorithm 2 to improve
the upper bound of the number of targets. Basically, when the number of feasible
islands is not changed in an interval of snapshots, the number of targets in each
feasible island is bounded by its smallest region in this interval. When a feasible
island breaks up into several islands or some feasible islands are combined into
a single feasible island, the set of feasible islands and the upper bound of the
number of targets in each feasible island are both reassigned.
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Algorithm 2. Dynamic Upper Bound Counting Algorithm

Input: Set T = {t1, t2, · · · , tN} = U ∪D (up-set and down-set);
Stk ,Atk ,Etk ,∀0 ≤ k ≤ N ; Feasible islands Sisland = {S1, · · · , SK} at time t0;
Output: Upper bound of the number of targets: countupper ;

for i ← 1 to K do1

ui ← f(Si)2

Initialize countupper ← ∑k
i=1 ui;3

for k ← 1 to N do4

if tk ∈ U then5

Define l to be the sensor which is “off” in Stk−1 but “on” in Stk ;6

if P (l) ∩ Sisland = ∅ then7

Update Sisland ← Sisland ∪ P (l); ul ← f(P (l));8

else if P (l) intersects with at least two islands in Sisland then9

Define S′ ⊆ Sisland to be islands intersect with P (l);10

Define Sl := S′ ∪ P (l);11

Update Sisland ← (Sisland/S
′) ∪ Sl;12

Update ul ←
∑

Si∈S′ f(Si) + f(P (l));13

else14

if tk ∈ D then
Define l to be the sensor which is “on” in Stk−1 but “off” in Stk ;15

Define l to be in feasible island Si;16

if Si/P (l) is not connective then17

Define Si/P (l) to be m ≥ 2 feasible islands Si1, · · · , Sim;18

Update Sisland ← (Sisland/Si) ∪ {Si1, · · · , Sim};19

uij ← f(Sij) for ∀1 ≤ j ≤ m;20

else
ui ← min{ui, f(Si/P (l))};21

countupper ← min{countupper ,∑i ui}22

return countupper ;23

In the algorithm, we also divide the time of snapshots into up-set and down-
set. For both cases, the isolation and combination of islands are carefully con-
structed to make the connectivity of all “on” sensors following the truth. In
addition, we update each island’s upper bound of the number of targets every
round. In particular, when an “on” sensor is turned off in a snapshot, we catch
up the possibility of decreasing the upper bound of the target number in line 21.

In Algorithm 2, O(M) time suffices from line 1 to line 3 where M is the
number of sensors in the AOI. In either tk ∈ U or tk ∈ D, the cycle could be
finished in O(M) time. In total, the time complexity of Algorithm 2 is O(MN)
where N is the number of snapshots in total.

Based on the lower bound and the upper bound of target number, we can
investigate a more interesting property of the binary target counting problem,
i.e., the minimum separation distance for precisely target counting.



30 T. Li et al.

5 Condition for Precisely Target Counting

A more interesting problem we may ask is: under what condition can we always
precisely count the number of targets without error. This problem was previously
studied by [12], which showed that when the separation distance r between each
pair of targets is larger than 4R, the number of targets can be precisely counted.
This traditional requirement of 4R separation distance is rather large. What we
are interested is that: whether can we find a smaller separation distance r < 4R
such that the number of targets can be precisely counted.

Consider the relationship between the upper bound and lower bound of the
target number in a feasible island. For the ith feasible island, suppose that the
lower bound of the target number is li. When the separation distance between
each pair of targets is ri, the following relationship must hold:

Ai + riCi√
12r2i

> Ni ≥ li

The minimally required separation distance for precisely target counting in island
i is the minimum value of ri which restricts the upper bound of target number
not larger than one plus the lower bound of the target number, i.e., the minimum
value of ri to keep li + 1 > Ai+riCi√

12r2i
≥ li. Therefore:

Theorem 5. The minimum required separation distance between each pair of
targets for precisely counting targets is γ = max{γ1, γ2, · · · , γv}, where γi =
Ci+

√
C2

i +8
√
3Ai(li+1)

2
√
3(li+1)

for all i.

Here γi is the solution of the equation
√
12(li + 1)γi

2
2 − Ci

γi

2 − Ai = 0, which
is the minimum separation distance to make the upper bound of target number
equal to the lower bound in island i. Moreover, γi could be even smaller if use
the upper bound of the target number by dynamic counting.

Theorem 5 reveals that the separation distance required for precisely target
counting is different in disparate snapshots and even varies at different loca-
tions in a snapshot. If the upper bound is unlimited, the minimum separation
distance is the largest diameter of the cliques formed by the positive sensors.
An example is shown in Fig.6, we can see the minimum separation distance
min{Δ1, Δ2, Δ3} < 4R, which shows a better potential of using BPS network
for precisely target counting than the traditional results.

6 Evaluation

To verify the counting bound, agents based simulation was conducted based
on PSensorSimulator platform[13]. Multiple agents, which simulated the mobile
targets were programmed to move independently along random paths in the
area of interest. The area of interest was a L×L rectangle area. In the area, M
BPS sensors were deployed. We investigated two kinds of sensor deployment. 1)
regular deployment, as shown in Fig. 8, in which the sensors were deployed in



On Target Counting by Sequential Snapshots of Binary Proximity Sensors 31

Fig. 8. Dynamic counting can fix boundary-pacing error

a grid topology, which fully covered the AOI. 2)random deployment, in which,
enough sensors were deployed randomly in a region and a subregion was selected
as the AOI, as shown in Fig.9(a).

For rendering the target tracking scenario, a graphical interface was developed.
As shown in Fig.8, the feasible area of targets were rendered by the internal
region surrounded by the red arcs. The sensors in the “off” state were in grey
with blue dashed lines. The feasible crossing arcs were colored in black if one
target was entering the sensor region, and was colored green if the sensor was
turned off because of target leaving. The UDG corresponding to the sensor’s
readings was illustrated in Fig.8, in which the vertex denoted the sensors in the
“on” state. The construction of UDG could be referred to [14]. We implemented
Algorithm 1 and 2 on the simulation platform to contrast the upper and lower
bound with the ground-truth number of targets.

6.1 Evaluation on Lower-bound

As a core unit of Algorithm 1, MCP-calculation routine is called every time the
state of a sensor changes. Since MCP-calculation is proved to be NP-Complete
problem, we use a PTAS approximation to implement MCP [7] calculation.

Regular deployment: At first, a particular example is shown in Fig.8 to il-
lustrate the effectiveness of the dynamic counting algorithm on improving the
counting lower bound. The scenario contains 64 sensors. Only the labels of the
“on” sensors are shown, and ten targets are moving in the area. As shown in
Fig.8, at 9.43 second in this scenario, the sensor 36 was “off” and sensor 37 was
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“on”. The MCP of the UDG of this scenario indicates the lower bound of the
target number is 9. At the 10.37 second, sensor 36 turned “on” and sensor 37
turned “off” simultaneously. In this case, the target which left sensor 37 could
only enter sensor 29 or sensor 45. After a short duration of 0.21 seconds, at the
10.58 second, the sensor 37 was turned “on” again. Since 0.21 seconds was not
enough for the target which triggered sensor 36 to reach the edge of sensor 37
due to time-space restriction, it must be the return of the previous target in
sensor 37, and this target is different from the target in sensor 36. Therefore, in
the DAG of (a-3), the edge between S36 and S37 was deleted. Deletion of this
edge improved the lower bound from 9 to 10, which verified the effectiveness of
the dynamic counting for lower bound improvement.

Random Deployment: To further investigate the performance of dynamic
counting method, we evaluated the target counting performances when the sen-
sors are randomly deployed. The setting is shown in Fig.9(a), in which sensors are
deployed with density of 0.2 per square meter in an 100m*100m area. A subregion
in the centric part of the area is selected as the AOI. So that in this evaluation,
the number of targets within the AOI may change overtime, therefore, we delete
line 14 in algorithm 3 in simulation. The number of targets in AOI given by both
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dynamic and static counting algorithm were evaluated. The result in a 100 sec-
onds experiment is shown in Fig.9(b). We can see that the lower bound given by
dynamic counting is slightly better than that given by static counting. The CDF
curve in Fig.9(c) summarized the performance difference, in which the counting
gap indicates the gap to the real number of targets. In conclusion, dynamic count-
ing showed better performance than the static counting.

6.2 Evaluation on Upper-bound

To verify the upper bound of counting, Algorithm 2 was implemented in PSen-
sorSimulator. For each isolated island formed by “on” sensors, circumference
and area were calculated with numeric method. According to Theorem 4, ratio
between predefined separation radius and sensing radius matters. Therefore, we
calculated the upper bound with different ratio. As shown in Fig.10, the upper
bound could be twice to 4 times to the ground-truth according to different ratios.

6.3 Evaluation on Separation Distance

Theorem 5 gives a non-trivial minimum separation distance γ for precise count-
ing. We compared this γ with classical separation distance 4R by simulation. As
shown in Fig.11, during 100 seconds experiment, the γ is always below 4R. This
results told us that, introducing dynamic information can improve the separation
for precisely counting by about R

4 .

7 Conclusion

This paper investigated target counting problem by a network of binary prox-
imity sensors. For the lower bound of the target number, we considered the
time-space restriction between a sequence of snapshots and proposed a dynamic
counting technique which improved the lower bound given by individual snap-
shot. As for the upper bound of the target number, we showed that if a minimum
separation distance between targets was considered, an upper bound could be
given by packing theorem. Moreover, a dynamic counting algorithm was pro-
posed to improve this upper bound. At last, by matching the upper bound and
lower bound, we investigated the condition for precisely target counting and
showed that the minimum separation distance for precisely counting could be
R
4 smaller than the previously known limit 4R. In the future work, the dynamic
counting method can be exploited to enhance existing multiple target tracking
algorithms. Apart from theoretical works, dynamic counting technique can be
applied in occupying sensing or enemy detection and tracking.
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Abstract. Sensor networks operating in the 2.4 GHz band often face
cross-technology interference from co-locatedWiFi andBluetooth devices.
To enable effective interference mitigation, a sensor network needs to know
the type of interference it is exposed to. However, existing approaches to
interference detection are not able to handle multiple concurrent sources
of interference. In this paper, we address the problem of identifying multi-
ple channel activities impairing a sensor network’s communication, such as
simultaneousWiFi traffic andBluetooth data transfers.We present Speck-
Sense, an interference detector that distinguishes between different types of
interference using a unsupervised learning technique. Additionally, Speck-
Sense features a classifier that distinguishes between moderate and heavy
channel traffic, and also identifies WiFi beacons. In doing so, it facilitates
interference avoidance through channel blacklisting. We evaluate Speck-
Sense on common mote hardware and show how it classifies concurrent
interference under real-world settings. We also show how SpeckSense im-
proves the performance of an existingmultichannel data collection protocol
by 30%.

1 Introduction

Low-power wireless sensor networks (WSN) operating in the 2.4 GHz spectrum
often face interference from other wireless technologies that share the same
frequency band. Typically, IEEE 802.15.4-compliant sensor nodes compete for
channel access with an increasing number of WiFi and Bluetooth devices such
as laptops, smartphones, and tablet PCs. This results in long contention delays
and collisions that degrade sensor network performance [1, 2].

Several mitigation approaches [3,1,4,2] have been proposed to tackle the prob-
lem of external interference in sensor networks. Knowing the type of interference
enables a sensor node to choose a suitable mitigation strategy [5, 6, 1]. In this re-
gard, interference classification is prerequisite towards mitigation. Recent work
on interference classification [6,7] addresses the problem by mapping RSSI obser-
vations or patterns of corrupted packets to a known class of interference such as
WiFi, Bluetooth or microwave ovens. Such designs are intrinsically constrained by
a direct mapping of channel observations to a fixed number of interference classes.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 35–51, 2015.
� Springer International Publishing Switzerland 2015



36 V. Iyer, F. Hermans, and T. Voigt

In particular, they do not address the predominant case of multi-source interfer-
ence, i. e., multiple device types and instances that transmit on a channel. For ex-
ample, a combination of WiFi and Bluetooth interference on a channel is likely to
be reported as either WiFi or Bluetooth, depending on the dominant interferer.
In this regard, the detection of multiple interfering sources offers interesting in-
sights on channel utilization. The number of distinct interfering sources on a chan-
nel has a marked influence on its utilization – for example, concurrent traffic over
WiFi and Bluetooth traffic has a greater interference impact than either in isola-
tion. Moreover, interfering channel traffic from multiple sources can be indepen-
dently inspected for temporal patterns such as periodicity. This enables a wireless
device to identify periodic control signals on an activeWiFi channel, andblacklist it
for sensor network operation. Lastly, multiple interference detection enables wire-
less devices to disambiguate external interference from in-network channel traffic.
This provides a clearer context for motivating interference mitigation mechanisms
as in [1, 2].

We present SpeckSense , a service that enables nodes to detect and classify
multiple sources of interference in the 2.4 GHz band. In doing so, SpeckSense
provides explicit recommendations on which channels are good for use. In con-
trast to earlier work [6,8], SpeckSense performs an explicit interference detection
step prior to classification. The detection step uses RSSI values to account for
channel observations, and clusters them based on pre-determined RSSI intervals
in which they belong and also the time duration for which a sequence of similar
RSSI values persist. Each cluster thus represents a distinct interference pattern,
which is handed to a classification algorithm.

SpeckSense is primarily designed for avoiding WiFi and other forms of severe
interference in indoor WSN deployments. To this end, SpeckSense performs two
main operations — distinguishing between different forms of data traffic (WiFi
beacons, periodic and non-periodic channel traffic) and identifying the number
of sources transmitting periodic signals – for example, WiFi access points. Speck-
Sense uses the average time interval between recurring RSSI patterns to distin-
guish between conditions of moderate (web browsing) and intense (bulk data
transfer) channel traffic. In doing so, SpeckSense provides a channel utilization
measure that determines whether the channel is suitable for reliable commu-
nication. Furthermore, identifying beacons enables a sensor node to effectively
blacklist channels affected by WiFi interference.

We evaluate SpeckSense in an office corridor characterized by many interfer-
ence sources that include several WiFi and Bluetooth-enabled devices. We show
that SpeckSense distinguishes between the predominant sources of interference,
and in particular, identifies multiple WiFi access points in the presence of data
traffic. We demonstrate the usefulness of SpeckSense by adding it to a multi-
channel data collection protocol [2]. We evaluate the combined solution on a
large-scale indoor testbed and observe a significant improvement in data yield
facilitated by avoiding interfered channels.
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In this paper we make the following contributions:

– We design and develop SpeckSense, a new approach for detecting and clas-
sifying multiple concurrent sources of interference in the 2.4 GHz spectrum.

– We facilitate interference avoidance by distinguishing between different ex-
tremes of channel traffic (web browsing vs. file transfers), and identifying
periodic WiFi beacons.

– We show how an existing data collection protocol can benefit from using
SpeckSense to recommend WiFi-free channels. Our experimental evaluation
on a large testbed comprising 85 nodes shows a 30% improvement in data
yield when using SpeckSense.

2 SpeckSense Design

Indoor environments such as offices or residential areas are witness to concurrent
wireless activity across multiple standards such as WiFi, Bluetooth and IEEE
802.15.4 devices that operate in the 2.4 GHz spectrum. The resulting channel
interference is therefore a combination of multiple transmissions that differ from
each other in radio bit rate, message size, transmit power, channel attenuation
and timing constraints [8]. As a result, their respective emissions exhibit char-
acteristic patterns in intensity, duration, and timing. For example, emissions
from a WiFi access point are distinctly different from a Bluetooth device’s emis-
sions. The central idea of SpeckSense is to disambiguate the concurrent emissions
from the interferers so that the present interferers can be identified. To do so,
SpeckSense accounts for collective emissions from the interferers by sampling the
received signal strength (RSSI), i.e., the energy in the channel.

SpeckSense comprises two components, that perform interference detection
and classification in sequence. The interference detection uses an RSSI sampler
that captures the emissions from all interferers as a series of RSSI bursts. Inter-
ference detection involves an unsupervised learning approach, i. e., clustering, to
distinguish the bursts from the different interferers. The output of the interfer-
ence detection component is passed to a classification component that inspects
each cluster for periodicity. Doing so enables SpeckSense to identify WiFi bea-
cons on a given channel, as well as periodic traffic from other sources besides
WiFi routers. Additionally, the classification component quantifies channel oc-
cupancy, which enables blacklisting of channels that are severely interfered.

Unlike earlier work [6, 8], SpeckSense decouples interference detection from
explicit classification. This decoupling allows distinguishing the emissions from
multiple interferers, and also classifying them in isolation. We now describe
SpeckSense’s components in more detail.

3 Interference Detection

SpeckSense’s interference detection consists of an RSSI sampler and a clustering
process, which are described in the following subsections.
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3.1 RSSI Sampler

The RSSI sampler captures the energy in the channel due to the interferers’
emissions, e.g., WiFi beacons or Bluetooth data packets. It continuously reads
the RSSI register of the sensor nodes’ radio chip. The readings are quantized,
run-length encoded, and so-called bursts, i. e., contiguous sequence of high RSSI
samples, are identified. The detected bursts are then processed by the clustering
component.

Quantization is motivated by two observations. First, the emissions from a
given interferer may vary slightly over time in their strength. These minor vari-
ations are not relevant to detecting the interferer, and hence they can be ab-
stracted away by quantizing the RSSI reading. Second, storing raw RSSI readings
is prohibitively memory-intense on a constrained sensor node. Storing quantized
readings in memory is a simple means to reduce the memory requirement.

The number of quantization intervals represents a trade-off between the num-
ber of distinctly observable RSSI patterns and memory overhead. Using a higher
number of intervals allows to capture more distinct channel activities, but re-
quires more memory to store the observations. We establish power level 1 for
RSSI values below −90 dBm, and divide the RSSI range above > −90 dBm
evenly over the remaining number of levels. For example, using four quantiza-
tion intervals would require defining the following power levels: power level 1
(RSSI ≤ −90 dBm), power level 2 (−90 dBm < RSSI ≤ −60 dBm), power level
3 (−60 dBm < RSSI ≤ −30 dBm), and power level 4 (−30 dBm < RSSI).

The quantized RSSI readings are then run-length encoded to further reduce
the memory overhead. Run-length encoding works by simply counting the num-
ber of subsequent occurrences of a power level. For example, consider the fol-
lowing RSSI sequence: −92, −91, −57, −58, −57, −29, −28, −59, −59, −59,
−94. Quantization and run-length encoding produces the following sequence of
2D vectors: (1, 2), (3, 3), (4, 2), (3, 3), (1, 1). The first component of each vector
denotes the power level, and the second component denotes the duration of the
observation.

Finally, the RSSI sampler extracts bursts of activity from the quantized,
run-length encoded vector sequence. A burst is defined by a contiguous sub-
sequence where the channel is not idle, i.e., the power level is greater than
1. The RSSI sampler represents the burst by the weighted mean power level
and the total duration of the subsequence. The previous example contains the
non-idle subsequence (3, 3), (4, 2), (3, 3), which corresponds to the RSSI burst:
(3×3+4×2+3×3

3+2+3 , 3 + 2 + 3) = (3.25, 8).
SpeckSense’s interference classification relies on the temporal patterns of an

interferer’s emissions, so it is important that processing a sample on a sensor
node takes a constant amount of time. Otherwise, the duration value in an RSSI
burst would be misleading. In our implementation, processing an RSSI sample
(reading it, quantizing it, and performing run-length encoding) takes 47 �s on
average, giving a sampling rate of 21 KHz. This allows the detection of energy
levels from WiFi beacons and Bluetooth data packets that have transmission
times several magnitudes higher than 47 �s [9, 8]. More crucially, the variance
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in the processing delay is 0.04 �s, which is low enough to assume practically
constant sampling speed. As per the suggestions by Boano et al., the RSSI
sampler is implemented to avoid saturation in the radio transceiver’s automatic
gain control [10].

3.2 Clustering Algorithm

The clustering component groups together RSSI bursts that are likely to come
from the same interferer. In a later step, the clusters can then be analyzed
independently from each other to classify the interferer.

Prior to clustering, the RSSI bursts are normalized. Note that the mean power
level of a burst can be at most 4, whereas the duration of a burst can take much
larger values. Thus, normalization is required to avoid burst duration having
a dominating influence on the clustering. Considering that the emissions could
take 10 ms (microwave oven emissions), we scale up the average power level for
all bursts by a factor of 16.

SpeckSense uses the k-means algorithm to group a set of normalized RSSI
bursts B into clusters. k-means clustering is a general algorithm to group a set
of observations into clusters such that similar observations belong to the same
cluster [11]. We briefly describe the algorithm’s operation.

Assume the bursts in B are to be grouped into k clusters. The cluster i
is represented by a 2D vector μi called its cluster center. The vector’s first
component represents the average power level of bursts in the cluster, and the
second component represents the average duration. Initially, the k cluster centers
are chosen at random from the RSSI bursts in B. Then, the algorithm repeatedly
assigns RSSI bursts to clusters and updates cluster centers until a termination
condition is met.

Cluster assignment. Each RSSI burst is assigned to the cluster that has the
closest center. More specifically, an RSSI burst bi ∈ B is assigned to the cluster
j whose center has the minimal Euclidean distance to bi. We denote the cluster
center to which bi is assigned by m(bi), defined as m(bi) = argminμj

‖bi − μj‖.

Cluster center update. After the cluster assignment, the cluster centers are re-
computed. Let Mj be the set of bursts that were assigned to the jth cluster in
the preceding step. Then, the cluster center μj is updated to be the average of
all bursts in Mj . Specifically, μj =

1
|Mj |

∑
b∈Mj

b.

Termination. The preceding two steps are repeated until a cost function (which
is evaluated after each update step) converges, i. e., decreases by less than a fixed
threshold. The cost function C describes how close the bursts are to the centers of
their assigned clusters, and thus intuitively reflects the quality of the clustering:
C = 1

|B|
∑

bi∈B‖bi − m(bi)‖2. We have empirically found that a threshold of

0.001 gives good clustering performance.
The described algorithm groups the RSSI bursts into k clusters. However, the

number of clusters k, which is related to the number of interferers, is not known
a priori. Therefore, SpeckSense iteratively executes the algorithm for different
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(a) Only WiFi AP 1 active (b) WiFi AP 1 and Bluetooth ac-
tive

(c) WiFi AP1 and AP2 active

Fig. 1. Clusters detected by SpeckSense in the anechoic chamber for different interfer-
ence scenarios. Each marker represents an RSSI burst, and the marker’s shape indicates
which cluster the burst was assigned to. The number of clusters found by SpeckSense
corresponds to the number of interferers.

values of k. Starting from k = 1, the cost function at termination is noted and k
is increased by one. When the difference in cost at termination for k and k + 1
is less than 0.001, the algorithm terminates.

In summary, the clustering component arranges the RSSI bursts into groups
such that bursts that are similar in duration and power level are assigned to
the same group. The underlying intuition is that similar bursts are likely to
come from the same interferer. The clustering component outputs the number
of clusters k that yielded the best clustering, the center clusters μ1, . . . , μk, and
which burst was assigned to which cluster. To validate SpeckSense’s ability to
cluster different interference patterns, controlled experiments were performed
in an anechoic chamber. Figures 1(a), 1(b) and 1(c) show the different clusters
detected by SpeckSense in a set of artificially induced interference scenarios. The
specific cases comprise beacons from a WiFi Access Point AP1, a combination
of WiFi beacons from AP1 and Bluetooth traffic between a pair of devices, and
beacons from two WiFi access points AP1 and AP2. Each point in the figures
represents a RSSI burst, and bursts belonging to a cluster have the same marker.
The figures show that it is possible to disambiguate between different emissions
based on average burst size (Figure 1(b)), as well as power level (Figure 1(c)).

Note that emissions from different sources may overlap in time, for exam-
ple, microwave emissions overlapping with Bluetooth bursts. In such cases, the
clustering algorithm detects only the dominant interferer (i. e., the microwave).
SpeckSense addresses this concern by observing RSSI values over a longer du-
ration (i. e., one second), thereby increasing the likelihood of detecting multiple
interference sources.

4 Interference Classification

SpeckSense classifies interference by inspecting each detected cluster for tempo-
ral patterns in RSSI bursts. In doing so, SpeckSense informs link-layer protocols
whether the observed channel activity is periodic, bursty or a combination of
both. This facilitates a meaningful assessment of channel quality and enables
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(a) Bluetooth file transfer, Avg. Interburst in-
terval = 253 ms
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(b) WiFi-enabled file download, Avg. Interburst
interval = 23 ms
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(c) Web browsing over WiFi, Avg. Interburst in-
terval = 146 ms
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Fig. 2. Empirical CDFs of the inter-burst separations per detected cluster, for different
interference scenarios. SpeckSense distinguishes between different extremes of channel
traffic, using a 100 ms threshold on the observed average inter-burst separation.

nodes to make informed decisions on channel selection. In this regard, Speck-
Sense deviates from earlier classification work such as SoNIC [6] that maps chan-
nel observations to specific labels such as WiFi, Bluetooth and microwave. This
section elaborates on two aspects of interference classification, namely distin-
guishing different extremes of prevalent 2.4 GHz data traffic and identifying
periodic signals such as WiFi beacons.

4.1 Distinguishing Channel Traffic

Interference in the 2.4 GHz spectrum is largely attributed to concurrent traffic
over WiFi and Bluetooth, as well as electromagnetic emissions from microwave
ovens. The impact from channel interference on a wireless network application
is determined by several factors such as device usage patterns, application data
requests as well as underlying communication protocols in use. Therefore, it
is reasonable to expect that certain applications contribute to a greater degree
towards channel interference than others – for example, a file download overWiFi
causes more channel interference than web browsing. SpeckSense distinguishes
between diverse applications at the physical layer based on their characteristic
contribution to channel traffic. Specifically, SpeckSense computes the average
inter-burst separation for each interference cluster, and checks whether it is below
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a predetermined threshold. If so, the channel is said to be severely interfered and
hence blacklisted for sensor network operation.

To empirically determine the threshold inter-burst separation, we conduct
experiments involving controlled interference, in which SpeckSense gathers RSSI
samples for different scenarios that included a Bluetooth file transfer, WiFi file
download, WiFi web browsing, video streaming over WiFi, WiFi repeater traffic,
and microwave oven emissions. Figure 2 shows the cumulative distribution of
the inter-burst separation for different clusters for some of the aforementioned
cases (for additional details, refer to [12]). We observe that for cases where
bursty traffic is involved, such as in Figures 2(b), and 2(d), 80% of the inter-
burst separations are below 100 ms. Note that channel activity bursts owing
to Bluetooth transfers and WiFi-enabled web browsing are not as frequent as
WiFi file download and repeater traffic. This is attributed to factors such as
Bluetooth frequency hopping that effectively schedules packet transmissions over
non-overlapping channels, as well as temporally sparse patterns in web browsing.
Further, a reduced average inter-burst separation is correlated to an increase in
the number of detected clusters.

Based on these observations, SpeckSense uses an average inter-burst separa-
tion threshold of 100 ms, which has shown good results in distinguishing condi-
tions of light channel traffic (cf. Figures 2(a), and 2(c)) from severe interference
(cf. Figures 2(b) and 2(d)).

4.2 Identifying Periodic Beacons

Concurrent traffic over WiFi constitutes a major part of cross-technology in-
terference in the 2.4 GHz ISM band [1]. Therefore it is necessary that a sensor
node avoids operating on channels that overlap with WiFi activity. While usage
patterns of WiFi may vary over time depending on varying user needs, there is
a stable pattern in control signaling on the WiFi channels. Predominant IEEE
802.11 management frames include WiFi beacons, probe responses from access
points, and probe requests from WiFi clients. Particularly, beacon messages are
sent at a default periodic interval of 100 ms. Identifying them can thus be re-
garded as an indication of WiFi presence. Towards this end, SpeckSense uses the
results from its multi-source interference detector, and classifies a clustered se-
quence of periodically recurring RSSI bursts as WiFi beacons. This is, however,
a non-trivial problem and entails addressing the following challenges. WiFi man-
agement frames such as probe requests and probe responses may have similar
on-air transmission times as beacons, and are also transmitted over non-periodic
intervals (see Figure 3(a)). Moreover, beacons from multiple WiFi access points
within interference range may have similar on-air transmission times and RSSI
values (see Figure 3(b)), and get clustered together. The random occurrences of
WiFi probes and beacons from multiple APs collectively represent a challenge
in identifying periodic patterns.

Accounting for these challenges, SpeckSense employs an algorithm (see Algo-
rithm 1) that is run once for each cluster obtained from the interference detection
outlined in Section 3.2. In every run, the input to the algorithm is a temporal
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(a) Periodic WiFi beacons interspersed by
probe messages.

(b) Periodic WiFi beacons from two access
points

Fig. 3. WiFi beacons may be interspersed by probe messages or beacons from other
access points, making their identification non-trivial

Algorithm 1. Algorithm to detect periodic bursts

1: Inputs
2: � n is the number of RSSI bursts over

time T
3: � dT = (d1t , d

2
t . . . d

n−1
t ) is the sequence

of inter-burst separations
4: Outputs
5: � P (dτ ) is the confidence value for every

dτ ∈ L
6: � tp is the detected periodicity of the

sequence
7:
8: L ← ∅
9: for dit ∈ dT AddToSet(L, dit) end for

10: for dit ∈ (d1t , d
2
t . . . d

n−1
t ) do

11: s ← dit
12: for djt ∈ (di+1

t , di+2
t . . . dn−1

t ) do
13: s ← s+ djt
14: UpdateSet(L, s)
15: end for
16: end for
17: for each dτ ∈ L do
18: nτ ← � T

dτ


19: P (dτ ) = 2C(dτ )/(nτ (nτ + 1))
20: end for
21: tp = argmaxdτ

P (dτ )

sequence of RSSI bursts from a cluster. Let ti denote the time at which the ith
burst in the cluster was recorded by the node, where 1 ≤ i ≤ n. The inter-burst
separation is denoted by the sequence dT = (t1 − t0, t2 − t1, . . . , tn − tn−1).

The algorithm populates a set L with values denoting time periods at which
RSSI bursts are captured. This is performed by inspecting every inter-burst
separation value in the sequence dT , and checking to see whether they are already
included in the set L (Procedures 1, line 2 in AddToSet). Specifically, the check
takes the form of a modulus operation, such that an inter-burst separation of
kdτ is not added to L, if dτ has already been included. The modulo operation
allows a certain variance εδ to account for factors such as clock speed variations
of the node recording RSSI, as well as channel backoffs by the interfering source.
Setting εδ to 7 RSSI sampling intervals allows a jitter of 2εδ ≈ 0.65 ms, which
we have found to empirically give good results.

After populating L, the algorithmmaps every dτ ∈ L to a counter value C(dτ ).
C(dτ ) is a measure of how periodic the RSSI sequence is in dτ . Intuitively, the
algorithm checks over a time window T, whether there are RSSI bursts at times
dτ , 2dτ , 3dτ . . . kdτ , where k = � T

dτ
�. Since the entries in L are determined from

dT , this step is performed by scanning every value dit ∈ dT in sequence. For every
dit, the algorithm adds the inter-burst separations from di+1

t to dn−1
t , and checks

at each step, whether the partial sum is periodic in any dτ ∈ L (Procedures 1,
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Procedures 1. Updating entries in candidate set L

1: procedure AddToSet(L, dt)
2: if ∀dτ ∈ L, dt (mod dτ ) ∈

(εδ, dτ − εδ) then
3: L ← L ∪ dt
4: C(dt) ← 0
5: end if
6: end procedure

1: procedure UpdateSet(L, dt)
2: if ∃dτ ∈ L|dt (mod dτ ) �∈

(εΔ, dτ − εΔ) then
3: C(dτ ) ← C(dτ ) + 1
4: else
5: L ← L ∪ dt
6: C(dt) ← 1
7: end if
8: end procedure

line 2 in UpdateSet). If not, the sum is added to the list, and its count is set to 1
(Procedures 1, lines 5–6 in UpdateSet). In general, if nτ denotes the number of
RSSI bursts that are periodic in dτ over time T , then nτ = � T

dτ
�. This results in

a maximum of 1
2nτ (nτ +1) summations that are periodic in dτ , or equivalently,

C(dτ ) ≤ 1
2nτ (nτ + 1). Therefore, the fraction P (dτ ) = 2C(dτ )/(nτ (nτ + 1))

represents a normalized confidence measure for periodicity in dτ . Possible values
for P (dτ ) range from 0 and can also exceed 1, especially when multiple RSSI
bursts occur with the same periodicity, as in Figure 3(b). The periodicity check
in UpdateSet is allowed a greater threshold, i. e., εΔ > εδ, in order to to account
for accumulated variance over summing up inter-burst separations. We find that
setting εΔ to 30 RSSI sampling intervals, or approximately 1.4 ms, gives good
results. SpeckSense uses round(P (dτ )) as a measure for the number of distinct
RSSI subsequences that are periodic in dτ .

The period tp of the RSSI sequence is determined to be argmaxdτ
P (dτ ), with

the additional constraint, round(P (dτ )) ≥ 1. The value of tp is approximately 100
ms for WiFi beacons, which is the default beaconing interval on most WiFi access
points. Algorithm 1, however, is also generally applicable to detect RSSI bursts
of any period, in contrast to other approaches [9, 13] that explicitly check for
predetermined values. This makes it a viable option to detect and classify other
forms of interference that include periodic transmissions in 802.15.4 networks [14]
as well as microwave bursts [12].

5 Evaluation

We implement SpeckSense on the Tmote Sky hardware featuring a CC2420 radio
transceiver. There are, however, no special features that prevent porting Speck-
Sense to other sensor node hardware platforms that allow fast RSSI sampling.
The code for SpeckSense is implemented using the Contiki operating system
and fits within 21 KB of program memory. The overall RAM usage is contained
within 6 KB, of which the clustering algorithm takes only about 4 KB of program
memory and a total of less than 800 bytes of RAM.

We evaluate SpeckSense’s ability to distinguish between multiple sources of
interfering traffic, and its ability to identify the presence of WiFi access points in
the 2.4 GHz band. We conduct our experiments in two indoor environments: an
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Fig. 4. Experimental setup in the office corridor. We evaluate SpeckSense at locations
A, B and C in the presence of WiFi and Bluetooth interference.

office corridor and a 85-node indoor testbed that spans three floors. These envi-
ronments represent challenging conditions for SpeckSense because they induce
strong multipath fading. We present our results in the following order. First,
we showcase the multi-source interference detection results of SpeckSense from
the office corridor. Then, we show how SpeckSense improves the data gathering
performance of a multichannel protocol [2] on a 85-node testbed.

5.1 Detecting Concurrent Interferers

Indoor environments represent challenging conditions for SpeckSense due to non-
line of sight between nodes that causes multipath fading effects. The extent of
these effects may also vary over time, e.g., due to people moving, thereby increas-
ing the variance in received signal strength on a sensor node. SpeckSense relies
on RSSI observations to detect interference, so it is important to characterize
its performance in such an environment.

Experimental Setup. The setup in the office corridor is shown in Fig. 4. There
are two WiFi access points (operating on WiFi channel 1 and 11, respectively)
a WiFi repeater (operating on channel 1), as well as four Bluetooth devices.
Sensor nodes run SpeckSense at locations A, B and C. Nodes at location A
face interference from WiFi AP 1 and the WiFi repeater, as well as sporadic
Bluetooth interference. Nodes at location B operate on a different channel and
are exposed to Bluetooth interference as well as beacons from WiFi AP 2. Nodes
at location C face interference from Bluetooth and WiFi data transfers.

We perform over 100 experimental runs in sequence. In each run, nodes per-
form RSSI sampling for 1 second, followed by interference detection and clas-
sification. The RSSI sampler uses four power levels to quantize signal strength
information, as described in Sec. 3.1. Each detected interference cluster is classi-
fied as follows: (i) WiFi beacons that have a period of 100 ms, (ii) periodic traffic
and (iii) non-periodic traffic. To quantify SpeckSense’s performance, we define
a detection rate for every interference class. The detection rate for an interfer-
ence class is measured as the percentage number of runs in which SpeckSense
identifies it.

Data traffic from IEEE 802.15.4 compliant sensor nodes also contributes to
co-channel interference in the 2.4 GHz spectrum. To validate that SpeckSense
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(b) Loc. B
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(c) Loc. C
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(d) Loc. A, with 802.15.4 traffic
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(e) Loc. B, with 802.15.4 traffic
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(f) Loc. C, with 802.15.4 traffic

Fig. 5. Detection rates for the three locations in the office corridor. For window sizes
of three and larger, SpeckSense’s detection rate exceeds 90%.

can classify multiple interferers even in the presence of WSN activity, we perform
our experiments under two scenarios, namely with and without 802.15.4 traffic.
To generate the channel traffic, we add two sensor nodes to the setup – one node
sends packets every 125 ms, while the other receives them. In every setup, the
sender node is co-located with the node running SpeckSense, and the receiver
node is placed 6 m away from the sender. We refer to these nodes as the 802.15.4
sender and the 802.15.4 receiver.

Results. Figure 5 shows the detection rates for SpeckSense at different lo-
cations, both in the presence and absence of 802.15.4 traffic. Accounting for
multipath fading effects that inhibit a seamless classification, we aggregate the
detection rates over a window representing a sequence of runs. An interference
class is detected when it is observed at least once over the window. The plots
show the detection rate of SpeckSense for different window sizes. SpeckSense
achieves a detection rate of over 90% in all cases when using a window size of
3 or greater. Depending upon the specific interference context described in the
experimental setup, non-periodic and periodic traffic relate to different sources
of channel activity. For example, periodic traffic in Figures 5(a), 5(b), and 5(c)
represents periodic TCP bursts in WiFi data transfers. In contrast, periodic
traffic in Figures 5(d), 5(e), and 5(f) also comprises additional 802.15.4 traffic,
which has a period of 125 ms. Non-periodic traffic at location A relates to WiFi
data transfers, and at locations B and C, relates to a combination of WiFi and
Bluetooth data traffic.

Channel activity in the office corridor also includes beacons from additional
WiFi APs outside of our control, such as the university’s WiFi. Table 1 shows
the 50th and 90th percentile of WiFi access points that SpeckSense identifies
at different locations. In general, SpeckSense identifies fewer access points in
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Table 1. SpeckSense can detect multiple WiFi access points deployed over different
locations on the office corridor. The values (50th and 90th percentile) indicate that
SpeckSense can detect WiFi activity even in the presence of ambient 802.15.4 traffic.

Number of detected WiFi
access points (percentile)

802.15.4 Location A Location B Location C
traffic 50th 90th 50th 90th 50th 90th

No 3 4 1.5 4 1 3
Yes 1 3 2 4 1 2

the presence of 802.15.4 traffic. We attribute this to an artifact of our experi-
mental setup – the periodic 802.15.4 acknowledgement frames from the 802.15.4
receiver have burst durations similar to WiFi beacons. SpeckSense therefore de-
tects a cluster that has multiple, yet distinct periods, which our approach (see
algorithm 1) does not handle at present. We plan to address this issue in future
work. Nonetheless, the results show that SpeckSense identifies multiple access
points, even in the presence of Bluetooth and 802.15.4 traffic.

5.2 Improving Data Collection Performance

Data collection applications for indoor WSN deployments suffer from degraded
performance on account of WiFi interference. To mitigate the effects of exter-
nal interference, multichannel protocols [2] coordinate node communication on
different radio channels. These approaches achieve resilience against interference
by either hopping through a fixed sequence of channels [15, 16], or by switch-
ing channels when interfered [2]. However, they do not address the problem of
finding a relatively interference-free channel.

As a solution, we run SpeckSense independently on every node to perform
a deployment-time assessment of WiFi-free radio channels. We evaluate Speck-
Sense as a link-layer service for Chrysso [2], a multichannel protocol that adap-
tively switches radio channels on interfered nodes. Sensor nodes independently
run SpeckSense at network bootstrap and blacklist channels in which SpeckSense
detects WiFi beacons or interfering channel activity with an average inter-burst
separation less than 100 ms.

We compare SpeckSense’s results against three other strategies that differ
on channel selection policy, namely Chrysso default, Chrysso best channels, and
Chrysso threshold. Chrysso default employs a random channel selection scheme
over all 16 channels, whereas Chrysso best channels performs a random selection
over a restricted set of channels, namely 15, 20, 25 and 26. The channels are
chosen such that they empirically exhibit the best packet reception rates among
all other channels on the testbed [16], and do not overlap with commonly used
WiFi channels 1, 6 and 11. Chrysso threshold is closest in design and objective to
SpeckSense on interference avoidance, and ranks channels based on their quality.
The channel quality is computed as a ratio of the number of channel idle RSSI
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Table 2. Data collection performance (averaged over six runs) on a 85-node testbed,
highlighting the advantages derived from interference avoidance. SpeckSense with
Chrysso performs best compared to other alternatives on avoiding interfered channels.

Data collection performance
Protocol Data Duty Energy per

yield cycle delivered packet
Chrysso default 73.3 % 2.9 % 4.22 mJ
Chrysso best channels 95.3 % 2.3 % 2.6 mJ
Chrysso + threshold 91.4 % 2.4 % 3.1 mJ
Chrysso + SpeckSense 94.8 % 2.3 % 2.9 mJ

samples (RSSI ≤ -90 dBm) over the total number of RSSI samples, as suggested
by Musăloiu-E. et al. [17]. In our implementation, Chrysso threshold uses the
best four channels in decreasing order of channel quality.

We experimentally evaluate the aforestated strategies on the Indriya WSN
testbed [18], using a network of 85 nodes including the sink. Every node generates
one packet per minute over a two-hour duration, and duty cycles its radio wakeup
over an interval of 125 ms, using the X-MAC protocol [19]. We perform six
experimental runs for each variant of Chrysso described above.

Table 2 contrasts data collection performance of the revised Chrysso vari-
ants against its original implementation, Chrysso default. In general, avoiding
interfered channels improves both the average data yield and the energy per
transmitted packet for Chrysso. Specifically, running SpeckSense with Chrysso
increases the average data yield (packets received by the sink) by approximately
30% over Chrysso default. This improvement is mainly attributed to avoidance
of WiFi-interfered channels by SpeckSense. To validate our claim, we find that
SpeckSense blacklists 802.15.4 radio channels that overlap with commonly used
WiFi channels 1, 6 and 11, in more than 80% of the nodes. For the same reason,
Chrysso SpeckSense performs comparably with Chrysso best channels that ex-
plicitly avoids the aforesaidWiFi channels. The 95% confidence intervals for both
Chrysso SpeckSense and Chrysso best channels overlap on all three performance
metrics. The overlap indicates that neither variant outperforms the other, in
accordance with rules of analysis in [20]. However, SpeckSense presents a more
general solution that applies to indoor environments wherein co-located WiFi
networks may operate on channels other than 1, 6 and 11. Lastly, SpeckSense
outperforms rssi threshold on average data yield and duty cycle. This suggests
that for the same energy cost in RSSI sampling (334.6 mJ on average per node),
SpeckSense is more effective at avoiding WiFi-interfered channels than a simple
approach that computes channel utilization using a threshold. In conclusion, the
results show that an existing multichannel protocol such as Chrysso benefits
from the interference classification output provided by SpeckSense.
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6 Related Work

As the number of wireless devices operating in the license-free frequency bands
is steadily increasing, the problem of interference is receiving more attention. A
few other approaches are similar to ours in that they sample the RSSI. Zacharias
et al. [8] classify interference based on a fixed set of simple conditions. In contrast
to SpeckSense, their classification includes processing of computationally expen-
sive tasks such as FFTs and execution on a PC rather than on motes. Also Boers
et al. [21] sample the spectrum for interferer classification but they only target
interference occurring at regular intervals. Likewise, Zhou et al. [9, 13] propose
an algorithm that is restricted to detecting WiFi beacons from RSSI traces. An-
other approach based on spectrum sampling is by Bloessl et al. [22]. In contrast
to SpeckSense, their approach is limited to the detection of single interference
sources. Ansari et al. [23] propose an approach to detect WiFi networks by using
a synchronized pair of nodes to scan adjacent channels. In contrast, SpeckSense
bases its observations of multiple interferers on a single node. Rayanchu et al. [24]
detect WiFi access points and other non-WiFi devices using commodity WiFi
hardware. However, their approach relies on device-specific WiFi features and
involves computationally intensive processing, making it infeasible for resource-
constrained sensor nodes. Hermans et al. [6] present SoNIC interference clas-
sification without spectrum sampling relying only on the information provided
by corrupted packets. As their approach does not rely on spectrum sampling it
is less energy-consuming than SpeckSense but it does not provide higher level
information such as the number of WiFi access points. There are efforts for
channel selection that use the average energy in a channel [25, 17, 26], or packet
reception counts [27] as selection criteria. In contrast to these approaches, we
take the source of interference into account.

7 Conclusion

In this paper we have presented SpeckSense, a detection and classification scheme
for concurrent multi-source interference affecting wireless sensor networks. Ex-
periments in a real setting have shown that SpeckSense detects multiple inter-
ferers in over 90% of the cases. We have also evaluated SpeckSense as a low-layer
service to recommend interference-free channels for WSN data collection. Exper-
iments combining the results of SpeckSense with a multichannel protocol have
shown a significant improvement in data yield at lower duty cycle.
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Abstract. In order to provide useful energy saving recommendations,
energy management systems need a deep insight in the context of energy
consumption. Getting those insights is rather difficult. Either exhaus-
tive user questionnaires or the installation of hundreds of sensors are
required in order to acquire this data. Measuring the energy consump-
tion of a household is however required in order to find and realize saving
potentials. Thus, we show how to gain insights in the context of energy
consumption directly from the energy consumption profile. Our proposed
methods are capable of determining the user’s current activity with an
accuracy up to 98% as well as the user’s current place in a house with
an accuracy up to 97%. Furthermore, our solution is capable of detect-
ing anomalies in the energy consumption behavior. All this is mainly
achieved with the energy consumption profile.

1 Introduction

The realization of energy efficiency in buildings has become an important re-
search topic in industrial as well as research community. The main motivation
for this increasing importance is the conservation of energy in a world where
energy prices are always fluctuating and very sensitive to political as well as
natural crises. This is also driven by the wide spread of wireless sensor networks
which made it possible to collect fine-grained data about the building context
as well as the context of its inhabitants. In this paper, we develop three novel
experiments which exploit the huge information provided by the smart home
to achieve the main goal of our research efforts which is to conserve energy in
smart homes while maintaining user comfort. The main focus of our work in
this paper is the analysis of our smart home dataset which we call from now
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on SMARTENERGY.KOM dataset1. SMARTENERGY.KOM dataset is a large
dataset which contains about 42 million data points of sensor readings and user
feedback which we have collected from two smart home environments for the
primary purpose of detecting human activities based on wireless sensor net-
works [2], thus to save unnecessary consumed energy. In the first deployment, a
wireless sensor network was deployed for about 82 days. More than 22 million
activity related sensor events were generated by corresponding sensors. The du-
ration of deployment 2 was about two months, during which about 20 million
sensor readings were recorded. We have used two types of wireless sensor nodes
in both deployments. On one hand we deployed Plugwise2 sensors for sensing the
appliance-level power consumption of the household. Each device in the house
was connected to a Plugwise sensor which measures the load of the device. On
the other hand we deployed Pikkerton3 sensors for sensing the temperature,
brightness as well as the motion in the environment. In both deployments, nine
daily user activities were monitored:

Deployment 1 : Sleeping, Watching TV, Not at Home, Reading, Eating, Cook-
ing, Working at PC, Making Coffee and Cleaning Dishes.

Deployment 2 : Sleeping, Watching TV, Not at Home, Reading, Eating, Making
Tea, Listening Radio, Slicing Bread and Ironing.

These activities have been chosenbased on the available electrical applianceswhich
can be monitored at home. Some of these activities like “Watching TV” can be di-
rectly related to the power consumption. Other activities such as “Sleeping” and
“Not at Home” can be indirectly inferred from the power consumption. This list
of activities does not necessarily contain all the activities performed by the user at
home.Therefore, we have provided the user with the option “Ignore”which implies
as a feedback that the user’s current activity does not belong to the list of activ-
ities provided by us. This option helps preserving the privacy of the user as well
by giving her/him the choice whether to report her/his current activity or not. All
sensor readings which are related to the option “Ignore” have been excluded from
the dataset before conducting our experiments. Based on these two deployments,
we have built an activity detection frameworkwhich uses the feedback provided by
the user to learn his current activity and relate it to the collected sensor readings.
The remainder of this paper is structured as follows. Section 2 surveys related re-
search projects whose main focus is the analysis of datasets collected by wireless
sensor networks in the context of smart home. In Section 3, we present our novel
concept for user localization in indoor environments based on real-time appliance-
level power consumption. In Section 4, we analyze the temporal relations between
the user activities and examine whether the discovered relations could increase the
accuracy of our activity detection framework. In Section 5, we analyze the user’s
daily power consumption behavior. We conclude the paper in Section 6.

1 The dataset is available for download under: http://www.kom.tu-darmstadt.de/
research-results/software-downloads/software/smartenergykom

2 http://www.plugwise.com/
3 http://www.pikkerton.com/
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2 Related Work

In recent years, analyzing datasets collected fromwireless sensor networks in smart
homes has become of great interest to computer science researchers.This is mainly
driven by the great potential offered by these datasets for developing IT services
which can improve the life quality as well as the energy efficiency of the smart
homes. Data mining techniques have been utilized in order to extract all the possi-
ble useful hidden patterns contained in such datasets. In the work of Chen et al. [4],
they analyzed a dataset which contains more than 100,000 sensor events collected
from two apartments. The primary purpose of their work was to recognize human
activities performed in these two apartments and understand the related energy
usage. They applied clustering techniques for identifying the normal power con-
sumptionpatterns, thus to detect abnormal energy usage.Using classification tech-
niques, they trained amodel for predicting the energy usage of an inhabitant based
on her/his currently performed activities. Another example is givenbyHoque et al.
[8], where 26 days of activity related sensor events collected from a single resident
home is analyzed. Based on the hypothesis that each activity will trigger a set of
specific sensors, they applied pattern mining to find all simultaneously fired sen-
sors. In the next step, different to [4], clustering is used for discovering events based
on previously extracted patterns. Besides, they utilized clustering for labeling the
instances. Finally, they build a classification model for recognizing the activities.
Fogarty et al. [6] analyzed 3.4 million sensor readings from a home shared by two
adults. Their goal was to detect water usage related activities by configuring mi-
crophone based sensors that listen for the water flow into and out of a home. They
applied the classification algorithm support vector machine to train a model for
recognizing different types of water usage. Fluctuations of sound waves returned
by the sensors are considered as features for training the classification model. Ac-
tivated sensors together with their temporal characteristics are then combined to
form patterns for identifying the activities. Different from the aforementioned re-
search projects, our analysis is conducted on a much larger dataset. Moreover, the
three experiments conducted in our work have not been covered by any of these
research works although similar data mining techniques are utilized.

3 Sensing Power Consumption for User Localization

User localization has always been one of the central challenges in the design
of smart home environments. A wide variety of sensors such as Passive Infrared
sensors can be used in order to achieve this goal. Currently, the usage of electric-
ity consumption data for occupancy detection started to gain attention among
the research community as we see in [11] where the authors used the data col-
lected from smart meters for the purpose of occupancy detection. This leads us
to the idea of utilizing new kind of sensors for user localization in smart home,
namely the appliance-level power sensors which sense the power consumption of
individual household appliances. Therefore, in this paper we examine the usage
of these sensors for the purpose of user localization in smart home where we aim
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at localizing users with a better resolution than shown in [11]. Usually, users per-
form specific activities in specific places, such as cooking in the kitchen, sleeping
in the sleeping room and so on. Therefore, each activity is associated with cer-
tain appliances which consume energy during this activity. In other words, by
knowing the devices which are consuming energy, we can infer the location of
the user in the smart home. In order to verify this theory, we use supervised
learning techniques where the input of the classification model will be the user’s
real-time appliance-level power consumption and the output is the location of
the user. In the following sections, we explain the construction of the training set
for the supervised learning model and we evaluate the accuracy of this model.

3.1 Construction of the Training Set

The first step in supervised learning is to construct a training set for building
the classification model. As mentioned before, each user’s location in the smart
home is accompanied with a set of sensor readings representing the real-time
appliance-level power consumption. These sensor readings represent the input
for the supervised learning model along with the labels which represent the user’s
location. Sensor readings were recorded every ten seconds during the deployment.
However, activities normally last for several minutes or even hours e.g. sleeping.
In other words, if we directly construct a training set from these sensor readings,
the size of the training set will be extremely large leading to an inefficient model
construction. Therefore, we need to reduce the size of the training set without
affecting the accuracy of the trained classification model. To this end, we di-
vide the whole time series of sensor readings into timeslots of two minutes. We
chose the period of two minutes as it helps achieving a good accuracy while min-
imizing the overlapping between activities in one timeslot. Then, for each sensor,
we extracted its maximum value in each timeslot as one feature for constructing
the feature vector. This means, every two minutes will represent a training in-
stance in which the features are the maximum values of sensor readings during
this timeslot. In order to provide the labels of the training instances, we relied on
the user feedback which informs us about the user current activity. By knowing
the current user activity, we can infer the current location of the user, because
each activity is performed in one and only one location. The labeling process
mainly relies on the time interval between one activity and the next activity,
namely the duration of each activity. Therefore, by examining in which time
interval the timestamp of an instance is falling into, we can assign the location
of the corresponding activity in that time interval to the instance. The final gen-
erated form of the instances is shown in Eq. 1, where Sn max(sloti) means the
maximum sensor value of sensor n in ith timeslot, and m is the total number
of timeslots. Therefore, the training set is composed by a set of such instances
< I1, I2, ..., Im >.

Ii =< S1 max (sloti) , S2 max (sloti) , ..., Sn max (sloti) ,

Class(sloti) > i ∈ [1,m]
(1)
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3.2 Building and Evaluation of the Classification Model

After obtaining the training instances, we built the prediction model for both
deployments by applying the random forest classifier provided by Weka [7]. We
have chosen the random forest algorithm as it proved to be the most suitable
algorithm for our dataset as well as other datasets similar to it as shown in
[5][16]. In order to find a good balance between accuracy and size of model e.g.
to prevent overfitting the model, we first build the model with training instances
of one week and then accumulate the training set by one week data points each
testing. This is necessary as in real-life deployments, the learning phase should
be as short as possible. Both deployments have the following four locations to
be predicted, by “Outside”, we refer to the instances where the user was not at
home:

Deployment 1 : Kitchen, Living room, Work area, Outside.

Deployment 2 : Kitchen, Living room, Sleeping room, Outside.

To evaluate the built model, we apply10-folds cross validation [12] which parti-
tions the training set into 10 subsets and always uses one subset to test the model
built upon the remaining 9 subsets. This process is repeated 10 times and pro-
duces a mean accuracy over all rounds. Figure 1(a) demonstrates the accuracy of
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Fig. 1. Accuracy of location recognition model built for deployment 2

the model built for deployment 2. As we can see in the figure, the random forest
algorithm reaches its highest accuracy, namely 85.5% with a training set of 8
weeks. However, we can conclude from the figure that a training set of 2 weeks is
already sufficient for acquiring a high accuracy. This conclusion is based on the
fact that the accuracy only rises about 2.5% when the number of weeks included
in the training set increases from 2 weeks to 8 weeks. This conclusion allows us
to shorten the duration of the data collection process in the deployments to come
which lessens the burden on the user in providing feedback and therefore leads
to a more acceptance of the system. In order to obtain a better understanding
of the classification accuracy, we list the precision, recall, and F-measure values
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Table 1. Accuracy by classes for deployment 2 by using two weeks dataset

Classes Precision Recall F-Measure

(K)itchen 87.40% 49.30% 64.10%

(S)leeping room 76.70% 99.80% 86.80%

(L)iving room 97.70% 94.10% 95.90%

(O)utside 0.00% 0.00% 0.00%

Table 2. Confusion matrix for deployment 2 by using two weeks dataset

(K) (S) (L) (O)

(K) 49.33% 44.91% 5.76% 0.00%

(S) 0.10% 99.83% 0.07% 0.00%

(L) 2.11% 3.82% 94.08% 0.00%

(O) 0.34% 99.49% 0.17% 0.00%

for each location in Table 1. Moreover, we show the associated confusion ma-
trix in Table 2. The result represents the model built for deployment 2 with a
training set of 2 weeks. Although the overall accuracy reached by this model is
83% (cf. Figure 1(a)), the recall values of the classes “Kitchen” and “Outside”
are very low with 49.3% and 0% respectively as shown in Table 1. In order to
understand the reasons for this phenomenon, we have to look on the confusion
matrix in Table 2. From the confusion matrix, we can see that 44.91% of the
instances of the class “Kitchen” have been falsely classified as “Sleeping room”
instances. Besides, almost all the instances of the class “Outside” have also been
falsely classified as “Sleeping room” instances. This can be explained based on
the following facts. First of all, the confusion between the classes “Outside” and
“Sleeping room” can be returned to the fact that when the user is outside or
sleeping, all Plugwise sensors were almost keeping in silence as no appliances are
required to perform these activities. Although, there are some values of Plug-
wise sensors (e.g. lamp sensor) related to the “Sleeping room” class stored in the
dataset, the lamp was in most cases not turned on while sleeping. Furthermore,
the instance of the class “Outside” were classified as “Sleeping room” and not the
other way around because “Sleeping room” is a dominant class. This is due to the
fact that the duration of sleeping is much longer than that of being outside in this
deployment which leads to more training instances for the class “Sleeping room”
than for the class “Outside”. The activity of “Eating” was the major reason of
falsely classifying instances of “Kitchen” into “Sleeping room”. This activity is
supposed to be identified through the Plugwise sensor connected to the radio in
the kitchen. However, the radio was not always turned on or only turned on for
a part of time during the activity of “Eating”. To solve this problem, we need
a strong discriminator which can help distinguishing the classes “Outside” and
“Sleeping room”. We thought about a feature which can be used in the learning
process in order to achieve this task. One feature which can fully perform this
role is the time of the day. By using the time of the day as a feature for building
the machine learning model, we add a strong discriminator especially between
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Table 3. Accuracy by classes for deployment 2 by using two weeks dataset (with time)

Classes Precision Recall F-Measure

(K)itchen 81.80% 73.30% 73.30%

(S)leeping room 98.20% 99% 98.60%

(L)iving room 96.10% 96.80% 96.50%

(O)utside 83.50% 86.30% 84.90%

Table 4. Confusion matrix for deployment 2 by using two weeks dataset (with time)

(K) (S) (L) (O)

(K) 73.32% 9.59% 4.99% 12.09%

(S) 0.99% 98.97% 0.03% 0.0%

(L) 0.65% 0.0% 96.84% 2.50%

(O) 7.77% 0.33% 5.57% 86.31%

the classes “Outside” and “Sleeping room”. We use the “hh:mm:ss” time format
as Weka can deal with this time format automatically. After using the time as
a feature in addition to the previous features, the overall accuracy of the model
has increased as shown in Figure 1(b). To better understand the effect of adding
the time to the feature set, we present the precision, recall, and F-measure values
for each location in Table 3. Furthermore, we present the associated confusion
matrix in Table 4. The results in these two tables have been achieved for de-
ployment 2 with a training set of 2 weeks. As we can see from Table 3 and
Table 4, the time has functioned as a strong discriminator between the class
“Sleeping room” and the classes “Outside” and “Kitchen” respectively. The use
of the time as a feature makes it easy to solve the confusion between the class
“Sleeping room” and the class “Outside” as the user in deployment 2 always
goes outside during the day and not during the night. The location “Kitchen”
can also benefit from the usage of time as a feature, because the user performs
most of his activities in the kitchen during the day.

4 Mining Human Behavioral Patterns

As humans tend to follow a regular routine in their daily life, their everyday
activities tend to happen in a certain order which mostly repeats itself every-
day. Discovering temporal relations between these daily activities may assist in
enhancing the accuracy of our activity detection framework. Hence, in this sec-
tion, we first try to detect any behavioral patterns which might exist in the data
collected in both deployments and then we examine whether these detected pat-
terns can help increasing the accuracy of the activity detection framework we
have previously developed.
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4.1 Extraction of Temporal Activity Patterns

As mentioned in [3], temporal relations between two activities (A, B) can be rep-
resented as A happens after B, before B, overlaps with B and so on. According to
the user feedback in both deployments, activities were performed consecutively
one after another which was a precondition for our dataset. Hence, we only ex-
amine the “before” and “after” relations between two activities. In the following
section, we introduce four terms related to the analysis before explaining the
operations of the pattern mining process.

Episode: According to [15], an episode is characterized by a pair of begin and
end timestamps, during which one or more activities can happen. As the user’s
daily activities are the major interest of our analysis, we specify the duration of
an episode as a single day. Hence, an episode is composed of all activities per-
formed during the day, namely all the activities between timestamps [00:00:00,
23:59:59]. This concept is expressed in Eq. 2, whereA represents one activity, T is
the associated timestamp, n is the number of activities of the day, while d refers
to the number of days in that deployment. After that, we construct an episode
dataset by collecting all episodes during the whole deployment. By examining
the dataset, we obtained 64 valid days for deployment 1 and 61 valid days for
deployment 2. Days of deployment 1 are much less than the actual duration of
the deployment (about 82 days). This is due to the fact that the feedback was
not provided by the user in the last 18 days.

Episodei =< A1(T1), A2(T2), ..., An(Tn) > i ∈ [1, d] (2)

Sequence: A sequence is formed by at least two successively performed activi-
ties. For instance, <Eating, WatchingTV> means the activity “Watching TV”
happens directly after “Eating”.

4.2 Apriori Algorithm

For the extraction of the temporal relations between activities, we apply the
Apriori algorithm [1] which aims to discover frequent activity sequences based
on what is called their support and confidence:

Support: In our case, support measures the frequency of an activity sequence
appearing in the episodes dataset. It is computed as the number of episodes
that contain this sequence, divided by the total number of episodes (Eq. 3). A
frequent sequence can be defined as a sequence whose support is larger than a
predefined threshold (minSupp).

Support(< A,B >) =
#episodesContaining < A,B >

#episodes
(3)

Confidence: It represents the dependency between two activities i.e. the proba-
bility that one activity occurs given that a certain previous activity has occurred.
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Table 5. Examples of temporal activity patterns

A Cooking Eating Making Coffee

B Eating WorkingAtPC Eating

Supp. (%) 25.0 51.6 28.2

Conf. (%) 84.2 67.4 53.1

Hence, confidence for the sequence <A, B> is computed as the support of <A,
B> divided by the support of A. The main principle of the Apriori algorithm is
to scan the whole episodes dataset in order to find all frequent items (activities)
and exclude those which are rarely performed. However, a rarely performed ac-
tivity does not necessarily imply the nonexistence of a regular temporal activity
pattern which involves this activity. An example from our dataset is the “Read-
ing” activity. This activity has a support of 4.7% in deployment 1. However, if
the user always sleeps after reading, then the sequence <Reading, Sleeping> can
also be considered as a meaningful pattern due to its high confidence. As shown
above, a threshold has to be specified which determines the minimum value the
support of a sequence should have in order to be considered by the Apriori algo-
rithm as a regular sequence. This threshold is called the minSupp. On one hand,
a high minSupp value might cause the exclusion of meaningful patterns because
it involves activities with low support value. On the other hand, a small minSupp
value might cause the generation of a numerous number of meaningless patterns
by the Apriori algorithm. In order to overcome this problem, we utilize the mul-
tiple minimum supports mechanism [14]. This mechanism assigns a miniSuppi
to each item (Ai) by multiplying a user defined global miniSupp by the item’s
own support as shown in Eq. 4. By doing this, useful patterns regarding to the
rarely performed activities will not be neglected during the process. Meanwhile,
patterns regarding to one activity with support lower than the assigned minSupp
will be filtered out. Therefore, we define the global minsupp as 18%.

minSuppi = global minsupp× support(Ai) (4)

By applying Apriori algorithm, we obtained a list of temporal activity patterns
for each deployment. Table 5 lists some of the extracted patterns from the first
deployment where A denotes the previous activity and B denotes the current
activity. As we can see from the table, the user usually starts with the eating
activity directly after cooking with a confidence of 84.2%. After eating he often
works at PC with a confidence of 67.4%. The activity after making coffee is
also eating with a confidence of 53.1%. These examples show the existence of a
certain routine in our daily life. In the following section, we use the extracted
patterns in the activity detection process in order to see if it can help improving
the accuracy of this process.

4.3 Utilizing Patterns in Activity Detection

In this step, we integrate the patterns extracted by Apriori algorithm as extra
features in building the activity prediction model. The features we used for
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Table 6. Activity detection accuracy with and without patterns (random forest)

Deployment 1 Deployment 2

Accuracy F-Measure Accuracy F-Measure

without 92.8% 92.7% 97.3% 97.3%

with 96.1% 96.1% 98.3% 98.3%
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Fig. 2. Activity detection accuracy by classes, results of with and without patterns are
compared

the activity detection process were the maximum sensor values (Plugwise and
Pikkerton) in timeslots of two minutes. As extra features, we added the previous
activity combined with the most likely current activity as it appears in the
sequences extracted by Apriori algorithm. Hence, the new feature vector is a
combination of all these features as shown in Eq. 5, where An−1 and An represent
the previous and the most probable current activity respectively. For labeling
the instances, we use the user feedback denoted as Class(sloti).

Instancei =< S1 max(sloti), S2 max(sloti), ..., Sn max(sloti),

An−1, An, Class(sloti) > i ∈ [1,m]
(5)

Table 6 shows the accuracy of the activity detection process for both deploy-
ments before and after adding the patterns extracted by Apriori algorithm. The
used classification algorithm is random forest. The overall accuracy explicitly
increases after adding the patterns. Furthermore and in order to obtain a more
comprehensive representation of the classification accuracy for each individual
activity, Figure 2 shows the results coming from deployment 2 using random for-
est. As we can see in Figure 2, the detection accuracy of each activity has also
explicitly increased after adding the patterns. The reason for this improvement is
that, besides the intrinsic features of the activities, namely the sensor readings,
the machine learner will also learn the temporal relations between the activities
from the patterns, thus recognize activities that occur in certain patterns more
accurately.
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5 Analysis of the Daily Power Consumption Traces

In this section we focus on the analysis of daily power consumption traces in our
two deployments. The main goal is to understand the daily power consumption
of individuals in smart homes and to find out based on time series analysis if the
people follow a regular power consumption pattern which repeats itself over the
days. The result of this analysis can be of great importance in many application
scenarios: it can help developing applications which allow individuals living in
smart homes to inspect their energy usage over the time leading to a more
energy-aware power consumption behavior. Besides, it can be of great benefit
to utility companies which by knowing the power consumption behavior of their
customers can recommend a more suitable tariff and direct the smart grid to
work more efficiently, thus to save energy.

5.1 Obtaining Hourly Power Consumption of Each Day

For the analysis to be conducted, we first need to compute the hourly power
consumption of each day. We calculate the power consumption for each hour
by summing up the power consumption within all timeslots of two minutes in
that hour. However, since Plugwise values are stored in unit “Watt”, we need
to convert them into “Wh” (Watt hour) for acquiring the power consumption.
To do this, we first compute the associated power consumption of each Plugwise
sensor in each timeslot. This is achieved by averaging the readings of each sensor
in that timeslot and dividing the average value by 30. We divided the average
by 30 as we only need the power consumption in timeslots of two minutes.
Then, for obtaining the total power consumption in each timeslot we sum all
the converted values of the Plugwise sensors in that timeslot. The computation
is indicated in Eq. 6, where j denotes the sensorId, i denotes the ith timeslot,
Sj(Sloti) denotes the average value of sensor j during timeslot i, and n denotes
the number of sensors. To compute the total power consumption in an hour, we
sum up the power consumption in all timeslots within that hour as indicated in
Eq. 7 where m denotes the number of timeslots, and h denotes the hour of the
day.

Psloti =

n∑
j=1

Sj(Sloti)

30
(6)

Ph =
m∑
i=1

Psloti h ∈ [1, 24] (7)

To make the results more comprehensive, we plot the obtained hourly power
consumption for each day. Figure 3 shows an example in which we see that
the user consumes more energy from 01:00 pm to midnight than from 3:00 am
to noon. When comparing this distribution to another one obtained from the
same deployment as shown in Figure 4, we can easily observe the similarity be-
tween these two distributions. In both days, the user followed a similar power
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Fig. 3. Power consumption with regard to the hours of the day on 2013-04-06 from
deployment 1
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Fig. 4. Hourly power consumption distributions on 2013-04-06 and 2013-05-21 from
deployment 1, consumption values are normalized

consumption pattern only shifted in time. The values in the figure are all nor-
malized so that they have a mean of zero and a standard deviation of one for the
purpose of comparison. Based on our observation from Figure 4, we conduct a
similarity comparison process on all the distributions which belong to the same
deployment. By verifying that all the distributions from the same deployment
follow some level of similarity, we can prove the user to have a regular power
consumption behavior which is the goal of this experiment as stated before. In
the following section, we introduce the process of similarity comparison, the used
algorithm, as well as the obtained results.

Similarity =
1

1 + warping score
(8)

5.2 Similarity Comparison

Similarity comparison between two time series can be conducted using several
algorithms. One of the these popular algorithms is the approach of symbolic
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Table 7. Results of similarity comparison of power consumption distributions in each
deployment

Deployment 1 Deployment 2

Min similarity 81.72% 88.13%

Max similarity 97.13% 97.68%

Avg similarity 90.32% 93.50%

representation [13] in which we convert each time series into a sequence of sym-
bols and calculate the distance of these resulting sequences of symbols. The
main disadvantage of this approach is that it does not take time shifting into
consideration. Thus, it will not recognize two series like the ones shown in Fig-
ure 4 similar to each other only because they are shifted in time. In order to
address this problem, we apply the Dynamic Time Warping (DTW) algorithm
[10] which aims to find the best alignment between two time series. The result
is represented by a warping path that indicates how each point of one distribu-
tion is aligned to the point of another distribution. Besides, it also produces a
warping score to indicate the distance between two distributions after the align-
ment. In order to verify the similarity between each pair of distributions, we
converted the warping score into a similarity measure based on Eq. 8 as clari-
fied in [9]. The result after applying the DTW algorithm is a set of similarity
values coming from the warping scores after comparing all the distributions.
Table 7 summarizes the minimum, maximum as well as the average similarity
obtained from both deployments. As shown in the table, the power consump-
tion distributions in deployment 1 are at least 81.72% similar to each other
while the minimum value in deployment 2 reaches a similarity value of 88.13%.
The maximum values in both deployments exceed 97%. Moreover, daily power
consumptions in deployment 1 are 90.32% similar to each other on average. The
average value reaches 93.50% in deployment 2. As a result of this analysis we can
conclude that the daily power consumption in both deployment follows a regular
pattern which confirms the fact that the inhabitants in both deployments tend to
consume power in a regular pattern which repeats itself everyday. Additionally,
as similarity values from deployment 2 are higher than those from deployment
1, we can say that the user in deployment 2 tends to have a more regular power
consumption behavior. In order to verify these results, we conducted a further
analysis in the following section in which we examine abnormal power consump-
tion values which occur very rarely in both deployments but might contradict
with our conclusion in this section. By examining these values and showing that
they are rare and untypical, we make our conclusion in this section more reliable.

5.3 Further Analysis

In order to filter out abnormal power consumption behavior, we extracted the
minimum and maximum power consumption of each hour over the whole deploy-
ment. Using these values we formed an area as shown in Figure 5(a) where the
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(a) Original range
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(b) Doubled average for cropping

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

20

40

60

80

100

120

140

160

180

Hour of a day(h)

P
ow

er
 c

on
su

m
pt

io
n(

W
h)

Hour of a day(h)

P
ow

er
 c

on
su

m
pt

io
n(

W
h)

(c) Cropped range
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(d) Normal power consumption pattern

Fig. 5. The generation of normal power consumption range for deployment 2

x axis represents the hour of the day, and the y axis represents the associated
power consumption. By doing this, all power consumption values are ensured to
be contained in this area. Figure 5(a) is generated from the values of deploy-
ment 2. As we can see from the figure, although the daily energy distributions
were verified to follow similar trend, they fluctuate in a certain range. At some
point in time, the fluctuation is especially large. For instance, value at 14:00
varies from 0 to 160Wh. In order to verify whether the peaks in Figure 5(a)
are only outliers and do not represent the regular power consumption behavior,
we defined an empirical threshold which is equal to the double of the average
hourly power consumption. If the power consumption at a certain hour exceeds
this threshold, this consumption is considered to be an outlier and thus should
be excluded from the dataset. The threshold for cropping the area is indicated
in the dashed line in Figure 5(b). Figure 5(c) is the cropped area which covers
the majority of the power consumption values. As we can see from the figure,
a part of the area was cropped out, especially the peaks. This verifies that the
peaks are actually the abnormal power consumption values and do not reflect
the regular consumption pattern. Figure 5(d) depicts the remaining area after
cropping. The dotted line with the asterisks indicates the average value after
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removing the outliers. As shown in the figure, the power consumption keeps low
from the beginning of the day to the midday. There are several reasons for this
phenomenon. First of all, the user normally sleeps during some hours of this
range which leads to almost no power consumption. Furthermore and according
to the user feedback, the user in deployment 2 used to get up early. The activ-
ity after getting up was either eating or going out with both activities having
low power consumption. Although the radio was used sometimes during eating,
only small amount of energy is required for this activity. Another activity which
happens in the morning is “Making Tea”. Although this activity consumes a
high amount of energy, it was only performed three times during the whole de-
ployment with a short duration. This also explains why some outliers existing
during this period. The higher power consumption in later hours is mainly due
to the activity of “Watching TV”. The extracted power consumption range can
be of great benefit and importance in many application scenarios. One applica-
tion scenario is security combined with energy conservation in which the user
can be alerted if her/his real-time power consumption exceeds the normal power
consumption area.

6 Conclusions

In this work we presented three experiments conducted on our SMARTEN-
ERGY.KOM dataset. In the first task, we successfully built a classification model
that is able to predict a user’s current location based on his real-time power con-
sumption. In the second experiment, we extracted the temporal relations between
the activities performed in each deployment. Furthermore, we showed that these
temporal patterns can be treated as features for improving the accuracy of our
activity detection platform. In the third experiment, we studied the distributions
of daily power consumption with regard to the hours of the day. By comparing
the similarity of these distributions we showed that the user in each deployment
has a regular power consumption behavior. Moreover, we extracted the normal
power consumption pattern for each user which can be of great benefit in many
application scenarios. Our solution is capable of determining the user’s location,
activity as well as common patterns. All this information is mainly mined from
electricity consumption of common home appliances. Thus, our work is a strong
foundation for energy consumption feedback systems and represents the next
important step towards energy management systems without a human in the
loop.
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Abstract. We present SocialSense, a collaborative smartphone based speaker 
and mood identification and reporting system that uses a user's voice to detect 
and log his/her speaking and mood episodes. SocialSense collaboratively works 
with other phones that are running the app present in the vicinity to periodically 
send/receive speaking and mood vectors to/from other users present in a social 
interaction setting, thus keeping track of the global speaking episodes of all users 
with their mood. In addition, it utilizes a novel event-adaptive dynamic classifi-
cation scheme for speaker identification which updates the speaker classification 
model every time one or more users enter or leave the scenario, ensuring a most 
updated classifier based on user presence. Evaluation of using dynamic classifi-
ers shows that SocialSense improves speaker identification accuracy by 30% 
compared to traditional static speaker identification systems, and a 10% to 43% 
performance boost under various noisy environments. SocialSense also improves 
the mood classification accuracy by 4% to 20% compared to the baseline ap-
proaches. Energy consumption experiments show that its device daily lifetime is 
between 10-14 hours.  

Keywords: social interaction, assisted living, depression, smartphone. 

1 Introduction 

Speaker identification systems based on in-home/on-body/smartphone microphones are 
used for various applications such as voice based authentication, home health care, secu-
rity, and daily activity monitoring. With the pervasive usage of smartphones in everyday 
life, it is an exceptionally suitable unobtrusive platform for speaker identification reduc-
ing the overhead of on-body or contextual sensors. Besides speaker identification, speak-
er mood detection is another important problem in human interaction studies and social 
psychology research. The challenges of smartphone based speaker identification and 
mood detection include preserving user privacy, maintaining identification accuracy, 
accurate operation of the system irrespective of smartphone location, resilience against 
ambient noise and operating under energy constraints. 

Both speaker and mood identification are part of a bigger and important health 
sensing problem, detection of human social interaction, which is an important indica-
tor of mental and physical health in people of all ages. Regular good social interaction 
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brings many health benefits including reduced risk for cardiovascular and Alzheimer's 
disease, some cancers, osteoporosis and rheumatoid arthritis, steady blood pressure 
and reduced risk of depression and other mental disorders. On the other hand, social 
isolation culminates to loneliness and depression, physical inactivity and overall hav-
ing a greater risk of death for older people. Therefore, a system able to detect people's 
social interactions and mood would be greatly beneficial for caregivers to more accu-
rately diagnose and treat patients suffering from psychological disorders. 

We present SocialSense, a collaborative smartphone based speaker and mood iden-
tification and reporting system which logs user speaking and mood episodes from 
his/her voice. A person can be uniquely identified by his smartphone Bluetooth  ID.  
After SocialSense detects its user's speaking episode and mood, it broadcasts a mes-
sage containing the user ID, the speaking episode timestamp, and corresponding 
mood to all neighboring phones via Bluetooth broadcasting. Thus every phone logs a 
global scenario of the social interaction environment. In a nutshell, SocialSense can 
answer the following questions: 

• When is the phone user speaking? 
• What is the mood of the user during speaking? 
• With whom is the user speaking to? Who else are present around? 
• When are the other persons in the environment speaking? 
• What are the moods of other persons while they speak? 

Besides detecting the smartphone user's mood, understanding the moods of other 
persons present in a social interaction is an important indicator of the global mood, 
hence the quality of the social interaction. Having this feature, SocialSense can poten-
tially be used to demonstrate and verify the effect of mood contagion, i.e. how mul-
tiple individuals in a social interaction reach a mood convergence [1]. Using the idea 
of mood contagion, SocialSense can be used as a recommender system where it can 
recommend happy persons as potential conversation partners of sad persons to cheer 
them up. The actual use of SocialSense for mood contagion is outside the scope of 
this work. 

Our prime target for the usage of SocialSense is in assisted living facilities for the 
elderly where the prevalence and magnitude of depression is of major concern. More 
than 1 million Americans reside in assisted livings presently. Studies found that, 20% 
to 24% of assisted living  residents have symptoms of major or minor depression 
which is likely to cause physical, cognitive, and social impairment and delayed recov-
ery from medical illness and surgery to these elderly. The scary fact is that, many 
depressive older adults end up committing suicide. Among men of age 75 and over, 
rate of suicide is 37.4 per 100,000 population. Several diagnostic barriers exist for the 
screening and treatment of depression in assisted livings which includes lack of regu-
latory requirements, privacy concerns, cost, and misinterpretation of depression. It is 
suggested that assisted living staff (nurse, therapist, medical director) should proac-
tively assess for depressive syndromes instead of self-reporting of mood changes by 
the residents. SocialSense can be used as an automated diagnostic tool to monitor the 
mood and social interactions of the assisted living residents where each of the resi-
dents is provided with a smartphone with our system. [16] 
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Since SocialSense can capture the global scenario of a social interaction setting,  
it can be used as a data collection system for various social psychology and human 
interaction research. In addition, SocialSense incorporates a dynamic event-driven 
classification scheme for speaker identification. New people can enter into a social 
interaction while some people may leave at any time. SocialSense periodically re-
freshes its Bluetooth neighbor set and whenever it detects a change in the set, i.e., 
some people entered or left, it recreates the classification model based on the new 
neighbor set. For this purpose, it imports the user training feature files from the newly 
arrived phones to re-compute the classification model. 

The main contributions of SocialSense are: 

• An unobtrusive voice based speaker identification and mood detection system us-
ing user's smartphone. It does not use any on-body or contextual sensors thus con-
tributing to mobility and user-friendliness. 

• A practical, easy, and short training scheme to train a phone to detect a person’s 
own speaking episodes. One key novelty of SocialSense is that it avoids the need 
of exhaustive training by all users in a social interaction setting and still accurately 
detects all speakers by collaboration among the phones. 

• SocialSense has privacy support for users. No audio samples are recorded or stored 
in the phone and features are extracted in real time and after classification they are 
removed from the system. There is no way to reconstruct the original audio signal 
at a later time from SocialSense.  

• SocialSense's voice based mood detection module in every phone is conventional, 
however by collaboration among the phones, it can detect the mood of the mem-
bers of a conversation group and the change of one's mood when he/she switches 
between conversation groups, i.e., demonstrate mood contagion. This novel idea 
hasn't been explored before and such a system would be invaluable for further ex-
periments on social mood dynamics. Also, using a random forest classifier for 
mood detection compared to GMM and SVM classifiers used in baseline systems 
[7, 8], our system has a 4% to 20% increase in accuracy compared to the baselines. 

• SocialSense supports real life environments where new people enter and existing 
people leave the social interaction environment. SocialSense periodically refreshes 
its Bluetooth neighbor set to detect such changes in the environment.  

• Another novel feature of SocialSense is its dynamic event-driven classification 
scheme where it performs speaker identification using an up-to-moment classifier 
based on the current users present in the scenario. This yields an average 30% in-
crease in classification accuracy compared to static classification. 

• Evaluation with respect to noisy environments has been performed by injecting 
various artificial noise to simulate real life noisy environments and results demon-
strates that SocialSense improves speaker identification accuracy in noise by 10%-
43% based on different types of noise and mood detection accuracy in noise by 
33% compared to the state-of-the-art systems. SocialSense has been evaluated by 
training with noise to yield these performance boosts, which hasn't been done in 
baseline approaches. 
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2 Related Work 

Many of the existing speaker identification systems require the total number of speak-
ers to be static, and they employ static classification schemes so that each speaker 
needs to train the system beforehand, which makes them less realistic [2, 3].  Social-
Weaver [4] uses a multi-level classification for speaker identification. The first level 
uses energy histogram classifiers while the second level uses a GMM based classifier. 
Neary [5] uses similarity of sound environment to detect conversational fields. These 
energy and loudness based approaches have greater error in noisy conditions and they 
fail if there is a person present in the scenario without his phone. SpeakerSense [6] is 
a speaker identification platform built on a heterogeneous multi-processor architec-
ture. It attempts to reduce training overhead by training from real life events as phone 
calls and one-to-one conversations, but does not evaluate the system in noisy envi-
ronments. Also, it requires the total number of speakers to be static and does not sup-
port realistic dynamic environments where speakers enter and leave on the fly. 

There are a number of existing systems which detect user's mood from voice. Emo-
tionSense [7] provides dual systems for speaker identification and emotion detection 
from user's voice using Gaussian mixture methods. [8] provides SVM based classifi-
ers that recognize human emotional states from their utterances. However, these  
systems can only capture mood of a single person or entity and, therefore, are not 
suitable for social psychology experiments where a system would need to know 
moods of everyone in a social interaction. Also, there is no evidence that these  
systems would operate well under real life noisy environments. 

Besides speaker identification and mood detection, there have been systems which 
detect other aspects of social interaction using different modalities. Some of the exist-
ing work on social interactions uses only on-body sensors such as accelerometers, 
gyroscopes, GPS, microphones, and cameras. Pierluigi et al. [9] built a badge having 
a triaxial accelerometer and a JPEG camera which is used to detect the presence of 
other people. Crowd++ [18] estimates the number of people talking in a certain place 
by unsupervised machine learning technique from smartphone audio inference. Cen-
ceMe [10] can automatically detect activities of individuals and share the sensing 
results through social networks. 

Another type of work uses ambient sensors. [11] uses a sociometric badge 
equipped with infrared transmitter/receiver and microphone which senses and models 
human networks. In [12] four video cameras and audio collectors are placed in public 
areas such as the dining room, living room and hallway which can detect high-level 
social interactions among people such as greeting, standing conversation, and walking 
together.  

We compare SocialSense with some state-of-the-art smartphone based sensing  
systems in table 1. 
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Table 1. Comparison of State-of-the-art 

System Operations Classifiers used Results 
Emotion-
Sense [7] 

Speaker identification, 
mood detection 

GMM 90%  speaker ID accuracy, 
70% mood detection accuracy 

Speaker-
Sense [6] 

Speaker identification GMM 95% speaker identification 
accuracy 

Social 
Weaver [4] 

Speaker identification, 
conversation group 
clustering 

Loudness histo-
gram, GMM 

90% speaker ID accuracy, 70-
90% accuracy for conversation 
clustering 

Neary [5] Detect conversational 
fields i.e detecting 
multiple persons who 
are in a conversation 

No classifier 96.6% precision and 67.9% 
recall achieved in a controlled 
experiment 
 

Qiang et al 
[13] 

User activity, speaker 
ID, proximity, location 

Naive Bayes, 
Discriminant, 
Boosted tree, 
Bagged tree 

92% accurate speech detection 

Social 
Sense 

Speaker identification, 
mood detection, mood 
contagion sensing 

Logistic regres-
sion, Random 
forest 

94%  speaker ID accuracy, 
90% speaker ID accuracy in 
noise, 80% mood detection 
accuracy, 76% mood detection 
accuracy in noise 

3 SocialSense System Design and Operation 

The assumption behind SocialSense is that every user in a social interaction setting 
carries his/her own phone with the SocialSense app running in it. However, if one or 
more persons is present without his phone, only his speaking and mood episodes will 
remain undetected and unreported, while all other users' speaking and mood episodes 
will be detected and broadcasted without any error.  

Figure 1 shows the system diagram. The SocialSense app runs continuously in 
each phone listening to audio streams. Silent frames are detected by comparing each 
frame’s energy to a threshold, and filtered from further processing to save energy.   
Each phone periodically updates its phone-set within its Bluetooth proximity range 
(~10 m). It is required that the system meets the energy constrains of mobile devices 
in order to make it usable in realistic scenarios. SocialSense is capable of running for 
10 to 14 hours continuously in smartphones and tablets which is good enough for its 
usage as a healthcare, research and data collection tool in assisted living. SocialSense 
is made up of a number of modules described in the following sections. 
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3.1 Phone-set Formation  

A phone's phone-set is defined as the set of phones running the SocialSense app si-
tuated within the Bluetooth proximity range from that phone. This module running in 
every phone refreshes its phone-set periodically (generally every 30s) to keep the 
most recent neighboring phones in its phone-set. The periodic interval is set so that it 
is neither too short to trigger redundant phone-set discovery process nor too long to 
miss significant changes in the phone-set, considering realities of human social inte-
raction. All members of a phone-set are assumed to be close enough to participate in a 
conversation. Conversely, phones not belonging to the phone set are assumed to be 
not participating in a conversation.  

 
Fig. 1. SocialSense block diagram 

3.2 Speaking Episode Detection Module 

This module determines whether a voice segment belongs to the phone user or not. The 
speaker identification is a binary classification problem where every non-silent audio 
segment must be classified into one of two classes: "phone user's voice" or "anything 
else" (e.g. others' voice or ambient noise). It uses a dynamic logistic regression based 
classifier, which can be easily trained by the user (or support personnel in assisted living). 
The user trains the speaker classification system by speaking for 60 seconds in front of 
the phone in normal tone and loudness. This simple, easy-to-use and short self- training 
scheme allows the classifier being updated with the latest voice samples of the user. In 
assisted living facilities, this training will be done by the staff.  

Some existing smartphone based speaker identification systems classify speakers 
based on the loudness of the perceived audio signal [4], [13]. The hypothesis behind 
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those works is that, a user's voice is loudest in his own phone in a particular time in-
stant compared to any other neighboring phones at the same time (as the user is sup-
posed to be the closest person to his phone).  However, this scheme doesn't work well 
in noisy environments, and also in the situation where a person without any phone is 
talking with people having their phones. In the latter case, when the person not having 
his phone is talking, his voice will be loudest to the person's phone who is closest to 
him, so that phone will incorrectly assume that the person without his phone is its user 
and classify positively, which is incorrect. Other systems like SpeakerSense [6]  
require training a speaker model for each individual who needs to be recognized, thus  
incurring large training overhead and resulting in complex, power-hungry classifiers. 

SocialSense, on the other hand, uses a simple logistic regression based binary clas-
sifier with very little training overhead using 39 MFCC (mel-frequency cepstral coef-
ficient) features. The phone-user (or staff) can train the system easily by speaking for 
60 seconds in front of the phone in normal tone and volume to create a speaker classi-
fication model. As human voice may occasionally change depending on his physio-
logical state, using this easy-to-use training scheme, the system can detect when its 
user is speaking irrespective of his voice quality, in the presence of noise and even 
when a person without his phone is present in the scenario as well. Unlike volume 
based systems, SocialSense does not fail when a user is present without his phone. 
Only his speaking and mood episodes remain undetected, but the systems in other 
users' phones work fine. The presence of a user without his phone does not incur any 
error or failure in the overall system operation. 

3.3 Mood Detection Module 

Detecting speaker mood in a mobile platform is a major challenge in this work. If a 
voice segment has been classified as a user's voice by the speaking episode detection 
module, this module further determines the user's mood (happy, sad, angry, neutral) 
from his voice. Then it generates a speaking and mood vector consisting of the start-
ing and stopping timestamp of the user's speaking episode and mood during that 
speaking episode. This module extracts 39 MFCC coefficients from each user utter-
ance window and calculates 9 different statistics on each MFCC coefficient culminat-
ing to 351 audio features. These statistics are: geometric mean, harmonic mean, 
arithmetic mean, range, skewness, standard deviation, z-scored average, moment and 
kurtosis. The MFCC coefficients combined with these statistics carry a large amount 
of prosodic and energy based information correlated to emotion. It then uses these 
features to train a random forest classifier from the EMA emotional utterance dataset 
[15] for detecting mood.       

3.4 Message-Exchange Module 

SocialSense forms a Bluetooth network among all members of a phone-set. When a 
phone has a speaking and mood vector to send, it broadcasts the vector using flooding 
over the network. It has an incoming thread and an outgoing thread to handle incom-
ing and outgoing messages, respectively. It maintains a message queue, new vectors 
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to be broadcasted are enqueued in the queue and the outgoing thread sends vectors 
one by one from the queue. 

3.5 Dynamic Event-Driven Classification Module 

For speaker identification, the logistic regression classifier uses a positive training file 
to keep training samples from the phone's user, and uses another negative training file 
to keep training samples from all other users. During startup of a conversation, So-
cialSense broadcasts its local positive training file to all neighbors which they use for 
their negative training. If there are 4 phones in the scenario, each phone uses its local 
file for positive training and 3 other files received from others for negative training. 
The phone-set discovery process triggers every 30 seconds to refresh the phone-set. If 
there is a change in the phone-set during a periodic phone-set refresh (an old user 
leaves or a new user enters), an event is triggered. When the event triggers, each 
phones broadcasts its positive training file over the network and updates its negative 
training using only the files received from phones present in the current scenario, and 
then rebuilds an updated classifier for speaker identification. This improves classifica-
tion accuracy by 33% on average compared to static training and makes the training 
process for each user simple, which is shown in the evaluation section. 

4 Evaluation 

The evaluation consists of multiple parts. First, we evaluate how accurate SocialSense 
is in identifying speakers. Then we evaluate the effectiveness of mood identification. 
We have done these evaluations in quiet and noisy (artificially injected) environ-
ments, showing that training with noise in noisy environments yields good increase in 
performance. We have demonstrated the impact of window size, amount of training 
data, and dynamic classification for speaker identification.  We also compare our 
results with some state-of-the-art solutions. 

4.1 Speaker Identification Evaluation 

We have evaluated the performance of SocialSense's speaker classification module in 
terms of the classification accuracy, which is the overall correctness of the model. The 
data for these evaluations are taken from voice segments collected from 7 persons. 
There were 4 females and 3 males among them. A 1.5 hour long conversation on  
various random topics between two of these females was recorded by us. Another 6 
conversations, each around 5 minutes in length, between a male and a female, were 
collected from the internet. We collected 3 solo speech recordings from the remaining 
3 persons for 10 minutes each. We extracted individual voice recordings from each of 
these 7 speakers separately from these recorded conversations and simulated 2, 3, 4 
and 5 person conversations from these. We performed all the speaker identification 
experiments from these simulated conversations. For example, for simulating 3 person 
conversations, we trained the logistic regression classifier with one person as positively 
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trained, and the other two persons as negatively trained, with all 3 combinations of 
three persons, and all 35 possible selections of 3 persons from a set of 7 persons. 

Training Size. Intuitively speaker identification accuracy increases with the increase 
of training data, as the classifier can encode more information with a longer training. 
This phenomenon is shown in figure 2. The training and testing data were taken from 
voice samples collected from 7 persons, with 2, 3, 4 and 5 person simulated conversa-
tions. The accuracy for 3 separate window sizes is shown for training up to 180 
seconds. 
 

  
               (a) Amount of training data                                        (b) Window size 

Fig. 2. Speaker identification accuracy vs. (a) Amount of training data; (b) Window size 

As we can see from figure 2(a), there is a sharp increase in accuracy between 30s 
and 60s of training, and beyond that the accuracy increases slowly. Also the accuracy 
is highest for a 5s window size. These values are the lower bounds on the training 
data needed to accurately identify the speaker on the phones, i.e. a minimum of 60 
seconds of training is required with a minimum of a 5 second window size. 

Window Size. This test was conducted on 2 person conversations. One person was 
trained as positive while the other was trained as negative for 60 seconds. The win-
dow size was varied from 1 to 8 seconds and each window was classified using the 
logistic regression classifier.  

Results from figure 2(a) and 2(b) suggest that, a window size between 5 to 7 
seconds is optimal for speaker identification. 3-4 second long window sizes yield 
accuracy of 86-89% which is acceptable. 5-7 second long window sizes can be used 
for warm conversations where each speaker talks for a long time before switching 
turns, while a 3-4 second window can be used for cold conversations with frequent 
turn-takings with short speaking duration in each turn. 

Effect of Noise. Noise is a very important and realistic issue to consider to evaluate a 
smartphone based speaker identification system. It is very likely that users will move 
with their phones to different places (both indoor and outdoor) engaging in social 
interactions. Therefore, the system must be able to correctly identify its speaker under 
various types of noise. 
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Evaluation has been done to test the effect of artificial noise on speaker recognition 
accuracy. These tests were also done using 2 person conversations collected from 7 
speakers. We used Audacity [14], an open-source sound editing software to inject 
artificial white and Brown noise into voice samples, and observed classification accu-
racy under different levels of noise. White noise is quite similar to television static or 
the humming of an air conditioner and Brown noise is similar to gusty wind. There-
fore, these artificial noises can simulate real indoor and outdoor noisy environments. 

 

 
(a) Similar train-test (b) Different train-test 

Fig. 3. Effect of noise on speaker recognition accuracy, (a) With similar train-test set; (b) With 
different train-test 

Figure 3(a) shows the effect of white and Brown noise on SocialSense speaker rec-
ognition accuracy with similar train test set. During no noise, the accuracy is best at 
100%, while during maximum noise, the accuracy degrades to 82%, which is an 18% 
drop. However, because the train and test sets are similar in this case, this is not a 
realistic scenario. Figure 3(b) shows the effect of noise under different train-test sets. 
Here, the best accuracy during no noise is 90.2% and the worst accuracy is only 33%, 
which is a shocking 57% drop, and demonstrates how the system will fail in presence 
of noise, if no measure is taken. 

 

Fig. 4. Effect of noise on speaker recogni-
tion accuracy, with training in noise 

Fig. 5. Effect of dynamic training vs. gener-
ic training 

It is a design characteristic of SocialSense that a phone user can have his own 
phone trained for detecting his speaking episodes. This adds a lot of flexibility to the 
system. In noisy environments, the user can have his phone trained in noise to en-
hance speaker identification accuracy. Because of the short training session and each 
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user needing to train only himself (as opposed to other systems where all user need to 
train every phone), the training overhead is low.  

Figure 4 shows the effect of noise when the training is done in noise as well. It 
shows that even in worst noisy conditions the accuracy drops to 76% for white noise 
and 89% for Brown noise, which is a 43% performance boost for white noise and 
10% boost for Brown noise. We have limited the noise amplitude to 0.1 in these expe-
riments as this level is commensurate to real life extremely noisy environments. 

Effect of Dynamic Classification. Because of the dynamic event-driven classifica-
tion scheme in SocialSense, every phone is trained with a precise negative training set 
comprised of the voices of all other persons present in the social interaction setting. 
The phones update their training files by message exchange whenever a new person 
enters or leaves the Bluetooth range. Without the dynamic classification, every phone 
had to use a generic negative training comprising of generic voices from arbitrary 
persons, since no apriori knowledge of the users is available.  

We used voice samples from 5 persons for precise training, with 1 trained as posi-
tive and other 4 trained as negative. The testing samples had voices from all 5 per-
sons. For generic training, we used a separate voice collection from 3 people (The 
EMA dataset [15]) for negative training, and used the same test set as precise training.  

The performance comparison of precise and generic training is shown in figure 5, 
which shows a significant classification improvement (30% on average) due to dy-
namic training. Consequently, this novel aspect of our solution results in a major per-
formance improvement. 

Worst Case Analysis of Dynamic Speaker Classification. The phone-set refresh 
process triggers once in every 30 seconds. If there is a change in the phone-set imme-
diately after a refresh process, all the phones will stay with outdated classifiers for 30 
seconds in the worst case. There are 2 cases to consider: i) some new phones arriving, 
ii) some existing phones leaving. In the first case, if some new phones arrive right 
after the refresh process, they will remain unknown to the existing phones for 30 
seconds until the next refresh process. In this time, the newly arrived phones cannot 
send or receive any vectors, so their social interactions will not be logged. Also, dur-
ing this time, the newly arrived phones will have a blank negative set, so all persons' 
speaking episodes will be considered as positive in these phones. To avoid classifica-
tion errors due to the initialization in the newly arrived phones, voice segments during 
this initialization window are ignored. The second case, where some existing phones 
leave right after the refresh process, is less complicated than the first case. In this 
case, all the remaining phones will stay with redundant negative sets, containing train-
ings from people who doesn't exist anymore. But, there will be no classification error 
in these phones unlike the first case. For both cases, situation comes back to normal in 
at most 30 seconds, after the immediate next phone-set refresh.  
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4.2 Mood Detection Evaluation   

Because of the difficulty associated to get real life data for mood evaluation, we per-
formed both training and testing from the Electromagnetic Articulography dataset 
[15], which contains 680 acted utterances of a number of sentences in 4 different 
emotions (anger, happiness, sadness and neutrality) by 3 speakers. We used 3 differ-
ent classifiers to model each mood using MFCC features with 9 statistics (total 351 
features), naive Bayes, random forest, and decision tree. We also varied the acoustic 
window size from 1 to 10 seconds. 

Real 
mood 

Classified as 
Angry Happy Neutral Sad 

Angry 144 19 1 2 

Happy 32 110 4 18 

Neutral 4 11 125 16 

Sad 1 4 23 154 

(a) (b) 

Fig. 6. (a) Effect of audio sample length on emotion recognition accuracy with various classifi-
ers; (b) Confusion matrix for emotion recognition with random forest classifier 

The random forest classifier yielded best cross classification results for 10 folds, as 
shown in figure 6(a). This classifier resulted in a 4% to 10% increase in accuracy 
compared to the baseline EmotionSense [7] with varying window size, and a 20% 
increase for speaker independent model compared to [8]. The results for the baselines 
are taken from corresponding existing works. The figure demonstrates that mood 
classification accuracy increases with increasing window sizes, however beyond 6s 
window size it becomes stable and doesn't change much. The confusion matrix for the 
random forest classifier is shown in figure 6(b). 

 
Fig. 7. Effect of noise and improvement with training with noise for mood classification 

Similar to the speaker identification module, we evaluated the performance of 
mood detection module under noise. The effect of white noise has been noticed as to 
be more detrimental than brown noise, so we have done this experiment for white 
noise only. We injected white noise with amplitudes varying from 0.02 up to 0.1 into 
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the mood dataset. We trained with mood utterances without noise and tested with 
utterances in noise.  

As expected, the performance dropped drastically, as shown in figure 7. However, 
similar to the speaker identification module, we trained the mood dataset in noise and 
performed a 10 fold cross validation, which yielded a 33% performance boost in the 
worst 0.1 noise amplitude, as shown in figure 7. The existing mood detection systems 
hasn't evaluated the possibility of training with noise, which in our case, yielded a 
significant increase in performance. 

4.3 Energy 

SocialSense consumes energy in two ways: (i) idle listening, and (ii) once a speech 
episode is identified, it runs various modules and classifiers. Experiments were run to 
determine the lifetime of tablets and smartphones running SocialSense. The least 
energy cost for SocialSense is if it is idle listening and there are no speech episodes to 
process. Our experiments showed that Nexus 7 tablet ran for 14 hours and the HTC 
one smartphone ran for 12 hours for this best situation. When SocialSense is actively 
processing speech episodes there are 5 modules in the system which consume the 
majority of energy: i) acoustic processing and feature extraction, ii) logistic regression 
speaker identification classifier, iii) random forest mood detection classifier, iv) 
speech and mood vector transmit/receive, and v) periodic phone-set refresh, training 
file exchange and classification model file recreation. In a second set of experiments 
we modified the system to run all these modules continuously as if there was conti-
nuous speech. This is the worst case in regards to energy costs.  In these experiments 
the Nexus 7 tablet ran for 12 hours (down from 14 hours) and HTC one smartphone 
ran for 10 hours (down from 12 hours). Consequently, SocialSense can operate be-
tween 12-14 hours on a tablet, and between 10-12 hours on a smartphone. This de-
monstrates that SocialSense can indeed be used as a healthcare device in assisted 
living since such devices can be charged over night. 

5 Discussion 

SocialSense detects speaking episodes and the mood of a user, and by collaboration it 
imports the speaking episodes and moods of the neighboring users as well. A user 
interface can be built upon this fine grained information showing the social interac-
tion history of a user within a particular time-frame. Such a user interface will be able 
to display a user's common conversation partners, his amount of participation and 
engagement during a conversation with a particular partner, his mood during a con-
versation and hence mood during that time of that particular day, change of his mood 
with time or change of conversation partner and so on. Many of these quantities are of 
interest to psychologists when they treat a potentially depressive patient, and hence 
ask him relevant questions. The patients' answers are often vague, confusing and er-
roneous because most of the time they do not remember their social interaction histo-
ry and mood for a very long time. SocialSense can eliminate the need for these oral 
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questionnaires and hence avoid all the errors as it logs the social interaction data of a 
user with his moods. Therefore, this system can be used in places like an assisted 
living facility where depression and  related psychological disorders are common 
among the occupants.  

Robustness. As we argue that SocialSense is usable among the elderly in assisted 
living facilities, we are aware of the fact that the elderly are prone to forgetfulness, 
and it is very likely that they may sometimes forget to carry their phones during a 
social interaction. Though SocialSense is most accurate if every person carries his 
smartphone in order to detect everybody's speaking episodes and moods, the system 
does not break down if such assumption is violated. If a person does not carry his 
phone during a social interaction, his own speaking and mood episodes will remain 
undetected and unreported and others will not have his information for complete 
mood contagion. All the other persons' speaking and mood episodes will be detected 
and reported correctly. This is a major system design enhancement compared to vo-
lume based systems [4, 13] which fail when one or more persons forget to carry their 
phones. It is also important to note that overall diagnosis involves many conversations 
over multiple days and some missing information when smartphones are forgotten or 
turned off does not necessarily cause problems. 

Training in Assisted Livings. SocialSense's easy to use individual training scheme 
and adaptability to noisy environments is very suitable for its usage in assisted living. 
We have shown in the evaluation section that it only takes 60 seconds of training for 
the system to work in any particular environment. Assisted living residents generally 
pass specific time of their days in specific locations (e.g., mornings in the hall room, 
noon at lunch room, afternoon in the garden). The assisted living support person can 
train the smartphone for each of these common environments. If a resident moves to a 
new location where  the system needs to be retrained because of different noise levels, 
the support person can do the training very easily with 60 seconds of data.   

Mood Contagion. Using SocialSense it is possible to detect not only the mood of an 
individual user, but also the moods of others present in the social interaction setting. 
According to the best of our knowledge, no such system has been built yet which can 
detect such a global mood. Thus, SocialSense can be used as a platform to verify and 
conduct experiments on mood contagion which is a psychological process by which a 
group of people engaged in a social interaction reaches emotional convergence, i.e. 
they all have similar feelings after a certain time though their initial feelings may be 
different. It is hypothesized that interventions based on knowledge of mood contagion 
can be used to help treat depression in the elderly. 

"In-Phone" vs. "In-Cloud" Scheme. We adopted an "in-phone" processing scheme 
as opposed to "in-cloud" processing as in [17]. The term "in-phone" means that all 
data acquisition, feature extraction, and classification are performed in the phone 
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itself. A reasonable alternative to or solution  is an "in-cloud" solution, where unpro-
cessed raw data (conversation recordings) or semi-processed data (features) are sent 
to a central server where a web service performs further processing and classification. 
However, the "in-cloud" approach requires connectivity to the internet by wi-fi or 3G 
which is not always available or is sometimes unreliable. To handle the unreliability 
of connections various buffering and upload schemes have to be developed. A high-
speed 3G/4G connection also imposes additional operating cost for each phone. The 
"in-phone" approach is cheaper and better supports mobility and could be used even 
when residents are away from the assisted living facilities. 

Concurrent Speaking Episodes. In our experiments described above, we assumed 
that users did not speak concurrently. In reality, speakers do speak concurrently on 
some occasions. So we also evaluated our system to test how it performs when users 
speak concurrently. Ideally, when two or more users are speaking concurrently, each 
of their systems should detect their own speaking episodes and log them as "speak-
ing" in their individual phones. We performed experiments with 4 speakers (2 male, 2 
female), with two concurrent speakers at a time for all 6 possible pairs of conversa-
tions. As expected, the system performance degraded. On average, SocialSense was 
55% accurate in detecting a particular user’s speaking episode when 2 concurrent 
users were speaking. While this sounds low, this result only applies to the portion of 
the speaking episode when there is actual concurrency, e.g., when two people first 
both start speaking (but then one usually backs off) or when someone interrupts a 
speaker. 

6 Conclusion 

This paper presents the design, implementation, and evaluation of SocialSense which is a 
collaborative mobile platform for speaker identification and mood and mood contagion 
detection from users' voice. Aside from its ability to recognize speaker and mood with 
significant accuracy, we have demonstrated its performance relative to the amount of 
training data and length of window size, culminating in an optimal benchmarking of 
these parameters. We provide empirical evidence that SocialSense performs well under 
various noisy environments when trained with noise, with an easy-to-use training 
scheme. Also, with a dynamic classification scheme, SocialSense is 30% more accurate 
in speaker identification compared to generic training with static classification. Social-
Sense is 4%-20% more accurate in speaker independent mood sensing compared to the 
baseline state-of-the-art mood sensing systems. It was also shown that SocialSense life-
time on various devices is between 10 to 14 hours. 
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Abstract. Human mobility is a complex pattern of movements and activities that
are based on some underlying semantics of human behavior. In order to construct
accurate models of human mobility, this semantic behavior needs to be unearthed
from the data sensed as a human being moves around and visits certain classes
of locations such as home, work, mall, theater, restaurant etc. The ideal data for
understanding the semantics of mobility would constitute timestamped mobility
traces with detailed geographic locations with annotations about the type of each
location. One way of achieving this is by following a hybrid strategy of partici-
patory sensing (with each person carrying a wireless sensor device) and deploy-
ing static sensors at each location of interest – the contacts between the mobile
and (annotated) static sensors can be logged at each location, and then collated
to form an appropriate mobility traces. For example, a person can connect with
his mobile phone over Bluetooth or WiFi to a local hotspot while checking into
FourSquare at a restaurant. In the absence of static sensors, a person may manu-
ally annotate the places he visits on his device over time. However, most mobility
traces consist of network connectivity data from cell phones (e.g., contact with
towers) which lack detailed geographic locations and are ambiguous, noisy and
unlabeled. Thus, it is important to extract the semantics of mobility that is latent
in the available contact traces. To this end, we propose in this paper the concept of
Probabilistic Latent Semantic Trajectories (PLST), an unsupervised approach to
extract semantically different locations and sequential patterns of mobility from
such traces. PLST extracts semantic locations as contextually co-occurring net-
work elements (cell towers and Bluetooth devices) and models the behavior of
their sequence. PLST extracts distinct locations with spatial, temporal and se-
mantic coherency and can be used for accurate prediction of the next place a user
visits. PLST also analyzes the complexity of mobility traces using information
theoretic metrics to study the underlying structure and semantic content in mo-
bility traces. This semantic content can be extracted allowing us to investigate
mobility patterns in a completely unsupervised manner.
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1 Introduction

Knowledge of human mobility patterns is crucial for geographic and social surveys of
populations, urban planning, commercial aspects of targeted recommendations, content
based opportunistic networking and tracking of people under surveillance for security
purposes. A person’s mobility consists of complex patterns of locations, situations and
activities. This can mean visitation to different geographic locations but may also be
different activities characterized by the presence of other people and environmental
context, sometimes all in the same geographical location. Thus, to model human mo-
bility, we need not only to extract the spatio-temporal patterns but also to understand
the deeper semantic behavior within these patterns. Proliferation of smart phones, hand
held GPS devices, sociometric badges and ever increasing use of location based social
networking (LBSN) services can potentially provide the multi-modal data needed for
such modeling. However, most mobility traces lack detailed information due resource
limitations and privacy concerns. GPS tracking is frequently turned off in many applica-
tions and users may not enrich the traces with semantic annotations. Geo-tagged LBSN
check-ins contain rich semantic information about location and activity but are usually
too sparse for fine-grained analysis.

In the absence of the above, network connectivity data of cell towers, bluetooth en-
counters, and WiFi access points are frequently used as approximate sensors of loca-
tion to understand spatiotemporal behavior and social interactions within a community
[20,23,24,30]. Since these features are typically needed for normal operation of mobile
devices, they can be recorded with little additional resources. In this paper, we make a
realistic assumption of the availability of anonymized cell tower and bluetooth connec-
tivity data as mobility traces, with geographic information removed. Cell towers are
inherently ambiguous indicators of geographic locations due to their long range. Blue-
tooth devices have a short range but cannot be used as geographical landmarks since
most bluetooth devices are mobile. They are better viewed as contextual information
of environment or social interactions of a user. The data is also noisy since the indices
exhibit frequent fluctuations due to load balancing of cell towers or temporal fading of
signal, the user is out of range of cell towers, or the bluetooth devices are absent. In
spite of these disadvantages we show that co-appearing indices contain sufficient geo-
graphical and contextual information to extract rich semantic structure of user mobility.

Our intuition is based on the following hypotheses. First, while individually the in-
dices are ambiguous, collectively they are more informative about the location. Sec-
ond, different sets of indices signify semantically different activities and situations, i.e.,
indices are contextual markers rather than geographical features. For example, an of-
fice and a conference room inside a building may be in the range of the same set of
cell towers but have different sets of bluetooth devices. A large number of cell towers
may signify a transit situation while a temporary absence can indicate an underground
tunnel, i.e., even the absence of indices is informative. Third, by considering long se-
quences and enforcing a syntactic structure we can further reduce the effects of noise
and ambiguity associated with the indices.

To this end, we introduce the notion of Probabilistic Latent Semantic Trajectories.
PLST is an unsupervised approach to extract semantically different locations and sequen-
tial patterns of mobility while accounting for the ambiguity and noise in observations.



86 B. Deb and P. Basu

Fig. 1. PLST from ambiguous observations. Cell indices (circles) and semantic locations (rect-
angles) exhibit many-to-many relationship. Each cell covers multiple locations (Polysemy), e.g.
[630] to Office, Mgh, Volleyball etc. Multiple cells can be associated with a single location (Syn-
onymy) e.g. [673],[915] and [916] to ’Home’. Dotted line shows a potential semantic trajectory
(home, transit, office, deli) which we intend to extract for a user from the ambiguous observations.

Figure 1 illustrates the concept of PLST. PLST models the semantic locations a user visits
as a mixture density of latent variables (or abstract states). We find these Latent Semantic
Locations (i.e., assign labels to observations) using a statistical Model Based Clustering
(MBC) approach. To extract the Latent Semantic Trajectory, we extend the MBC to a
Hidden Markov Model (HMM) and propose Maximum Likelihood and Bayesian ap-
proaches to predict the next observations. Finally we characterize the Predictability of
user mobility through information theoretic measures of the latent structure.

We evaluate the PLST concept through the popular Reality Mining data set (RM, [8]).
The semantic locations and index associations extracted using PLST show surprising
levels of temporal, spatial and semantic coherency. PLST’s structured approach to next
place prediction shows superior performance when compared to two state-of-the-art pre-
diction algorithms for unstructured sequences. The high degree of correlation between
predictability and prediction rates validates our hypothesis that mobility sequences (even
with ambiguous geographical information) not only contain rich semantic information
but also that PLST is able to capture this deeper semantic behavior in user mobility.

2 Related Work

Comparison to Text Analysis: The PLST concept is similar to latent topic analysis for
unlabeled text [1,15,16]. The indices define the vocabulary of a mobility document
while location ambiguity is similar to the notions of Polysemy and Synonymy of word
meanings. However, mobility data is characteristically different from text documents
which makes this study novel. For text, terms in a large documents are assumed to be
generated from a mixture of latent topics (or a bag-of-words). In contrast, PLST models
mobility as a sequence of short documents, each generated from a single latent state to
correspond to unique locations and driven by the sequence structure of states. Another
distinction is that the Bernoulli distribution is shown to be more suited for mobility
compared to the multinomial model typically used in text. Models with syntactic struc-
ture for text [14] are not directly applicable for next place prediction.
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Fig. 2. (Top): Part of an observation sequence In,m of Cell (blue) and Bluetooth (red) indices.
(Bottom): Sequence is zoomed in to show the columns of the observation matrix. Each column
indicates the cells and bluetooth indices appearing in a 15 min interval denoting a single semantic
location.

Topic Models for Mobility: Topic models motivated from text analysis are mostly used
for characterizing ensemble behavior of mobility rather than fine grained location ex-
traction and prediction. Examples include clustering similar users or typical days (using
RealityMining data) [7,10,25], and semantic enrichment of mobility flows (using Bike
Sharing data) [5]. We note that while it is trivial to do ensemble analysis in PLST (by
aggregating the topic distributions) fine-grained location extraction and prediction is
not possible with topic based models.

Sequential Models: Sequential models have been used on GPS traces for example,
order-2 Markov Models in [11,29], n-gram Markov model in [3], HMM in [12] and
Dynamic Bayesian Network (DBN) in [31] (anonymized GPS traces) The original RM
paper [8] also used an HMM to annotate the mobility sequences but considered only
four broad categories of places namely home, office, no-signal and elsewhere as latent
states. These approaches are insufficient for extracting fine-grained latent structure or
rely on detailed GPS traces.

Semantic Trajectories: Semantic trajectories can be extracted if GPS traces have rich
annotations to infer user activities [21], [33]. When annotations are absent traces can
be enriched semantically using GPS locations and services such as google places [32].
A slightly different approach has been to segment GPS traces as a sequence of atomic
actions (e.g. stops, move, begin, end, stay-points) to describe a higher level user be-
havior as events or episodes. This has been surveyed quite extensively in [26]. These
approaches are applicable only in supervised settings with detailed annotations.

Next Place Prediction: A number of prediction approaches involving DBN [31], Deci-
sion Trees [19],[33], Support Vector Machines [17], Conditional Random Fields [21]
etc. have been studied in supervised settings with labeled data sets. We compare PLST
to two high performing approaches [11,17] from the Nokia Data Challenge [18].
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Entropy and Predictability: [2,13,28] consider the entropy of unstructured sequences to
characterize predictability of sequences. In this paper we look at predictability through
the latent semantic structure which provides a better understanding of the true complex-
ity of the sequences.

To the best of our knowledge PLST is the first framework for latent semantic analysis
of unlabeled mobility traces which allows the extraction of individual locations visited
by users and and their sequence patterns at a level of detail adequate for accurate next
place prediction and investigation of the user trajectories.

3 Overview and Preliminaries

The PLST concept is illustrated on the Reality Mining data set (RM, [8]). The RM
data set consists of Nokia 6600 smartphone traces of 106 students, staff and faculty in
the MIT Media Labs, and Sloan School of Business. The traces record cell tower IDs,
MAC addresses of Bluetooth encounters, call records and a variety of data specified by
users. In this paper we only consider the cell towers and bluetooth encounters to model
mobility. User traces also contain semantic names of cell towers (e.g. home, office, road
location) and time stamps which are not used for modeling the user mobility. However
they provide useful information to qualitatively evaluate the relevancy of models.

We first define the observation matrix from the user trace which will be the input for
modeling the user trajectory as follows:

User Observation Matrix: We first convert the physical addresses of cells and bluetooth
devices to unique indices. Next, we divide the raw sequence of indices into 15 minute
patches. 15 minutes was a reasonable segmentation period for unique locations and long
enough to smooth out the large number of aperiodic short lived entries in the traces.
Each unit of observation, Xn is defined by an M × 1 binary indicator vector In,m and
a frequency vector fn,m where M is the total number indices. The vectors contain the
list of indices appearing in the 15 min segment. For N 15-minute periods we have an
M × N observation matrix where each column denotes a semantic location. Figure 2
shows a section of the observation sequence for a certain user.

Next we define PLST based on the following concepts:

Semantic Location: User location defined according to higher level semantic activity or
situation, for example home, office, restaurant, gym etc., each of which is distinguished
not only by their geographic location but also by some underlying activity.

Latent Semantic Location: Since we assume that user traces do not contain semantic an-
notations, we assign each observation to some latent class or abstract state which are se-
mantically distinct. Although we cannot retrieve the actual semantic activity (hence it is
a latent or a hidden class), we can infer the semantic differences in the latent classes by
observing the temporal distributions and index labels associated with different classes.

Latent Semantic Trajectory: A sequence of latent semantic classes assigned to a user
trace. While two users may visit the same set of semantic locations (such as home,
office, gym), they may do it in a different order. Thus the semantic trajectory defines
the syntactic differences in user mobility.
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PLST is a probabilistic model that aims to model the above from indices which
are not only ambiguous (many-to-many relationship as illustrated in Figure 1) but also
noisy. More specifically, it associates observations to latent classes by solving the fol-
lowing problems:

1. Index disambiguation: associate indices (cells and bluetooth devices) to latent
classes and cluster/distinguish semantically related/different indices.

2. Location disambiguation: associate observations (co-occuring indices in a 15-minute
period) to latent classes.

3. Latent syntactic structure: learn the sequential patterns of mobility through transi-
tions among latent classes.

4. Next place prediction: given the history of observations, predict the next observa-
tion in the sequence.

In Section 4, we tackle the PLST problems 1 and 2. In Section 5, we tackle the PLST
problems 3 and 4.

4 Latent Semantic Locations

Using the observation matrix our aim is to 1) assign a class label to each column and 2)
learn the association of indices to latent classes (the PLST problems 1 and 2). Since a
location is defined by the co-occurrence of indices in a 15 minute period, one approach
would be to use an index adjacency matrix and cluster indices into closely associated
groups. However the adjacency matrix does not model the ambiguity and noise in the
observations. We propose a model based probabilistic clustering solution.

Model Based Clustering (MBC). We consider a probabilistic approach where instead
of a hard cluster assignment, we find the distribution of indices and observation vec-
tors over the latent classes. We model the observations as a generative process in-
volving a mixture density of latent states which is depicted as a Bayesian Network
in plate notation in Figure 3. To generate an observation (each column of observation
matrix) from the model Θ = {μ, π}, we sample a location zn = k according to mix-
ing distribution πk and then sample Ln indices in the observations according to μmk .

Fig. 3. Bayesian Network for
MBC to extract Semantic Loca-
tions

N : Total number of 15min intervals in user trace
Xn: set of Ln indices appearing in the nth observation
m ∈ 1, ..,M : vocabulary of observation indices
In,m = 1 ⇐⇒ m ∈ Xn: observation indicator vec-
tor
fn,m: observation index frequency
Θ = {μ, π}: parameters of the mixture model
μmk = p(m|k): probability of m appearing in loca-
tion k
πk = p(k): mixing distribution for visiting the loca-
tion k
zn = k ∈ [1,K]: latent location class of observation n
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Above, we have implicitly assumed that each observation is generated from a sin-
gle component k which makes sense as each observations represents a single semantic
location. Longer observation durations (for example an entire day) can be generated
from a mixture of components. We also assume that a latent location zn is sampled in-
dependently and each index in the observation is conditionally independent given zn.
The likelihood of observations is given by the mixture model in equation 1. Our aim
is to find the parameters Θ which maximizes the joint likelihood of N observations in
equation 2.

L(Xn|Θ) =
∑
zn

p(Xn|zn;Θ)p(zn|Θ) =
∑
k

πkp(Xn|zn = k) (1)

L(X1 . . . XN |Θ) =

N∏
n=1

{∑
k

πkp(Xn|zn)
}

(2)

Above, p(Xn|zn) is the probability of an observation and is also known as emission
probability in mixture modeling. The emission probability is meant to incorporate the
specific characteristics of the data. We employ three different multi-variate emission
probability distributions in our analysis.

pbin(Xn|zn) =
∏

m∈Xn

μ
In,m

mk (3)

pbern(Xn|zn) =
∏

m∈Xn

μ
In,m

mk

∏
m/∈Xn

(1− μmk)
1−In,m (4)

pmult(Xn|zn) =
∏

m∈Xn

μ
fn,m

mk (5)

The choice of emission probability is central to the idea of model based clustering
paradigm. The Bernoulli distribution models a latent location not only with the indices
which occur but also the indices which are missing. Thus it is more informative than
the binomial model which might prove crucial in differentiating context. Both these
distributions are multiple trial models but have a different observation space from the
multinomial distribution. The index frequencies in the multinomial model may pro-
vide some subtle information about the locations and activity. For example a person in
transit, an indoor location with variable cell connectivity, or an outdoor location would
have different frequencies of observed cells. However, owing to its Polya urn model, the
multinomial favors strong clustering (akin to a hard clustering solution) which might be
counter-productive for prediction task. Since our observations consist of few indices,
some analogy may be drawn with sentence classification and retrieval (short documents)
in text analysis where the Bernoulli mode has proved more effective [22]. In our evalu-
ations we quantitatively compare the three distributions for modeling and prediction.

To find the optimal parameters Θ = {μ, π}, we maximize the likelihood L(X|Θ).
Since the assignments zn are not observed we need to maximize over all possible as-
signments of zn. Note that equation 2 contains inner sums which makes this intractable.
We use the Expectation Maximization (EM) algorithm to solve the problem. We start
with some initial assumption about the parameters Θ. In the E-step, we compute the
posterior distribution of the latent variables p(Z|X,Θold), using the current estimate of
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Fig. 4. (a) top 2 frequently occurring states; (b) 3 cell towers appearing in a latent state

(a) (b) (c)

Fig. 5. Semantic Disambiguation of 2 pairs of cells designated as Home.(a) Hourly Distribution
(b) Day of Week Distribution (c) Posterior probability of cells shows distinct peaks for the two
pairs.

the parameters. In the M-Step we find the expectation of the complete likelihood func-
tion Q(Θ|Θold) =

∑
Z p(Z|X,Θold) ln p(X,Z|Θ) and maximize it with respect to the

parameters Θ.
For emission probabilities in the exponential family (as the three distributions in

equations 3, 4, 5) the E and M step assumes a simple form given by equations 6 and 7.
We iterate between the steps and monitor the likelihood score given by equation 2 to
test for convergence.

Expectation : γnk =
πkP (Xn|zn) + ε∑

k P (Xn|zn) + ε
(6)

Maximization : μmk =
∑N

n=1 γnkInm∑
N
n=1 γnk

, πk = 1
N

∑N
n=1 γnk (7)

Above, γnk = p(zn = k|Xn;Θ) is the posterior probability (or a soft cluster assign-
ment) that Xn ≡ In is assigned to the location k and is the MBC solution. For a data set
involving a large number of indices, there can be a severe problem of sparsity such that
a test sequence is likely to contain indices and their combinations not seen previously
in learning. Problems such as these can be handled using Laplace smoothing by adding
ε in the γm,k. This assigns a non-zero probability to all members of μ and is equivalent
to a non-informative uniform prior used in Bayesian models such as LDA[1].

Location and Index Disambiguation. The two problems using the MBC are to infer
the latent state labels for both indices and observations. The Bayesian network graph
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for MBC in Figure 3 models the sampling process to generate observations going from
root to leaf nodes. For inference we compute the posterior distributions going in the
opposite direction (i.e. leaf to root).

In equation 6, γnk is the posterior probability of an observation to a latent state. Since
it is assumed that observations are generated from a single latent component (corre-
sponding to a unique semantic location), the label assignment can be approximated to
the Maximum A-posteriori Probability (MAP) estimate of γn,k, i.e., the component k
with the highest probability.

For a similar label assignment for indices, we compute the posterior probability of
indices, p(k|m) = μp

km using the Bayes’ theorem in equation 8 and assign the label k
for the component in μp

km with the maximum value. The denominator in the R.H.S. is
simply the normalizing coefficient since p(k|m) is a probability distribution and must
sum to 1.

μp
km = p(m|k)p(k)/p(m) = πkμmk/

∑
k

πkμmk (8)

The above label assignment to indices only provides the most-likely (MAP) location
for an index. To find a more general association, we can consider measures such as Co-
sine Similarity or Shannon-Jensen Divergence between the index-posterior distributions
μp
km.

Qualitative Interpretation of the Latent Clusters. The MBC model is essentially
a statistical representation which can perhaps improve some quantifiable task such as
predicting the next observations. However it would be more significant if the latent
states also have some real, semantic interpretation.

We first consider the temporal coherence of the latent states. Figure 4(a) shows that
the hourly distribution of top two frequently visited states for a user. It has two dis-
tinct patterns which can be interpreted as home and office which is what we expected
from a typical participant of RM. Locations labeled to less frequent states were seen
to have more complicated (yet coherent) patterns. For example, Figure 4(b) shows the
hourly distribution for three indices appearing in a latent state have a complex but a
characteristic profile.

The MBC approach can also semantically differentiate indices which may be co-
located geographically. Consider Figure 5 where we have plotted the profiles of four
cell towers labeled as “home” by an user. The temporal profiles are quite similar within
the two pairs [Cell 1, Cell 2] and [Cell 3, Cell 4] but quite distinct across the pairs.
The day of week distribution shows that the first pair (blue) appears mostly during the
week while the second pair (red) appears more in the weekend. Further, we see that the
second pair has a uniform hourly distribution which may indicate that the person was
at home during the weekends. The index posteriors μp

kmfor the four cells are plotted
for the multinomial and Bernoulli distributions in Figure 5c. The distinct peaks in the
distribution illustrates that the two pairs are differentiated as distinct semantic locations
even though the temporal features were not used. We also see that while the multinomial
has a single high peak for each pair, the Bernoulli has some ambiguity (two peaks for
the first pair) indicating that an index can belong to different latent locations.



Discovering Latent Semantic Structure in Human Mobility Traces 93

Fig. 6. (Top row) Posterior distribution of indices sorted
according to assigned classes for 40, 100 and 200 Latent
classes (uses the Bernoulli Distribution); (Second row)
Cosine similarities of clustered indices for the Bernoulli
(left), Binomial (centre) and Multinomial (right) distribu-
tions; (Bottom) Cell indexes grouped using cosine simi-
larity. Associated user defined labels show semantic co-
herency.

Next, we investigate index
disambiguation in more detail.
We use the cosine similarity
to cluster indices and then sort
the indices according to their
assigned classes for the plots
in Figure 6. Figure 6(top row)
shows the posterior distribution
of indices μp

km with different
number of latent states. This is
shown for the Bernoulli distri-
bution but we get similar figures
with the other two. It is clear that
as the number of latent states
is increased, the index to latent
state associations become more
well defined. Figure 6(second
row) plots the pairwise similar-
ity of clustered indices for the
three distributions. The multino-
mial produces a similarity ma-
trix with the least ambiguity.
It is well known that multino-
mials can overfit a clustering
solution which leads to satu-
rated distributions equivalent to
a hard clustering (e.g. see figure
5c). Bernoulli has more ambigu-
ity but also has more balanced
groups which are neither too
small or too large. A quantita-
tive comparison presented later
shows that ambiguity is benefi-
cial for next place prediction as
it correctly models the inherent nature of the data set. Finally, to get a better sense of the
index associations, Figure 6(bottom) illustrates groups of semantically similar indices
along with their semantic labels provided by a user. The label groups show surprising
levels of semantic and geographic coherency which emerge purely based on the models
used.

5 Latent Syntactic Structure of Mobility

While the MBC approach can extract semantically coherent latent states, it assumes
that these states appear independently. Mobility usually has a sequential and causal
behavior: next place a person visits may depend on the previous steps taken. In this
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section we model the latent syntactic structure of mobility to investigate the transition
behavior between latent states. We also consider the problem of predicting the next state
and observations.

Syntactic Structure with MBC. We first impose a sequential structure on the latent
states extracted by MBC. We assume that the state sequence is Markovian (next state
is dependent only on the previous state). We calculate the state transition matrix Ai,j

using the posterior state distributions γn (equation 6) as follows.

Ajk = p(zn,k|zn−1,j) =

∑N
n=2 γn−1,jγn,k∑K

k=1

∑N
n=2 γn−1,jγn,k

(9)

Above, Ai,j is the probability to go from state j in the n−1th step to state k in the nth

step. To predict the n + 1th observation given the observations up to Xn, we calculate
the posterior γn for observation Xn and then calculate the transition probability to go to
the location k at the n+ 1th step using equation 10.

Trann+1
k = p(zn+1 = k|Xn) =

K∑
j=1

γn,jAj,k (10)

To estimate the next observation indices, we use two slightly different notions. In the
first, the notion of Maximum Likelihood (ML)is used for estimation: we find the most
likely transition given by k̂ = Argmaxk(Trans) and assume k̂ as the the next state.
Then, for this state the predictive probability of indices is given as:

PrML(m ∈ Xn+1|k̂) = μmk̂ (11)

In the second notion, we compute the Bayesian Estimate (BE) of the index prob-
abilities by marginalizing over all transitions to get the posterior probabilities of the
observation indices.

PrBE(m ∈ Xn+1) =
∑
k

∑
j

γn,jAj,kμm,k (12)

We note that the model itself is not a full Bayesian generative model: we only esti-
mate the index probabilities as the posterior mean.

Fig. 7. Dynamic Bayesian Network of the MBC
as an HMM to extract Syntactic Structure

Syntactic Structure with HMM. In
MBC, we imposed a simple pairwise se-
quence structure on the extracted latent
states. Such a model inherently lacks
the informative power of a long obser-
vation sequence. However, we need to
enforce the history dependence on the
predictive probability of the observations
while keeping the parameter space small.
This can be achieved by extending the
MBC in Figure 3 to a DBN. We im-
pose Markovian transitions (on the latent
states rather than the observations) to create a particular type of DBN, namely the Hid-
den Markov Model (HMM). Here, the emissions are sets of indices, rather than a single
element as shown in Figure 7. It can be shown that while the latent states are Marko-
vian (zn+1 is conditionally independent of zn−1 given zn) the distribution of interest,
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the predictive probability, p(Xn+1|X1, ..., Xn) does not have this conditional indepen-
dence and hence it depends on all the previous observations. HMM is specified by the
parameters Θ : {π1, A, μ}, the initial, transition, and emission probabilities. HMM has
is exactly the same number of parameters, O(K2) as MBC-sequence and thus we have
not increased the complexity of the model. We also use the same emission probability
functions (equations 3-5) thus preserving the ability to extract similar latent semantic
locations. The difference with HMM is that we learn the parameters, label the states
and predict the observations jointly over the entire sequence. Thus HMM allows us to
model complex sequences while keeping the parameter complexity under control.

We use the EM algorithm to learn the HMM parameters. While the M-step is sim-
ilar to that in the MBC, the sequential dependencies complicates the E-step. We use
the scaled version of the forward-backward (or the Baum-Welch) algorithm [27], which
uses dynamic programming and sum-product rules of probability to calculate the ex-
pectation terms over all possible latent paths in the sequence.

Expectation

cnα(zn) = p(Xn|zn)
K∑

zn−1=1

α(zn−1)p(zn|zn−1) (13)

cn+1β(zn) =
K∑

zn+1=1

β(zn+1)p(Xn+1|zn+1)p(zn+1|zn) (14)

γ(zn) = α(zn)β(zn) + ε (15)

ξ(zn−1, zn) = α(zn−1)p(Xn|zn)p(zn|zn−1)β(zn)/cn (16)

Maximization

π1
k = p(z1 = k) = γ1,k/

K∑
k=1

γ1,k (17)

Aj,k = p(zn+1,k|zn,j) =

∑N
n=2 ξ(zn−1,j , zn,k)∑K

k=1

∑N
n=2 ξ(zn−1,j , zn,k)

(18)

μm,k = p(Xn|zn) =
N∑

n=1

γn,kIn,m/
N∑

n=1

γn,k (19)

In the E-step, we compute γn = p(zn|X,Θold), the posterior distribution of the latent
states, and ξ(zn−1, zn) = p(zn−1, zn|X,Θold), the joint probability of two successive
latent states with the current parameter estimate Θold. We recursively compute α(zn) =

p(X1, ..., Xn, zn),the joint forward probabilities and β(zn) = p(Xn+1, ..., XN |zn), the
conditional backward probabilities for the nth latent state. After a complete forward and
backward sweep, we get γn using the chain rule for joint probabilities by multiplying
αand β. Similar computation gives us ξ(zn−1, zn).

In the M step, the expected values of γ and ξ are maximized to update the parameters
of HMM. For emission distributions in the exponential family, this maximization again
assumes the simple form as given in equations 17, 18 and 19. The initial probability
π1 is computed by normalizing γ1, the marginal distribution of the first state, while
the emission probabilities are computed by taking the expectation of the observation
matrix for each of the k latent components with the posterior state distributions γ as
the weights. Note that to compute the transition probability matrix Ai,j we need n − 2

matrices of ξ (each of size K×K). These are not stored but simply accumulated in Ai,j

during the backward sweep in the E-step.
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Above, cn is the scaling factor term which is used to keep the probabilities under
machine precision for a long sequence. It can be computed as the normalization constant
on the right hand side of equation 13. We again use ε for Laplace smoothing on γ similar
to the EM steps in MBC.

We start the α − β recursions by setting α1(zn) = π1p(X1|zn) and βN = 1. To
initialize the EM iterations, we use the learnt parameters from MBC as initial values
and use Laplace smoothing on the parameters before using them to remove model over-
fitting. Initialization from MBC speeded up the EM convergence of HMM parameter
learning. The learnt parameters for MBC were found to be relatively stable and thus
proved a good initialization for the EM algorithm in HMM.

Labeling the States in the HMM. Similar to the MBC, the HMM can be used for
labeling each observation to a latent state. HMM gives better sequences than MBC as
evident from the prediction performance. The qualitative analysis is omitted due to lack
of space. Figure 8 illustrates a typical observation sequence and their states using two
approaches which are described next.

Fig. 8. Latent Label Sequences using
the SumProduct (Marginal) and MaxSum
(Most Likely) states depict the extracted la-
tent semantic trajectory

Marginal State Sequence: To infer the la-
bels, we compute the marginal distribu-
tions of the latent states conditioned on
the observations over the entire sequence.
For Bayesian networks which are trees (as
HMMs are), this can be computed using the
forward-backward sweeps in the EM algo-
rithm to arrive at γn = p(zn|X) as the
marginal distribution of the latent states.
We then label the observations as k̂n =

Argmaxk(γn,k) to get maximum a posteri-
ori allocations with individually most prob-
able states. Since the marginals were cal-
culated using the sum-product algorithm,
we term these as k̂SumProd

n .

Most Likely State Sequence: We can further constrain the sequence by considering only
the most likely sequence of states. We use the max-sum recursions or the Viterbi al-
gorithm for this purpose. While the max-sum algorithm can be implemented in the
logarithmic domain, we implement a scaled version of the algorithm since we intend
to use the forward probabilities for computing the predictive distribution. We introduce
the scaling factors dn in max-sum recursions as follows.

ω(zn+1)= max
z1...zn

p(X1...Xn, z1...zn) = ln p(xn+1|zn+1) + max
zn

{ln p(zn+1|zn) + ω(zn)− ln dn}
(20)

At the end of the final maximization at the N th step, we get ω(zN) = p(X,Z), the
joint probability of the most-likely path. To label the most-likely path we keep track of
jth component of ω(zn) which contributes to the max value of ω(zn+1) in ψ(kmax

n+1 ) = jn.
Once the forward recursion is completed, we maximize ω(zN) at the end state and
backtrack recursively to get k̂MaxSum

n = ψ(kmax
n+1 ) as the labels for the entire sequence.
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In Figure 8 the label sequences using the two methods are practically identical, with the
Viterbi sequence appearing a bit smoother with fewer transitions.

Prediction with HMM. As in the MBC approach, we have the ML and the BE no-
tions for the predictive index probabilities. To predict the indices for the n + 1th step,
we first infer the state sequence up to observation n, and then compute the predictive
probabilities. Since we have two estimates of the state sequences, the Sum-Product and
Max-Sum, we have four different predictive distributions.

TransSumProd
n+1 (k) = p(zn+1 = k|Xn) =

K∑
j=1

αn,jAj,k (21)

TransMaxSum
n+1 (k) =

K∑
j=1

eω(zn,j)Aj,k (22)

For the Sum-Product transitions, we use the αn,k the normalized forward probabili-
ties instead of γn,k since the β indices are not available during predictions. For the Max-
Sum transitions we use the exp(ωn,k) as the normalized forward probabilities. Then for
ML, the next location is given by k̂n+1 = Argmaxk(Transn+1) and the ML predic-
tive index probabilities for the two state sequences is given by PrML(m ∈ Xn+1|k̂) =
p(m|k̂) = μm,k̂. Finally, the BE predictive distributions for are given by:

PrBE
SumProd(m ∈ Xn+1) =

∑
k

∑
j

αn−1,jAj,kμm,k (23)

PrBE
MaxSum(m ∈ Xn+1) =

∑
k

μm,k

∑
j

eω(zn,j)Aj,k (24)

Fig. 9. F1 Scores (averaged across users): (a) MBC: for the three distributions using ML and BE
prediction approaches. Bernoulli with BE has the best performance; (b) HMM: for the Bernoulli
distribution using ML and BE prediction approaches. Prediction using Max-Sum state sequence
and BE has the best performance.

Entropy and Predictability of the Sequences. We analyze the complexity of sequences
using information theoretic measures. Since PLST (i.e. MBC and HMM) extracts some
semantic patterns in the data and projects it onto a lower dimensional latent space, we
expect the models to represent the inherent uncertainty and predictability sequences.
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Fig. 10. Average F1 score comparisons: (a) MBC vs. HMM; (b) predict cell towers with and with-
out Bluetooth devices in the observations. Bluetooths improve prediction by providing location
context.

We analyze the complexity using cross entropy1 as an upper bound on the entropy
of a sequence [2]. Let P (X1, ..., XN ) denote the true probability distribution of the se-
quence. Since P (X) is unknown, we learn a representative model Q(X) on a training
sequence and compute the entropy using Q on a test sequence. A lower cross-entropy
provides a tighter estimate and indicates that a particular model is a better descriptor of
the data. Thus, it may be used as a model selection criteria. The cross entropy is given
as follows.

HN(P (X)) ≤ HN(QK(X)) = lim
N→∞

1

N
E[logKQ(X1, ..., XN )]

HN (QK) � 1

N

N∑
n=1

K∑
k=1

p(Qnk)
ln p(Qnk)

ln(K)
(25)

We use MBC and HMM as the representative models for P and use p(Qn,k) = γnk

from equation 6 and 15. These represent the uncertainty of the observations as a distri-
bution over K latent states. While the MBC draws the latent state space independently,
the HMM further constrains the state space through dependencies in state transitions.
The cross entropy may be interpreted as the information transfer rate or the minimum
number of K-ary bits required to encode the mobility sequence. Thus, the cross entropy
in equation 25 is computed in ln(K) units.

We are also interested in the Predictability of a sequence which is related to
the information flow rate [9] or the reduction in uncertainty of a future state
given the previous observations. This is estimated using the conditional entropy
HCK

n (Xn+1, zn+1|X1, ..., Xn) given by:

HCK
N � 1

N

N∑
n=1

K∑
k=1

p(zn+1 = k|X)
ln p(zn+1 = k|X1, ..., Xn)

ln(K)
(26)

To compute the above, we use p(zn = k|X1, ..., Xn) = αnk, the forward transition
probabilities. We can further reduce the uncertainty of the sequence by considering
the distribution over the most likely sequence of states using the MaxSum forward
probabilities ωnk from equation 26. Finally, Predictability is defined as:

PredictabilityK
n = 1−HCK

n (27)

1 Cross entropy is closely related to Perplexity (cross-entropy normalized per word) which is
frequently in text analysis.
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6 Evaluation of Next Place Prediction Algorithms

We consider users with more than 10,000 entries in their sequence (87 users out of the
106). For each user, we use 80% of the sequences for training and rest 20% for testing.
The prediction is sequential: the nth observation is predicted using the previous n − 1

observations, after which we update the nth state using the observation Xn.
With predictive distribution Pr(m ∈ Xn+1) for the next observation we denote the

predicted indices as the Retrieved set given by Retn+1(m) = 1 : Pr(m ∈ Xn+1) >

Threshold. The actual observation provides the Relevant set or the ground truth given
by Reln+1(m) = 1 : m ∈ Xn+1. We compute the prediction scores using informa-
tion retrieval metrics of Precision: Pn = |Reln ∩ Retn|/|Retn|, Recall: Rn = |Reln ∩
Retn|/|Reln| and F1-Measure: F 1

n = 2PnRn/(Pn + Rn). F1 is the harmonic mean
of precision and recall and most closely identified with the accuracy of predictions
since it provides the degree of overlap between the two sets. For the 87 users, the
scores are computed for the three distributions with different number of latent states
(20 ≤ K ≤ 300) and different thresholds (0 ≤ Threshold ≤ 1).

Prediction Performance with Model Based Clustering. Figure 9(a) illustrates the F-
Measure scores for the Bernoulli, binomial and multinomial distributions using the MBC
approach. We have already looked at the qualitative merits of the Bernoulli distribution
for mobility modeling. Quantitatively, the Bernoulli distribution has the best prediction
performance among the three distributions. Among the two prediction methods, BE is
better than the ML for all the three distributions. The quantitative prediction scores also
concur with evaluations based on cross entropy, discussed later in the section.

Prediction Performance with HMM. For HMM, we only show the results with the
Bernoulli distribution. Our tests with the other two distributions reveal that Bernoulli
has the best performance even in HMM. Figure 9(b) plots the the average F1 scores
(across thresholds and users) for the four different prediction schemes. The BE predic-
tive distribution with the Max-Sum state sequence (using the Viterbi algorithm) has the
the best performance. Figure 10(a) compares the performance of HMM with the MBC
and shows the advantages of modeling the sequence as an HMM. In Figure 9(b), we
predicted both the cell and bluetooth indices. In general the bluetooth encounters pro-
vide context, but are less indicative of geographical location. Figure 10(b) compares
the cell index prediction with and without bluetooth indices in the observation matrix.
A higher prediction rate with bluetooth confirms our intuition that bluetooth provide
informative location context.

Comparison with Baseline Prediction Algorithms. We evaluate two algorithms which
involve the prediction with the unstructured sequence of observations to illustrate the
benefits of using the latent structure of sequences.

Order-2 Markov Model (MM-2): We consider the sequence of cells as an order-k Markov
Chain. We first compute the order-k cell transition probabilities in the training sequence.
In the test sequence the next cell is predicted as the most likely cell given the previous
k observations in the chain. In particular we consider MM-2 as it has been shown to
outperform other predictive approaches in [11] and [29].



100 B. Deb and P. Basu

Fig. 11. Comparison of accuracy with different approaches: SVM (0.2), MM-2 (0.4) and
PLST(0.7)

Prediction as a Multi-class Classification: We posed the prediction task as a multi-class
classification problem and used SVM [4,6] to find the next place based on the features
of the current state. We used previous 10 cell ids, hour of day, day of week, weekday,
time of day (morning, noon etc.) and stay times at the current location as the features
describing the current state. These features are similar to those used in [17] which was
ranked 2nd in the next place prediction task of the Nokia Data Challenge [18].

Since the baseline approaches do not use the bluetooth devices, we compared them
to the prediction of cell indices. Figure 11 shows the prediction rates for different users
using the PLST (HMM with BE and MaxSum), SVM and MM-2. For each, we used
the best user prediction scores across different algorithm parameters. For SVM and
MM2 the rate is calculated as the fraction of correctly predicted cell indices in the test
sequence. The performance of PLST is significantly better than the two baseline cases.
Since the SVM and MM-2 shows the accuracy rates rather than F1, we also include the
precision and recall rates to illustrate that the PLST is significantly better. For SVM and
MM we expect to correctly predict 20% and 40% of the next cell indices. In contrast
PLST accurately predicts close to 70% of the indices when measured as groups inside
latent semantic locations.

Discriminative models (such as SVM) trained for multi-class prediction perform
poorly when the class space (the indices) is large and essentially equivalent to the size
of feature space used to discriminate the classes. Markov models are better at modeling
short range dependencies since the effects of previous states drop exponentially with
Markov distance. This is the reason why their performance saturates beyond the2nd or-
der. In addition SVM and MM-2 penalize prediction of synonyms (or multiple cells that
belong to the same location). PLST achieves the best performance by extracting struc-
ture in the sequence, and incorporating longer dependencies through the transitions in
latent space.

Entropy and Predictability of the Sequences. We plot the sequence cross entropies
(eq. 25) and the conditional entropies (eq. 26) in Figure 12(a) in log(K) units.
The raw entropy uses the normalized index frequencies as the probability distribution.
The cross entropies for MBC are significantly lower than the raw index entropy. Among
the three distributions, Bernoulli has the lowest entropy. In the conditional entropy plots,
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Fig. 12. (a) Cross Entropy depicting the complexity of modeled sequences. Lower cross-entropy
denotes better model fit; (b) Scatter plot of Predictability vs. Prediction rates for different user
sequences. Prediction rates show correlation to the derived Predictability measure.

the predictive Sum-Product (α) probabilities is slightly higher than the marginal Sum-
Product (γ) which is expected. What is surprising is that the Max-Sum conditional
entropy (ω) is even lower than the γ-rate and suggests why its prediction performance
was far superior to the other approaches.

Finally, in Figure 12(b) the scatter-plot for the Sum-Product and Max-Sum predictive
distributions shows that Predictability (equation 27) is highly correlated to the predic-
tion rate. An important observation from all the plots is that a larger number of states
provides better prediction for BE based predictions. A large number of states can poten-
tially model complex behavior but can also overfit the training data. This affects the ML
predictions but not the BE predictions due to marginalization and model averaging in
BE across the state space. While the optimal number of states in latent variable models
is highly debated, for prediction, the results show that we can choose the largest number
of states under the limit that is computationally feasible.

7 Conclusions and Future Work

PLST provides an unsupervised approach for semantic modeling and analysis of user
mobility in the absence of accurate geographic signals and semantic annotations. The
evaluations and results validate our intuition that location sequences of users have an
underlying structure and that structure can be extracted using the models described in
this paper. While the approach is illustrated through the particulars of the RM data,
we intend to generalize it to other types of data sets. PLST can prove important for
anonymous tracking and profiling of users and the latent semantic structure can be used
to identify uncommon behavior.

Several extensions to this work are ongoing. First, modeling and predictions may
be further improved by accommodating temporal features or periodicity of users. Also,
the methods can be potentially extended to incorporate knowledge of social network
information and interactions (albeit incomplete and noisy) alongside the noisy physical
connectivity traces to discover latent semantic aspects of group mobility.
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Abstract. Limited memory capacity is one of the major constraints
in Delay Tolerant Wireless Sensor Networks. Efficient management of
the memory is critical to the performance of the network. This paper
proposes a novel buffer management algorithm, SmartGap, a Quality of
Information (QoI) targeted buffer management algorithm. That is, in a
wireless sensor network that continuously measures a parameter which
changes over time, such as temperature, the value of a single packet is
governed by an estimation of its contribution to the recreation of the
original signal. Attractive features of SmartGap include a low computa-
tional complexity and a simplified reconstruction of the original signal.
An analysis and simulations in which the performance of SmartGap is
compared with the performance of several commonly used buffer man-
agement algorithms in wireless sensor networks are provided in the paper.
The simulations suggest that SmartGap indeed provides significantly im-
proved QoI compared the other evaluated algorithms.

1 Introduction

Delay Tolerant Wireless Sensor Networks (DT-WSNs) are networks that com-
bine concepts from delay-tolerant networking (DTN) and wireless sensor net-
works (WSN). In this work, we consider networks of constrained devices which
sense their environment, and communicate sensor data (such as temperature and
humidity) through wireless links. Sensor data is forwarded, possibly via multiple
hops, to a sink node which gathers and stores the data for further processing.

Nodes in a DT-WSN can be stationary or moving; they can be location-aware
or not; and, they can be homogeneous or heterogeneous. Connectivity between
the nodes may be scheduled, intermittent or opportunistic. As an example, con-
sider a WSN deployed in a rural area where there is no communication infras-
tructure. With the help of DTN data mules, sensor data is transported from
the WSN to a central location where the data is stored and made available for
further analysis. Figure 1 shows an example of such a network.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 104–119, 2015.
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Fig. 1. An example of a DT-WSN comprising a number of spatially isolated wireless
sensors. The source sensor nodes measure the environment by collecting measurement
samples, which are transported by mobile data mules to a sink node. The sink attempts
to reproduce the measurement from the samples. As the capacity of the network is lim-
ited, some samples are lost in transit, and the quality of the reproduced measurement
is affected.

Although, there is a significant amount of work on both WSNs and DTNs,
there is less work on the combination of the two network types. Previous work
exists on DT-WSN systems in laboratory settings, such as the Wind Tunnel
Monitoring system by Lou et al. [1] and the Data Elevator testbed by Pottner
et al. [2]. Furthermore, Zennaro reports experiences from a field trial with a
network to monitor water quality in the Blantyre district of Malawi [3].

In this work, we consider buffer management algorithms for DT-WSNs. The
typically intermittent-delivery, long-latency and low-bandwidth characteristics
of these networks, enforce a store-and-forward behaviour on the nodes, and make
buffer management pivotal to uphold a high network performance. Yet, there is
relatively little previous work on buffer management in DT-WSNs. To illustrate
the importance of buffer management in DT-WSNs, consider a straightforward
approach that uses a head-drop buffer policy. In this policy, when a buffer is
full, the first packet in the buffer, i.e. the oldest one, is dropped. Assume that
a node collects one sample per minute and stores the sample in the buffer.
Further assume that, for some reason, the node is unable to communicate for
a period of one hour. Then only the last 10 packets will remain in the buffer,
and the remaining 50 packets will be dropped. In other words, newly arrived
packets take priority over already queued packets. As a result, there could be
long periods of measurements during which the sink node gets no measurement
data at all.

Previous work on buffer management in DT-WSNs can be divided into two
broad categories: work that considers packets to be transparent and work that
considers packets opaque. If packets are considered transparent, buffer manage-
ment has the capability to parse the data being transported and make decisions
based on packet content. In contrast, if packets are opaque, buffer management
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decisions are only based on the information available in the header of the packets,
and not on packet content.

There are some clear advantages with algorithms that treat packets as trans-
parent. These algorithms can for example use compression of data or prioritise
data based on content. This approach is typically based on the notion of Quality
of Information (QoI) [4], i.e. a measure of how well the service provided by the
network meets the applications’ needs. By definition, QoI is application-specific,
so there is no universally agreed upon method to measure or quantify it. Ex-
amples of such algorithms, all of which target QoI, include the work of Liu et
al. [5], Humber and Ngai [6], and Alippi et al. [7]. In the algorithm proposed
by Liu et al., the buffered data is replaced with a linear approximation when
the buffer is full. Humber and Ngai estimates the importance of a packet when
it is created based on how much the sampled value stored in the packet differs
from previous values, and then assigns a priority class to the packet on the basis
of this estimate. Lastly, Alippi et al. focus on energy saving, and dynamically
adjust the sample rate based on the frequency of the property being sampled.

Algorithms that treat packets as opaque do not depend on code to parse
the data being transported. Algorithms such as FIFO are easy to understand
and implement, but their performance may not be optimal. One attempt to
provide improved performance compared to FIFO while still considering packets
opaque is the work by Nasser et al. [8] which proposes a Dynamic Multilevel
Priority (DMP) packet scheduling scheme in which sensor nodes are organised
into a hierarchical structure. Sensor nodes that have the same hop distance from
the sink node are considered to be located at the same hierarchical level, and a
Time Division Multiplexing Access (TDMA) scheme is used to prioritise packets
from different levels. Another example is Lyu et al. [9] which suggests a multi-
queue Last In First Out (LIFO) queueing policy. Their main argument is that
LIFO works better than FIFO for real-time applications because it achieves a
shorter delay in congested situations, especially when packets are limited by a
deadline.

We see a clear need for algorithms which considers packets to be opaque:
For one thing, we believe that transparent buffer management techniques in
which sensor nodes parse the contents of packets are potentially expensive in
terms of computational and energy resources. Also, they are not general purpose
solutions and therefore inflexible – each sensor node must be equipped with code
for parsing the data that flows through the network. In our scenario, the data
mules would need to be aware of the format of the data they carry. At the
same time, we see a need for buffer management algorithms that give priority to
the data samples that are most important in the reconstruction of the original
measurement at the sink node, i.e. QoI targeted buffer management algorithms.

In this work, we present SmartGap – a QoI-targeted buffer management algo-
rithm which considers packets opaque. SmartGap is a novel buffer management
algorithm that tries to maximise the combined value of the packets in the buffer.
It accomplishes this by letting the priority of a packet be determined by the gap
the packet would inflict – if dropped – on a complete series of measurement.
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The remainder of the paper is organised as follows. Section 2 presents and ex-
plains the design of the SmartGap algorithm. An analysis of SmartGap’s main
characteristics is given in section 3. Section 4 provides a comprehensive eval-
uation of SmartGap and compares its performance with three commonly used
buffer management algorithms in DT-WSNs. Section 5 discusses the benefits
and limitations of SmartGap. The paper concludes in section 6 with a summary
of the paper and some remarks on future work.

2 The SmartGap Algorithm

Buffer management schemes can typically be split up into two parts, a queueing
policy and a forwarding strategy [10]. The queueing policy decides which packets
in a buffer to discard when the buffer space is exhausted, while the forwarding
strategy decides the order in which packets in the buffer should be forwarded.

An insight, which follows from the Nyquist-Shannon sampling theorem is that
the quality of a reconstructed signal depends on the sampling frequency. So, to
be able to reconstruct the signal as faithfully as possible, we wish to maximise
the minimum number of samples in any given time period. In other words,
the collected samples should be evenly distributed in time. As each sample is
transported inside a packet, it follows that we want to minimise the maximum
time gap between any two consecutive packets. Hence, the problem is to design
a buffer management algorithm that during periods of congestion distributes
packet losses evenly over time. The following section elaborates on the problem
by demonstrating how common buffer management algorithms such as FIFO
and Random distributes the packets. Next, we provide a detailed description of
the SmartGap algorithm.

2.1 FIFO Buffer Management

Let us consider a DT-WSN that contains a source node, a sink node, and a
data mule which moves in a random pattern between the source and sink nodes.
The data mule collects data from the source node and uploads it to the sink
node. Furthermore, assume that the the buffer space and transport capacity of
the mule is insufficient to handle the load. Given that the source node employs
FIFO (First In, First Out) as both queuing policy and forwarding strategy, the
outcome could resemble that shown in Figure 2.

As follows from the figure, the delivered data is very unevenly distributed
over time – during some periods, all sampled data is delivered, while there are
also long periods with no or few data samples are delivered – something which
makes it hard to reconstruct the original series of measurement. This is to be
expected, as the FIFO strategy always picks the oldest packet in the buffer for
forwarding or discarding.
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Fig. 2. Delivered data from a simulated DT-WSN (random-waypoint) which employs
FIFO queueing policy and forwarding strategy. Note the long gaps in the delivered
data.

2.2 Random Buffer Management

A naive attempt to spread out packets more evenly could be to use the Random
algorithm, i.e. to randomly discard samples at times when the buffer is full, and
to randomly pick the packet to forward next. Figure 3 shows the result of us-
ing such a buffer management policy for the same system as used in Figure 2.
Compared to FIFO, the Random algorithm spreads out the data more. However,
note that data is still clustered since the Random algorithm has a bias towards
delivering recent packets. This can be explained by viewing the buffer manage-
ment problem as an urn problem. Assume that data is constantly added to a
buffer (urn), from which packets are randomly removed – either by forwarding or
discarding. As this is an iterative process, a packet added early has higher prob-
ability to be chosen for removal than a packet added later. When we simulate
the algorithm, we can clearly see this effect.

Fig. 3. Delivered data from a simulated DT-WSN (random-waypoint) which employs
Random queueing policy and forwarding strategy. There are still gaps in the delivered
data, but the gaps are reduced compared to the FIFO case.

2.3 SmartGap

The SmartGap algorithm attempts to further shorten the duration of periods
with few delivered packets. SmartGap calculates the gap in time that would
result from removing a specific packet from the buffer, and then gives priority to
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packets that cover large gaps. SmartGap is based on the notion of creation time:
the time when a packet, P , was created at the source sensor node, time(P ).

Definition 1: Interpacket Gap. The interpacket gap represents the difference
in creation time between two packets. For two packets Pi and Pj the interpacket
gap is |time(Pi)− time(Pj)|.
Definition 2: The Gap Metric. The SmartGap algorithm is based on the
gap metric. For a given packet buffer in a node, sort all packets in the buffer
according to creation time. Then the gap metric for a packet Pn is the interpacket
gap between the preceding packet, Pn−1, and the succeeding packet, Pn+1, packet
in the buffer:

Gap(Pn) = |time(Pn+1)− time(Pn−1)|
For example, consider a buffer with three packets, P0, P1, and P2, with creation
times 1, 3, and 4, respectively. Then we obtain:

Gap(P1) = |time(P2)− time(P0)| = |4− 1| = 3

The computations of the gap metric for the first and last packet in the buffer
are slightly more complex, since these packets do not have both a preceding and
a succeeding packet.

Depending on whether SmartGap is used as a forwarding strategy or a queuing
policy, these two border cases are handled differently. When used as a queuing
policy, SmartGap considers the first and last packets to have an infinite gap
metric, and will therefore not discard them. When used as a forwarding strategy,
SmartGap estimates the gap metric for the first and last packet as twice the
interpacket gap between these packets and the closest packet in the buffer. This
is based on an assumption that the packets are evenly distributed. Thus, if P0

is the first packet and PN the last packet, we have:

Gap(P0) = 2 · |time(P1)− time(P0)|
Gap(PN ) = 2 · |time(PN )− time(PN−1)|

2.4 SmartGap Queuing and Forwarding

SmartGap uses the gap metric to prioritise packets. As a queuing policy, Smart-
Gap will discard the packet with the lowest gap metric. In other words, packets
in bursts have higher probability of being discarded than single packets. When
used as a forwarding strategy, SmartGap will forward the packet with the largest
gap metric. This means that sparsly distributed packets are more likely to be
forwarded than clustered ones.

Figure 4 illustrates how SmartGap is able to distribute the packets more
evenly as compared to both the FIFO and Random buffer management schemes.
The nodes still run out of buffer space when the path between the source and
the sink node has insufficient capacity, but since SmartGap distributes packets
more evenly, trends in the data are clearly visible.
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Fig. 4. Delivered data from a simulated DT-WSN (random-waypoint) which employs
SmartGap. As follows, SmartGap gives even shorter periods with few or no delivered
data as compared to a Random queuing policy.

3 Analysis

This section contains an analysis of the performance of SmartGap. First, an
upper bound for the gap metric is established. Next, statistics for the variation
of the gap in the examples in section 2 are presented. Finally, the computational
complexity of SmartGap is discussed.

3.1 Upper Bound for the Gap

SmartGap determines which packets to discard and which to forward in the
buffer. However, since the ultimate goal of SmartGap is to minimise the largest
interpacket gap among all packets in the network, it is interesting to examine
the effect on the largest gap of discarding a packet from the buffer. For this
purpose, we use the term maximum gap of a set of packets to denote the largest
interpacket gap between two consecutive packets in the sequence obtained by
ordering the packets according to their creation time.

Theorem 1. Assume that P0 . . . PN are packets distributed among a number of
nodes communicating reliably (i.e. without packet loss or with retransmissions
on each hop). Each packet has an associated gap metric, calculated according to
Definition 2. Discarding packet Pn, where 0 < n < N , from a buffer will create
an interpacket gap not larger than Gap(Pn).

Proof. Assume without loss of generality that P0 . . . PN are ordered in a se-
quence according to creation time, so that P0 is the youngest packet and PN the
oldest one, and that packet creation times are distinct – two different packets in
the sequence do not have the same creation time. Let Pn−1 denote the packet
immediately before Pn in the sequence, and Pn+1 the packet immediately af-
ter. Hence, discarding Pn will create an interpacket gap in the sequence of size
G = |time(Pn+1)− time(Pn−1)|. We want to show that G ≤ Gap(Pn).

Assume that the packets in the buffer where Pn is queued are ordered accord-
ing to creation time (again, without loss of generality). If Pn−1 and Pn+1 are
both in the same buffer as Pn, then Pn−1 must be immediately before Pn, and
Pn+1 immediately after Pn. Hence, when discarding Pn, the size of the newly
created interpacket gap (G) is equal to Gap(Pn), the gap metric for Pn in the
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buffer (by Definition 2). Otherwise, if not both Pn−1 and Pn+1 are in the same
buffer as Pn, it means that the packet immediately before Pn in the buffer is
younger than Pn−1, and/or the packet immediately after Pn in the buffer is
older than Pn+1. From this follows that Gap(Pn), the gap metric for Pn in the
buffer, is larger than G, the interpacket gap created by removing Pn. Hence,
G ≤ Gap(Pn). �
Theorem 2. The maximum gap created by discarding a packet in a buffer
according to the SmartGap strategy is 2 T

N−1 where T is the interpacket gap
between the oldest and the newest packet in the network, and N ≥ 3 is the
number of packets in the buffer.

Proof. Assume that the network has a single node, and the packets stored at a
sensor node are evenly distributed in time between 0 and T . Also assume that
packets are created at time 0 and at time T . Then the interpacket gap between
any two consecutive packets is T

N−1 , and the maximum interpacket gap in the

buffer after discarding a packet is 2 T
N−1 . If the packets are not evenly distributed

between 0 and T there will be a packet Pn such that Gap(Pn) ≤ 2 T
N−1 . If not,

all consecutive pairs of interpacket gaps have to be larger than average, which
is clearly impossible. If there are multiple nodes in the network, Theorem 1 tells
us that the maximum gap will not grow larger due to the packets stored at the
other nodes. �

3.2 Variation of the Gap

The design goal of SmartGap is to minimise the maximum interpacket gap.
In the simulation in section 2, three different algorithms are evaluated using a
random waypoint mobility model and a buffer size of 110 packets. We repeat
the simulation 30 times and calculate the confidence intervals for the mean,
max and standard deviation of the interpacket gap. The result is presented in
Table 1. As expected, there is no significant difference in the mean between the
three algorithms. However, there is indeed a significant difference in both the
maximum value and the variance: SmartGap provides a significant reduction
of both maximum and standard deviation over FIFO as well as Random. The
reason to this is the tendency of the FIFO and Random algorithms to discard
consecutive packets.

Table 1. Interpacket gap in the three examples, 30 repetitions of the simulation, with
95% confidence intervalls presented. Note that SmartGap provides a lower maximum
and standard deviation of the interpacket gap, as intended.

Algorithm Mean Max Standard Deviation

FIFO 3.99 (3.64, 4.33) 800.43 (713.75, 887.11) 38.66 (34.98, 42.34)
Random 4.15 (3.79, 4.51) 388.16 (313.85, 462.47) 17.27 ( 14.66, 19.88)
SmartGap 4.17 (3.81, 4.53) 18.50 (15.94, 21.05) 3.86 (3.36, 4.35)
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3.3 Computational Complexity

SmartGap has a low computational complexity. By memorising the gap metric
for a packet, and keeping an ordered set of references to the packets in the
buffer, the gap metric needs to be calculated at most three times for each packet
received, and two times for each packet transmitted or discarded. So SmartGap
has linear complexity, O(n), where n is the number of packets received by the
node. Calculating the gap metric requires extracting the creation time from the
header of the packets and performing basic arithmetic operations.

4 Evaluation

In the previous section, we established an upper bound for the size of the max-
imum interpacket gap. We also compared SmartGap with other buffer manage-
ment algorithms and found that SmartGap provides a more even distribution of
packets. This section provides a more comprehensive evaluation of SmartGap.
Particularly, the QoI provided by SmartGap is compared with a select of other
well-known buffer management algorithms, namely:

– First In First Out (FIFO),
– Random choice (Random),
– A priority queue based on Humber and Ngai [6] (Humber-Ngai).

All studied buffer management algorithms, including SmartGap, may be used
both as queueing policy and forwarding strategy. FIFO and Random are straight-
forward algorithms that consider packets opaque. Humber-Ngai is a sliding-
window algorithm which considers packets transparent. The algorithm calculates
a sliding window over the packets as they are created, and if a new packet car-
ries a value that differs more than a certain amount from the values in previous
packets, the new packet is given a high priority. Humber-Ngai’s algorithm also
compresses data by removing samples when there are no significant changes.

Apart from the studied buffer management algorithms, we have also simulated
Oldest First, Youngest First, and First In Last Out, however, since neither one of
them differ much from FIFO in terms of performance, they are omitted from our
evaluation. We have also considered the algorithms proposed by Liu et al. [5] and
Alippi et al. [7], but found these algorithms to be less suited for DTN data mules.
Instead, they are primarily intended for limiting the data rate on source nodes.
We consider this approach complementary to the buffer management algorithms
evaluated here.

In the following, to be able to differentiate between queuing policy and for-
warding strategy, a particular buffer management scheme is denoted: queuing
policy-forwarding strategy. For example, “FIFO-Random” denotes the buffering
scheme that employs a FIFO queueing policy and a Random forwarding strategy.
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4.1 Simulation Setup and Datasets

Therefore a custom-built simulation systemhas been developed, focusing on buffer
management in DT-WSN. The simulation system has been built in Python, on
top of the discrete event simulation package, SimPy [11]. In our simulation sys-
tem, a DT-WSN is modelled as a set of nodes with pre-set buffer sizes connected
with links. Packets emanate from source nodes that model wireless sensor devices.
They are forwarded toward sink nodes, i.e. controllers, along network paths com-
prising links and intermediate nodes. The intermediate nodes model both fixed
data aggregation nodes and mobile data mules. A separate mobility model is used
to pre-calculate the meetings between data mules and their neighbouring nodes.
Routing is done using the probabilistic routing protocol, PRoPHET [12], a rout-
ing protocol introduced by Lindgren et al. The rationale for using ProPHET is first
and foremost that it is one of a few routing protocols for DT-WSNs that has been
standardised and it is regularly used as a baseline when evaluating routing proto-
cols, e.g. byCase et al. [13]. To allow the routing to stabilise, the simulation runs for
2500 simulated minutes, i.e. around 42 hours, before the actual experiment starts.

Fig. 5. The four temperature datasets used in the simulations. The data sets are avail-
able online [14,15,16,17]

Since the data being transported influences the outcome of the experiments,
our simulation system is trace driven and runs from temperature data sets from
real-world WSNs. Particularly, the evaluation is made against four different
datasets, “Ocean”, “UPS”, “Windows”, and “Garden”, which are depicted in
Figure 5. The datasets are selected to represent a spectrum of different types of
WSN traffic. The “Ocean” dataset is based on a series of deep sea CDT (Con-
ductivity, Temperature and Depth) measurements from the National Data Buoy
Center (NDBC) [18], and is available online [17]. A reason for including this
dataset in our evaluation is to enable comparisons between SmartGap and other
buffer management algorithms beyond the three already included in the evalua-
tion. Already, the “Ocean” dataset was used by Lou et al. [19] in a validation of
their scheme for compressive sampling. The remaining three datasets, “UPS”,
“Windows” and “Garden”, are all captured from a WSN deployed in and around
a property in Uppsala, Sweden, and are available online [14,15,16].
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4.2 Simulation Results

To evaluate the performance of SmartGap in terms of QoI, we simulate a DT-
WSN of size 1000× 1000 meters. The DT-WSN comprises ten nodes: one wireless
temperature sensor node, one controller node and eight data mules. The mules
move according to the widely used random-waypoint mobility model [20]. The
speed of the mules is 5 metres/minute, and they have a range of 50 metres. We
test multiple combinations of buffer sizes and buffer management algorithms.
The QoI experienced in a simulation run is estimated using the mean absolute
error or MAE between the original (f) dataset and the one being reconstructed
at the controller node (g) using a cubic interpolation:

MAE =
1

N

N∑
i=1

|fi − gi|

A low MAE reflects a high QoI. This method of estimating the QoI is based
on the method used by Humber and Ngai [6]. We expect this measure of QoI
to be correlated with the size and the distribution of the interpacket gaps.
We repeat the simulation 30 times, re-seeding the random waypoint simulation
each time. In this way, we vary the distribution of meetings, and this is what
causes the differences in the outcome. We present mean results and confidence
intervals.

Figure 6 shows the outcome of the simulations with a varying queueing policy
and a fixed forwarding strategy, FIFO. In other words, the figure illustrates how
the buffer algorithms perform as queueing policies with increasing buffer sizes.
The smallest buffer we simulate is 10 packets. Buffers smaller than 10 packets
leave little room for effective buffer management, and our experience is that for
buffers of that size, the choice of algorithm has little impact on the outcome.
The largest buffer we simulate is 1500 packets, which is a buffer large enough
to acommodate all data without discarding any packets, and hence there is no
difference between the buffer algorithms. We expect a smaller buffer to give a
larger error, and thus a lower a QoI, and a larger buffer to give a smaller error,
and thus a higher QoI.

Our first observation is that Humber and Ngai’s algorithm [6] almost perform
the same as FIFO. The MannWhitney U test (p=0.05) accepts the alternative
hypothesis that the two algorithms performs differently for buffer sizes larger
than 800 packets on the Window and Garden Data sets, but otherwise rejects it.
It appears that the Humber and Ngai algorithm is sensitive to the parameterisa-
tion, which needs match the characteristics (primarily variance and autocovari-
ance) of the data. We tried to find a reasonable configuration of the algorithm
experimentally, but of the settings we tried significantly outperformed FIFO for
all data sets and buffer sizes.

Next, we observe the scale of the MAE. The resolution of the temperature
sensors is about 10−1, and errors much smaller than this would for any practi-
cal application be dominated by the resolution of the sensors. In addition, we
note that the confidence intervals in the outcome for the FIFO/Humber-Ngai
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Fig. 6. Results from simulations using the FIFO forwarding strategy, with 95% upper
confidence intervals presented. The lower confidence intervalls excluded for legibility.
Humber-Ngai gives a small but significant reduction in MAE in the Ocean and Garden
data sets, especially for larger buffer sizes. Random gives a significant reduction in
MAE over both FIFO and Humber-Ngai, and SmartGap further reduces the MAE,
especially for small buffer sizes.
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strategies are large compared to SmartGap. The reason to this is that the se-
lected mobility model has a larger impact on both FIFO and Humber-Ngai than
on SmartGap. Since we re-seed the mobility model for each run, the distribu-
tion of the meeting times will vary, and, in comparison with SmartCap, this
appears to have greater impact on the outcome of the FIFO and Humber-Ngai
simulations.

Another observation is that for all buffer sizes, SmartGap outperforms Ran-
dom which in turn outperforms FIFO. In section 3.2 this trend is shown for a
single buffer size when studying the variance and maximum interpacket gap. In
the extended simulations reported here, we note that the observation holds true
across the range of buffer sizes simulated, regardless of which data set is used.
Thus, SmartGap fullfills the design goal of providing a significant improvement
in QoI.

It is interesting to note the scale of the buffer sizes. To obtain an MAE of
10−1, SmartGap requires a buffer of about 10 - 15 packets. To obtain a similar
result with Random the buffer must be increased to 150 - 200 packets, while the
FIFO and Humber-Ngai discard policies require buffer sizes of 200 - 800 packets.
Hence, SmartGap creates the potential for a design choice. An application could
take advantage of this improved QoI, but could also maintain the QoI while
freeing up resources. This could for example be used to reduce device cost or
improve device lifetime through energy saving.

SmartGap can also be used as a forwarding strategy. As previously mentioned,
this will give priority to packets with a high gap metric when forwarding packets.
We expect the forwarding strategy to have a smaller impact on the experiment
outcome. The forwarding strategy decides the order in which packets are deliv-
ered towards the destination, and our QoI does not depend on delivery order.
Instead, it depends on whether a packet arrives to the destination or not. Re-
peating the experiment, using SmartGap as the forwarding strategy instead of
FIFO did not give a significant change in the experiment outcome.

To summarise, these results indicate that SmartGap could provide a signifi-
cant improvement in QoI when used as a queuing policy, and that it provides
QoI at least on par with other algorithms when used as a forwarding strategy.

5 Discussion

After presenting the simulation results we follow with a short discussion of the
motivation for developing SmartGap and the limitations of this buffer manage-
ment algorithm.

5.1 The Raison D’être of SmartGap

Although it might seem that SmartGap and similar buffer management solutions
are superfluous, and could be avoided through proper network provisioning, we
argue otherwise. For example, one seemingly straightforward way to provide a
high QoI would be to dimension buffers so that the likelihood of running out
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of buffer space is minimal. However, predicting the required buffer space in a
DT-WSN is extremely difficult, and the available hardware may not be capable
of providing the required buffer space. In a survey by Hempstead et al. [21],
the available storage space of the examined wireless sensors ranged from under
1 KB up to 138 KB. Moreover, even if the sampling is dimensioned for the
lowest available bandwidth and buffer space, the sensor device will be unable to
opportunistically take advantage of occasional extra available bandwidth, and
buffer over-provisioning may in practice be a too costly alternative.

A seemingly attractive replacement to buffer management, would be to use
compression or aggregation to reduce the amount of data being transferred be-
tween nodes in the wireless sensor network. For example, Vuran et al. [22] pro-
pose the use of temporal and spatial correlation in the data, and Al-Karaki et
al. [23] present a number of suitable algorithms for data aggregation in WSNs.
However, these and other approaches require data mules to be able to parse the
data being collected, and perform potentially expensive operations, something
which make them less suitable as general solutions. Still, it should be noted
that compression and aggregation are indeed attractive solutions in specialised
DT-WSNs, not least since they enable an explicit tradeoff between communica-
tion and computation resources, and thus could open up for significant energy
savings.

5.2 Limitations of SmartGap

SmartGap relies on a few underlying assumptions, and if these do not hold true,
SmartGap is unlikely to perform well. In particular, SmartGap assumes that the
packets being transported in the DT-WSN are self-contained and correlated. In
other words, the application must be able to interpret one packet alone, and there
must be a correlation between packets to exploit. Normally, for environment
sensing applications, sampling is done at a higher rate than the frequency of the
underlying physical property being measured, as can be expected from Nyquist-
Shannon. However, if the frequency of the underlying signal is too high, the
correlation becomes weak. In that case, SmartGap would not provide any clear
advantage. Consequently, in such scenarios it may be better to obtain a group
of samples, collected very closely in time, and extrapolate the rest of the signal.

Self-containment is primarily a problem if samples do not fit into a single
packet. This can for example happen if the sample is an image whose size is larger
than the Maximum Transmission Unit, i.e. each sample will occupy multiple
packets. If one packet is discarded, the rest of the packets that belong to the
same sample become more or less worthless, and in this situation the strategy
used by SmartGap is likely to cause more harm than good.

6 Conclusion

In this paper, we have proposed a novel buffer management algorithm, SmartGap,
for Delay-Tolerant WSNs, i.e. WSNs with occasional connectivity between mo-
bile and stationary wireless sensor nodes. SmartGap estimates the Quality of
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Information, or QoI, of packets and gives priority to packets that contribute
more to QoI. SmartGap determines the priority of a sample packet by the error
or gap that a loss of this packet would impose on an overall series of measure-
ments. An analysis and a simulation-based evaluation of SmartGap have been
conducted, in which the algorithm is compared with a select of buffer manage-
ment algorithms. According to the evaluation, SmartGap provides significant
improvements in QoI compared to the alternative algorithms when used as a
queueing policy, and performs at least as good as these algorithms when used
as a forwarding strategy. The largest improvements are obtained in situations
where the buffer space is small, and large amounts of data are discarded.

SmartGap is primarily intended for networks such as the water monitoring
system in Malawi [3], where connectivity is opportunistic, memory space is lim-
ited, and the fidelity with which the the original signal can be recreated is crucial
for the quality of the results.

The evaluation has been made using simulations with a random waypoint mo-
bility model. A number of alternative mobility models have been developed [24],
often in association with the development of routing protocols. One direction in
which we wish to continue this work, is to test the performance under alterna-
tive mobility models, including replicating routing, and explore the interaction
between the mobility model, the routing algorithm and the buffer management
algorithm. As part of this work, we wish to study the fairness characteristics of
SmartGap. Finally, encouraged by our promising simulation results, we would
like to deploy SmartGap in a real world setting.
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2. Pöttner, W.-B., Büsching, F., von Zengen, G., Wolf, L.: Data elevators: Applying
the bundle protocol in delay tolerant wireless sensor networks. In: Mobile Adhoc
and Sensor Systems (MASS), pp. 218–226 (2012)

3. Zennaro, M.: Wireless Sensor Networks for Development: Potentials and Open
Issues. Ph.D. dissertation, KTH Royal Institute of Technology (2010)

4. Sachidananda, V., Khelil, A., Suri, N.: Quality of Information in Wireless Sensor
Networks: A Survey. ICIQ 1, 1–15 (2010)

5. Liu, C., Wu, K., Pei, J.: An energy-efficient data collection framework for wireless
sensor networks by exploiting spatiotemporal correlation. IEEE Transactions on
Parallel and Distributed Systems 18(7), 1010–1023 (2007)

6. Humber, G., Ngai, E.C.-H.: Quality-Of-Information Aware Data Delivery for Wire-
less Sensor Networks: Description and Experiments. In: IEEE Wireless Communi-
cation and Networking Conference, pp. 1–6 (April 2010)

7. Alippi, C., Anastasi, G., Di Francesco, M., Roveri, M.: An Adaptive Sampling
Algorithm for Effective Energy Management in Wireless Sensor Networks With
Energy-Hungry Sensors. IEEE Transactions on Instrumentation and Measure-
ment 59(2), 335–344 (2010)



A Buffer Management Algorithm for Delay Tolerant WSN 119

8. Nasser, N., Karim, L., Taleb, T.: Dynamic Multilevel Priority Packet Scheduling
Scheme for Wireless Sensor Network. IEEE Transactions on Wireless Communica-
tions 12(4), 1448–1459 (2013)

9. Lyu, M.R.: Congestion performance improvement in wireless sensor networks. In:
2012 IEEE Aerospace Conference, pp. 1–9 (March 2012)

10. Lindgren, A., Phanse, K.K.: Evaluation of Queueing Policies and Forwarding
Strategies for Routing in Intermittently Connected Networks. In: 1st International
Conference on Communication Systems Software & Middleware, pp. 1–10. IEEE
(2006)
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Abstract. Because of the dramatic changes in topology and frequently
interrupted connections between nodes, messages in delay-tolerant
networks are forwarded in the store-carry-forward approach. Routing
methods in such an environment tend to increase the number of mes-
sages to improve the delivery ratio. However, excessive message copies
lead to buffer overflows because of limited storage space. Therefore, an
efficient message-scheduling and drop strategy is vital to maximizing
network resources, especially when bandwidth is limited and message
sizes differ. We developed a theoretical framework called the knapsack-
based message scheduling and drop strategy in theory (KMSDT) based
on epidemic message dissemination. To improve the delivery ratio, this
strategy sorts message copies by utility per unit and, if buffer over-
flows occur, it decides which messages to drop based on the solution
to the knapsack problem. Furthermore, we developed a practical frame-
work called the knapsack-based message scheduling and drop strategy
in practice (KMSDP). Rather than collecting global statistics as done
in the KMSDT, KMSDP estimates all parameters by using locally col-
lected statistics. Simulations based on synthetic trace are done in ONE.
Results show that, without affecting the average delay or overhead ra-
tio, KMSDP and KMSDT achieve a better delivery ratio than other
congestion-control strategies.

Keywords: Delay-tolerant networks, congestion, knapsack problem,
sch-eduling strategy, drop strategy.

1 Introduction

Delay-tolerant networks (DTNs) [1], are a type of challenged network in which
end-to-end transmission latency may be arbitrarily long due to occasionally con-
nected links. Examples of such networks are those operating in mobile or extreme
scenarios such as interplanetary networks [2], battlefields [3], rural areas [4],
wildlife tracking [5], and pocket-switched networks [6, 7]. Fall first put forward
this new network paradigm at SIGCOMM in 2003 [1].

Mobile ad hoc networks were treated, until recently, as connected graphs
over which end-to-end paths had to be established. However, because of node
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mobility and intermittent-contact links, DTNs are occasionally connected. A
bundle layer was proposed to solve this problem, which includes the store-carry-
forward approach and the custody-transfer strategy that keeps a bundle while
the next reliable hop is determined, unless the time to live (TTL) of the bundle
expires. Thus, choosing the next nodes to which the messages could be forwarded
is critical in such an approach. Many researchers have now begun to focus on
developing efficient routing protocols in DTNs [8] to improve the delivery ratio.
However, routing protocols in DTNs tend to increase the number of message
copies, and store the message until it finds an available link to the next hop
without considering the limited buffer space [9]. This is bound to bring storage
and bandwidth overhead. In a real network environment, congestion results from
stringent limitations on storage and bandwidth.

To address these congestion issues, this paper presents a study of a message
scheduling and drop framework called the knapsack-based message scheduling
and drop strategy in theory (KMSDT) and applies it to DTNs under epidemic
routing. The strategy is the first to calculate the utility value of each message by
evaluating the impact that either duplicating or dropping a message on the de-
livery ratio. Next, the messages are sorted according to their per-unit utility, and
whether or not to drop the message is decided based on the knapsack problem.
However, to derive the utility, KMSDT requires global information of the net-
work, which makes its implementation difficult in practice, especially given the
intermittently connected nature of the targeted networks. To amend this, we pro-
pose a second strategy called the knapsack-based message-scheduling and drop
strategy in practice (KMSDP), which is a distributed algorithm that estimates
the required network parameters by using locally collected statistics. Simulations
based on synthetic trace are done in ONE, and results show that KMSDP and
KMSDT achieve better delivery ratios than other congestion control strategies.
The main contributions are summarized as follows:

(1) We propose a message scheduling and drop strategy KMSDT based on the
improvement of GBSD [10], it calculates the probability of successful delivery
for situations of limited bandwidth according to the contact-duration dis-
tribution, and maximizes the delivery ratio for different-size messages based
on the knapsack problem.

(2) We improve the KMSDT into a knapsack-based message-scheduling and
drop strategy in practice (KMSDP) through collecting the network param-
eters independently for messages of different sizes.

(3) We conduct extensive simulations on synthetic trace. The results show that
KMSDP and KMSDT achieve a better delivery ratio than other congestion-
control strategies.

The remainder of the paper is organized as follows. We introduce the re-
lated work in Section 2. The knapsack-based scheduling and drop strategies are
presented in Sections 3, 4 and 5, respectively. In Section 6, we evaluate the per-
formance of KMSDT and KMSDP through extensive simulations. We conclude
the paper in Section 7.
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2 Related Work

Several simple drop strategies under epidemic are (1) drop front (DF), in which
the longest queued message in the buffer is dropped; (2) drop last (DL), in
which the last message received in the buffer is dropped; (3) drop oldest (DO),
in which the message in the buffer with the smallest remaining TTL is dropped;
and (4) drop youngest (DY), in which the message in the buffer with the largest
remaining TTL is dropped. In any case, researchers have proposed better buffer-
management strategies: To reduce the impact on overall network performance,
Dohyung et al. [11] drop messages with the largest expected number of message
copies. Erramilli and Crovella [12] describe a strategy in which messages are
scheduled according to priority, which is calculated based on the distance from
the source node to the destination node.

All buffer-management strategies described above adopt a heuristic algorithm
and cannot dynamically adapt to the changing topology in DTNs. Thus, solu-
tions for certain performance metrics (such as delivery ratio) are suboptimal.
Some groups have tried to develop a non-heuristic buffer-management strategy
by dynamically collecting the network parameters and then deriving the opti-
mal solutions for delivery ratio or average delay. For example, Elwhishi et al. [13]
propose a scheduling scheme for epidemic routing and two-hop forwarding: they
obtain the optimal solution for delivery ratio and average delay by solving the
relevant ordinary differential equations. In the paper, they assume that all mes-
sages in the network are the same size and that the method used to collect the
network parameters does not yield accurate parameter values. In addition, they
do not consider the impact of bandwidth on delivery ratio. Krifa and Barakat
have published three papers in this field: In [14], by optimizing delivery ratio
and average delay, they obtain the utility value of a given message by calculat-
ing the impact of replicating or dropping the message, and then they drop the
message with the smallest utility. Based on the result of [14], the work in [15]
extends a scheduling strategy and, when forwarding, prioritizes messages with
the highest utility. Considering that [14]’s proposed strategy results in over-
loaded bandwidths due to excessive information storage and exchange, Krifa
and Barakat [10] propose an idealized scheduling and drop strategy called the
global knowledge-based scheduling and drop (GBSD) strategy. In this strategy
signal overhead is reduced by optimizing the storage structure and the statistics-
collection method.

The proposed KMSDT calculates the probability of successful delivery for
situations of limited bandwidth according to the contact-duration distribution
and, when buffer overflows occur, it maximizes the delivery ratio for different-size
messages based on the knapsack problem. Furthermore, we improve the original
GBSD utility model by accounting for the situation in which, more copies of a
given message are created in the future. In addition, the network parameters are
collected independently for messages of different sizes.
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3 Model Description

In this section, we first describe the assumptions upon which our theoretical
framework is founded and the issues that this framework can solve. Next, we
identify which utility model to use for a given message by quantifying the influ-
ence of replicating or dropping the message.

3.1 Assumptions and Problem Formulation

In this paper, we make the following assumptions regarding the network envi-
ronment: Each message has a given TTL, after which the message is no longer
useful and should be dropped. Afterward, it chooses its source and destination
nodes arbitrarily, and also chooses its size arbitrarily from a specified range,
within which messages of different sizes can coexist. No node has an immuniza-
tion strategy or a mechanism to send acknowledgments to confirm the receipt of
packets. The bandwidth between each node pair is limited, and message trans-
mission time cannot be ignored; when communicating with the destination node,
we ignore the transmission time. If the transmission of a certain message is inter-
rupted, the message must be retransmitted. Nodes move independently of each
other, such as random walk and random waypoint; the intermeeting times and
contact durations between nodes tail off exponentially [16, 17].

This paper primarily addresses the following two problems in buffer manage-
ment: (1) when more than one message is in a node’s local buffer and the node
does not know if the contact will last sufficiently long to forward all messages,
we maximize the delivery ratio by calculating which message to send first. (2) If
a new message arrives at a node’s buffer and the buffer is full, we maximize the
delivery ratio by calculating which message the node should drop, considering
those already in its local buffer and the newly arrived message.

To address these two problems, we propose the idealized scheduling and drop
strategy KMSDT, which first expresses the delivery ratio as a function of dy-
namic network parameters. The per-message utility is derived from the marginal
value of the delivery ratio. Message size and bandwidth limitations are consid-
ered in this process. (1) If the bandwidth is insufficient for the node to forward
all messages in its local buffer, the node should replicate messages in decreasing
order of their per-unit utility. (2) If buffer overflows occur, the node must decide
which messages to drop based on its utility and the knapsack problem, as to
maximize the total utility of all the local message copies.

3.2 Utility Model

In DTNs, the intermeeting time and contact duration will influence the message-
delivery ratio. Here we define them as follows:

Definition 1. Intermeeting time is time elapsed from the end of the previous
contact to the start of the next contact.

Definition 2. Contact duration is the time during which a node pair is in con-
tact.
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Table 1. Notation

Variable Description

N Total number of nodes in the network minus one

K(t) Number of distinct messages in the network at time t

TTLi Initial time to live (TTL) for message i

Ri Remaining time to live (TTL) for message i

Ti Elapsed time for message i since its generation (Ti = TTLi −Ri)

ni(Ti) Number of copies of message i in the network

mi(Ti) Number of nodes (excluding source) that have seen message i

E1 Average inter-meeting time between nodes

λ1 Parameters in the exponential distribution of inter-meeting time (λ1=
1
E1

)

E2 Average contact duration between nodes

λ2 Parameters in the exponential distribution of contact duration (λ2=
1
E2

)

Mi Size of message i

W Bandwidth of contacts between two nodes

Ui Utility of message i

PTi Probability that message i has been successfully delivered now

PRi Probability that undelivered message i will reach destination within Ri

εi Probability that message i can be forwarded successfully during a contact

Pi Probability that message i can be successfully delivered

P Delivery ratio

As mentioned in the assumptions, the latest research shows that intermeeting
times and contact durations are exponentially distributed under many popular
mobility scenarios such as random walk, random waypoint, and random direc-
tion. Our simulation is based on the mobility scenarios: a synthetic one (the
random-waypoint scenario).

Assume λ1 and λ2 are the parameters for the exponential distribution of
intermeeting time and contact duration, and E1 and E2 denote the mathematical
expectation values; then λ1 = 1

E1
and λ2 = 1

E2
(Table 1). Our goal is to express

the probability Pi as a formal expression of ni and to calculate the utility of
message i by quantifying the effect of replicating or dropping a copy of i on Pi.
To achieve this goal, some probability notations are defined in Table 1.

The probability for message i to be delivered is given by the probability that
message i has been delivered and the probability that message i has not yet been
delivered, but will be delivered during the remaining time Ri. Thus, Pi can be
written as Eq. 1. Given that all nodes including the destination node have an
equal chance of seeing message i, PTi can be written as Eq. 2.

Pi = (1− PTi)PRi + PTi (1)

PTi =
mTi

N
(2)

First, we consider the change of ni(t) over time. Based on the ordinary-
differential-equation model used in [18], Eq. 3 is derived, where εi is the probabil-
ity that message i can be forwarded successfully during contact, as indicated in
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Table 1. λ1 = 1
E1

is the reciprocal of the average intermeeting time. Furthermore,
λ1 is the average number of contacts between nodes per unit time.

dni(t)

dt
= εiλ1ni(t)[N − ni(t)] (3)

Assuming that the current time is Ti, the number of nodes that hold message
i in buffers after time Ri can be expressed as Eq. 4. The parameter εi can be
derived from the contact-duration distribution. Assuming bandwidth W and
size Mi for message i, the contact duration should be greater than Mi

W so that
message i can be successfully forwarded. Because the contact durations follow
an exponential distribution with parameter −λ2, εi can be expressed as Eq. 5.

ni(Ti +Ri) =
Nni(Ti)

ni(Ti) + [N − ni(Ti)]e−εiλNRi
(4)

εi = e−λ2
Mi
W (5)

With Eqs. 4 and 5 derived, we now consider the meaning of 1 − PRi . The
quantity 1 − PRi gives the probability that message i, which has not yet been
delivered at Ti, will not be delivered in the remaining time Ri(Ri = TTL− Ti).
In other words, 1− PRi gives the probability that the ni(Ti) nodes that have a
message i in their buffers at Ti will not contact the destination node during Ri,
and the new infected nodes will also not reach the destination node. Thus, PRi

can be expressed as Eq. 6. By substituting Eqs. 2 and 6 into Eq. 1, we get the
Pi expression as Eq. 7.

PRi = 1− N
1
εi

eλNRi [ni(Ti)−ni(Ti)e−εiλNRi+Ne−εiλNRi ]
1
εi

(6)

Pi =
mi(Ti)−N

N
N

1
εi

1

eλNRi [ni(Ti)− ni(Ti)e−εiλNRi +Ne−εiλNRi ]
1
εi

+ 1 (7)

Note that the delivery ratio P equals to the sum of Pi, which gives Eq. 8.
Starting with Eq. 8, we can derive the effect of dropping or replicating a given
message i, as follows:

P =

K(t)∑
i=1

[
mi(Ti)−N

N
N

1
ε

1

eλNRi[ni(Ti)− ni(Ti)e−εiλNRi +Ne−εiλNRi ]
1
εi

+ 1] (8)

The scheduling and drop strategy described in our paper aims to maximize
the delivery ratio within the network. Whenever a given message i is replicated
during a contact, the number of message i copies increases by one [Δni(Ti) =
+1]; if no operation is performed on message i, the number of message i copies
remains unchanged [Δni(Ti) = 0]; when a copy of message i is dropped from the
buffer, the number of message i copies decreases by one [Δni(Ti) = −1]. The
utility of message i increases with the delivery ratio P . We obtain the following
equation for calculating utility:

Ui = [N −mi(Ti)]N
1−εi
εi e−λNRi

1

εi
(1− e−εiλNRi)

[ni(Ti)− ni(Ti)e
−εiλNRi +Ne−εiλNRi ]

−εi−1
εi (9)
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4 Idealized Knapsack-Based Scheduling and Drop
Strategy

After calculating the message utility, the scheduling and drop strategy can be
executed. A higher per-message utility indicates that replicating the message
would lead to a more increase in the delivery ratio P . Thus, when two nodes are
in contact, messages should be replicated in decreasing order of message utility to
maximize P . In addition, a higher per-message utility also means that dropping
the message would lead to a more decrease in the delivery ratio P . Thus, when
buffer overflows occur, the message with the lowest per-message utility should
be dropped. Previous studies [10, 14, 15] have proved that the above scheduling
and drop strategy leads to a good delivery ratio. However, when message sizes
differ, the strategy is no longer applicable.

In Fig. 1, the vertical rectangular boxes represent the local buffer of a node,
and the smaller rounded rectangles represent the messages stored in the local
buffer. The utilities per message satisfy U1 > U2 > U3, and U2 + U3 > U1. The
message sizes satisfy M1 = 2M2 and M2 = M3. Fig. 1(a) shows two different
scheduling methods. Assume that, because of the limited contact duration and
bandwidth, only messages with no greater than M1 bytes can be forwarded
successfully. By leveraging the first scheduling method, only message 1 would be
replicated, leading to a gain of U1 in the delivery ratio. However, by leveraging
the second scheduling method, messages 2 and 3 would be replicated leading to
a gain of U2 + U3 in the delivery ratio. Thus, the second scheduling strategy
obtains a better delivery ratio.

According to the above analysis, we see that the scheduling strategy that
simply considers the per-message utility cannot be applied to networks where
message sizes differ. Because bigger message sizes means that, for a given band-
width, more buffer space is occupied and more transmission time is required, we
schedule the messages according to the utility per unit Ui

Mi
and replicate messages

in decreasing order of Ui

Mi
.

In Fig. 1(b), the message utilities also satisfy U1 > U2 > U3, and U2+U3 > U1.
The message sizes satisfy M1 = 2M2 and M2 = M3. In addition, the local buffer
is already full. Messages 2 and 3 are the smallest messages in size. When message
1 arrives and the buffer overflows, the message dropped should be chosen from
among the message just received and all buffered messages. If we simply drop the
message with the smallest utility, message 3 would be dropped first, followed by
message 2. In this case, the delivery ratio would decrease by U2+U3. If we adopt
another strategy and only drop message 1, the delivery ratio would decrease by
U1. Thus, when message sizes differ, dropping the message with the smallest
utility is not necessarily the best strategy.

Note that if the buffer sizes are fixed, the utilities of all the buffered messages
and the newly arrived message can be obtained, and the aim of the drop strategy
is to maximize the total utility of all messages in the local buffer. Thus, the drop
problem takes the form of a typical 0− 1 knapsack problem. Uk is utility of the
kth message, and M is buffer size. Mk is size of the kth message. n is the number
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(a) (b)

Fig. 1. Different schedule (a) and drop (b) strategies in a buffer

Algorithm 1. Dynamic programming to solve 0-1 knapsack problem

1: for j = 0;j ≤ totalWeight; j ++ do
2: for i = 0;i ≤ n; i++ do
3: if (i = 0||j = 0) then
4: bestV alues[i][j]=0;
5: else
6: if j < sizes[i− 1] then
7: bestV alues[i][j]=bestV alues[i− 1][j];
8: else
9: iweight=sizes[i− 1];
10: ivalue=values[i− 1];
11: bestV alues[i][j]=MAX(bestV alues[i− 1][j]);
12: ivalue=ivalue+bestV alues[i− 1][j − iWeight];
13: if bestSolution=null then
14: bestSolution=int[n];
15: tempWeight=totalWeight;
16: for i = n;i ≥ 1; i−− do
17: if bestV alues[i][tempWeight] > bestV alues[i− 1][tempWeight] then
18: bestSolution[i− 1]=1;
19: tempWeight=sizes[i− 1];
20: if tempWeight=0 then
21: break;
22: bestV alue=bestV alues[n][totalWeight];

of all the buffered messages and the newly arrived message. x is a flag of whether
the kth message is buffered.

Max
n∑

k=1

Ukxk

s.t.
n∑

k=1

Mkxk ≤ M , xk = {0, 1}, k = 1, 2, 3 · · ·n

To solve the 0−1 knapsack problem as described above, we adopt the dynamic
programming method (see Algorithm 1) to decide which messages should be
buffered and which should be dropped (again, to maximize the delivery ratio).
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5 Practical Knapsack-Based Scheduling and Drop
Strategy

It is clear that the idealized scheduling and drop strategy KMSDT requires global
information about the network. The authors of [16, 18] suggest that network
parameters can be obtained through the control channel. However, this is not
applicable in a real network environment. Therefore, we propose a practical
knapsack-based scheduling and drop strategy: the KMSDP. Because it is difficult
to determine ni(Ti) and mi(Ti) at time Ti, every node must approximate the
current ni(Ti) and mi(Ti) for message i by using the history statistics of the
once-stored messages. Each node maintains a list of messages for which it tracks
the history in the network. For each message, it maintains a list of nodes that
have already seen the message, and arrays in which it records whether or not
the message is buffered. This history information is used to approximate n(T )
and m(T ), which allows the utility of each message to be calculated.

5.1 Collecting and Maintaining History Information

Each node selects a part of the once-stored messages for which history data must
be collected, and puts them into its list of messages. Each item in the message
list contains the message identification (ID) and the mature part of the message.
The mature part of the message is a time field, which means that n(T ) and m(T )
before this time field are mature statistics (the meaning of mature statistics is
explained in Section 5.2). Each node in the node lists maintains its node ID,
stat version, n Bin[], and m Bin[]. The stat version entry indicates the time
unit (i.e., bin) in which the last update occurred. The n Bin[] entry indicates
whether or not the node buffers the message during a certain bin. Finally, the
m Bin[] entry indicates whether or not the node has already stored a copy of
the message before the bin. Both n Bin[] and m Bin[] are Boolean arrays. For
example, n Bin[k]=1 means that the node buffers a copy of the message during
bin k, and m Bin[k]=1 means that the node saw a copy of the message before
bin k (whether it still stores the copy of the message is not certain). The bin
size (i.e., length of the time unit) for n Bin[] and m Bin[] is called Bin Unit.
Because the messages have a fixed TTL, a larger Bin Unit translates into a
smaller n Bin[], so the node needs to maintain and exchange less data; however,
with a larger Bin Unit, some contact information would be omitted, leading
to an inaccurate utility calculation. For a smaller Bin Unit, the node needs to
maintain more data, so the utility calculation is more accurate. However, because
of the limited bandwidth, exchanging a large amount of data during a contact
could easily make the strategy inoperable. Considering that the values stored in
n Bin[] and m Bin[] can only be changed when the nodes contact each other,
the size of Bin Unit depends on the average intermeeting time E1. For a good
tradeoff between bandwidth overload and statistical accuracy, we argue that,
based on [19], Bin Unit should be Bin Unit=E1

2 .
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Fig. 2. Process to calculate n sum(T ) and m sum(T )

For example, the TTL of the message is 18000s and the average intermeeting
time is E1=3000s (obtained by the intermeeting time statistics), then
Bin Unit=1500s and the length of n Bin[] and m Bin[] is 12, and we may get
the following bin arrays: n Bin[]=( 0 0 0 0 1 1 1 0 0 0 0 0 ) andm Bin[]=( 0 0 0 0 1
1 1 1 1 1 1 1 ). From the data in the bin arrays, we can learn that, during the
first-four bins, the node had not stored or seen the message, that the message
had reached the node during bin 5, and that it was dropped during bin 8. Given a
message-generation interval tm and nm different message sizes, the average time
that messages of a common size are generated is tmnm. This reasoning means
that TTL

tmnm
messages should be monitored for each message type.

Each node in the data structure is supposed to maintain up-to-date statistics;
the detailed update operation includes the following two parts: (1) At the be-
ginning of each Bin Unit, update n Bin[] and m Bin[] in the lists of nodes. If
a certain field within n Bin[] changes, update stat version to the current time.
Otherwise, keep stat version unchanged. (2) When nodes encounter each other,
they check whether or not they have monitored the same messages. If so, replace
the old version with the new version.

5.2 Estimation of n(T ) and m(T )

For every message ever monitored, each node uses two one-dimensional arrays
n sum and m sum, whose sizes equal to the sizes in their local buffer of n(T )
and m(T ) (e.g.,Bin Number) to record the weighted average history statistics
of n(T ) and m(T ), respectively. Note that the average time needed by the in-
formation to reach the current node is the average intermeeting time (i.e.,E1)
between nodes. In this paper, we assume that the current time is T , so history
information prior to time T -E1 is mature (i.e., complete) and can be used to
update the mature data already stored.

Every time information regarding a certain message i becomes mature (as
shown in Fig. 2), we first calculate ni(Ti) and mi(Ti) for this message. Next, we
calculate the mean of the newly derived ni(Ti) and n sum(Ti) that is already
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stored in the array n sum. We then update n sum(Ti) with the mean value.
This same process is used to update m sum(Ti) in the array m sum. Thus,
the history information stored in the one-dimensional array can be made more
similar to the current network information, so the estimate of n(T ) and m(T )
for every message at time T would be as accurate as possible.

6 Performance Evaluation

6.1 Experimental Setup

To evaluate the performance of KMSDT and KMSDP, we used the opportunis-
tic network simulator ONE and conducted experiments under scenarios imple-
menting synthetic random-waypoint mobility model. In this scenario, each node
repeats its own behavior: select a destination arbitrarily and walk along the
shortest path to reach the destination.

To study the performance of KMSDT and KMSDP for different-sized mes-
sages, we first determine how messages are generated. We begin by generating
messages with sizes selected arbitrarily from 0.5MB, 1MB, 1.5MB, and 2MB.
The destination and source nodes are then selected arbitrarily from the entire
network. Next, we allow a warm-up period collect and calculate the network pa-
rameters (without loss of generality, we set TTL/2 to make sure that the initial
values of ni(Ti) and mi(Ti) may make KMSDP feasible). After the warm-up
period, we use the epidemic routing protocol to forward messages. Seven buffer-
management strategies (KMSDT, KMSDP, GBSD [10], DF, DL, DO, and DY)
are implemented in order to compare their performances. The experimental pa-
rameters are given in Table 2. Three metrics are used to evaluate performance:

(1) Delivery ratio is the number of messages successfully delivered to the des-
tination node divided by the total number of messages generated in the
network.

(2) Average delay is the average time for the successful delivery of messages.
(3) Overhead ratio (load ratio) is the ratio of the difference between the number

of messages successfully forwarded and the number of messages successfully
delivered to the number of messages successfully delivered.

Table 2. Simulation parameters under random-waypoint scenario

Parameter Value

Simulation Time 18000s

Simulation Area 4500m×3400m

Number of Nodes 100

Moving Speed 2m/s

Transmission Speed 250Kbps

Transmission Range 100m

Buffer Size 10MB,15MB,20MB,25MB,30MB

Interval of Message Generation [5,15][15,25][25,35],[35,45]

TTL 300
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(a) Delivery Ratio (b) Average Delay (c) Overhead Ratio

Fig. 3. Delivery Ratio, Average Delay, and Overhead Ratio as a function of buffer size
and message generation rate under the random-waypoint scenario (same messagesize)

6.2 Performance Analysis with the Same Messagesize

First of all, to verify the accuracy of the message utility calculated by Eq. 9,
we implement the six buffer-management strategies (KMSDT, GBSD , DF, DL,
DO, and DY) with the same messagesize of 1MB under the synthetic random-
waypoint mobility scenario. Results (as shown in Fig. 3) show that KMSDT
obtains highest delivery ratio, lower average delay, and lowest overhead ratio
regarding different buffer size, and message generation rate, compared with other
buffer-management strategies.

6.3 Performance Analysis with Different Messagesizes

Performance Evaluation Under Random-Waypoint Scenario. We first
discuss the experiments under the synthetic random-waypoint mobility scenario.
One hundred nodes are placed by default on a 4500×3400 m2 map. The buffer
size is 10MB and the generation rate is 15−25 s per message. We vary buffer size
and message generation rate to evaluate the performance of KMSDT, KMSDP,
and the other buffer-management strategies.

Fig. 4-(a) shows that the delivery ratios of KMSDT and KMSDP are at 80%
for a buffer size of 30MB, which is much higher than the delivery ratios of the
five other buffer-management strategies.

Next, we study how the generation rate affects the buffer-management strate-
gies. Note that, in Fig. 4-(a), the notation 5,15 for the message-generation rate
means that a new message is generated every 5 to 15 s. Thus, the message
generation rate decreases with increasing abscissa, resulting in a decrease in
congestion. The results show that KMSDT and KMSDP outperform the other
buffer-management strategies with respect to the delivery ratio.
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(a) Delivery Ratio (b) Average Delay (c) Overhead Ratio

Fig. 4. Delivery Ratio, Average Delay, and Overhead Ratio as a function of buffer size
and message generation rate under the random-waypoint scenario

(a) Uniform distribution (b) ∩ distribution (c) ∪ distribution

Fig. 5. Different distributions of MessageSizes

MessageSizemax/MessageSizemin

(a)

MessageSizemax/MessageSizemin

GBSD-∩
KMSDT–∩
GBSD-∪
KMSDT-∪
GBSD

KMSDT

(b)
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Messages in above experiments are all with sizes selected arbitrarily from
0.5MB, 1MB, 1.5MB, and 2MB. Aiming to show the applicability of KMSDT,
we keep the minimal messagesize (0.5MB) unchanged, set the buffersize as 20MB
and vary the ratio between maximal messagesize and minimal messagesize from
2 to 10. Results are shown in Fig. 6-(a), which indicates that the delivery ratios
of both KMSDT and GBSD decrease along with increase of the ratio between
maximal messagesize and minimal messagesize. However, KMSDT always per-
forms better than GBSD. At the same time, the trend of difference between
them changes to more obvious when the ratio between maximal messagesize and
minimal messagesize is large enough.

Considering that the messagesizes of experiments in Fig. 6-(a) meet the uni-
form distribution. However, in order to verify that KMSDT still performs well
under different distributions of messagesizes (as shown in Fig. 5), the binomial
distribution (p = 0.5) and corresponding type U distribution are implemented.
Results are shown in Fig. 6-(b), which indicates that KMSDT performs better
than GBSD no matter in which distribution (∩ means binomial distribution and
∪ means corresponding type ∪ distribution). It is worth noticing that regard-
ing to delivery ratio, KMSDT-∪ > KMSDT > KMSDT-∩, especially when the
ratio between maximal messagesize and minimal messagesize is large enough.
In other words, more disperse the distribution of messagesizes is , better per-
formance KMSDT will get. More aggregate the distribution of messagesizes is,
worse performance KMSDT will get. It is nature and reasonable, and can also
proves that the knapsack-based solution has played a key role in KMSDT.

7 Conclusion

In delay-tolerant networks, the high mobility of nodes and their dramatically
changing topologies lead to intermittent connectivity. The store-carry-forward
principle is used by most routing protocols to efficiently forward messages. With
limited storage space, excessive copies of messages can easily lead to buffer over-
flows, especially when the bandwidth is also limited and the message sizes differ.
In this situation, the question of how to allocate network resources becomes im-
portant. In this paper, we present an idealized knapsack-based scheduling and
drop strategy KMSDT, based on the epidemic routing protocol. This strategy,
which aims to improve the delivery ratio, schedules messages according to their
utility per unit and, when the buffer overflow occurs, it decides which messages to
drop based on the solution to the knapsack problem. However, KMSDT cannot
be applied in a real network environment because it requires global parame-
ters. Therefore, we develop a practical scheduling and drop strategy KMSDP.
KMSDT uses the distributed collected history information to approximate the
global information, and uses these estimated parameters to calculate the util-
ity. We conducted simulations in ONE under the synthetic random-waypoint
mobility scenario. The simulation results show that, compared to other buffer-
management strategies, KMSDT and KMSDP significantly improve the delivery
ratio without affecting the average delay. Our buffer-management strategy aims
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to maximize the delivery ratio without compromising other performance met-
rics such as average delay. Future work will focus on developing a more efficient
scheduling and drop strategy to optimize both the delivery ratio and the average
delay.
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Abstract. In the last years the Low Power and Lossy Networks (LLNs),
have become more and more popular. LLNs are inherently dynamic -
nodes move, associate, disassociate or experience link perturbations. In
order to meet the specific requirements for LLNs, the IETF has devel-
oped a new routing protocol - IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL) that routes packets inside LLNs. RPL has to
work in such dynamic environment and mechanisms that can mitigate
such conditions are suggested in the standard such as Neighbor Unreach-
ability Detection or Bidirectional Forwarding Detection. In this article,
we show that such mechanisms fail to prevent serious node disconnection,
which significantly increases the packet loss and leads to severe under-
achievements. To provide RPL the ability to mitigate network dynamics
generated by node disconnection, we therefore propose a new cross-layer
protocol operating at layers 2 and 3 known as Mobility-Triggered RPL
(MT-RPL). MT-RPL benefits from the X-Machiavel MAC protocol that
favors medium access to mobile devices. X-Machiavel has been extended
to trigger RPL operations in order to maintain efficient connectivity with
the network. MT-RPL is evaluated together with Neighbor Unreachabil-
ity Detection and Bidirectional Forwarding Detection through an ex-
tensive simulation campaign. Results show that MT-RPL significantly
reduces the disconnection time, which increases the packet delivery ratio
and reduces energy consumption per data packet.

Keywords: Sensor networks, RPL, Network dynamics, Mobility.

1 Introduction

Smart objects, whether they are smart watches or intelligent home appliances,
are surrounding us every day. What’s ”smart” is a sensor, which forms a net-
work between it and others. Sensors can communicate wirelessly and form a class
of networks called Low-Power and Lossy Networks (LLNs), where the routers
and the devices they interconnect are constrained in terms of processing power,
battery and communication range [5]. Interconnections between sensors are char-
acterized by high loss rate, low data rates and instability [18].

Routing packets in LLN is done with a new protocol proposed by the IETF
known as IPv6 routing protocol for Low-Power and Lossy Networks - RPL [18].
This protocol builds a Destination Orientated Directed Acyclic Graph (DODAG),
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which is shaped by a set of metrics/constraints. When a node connects to the
graph, it chooses a parent (which will forward information to the root) and
computes a rank (estimation of position in the graph). However, nodes can lose
connectivity from the parent due to node actions (movement, association, dis-
association or disappearance) or link perturbations (fading, shadowing or path
loss). Such network dynamics have an impact on (re)organization, (re)configura-
tion and routing protocol convergence that is likely to endanger network oper-
ations. RPL has been designed to cope with network dynamics and maintain
network connectivity using external unreachability detection mechanisms.

There are three suggested unreachability detection mechanisms that help RPL
to detect and repair communication problems: Neighbor Unreachability Detec-
tion (NUD) [17], Bidirectional Forwarding Detection [2] and hints from lower
layers via Layer 2 (L2) triggers such as [6]. Those mechanisms act on differ-
ent layers according to the needs of the application. In this article, we present
a performance analysis of those three methods. To the best of our knowledge,
they have not yet been evaluated side by side. Results presented in Sect. 5 show
that those mechanisms fail to mitigate node mobility that make the network
dynamic. As a result, nodes experience long disconnection time, increasing both
packet loss and energy consumption. We therefore propose a new cross-layer pro-
tocol referred to as Mobility-Triggered RPL (MT-RPL). MT-RPL is a specific
implementation of the generic L2 triggers with X-Machiavel [16] preamble sam-
pling MAC protocol. X-Machiavel is part of our previous work and grants better
access to transmission resources to mobile nodes. MT-RPL is further detailed
in Sect. 4. The performance evaluation shows that MT-RPL shortens discon-
nection time and improves energy consumption and network usage. The main
conclusion drawn from the work presented in this article is that LLNs require
moving forward the layered protocol stack to achieve the best performance.

The rest of the paper is organized as follows. First, we present how RPL mit-
igates mobile nodes that make the network dynamic, without external unreach-
ability detection mechanisms. Section 3 presents an overview of the mechanisms
suggested by RPL to manage unreachability detection. Our proposal MT-RPL is
described in Sect. 4. The simulation parameters and results of the performance
evaluation are detailed in Sect. 5. The related work presented in Sect. 6 analyzes
network dynamics in RPL. Finally, we give some concluding remarks along with
future investigations in Sect. 7.

2 Problem Statement

RPL has been developed to enable IPv6 routing inside a LLN. It builds a Des-
tination Orientated Directed Acyclic Graph (DODAG) toward the root, shaped
by an objective function. The topology is built using new ICMPv6 messages:
DODAG Information Object (DIO), DODAG Information Solicitation (DIS)
and DODAG Destination Advertisement Object (DAO). The border router be-
tween the Internet and the LLN acts as the root for the graph. It starts building
the graph by sending the first DIO. Nodes that receive DIO will build a parent
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set (potential next hops toward the root) and select their preferred parent. The
preferred parent is a member of the parent set that is the preferred next hop
toward the root. Such selection is based on the rank advertised in DIO. Once
a preferred parent is chosen, nodes are considered attached to the graph and
will advertise DIO further. Nodes that are not connected can either wait for a
DIO or send a DIS requesting information about existing DODAG. Nodes in
the neighborhood transmit a DIO in response to a DIS. Finally DAO advertises
destination information upward to the root, enabling point-to-point and point-
to-multipoint communication. Nodes in a RPL network use these messages when
they connect to the DODAG as well as each time when, after a disconnection,
communication needs to be resumed.

Network dynamics is an integral part of LLNs as the links are lossy and nodes
have limited transmission and energy capabilities. Adding mobility in such sce-
narios enables building of new applications that are impossible to have with
static nodes, such as target tracking or surveillance applications ([8], [9], [15]).
This in turn makes communicating in this environment more challenging: in
addition to link perturbations, ongoing communications can suffer from either
node movement or disappearance, leading to network partitions as parents in the
graph might be no longer reachable. RPL mitigates such problems by allowing
nodes to reconnect to the graph by changing their preferred parent. Such opera-
tion occurs when a node receives a DIO, advertising a better rank than the one
of the preferred parent. However, there is a situation where the preferred parent
of a node is no longer reachable (due to mobility, failure, etc.) and all received
DIO advertise a higher (worse) rank. In this situation, the node is disconnected
from the graph because its preferred parent remains the best candidate in the
parent set. Such disconnection is likely to increase packet loss, contention on the
medium and energy consumption. This scenario is illustrated in Fig. 1.

Fig. 1. RPL parent management

Furthermore, RPL does not specify how to manage the parent set, especially
when and for what reason a node should be removed from a parent set. Neverthe-
less, RPL suggests the use of external mechanisms for unreachability detection
such as Neighbor Unreachability Detection (NUD) [17], Bidirectional Forward-
ing Detection [2] and hints from lower layers via Layer 2 (L2) triggers [6]. When
one of these mechanisms indicates that the preferred parent is unreachable, the



138 C. Cobârzan, J. Montavont, and T. Noel

node will search for a new parent. First it will search in the parent set and, if
no parent is available, through a local repair. Local repair means announcing
infinite rank in a DIO (disconnecting from the DODAG), removing all parents
from the parent set (to be able to accept parents regardless of their rank) and
sending DIS periodically until new DIO are received. RPL, together with one
of these mechanisms should enable continuous communication on transient and
lossy links. However, to the best of our knowledge, those methods have not yet
been evaluated side by side in RPL. In the next section, we present how all three
mechanisms signal node unreachability.

3 Unreachability Detection in RPL

3.1 Neighbor Unreachability Detection

Neighbor Unreachability Detection (NUD) is part of Neighbor Discovery for
IP version 6 (IPv6) [17]. It tracks all paths between active neighboring nodes
and specifies when a neighbor is unreachable. The state of connectivity between
neighbors is stored locally on each node in a structure called neighbor cache.
When a path to a neighbor appears to be failing, NUD signals the need for
a new next hop, by deleting the neighbor cache entry. At RPL layer, this will
trigger the node to remove the parent and start searching for a new one, either
in the parent set (if it is not empty) or through a local repair.

NUD enables neighbors to exchange Neighbor Solicitation (NS) and Neigh-
bor Advertisement (NA) messages to confirm reachability. Each neighbor has
an entry in the neighbor cache for all connections it has with other nodes in
the same network. Cached values for nodes can be: REACHABLE - communi-
cation is granted between nodes, STALE - the neighbor is no longer known to
be reachable but no action is taken until traffic is sent to this neighbor, DELAY
- optimized state that delays sending probe for DELAY FIRST PROBE TIME
seconds (node waits for reachability confirmation from upper layers) and PROBE
- NS are sent until reachability is confirmed or the maximum allowed number
of probes (MAX UNICAST SOLICIT ) are sent. Timers, which are illustrated
in Fig. 2, manage the exchange of control messages and trigger the removal of
the cache entry. Default values for timers give a 30 sec reachable time window.

Fig. 2. NUD message exchange
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After this time elapses, the first probe is sent with a default 5 sec delay (DE-
LAY FIRST PROBE TIME ) and than each second until MAX UNICAST SO-
LICIT probes are sent (3 retransmissions by default). In the worst case and
considering the timer default values, it takes 38 sec for NUD to detect the un-
reachability of a neighbor. We doubt that such delay is short enough to allow
RPL nodes to change parent seamlessly and without experiencing packet loss.

3.2 Bidirectional Forwarding Detection

Bidirectional Forwarding Detection [2] is a simple Hello protocol that detects
failures in communication with a forwarding plane next hop. A pair of nodes
exchanges BFD messages encapsulated in UDP packets to maintain reachability
information. The path between two nodes is declared operational when two-
way communication can be established. When no messages are received for long
enough, BFD considers that the neighboring system has failed. At RPL layer,
this will trigger the node to remove the parent and start searching for a new one,
either in the parent set (if it is not empty) or through a local repair. RPL is paired
with BFD asynchronous mode. In this mode, messages are sent periodically
between systems. If a number of packets in a row are not received, the session is
declared down, as connectivity is lost. Operation of BFD, along with the state
of each system, is presented in Fig. 3. BFD packets are sent by default every 20
sec and if one packet is lost, the systems declare the state DOWN.

Fig. 3. BFD message exchange in asynchronous mode

3.3 Hints from Lower Layers via Layer 2 (L2) Triggers

Although specific to each MAC layer, the hints from lower layers via Layer 2
(L2) triggers [6] share common structure in the form of L2 Abstractions. Services
between layers are provided in the form of primitives, which enable synchronous
communication between layers. Two pairs of primitives are defined to be used
when events occur: Request/Confirm and Indication/Response.

Primitives can be used in 3 different cases based on their types - Type 1 :
Provide information to upper layers; information is provided immediately to
upper layer through a request-confirm message exchange; Type 2 : Notify upper
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layer of L2 events asynchronously, indicating each occurrence of registered events
to upper layers; Type 3 : Control L2 actions from upper layers; Request primitive
is used to interact with lower layer which will reply with Ack or Nack in a
Confirmation primitive.

We are convinced that this solution will provide the best results. There are
some MAC protocols like 802.14.5 in beacon mode that keep track of nodes asso-
ciated to a PAN coordinator and detecting disconnection is already implemented
in the protocol, but this is unavailable in most LLN MAC protocols. Using L2
triggers with any MAC layer allows events to be faster delivered to upper layer
protocols. This is why we propose MT-RPL, a solution to communicate between
MAC layer and RPL using Type 2 primitives. In the next section, MT-RPL will
be presented in more detail.

4 Mobility-Triggered RPL

The mechanisms presented in the previous section alongside local repair should
manage mobile nodes that generate dynamics in the network. However, we are
convinced that they are not adapted to LLN specifics, especially considering
the number of exchanged messages (BFD) or the suggested timer values (NUD).
Only L2 triggers seems to cope with LLN constraints but this is a generic solution
that should be adapted regarding the MAC protocol in operation. In this section,
we propose a new cross layer protocol that manages network dynamics in LLN.
Mobility-Triggered RPL (MT-RPL) is a specific implementation of L2 triggers
linking RPL and X-Machiavel [16] preamble sampling MAC protocol.

X-Machiavel is a variation of the well known X-MAC [12] preamble sampling
MAC protocol. With X-MAC, a node starts to send preamble strobes in order
to synchronize the destination for the pending transmission. Once the destina-
tion receives a strobe, it sends back an ACK to notify the sender to stop the
preamble and proceed with the data. Upon data reception, the destination sends
a new ACK to the sender. X-Machiavel slightly modifies this behavior to favor
mobile node transmissions. X-Machiavel assumes that the network is composed
of static and mobile nodes. On an idle channel, packets sent by mobile nodes
can be opportunistically forwarded by static nodes. On a busy channel, mobile
nodes can steal the medium of an ongoing transmission to send their packets
first. For this, X-Machiavel introduces two new fields in the packet header. The
type field defines whether the packet is a preamble frame (P0, P1 or P2), a
data packet (DATA), an acknowledgement for a preamble (PK0 or PK1) or an
acknowledgement for a data packet (ACK). P0 preamble strobes are used by
mobile nodes to forbid channel stealing and allow opportunistic nodes to accept
the pending data on behalf of the destination. P1 preamble strobes are used by
static nodes and enable mobile nodes to steal the channel. Finally, P2 pream-
ble strobes are also used by static nodes to forbid channel stealing. Preamble
strobes are acknowledged with type PK0 acknowledgement sent by static nodes
to acknowledge a P0 preamble that was not initially intended for them. This
informs the mobile node that its data can be handled by another static node
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acting as an opportunistic forwarder. PK1 acknowledgement is sent in the other
cases when nodes acknowledge preambles destined to them. In the flags field, a
mobile node sets a M flag (on most significant bit - MSB) for data packets that
is used to prioritize transmissions from mobile nodes. Fixed nodes that receive
data with the M flag set forward it by using a P2 preamble so that other nodes
cannot steal the medium and impair the transmission originating from the mo-
bile node. For more information about how X-Machiavel works the reader can
consult [16]. In the following, we present how X-Machiavel interacts with RPL
to form MT-RPL.

(a) Preamble is acknowledged or overheard

(b) Preamble is not acknowledged

Fig. 4. MT-RPL

X-Machiavel prioritizes the transmission from mobile nodes, elements that
generate great dynamics in the network. To take advantage of this in MT-RPL,
RPL registers a L2 trigger to be informed asynchronously every time the mecha-
nism of X-Machiavel is triggered (e.g. channel stealing or using an opportunistic
forwarder). For this, MT-RPL includes the rank computed at RPL layer in the
layer 2 header. By this means, nodes can decide in a distributed way whenever
it is worthwhile to act as an opportunistic forwarder or to steal the medium
from an ongoing communication. MT-RPL operational modes are presented in
the following. If the preamble is acknowledged (Fig. 4a) on an idle channel, a
node sends a P0 type preamble including its rank computed at the RPL layer.
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If the destination is in the neighborhood, X-MAC principles apply: the destina-
tion sends a PK1 acknowledgement and claims the data from the mobile node.
On the other hand, if the destination is not in the neighborhood and another
static node receives the P0 preamble, it can decide to act as an opportunistic for-
warder for the pending data. This decision is based on the RPL rank announced
in the preamble. If the rank of the sender is greater than the one of the potential
forwarder (i.e. the sender is located further in the graph than the potential for-
warder), the potential forwarder can send back a PK0 acknowledgement. Upon
reception, the mobile node changes the destination to the forwarder and sends
the data. This data may now be routed to the root using P2 preambles so that
no other mobile nodes can steal the channel. Forwarders with a rank equal or
greater that the one of the sender simply discard the overheard preamble.

Transmitting data on an occupied channel requires the mobile node to seize
the opportunity to transmit its data between strobed preamble frames that are
destined to another node. X-MAC principles require that the destination of
preamble strobes send back an ACK between two strobes to notify the sender
to stop the preamble and proceed with the data. MT-RPL allows mobile nodes
to send their own data before such ACK from the original destination. However,
MT-RPL enables this behavior only if the rank of the sender of the preamble is
lower than the rank of the mobile node, i.e. the mobile node’s data will progress
forward toward the root of the graph. As a result, channel stealing operates as
follows. First, a mobile node should overheard a P1 preamble destined to an-
other node and announcing a RPL rank lower than its own RPL rank. Then,
the mobile node changes the destination of its data to this sender and transmits
the resulting packet between two preamble strobes. After receiving such packet,
the forwarder still needs to send its own data and does that by using P2 pream-
bles. Further along nodes operate as in X-MAC. Regardless of how the static
nodes received data from mobile nodes, they will forward it using P2 preambles
until the final destination is reached. If the preamble sent by a mobile node is
not acknowledged (Fig. 4b), the mobile node is in an area where all surround-
ing nodes have a rank higher than its own, so the mobile node will change its
rank to infinite. At the next retransmission, any neighbor can acknowledge the
preamble and the mobile nodes data packet will be forwarded to the root using
P2 preamble.

MT-RPL manages the parent set regarding the information received from
layer 2 through L2 triggers. When the mobile nodes benefits from an oppor-
tunistic forwarder (by receiving a PK0 acknowledgment) or steals the medium
from another node (sending a data between two preamble strobes from an on-
going communication), if the transmission is successful, the layer 2 provides the
rank and the address of the effective next hop to the RPL layer. Upon reception,
RPL set this node as the new preferred parent, computes the related rank and
proceed with RPL operations whenever necessary (send new DAO and/or DIO).
As a result, MT-RPL should smooth network dynamics by enabling nodes to
promptly react to network change without generating extra control traffic.
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5 Simulation Setup and Results

5.1 Simulation Scenario

In order to evaluate the mitigation of network dynamics by RPL, we used the
WSNet software [4]. WSNet is a discrete event simulator dedicated to the study
of wireless sensor networks. WSNet already provides a basic RPL module that
we extended to operate as presented in both Sect. 3 and 4.

Table 1. Simulation parameters

Simulation parameter Value

Topology

Random topology 1 root, 60 static nodes, 5 mobile nodes
Grid topology 1 root, 36 static nodes, 5 mobile nodes

Data collection Time driven
scheme 1 packet/30s static nodes → root

1 packet/5s mobile nodes → root and root → mobile nodes

Data packet size 127 bytes

Mobility model Billiard, 1m/s random trajectory

Routing model RPL in non-storing mode using MinHop

RPL default values DIO - given by trickle timer algorithm [14]
DIS - 2s if empty parent set, until attached to DODAG
DAO - 60s from every node, or when needed

Values for parameters of unreachability detection mechanisms

NUD Maximum number of NS transmission - 3, Delay first
(RFC 4861) probe - 5s, Reachable time - 30s, Retransmission time - 1s

BFD Desired TX interval - 30s, Missed BFD packets that bring
(RFC 5880) session DOWN - 1

MAC model X-MAC (for standard RPL, NUD and BFD)
and X-Machiavel (for MT-RPL)
Maximum number of retransmissions - 4

Radio model Half-duplex, Channel 0, Sensibility level: -92dBm,
15 kB/s bandwidth, 18m (60 feet) [10] unit disk range

Current consumptionTX: 31 mA, RX: 15.1 mA OFF: 400 nA (CC1100 chip)

Antenna model Omnidirectional, modulation BPSK

Simulation setup 20 simulations/mechanism/topology,
4 mechanisms, 2 topologies, 1 hour/simulation

All simulation parameters are presented in Table 1. We deployed a random
topology of 60 nodes on a 100x100 m area with the root in the middle and a grid
topology with 36 nodes and the root in the middle. To generate dynamism, 5
mobile nodes are distributed and move following a simplified version of random
direction model, used also in [19]. Such nodes are pre-configured with the status
of mobile node, as they have physical capabilities to move (e.g. node is on a
platform with wheels). Standard RPL, NUD and BFD are coupled with X-MAC
because X-Machiavel favors transmissions of data packets from mobile nodes,
but the node which acknowledges the preamble, or from which the channel is
stolen, may not be the parent at RPL layer and the packet even though it is
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sent, it is dropped by the receiving node. MT-RPL as it receives information
from X-Machiavel takes advantage of this changes and adjusts accordingly the
transmission of data packets. Only links between the mobile node and its parent
are monitored using BFD, NUD or MT-RPL. On the rest of the path until the
root, the packet is routed using standard RPL, as these links are not subject
to network dynamics generated by the mobile node. With all methods, mobile
nodes keep only the preferred parent in the parent list, which may change when
DIO with a better rank is received or if the mobile node does a local repair.
The path from the root to the mobile node is maintained up to date with DAO
messages. Changes in topology are reported to the root in a timely fashion.
Packets are delivered following source routing set by the root. In the analyzed
scenarios, both mobile and static nodes send control messages as needed in order
to maintain connectivity to the DODAG. The DODAG that RPL build needs
a long time to stabilize [13]. Therefore, we started analyzing results only after
30 min from the start of the simulation, when the DODAG will be in a stable
state and the mobile nodes start moving. After this time, the structure of the
DODAG in the static part of the network will not change, in order to analyze
only the changes induced by mobile nodes in the network. At the end of the
simulation, packets were not sent for 15 min, so that all queues of packets from
all nodes could be emptied.

5.2 Results

The results presented in this section were obtained after running 20 simula-
tions of each scenario for each configuration for a total of 200 simulations. The
presented results are the average of overall data collected from each set of simula-
tions. The 95% confidence interval indicates the reliability of our measurements.
We analyzed four parameters: disconnection time from the preferred parent,
packet delivery ratio (PDR), overall number of control messages sent in the
network and energy consumption.
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Fig. 5. Average disconnection time from parent

Figure 5 illustrates the disconnection time for each scenario, i.e. the time be-
tween a mobile node going out of the radio range of its preferred parent and
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enforcing a new preferred parent at the RPL layer. As we can see, standard
RPL shows the longest disconnection time (up to 700 sec. in the worst cases)
as changing the preferred parent is only done by receiving a new DIO with a
better rank. Therefore, it is likely that a mobile node remains disconnected for
a long period because all received DIO present a higher (worse) rank. An un-
reachability detection mechanism is therefore mandatory in order to avoid such
situation that could lead to severe underachievements. By contrast, the discon-
nection time is drastically reduced using RPL coupled with NUD or BFD. In
those cases, when a mobile node does not receive reachability confirmation from
its preferred parent, RPL removes the preferred parent, reset the rank to infinite
and starts sending DIS. BFD lowers the maximum disconnection time because it
reacts quicker than NUD thanks to its slightly lower reachable time (30s versus
38s for NUD). Variations occur, as mobile nodes need sometimes to send sev-
eral DIS messages before they can reconnect to the DODAG. Finally, MT-RPL
presents the lowest disconnection times. Thanks to the interaction between the
layers 2 and 3, a mobile node always regains connectivity when an opportunis-
tic node acknowledges its preamble and successfully receives the effective data.
In addition, a mobile node regains connectivity whenever it successfully steals
the medium from a neighbor node with a better rank. In those situations, the
disconnection time is bound to the sending frequency of data packets and the
number of preamble strobes sent before stealing the medium or opportunistic
node acknowledgment. This explains the low disconnection time observed for
MT-RPL in Fig. 5. However, a mobile node may be in a situation in which it
cannot steal the medium or opportunistic node cannot acknowledge its pream-
ble strobes. Such situation occurs when the mobile node moves in an area where
the rank of all neighbors is lower (worse) than the rank of the mobile node.
Nevertheless, MT-RPL allows a mobile node to reset its rank and remove its
preferred parent after sending a whole preamble without receiving an acknowl-
edgment, either from its preferred parent or from an opportunistic forwarder (as
in Fig. 4b). As a result, in an unfavorable environment, the disconnection time
is only increased by the transmission duration of a whole layer 2 preamble.

Lowering the disconnection time should increase the packet delivery ratio
(PDR) on the paths from mobile nodes to the root and from root to mobile
nodes. Note that we implemented the solutions so that mobile nodes only try
to send data packets if a preferred parent is set. As a result, all solutions do
not necessarily send the same number of data packets. Table 2 present the PDR
together with the number of data packet sent by each solution in the both
scenarios. Standard RPL, as it cannot ensure continuous connectivity of mobile
nodes to their parents, has the lowest PDR from mobile nodes to the root. In
addition, this scheme sent the largest number of data packets because mobile
nodes have no means to remove an out of range preferred parent. Therefore,
they keep trying to send data packets while their preferred parents are no longer
reachable, increasing the packet loss together with the medium contention due
to retransmissions. Results for the path from the root to mobile nodes are not
meaningful because only few packets are actually sent. Most of the time, the
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Table 2. Nb. of sent data packets and PDR with 95% confidence intervals

Grid topology Standard NUD BFD MT-RPL
RPL

Packet delivery Avg. (%) 8.42 10.06 18.02 62.08
Mobile node ratio ± (%) 2.42 6.64 4.47 13.99

to root Data packets Avg. 666 184.61 501.84 410.15
sent ± 168.87 68.75 126.01 129.71

Packet delivery Avg. (%) 14.58 8.21 13.96 23.21
Root to ratio ± (%) 10.44 7.43 7.97 7.56

mobile nodes Data packets Avg. 23.95 22.46 47.42 64.60
sent ± 11.80 16.89 17.58 20.11

Random topology

Packet delivery Avg. (%) 9.32 12.99 18.93 66.56
Mobile node ratio ± (%) 1.40 4.00 2.94 4.69

to root Data packets Avg. 895.36 210.87 482.78 757.17
sent ± 23.76 67.72 43.74 46.67

Packet delivery Avg. (%) 33.59 37.01 36.53 36.14
Root to ratio ± (%) 15.34 22.20 14.83 12.03

mobile nodes Data packets Avg. 34.00 22.25 40.57 81.17
sent ± 13.89 9.75 13.12 18.12

root has no route to mobile nodes (DAO cannot be sent from mobile nodes when
they are disconnected) and therefore buffers the packets. When an unreachability
mechanism is present at the mobile nodes, values of PDR improve. Thanks to
BFD or NUD, mobile nodes change their preferred parents more often, resulting
in longer connections to the graph. This allows mobile nodes to send more data
packets that successfully arrive at the root. However, values of PDR are still
low, as the disconnection from the preferred parent may be reported after long
period of time (up to 30s for BFD and 38s for NUD). During this time, preferred
parents are still considered as reachable, but all transmitted data packets are
lost.

By contrast, lower disconnection times for MT-RPL seen in Fig. 5 are trans-
lated into the highest PDR for both mobile nodes and the root. Channel stealing
and opportunistic forwarding allow mobile nodes to connect to a parent with a
better rank whenever possible. Such reconnection occurs without triggering a
local repair, reducing the disconnection time together with the signaling over-
head as neighbor nodes can keep a low transmission rate of DIO. However, data
packets are still lost with MT-RPL as congestion can form on the path towards
the root. The same observation is achieved on the path from the root to the
mobile nodes.

Fig. 6 presents the signaling overhead of each solution. The low number of
control packets sent in standard RPL further supports the assumption that the
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mobility of node are rarely reported with this solution. Furthermore, discovering
and attaching to a new parent is done only with RPL control messages, which
occur rarely. Adding unreachability mechanisms increases the signaling overhead
in the network. Although BFD shows lower disconnection time and higher PDR
than NUD, such results come with the expense of higher signaling overhead.
BFD maintains sessions both ways between the mobile nodes and their parents
by exchanging UDP packets every 30s (each entity manages its own timer). This
explain the increased number of BFD control messages in both topologies. NUD
on the other hand, relays more on messages sent by the mobile node, which has to
check periodically (every 38s) the connectivity to its parent. Furthermore, both
NUD and BFD trigger a local repair when the unreachability of the preferred
parent is confirmed. Such procedure reset the trickle timer of all neighbor nodes.
After a local repair, DIO are therefore sent at a high rate, increasing the signaling
overhead reported at the RPL layer. By contrast, MT-RPL does not introduce
new control messages. In addition, parent change is achieved without triggering
local repair, thus reducing the overall signaling overhead. However, MT-RPL
increases the number of reconnections, and therefore makes the use of a large
number of DAO to report each parent change.
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Fig. 6. Average number of control messages sent

Energy consumption being one of the crucial point in LLN, we also evaluated
the energy depletion of each node in the network. Results are reported in Fig. 7.
The Y-axis represents the energy needed to send 100 data packets in order to
have an uniform representation for all methods. As a general remark, mobile
nodes consume more energy than fixed nodes because they send 1 data packet
every 5s whereas fixed nodes only send 1 data packet every 30s. With standard
RPL, nodes try to send packets even if the parent is not in the neighborhood.
If the preamble is not acknowledged and the retransmission number is reached,
the data packet is dropped whiteout being sent on the medium from the mobile
node. This is why even with a large number of packets sent by standard RPL,
energy consumption remains low, as only a few packets manage to actually be
sent between nodes. Once mobile nodes are longer connected to their parent the
energy consumption for them and the root rises. NUD and BFD send additional
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Fig. 7. Average energy consumption of nodes
Node 0 - root. Last 5 nodes - mobile nodes. Intermediate nodes - static nodes

control messages in the network. Given the low number of data packets sent by
mobile nodes using NUD, the energy consumption to send 100 data packets is
the highest of all. BFD, although it sends control packets both ways between the
mobile node and parent, has lower consumption when we take into account the
energy consumed for 100 data packets. Using only RPL control messages sent
when changes occur in the network and are signaled by layer 2, MT-RPL achieves
the lowest energy consumption from all unreachability detection mechanism.

6 Related Work

In the literature authors have until now focused on analyzing path quality, packet
delivery ratio or route prevalence in a network with RPL. However, knowing
when a node should search for a new parent (as communication is no longer
possible with the current one) should improve network performance. Authors
in [3] analyze the quality of routes in RPL. Some routes are longer than the
optimal ones. In addition, dominant routes, the ones that are used primary by
nodes, are remarkably prevalent and long lived. Changes of routes degrade the
path in half route changes, so it is important to adapt to network dynamics in
order to preserve the best path. Their analysis also points out to the low PDR
offered by RPL. Loses occur especially when RPL chooses low quality links. We
can conclude that mitigating low quality links and maintaining routes close to
the optimal value by mitigating network dynamics will improve network perfor-
mance. In [11], authors study the robustness of RPL. Their findings show that
RPL loses many packets and that congestion around the sink has an important
impact on performance, degrading the PDR when the sink’s congestion increases.
Pointing out to the high dynamics observed even in a static network, changes in
the DODAG can occur even after the network stabilizes. A node that enters the
network or nodes that change parents, change the topology, introduce instability
and increase the number of control packets sent. According to the rank of these
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nodes, their unreachability impacts RPL control message overhead greatly. Al-
though the authors have drawn important conclusions, the mechanism to detect
the node unreachability is not clearly presented. It is to our belief that knowing
what mechanism is better suited to mitigate network dynamics improves per-
formances. The article [7] makes an analysis of route change latency using RPL
and 6LoWPAN Neighbor Discovery protocol. Their analysis is theoretical and
does not take into account any network dynamics. On a perfect stable network,
it would provide an insightful view of route change latency. But, as papers such
as [11] show how unstable a network with RPL can be, we believe that the au-
thor’s contribution to understanding the stability of routes using 6LoWPAN ND
is limited.

All these papers address the problem of network dynamics in RPL, but until
now, a clearer analysis of the core components that allow RPL to mitigate the
dynamic situations has not been available. Our work makes a complete overview
of the unreachability methods suggested by RPL and lifts the uncertainty on
which one is better to use in LLNs with RPL.

7 Discussion and Perspectives

In this article, we analyzed how the IPv6 Routing Protocol for Low-power and
Lossy Networks (RPL) manages network dynamics, especially the support of
mobile nodes. From our simulation campaign, we showed that the mechanisms
suggested in the standard to mitigate dynamicity fail to prevent serious node
disconnection, which significantly increases the packet loss together with the
energy consumption. To the best of our knowledge, this is the first time that
such mechanisms have been evaluated side by side. Results presented here could
therefore serve the research community to increase the efforts on novel proposals
for supporting mobile nodes in RPL. Then, we proposed a new cross-layer pro-
tocol operating at layers 2 and 3 known as Mobility-Triggered RPL (MT-RPL)
to support efficiently mobile nodes in RPL. MT-RPL favors medium access to
mobile devices and triggers RPL operations in order to maintain efficient connec-
tivity with the network. Results obtained from an extensive simulation campaign
showed that MT-RPL significantly reduces the disconnection time, increases the
packet delivery ratio while limiting the energy consumption. MT-RPL is there-
fore a serious solution.

Encouraged by the results here, our future work will focus on a more precise
evaluation of our proposal through more realistic scenarios. Furthermore, MT-
RPL suffers from a large number of parent changes, increasing the number of
DAO sent to the root of the graph. We will first investigate methods to reduce
the number of parent changes without affecting the overall performance of MT-
RPL. Then, we will focus on extending MT-RPL to all nodes, being mobile
or fixed. Currently, we are considering favoring neighbor nodes with a better
rank to serve as an opportunistic forwarder by introducing a delay proportional
to the rank before acknowledging preamble strobe on behalf of the preferred
parent. Finally, we expect to benefit from the FIT IoT testbed [1] to extend our
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performance studies to large-scale experiments involving multiple mobile nodes.
Many of the reasons why long disconnection time occurs are closely related to
implementation, platform or operating system specifics that are quite delicate
to do so properly with simulations.
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Abstract. We present and evaluate a microcontroller-optimized limited-
memory implementation of a Warping Longest Common Subsequence al-
gorithm (WarpingLCSS). It permits to spot patterns within noisy sensor
data in real-time in resource constrained sensor nodes. It allows variability
in the sensed system dynamics through warping; it uses only integer oper-
ations; it can be applied to various sensor modalities; and it is suitable for
embedded training to recognize new patterns.We illustrate themethod on
3 applications from wearable sensing and activity recognition using 3 sen-
sor modalities: spotting the QRS complex in ECG, recognizing gestures
in everyday life, and analyzing beach volleyball. We implemented the sys-
tem on a low-power 8-bit AVRwireless node and a 32-bit ARMCortex M4
microcontroller. Up to 67 or 140 10-second gestures can be recognized si-
multaneously in real-time from a 10Hz motion sensor on the AVR and M4
using 8mW and 10mW respectively. A single gesture spotter uses as few
as 135μW on the AVR. The method allows low data rate distributed in-
network recognition and we show a 100 fold data rate reduction in a com-
plex activity recognition scenario. The versatility and low complexity of
the method makes it well suited as a generic pattern recognition method
and could be implemented as part of sensor front-ends.

Keywords: Activity Recognition, Wearable Sensing, Streaming pattern
spotting, Distributed Recognition, Machine Learning, Event Processing.

1 Introduction

Spotting patterns in noisy signal streams is important in many sensor network
applications [26], such as monitoring integrity of structures [12]; predicting crop
needs [23]; or recognizing human activities from wearable or ambient sensors
nodes [1], which is our motivation. Activity recognition is used in adaptive smart
homes [18] and in wearable smart assistants [17]. In general, multiple networked
nodes must be fused to increase accuracy [28] or resilience [20]. In order to
minimize energy use and wireless bandwidth, processing should be distributed on
the nodes so that only events are sent at low data rate for data fusion [25,9,14,2].
This requires efficient local pattern recognition on the nodes in the first place.
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In order to recognize complex patterns (hereafter motifs) in noisy sensor sig-
nals we present and evaluate a microcontroller-optimized Limited-Memory and
Warping Longest Common Subsequence (LM-WLCSS) implementation of the
WarpingLCSS algorithm analyzed offline in [16]. The resulting system allows a
real-time streaming execution in memory constrained nodes. It has low com-
putational complexity and uses only integer operations. It allows to dilate or
contract the motif to accommodate for variations in the sensed system dynam-
ics, such as human variability. LM-WLCSS has a high specificity to the target
motif which allows to spot subtle activities. The sensitivity-specificity trade-off
can be adjusted with a single parameter. Low-complexity training is possible
on the node, which enables e.g. personalization of activity models at run-time.
The method has a defined low latency, which allows use in critical applications.
LM-WLCSS can process raw sensor signals or signal features which makes it
applicable to scenarios beyond wearable sensing. The method can be used for
distributed pattern recognition in sensor nodes by performing local recognition
on individual nodes and combining these decisions in a central node, thus leading
to significant reduction in network bandwidth.

2 Related Work

Spotting patterns in noisy signals has been extensively studied for activity and
gesture recognition with wearable devices [3] and the principles generalize to
other domains. A common approach combines segmentation (e.g. with a sliding
window), feature computation on that segment, and classification of the features
into pre-defined classes [1]. Features can be computationally complex and enough
memory must be available to store the sensor data corresponding to the longest
pattern to spot. This can be a constraint in sensor nodes1. With high sample
rate, careful optimization is required to meet memory-performance tradeoffs [21],
or powerful microcontrollers must be used, e.g. with hardware FPU for EMG
analysis [4]. Code optimizations reduce CPU usage but are worthwhile only for
general purpose algorithms, as this takes a lot of effort. For instance, hidden
Markov models can be implemented in fixed-point arithmetic [27]. Template
matching methods compare the sensor signal with a motif resulting in a matching
score. Dynamic Time Warping (DTW) allows to dilate or contract the motif to
accomodate for signal variability and was used in activity recognition [6,11].
Algorithms based on longest common subsequence were suggested in a sliding-
window and a warping form (WarpingLCSS) for online activity recognition and
outperformed DTW with noisy data [16,15]. WarpingLCSS computational cost is
bound to linear order of the template size and and memory is bound to quadratic
order of the template size. However, in previous works it was implemented in
floating point and evaluated offline. DTW and WarpingLCSS approaches are
both computationally light thanks to dynamic programming implementations
and have a simple training process.

1 The commonly used TMote Sky has 10KB RAM. With a 3D accelerometer and
gyroscope sampled at 100Hz and 16 bit, the maximum activity length is 8 seconds.
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In a sensor network bandwidth should be minimized. Complex higher-level
patterns across multiple nodes can be inferred from lower level events broad-
casted by the nodes using fuzzy logic [14], decision fusion [28], meta-classifier
[2], sparsity classifier [25]. This can be supported by software frameworks [9].
Another approach is to rely on signal processing techniques such as compressed
sensing to reduce bandwidth by exploiting signal statistics [8]. Sparse represen-
tations decompose the sensor signal along an optimized basis and also allow
to reduce bandwidth as well as improve classification performance. The power
usage of a recent implementation was 2W on a dual-core ARM A9 [24].

3 Limited-Memory Warping LCSS Recognition System

We introduce a microcontroller-friendly system to spot motifs in real-time within
noisy streaming sensor signals. The system is based on a Limited Memory and
Warping Longest Common Subsequence algorithm (LM-WLCSS), introduced
and evaluated offine in [16] as WarpingLCSS2.

Preproc LM-WLCSSS SearchMax Embedded app or
radio transmission

Bandwidth [bps]: Sr*Ds 1 bit / event

Motif

Latency: Length template WF

Fig. 1. The sensor data is acquired at Sr Hz and optionally pre-processed with down-
sampling, feature computation and quantization. LM-WLCSS computes the instanta-
neous matching score with the motif. Online local maximum search find scores above
a detection threshold. This yields an event (1 bit) each time a motif is detected.

The overall pattern recognition system is illustrated in figure 1. The sen-
sor is sampled with sample rate Sr and word length Ds and optionally pre-
processed (e.g. by downsampling, computing signal features, or quantization).
Afterwards, LM-WLCSS computes the instantaneous matching score between
the pre-processed sensor data and the motif: the higher the score, the closer the
pre-processed signal is to the motif. Finally, a local maxima search looks for
matching scores above an acceptance threshold Thd, which indicates that the
motif of interest has been spotted in the sensor signal. At this stage, a single
bit or timestamp indicates that a pattern has been spotted. This can be used
locally on the node or sent over radio for fusion with detectors on other nodes.

We refer to S(i) as the ith sample from the sensor (i.e. the input data stream),
T (j) as the jth sample from the motif, and NT the length of the the motif. The
next two subsections describe LM-WLCSS and the local maximum search.

2 The update equation is modified from the original work to address edge issues.
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3.1 Limited-Memory Warping Longest Common Subsequence

LM-WLCSS can be efficiently implemented with dynamic programming by solv-
ing the problem of matching a shorter motif and a shorter stream and keeping
intermediate results in memory (see [22] for the classical, non-warping, LCSS).
We define M(j, i) the matching score between the first i samples of the stream
and the first j samples of the motif. Thus, M(j, i) can be computed as follows:

M(j, i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if i ≤ 0 or j ≤ 0

M(j − 1, i− 1) +R if |S(i)− T (j)| ≤ ε

max

⎧⎪⎨
⎪⎩

M(j − 1, i− 1)− P · (S(i) − T (j))

M(j − 1, i)− P · (S(i) − T (j))

M(j, i− 1)− P · (S(i)− T (j))

if |S(i)− T (j)| > ε

(1)
R is a reward added to the matching score when two samples match. In case

of mismatch a penalty proportional to the mismatch between samples scaled by
P is applied. A tolerance ε allows approximate matches. Warping occurs in case
of mismatch with the max operation selecting one of three options: accepting
a mismatch between one sample from the data stream and the motif (line 1);
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Fig. 2. LM-WLCSS computes the matching score between a motif of length 4 and data
coming from a sensor. R = 8, p = 1, ε = 0. The red bold value in the cells is M(j, i):
a single value indicates a match between motif and sensor data; 3 values indicate a
mismatch and the 3 possible scores before the max operation in equation 1. The last
line M(NT , i) is the matching score between the motif and the sensor data at time
i. A local search of score maxima shows two maxima with score 32 (a perfect match)
and 22 at the current sample. The backtracking variable B is represented by the arrow
between cells. Backtracking from the perfect match shows that the motif is aligned
with the sensor data without warping. Warping is illustrated when backtracking from
the current sample: the motif is dilated and aligned against 9 sensor samples. As a new
sample is acquired, a column would be added on the right to compute the updated
matching score and backtracking. The limited-memory implementation stores only the
last column to update the matching score, and the backtracking is limited in time.
Thus, LM-WLCSS is a constant memory algorithm.
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repeating one element of the data stream (i.e. contracting the motif on line 2);
or repeating one element of the motif (i.e. dilating the motif on line 3).

M(NT , i) indicates the matching score between the entire motif and the sensor
data at time i. We consider that the motif has been found in the sensor data
when a local maxima in M(NT , i) is found above a trained acceptance threshold.
This indicates the end-time of the match. As the algorithm allows for motif
warping, the start-time of the match is found by backtracking from the end-
time, using a backtrack variable B(j, i) that indicates which option was selected
in the assignment of M(j, i) in equation 1. Figure 2 illustrates how LM-LCSS
matches a motif against the sensor data in a matrix representation of M and B,
and how to find the start and end times of the match.

Input: sample: the current sensor data
Output: score: the resulting matching score

/* Limited-memory backtracking window */
B(1...NT , 1...WB − 1) ← B(1...NT , 2...WB);
/* Initialization */
mu ← 0; /* Score in the upper cell */
mul ← 0; /* Score in the upper-left cell */
for j ← 1 to NT do /* Update the matching score */

ml ← M(j); /* Score in the left cell */
if |sample − T (j)| < ε then /* sample matches the motif */

score ← mul + R;
B(j,WB) ← 0;

else /* mismatch */
t = p · |sample − T (j)|;
score,midx = max(mul − t,mu − t,ml − t); /* Returns the maximum of the
arguments and its 0-based index */
B(j,WB) ← midx

end
mul ← ml;
mu ← score;
M(j) ← score;

end

Fig. 3. This function updates the matching score whenever a new sample is acquired.
M is a vector of size NT , B is the backtracking window of size NT ×WB, and T is a
the motif of size NT ; these state variables are kept in-between calls to this function.

Implementation memory can be minimized by realizing that it is not neces-
sary to store the entirety of M(j, i); instead, only the last column of M(j, i)
is required to compute M(j, i + 1) when the next sample is acquired. Finding
the start point of the match requires the backtracking variable B(j, i). However,
application knowledge can be used to provide an upper bound on the amount
of warping allowed. Therefore, instead of storing the entirety of B(j, i), a back-
tracking window of size WB can be defined to keep only the most recent (closest
to current time T ) entries of B(j, i). The resulting algorithm (figure 3) is called
each time a new sensor sample is received to update the matching score.

3.2 SearchMax

Each time the score is updated the function represented in figure 4 is called to
find whether the score is a local maxima above above a threshold. This algorithm
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keeps data storage to a minimum and deals with the issue that signals carrying
noise produce many local extrema. The algorithm looks for a local maxima in a
sliding window without the need to store that window. The algorithm compares
current score (S) with the last score (P ) in order to determine whether there
is a positive slope. When this is true a flag is set and the maximum value is
stored (Max); a counter (K) is used to determine whether the stored value is the
maximum within a window (WF ). The the maxima is above a detection threshold
Thd the function returns indicating that a motif may have been spotted.

Start Input 
S Flag=1 S>P & 

S>Max 
NO 

K>Wf & 
Max>Thd 

NO 
P=S Return 0 

K = K+1 
Max = S 
Flag = 1 

K = 0 

Flag=0 
Max=Minvalue 

P=S 
YES YES YES 

Return 1 

NO 

Fig. 4. Algorithm returning whether the current matching score is a local maxima
above a threshold within a sliding window of size WF .

3.3 Embedded Training

Training consists of defining the motif and the threshold Thd. Embedded train-
ing is possible, for instance for activity recognition. In training mode, the node
indicates when it is ready for the user to demonstrate a gesture, e.g. by emit-
ting a sound. The user demonstrates the gesture and the node continuously
records the motion sensor data until the user stops moving. The recorded data
is the gesture motif. This process can be repeated to evaluate the variability
between the gestures and define an optimal detection threshold. One motif (e.g.
the first recording) is selected, and the matching score between that motif and
the subsequent recordings is computed. In order to spot all the gestures in that
dataset, Thd should be equal to the lowest obtained matching score. However
to be robust to outliers setting Thd = μscore − n · σscore allows to adjust the
sensitivity-specificity tradeoff of the algorithm in a with n3. Training with cross-
validation can be done offline for better multiparametric optimization [16,15].

3.4 Embedded Implementation

We implemented the system in C. A timer interrupt is used to sample the sensor
data at regular intervals. The entire pattern spotting process can be executed
in the timer interrupt as the processing time is predictable. Alternatively, the
timer interrupt can store the data in a buffer, which is processed from the main
program code later.

3 This expression allows to approximate a suitable threshold in an online implemen-
tation; with n=2-4 our experiments showed good sensitivity-specificity tradeoffs. A
better training uses cross-validation but may require too much memory to hold all
patterns to be suitable for the sensor node.
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The indexing variables looping through the motif and backtracking window
are 16-bit on the AVR and 32-bit on the M4. The entries in the backtracking
window are 8-bit. For benchmarking, we used different word size for the samples,
matching scores, penalty and reward: 8-bit, 16-bit and 32-bit integers and single
precision (32-bit) float. While smaller bit-width may be preferred, there is a
lower limit defined by the matching score range. The maximum matching score
is equal to NT ·R. The minimum matching score is a negative value that depends
on the incoming sensor data, NT and P . As the data distribution can only be
statistically characterized, there must be enough room to hold a “large” negative
value, otherwise the scores may wrap around. In our implementation we scaled
the sensor readings and parameters to ensure no wrap around ever occurred.
Alternatively saturation arithmetic could be used, but it is much slower.

When using integer arithmetic the ratio of R to P can be selected to approx-
imate a floating point implementation (such as the offline version presented in
[16] which fixes R = 1 and assumes 0 < P < 1). We implemented the backtrack-
ing array as a circular buffer, thus avoiding memory moves in algorithm 3. Thus
the algorithm speed is independent of the size of the backtracking window. The
backtracking window is an optional feature: when deactivated, the start point
of the match cannot be found but the memory used is significantly reduced.
We show in section 5 that backtracking may not be needed for many spotting
applications. We stored the templates in RAM. However if the motif is static or
trained infrequently, it could be stored in Flash to free up more RAM.

4 Technical Evaluation

We characterize the system on two platforms. The first is a custom 8-bit Atmel
AVR motion sensor node [19]. It is 44mm×25mm×17mm node with Bluetooth
(BlueNiceCom III), a 3D ADXL330 accelerometer, a 2D IDG650 gyroscope and
an ATmega1284P microcontroller at 8MHz (see fig 7 left). The AVR has hard-
ware supports for 8-bit multiplications, 128KB of program Flash, and 16KB of
RAM. GCC 4.8.1 with O2 optimization is used to compile the system. The sec-
ond platform is a STM32F4DISCOVERY board with a 32-bit STM32F407 ARM
Cortex M4 microcontroller with 1MB of program Flash, 192KB of RAM and a
hardware single-precision floating point unit. The microcontroller uses the ex-
ternal crystal with the PLL set to generate an 8MHz CPU frequency. GCC 4.8.4
with O2 optimization is used to compile the system using the thumb2 instruc-
tion set. Benchmarking was done using internal timers. The timer resolution was
128μS on the AVR node and 1ms on the M4 board. All benchmarks ran at least
one second to minimize measurement error. A serial link (over UART and USB
for the AVR node, SWO on the M4 board) is used to report the timings.

We benchmark individually LM-WLCSS, SearchMax and their combination.
The reward and penalty parameters or the range of the motif and sensor data
have no influence on speed. Benchmark results are presented in figure 5. Note
that the algorithm is linear in O(NT ) in time for each sample. Smaller tem-
plates allow faster execution, however for very small templates the function call
overhead appears in the benchmark. The AVR is faster with smaller word sizes;
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(a) AVR: clock cycles LM-WLCSS
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(b) M4: clock cycles for LM-WLCSS
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(d) M4: clock cycles for SearchMax
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(e) AVR: S2/s at 8MHz
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(f) M4: S2/s at 8MHz

Fig. 5. (a,b) show the number of clock cycles for the execution of the LM-WLCSS
algorithm only; (c,d) show the number of clock cycles for SearchMax only; (e,f) show
the overall system performance when LM-WLCSS and SearchMax are combined in
samples2/second at 8MHz. This unit is the product of the motif length by the maximum
sample rate. It is asymptotically a constant. The AVR does 130K sample2/second at
8MHz. This means it can sustain a sample rate of 1300Hz with a motif of length 100, or
130Hz with a motif of length 1000. The benchmark was performed with different motif
sizes; with small motifs the performance decreases due to function call overheads.
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however 16-bit is an ideal operating point as shown in section 5. The ARM is
faster with 32-bit word size, as smaller arithmetic operations must be emulated.

The RAM usage can be derived from the algorithm description. The state
variables can be statically allocated. LM-WLCSS requires memory to store the
limited-memory backtracking window B and the latest column of M. The RAM
used of for state data is thus: NT · ws + NT · WB with ws the word size in
bytes. If backtracking is disabled, the RAM used for state data is only: NT ·ws
SearchMax requires only 5 state variables, regardless of the size of the SearchMax
window WF . A few additonal working variables are needed (e.g. mu, mul, ml
in algorithm 3), but this is constant and small in contrast to the memory used
for the state variables. The compiler may even optimize them out with registers.
Consider a 32-bit implementation with a motif of length 30 (i.e. allowing to spot
a pattern of 1 second with 30Hz sensor sample rate, which is typical in activity
recognition) allowing to find the starting point of the pattern in the data stream
even if the pattern is twice slower than the original. Then WB = 60, NT = 30,
and the memory needed is: 30 ·4+60 ·30 = 1920 bytes. Note that in section 5 we
demonstrate successful spotting without relying on backtracking. If backtracking
is disabled, the memory used is only NT · ws = 120 bytes.

In table 1 we report the program size for LM-WLCSS and SearchMax in
bytes computed based on the disasembly of the executable. In the float imple-
mentation, an additional library for floating point operations is required. Its size
is estimated by adding all the functions dealing with floats in the executable.
The M4 float implementation is significantly more compact due to the hard-
ware FPU. As few as 434 (16-bit on AVR) and 284 (32-bit on M4) bytes of
code are required for the full system with backtracking.

Table 1. Program memory (Flash) usage in bytes for LM-WLCSS (top) and Search-
Max (bottom). The floating point implementation requires in addition a floating point
library, whose estimated size is indicated in parenthesis.

Platform 8 bit 8 bit, bt 16 bit 16 bit, bt 32 bit 32 bit, bt float

LM-WLCSS
AVR 186 246 234 310 468 534 578 (+860)
M4 176 200 184 222 140 180 192 (+3622)

SearchMax
AVR 92 124 194 222 (+860)
M4 106 110 104 118 (+3622)

The latency of the system is defined by the length of the motif and the size
of the SearchMax window WF . The maximum matching score is reached once
the end of the motif is identified in the data stream (see fig. 2). Thus, shorter
templates reduce the latency of the system, but may decrease its specificity. The
SearchMax window avoids detecting multiple events when in reality only one
occured (e.g. with noisy data). The ideal WF is selected experimentally, but it
can be much smaller than the motif size (e.g. 5-10 samples in section 5).

5 Pattern Spotting Examples

We illustrate the versatility of the algorithm on 3 examples of pattern recognition
typical of wearable sensing and activity recognition. The system parameters have
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been selected to illustrate the algorithm behavior, not necessarily to achieve the
optimal performance. We purposely show a variey of sample rate and motif
lengths. In all the examples, we use a 16-bit implementation of the system.

Physiological Signal Analysis. We first illustrate spotting physiological pat-
terns. The top plot in figure 6(a) illustrates the ECG (v2) of a healthy subject
sampled at 200Hz. A motif of 20 samples (100ms) is defined around the QRS com-
plex. The system parameters are: R = 16, P = 8, ε = 2, WF = 30, WB = 100,
Thd = −200. The middle plot shows the matching score which increases above
the detection threshold (horizontal line) when the QRS complex is observed and
decays as unrelated data is observed. The second last heart beat appears slightly
different and only just passes above the threshold. This shows how the threshold
can control the sensitivity-specificity tradeoff of the algorithm. A lower thresh-
old would guarantee to spot all the heart beats, but a higher threshold may be
desired to spot anomalies in the QRS complex. The lower plot shows the overall
latency of the system and indicates the effective time at which the QRS complex
is detected. The motif is found some time after the peak in the matching score
(controlled by WF ), and the peak occurs when the end of the motif is matched
against the signal.

The Pan-Tompkins algorithm [10] is the de-facto method to spot the QRS
complex. It is based on filtering, derivation, squaring, integration and threshold-
ing, with numerous optimized embedded implementations of the initial
algorithm. In comparison LM-WLCSS is very competitive: it offers very low
complexity (NT multiplications per sample), and provides more flexibility than
Pan-Tompkins-based methods, as the motif can be adjusted. For instance, it
could be used to biometrically identify the user of a device by the ECG shape.

The AVR achieves 65KS2/s at 8MHz for a motif of 20 samples (fig. 5). A
dedicated system could run the CPU at only 490KHz to spot the QRS complex.
This would allow operation at 1.8V, using 360uW of power (extrapolated from
the datasheet) for the signal processing.

Recognition of Everyday Activities. We show the recognition of everyday
activities from an arm-worn accelerometer based on the “Drill run” of the OP-
PORTUNITY dataset, which is a recognized highly challenging benchmarking
dataset as reported in [7]. A person performs 20 repetitions of a scripted but
realistic sequence of everyday activities in a home environment, including open-
ing/closing doors/windows/drawers, cleaning a table, drinking, etc. We evalu-
ated LM-WLCSS on the detection of very similar gestures: drinking from a cup
while seated, and drinking from a cup while standing or walking. Only one axis
of an acceleration sensor node on the dominant lower arm is used. It is quantized
in the range -64 to 63 and downsampled from 30 Hz to 10Hz. The WM-LCSS
parameters are: R = 16, P = 1, ε = 5, WF = 10, WB = 100. The drink sitting
and standing motifs are 61 and 48 samples respectively. The detection threshold
were optimized by cross-validation.

Figure 6(b) shows a closeup of 3 of the 20 repetitions of the activity sequence.
The sensor data appears very noisy, and there are only very subtle differences
between the two motifs. Drinking seated can be recognized more robustly than
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(a) Spotting of QRS complex in ECG
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(b) Recognition of everyday activities

Fig. 6. (a) Detection of the QRS complex in ECG recordings with LM-WLCSS. Top:
original signal and highlighted motif. Middle: matching score, threshold, and identified
local maxima. Bottom: effective detection of the QRS complex, with the additional
latency of SearchMax. (b) Detection of “drinking seated” (2nd plot) and “drinking
standing” (3rd plot) gestures from a 1 axis acceleration channel on the lower arm.
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drinking standing, as the peak in matching score in the first case is more marked,
which allows to set a higher detection threshold. Nevertheless, the algorithm is
able to spot and distinguish the two kinds of subtly different gestures.

Assuming a motif length of 100 and 10Hz sample rate (i.e. gestures of up to 10
seconds), the AVR can do 67KS2/s with the 16-bit backtracking implementation.
This allows to recognizing 67 different gestures in real-time at 10Hz using 8mW
(3.3mA at 2.4V with the internal 8MHz RC oscillator). Alternatively, one gesture
could be recognized with the CPU running at 120KHz only. At 1.8V and with the
internal 128KHz RC oscillator this gives 135uW for a single gesture spotter. On
the M4, the fastest backtracking implementation does 140KS2/s. This allows to
recognize 140 gestures at 10Hz with the CPU at 8MHz with power consumption
of 10mW (3.3V, 3mA at 8MHz according to the datasheet). Power decreases by
more than 50% by disabling backtracking in all cases.
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Fig. 7. Sensors placement for beach volleyball serve analysis (left) and detection of
selected Beach Volleyball serves from a forearm gyroscope sensor (right)

Beach Volleyball. We show the recognition of beach volleball serves from one
gyroscope placed on the forearm as shown in Figure 7. The player was asked
to serve several times from different parts of the court and varying power, and
data was collected from 64 serves using the AVR-based sensor node described in
section 4. We observed that the player’s routine before serving included a smack
on the ball to remove the sand on it, therefore the LM-WLCSS algorithm was
used to analyze the data and evaluate the discrimination of both events. Selected
data is shown in Figure 7, showing the serve template (of size 50 samples) and
the smack before serving. The LM-WLCSS parameters are R = 1, P = 1, ε = 10,
Thd = −1000, WF = 25. Using a single axis of the gyroscope, we recognized
the servers with only 1 false positive and 20 false negatives. These results are
promising considering the variability of serves [5] and that there has not been
any particular optimization for this application.

6 Extensions and Discussion

When using LM-WLCSS on raw acceleration readings the system is sensitive to
sensor displacement and rotation. Other template matching methods suffer from



Limited-Memory Warping LCSS 163

0 2 4 6 8 10 12 14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Cluster size

F
1
 s

co
re

Decision fusion
Signal fusion

Fig. 8. Average performance (standard deviation in dashed lines) from an exhaustive
evaluation of clusters of size 1 to 13 nodes on the upper limbs in an everyday activity
recognition task (17 activity classes). In signal fusion, the nodes stream raw data to a
central node that runs LM-LWCSS. In decision fusion, nodes run locally LM-LWCSS;
when recognizing a pattern they send an event to a central node that fuses the indi-
vidual decisions with majority voting. Decision fusion requires much lower datarate.

the same issue. One solution is to apply the method on features derived from the
acceleration, such as the acceleration magnitude which is rotation independent.
Displacement can be handled by first detecting on-body sensor placement in
order to select adequate motifs for recognition [13].

The main behavioral difference between this implementation and the Warp-
ingLCSS work in [16] results from the use of integer arithmetic. We found out
that an 8-bit implementation is generally inadequate for acceleration data, how-
ever 16-bit (or more) are adequate for the scenarios presented here.

Memory is reduced by decreasing the size of the backtracking window. This
limits the maximum dilation (but not the contraction) of the motif if the start
point of the match is desired. If the start point of the match is not desired the
backtracking window can be eliminated altogether.

We showed the recognition of at most 2 simultaneous patterns in the drink
example. This can be extended to more motifs4. One challenge is that several
motifs may be simultaneously spotted if the data is very noisy. This can be
addressed by a conflict resolution as presented in [16], or by ranking the activity
likelihood using the matching score which can be used with decision fusion.

Results were obtained from a single sensor channel. Multiple sensor channels
(e.g. 3D acceleration) can be combined before being processed by LM-WLCSS
with K-means clustering [16,15], or by modifying the sample matching to a vector
Euclidian distance (e.g. to handle 3D acceleration). This signal fusion can be
used to fuse multiple channels on a single node, or across multiple nodes when
they stream their raw signals to a central node doing K-means clustering and
running LM-WLCSS. Alternatively, nodes can perform individual local pattern
recognition with LM-LWCSS and send events to central node which performs

4 Memory usage with multiple motifs is the sum of the memory needed to recognize
each motif individually.
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decision fusion, for example using majority voting [28] or meta-classifiers [2].
This leads to very low data rates, as radio transmission only occurs when a
pattern is recognized by a node and needs as few as log2(C) bits, with C the
number of classes.

In figure 8 we compare signal fusion and decision fusion performance on the
recognition of 17 distinct activities (340 gestures in total) from the OPPOR-
TUNITY “Drill run” for clusters of nodes of various size [7]. We consider 13
nodes on the upper limbs. Each node is a 1 axis acceleration or rate of turn
sensor. We assess all combinations of clusters of size N out of the 13 nodes and
report averages and standard deviation. In signal fusion, all nodes in the cluster
stream raw data (16-bit per sample) to a central node at 10 Hz which performs
a k-means clustering (k=20) before applying LM-LCSS with 17 motifs. The to-
tal bandwidth is 10 · 16 · N bps. In decision fusion, each node of the cluster
performs local classification and send 5 bit each time an event is recognized.
We consider a worst case setup for decision fusion, which assumes no null-class.
The total bandwidth is 5 · N bit per gesture; given the average duration of a
gesture is 3.8 seconds, the bandwidth for decision fusion is 1.3 · N bps. This
leads to a reduction of bandwidth by 2 orders of magnitude (from 160 ·N bps to
1.3 ·N bps), while keeping similar recognition performance in this scenario. As
expected, performance increases with the size of the cluster as more information
is available to recognize the user’s activities. Although it appears that decision
fusion outperforms signal fusion we cannot make such a general statement from
the limited amount of data used.

The simplicity of the LM-WLCSS codepath makes it is suitable for silicon-
level implementation, for instance based on a multiply-and-accumulate unit to
to execute in n clock cycles the algorithm 3 for a motif of length n. A silicon
implementation would allow ultra-low power pattern spotting, and could be
included in sensor frontends of microcontrollers.

LM-WLCSS allows a training by demonstration that is important as ever
more assisted living and smart assistant applications require personalization to
handle human variability. It also allows a simple control of the sensitivity and
specificity tradeoff with Thd, which can be adapted depending on the application
need (e.g. to spot any drink even v.s. only specific drink events). An increase
in Thd increases the specificity of the method and decreases its sensitivity. The
system parameters can be optimized by cross-validation [16,15].

7 Conclusion

We have shown a motif matching method to spot patterns in noisy signal streams
suitable for real-time execution with low-latency on sensor nodes. We presented
two variants of the algorithms: one that simply spots the moment that a motif is
observed in the sensor data, the other is capable of backtracking to find the start
time of the match, which indicates how much the motif has been “warped”. The
first implementation uses only as much RAM as the length of the motif and is
sufficient to spot patterns in a wide range of applications, as demonstrated in
this paper with 3 scenarios involving 3 different kinds of sensors.
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With backtracking, we reach a performance of 67KS2/s for a 16-bit implemen-
tation on an 8-bit AVR microcontroller, and 140KS2/s on a 32-bit Cortex M4
microcontroller. For a motif of length 100 (e.g. a gesture of maximum 10 seconds
at 10Hz) the AVR and M4 at 8MHz can recognize respectively 67 and 140 motifs
in real-time from a 10Hz sensor, consuming respectively 8mW and 10mW and
using as few as 434 or 284 bytes of code for the full system. The AVR can realize
a single gesture spotter using only 135uW. In a distributed activity recognition
scenario, LM-WLCSS allows a bandwidth reduction by 2 orders of magnitude
with identical performance to a signal fusion approach. This is especially inter-
esting to support context awareness in opportunistic sensing scenarios.

LM-WLCSS is a generic algorithm which we demonstrated to be useful in a
wide range of pattern recognition scenarios. This makes LM-WLCSS well suited
for distributed in-network pattern recognition, which could be implemented in
next generation smart accessories (smart-watches, smart-bracelets), smart envi-
ronments, and more generally in the Internet of Things. Future work may include
silicon implementation to further reduce power in smart nodes.
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acteristics on performance in men’s and women’s high-standard beach volleyball.
Journal of Sports Sciences 30(3), 269–276 (2012)
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Abstract. We study the feasibility of leveraging the sensors embedded on mo-
bile devices to enable a user authentication mechanism that is easy for users to
perform, but hard for attackers to bypass. The proposed approach lies on the fact
that users perform gestures in a unique way that depends on how they hold the
phone, and on their hand’s geometry, size, and flexibility. Based on this obser-
vation, we introduce two new unlock gestures that have been designed to enable
the phone’s embedded sensors to properly capture the geometry and biokinetics
of the user’s hand during the gesture. The touch sensor extracts the geometry and
timing of the user hand, while the accelerometer and gyro sensors record the dis-
placement and rotation of the mobile device during the gesture. When combined,
a sensor fingerprint for the user is generated. In this approach, potential attackers
need to simultaneously reproduce the touch, accelerometer, and gyro sensor sig-
natures to falsely authenticate. Using 5000 gestures recorded over two user stud-
ies involving a total of 70 subjects, our results indicate that sensor fingerprints
can accurately differentiate users while achieving less than 2.5% false accept and
false reject rates. Attackers that directly observe the true user authenticating on a
device, can successfully bypass authentication only 3% of the time.

1 Introduction

As sensitive information, in the form of messages, photos, bank accounts, and more,
finds its place on mobile devices, the need to properly secure them becomes a necessity.
Traditional user authentication mechanisms, such as lengthy passwords that include
combinations of letters, numbers and symbols, are not suited for mobile devices due to
the small on-screen keyboards. Given that users need to authenticate on their mobile
devices tens or even hundreds of times throughout the day, the traditional password
authentication technique becomes a real bottleneck.

To simplify the authentication process, users tend to leave their mobile devices com-
pletely unprotected, or they leverage simple authentication techniques such as 4-digit
pins, picture passwords (Windows 8), or unlock gestures (Android). Even though these
techniques allow easy and intuitive user authentication, they compromise the security
of the device, as they are susceptible to simple shoulder-surfing attacks [14]. Pins, pic-
ture passwords, and unlock gestures can be easily retrieved by simply observing a user
authenticating on his/her device once.

Ideally, the user authentication process should be easy and fast for users to perform,
and at the same time difficult for an attacker to accurately reproduce even by directly
observing the user authenticating on the device.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 168–185, 2015.
c© Springer International Publishing Switzerland 2015
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touch 1: pinky finger touch 2: ring finger touch 3: middle finger touch 4: index finger

touch 1: thumb to index touch 2: thumb to middle touch 3: thumb to ring touch 4: thumb to pinky

(a)

(b)

Fig. 1. Proposed unlock gestures for capturing the biokinetics of the user’s hand. Users can per-
form the gesture anywhere on the screen, and at the speed they feel comfortable with. (a) 2-hand
gesture: the user sequentially taps his four fingers on the touch screen starting from the pinky
finger, and ending with the index finger. (b) 1-hand gesture: the user uses his/her thumb to touch
each of the rest four fingertips through the touch screen starting with the index finger, and ending
with the pinky finger. The 1-hand gesture was designed to avoid the need to use both hands at the
expense of more noisy sensor data. A video demonstrating both gestures can be seen in [1,2]

Towards this goal, Android devices recently brought face recognition to the masses
by enabling user authentication through the front-facing camera. Even though intuitive
and fast, this type of authentication suffers from typical computer vision limitations.
The face recognition performance degrades under poor or different lighting conditions
than the ones used during training. Given that mobile devices constantly follow their
users, such fluctuations on the environmental conditions are common.

More recently, iPhone enabled users to easily and securely unlock their devices by
embedding a fingerprint sensor in the home button. Even though this approach ad-
dresses both the usability and security requirements of the authentication process, it
is fundamentally limited to devices with large physical buttons on the front, such as the
home button on iPhone, where such a sensor can be fitted. However, as phone manufac-
turers push for devices with large edge-to-edge displays, physical buttons are quickly
replaced by capacitive buttons that can be easily embedded into the touch screen, elim-
inating the real-estate required by a fingerprint sensor. Embedding fingerprint sensors
into touch screens behind gorilla glass is challenging, and has not been demonstrated.

In this paper, we study the feasibility of enabling user authentication based solely
on generic sensor data. The main idea behind our approach is that different users per-
form the same gesture differently depending on the way they hold the phone, and on
their hand’s geometry, size, and flexibility. These subtle differences can be picked up
by the device’s embedded sensors (i.e., touch, accelerometer, and gyro), enabling user
authentication based on sensor fingerprints. With this in mind, we introduce two new
unlock gestures, shown in Figure 1, that have been designed to maximize the unique
user information we can extract through the device’s embedded sensors.

While the user performs the gesture, we leverage the touch screen sensor to extract
rich information about the geometry and the size of the user’s hand (size, pressure,
timing and distance of finger taps). We also leverage the embedded accelerometer and
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Fig. 2. Raw data from the touch, accelerometer, and gyro sensors. Dots and asterisks on the sen-
sor plots correspond to the moments of pressing and releasing.Touch screen data enables the
extraction of: distances between every pair of fingertips, angles defined by any combination of
3 fingertips, and the exact timing of each fingertip. Acceleration and gyro data capture the dis-
placement of the device in user’s hand during the gesture.

gyro sensors to record the phone’s displacement and rotation during the gesture. To
avoid the impact of gravity, we use linear acceleration provided by Android API.

When combined, the information from touch, accelerometer, and gyro sensors pro-
vides a detailed view into how the individual user performs the gesture, and, as we
show in this work, it can be used as a sensor fingerprint to authenticate the user. At-
tackers willing to bypass this authentication mechanism, face a much harder task as
they have to simultaneously reproduce the timing, placement, size, and pressure of each
finger tap, as well as the accelerometer and gyro sensor signatures. Even though faking
each of this information individually might be easy, simultaneously reproducing all this
information is quite challenging even when the attacker has the opportunity to closely
observe the actual user performing the unlock gesture.

In summary, this work makes three contributions. First, we propose two new unlock
gestures that were designed to enable a device’s sensors to extract as much information
as possible about the user’s hand biokinetics. Second, we collect 3000 sensor finger-
prints across 50 users, and show that different users indeed perform the same gestures
differently, and in a way that embedded sensor’s can accurately capture and differen-
tiate. In particular, we demonstrate false accept and false reject rates lower than 2.5%,
when only a small number of training gestures per user is used. Third, we simulate real-
istic attack scenarios, by showing videos of real users authenticating on their devices to
attackers, and then asking the attackers to reproduce the unlock gestures. Experimental
results from 2000 attacks from 20 different attackers show that the proposed approach
can achieve success attack rates that are lower than 3%.

2 Motivation and Challenges

To better illustrate how the biokinetics of the user’s hand are captured by the proposed
gestures shown in Figure 1, Figure 2 shows the raw data recorded by the touch, ac-
celerometer, and gyro sensors when a user performs each of the gestures.

In both cases, four finger taps are recorded through the touch screen in the form
of pixel coordinates. Since each of the recorded touch points directly (2-hand gesture)
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or indirectly (1-hand gesture) corresponds to a fingertip, the touch screen captures the
geometry of the user’s hand. In particular, the distance between every pair of fingertips,
and the angles defined by any combination of 3 fingertips, can be used to characterize
the size and geometry of the user’s hand. At the same time, the timestamps of the finger
taps highlight the speed at which the user is able to flex his fingers to perform the
required gesture. The duration of each finger tap, as well as the timing between pairs of
finger taps varies across users depending on the size and flexibility of the user’s hand.

The touch screen on most smartphones is also able to record the pressure and size of
each finger tap. Both of these values depend on the size and weight of the user’s hand,
on how much pressure the user applies on the display, as well as on the angle at which
the user holds the device while performing the gesture.

The accelerometer and gyro sensors complement the touch sensor by indirectly cap-
turing additional information about user’s hand biokinetics. Every time a user performs
one of the unlock gestures, the device is slightly displaced and rotated. As shown in Fig-
ure 2, the displacement and rotation of the device is clearly reflected in the accelerom-
eter and gyro sensor data.

When combined, the information from touch, accelerometer, and gyro sensors forms
a sensor fingerprint that captures the geometry and biokinetics of the user’s hand.

2.1 Challenges and Contributions

The use of sensor data for user authentication poses several challenges. First, the
recorded sensor data can vary across different gesture instances depending on how the
actual user performs the gesture or holds the device. Even worse, this variability can
be user-specific. For instance, some users can be very accurate in reproducing the ex-
act timing or distance between the finger taps, but fail to accurately reproduce other
parts of the sensor data, such as the pressure or angle signatures, and vice versa. An
authentication mechanism should be automatically tailored to the capabilities of each
user.

To enable direct comparison of the sensor fingerprints across users and gesture in-
stances, we introduce personalized dissimilarity metrics for quantifying the difference
of any pair of sensor fingerprints in both the touch and sensor domain. The person-
alized dissimilarity metrics are designed to emphasize more on those features of the
sensor data that exhibit the least variability across gesture instances, and thus are the
most descriptive of user’s gesture input behavior.

Second, mobile devices support high sensor sampling rates (up to 200Hz). At this
sampling rate large amounts of data is generated creating a processing bottleneck that
can slow down the device unlock process, and render the proposed technique unusable.
To address this problem, we exploit the tradeoff between sensor downsampling and
overall accuracy, and show that by properly downsampling sensor data, we can achieve
device unlock times of 200ms without sacrificing recognition accuracy.

3 Architecture

Figure 3 provides an overview of the sensor-based authentication system. During the
user enrollment phase, the true user repeatedly performs the unlock gesture on the
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Fig. 3. Overview of the sensor-based authentication process. The processing pipeline is identical
for the 2-hand and 1-hand gestures: 4 finger taps are recorded and processed in the same way.

touch-enabled device. For each gesture, the touch sensor is used to record finger taps
and extract information about the timing, distance, angle, pressure, and size of finger
taps. At the same time, the accelerometer and gyro sensors are continuously sampled to
capture the displacement and rotation of the device during the unlock gesture. The data
extracted from the finger taps, along with the raw accelerometer, and gyro data becomes
the actual sensor fingerprint for the user. In that way, multiple sensor fingerprints across
different gesture instances are collected. This collection of fingerprints represents the
identity of the user in the sensor domain.

To determine if a random sensor fingerprint belongs to the true user or not, a way to
quantify the difference of two sensor fingerprints is required. We introduce a dissimi-
larity metric that takes into account the unique gestural behavior of the user to quantify
how close two sensor fingerprints are. Given this dissimilarity metric, we analyze the
variability of the recorded sensor fingerprints for a given user, and based on this vari-
ability we derive a threshold for admitting or rejecting an unknown sensor fingerprint.
For those users with low variability, a stricter threshold should be enforced, while for
users with high variability, a more lenient threshold should be adopted to properly bal-
ance false positives and false negatives.

At run time, when a user performs the unlock gesture, a new sensor fingerprint is
recorded. The distance of this fingerprint to the true user is computed as the average dis-
similarity between the recorded fingerprint and every single fingerprint recorded in the
user enrollment phase. If the average dissimilarity is below the personalization thresh-
old, the user is successfully authenticated, otherwise the device remains locked.

The next sections describe in detail the composition of sensor fingerprints, the dis-
similarity metric, and the personalized threshold computation.

3.1 Sensor Fingerprints

Touch, accelerometer, and gyro sensor data are combined to form the sensor fingerprint.
In the case of accelerometer and gyro sensors, the process is straightforward as the raw
sensor data is directly used as part of the sensor fingerprint.
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Table 1. Features extracted from the 4 finger taps’ touch information. All features depend on the
relative, and not absolute, locations of the finger taps. This enables users to perform the gesture
anywhere on the screen. Indices 1, 2, 3, and 4 correspond to each finger tap as shown in Figure 1.

Feature Type Features Num. of Features
Distance D1,2, D1,3, D1,4, D2,3, D2,4, D3,4 6

Angle A1,2,3, A1,2,4, A1,3,4, A2,3,4 4
Size S1, S2, S3, S4 4

Pressure P1, P2, P3, P4 4
Duration Dur1, Dur2, Dur3, Dur4 4

Start Time Difference STD1,2, STD1,3, STD1,4, STD2,3, STD2,4, STD3,4 6
End Time Difference ETD1,2, ETD1,3, ETD1,4, ETD2,3, ETD2,4, ETD3,4 6

Distance Ratio D1,2

D2,3
,
D1,2

D3,4
,
D2,3

D3,4
3

Size Ratio S1
S2

, S1
S3

, S1
S4

, S2
S3

, S2
S4

, S3
S4

6

Pressure Ratio P1
P2

, P1
P3

, P1
P4

, P2
P3

, P2
P4

, P3
P4

6

Duration Ratio Dur1
Dur2

, Dur1
Dur3

, Dur1
Dur4

, Dur2
Dur3

, Dur2
Dur4

, Dur3
Dur4

6
Total number of touch features 55

The touch sensor reports three distinct types of information for each finger tap: pixel
location, pressure, and size. As shown in Figure 2, both pressure and size are continu-
ously reported for as long as the finger touches the screen. Given that the variation of
pressure and size is quite small for each finger tap, we average all the reported pressure
and size values, and use them as two distinct features. Given the four finger taps, 4
pressure and 4 size values are generated (Table 1).

The majority of the touch-based features are extracted directly from the pixel loca-
tions of the 4 finger taps. First, the distances in the pixel location space are computed
for every pair of finger taps. In that way, 6 feature values are computed (Table 1). At
the same time, every combination of 3 finger taps uniquely defines an angle (Figure 2).
We consider all possible angles defined by a set of three finger taps, and generate an
additional 4 features (Table 1).

The touch sensor also reports a start and end timestamp for every finger tap, indicat-
ing the time the finger initially touched the screen and the time it lost contact. Using
these timestamps, we compute the total duration of each finger tap, as well as as the time
that elapses between the start and end time between every pair of fingerprints. In that
way, the timing of each finger tap, as well as the timing across finger taps is captured.
As shown in Table 1, 16 temporal features are computed.

To better capture the spatial and temporal signature of the user’s hand during the
gesture, we compute an additional set of meta-features that focus on capturing the
dynamics across the individual features described above. In particular, we compute
the ratio of every pair of distance, pressure, size, and duration features. As shown in
Table 1, 21 additional features are computed.

Overall, 55 features are computed based on the touch screen data (Table 1).
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Fig. 4. Difference scores computed across 50 users. Each user performed the 2-hand gesture 30
times, for a total of 1500 gestures. Each small block corresponds to a pair of a test user and
a true user, and contains the score between 30 test user gesture instances and the true user’s
gesture instances. Ideally, all the scores across the diagonal should be much lower (darker color)
compared to the rest, indicating that gesture instances from the same user differ significantly less
than gesture instances across users. True users are on the x-axis, and test users are on the y-axis.

3.2 Comparing Sensor Fingerprints

When comparing sensor fingerprints across gestures, different techniques are used to
quantify the difference of the touch features and that of the sensor patterns.

Touch Features. Let F 1 and F 2 be the set of the 55 touch features recorded across
two gesture instances. We quantify the difference Dtouch between these feature sets as
the weighted average difference across all features:

Dtouch =

55∑
i=1

WiDF 1(i),F 2(i) (1)

where Wi is the weight for feature i, and DF 1(i),F 2(i) is the difference between the
values recorded for feature i at the two gesture instances.

The distance between feature values F 1(i) and F 2(i) is defined by their normalized
numerical difference:

DF 1(i),F 2(i) = min{ |F
1(i)− F 2(i)|
|F 1(i)| , 2} (2)

When the two feature values are identical, the difference score becomes 0. In gen-
eral, the higher the difference of the feature values across the gesture instances, the
higher the distance for that feature will be. However, to prevent a single feature from
biasing the result of Equation 1, we limit the maximum value of the distance to 2. This
can be particularly useful when most feature values across two gesture instances match
closely, but one of them is significantly off (i.e., outlier or faulty measurement). Even
though the two gesture instances are almost identical, when an upper bound is not used,
this feature can significantly bias the distance score computed in Equation 1.

The weight Wi of the feature i represents the importance of the feature for a given
user. In general when users repeat gestures, they can accurately repeat feature values
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with varying degrees of success. The role of the weight is to emphasize on those features
that a specific user can accurately reproduce across gesture instances. Given a set of
enrolled gestures from a user, the weight for feature i is defined as:

Wi = exp{−
σF (i)

μF (i)
} (3)

where σFi and μFi is the variance and mean of the values for feature i across all the
enrolled gestures from the true user. When the deviationσFi for feature i is 0, the weight
takes the maximum value of 1, indicating that this feature is accurately repeatable across
gesture instances. Otherwise, a positive weight less than 1 is assigned to the feature that
is determined by the ratio of σFi and μFi .

Figure 4(a) shows the distance scores computed by Equation 1 between every pair
of 2-hand gestures recorded from 50 different subjects. Note that the scores recorded
along the diagonal are much lower than the rest. This means that gestures from the same
user differ less than gestures across users, indicating that touch features have enough
discriminating power to differentiate users.

Sensor Patterns. Each sensor fingerprint is comprised of 6 time series signals, each
representing the acceleration and rotation of the device across the x, y, and z dimen-
sions (Saccelx , Saccely , Saccelz , Sgyrox , Sgyroy , Sgyroz ). Even though a straightforward
approach to comparing these signals across gestures would be to simply compute the
distance between them, such a method fails due to the noise in the sensor data. For
instance, the total time to perform a gesture and the exact timing between finger taps
inherently varies across gesture instances even for the same user. These variations can
artificially increase the distance between the recorded traces.

Instead, we quantify the difference of these signals across gestures by combining
two well known techniques for comparing time series data: dynamic time warping
and cross-correlation. Instead of comparing each corresponding sample between the
recorded signals, the two signals are slightly shifted to enable the best possible match.
This allows us to take into account variations across gesture instances.

Before comparing two signals, each signal is normalized to zero mean and one en-
ergy to avoid favoring low energy over high energy signal pairs. Then, each signal is
further normalized by its length to avoid favoring short signals over long signals. In
particular, each time-series data S(i) in the sensor fingerprint is normalized as follows:

S(i) =
S(i)− μS∑L

i=1(S(i)− μS)2L
(4)

where L is the length of the signal, and μS is the mean value of all signal samples.

Dynamic Time Warping
Let S1

accelx
and S2

accelx
be the normalized accelerometer signals over the x axis that

were recorded across two different gesture instances. Since they are recorded at dif-
ferent times, they might have different lengths, say L1

accelx
and L2

accelx
. To compare

these two signals, we first compute the direct distance between every pair of samples
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in S1
accelx

and S2
accelx

. In that way, a distance matrix Daccelx with L1
accelx

rows and
L2
accelx

columns is computed, where each element takes the following values:

Dij
accelx

= |S1
accelx(i)− S2

accelx(j)|, 1 ≤ i ≤ L1
accelx , 1 ≤ j ≤ L2

accelx (5)

In a similar way, distance matricesDaccely and Daccelz are computed and then added
together to form a single distance matrix Daccel.

Note that even though the range of acceleration values across different axis might
differ, this addition is meaningful given the normalization of all sensor signals according
to Equation 4. The exact same process is applied to the gyro data to generate a single
distance matrix Dgyro that encodes the difference in the gyro sensor data across the x,
y, and z dimensions. At the end, accelerometer and gyro distance matrices are added to
form a single distance matrix D = Daccel +Dgyro:

Note that the number of samples in the accelerometer and gyro streams might be
different depending on the sampling rates the hardware supports for these sensors. As
a result, matrices Daccel and Dgyro might have different dimensions. In this case, we
up-sample the lower frequency signal to ensure that both Daccel and Dgyro have the
same dimensions and can be properly added.

Simply adding up the diagonal elements in matrix D, corresponds to the direct dis-
tance between the sensor fingerprints across the two gestures. In order to address the
variability in the way users perform the gesture (slightly different timing etc.), we define
a search space across the diagonal defined by CDTW :

Dij = ∞ (|i− j| ≥ CDTW ) (6)

where CDTW is the Dynamic Time Warping constraint.By setting distances to infinity,
we limit the search space along the diagonal, therefore limiting how much each signal
is shifted. The distance between the two signals is now defined as the shortest warping
path between the two diagonal points in matrix D:

DDTW = argmin
p

∑
(i,j)∈p

Dij (7)

where p is a warping path between the two diagonal points in the matrix.
When CDTW is equal to 1, the direct distance is calculated as the sum of all the

diagonal elements in matrix D. As the value of CDTW increases, more shifting of the
two signals is allowed. In Section 4, we study the effect of the CDTW value.

Cross-Correlation
Similarly to Dynamic Time Warping, we combine the accelerometer and gyro data
across the x, y, and z dimensions to compute a single cross-correlation value as:

Corr = argmax
n∈[−CCorr,CCorr ]

P∑
k=1

min{L1k−n,L2k}∑
m=max{−n+1,1}

S1k(m+ n)S2k(m) (8)

where CCorr is a constraint on the permitted shift amount of the signals.
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Fig. 5. The computed threshold values for 50 users (2-hand gesture). Values can differ by an order
of magnitude indicating the need for a personalized threshold.

The scores produced by the Dynamic Time Warping and Cross-correlation tech-
niques are combined together to quantify the overall distance between gestures in the
sensor pattern domain:

Dsensor = DDTW ∗ (1− Corr) (9)

Figure 4(b) shows the score computed by Equation 9 between every pair of gestures
recorded from 50 different subjects. Sensor pattern information appears to be stable
across different gesture instances from a given user. All scores across the diagonal (ges-
tures corresponding to the same users) have consistently low distance scores. When
compared to Figure 4(a), sensor pattern information appears to have more discrimina-
tive power with respect to the touch features.

Combining Touch Features and Sensor Patterns. We combine touch features and
sensor patterns by multiplying the corresponding difference scores:

Dcombined = Dtouch ∗Dsensor (10)

Figure 4(c) shows the score computed by Equation 10 between every pair of gestures
recorded from 50 different subjects. When compared to Figure 4(a), and Figure 4(b), it
is clear that the combination of sensor and touch data helps to better distinguish users.
The distance score matrix contains low values (black lines in Figure 4(c)) primarily for
gesture instances that belong to the same user.

3.3 Personalized Threshold

Equation 10 quantifies the difference between any pair of gesture instances, but it is not
enough to make a decision whether or not a gesture belongs to the same user. Some
users can very accurately reproduce the touch and sensor fingerprints across gesture
instances, while others might exhibit higher variability. As a result, a low or high score
from Equation 10 can be interpreted differently across users.

We deal with this variability by defining a personalized threshold PTh for deciding
when the difference between gestures is low enough to assume they belong to the same
user. Given N enrolled gestures from a user, we define PTh for this user as:

PTh = μDij
combined

+ 3σDij
combined

, 1 ≤ i, j ≤ N, i �= j (11)
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where the first term represents the median distance (Equation 10) of all pairs of gestures
that belong to the user, and the second term represents the standard deviation of these
distances. These two values quantify the variability in the sensor fingerprints across
gesture instances for a user. The threshold value for users that accurately reproduce
sensor fingerprints across gesture instances will have a low PTh value, and vice versa.

Note that the personalized threshold value PTh (Equation 11) is computed based on
positive only data from the true user. This is highly desirable given the lack of negative
data on each user’s device. As we show in Section 4.1, even a small number of gestures
(≈10) from the true user is sufficient to generate a reliable PTh value.

Figure 5 shows the PTh values for 50 different users. The range of threshold values
is quite large. Even though there are several users that can accurately reproduce their
gestures across multiple instances and hence have low threshold values (i.e., value 5 for
User 8), there are also many users for which the threshold values are an order of magni-
tude higher (i.e., value 70 for User 16). This indicates the need for properly computing
different thresholds across users.

4 Evaluation

To evaluate the proposed approach we conducted two separate user studies. First, we
asked 50 users (12 females and 38 males) to perform each of the proposed unlock ges-
tures 30 times. All users were volunteers and were not compensated for this study. We
first explained and demonstrated the proposed gestures to the users, and then allowed
them to perform the gesture several times until they became comfortable with it. Each
user then repeated each of the two gestures 30 times.

During data collection, several measures were taken to avoid biasing the dataset and
artificially increasing the accuracy results. First, all users performed the gesture while
standing up. In that way repeatability across gesture instances was not biased by the
users’ having their arms supported by a desk or a chair. Second, each user had to “reset”
the position of his arms in between gesture instances, and pause for several seconds. In
that way, data collection was able to capture the variations of how the user holds the
device and taps the finger across gesture instances. In this experiment, a total of 3000
gesture instances were collected across all users and gestures. We leverage this dataset
to study how different the sensor fingerprints across users are, and what parts of the
sensor fingerprints have the most discriminative power.

The second user study focused on simulating an actual attack scenario. A separate set
of 20 users (5 females, 15 males) posed as attackers aiming to falsely authenticate as the
true user. For each attacker we randomly chose 5 users from the initial 50-subject user
study, and gave the opportunity to the attacker to attack each of the 5 users 10 times.
Overall, 2000 attack gestures were collected, 1000 for each of the proposed gestures.
Right before the attackers attempted to falsely authenticate, they were shown a closeup
video of the true user they were attacking. In this video, the attackers could observe, for
as much time as they wanted, the true user repeatedly authenticating on the device. In
addition, we allowed the attackers to spend as much time as they wanted to perfectly
recreate the exact holding position of the device from the true user. Note that in practice,
an attacker will rarely, if ever, be able to closely observe all this information, and then
try to immediately attack the authentication mechanism.
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Fig. 6. User classification accuracy for the 50-subject user study when the 2-hand gesture is used.
Each block corresponds to a pair of a true user and a test user, containing the classification result
for 30 gesture instances from the test user. The black color indicates that the gesture instance is
classified as the true user, and the white color the opposite. Ideally only the diagonal boxes should
be black. The true users are on the x-axis, and the test users are on the y-axis.

In all cases, we use False Accept Rate (FAR) and False Reject Rate (FRR) to quan-
tify the effectiveness of the proposed approach. The former represents the percentage
of gesture instances that belong to users other than the true user, but are erroneously
classified as belonging to the true user. The latter represents the percentage of gesture
instances that belong to the true user, but are erroneously classified as belonging to a
different user.

During both user studies, a single mobile device was used by all users. Specifically,
a Google Nexus 4 device running Android 4.3 and a custom data collection application
we built, was used to collect the touch, accelerometer and gyro data.

4.1 Differentiating Users

In this section, we leverage the data collected from the 50-subject user study to under-
stand the discriminative power of the proposed unlock gestures in differentiating users.
Using the 30 gesture instances from each user, we calculated the personalized thresh-
old for each user. We then used this threshold to classify every single gesture instance
recorded across all users as belonging or not to the user. The classification results for
the 2-hand gesture are shown in Figure 6.

Ideally, only the diagonal of the classification matrices in Figure 6 should be black,
indicating that only the true gesture instances are classified as belonging to the user.
When touch data is only used, the classification matrix appears to be noisy. Even though
the true user’s gesture instances are always classified correctly, there are specific users
that are hard to differentiate solely based on the touch fingerprints. When sensor pat-
terns are only used for classification, the classification matrix is noticeably cleaner (only
a few users are now hard to differentiate), indicating that the discriminative power of
the sensor patterns is superior to that of touch sensor data. However, the combination of
touch, accelerometer, and gyro data provides almost perfect classification accuracy, in-
dicating the complementary nature of the different sensors in the classification process.

Table 2 shows the FAR and FRR values achieved by the 2-hand gesture. Overall,
approximately 2.5% of the gesture instances that belong to the true user are falsely
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Table 2. False accept and reject rates for the 2-hand and 1-hand gestures when different sensor
data is used. We also report the FRR of the 4-digit pin as measured in [7].

Mode
2-hand Gesture 1-hand Gesture Pin
FRR FAR FRR FAR FRR

Touch 2.40% 5.28% 1.8% 8.93% 10%
Sensor 2.48% 3.49% 2.61% 18.85 10%
Both 2.48% 0.41% 2.34% 2.40% 10%

rejected. Note that even in the case of traditional 4-digit pins, FRR values as high as 10%
have been reported [7]. As users try to quickly enter their 4-digit pin, they accidentally
mistype it 1 in 10 times [7]. As a result, the achieved FRR rate of 2.5% is on par with the
current pin-based authentication techniques. Depending on the data used in the sensor
fingerprint, FAR rates are anywhere between 0.41% and 5.28%.

In the case of the 1-hand gesture, the classification accuracy degrades when touch
or sensor data is only used. This is expected as the 1-hand gesture was designed to
allow single-hand handling of the mobile device at the expense of quality in the data
recorded. However, when touch data and sensor data is combined, the classification
accuracy increases, indicating that the 1-hand gesture can be a viable unlock gesture.

Feature Sensitivity Analysis. To understand the importance of individual features in
the user authentication process we performed an exhaustive analysis by recomputing
the classification matrices shown in Figure 6 for every possible combination of fea-
tures. In addition to the 57 features available (55 touch features and 2 sensor patterns),
we also experimented with two important parameters: the feature weight introduced in
Equation 3, and the permitted shift amount of the raw sensor patterns as described in
Equations 6, and 8. Specifically, we examined permitted shift amounts of the raw sen-
sor patterns ranging from 0% all the way to 100% at increments of 10%. In the case
of feature weights, we exploited the case where feature weights are computed using
Equation 3, and when no weights are used (all the weights for all features are set to 1).

Table 3 shows the feature combinations that achieve the best results for both gestures.
Consistently, across all combinations and gestures, the feature sets that achieve the best
FAR and FRR results leverage feature weights. This verifies our initial intuition that
individual users can accurately reproduce different parts of the sensor fingerprint across
gesture instances. Feature weights are able to account for the user’s variability across
gesture instances, and improve the overall accuracy.

In the case of the 2-hand gesture, both accelerometer and gyro sensor patterns appear
to be important for ensuring successful authentication. However, for the 1-hand gesture,
the value of acceleration data seems to be less important.

For both gestures, though, sensor patterns need to be properly shifted to enable ac-
curate comparison across gesture instances. According to Table 3, accelerometer and
gyro patterns provide the best results when shifted anywhere between 30% and 50%
depending on the gesture used.

Size of Training Data. So far, all 30 gesture instances for each user were used in the
authentication process. Figure 7 shows the impact of the number of gesture instances
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Table 3. Feature combinations and parameter values achieving the best FAR and FRR values

Mode
2-hand Gesture 1-hand Gesture

Features FRR FAR Features FRR FAR

Touch
Distance, Angle, Size, Pressure,
Duration,Distance/Pressure Ratio,
Feature Weights: Yes

2.40% 5.28%
Distance, Angle, Size,
Pressure, Duration
Feature Weights: Yes

1.8% 8.93%

Sensor
gyroxyz, accelxyz
Shift: 40%

2.48% 3.49%
gyroxyz
Shift: 30%

2.61% 18.85%

Both
Distance, Angle, Size, Pressure
Feature Weights: Yes
gyroxyz, accelxyz, Shift: 40%

2.48% 0.41%
Distance, Angle, Size, Pressure
Feature Weights: Yes
gyroxyz, Shift: 50%

2.34% 2.40%
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Fig. 7. Accuracy as a function of the number of available gestures per user in the case of the
2-hand gesture. Trends are similar for the 1-hand gesture.

used on both the false accept, and false reject rates achieved. Intuitively, FAR and FRR
are reduced as the number of gesture instances increases, but they quickly saturate,
eliminating the need for 30 gestures. Anywhere between 10 and 15 gesture instances
are enough to achieve FAR and FRR values that are within 0.5% of the values achieved
when all 30 gesture instances are used.

4.2 Resilience to Attacks

In this section, we leverage the dataset collected by 20 subjects posing as attackers to
study the resilience of the proposed authentication mechanism to an actual attack. To
study the resilience of the sensor fingerprints to attacks, we compared all of attacker’s
sensor fingerprints to the ones of the true users and classified them as belonging to the
true user or not in the same way as before. During this process, we leveraged the feature
set that achieved the best FAR and FRR values in the previous section.

Table 4 shows the FAR and FRR values for the attacker sensor fingerprints. When
compared to the results in Table 3, FAR values are significantly higher when touch or
sensor patterns are only used as the sensor fingerprint. This is expected as the attacker
was able to directly observe the true user authenticating on the mobile device, and
attempted to closely resemble the process. However, when touch and sensor patterns are
combined into a single sensor fingerprint, the false accept and reject rates only slightly
increase and remain well below 3%. This is surprisingly low given that the attacker
was able to closely monitor the true user authentication process right before the attack.
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Table 4. FAR and FRR values for the attack scenarios and for both 2-hand and 1-hand gestures

Mode
2-hand Gesture 1-hand Gesture

FAR (FRR+FAR)/2 FAR (FRR+FAR)/2
Touch 12.99% 7.69% 15.9% 8.85%
Sensor 11.2% 6.87% 20.8% 11.71%
Both 2.86% 2.67% 5.9% 4.12%

In contrast, an attacker that was able to closely observe the true user entering a 4-digit
pin, would be able to get 100% false accept rates.

In the case of the single hand gesture, the trends are similar, but now the FAR value
increases to reach 6% when both touch and sensor patterns are combined. However,
even in this case, the FAR and FRR values remain well below 6% indicating that the
1-hand gesture can still provide reasonable protection from attackers.

4.3 Computation Overhead

On a Google Nexus 4 device running Android 4.3, processing the touch data takes only
6.7ms. However, processing the accelerometer and gyro data on the same device takes
3.1 seconds. Such a delay is prohibitive for any realistic use of the proposed approach.

This 3 second delay is mainly caused by two factors. First, every candidate sensor
fingerprint is currently compared to all 30 enrolled gestures from the true user. Sec-
ond, for each comparison between a candidate sensor fingerprint and an enrolled sen-
sor fingerprint, the cross-correlation and dynamic time wrap is computed for both the
accelerometer and gyro data. This operation is time consuming when the sensors are
sampled at very high data rates such as 200Hz.

Figure 8(a) and Figure 8(b) show the processing time as a function of the number of
enrolled gestures per user, and the sensor down-sampling rate. Simply down-sampling
accelerometer and gyro data by a factor of 2, reduces the processing time to approx-
imately half a second. In addition, when only 15 enrolled gestures are used per user,
the overall processing time becomes approximately 200ms. This delay is practically
unnoticeable by the user, resulting into an instant authentication user experience. The
small processing time also implies a low energy overhead, preventing our method from
draining the battery.

As Figure 8(c) and Figure 8(d) show, when sensor data is down-sampled by a factor
of 2, and the number of enrolled gestures is 15, the mean FAR and FRR values re-
main practically unchanged. As a result, the proposed technique can provide an instant
authentication experience without sacrificing accuracy and robustness to attacks.

5 Related Work

To address the susceptibility of current authentication techniques to shoulder surfing
attacks [14], researchers have already proposed to understand how a user performs the
gesture, and to leverage this information to strengthen the authentication process while
maintaining its simplicity [9,3,4,5,10,12,8,13].
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Fig. 8. Processing time ((a),(b)) and accuracy ((c),(d)) as a function of the number of enrolled
gestures per user, and the sensor down-sampling rate

Specifically, the work in [3] expanded the typical gesture unlock techniques em-
ployed by Android devices, to incorporate the timing of the user’s gesture. The work
in [9] expanded on this idea by incorporating additional information such as pressure,
and size of the finger taps during the gesture. In contrast, our work focuses on designing
new unlock gestures with the goal of capturing the geometry of the user hand through
the touch screen, and the embedded accelerometer and gyro sensors. Even though valu-
able, timing, size and pressure information does not provide enough discriminating
power to accurately differentiate users, resulting into 2-3 times higher false accept and
false reject values compared to the approach presented in this paper.

More recently, Shahzad et al. [12] studied various touch screen gestures to under-
stand the feasibility of combining touch screen data with accelerometer signatures to
authenticate users. Even though the same sensing modalities were used, the gestures
proposed and analyzed in [12] do not focus on, and were not designed to, capture the ge-
ometry of the user’s hand. Instead, they mainly focus on capturing the velocity at which
finger taps take place. However, capturing the geometry of the user’s hand through the
unlock gesture is a key parameter in terms of accuracy. Evident of this, is the fact that
the work in [12] achieves the same FAR and FRR values as the 2-hand gesture proposed
in this paper, only when the user performs 3 different 2-hand gestures sequentially. Ask-
ing users to perform 3 different gestures in a row increases the cognitive overhead for
the user and the time it takes to unlock the device, raising usability concerns. The work
in [13] proposed to design user-generated free-form gestures for authentication. How-
ever, it was only evaluated on tablets and the effectiveness of the method on devices
with smaller screens such as smartphones was not demonstrated.

The closest to our work is the one proposed by Sae-Bae et al. [10] where new
multi-touch gestures were proposed to capture the geometry of the user’s hand to en-
able reliable user authentication. In particular, multiple 5-finger gestures were proposed
targeting devices with large screens such as tablets. In their approach, only touch sen-
sor data were used to differentiate users. Even though 5-finger gestures can provide
even richer information about the user’s hand geometry, they can only be applied on
tablet-like devices. Not only do smaller devices, such as phones, lack the physical space
required by these gestures, but they can only support up to 4 simultaneous touch points.

User authentication techniques have also been proposed outside the context of touch
screens, accelerometer and gyro sensors. For instance, Jain et al. [6] proposed to
extract a detailed description of the user’s hand geometry by taking a picture of the
user’s hand. Even though this is a more accurate way to capture the hand geometry,
asking users to properly place their hands in front of the phone’s camera can be awk-
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ward, time-consuming, and also susceptible to environmental lighting conditions. Sato
et al. [11] proposed a capacitive fingerprinting approach where a small electric current
is injected into the user’s body through the touch screen, enabling the measurement of
user’s bio-impedance. However, bio-impedance measurements are inherently noisy due
to grounding issues, and variability in the body’s fat and water throughout the day.

6 Discussion and Limitations

Our experimental evaluation shows that carefully designed gestures can enable sensor
fingerprints to accurately differentiate users and protect against attackers. Note that the
goal of this work is not to achieve recognition rates that are similar to fingerprint sen-
sors, nor to replace them. Instead, our goal is to propose an alternative authentication
mechanism for mobile devices that is both intuitive and easy for users to perform, and at
the same time hard for attackers to bypass. Sensor fingerprints can be significantly more
secure compared to pins, picture passwords, and simple unlock gestures, but definitely
not as accurate as fingerprint sensors. However, as physical buttons on mobile devices
are eliminated in favor of edge-to-edge displays, and given the lack of technology to
properly embed fingerprint sensors into touch screen displays, the use of fingerprint
sensors becomes challenging. With this in mind, we believe that sensor fingerprints can
be a viable alternative to user authentication on mobile devices.

In practice, the use of sensor fingerprints can be rather tricky. When the user is ac-
tively moving (i.e., walking, driving, etc.), the accelerometer and gyro recordings will
capture the user’s motion rather than the displacement of the phone due to the gesture.
However, mobile devices already enable continuous sampling of sensors to recognize
higher level activities such as sitting, walking, and driving. When these activities are
detected, the acceleration and gyro data could be removed from the sensor fingerprint
(or the device could fall back to the 4-digit pin). As Table 2 shows, even when only
touch data is used, the FAR achieved is still reasonable.
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Abstract. Trickle is a polite gossip algorithm for managing communi-
cation traffic. It is of particular interest in low-power wireless networks
for reducing the amount of control traffic, as in routing protocols (RPL),
or reducing network congestion, as in multicast protocols (MPL). Trickle
is used at the network or application level, and relies on up-to-date in-
formation on the activity of neighbors. This makes it vulnerable to in-
terference from the media access control layer, which we explore in this
paper. We present several scenarios how the MAC layer in low-power
radios violates Trickle timing. As a case study, we analyze the impact
of CSMA/CA with ContikiMAC on Trickle’s performance. Additionally,
we propose a solution called Cleansing that resolves these issues.

1 Introduction

Low-power wireless networks, such as networks of ubiquitous sensors, are being
built with the aim to be available for extended periods of time, while using as
little energy as possible. This includes wireless sensor networks in forests for de-
tecting fires, in pipelines for detecting leaks, on light poles along streets to control
luminosity etc [1]. In such resource-constrained devices, wireless transmissions
are the largest source of power consumption. Therefore, networking protocols
for low-power wireless networks are designed to avoid unnecessary traffic, such
as redundant control information, or to prevent broadcast storms.

Trickle [15] has been proposed as an efficient algorithm for controlling traffic
flow. It is being used in routing protocols for reducing the amount of control
traffic [8,24], in multicast protocols for reducing redundant repetitions of data
packets [9] and in software update algorithms for managing the propagation of
updates [15]. Trickle uses two premises to achieve fast propagation and reduced
traffic: (1) suppressed transmissions when consistent information has been re-
cently propagated by neighboring nodes, and (2) dynamic transmission rates
depending on the consistency of information in the network. The concept of
consistency is left to the application layer, which allows the Trickle algorithm to
be implemented in different protocols.

The Trickle algorithm relies on accurate timing information in order to work
as designed. However, various factors can influence this timing and can cause in-
consistencies within the protocol. External disturbances can come from the radio
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medium (packet loss), network (congestion) and locally (data link layer). In this
work, we analyze how the media access control (MAC) layer of low-power radios
influences broadcast-based data dissemination using Trickle. As a case study, we
consider a MAC layer comprised unslotted Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) and radio duty cycling. We show that due
to contended media and CSMA/CA introduced back-offs, nodes can be starved
from Trickle updates. This results in large propagation delays and inefficient
messaging, making Trickle unsuitable for deadline-critical applications.

We discuss and analyze two common scenarios where there is a large discrep-
ancy between the measured and expected update delay of Trickle, caused by
the MAC layer. To resolve this, we propose a modification to the MAC layer to
support dropping of queued Trickle packets based on incoming Trickle packets,
called Cleansing. Using simulations and experiments we show that the Cleansing
MAC modification drastically improves the update delay in bottleneck topolo-
gies, and helps reduce the number of transmissions in grid-like topologies.

The paper is structured as follows. First, we cover related work on Trickle in
Section 2. Then, we introduce the Trickle algorithm and the low-power protocols
at the MAC layer in Section 3. Next, in Section 4, we describe how the MAC layer
violates Trickle timing, and analyze this unwanted behaviour in two topologies.
Section 5 introduces the Cleansing improvements to the MAC layer. Finally,
we compare simulation and experimental results of Trickle with and without
Cleansing support in Section 6 and give concluding remarks in Section 7.

2 Related Work

The Trickle algorithm has been initially designed as an efficient method to dis-
seminate software updates in low-power networks [15]. However, since it only
specifies when messages should be sent, and not how, it has been accommodated
in many other protocols [14], such as network reprogramming [16], routing [8,24]
and data dissemination [11]. Trickle was recently standardized [13] and used as
a basis for the Multicast Protocol for Low power and Lossy Networks (MPL) [9].

Various aspects of the Trickle algorithm have been studied so far. For exam-
ple, in [6,23], Trickle has been observed as unfair in terms of load share - certain
nodes transmit more often than others. Trickle in absence of a MAC layer has
previously been analyzed, e.g., [2,12,17]. Similarly, CSMA/CA for low-power net-
works has been analyzed without considering the upper layers, e.g., [4,7]. Finally,
the potential problematic interaction between Trickle-based data dissemination
and radio duty cycling has been sketched in [20], along with potential energy ef-
ficiency improvements by reducing the scope of single-hop broadcasts. However,
to the best of the authors’ knowledge, a detailed analysis on the interaction be-
tween Trickle and the MAC layer, consisting of both CSMA/CA and radio duty
cycling, their combined performance and potential problems in specific topolo-
gies, has not yet been conducted, which is what this paper aims to do. The
analysis and the results presented in this paper explain the simulation results
for MPL in [3,18], and the poor performance for small Trickle interval lengths.
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3 Trickle-Based Protocols

The Trickle algorithm is used mostly by communication protocols at the network
or the application layer. Trickle essentially controls the generation of packets
within these protocols. The lower layers are responsible for the actual transmis-
sion of the data packets sent by Trickle (Figure 1).

The data link layer of low-power radios as IEEE 802.15.4 [10], which is the
focus in this work, is built of two components - media access control (MAC)
and a radio handling protocol. The MAC protocol handles the allocation of the
shared medium among nodes and covers retransmissions in case of collisions or
packet loss. The radio handling protocol determines the efficient use of the radio
during the periods allocated by the MAC protocol.

We will now give a detailed description of the Trickle algorithm and the un-
derlying MAC layer protocols.

Fig. 1. Flow of Trickle packets in the Contiki operating system [5]

3.1 Trickle Algorithm

Trickle has two main goals. Firstly, whenever new information becomes
available in the network, itmust be propagated quickly to all nodes. Secondly,when
there is no update, communication overhead has to be kept to a minimum. The
Trickle algorithm achieves this by moderating the number of packets that nodes
generate with a “polite gossip” policy.

We now provide a precise description of Trickle as it is given in [17] (see
also [15]). The algorithm has four global parameters, which are the same at ev-
ery node in the network: a threshold value k, called the redundancy constant,
minimum (Imin) and maximum interval size (Imax), and a listen-only parameter
(η), which defines the size of a listen-only period. By default, η = 1/2. Further-
more, each node in the network has its own timer and keeps track of three local
variables: the size of the current interval (I), a counter (c) of the number of con-
sistent data packets received during the current interval, and the transmission
time (t) in the current interval.

The behavior of each node is described by the following set of rules. At the
start of a new interval a node resets its timer and counter c and sets t to a value
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in [ηI, I] at random. When a node receives a new data packet that is consistent
with the information it has, it increments c by 1. When a node’s timer reaches
time t and if c < k, it sends a data packet to its MAC layer queue. When a
node’s interval ends, it sets its interval size to min(2I, Imax) and starts a new
interval. When a node receives a data packet that is inconsistent with its own
information, then if I > Imin it sets I to Imin and starts a new interval.

Trickle only determines when nodes should transmit; the nature of the trans-
mission (broadcast/unicast), the structure of the message, and the exact def-
inition of what is a consistent transmission is given by the upper layers, i.e.
the protocols where Trickle is used. For instance, in dissemination protocols,
as multicast, transmissions are always broadcasts; a node receives a consistent
transmission when a known data packet is received from another node, and an
inconsistent transmission is received when a new, unseen data packet is received.

Fig. 2. Example of three synchronized nodes using the Trickle algorithm (k = 1, I =
Imax). In the first interval, the transmissions by nodes 1 and 2 are suppressed by the
transmission of node 3, while in the second interval, node 2 suppresses nodes 1 and 3.

In Figure 2 an example is depicted of a network consisting of three nodes
using the Trickle algorithm with k = 1 and I = Imax for all nodes. Note that
while in the example the intervals of the three nodes are synchronized, in gen-
eral, the times at which nodes start their intervals need not be synchronized.
In practice, networks will generally not be synchronized, since synchronization
requires additional communication and consequently imposes energy overhead.
Furthermore, as nodes get updated and start new intervals, they automatically
lose synchronicity.

The four Trickle parameters can be used to tweak the algorithm behavior
according to specific scenarios, giving option for trading between redundancy,
speed of propagation and risk of collisions. For instance, Imin provides a trade-
off between speed of propagation and number of packets: lower values of Imin

will make nodes transmit sooner, though with an increased risk of collisions,
and therefore, additional transmissions. To prevent such scenarios, the Trickle
RFC recommends setting Imin to a multiple of the worst-case link layer latency,
defined as the time until the first link-layer transmission of a frame, assuming
an idle channel. Typical values of the Trickle parameters for various protocols
are given in Table 1. In the remainder of this paper, we will focus on broadcast-
based data dissemination as the Trickle application protocol, similar to the MPL
protocol, with the recommended value for the redundancy constant (k = 1).
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Table 1. Default values of Trickle parameters in different protocols

Protocol k Imin Imax

MPL (control traffic) [9] 1 10 times worst-case link-layer latency 300 s
MPL (data traffic) 1 10 times expected link-layer latency Imin

RPL (DIO) [24] 10 8 ms 8.280 s
CTP [8] ∞(0) 125 ms 500 s

3.2 CSMA/CA Protocol

The actual transmission of packets generated by Trickle is left to the MAC
layer. Protocols at this layer handle the allocation of the shared media among
nodes and cover retransmissions in case of collisions or packet loss. The IEEE
802.15.4 MAC defines two flavors of the CSMA/CA protocol, depending on the
operational mode in use: slotted CSMA/CA, used in beacon-enabled modes,
where beacons are sent to synchronize nodes to a super-frame structure; and
unslotted CSMA/CA, used in non beacon-enabled modes, where no beacons are
sent out and there is no synchronization between nodes. In this paper, we focus
on unslotted CSMA/CA, but the same concepts apply to slotted CSMA/CA.

In unslotted CSMA/CA, the basic time unit is the back-off period BP , which
is related to the transmission time of a frame. Every node maintains two vari-
ables for each frame it wants to send: a back-off exponent BE , and a counter
for the number of back-offs for the current transmission NB . These variables are
controlled by three parameters: the minimum back-off exponentBEmin, the max-
imum back-off exponent BEmax and the maximum number of back-offs NBmax.

Initially, NB = 0 and BE = BEmin. Before each transmission, each node
first waits for a random number of BP s ranging from 0 to 2BE − 1. After
the initial back-off, the node performs a clear-channel assessment (CCA) to
determine whether the channel is free. If the channel is free, the node pro-
ceeds with the transmission. Otherwise, it increases NB by one, and sets BE to
min(BE + 1,BEmax). If NB ≤ NBmax, the entire procedure is repeated. After
NBmax + 1 failed attempts, the frame is dropped from the MAC queue.

3.3 Radio Duty Cycling

The MAC layer of low-power radios often includes a second component next to
the CSMA/CA protocol - the radio handling protocol. Radio transceivers are
among the biggest sources of energy consumption in low-power wireless devices.
Therefore, low-power wireless devices must trade-off between keeping the radio
transceiver off, to save energy, and periodically wake up to be able to receive
data from their neighbors. During the years, many radio duty cycling (RDC)
protocols have been proposed. They can be categorized into synchronous, where
nodes are synchronized with their neighbouring nodes, and asynchronous, where
no pre-synchronization is required. Asynchronous RDCs can be further cate-
gorized into sender initiated and receiver initiated protocols. Sender initiated
RDC protocols give the transmission incentive to the senders: senders wake up
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receivers to receive a transmission. Receiver initiated protocols give the incentive
to the receivers: receivers inform senders when they are prepared to receive a
transmission. Finally, hybrid approaches have been developed, which combine
features from any of the given categories.

Fig. 3. In ContikiMAC, broadcast transmissions are sent with repeated frames for the
full wake-up interval. This illustration is reproduced based on [4].

In this work, we consider ContikiMAC [4], a sender initiated RDC. It is similar
to the Coordinated Sampled Listening protocol (CSL), introduced in the IEEE
802.15.4e standard [10]. A brief description of ContikiMAC follows.

By default, every node has its radio turned off. Periodically, at regular intervals
of w time units, each node turns its radio on to check for incoming traffic.
If a transmission is detected, the radio is kept on until the frame is received.
Transmissions are non-periodic, originating from the upper layer(s). When they
arrive, a CCA is done to see if the medium is free. If it is free, the node starts
transmitting immediately. Broadcast transmissions should be received by all
nodes, irrespective of their wake up intervals. Therefore, a broadcast transmission
will always be repeated for w time units (Figure 3), so that each node will at
least once turn on its radio during the transmission. Hence, assuming an idle
channel, the worst-case latency as defined in the Trickle RFC, is w. However,
this makes broadcasts expensive both in terms of delay and consumed energy.

The main configuration parameter for ContikiMAC is the radio wake-up fre-
quency 1/w, i.e. how often each node samples the radio. This parameter also
dictates the maximum duration for each individual transmission w. Typically,
the wake-up frequencies is set to 4Hz, 8Hz or 16Hz, giving wake up intervals
of 250ms, 125ms and 62.5ms, respectively. Reducing the wake-up frequency
reduces the energy usage in the network, at the expense of a higher delay.

4 Interference Scenario

A common feature of both sender initiated and receiver initiated RDC protocols
is that transmissions are not instantaneous, and there is a variable delay between
the intent to start a transmission and the actual receipt. In sender initiated RDC
protocols as ContikiMAC, the transmission starts almost immediately after it is
received from the upper layers, but it is not completed until the receiver performs
its periodic wake up to sample the channel. Similarly, in receiver initiated RDC
protocols, the transmission is delayed until the sender receives a request from
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the receiver, which is again periodically scheduled. Finally, in case of collisions,
in both cases, CSMA/CA will re-schedule transmissions after a certain back-off
period. The delayed completion of a transmission creates a window where upper
layer protocols may think that a transmission has been completed, while in fact,
it is not. This causes unintended and inefficient messaging, as the transmission
delay and retransmissions may move from one to another Trickle interval.

For example, consider a network consisting of two nodes (Figure 4). They use
unslotted CSMA/CA in combination with radio duty cycling at the MAC layer.
Packet transmission is regulated by the Trickle algorithm (k = 1, η = 1/2). Both
nodes start a Trickle process at the same time, with consistent information for
dissemination. They choose transmission times t1 and t2, respectively, such that
t1 < t2. Both counters are initially set to zero (c1 = c2 = 0). At time t1, since
c1 < k, node 1 sends a packet to its MAC layer. Then, it does a successful CCA
and starts transmitting the packet. Node 2 has its next wake-up scheduled at time
tr > t2. Consequently, at time t2 node 2 has not yet received node 1’s broadcast
and will decide to transmit itself, sending a Trickle packet to its MAC layer.
Since at this time the channel is busy, CSMA/CA will delay this transmission
until t2 + bo, where bo is the back-off time. At time tr, node 2 receives the
transmission from node 1, setting c2 = 1, making the queued packet in the MAC
layer obsolete. However, since there is no link between the MAC queue and the
application layer, the packet will be sent at t2 + bo. This effect can be cascaded
if multiple nodes exhibit the same behavior. Moreover, it is possible that node
2’s broadcast is delayed into its next Trickle interval (Figure 4), causing node 1
to suppress its next broadcast, further disrupting the Trickle process.

Fig. 4. MAC layer interference on Trickle timing. Nodes 1 and 2 get updated at the
same time, and they select transmission times at t1 and t2, respectively. If the reception
for node 2 (tr) is scheduled to be after t2, node 2 will queue a Trickle packet at t2,
even though there is a packet in the air from node 1. Due to CSMA/CA, this packet
will be transmitted after the back-off, at time t2 + bo.

4.1 Case Study: CSMA/CA and ContikiMAC

We will now use the Contiki operating system for a case study on the impact of
MAC interference on Trickle timing. Contiki 2.7 utilizes the ContikiMAC RDC
protocol with a radio wake-up interval length of w, together with a slightly
modified version of the unslotted CSMA/CA protocol. Firstly, the default pa-
rameters BEmin = 0, BEmax = 3 and NBmax = 3, force CSMA/CA to skip the
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first back-off. Secondly, the back-off period is equal to the length of the wake-up
interval of ContikiMAC (BP = w). As w is the worst-case transmission time for
ContikiMAC, this ensures that any retransmissions are attempted after the cur-
rent transmission has finished. Thirdly, the CCA check is delegated to the RDC
layer. Finally, the back-off exponent BE is increased only when no acknowledg-
ment is received for sent unicast frames. Since Trickle-based data dissemination
uses only broadcast packets, for which no acknowledgment is needed, a back-off
can only occur due to a failed CCA or a detected collision. In both cases, BE
remains one, causing the back-off for broadcasts to remain BP = w.

Scenario 1: Single-Hop Network. We now analyze the likelihood that the
scenario discussed at the beginning of this section occurs under ContikiMAC.
Denote by Pbo

2 the probability that a CSMA back-off takes place in a network
of two nodes. For simplicity, we assume the nodes to be synchronized, which
would be the case if they got updated simultaneously. We assume that packets
are received at radio wake-up and Imin = m · w, where m ≥ 2 is a constant and
w is the radio wake-up interval. We require m ≥ 2, since otherwise a node will
never be able to finish a transmission within the same Trickle interval as it was
scheduled. Furthermore, assume that the Trickle process has k = 1 and η = 1/2.
A CSMA back-off will take place if either node 1 or 2 pick their transmission
time during a broadcast of the other node and before their radio wake-up and
reception. Hence, we can write

Pbo
2 := 2P[t1 ≤ t2 ≤ tr ≤ t1+w] = 2

Imin∫
Imin/2

P [t2 ∈ [t1, tr] | t1 = t] dP[t1 ≤ t]. (1)

Since both t1 and t2 are chosen uniformly in [Imin/2, Imin] and a broadcast
starting at time t is received by the non-transmitting node uniformly at tr ∈
[t, t+ w], some calculus gives

Pbo
2 =

2

m
− 4

3m2
. (2)

Note that this probability only depends on m, the ratio between the length
of an interval Imin and the length of a broadcast w. For the MPL standard
Imin = 10w, this implies Pbo

2 = 0.1925, which is relatively large.
Extending these calculations and noting that nodes choose their timers inde-

pendently, the probability that b CSMA back-offs occur and b+1 transmissions
are scheduled during an interval in a single-hop network consisting of n nodes is
given by

Pbo
n,b := n

(
n− 1

b

)
P [t2 ∈ [t1, tr]]

b P [tr ≤ t2]
n−b−1 . (3)

Like (1), this expression can be evaluated analytically and allows us to calculate
the probability Pbo

n that at least one CSMA back-off (b > 0) takes place during
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a single interval in a single-hop network consisting of n nodes:

Pbo
n := 1− Pbo

n,0 = 1− 1

mn

(
(m− 1)n +

1

2n− 1

)
. (4)

Moreover, calculating the expected number of redundant transmissions per in-
terval due to poor interaction between Trickle and the CSMA protocol gives:

E[N r
n] :=

n−1∑
i=0

iPbo
n,i =

n

m
− 1

n+ 1

(
2

m

)n

. (5)

Hence, the expected number of obsolete broadcasts per interval due to timing
issues grows linearly with the size of the single-hop broadcast range. This is
intuitive, since every node has the same probability of scheduling a back-off. If
Trickle worked as designed, there would be only one packet per interval 1.

Scenario 2: A Bottleneck Network. Consider now a network of four nodes,
with connectivity as in Figure 5. This type of connectivity, where part of the
network is reachable only through a single bridge node, is common, for example,
in street lighting networks. Again all nodes use CSMA/CA in combination with
ContikiMAC and run a Trickle dissemination process. The Trickle process has
k = 1, η = 1/2 and Imin = m · w, where m ≥ 2 is a given constant. Initially, all
nodes have consistent information and I = Imax.

Fig. 5. A network consisting of 4 nodes, where node 3 is a bottleneck node

Suppose at time 0 nodes 1 and 2 receive an update simultaneously from a
close-by source, set I = Imin and start a new interval (Figure 6). Node 1 is the
first node to schedule a broadcast, which it starts to transmit at time t1. As
we have seen in the previous scenario, node 2 will schedule a broadcast before
receiving node 1’s broadcast with probability Pbo

2 . If this happens, the MAC
protocol will cause node 2 to delay its transmission until time t2 + w. Before
this time, however, node 3 will have been updated by node 1’s transmission, and
will start a new interval of length Imin and schedule a transmission at time t3.
Now node 2’s transmission follows, suppressing node 3’s transmission at time
t3 > t2 + w and consequently delaying the time that node 4 is updated. In its

1 For a complete calculation of Equations (1-5), see Appendix A of [22].
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Fig. 6. Suppression of Trickle updates due to MAC layer interference. Nodes 1 and 2
get updated at the same time, and select transmission times at t1 and t2, respectively,
with the periodic channel check for node 2 (tr) scheduled to be after t2. Node 2 queues
a Trickle packet at t2. Due to busy media, CSMA/CA re-schedules the packet for
t2 + w. In the mean time, node 3 gets updated and starts a new Trickle interval. The
re-transmission at t2+w causes node 3 to suppress its transmission in the first interval
(t3). As node 1 and 2 started the second interval earlier than node 3, there is a high
probability that they will suppress any future transmissions from node 3.
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Fig. 7. Analytical and simulation results of the probability that node 4 is updated
after the second Trickle interval, for different values of m (Imin = m · w)

next interval, node 3 will broadcast only if it starts transmitting before it receives
a broadcast by nodes 1 and 2. However, due to the synchronization caused by
the Trickle protocol, this has a small probability, as can be seen in Figure 6. In
the following intervals the same problem occurs. Only when node 4 eventually
transmits its old information, which potentially could take a long time, it will
reset node 3’s Trickle process and an update will follow.

In general, if node 3 is connected with n synchronized nodes trying to up-
date it, the previously described scenario occurs with probability Pbo

n (see (4)).
We have plotted this probability and compared it with simulations for different
values of m and n in Figure 7. From the plot it is clear that such an event is
not rare. Given that such an event occurs, the probability that node 3 will ever
broadcast in the following intervals before being suppressed by its neighbors is
small, even for n = 2. Therefore, in such an event, with high probability node 4’s
update is delayed until it advertises its own old information, resetting the Trickle
process of node 3. This gives an expected delay of approximately 1

2Imax+
3
4Imin,

which is possibly very large since Imax is generally large. If node 4 has neighbors
suppressing its own transmissions, then the expected delay will be even larger.
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5 Cleansing MAC

In order to reduce the interference of the data link layer on Trickle timing, we
propose adding a Cleansing mechanism to the MAC layer. If Trickle is treated as
a network primitive, as suggested in [14], known at both the network and data
link layer, then some decision making can be done at the data link layer. Assum-
ing that the MAC layer maintains separate queues per destination, whenever a
new Trickle packet arrives from the network, the Cleansing MAC will purge any
queued outgoing Trickle packets. This will lead to less redundant packets in the
network, and will minimize the bottleneck problem from the previous section.

In most cases, purging outgoing Trickle packets improves Trickle performance
in terms of messaging and delay, and does not lead to functional incorrectness. It
remains consistent with the software design of low-power networks, as any purged
packet can be seen as a message loss, and applications are already able to handle
that situation. However, we can identify two scenarios where performance-wise,
purging can be considered to be harmful.

The first scenario is when k > 1, a purged Trickle message might not be
obsolete. However, this should have minimal impact on the network, since only
a small fraction of messages within each single-hop broadcast domain will be
purged. Moreover, other nodes in reach will make up for the purged transmission.

The second scenario is when a Trickle message with an old value arrives, and
the Cleansing MAC protocol purges an outgoing Trickle message with a new
value, increasing the overall propagation delay. However, the effect of the purge
is minimal, as due to the old message, the Trickle interval of the node with
the new value will be set at Imin, which would give a second opportunity for
broadcast relatively soon.

6 Evaluation

To confirm the analytical results and to evaluate the performance of the Cleans-
ing MAC modifications, we conducted several experiments in simulation and
on a physical test bed. We used one application - dissemination of an update
using Trickle, implemented in Contiki 2.7. Each experiment starts by injecting
an update in the network. As the update is propagated, nodes increase their
Trickle interval. The experiment ends when all nodes have reached their max-
imum Trickle interval Imax = 10 · Imin. We measured the delay, i.e. the time
required to update all nodes, the total number of sent packets, the number of
MAC layer retransmissions, and the mean waiting time in the MAC layer queue.

6.1 Simulation Results

The simulations were carried out in the cross-level simulator Cooja [19]. Cooja
internally uses the MSPsim device emulator for cycle accurate Tmote Sky emu-
lation [21], as well as a symbol accurate emulation of the IEEE 802.15.4 CC2420
radio chip. We used the Unit Disk Graph Radio Medium propagation model,
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with no loss. All nodes use unslotted CSMA/CA with the default parameters
(BEmin = 0, BEmax = 3, NBmax = 3), and the ContikiMAC RDC protocol, with
a wake-up frequency of 8Hz (w = 125ms). Imin varies from 250ms to 1.75s, at
250ms steps (m = 2, 4, ..., 14), well beyond MPL’s recommendation of m = 10.

6.2 Bottleneck Topology

The first scenario follows the bottleneck topology, as shown in Figure 5. An
update is inserted at the same time at nodes 1 and 2, and is propagated to the
rest of the network using Trickle. Each configuration was simulated 1.000 times.
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Fig. 8. Update delay in the bottleneck scenario (Imax = 256s, k = 1, η = 1/2). a) shows
the Trickle interval in which node 4 gets updated, with and without Cleansing MAC
improvements. The left y axis shows the Trickle doubling interval, and the right y axis
the actual time. b) shows the average delay of the largest 10% of the measurements,
and the analytical expected delay. The error bars correspond to the standard deviation.

As expected, without Cleansing, due to the large number of collisions, the
update delay of node 4 is highly variable (Figure 8a). Both the mean and the
standard deviation peak at Imin = 0.5s, and gradually decrease as Imin increases.
Surprisingly, the update delay at Imin = 0.25s is stable. This anomaly occurs
because at Imin = 0.25s = 2 · w, the contention window of nodes 1 and 2 is
equal to the broadcast duration (w). This practically guarantees collisions, and
a retransmission from one of the nodes. However, node 3’s listen-only period will
be finished before the retransmission starts, and there is a chance that node 3 will
schedule its own transmission before it receives the retransmission. Even if the
transmission from node 3 is delayed, it will be sent within one or two broadcast
periods. However, with Imin = 0.5s, nodes 1 and 2’s contention window is still
small, giving high probability for collisions. Then, retransmissions will always
fall in node 3’s listen-only period, forcing it to suppress its own transmission.

Figure 8b depicts the average measured delay of the worst 10% of the observa-
tions. This is a clear indication that harmful back-offs due to CSMA/CA are not
uncommon, and that their effects can be detrimental to Trickle’s performance.
The update delay then becomes significantly high, in line with the analytical
expected delay of 3

4Imin +
1
2Imax.

Finally, the interference is completely resolved with MAC Cleansing. In that
case, updates are always completed in the second interval, as expected.
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6.3 Grid Topology

The second scenario consists of 100 nodes, arranged in a 10x10 grid, with 10
meters between two nodes in each axis. A new Trickle event is generated at the
top left node. We simulate 100 executions of Trickle with different values for
Imin. Furthermore, we varied the connectivity range of each node. Each node
has a circular coverage area with radius 2 + 10R meters, with 1 ≤ R ≤ 5.
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Fig. 9. Average delay and average number of transmissions in the grid scenario. Using
CSMA/CA with Cleansing with Imin = 0.25s requires a similar number of transmissions
as regular CSMA/CA with Imin = 1.00s, while the update delay is halved.

Figure 9a shows the update delay when using CSMA/CA with and without
Cleansing. Since there are no bottlenecks in this scenario, these are comparable.
However, the reduction in the number of sent packets is visible in Figure 9b. We
can see that the number of transmissions with Cleansing is significantly lower
than without Cleansing, while the average update delays are the same.

Figure 10 shows the average number of transmissions and retransmissions
during the entire simulation. As the range of each node grows, fewer messages
are required to cover the entire network. Trickle then performs well, suppress-
ing many transmissions (Figure 10a). However, many of the messages are actual
retransmissions from the MAC layer (Figure 10b). Since k = 1, these are ob-
solete messages. Furthermore, due to the congested media, frames are left in
the queue for a longer time (Figure 10c), often leading to chained attempts for
retransmission and further back-offs.

Figures 10d-10f show the impact of using Cleansing. CSMA/CA with Cleans-
ing is aggressive with cleaning the MAC queue, as is visible in Figure 10e. This
makes Trickle work as intended even for small values of Imin. Additionally, the
average queue time is considerably lower compared to the original CSMA/CA.

6.4 Hardware Experiments

To confirm the simulation results, we ran the same application on a physical test
bed provided by FIT IoT-LAB 2. The test bed consists of 119 STM32 (ARM
Cortex M3) based nodes, with the AT86RF231 IEEE 802.15.4 radio chip, ar-
ranged as in Figure 11a. As before, all nodes use the ContikiMAC RDC protocol
with a wake-up frequency of 8 Hz. The redundancy constant was fixed to k = 1,

2 http://www.iot-lab.info
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Fig. 10. Average number of transmissions, retransmissions and average frame queue
time in the grid scenario, with (d-f) and without (a-c) MAC Cleansing, for different
values of Imin, k = 1 and η = 1/2

with Imin set to 0.25s, 0.5s and 1.0s. For each setting, we ran 100 executions of
Trickle dissemination of one update, injected at the bottom-right node.

Figure 11d shows that using CSMA/CA, low values of Imin introduce a lot of
collisions, which force retransmissions by the MAC layer. Increasing Imin helps
reduce the number of transmissions (Figure 11c), but at the expense of a higher
delay (Figure 11b). On the other hand, CSMA/CA with Cleansing has consistent
performance using all three different values of Imin. Due to the proactive purging
policy, the number of messages remains comparable with different values of Imin.
As expected, the delay increases together with Imin, but it is still in the same
range as with the original CSMA/CA.

(a) Physical layout
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Fig. 11. Experimental results from the IoT-Lab test bed. An update is injected at the
bottom-right node, and is propagated using Trickle. The entire network is reachable in
12 hops. We show the averages and standard deviations over 100 executions.
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7 Conclusion

In this paper we analyzed the performance of the Trickle algorithm for data dis-
semination when used in combination with low-power MAC protocols. We ana-
lyzed how the interplay of radio duty cycling and CSMA back-offs can contribute
to bad Trickle performance. Analytically, we showed the MAC layer introduces
inconsistencies, which lead to redundant transmissions and large update delays.

In order to resolve these issues, we proposed a small modification to the MAC
layer, called Cleansing. The Cleansing MAC modification purges obsolete Trickle
messages that are sent due to the inconsistencies caused by the MAC layer.

Through a simulation study, and then confirmed with experiments on a large
physical test bed, we showed that the Cleansing MAC indeed improves perfor-
mance. We found that the number of redundant transmissions in dense topologies
is decreased greatly and that the update speed in networks with bottlenecks is
improved drastically.

As future work, we plan to extend the analysis to environments where the
redundancy constant is greater than one. Additionally, we want to generalize
the impact of the data link layer to Trickle timing, regardless of the combination
of MAC protocol and radio duty cycling protocol.

Acknowledgments. The authors would like to thank Onno J. Boxma for the
many useful comments during the writing of this text. This work is supported
in part by the Dutch P08 SenSafety Project, as part of the COMMIT program.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

2. Becker, M., Kuladinithi, K., Görg, C.: Modelling and Simulating the Trickle Algo-
rithm. In: Conf. on Mobile Networks and Management (MONAMI), pp. 135–144
(2011)

3. Clausen, T., de Verdiere, A., Yi, J.: Performance Analysis of Trickle as a Flooding
Mechanism. In: Conf. on Communication Technology (ICCT) (2013)

4. Dunkels, A.: The ContikiMAC Radio Duty Cycling Protocol. Tech. rep., SICS
T2011:13 (2011)

5. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Oper-
ating System for Tiny Networked Sensors. In: Workshop on Embedded Networked
Sensors (Emnets-I) (2004)

6. Eriksson, J., Gnawali, O.: Poster Abstract: Synchronizing Trickle Intervals. In:
European Conf. on Wireless Sensor Networks (EWSN) (2014)

7. Farooq, M.O., Kunz, T.: Contiki-based IEEE 802.15.4 Node’s Throughput and
Wireless Channel Utilization Analysis. In: Wireless Days (WD), pp. 1–3 (2012)

8. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection Tree Pro-
tocol. In: Conf. on Embedded Networked Sensor Systems, SenSys (2009)

9. Hui, J., Kelsey, R.: Multicast Protocol for Low power and Lossy Networks, MPL
(2014), http://tools.ietf.org/html/draft-ietf-roll-trickle-mcast-09

http://tools.ietf.org/html/draft-ietf-roll-trickle-mcast-09


Improving the Performance of Trickle-Based Data Dissemination 201

10. IEEE: Standard for Local and metropolitan area networks Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs), Amendment 1: MAC sublayer.
IEEE Std. 802.15.4e-2012 (2012)

11. dos Santos Ribeiro Júnior, N., Vieira, M.A.M., Vieira, L.F.M., Gnawali, O.: Cod-
eDrip: Data dissemination protocol with network coding for wireless sensor net-
works. In: Krishnamachari, B., Murphy, A.L., Trigoni, N. (eds.) EWSN 2014.
LNCS, vol. 8354, pp. 34–49. Springer, Heidelberg (2014)

12. Kermajani, H., Gomez, C., Arshad, M.H.: Modeling the Message Count of the
Trickle Algorithm in a Steady-State, Static Wireless Sensor Network. IEEE Com-
munications Letters 16(12), 1960–1963 (2012)

13. Levis, P., Clausen, T., Hui, J., Gnawali, O., Ko, J.: The Trickle Algorithm. RFC
6206 (March 2011), http://www.ietf.org/rfc/rfc6206.txt

14. Levis, P., Brewer, E., Culler, D., Gay, D., Madden, S., Patel, N., Polastre, J.,
Shenker, S., Szewczyk, R., Woo, A.: The Emergence of a Networking Primitive in
Wireless Sensor Networks. Commun. ACM 51(7), 99–106 (2008)

15. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A Self-Regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks. In: Symp. on
Networked Systems Design and Implementation (NSDI), pp. 15–28 (2004)

16. Lin, K., Levis, P.: Data Discovery and Dissemination with DIP. In: Conf. on In-
formation Processing in Sensor Networks (IPSN), pp. 433–444 (2008)

17. Meyfroyt, T.M.M., Borst, S.C., Boxma, O.J., Denteneer, D.: Data Dissemination
Performance in Large-scale Sensor Networks. SIGMETRICS Performance Evalua-
tion Review 42(1), 395–406 (2014)

18. Oikonomou, G., Phillips, I., Tryfonas, T.: IPv6 Multicast Forwarding in RPL-Based
Wireless Sensor Networks. Wireless Personal Communications 73(3), 1089–1116
(2013)

19. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-Level Sensor
Network Simulation with COOJA. In: Conf. on Local Computer Networks (LCN),
pp. 641–648 (2006)

20. Pazurkiewicz, T., Gregorczyk, M., Iwanicki, K.: NarrowCast: A New Link-
Layer Primitive for Gossip-Based Sensornet Protocols. In: Krishnamachari, B.,
Murphy, A.L., Trigoni, N. (eds.) EWSN 2014. LNCS, vol. 8354, pp. 1–16. Springer,
Heidelberg (2014)

21. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling Ultra-Low Power Wireless
Research. In: Symp. on Information Processing in Sensor Networks (IPSN) (2005)

22. Stolikj, M., Meyfroyt, T.M.M., Cuijpers, P.J.L., Lukkien, J.J.: Improving the Per-
formance of Trickle-Based Data Dissemination in Low-Power Networks. Tech. rep.,
TU/e CS-14-10 (2014)

23. Vallati, C., Mingozzi, E.: Trickle-F: Fair Broadcast Suppression to Improve Energy-
Efficient Route Formation with the RPL Routing Protocol. In: Sustainable Internet
and ICT for Sustainability (SustainIT), pp. 1–9 (2013)

24. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K.,
Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks. RFC 6550 (2012), http://www.ietf.org/rfc/rfc6550.txt

http://www.ietf.org/rfc/rfc6206.txt
http://www.ietf.org/rfc/rfc6550.txt


Featurecast: Lightweight Data-Centric

Communications for Wireless Sensor Networks

Micha�l Król, Franck Rousseau, and Andrzej Duda

Grenoble Institute of Technology
CNRS Grenoble Informatics Laboratory UMR 5217

681, rue de la Passerelle, 38402 Saint Martin d’Hères, France
{firstname.lastname}@imag.fr

Abstract. We introduce the concept of Featurecast with addressing and
routing based on node features defined as predicates. For instance, we
can send a packet to the address composed of features {temperature
and Room D} to reach all nodes with a temperature sensor located in
Room D. Each node constructs its address from the set of its features
and disseminates it in the network so that intermediate nodes can build
routing tables. In this way, a node can send a packet to a set of nodes
matching given features. Our experiments and evaluation of this scheme
show very good performance compared to Logical Neighborhoods (LN)
and IP multicast with respect to the memory footprint and message
overhead.

Keywords: wireless sensor networks, data-centric routing, multicast,
IPv6.

1 Introduction

Wireless sensor networks need to support specific traffic patterns related to sen-
sor applications. One of their most important goals is to forward collected data
to one or several sinks. They also have to support downward traffic from a sink
to all or some sensor nodes. This traffic pattern results from the need for config-
uring nodes, querying sensors, or transmitting commands to actuators. Sensor
nodes may require communication with other nodes, for instance for aggregating
data or collaborating on a common reaction to local events.

In addition to the standard unicast communication, many sensor network
applications may benefit frommulticasting to forward packets to a group of nodes
or report data to multiple sinks [1,2,3]. Multicasting results in a reduced number
of packets forwarded in the network, which in turn limits energy consumption—
compared to unicast, nodes transmit less packets when using multicast, because
packets are only replicated when needed.

Unicast andmulticast areaddress-centric communicationmodes inwhich source
and destination addresses identify endpoint nodes. Such modes are suitable for
structured addresses that result in small routing tables. Data or content-centric
routing focuses on the packet content instead of communication endpoints. In the

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 202–217, 2015.
c© Springer International Publishing Switzerland 2015
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context of sensor networks,DirectedDiffusionwas one of the first proposals for sen-
sor data dissemination based on this approach [4,5]: sensor nodes attach attributes
(name-value pairs) to generated data, consumers specify interests for sensor data
in terms of attributes, and sensors send unicast data packets to consumers. The
data-centric paradigm is appealing for sensor networks, because it fits very well
their data-oriented nature, however the approach incurs significant overhead by
attaching attributes to data, which is prohibitive in energy constrained networks.
Directed Diffusion uses flooding to disseminate interests for sensor data, which is
inefficient in wireless networks. Moreover, it does not scale well in networks with
many sinks that transmit many different queries [6].

In this paper, we propose Featurecast, a network layer communication mode
well suited for sensor networks. One of our main design goals was to create a
system able to cooperate with already existing IPv6 networks. Unlike Directed
Diffusion, Featurecast is address-centric, but it uses a data-centric approach to
create addresses and operate routing: addresses correspond to a set of features
characterizing sensor nodes. Features are predicates, not attributes, which allows
us to represent them in a compact way in address fields of packets and in routing
tables.

Nodes disseminate Featurecast addresses in the network following a structure
usually constructed for routing standard unicast packets such as a Collection
Tree (CT) [7] or a DODAG (Destination Oriented Directed Acyclic Graph) [8].
Intermediate nodes merge the features of nodes reachable on a given link and
construct a compact routing table for further packet forwarding. Based on the
routing tables, a packet can reach all nodes characterized by a given set of
features. Our proposal does not define any specific grammar for features, which
makes it extremely flexible and easy to use. We propose a specific compact
encoding allowing for fitting a Featurecast address into the standard multicast
IPv6 address field. To the best of our knowledge, Featurecast is the only protocol
able to take advantage of a data-centric approach in traditional IPv6 networks.

We have implemented Featurecast and the proposed scheme for routing in
Contiki OS [9] and integrated them within its uIPv6 (micro Internet Protocol)
stack. The implementation provides Featurecast at the network layer unlike other
proposals that use application layer overlays. To evaluate Featurecast, we have
simulated in Cooja an application scenario developed for CoAP group commu-
nications [10] with several sensors placed across buildings, wings, and rooms. We
have compared Featurecast with Logical Neighborhoods (LN) [11] and IP mul-
ticast with respect to the memory footprint and message overhead. Featurecast
results in a significantly smaller memory footprint and a lower average number
of messages for updating routing tables compared to other schemes.

2 Featurecast

We want to provide a new communication mode for wireless sensor networks to
designate relevant sensor nodes or data destinations by means of their charac-
teristics and not with some low level identifiers or node addresses. For instance,
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we may want to get the “average temperature on the 1st floor” or “turn off all
the lights in the building”. Such reasoning is close to applications that take ad-
vantage of sensors and actuators. Obviously, we could support such messages
by associating a multicast group with each query, however, the number of such
groups may quickly become too large, because of all possible combinations of
characteristics.

We introduce below the notion of Featurecast addresses, present the construc-
tion of routing tables, and the forwarding process.

2.1 Featurecast Addresses

We assume that each sensor defines a set of its features, for instance its capabil-
ity of sensing the environment (temperature, humidity), location (sector 5,
1st floor), state (low-energy), or some other custom features (my favorite

nodes). Features are predicates, i.e., statements that may be true or false (in
the previous examples, we explicitly state features that are true). Predicates are
commonly used to represent the properties of objects and we use them here to
represent the properties of sensors: if f is a predicate on sensor X , we say that f
is a property of sensor X . Note that features are not attributes (i.e., name:value
pairs), which allows us to represent them in a much more compact way with-
out loosing any flexibility. We assume that there is no coordination in defining
features, but all features are known and each node can define its features at will.

A sensor node derives its Featurecast address from its features—more formally,
a node address is the set:

A = {f1, f2, ..., fn}, fi ∈ F , (1)

where fi is a feature predicate and F is the set of all possible features with
cardinality of N . Features in the network may evolve in time and nodes may
change their features, for instance the location of a node may change when it
moves or a sensor may define a state of high temperature when exceeding a
given threshold. Note that N , the total number of features in the network does
not depend on the number of nodes, but rather on applications that define node
characteristics.

The destination address may contain a subset of features—we say that it
matches a node address, if the node address contains the destination address:

D = {f1, f2, ..., fk}, fi ∈ F , D matches A, if D ⊂ A

For instance, a packet to temperature, 1st floor will match nodes defining
both temperature and 1st floor in their addresses. The conjunction seems the
right way of representing nodes of interest for most sensor network applications.
In the real world, somebody can describe an object with a set observed features.
Such an approach is thus a very natural way of designating objects.

We can consider the node address as a representative of all possible multicast
groups that would be created based on the node features to make it reachable
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Fig. 1. Multiple DODAGs deployed
in the same network for better
connectivity.

Fig. 2. Proposed compact representa-
tion of features: Bloom filter in the des-
tination address and a bit position list in
the routing table.

for any combination of features using the traditional multicast groups, which
gives

∑n
k=0 C

k
n = 2n addresses for n features.

Note that such an addressing schemes allows other useful communication pat-
terns, for example, a node addressing a packet using its own location can reach
all sensor in the same room/floor/building without creating any dedicated mul-
ticast group.

2.2 Constructing Routing Tables

Forwarding packets based on Featurecast addresses requires the construction
of routing tables that contain the features reachable through a given neighbor.
To create routing tables, nodes can advertise features along an existing rout-
ing structure for unicast such as a DODAG or a Collection Tree. However, in
our implementation, we have used our proper way of constructing a DODAG
described below (Featurecast can also operate along any protocol that creates
such a structure, e.g. RPL).

Creating a Routing Structure. Using only one routing structure may be
inefficient, because two nodes on different branches need to communicate by
passing through the root. We can alleviate this problem by deploying multiple
DODAGs or Collection Trees in the network (cf. Figure 1). Each node stores the
information about all DODAGs present in the network, but to send a packet,
it uses only one DODAG, the one with the root closest to the node. Multiple
DODAGs deployed in the network result in nodes that are close to any root,
which improves communication efficiency.

We also propose to construct each DODAG in a way similar to RPL, but
with a modified metric that takes Featurecast into account. The root starts the
DODAG construction process by broadcasting route advertisements with the
distance set to 0. Each node receiving such a message checks if it knows a node
closer to the root. If not, it sets the message sender as its preferred parent and
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rebroadcast the message with a modified distance d that takes into account the
similarity of nodes—a node receiving a route advertisement from a neighbor
compares a set of features with its own adds the result to the advertised metric:

d = h− (|Fn ∩ Fs|)/(|Fn|+ 1), (2)

where h is the hop count (original metric of RPL OF0), Fn is the set of node
features, and Fs is the set of the sender features. Note that h+ 1 > d.

By grouping similar sensors, we decrease the overall cost of forwarding Fea-
turecast messages, because a packet addressed to a given group of nodes will be
duplicated less often. Moreover, nodes are much more likely to find a common
ancestor thus reducing communication overhead. In the rest of the paper, we
will refer to this routing structure as the Featurecast DODAG.

Advertising Features. The process of advertising features starts at leaf
nodes that send their features to their preferred parent. Parents obtain the fea-
tures from their children nodes, add their own features, and forward the list of
features reachable through them to their own parent. The process continues up
to the root of the DODAG. Finally, the root node obtains the list of all features
in the network and it can use it to forward packets to relevant neighbors. The
sink can also initialize the process in the reverse direction by sending its features
to children nodes, which speeds up machine-to-machine communication.

When a node receives a feature already in its routing table, it does not forward
it to its neighbors and ignores subsequent advertisements, so most of the changes
in features will only result in localized transmissions, as shown in Section 4. Even
if a single node fails, other nodes may have defined the same feature and the
routing tables may remain valid.

2.3 Forwarding

When nodes have created routing tables, they can send packets with the destina-
tion addresses containing set of features that intermediate nodes match against
the routing tables and forward to all neighbors having the matching entry.

2.4 Topology Maintenance

It is possible that some neighbors of a sensor node disconnect due to topology
changes, node failures, or battery depletion. For detecting disconnected peers and
maintain a valid topology, Featurecast relies on hello messages and RPL local
and global repair mechanisms. In case of neighbor disconnection, a node checks
the set of features advertised by other connected neighbors—if they provide all
the features advertised by the disconnected node, there is no need for an update.
Otherwise, the node informs its parent node about the absence of the features
available through the disconnected neighbor. The parent node will do the same
with respect to its neighbors and the process continues until the root node if
necessary.
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It is also possible to delay sending the advertisement about missing features
until the node receives a packet using them. A node changing its parent node or
changing its set of features, advertises the change as explained in Sect. 2.2.

3 Compact Representation of Features

We have followed several design guidelines for the compact representation. First,
we want an open network able to accept any feature defined on nodes. Second,
the addressing scheme should not depend on the number of features defined in
the network—we do not want to force the user to define a hierarchy of features.
Most of data-centric approaches use a grammar exchanged in a text form. Such
an approach is often a problem while integrating such solutions into real life
scenarios. We want our solution to still use user-friendly addresses, while being
easily stored and processed by nodes. We then need fixed-size addresses for ef-
ficient forwarding and possibility to integrate Featurecast within the standard
IPv6 addressing scheme with 112 bits in the multicast IPv6 address. Such in-
tegration will show that a data-centric approach may have the same overhead
as address-centric solutions and lead to easy integration with existing networks.
A part of such an IPv6 address can be used for a global prefix and routed in
the Internet. Finally, we want to take into account resource constraints (memory
size) of sensor nodes for storing routing tables.

We also want to avoid global synchronization mechanisms disseminating a
mapping between features and their binary representation. Such a solution would
result in a significantly higher volume of communications and could delay packet
forwarding during the feature update. For these reasons, we have decided to
use hash functions and a structure allowing to efficiently store many hashes—a
Bloom filter.

3.1 Bloom Filters

A Bloom filter is a probabilistic structure allowing for efficient storage of a set of
elements. A typical filter contains an array of m bits. At the beginning all bits
are set to 0. There are k hash functions that map an element to a bit position in
the array. When inserting an element into a filter, we compute k hash functions
on the element and set all the resulting bits to 1. If a bit was already set to 1, we
do not change it. To check whether an element belongs to a set, we compute the
same hash functions on the element and check if all corresponding bit positions
are set to 1. If not, we are sure that the element does not belong to the set.

False positives may occur in Bloom filters: it is possible that all bits corre-
sponding to the hash functions on a tested element are set to 1 by other stored
elements, even if the element does not belong to the set. The probability of false
positives depends on the number of stored elements n and the size of the filter
(m and k):

p ≈ (1− e−km/n)k. (3)
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To maintain the same false positive rate with a growing number of elements, we
need to increase the number of bits and hash functions, which results in larger
memory consumption and increased computational overhead.

3.2 Naive Bloom Filter Solution

A possible solution is to use Bloom filters of the same size to represent a set
of features in the destination address and in the routing table entry for each
neighbor. To decide where to forward the packet, we only have to verify if all
bits set in the address are also set in the routing entry for a given neighbor.
However, such a solution limits the number of possible features to store in the
routing tables. If n is the number of elements in the filter (features in our case)
and p is the required probability of false positives, the minimum number of bits
m for the filter is m ≥ n log2(e) × log2(1/p). To achieve the probability of 2%,
we need 5 bits per feature. To fit 112 bits available in IPv6 address, we would be
able to store only 22 features with 2% of false positives, the value we consider
as sufficient for the packet destination address (as we store features for only one
sensor or a group of sensor), but insufficient for routing tables in which we would
need to store all features defined in the network in the worst case.

3.3 Bloom Filter in Addresses and a Bit Position List in the
Routing Table

We describe the proposed compact representation of features that satisfies our
requirements: being able to represent around 10 features in a destination ad-
dress limited to 112 bits with a small false positive probability and representing
potentially all features in the network in routing tables with a small memory
footprint.

The proposed solution consists of using a different feature representation in
the routing tables: nodes represent a single feature in the routing table as the
positions of bits set in the Bloom filter. For example, we represent a feature that
sets bits on positions 5 and 76 in the Bloom Filter with the two numbers in
the routing table (cf. Fig. 2). Nodes use a Bloom filter in the address field as
described above.

The probability of two different features having the same representation in the
routing table is: pN = N/mk, where N is the number of features in the network
and m is the size in bits of the Bloom filter. The size of each represented feature
in an address depends on the Bloom filter size and the number of hash functions:
s = k log2(m).

Taking into account Eq. 3, this solution allows supporting 200 different fea-
tures in the routing table with the probability of false positives less than 2%,
which satisfies our requirements. As we want to use a 112 bit long Bloom filter
and 2 hash functions, we only need 2 bytes to store a feature in the routing table,
which results in the routing table of only 400 bytes for 200 features.
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Routing Entry Aggregation. As Featurecast may operate over multiple
DODAGs, we aggregate the same routing entries from multiple DODAGs: for
features defined on the same set of neighbors in different DODAGs, we keep only
a single entry, which results in a reduced amount of memory without introducing
any computational overhead during forwarding.

Computational Overhead. Our representation of routing tables requires iter-
ating through all present features to forward a packet, which makes the operation
limited by O(n), where n is the number of features. However, with n features,
we are able to construct g = 2n groups, which means that in a well constructed
system, the computational complexity in terms of the number of groups g is
O(log(g)). As nodes already store features in a hashed form, each comparison
only requires few bitwise operations to check the corresponding bit in the source
address Bloom filter, which does not introduce a significant computational over-
head, especially by contrast with text comparisons used in many data centric
solutions.

To further speed up the forwarding process, we have developed several op-
timization techniques. First of all, we do not have to iterate through features
present at every neighbor. This modification significantly reduces the overhead
especially at nodes close to the root, which have many such features. Secondly
we start the forwarding process from features being present at only one neigh-
bor. If any of them is present in the source address, we just need to check if this
neighbor defines all required features without iterating through the whole table.

4 Implementation and Evaluation

We have implemented Featurecast in Contiki OS (ver. 2.6) [9]. For performance
evaluation, we have run simulations in Cooja, a simulator that emulates both
the software and hardware of sensor nodes. As an execution platform, we have
used Sky Motes with CC2420 2.4 GHz radio and ContikiMAC at Layer 2.

Contiki supports the RPL routing protocol to build a DODAG that takes
into account the distance to the sink in terms of the number of hops, the metric
defined by Objective Function Zero (OF0). We have modified the metric for
constructing the Featurecast DODAG to reflect similarity of stored features (cf.
Sect. 2.2).

4.1 Evaluation Setup

We have compared Featurecast with Logical Neighborhoods (LN) [11], which
proposes a similar abstraction, but at the application layer, and the traditional
IP Multicast as it is the recommended solution for group communications in
WSN [10]. We have set the parameters of LN (exploration parameter E and the
number of credits) to the values used in the LN evaluation [11]. Note that LN
does not guarantee packet delivery for a small amount of credits, so we have
used the LN recommended values [11].

As there is no implementation of any multicast routing protocol in Contiki
(ver. 2.6), we have implemented a simple routing protocol in which nodes willing
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to join a multicast group just send a message towards their parents in the RPL
DODAG using UDP. Each sensor, after receiving the message, waits for an adver-
tisement from its children, adds its own advertisement, and sends it up through
the DODAG. We use the number of control messages exchanged for maintaining
Featurecast or multicast routing as the main comparison index. They directly
influence the energy consumption of nodes and the network lifetime.

4.2 Scenarios

We consider two scenarios: i) the building control application developed for
CoAP group communication [10] and ii) a random topology of nodes with ran-
dom features.

Building Control. The building control scenario uses a deployment scheme in
which sensor nodes are placed in several buildings across multiple floors, wings,
and rooms. The scenario considers sensor nodes of multiple types (e.g. measuring
temperature, humidity, luminosity, etc.). CoAP clients communicate with sensor
nodes by means of URLs with a hierarchical structure that encodes the node
location and its capabilities using the following format: node type.room.wing.-

floor.building. If qi is a number of elements on each level, then to be able to
access any set of nodes, we need to define a label for each feature at each level
(u being the number of levels in the URL):

∑u
i=1 qi.

We need the same amount of features for LN expressed in the form of at-
tributes. If we use IP multicast in the same scenario, we have to define a mul-
ticast group for each combination, which results in

∏u
i=1 qi. If we want to use

the URLs that do not contain all the defined levels (e.g. bldg1.all nodes), the
number of multicast groups is even higher:

∏u
i=1(qi + 1).

Random Topology. In the second scenario, we evaluate communication per-
formance in a random topology. Each node chooses its address as a set of 10
random features. After establishing the routing infrastructure, we choose a ran-
dom node to send a packet to a randomly chosen group. We vary the network
size from 50 to 500 nodes and average the results from 100 different runs. A
UDP packet with 100B payload is generated every 30s.

4.3 Results: Memory Footprint in Building Control Scenario

First, we perform our evaluation in the building control scenario with 128 sensor
nodes across 2 buildings (Building 1 and 2), 2 floors in each building (Floor 1
and 2), 2 wings (East, West), 4 rooms in each wing (Room 1 to 4), and 2 sensor
types (light, temperature). We place 2 temperature and 2 light sensors in each
room. We place nodes at regular intervals on a 16x8 matrix and assign the right
features simulating the given scenario. Featurecast and LN require 12 features
or attributes to in this scenario, while with IP multicast, we need 405 groups.
We place the sink in the center of the network. We also evaluate Featurecast
with 2 and 3 DODAGs (Featurecast2 and Featurecast3 respectively).

We can note that in this scenario, Featurecast is extremely scalable. If we want
to connect another building with a similar infrastructure, we need to add only
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one new feature (e.g. Building 3), while with IP multicast, we need to add 135
new groups. LN maintains associations between attributes, so with every new
added attribute, the amount of memory per item increases. Fig. 3 presents the
routing table memory usage for Featurecast and LN. We reduce x axis to 30 new
features for better readability. We also omit the results for IP Multicast: because
of an extremely large number of the required groups and high memory usage per
address, IP Multicast needs 6480B (over 67 times more then Featurecast) with
only 12 unique features.

Then, we add features at each level of the hierarchy defined in the scenario
[10] (one building, one floor etc.). Featurecast performs more then 5 times better
(96B vs. 544B) than in our original scenario. Each new item in LN adds some
new information to all existing entries, which requires much larger amount of
memory per item. With 100 new features added to the network, Featurecast
requires more then 26 times less memory (654B vs 17044B). Note that even the
topologies with multiple DODAGs (Featurecast 2, Featurecast 3) consume much
less memory than LN due to entry aggregation (1064B and 1323B, respectively,
for 100 added features).

4.4 Results: Message Overhead in Building Control Scenario

To establish the forwarding topology and guarantee connectivity, Featurecast
needed to exchange only 248 messages per DODAG. In comparison, IP Multi-
cast used 4992 messages to construct a DODAG for each multicast group. LN
requires 226 messages, which is slightly better then Featurecast. However, the
LN messages are on the average 5 times bigger than the ones of Featurecast, so
even for 3 DODAGs, our system requires 2 times less bandwidth.

To evaluate routing performance after constructing the forwarding structure,
we consider two cases: i) the sink sends packets to a given group of sensors, ii)
a node communicates with another node. Fig. 4 presents the results of the first
case: the average number of relayed messages (how many times intermediate
nodes forward a message before it reaches the destination). We also present
the results for 3 different sets of features: Set1 (type, floor), Set2 (building,
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wing, floor), and Set3 (building, wing, floor, room, type). IP Multicast creates
a minimal spanning tree for each destination group, which gives a bound for
this type of traffic. Featurecast only creates one common Featurecast DODAG
for all possible groups, but performs only slightly worse. The version with 3
DODAGs achieves almost the same performance as the optimal solution. LN
requires however much more messages on the average to reach all destination
nodes. It explores routes not present in the routing tables trying to quit local
minima, which introduces an additional overhead.

Fig. 5 shows the results of the second case (node-to-node communication).
Multicast IP exhibits the best performance that sets a theoretical bound. We
can observe that Featurecast also requires a small number of messages. The
Featurecast DODAG connects similar nodes thus allowing to find a common
nearby ancestor. Introducing additional DODAGs decreases the gap even more.
A LN node is never sure if a minimum is local or global, so even after reaching all
target nodes, it performs a search of external paths thus increasing the number
of messages.

To evaluate the cost of maintaining routing tables, we progressively disconnect
random nodes from the network and compare the performance of Featurecast,
IP Multicast, and LN. A LN node broadcasts a complete node description every
15s. However, if the underlying MAC layer is duty cycled such as ContikiMAC,
the node needs to transmit each broadcast message separately to all neighbors
(or it may use ContikiMAC broadcast, but it requires sending a frame during
the whole check interval, which consumes a lot of energy). In both Featurecast
and IP Multicast, we rely on small hello messages to check the connectivity
between neighbors and send the required route update only if it is necessary.
IP Multicast and Featurecast try to repair the topology only when detecting a
neighbor failure. Without any topology changes, LN sends a constant amount of
507 messages every 15s with the average size of 106B. Our implementation of IP
Multicast and Featurecast sends on the average 384 hello messages of 4B each.
The lower number of messages results from maintaining connectivity only with
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neighbors in the DODAG. In total, LN transfers 53742B while Featurecast and
IP Multicast only 1536B, which is more than 34 times less.

To analyze the behaviour of all solutions in a dynamic configuration, we shut
down a single node placed further from the sink, then 2 nodes of the same type in
the same room, a group of nodes in one room, all nodes in a wing, all nodes on a
floor, and finally all nodes in a building. Table 8 presents the average number of
additional messages needed to update the routing tables.When disconnecting sin-
gle nodes, all approaches do not send any messages, because there is another node
belonging to the same group that allows maintaining the DODAG. Disconnecting
both nodes of a given type in a room only causes a small number of message ex-
changes in both Featurecast andLN, as there are other nodes defining the same fea-
tures in the neighborhood. In IP Multicast, disconnecting the same nodes causes
changes in several multicast groups (bldg1.floor1.west.room4.temperature,
bldg1.floor1.west.room4.*, bldg1.floor1.west.*.temperature, etc.), and
some part of this information needs to be transmitted to the sink causing a lot of
traffic. Disconnecting a larger number of nodes causes more multicast group dele-
tions and more control traffic. Shutting down the whole floor or building deletes a
lot of multicast groups, but nodes responsible for sending the updates are directly
connected to the sink, which lowers the number of exchanged messages.

In all cases, IP Multicast results in a large amount of control traffic due to a
much larger number of groups and no group aggregation, which makes it unsuit-
able for implementation in sensor networks. Featurecast and LN send a much
smaller number of messages in all considered scenarios. However, Featurecast
messages are on the average 5 times smaller due to the compact feature repre-
sentation.

4.5 Results: Random Topology Scenario

We have evaluated communication performance in the random topology sce-
nario. Fig. 9 presents the number of relayed messages. Featurecast with a com-
mon DODAG has almost the same performance as LN. We have also tested
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Featurecast over 2 and 3 DODAGs in the network. To send packets, a node uses
a DODAG with the closest root. Both cases with 2 and 3 DODAGs, significantly
outperform other approaches.

We have also evaluated the number of nodes involved in communication in
the random topology scenario (cf. Fig. 10). We consider a node involved in
communication if it receives or sends a message at the MAC layer. We can
observe that Featurecast with only one DODAG performs better than LN for a
small number of nodes and involves the same number of nodes in larger networks.
However, Featurecast with 2 or 3 DODAGs performs significantly better for all
tested network sizes. Note that such a scenario is equivalent to having many sinks
in the network. The results show that we do not need one DODAG per sink and
several sinks can share one DODAG with only slight drop of performance.

Fig. 7 presents energy consumption measured every 60s using PowerTrace.
Featurecast consumes significantly less energy, due to smaller messages and
maintaining communication only with neighbors in the DODAGs and not with
all nodes in the radio range. Note that Featurecast does not send hello messages
separately for each DODAG, but only once for each neighbor present in any
deployed DODAG.

To evaluate protocol robustness, we have measured the packet delivery rate for
different packet loss rates in a network with 300 nodes. We have performed 1000
random transmissions for each rate. Figure 6 presents the results: with small
packet loss rates, the MAC layer can retransmit packets if necessary, so almost
all protocols are close to 100% delivery rate. LN even without packet loss cannot
find all destination nodes because of the limited number of credits. Featurecast
constructs slightly longer paths between destination and performs slightly worse
than the optimal solution, however during the tests with 3 DODAGs, the differ-
ence is less than 1%. For packet loss rates greater than 15%, the performance of
all protocols significantly decreases. Table. 1 summarizes all results.
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Table 1. Summary of results: the gain of Featurecast compared to other solutions

Aspect Featurecast Featurecast-3 LN Multicast

Memory 1x (96B) 2.15x (206B) 5.67x (544B) 67.5x (6480B)
(12 features)
Memory 1x (654B) 2.02x (1323B) 26.06x (17KB) 1711156x (111MB)
(100 features)
sink→nodes 1x (345) 1x (345) 1.99x (687) 0.96x (331)
node→node 1x (367) 0.86x (316) 1.58x (579) 0.82 (299)
hello (msgs) 1x (384) 1.1x (422) 1.32x (507) 1x (384)
hello (B) 1x (1536B) 1.1x (1688B) 34.99x (53742B) 1x (1536B)
after disconnection 1x (52) 1.56x 81 1.08x 56 151.21x (7863)
(msgs)
after disconnection 1x (624B) 1.56x (972B) 5.41x (3374B) 252x (157KB)
(B)
energy, no traffic 1x (15.1mA) 1.05x (15.9mA) 1.2x (18.2mA) —
energy, with traffic 1x (19.9mA) 1.04x (20.7mA) 1.27x (25.3mA) —
random (msgs) 1x (23557) 0.67x (15668) 1.11x (26227) —
random (nodes) 1x (401) 0.59x 235 1.17x 468 —

4.6 Discussion of Packet Drops Due to Inexistent Addresses

Finally, we have investigated packet drops due to non-existent conjunction of
features. The drops result from the aggregation of features in routing tables and
not keeping more information about their compositions. If Sa is a set of features
in an address, Si

t a set of features in the routing table for neighbor i, and Sn a
set of features defined by a node, the packet drop occurs when:Sa ⊂ Si

t ∧ �Sn,
Sa ⊂ Sn.

In our scenario, the packet drop may occur if an address contains a com-
bination of features that are not defined by any node, for example Building

1 and Building 2. In this case, the packet can be routed through nodes that
may have both features available through the same neighbor. Eventually, it will
be dropped by a sensor node that routes packets to this group through differ-
ent nodes. Creating an invalid address with the location feature usually will not
cause a lot of unnecessary traffic, however putting for instance only temperature

and light into an address will cause global network flooding even if there is no
node defining both features.

To alleviate this problem, a packet drop may be signaled by an ICMP packet,
so that the user can avoid sending packets with the address in the future. Another
problem arises if there are nodes defining for instance both temperature and

light, but the rest of nodes defines only one of them. In such a case, a new
feature temperature light shall be defined allowing to efficiently query both
types of nodes. However, the problem heavily depends on applications and will
not occur in well configured network (as indicated above).
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5 Related Work

Huang et al. proposed a spatio-temporal multicast protocol called mobicast that
distributes a message to nodes in a delivery zone that evolves over time in some
predictable manner [1]. Flury et al. focused on efficient algorithms for routing:
they provide close to optimal unicasting and constant approximations to anycast
and multicast with small routing tables of a bounded size [2]. Su et al. described
oCast, an energy-optimal multicast routing protocol for wireless sensor networks
[3]. The authors take into account networks operating under intermittent connec-
tivity resulting from duty-cycling and consider small multicast groups. All three
solutions focus more on constructing the minimal spanning tree than proposing
an addressing scheme, which gives an opportunity to apply them in our future
work.

As mentioned earlier, Directed Diffusion [4,5] is a data dissemination protocol
in which sensor nodes attach attributes (name-value pairs) to generated data.
Nodes interested in some attributes send interests that propagate in the net-
work and in response, sensors send unicast packets to the interested nodes. The
approach is similar to ours, but Directed Diffusion uses attributes for the sensed
data and not for sensor nodes, focusing more on a publish/subscribe approach.
Moreover, Directed Diffusion uses the packet payload and not addresses to con-
vey attributes. The routing approach is also completely different from ours. To
contact nodes, Directed Diffusion performs global flooding every time, later es-
tablishing a path between the sender and the recipient, which in our case would
be inefficient.

Content-Centric Networking (CCN) focuses on content considered as a com-
munication primitive [12]. It is designed for dissemination of data objects in the
Internet and basically operates as a Publish-Subscribe system: each data object
has a name and are sent to a subscriber in response to interests sent to publish-
ers. Caching content is one important aspect that contributes to speed up the
delivery of objects.

6 Conclusion and Future Work

We have presented Featurecast, a one-to-many communication primitive de-
signed for Wireless Sensor Networks. In our proposal, nodes can create addresses
representing some properties of nodes without any coordination or without an
external name server. To support routing to Featurecast addresses, nodes dissem-
inate features in the network so that intermediate nodes can merge the features
of nodes reachable on a given link for further packet forwarding.

Our comparisons with LN and IP Multicast show very good performance
of Featurecast. The application of Featurecast to the building control scenario
supports our view that such a primitive can greatly simplify the process of sensor
application development—it is possible to introduce already existing applications
into a completely new environment without any changes to the code or relying
on external systems like DNS or DHCP.
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Featurecast defines a simple abstraction based on predicates that enables the
reuse of IPv6 addresses and results in efficient memory usage and simple pro-
cessing at nodes. We believe that such ability can be crucial for integration with
existing systems. Even if our implementation is dedicated to wireless sensor net-
works and the Contiki IPv6 stack, it remains generic and flexible so it may adapt
to other use cases.

Acknowledgements. This work was partially supported by the French Na-
tional Research Agency (ANR) project IRIS under contract ANR-11-INFR-016
and the European Commission FP7 project CALIPSO under contract 288879.

References

1. Huang, Q., Lu, C., Roman, G.C.: Spatiotemporal Multicast in Sensor Networks.
In: Proc. ACM SenSys, pp. 205–217. ACM, New York (2003)

2. Flury, R., Wattenhofer, R.: Routing, Anycast, and Multicast for Mesh and Sensor
Networks. In: IEEE INFOCOM (2007)

3. Su, L., Ding, B., Yang, Y., Abdelzaher, T.F., Cao, G., Hou, J.C.: oCast: Opti-
mal Multicast Routing Protocol for Wireless Sensor Networks. In: Proc. of ICNP,
pp. 151–160 (2009)

4. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: a Scalable and
Robust Communication Paradigm for Sensor Networks. In: Proc. of MOBICOM,
pp. 56–67 (2000)

5. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
Diffusion for Wireless Sensor Networking. IEEE/ACM Trans. Netw. 11, 2–16 (2003)

6. Hebden, P., Pearce, A.: Data-Centric Routing Using Bloom Filters in Wireless
Sensor Networks. In: Proc. of ICISIP 2006, pp. 72–78 (2006)

7. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-
col. In: Proc. ACM SenSys, Berkeley, CA, USA (2009)

8. Winter, T., et al.: RPL: IPv6 Routing Protocol for Low power and Lossy Networks.
RFC 6550, IETF (2012)

9. Dunkels, A., Grönvall, B., Voigt, T.: Contiki—a Lightweight and Flexible Oper-
ating System for Tiny Networked Sensors. In: IEEE EMNETS, Tampa, Florida,
USA (2004)

10. Rahman, A., Dijk, E.: Group Communication for CoAP. IETF draft-ietf-core-
groupcomm-07 (2013)

11. Mottola, L., Picco, G.: Logical Neighborhoods: A Programming Abstraction for
Wireless Sensor Networks. In: Proc. IEEE DCOSS (2006)

12. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking Named Content. In: Proceedings of CoNEXT 2009, pp. 1–12.
ACM, New York (2009)



RoCoCo: Receiver-Initiated Opportunistic Data

Collection and Command Multicasting for WSNs

Andreas Reinhardt1 and Christian Renner2

1 TU Clausthal, Clausthal-Zellerfeld, Germany
andreas.reinhardt@tu-clausthal.de

2 Universität zu Lübeck, Lübeck, Germany
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Abstract. Many data collection protocols have been proposed to cater
for the energy-efficient flow of sensor data from distributed sources to a
sink node. However, the transmission of control commands from the sink
to one or only a small set of nodes in the network is generally unsup-
ported by these protocols. Supplementary protocols for packet routing
and data dissemination have been developed to this end, although their
energy requirements commonly thwart the low-power nature of data col-
lection protocols. We tackle this challenge by presenting RoCoCo in this
paper. It combines data collection and dissemination by extending the
low-energy ORiNoCo collection protocol by means to reconfigure sub-
sets of nodes during runtime. Synergistically leveraging existing message
types, RoCoCo allows for the definition of multicast recipient groups
and forwards commands to these groups in an opportunistic fashion. Re-
lying on Bloom filters to define the recipient addresses, RoCoCo only
incurs small memory and energy overheads. We confirm its feasibility by
evaluating the introduced delays, command success rates, and its energy
overhead in comparison to existing collection/dissemination protocols.

1 Introduction

Wireless sensor networks (WSNs) are often used to collect environmental param-
eters from a range of locations at a single sink node. As the underlying embedded
sensing devices are commonly confined in their available energy budget, many
energy-efficient data collection protocols have been developed (e.g., [30,9,4]).
These protocols are optimized for the predominant traffic type in WSNs, namely
data being relayed from sensor nodes towards the sink, and thus allow for in-
creased operational times of such networks. As collection protocols generally do
not provide support for the transmission of messages from the sink to one or
multiple nodes, however, changing the network configuration during runtime is
complicated. If supported by the collection protocol at all, control messages (e.g.,
to change a node’s sampling rate or to temporarily suspend its data collection)
can only be flooded to all devices in the network. Besides drastically increas-
ing the network’s energy demand, having to flood each control message näıvely
through the network also represents a scalability issue.
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To alleviate this problem, dedicated WSN routing protocols have been devised
(e.g., [29,8]). As they mostly focus on low delays while their energy consumption
only plays a secondary role, however, they effectively defeat the data collection
component’s low-power operation when both are combined. Due to the inherent
differences between data collection and control command routing, the simple
combination of two such solutions is also generally suboptimal in terms of the
resulting performance and energy expenditure. In order to overcome these limi-
tations, we present RoCoCo, a sophisticated fusion of data collection and control
command multicasting. Based on the low-energy ORiNoCo data collection pro-
tocol [27], it follows the primary objective of allowing for enduring operation on
a tight energy budget. At the same time, RoCoCo seamlessly integrates com-
mands and routing information into the messages used by the collection protocol
in order to transfer packets from the sink to any set of nodes in the network. As a
result, reconfiguration and control of individual devices becomes possible during
runtime with RoCoCo at a small energy overhead. Our approach is very differ-
ent from existing routing protocols like RPL [29], where a measurable amount
of routing information needs to be stored at the nodes. Instead, RoCoCo relies
on probabilistic data structures of constant size to make its routing decisions.
We make the following contributions in this paper:

– We briefly revisit the fundamental mechanisms behind ORiNoCo and provide
more detail on how destination addresses are specified by RoCoCo.

– We present RoCoCo’s underlying design decisions in more detail, and high-
light how it opportunistically combines energy-efficient data collection and
the possibility to emit control commands to sets of nodes.

– We evaluate our solution in comparison to existing combinations of collection
and dissemination protocols by means of testbed experiments as well as high-
resolution power measurements.

2 Problem Statement and Background

The collection of data from distributed sensors has manifested itself as the pri-
mary application domain of WSNs. A myriad of corresponding deployments
have been presented in literature, including the observation of volcanoes [28],
glaciers [19], and the spreading of animal species [13]. With batteries represent-
ing the predominant energy source for the distributed nodes, however, the sensors
are bound to tightly restricted energy budgets. To still achieve reasonable opera-
tional times, data collection protocols (e.g., MintRoute [30], CTP [9], Dozer [4])
were designed to forward data to the sink in an energy-efficient manner.

While catering to the transmission of data from the nodes to the sink, send-
ing control commands from the sink to individual nodes or groups of nodes is
generally beyond the capabilities of these protocols. In real applications, it may
however be necessary to reconfigure a subset of nodes during runtime. Exist-
ing protocols to distribute such messages with a high probability of reaching
the destination node thus often rely on broadcasting the data through the net-
work, either by means of simple flooding or by using dissemination protocols
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Fig. 1. Fundamental operation principle of ORiNoCo (B: beacon, D: data)

like Trickle [16], Drip [26], or DIP [17]. None of these protocols has, however,
been designed to transmit commands to a subset of nodes only, and neither have
they been developed with a focus on their seamless integration with existing
collection protocols. Instead, dissemination protocols are commonly orthogonal
to the underlying data collection protocol, making them easily interchangeable
at the price of lower energy efficiency due to the separation of components.

In this paper, we overturn this traditional separation of components by pre-
senting RoCoCo. It combines an energy-efficient data collection protocol with
means to control individual nodes or groups of nodes. We show how the fusion
of functionalities can lead to a dissemination of control data at little energy
overhead. Likewise, due to the use of probabilistic data structures to store the
destination set for control commands, only little extra memory is required. Fi-
nally, by piggybacking control commands on messages that are sent by the data
collection protocol in any case, no extra packet overhead is introduced. RoCoCo
represents a novel combination of collection and dissemination protocols, yet it
builds on a contribution that we have made in prior work. We thus briefly revisit
ORiNoCo as follows to cater for a better understanding.

2.1 ORiNoCo: Opportunistic Data Collection

The opportunistic receiver-initiated no-overhead collection (ORiNoCo) protocol
is a data-collection protocol for low-power sensor networks [27]. To achieve low
power consumption, ORiNoCo duty-cycles the radio and bases its communica-
tions on low-power probing. Figure 1 illustrates a packet forwarding procedure
from sender S to receiver R. Both nodes switch on their radio periodically to
send short beacons that advertise their readiness to receive a packet. Each of
these beacons contains a metric that models the node’s path cost when forward-
ing to the sink, e.g., the hop count. If no data packet is received as response to
the beacon within a short period Thld, the node switches off its radio again and
waits a time Tslp, the sleep interval, before transmitting its next beacon.

If a node S has either created a data packet itself or needs to forward data
from other nodes, it switches on its radio and waits for beacon messages. Upon
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reception of a beacon, S decides whether to send its data packet depending on
the path cost metric contained in the beacon. If the beacon’s sender R offers
a suitable cost, i.e., it is closer to the sink, S transmits its data packet after a
small random back-off (at most Thld). Successful packet reception is acknowl-
edged by R through a beacon addressed to the data sender. Upon reception of
the acknowledging beacon, S switches off its radio, if there are no more pack-
ets, or continues transmitting further packets to R. Acknowledging beacons are
overheard by all nearby nodes with data to send and thus continue to serve their
purpose as invitations to send data. The random back-off before packet trans-
missions is used to prevent collisions, should there be more than one node with
data to send. If S overhears a data packet to R (during its back-off), it aborts its
sending process and waits for the next beacon. Finally, acknowledging beacons
are also used to maintain the path cost metric of each node. In case the hop count
metric is being used to describe the path cost, this means that a node adapts its
distance to the lowest value in its vicinity plus one. To cope with link failure and
changing network topology, a node resets its distance metric to a large value, if it
does not receive an appropriate beacon to forward its data within a predefined
time interval. In summary, ORiNoCo builds a tree-like routing structure that
relies on a path cost metric to ensure that messages are only relayed towards the
sink. Instead of maintaining static routes, however, each node opportunistically
forwards data to any node that is closer to the sink. ORiNoCo thus has a better
response to changing channel qualities and does not require nodes to maintain
routing state information locally.

3 RoCoCo: Combining Opportunistic Data Collection
and Control Command Multicasting

Extending a data collection protocol by means to transfer control messages from
the sink to data collecting nodes poses a number of challenges. Especially as our
primary objective is to retain the collection protocol’s low power consumption,
avoiding the energy overhead introduced by additional packet transmissions is
of utmost importance. We thus present in this section how the newly introduced
RoCoCo data fields are symbiotically combined with existing messages.

3.1 Destination Addressing

By convention, the sink is the final destination for all data packets in collection
WSNs. Control messages, in contrast, are emitted by the sink and addressed to
one or more nodes in the network. A first required step towards the distribu-
tion of a control command is thus the specification of its intended recipients.
Existing protocols only support addressing a single node [29] or all nodes in the
network [16,17]. We, however, argue that subsets of a WSN (e.g., nodes fitted
with certain sensor types, boards of a certain hardware revision, or spatially
co-located devices) may also be recipients for an emitted control command. We
hence specifically design RoCoCo such that control messages can be addressed to
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a multicast receiver set. Depending on the number of entries, however, the set can
potentially grow very large. Additionally, for WSN operating systems without
dynamic memory allocation, a worst-case amount of memory must be allocated
when growing lists of destination node identifiers need to be accommodated. The
usage of a memory structure with constant overhead is thus inevitable to cater
for the scalability to networks with a large number of nodes. Hence, we have cho-
sen to store the set of recipient addresses for each control message in a Bloom
filter [3]. The use of Bloom filters also represents the major difference to other
WSN routing schemes1, because it eliminates the need to maintain dynamically
expanding lists of routable destinations.

Due to the constant memory demand of Bloom filters (BFs), the required
buffers can be statically allocated, which strongly contributes to their perfor-
mance on embedded systems. Because an infinite number of entries can be added
to a BF, they also fulfill the requirement for message multicasting. Only the risk
of false positives due to their probabilistic nature represents a downside of their
usage. This potentially leads to situations in which a node may receive and ex-
ecute a command although it was not among the intended recipients. As the
BF is populated at the sink, where the identities of all data collecting nodes are
implicitly known from the data collection, however, false positives can be de-
tected before the command has been emitted. Details about the implementation
and dimensioning of the Bloom filters used in RoCoCo are provided in Sec. 4.1,
where we also analyze the introduced energy overhead.

3.2 Command Definition

Once a control message has reached its destinations, the action to take must be
determined. To achieve fast reaction times, we have decided in favor of storing
command identifiers within the control message. For this purpose, a field of
one byte has been added to each control message, for which we have defined
an initial configuration, including, e.g., commands to change the sampling rate.
Please note that RoCoCo is not bound to the one byte limit for the command
fields and can easily accommodate larger command definition fields. As a result
of mapping the range of commands to internal functions, commands from the
defined set can be immediately executed upon reception of a control message.
For the transfer of larger command payloads, a reserved command identifier
prompts the receiving nodes to fetch the actual command data from the sink.

3.3 Duplicate Detection

Due to the fluctuating channel qualities in WSNs, multicast control messages
may reach the same node twice or even more often. However, some commands
(e.g., requests to transfer a node’s complete history of collected data) should

1 With the exception of our previous work CBFR [21] and Duquennoy et al.’s
ORPL [8], neither of which however supports multicast addressing.
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Fig. 2. Visual comparison of ORiNoCo and RoCoCo communication sequences for the
transmission of 2 data packets. Fields added by RoCoCo are highlighted.

only be executed once upon the first reception of the control message. In or-
der to avoid the repeated execution of commands, we have thus incorporated
a version number into the RoCoCo control messages. This two byte field is in-
cremented whenever the sink has made any changes to at least one of the two
aforementioned control fields (destination set and command identifier). As a
version number thus inherently relates to a set of destination nodes and the
command to execute, it can be used as a shorthand form to refer to these fields.
As a result, RoCoCo uses version numbers not only as a means to avoid the
duplicate execution of commands, but also to identify if a node in the network
holds a newer/older command and thus needs updating. As version numbers are
assigned by the sink, their consistency throughout the network is guaranteed.

3.4 RoCoCo Messages

As highlighted above, we assume a WSN in which data collection plays a major
role, whereas the dissemination of control commands happens significantly less
frequently. Our primary design goal has thus been to integrate the routing in-
formation fields described above into ORiNoCo in a way that retained its ultra
low-power operation. As a result, RoCoCo leverages ORiNoCo’s existing peri-
odic beacon and data messages in a synergetic fashion instead of defining its own
message types. As follows, we describe RoCoCo’s modifications to the existing
packets, that result in no additional overhead on regular beacon transmissions
and only a single field added to each data packet.

Extended Beacon Messages. Beacons are being sent by potential packet re-
ceivers and both serve as invitations to send as well as acknowledgments for
previous data transmissions. We thus leverage them in order to disseminate con-
trol messages into the network by means of the three control message fields
described above. By default, however, these optional fields are not part of trans-
mitted beacons; beacon sizes thus are unchanged in comparison to ORiNoCo.
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Only when sender and receiver of a data message carry different versions of their
routing information (cf. Sec. 3.5), these fields are transmitted in order to update
the receiving node with the latest routing information. For the sake of clarity, we
term the beacon messages that bear none of RoCoCo’s newly introduced fields
(destination set, command identifier, version number) as short beacons. We re-
fer to beacons that contain these three entries as long beacons. To enable the
receiver to interpret the beacons correctly, a flag was added to the previously
existing ORiNoCo beacon flags field to distinguish beacon types.

Extended Data Messages. Similar to the beacons, the main objective when
modifying the second-most frequently used message type, i.e., data messages,
was to keep the introduced overhead small. In addition to the application-defined
payload, RoCoCo thus only relies on the version of the local routing information
to be transmitted along with data packets. All data packets have been augmented
by the version field that identifies the current routing information version of
their sender. The data recipient is thus implicitly able to detect whether its
communication partner has outdated routing information. If this is the case, a
long acknowledgment beacon can be easily used to update the data source to
the current routing version. In case both devices share the same version of the
routing information, the data message is acknowledged using a short beacon.

Command Confirmation Messages. Finally, we added a new message type,
allowing nodes to acknowledge to the sink that they have received and executed
a command. This confirmation message is a regular data packet and contains
the control message version number.

3.5 Summary: RoCoCo vs. ORiNoCo Communication Flow

In Fig. 2, we visually compare the communication flows of ORiNoCo andRoCoCo.
While ORiNoCo would only transmit the contents shown in black and white, the
fields newly added by RoCoCo and required for the control command multicast-
ing are highlighted. The operation annotation on the right-hand side represents
the comparison between the received and node’s local version. After the first data
transmission, the destination has detected a mismatch between its local and the
received version, such that the returned acknowledgment beacon is augmented
by the control command data. Subsequently transmitted data packets reflect the
newest version number, thus the destination only transmits short acknowledging
beacons for all successive packet transmissions. Direct neighbors of the sink hence
receive the updated routing information as soon as they have transmitted a packet
(cf. Sec. 2.1). Still, consistent with the opportunistic nature of the data collection,
we need to point out at this point that there is no guaranteed time bound for a
control command to reach its destination.
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4 Evaluation

We conduct practical evaluations of RoCoCo in order to prove both its ultra
low-power operation and its potential to route control messages to sets of nodes.

4.1 Bloom Filter Dimensioning and Beaconing Energy Consumption

In RoCoCo, we calculate the hash functions according to Bob Jenkins’ Integer
hashing2. In case multiple hash functions are being used, the input data is com-
bined with index of the hash function (similar to the notion of a cryptographic
salt) prior to hashing. Bob Jenkins’ hash has particularly been chosen because
of its speed and its minimal resource demand on motes [21]. In order to add a
destination address to the BF, we take the output of each hash function modulo
the size of the Bloom filter and set the resulting bit offsets in the BF.

As BFs are present in all long beacon messages, their length has an immediate
impact on the protocol’s energy consumption. Choosing small BF sizes thus
seems desirable to minimize the energetic overhead, however, it simultaneously
increases the risk of false positives. In contrast, larger BFs increase the size
of long beacons and thus inherently incur a higher energy demand for their
transmission. We hence analyze the tradeoff between BF size and the energy
demand for its transmission. To this end, we determine the likeliness of collisions
by inserting 120 sequential 16-bit node addresses into Bloom filters of 8, 24,
and 64 bytes in size. In the experiment, we vary the number of hash functions
from 1 to 3. The averaged collision results for 50,000 runs of the experiment
with different initial addresses are shown in Fig. 3. It can be observed that the
usage of a single hash function has a higher probability of collisions when a small
number of addresses are inserted into the filter. At the same time, however, a
larger number of hash functions leads to more collisions when more elements are
inserted into the BF. A tradeoff for both the filter size and the number of hash
functions thus needs to be found depending on the application’s requirements.

The number of nodes expected in the network and the permitted degree of
false positives are, however, not the only criteria used for dimensioning the BF.

2 Available at http://burtleburtle.net/bob/hash/integer.html

http://burtleburtle.net/bob/hash/integer.html
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Table 1. Energy demand of beacon transmissions

BF size Energy Overhead

none 155.4 �J reference
4 bytes 181.3 �J 16.7%
8bytes 199.4 �J 28.3%
12 bytes 224.4 �J 44.3%

BF size Energy Overhead

16 bytes 231.2 �J 48.7%
20 bytes 249.7 �J 60.6%
24 bytes 275.9 �J 77.5%
28 bytes 295.7 �J 90.3%

BF size Energy Overhead

32 bytes 326.5 �J 110.1%
40 bytes 369.2 �J 137.5%
48 bytes 413.2 �J 165.8%
64 bytes 433.5 �J 179.0%

Choosing its size also depends on the allowed energy consumption that is in-
curred by transmitting larger routing information packets. We have thus measured
the energy demand to transmit Bloom filters of different sizes, and show the
results in Table 1. All measurements were collected by means of a Hitex Power-
Scale [12] unit and represent the mean energy consumption as determined from
three to five packet transmissions each. The table confirms that the transmission
of filters has a direct impact on the energy demand over regular short beacons,
with Bloom filters of 64 bytes almost tripling the beaconing energy demand.

4.2 Testbed Evaluation Setup

For all testbed experiments, we have used the following parameter set unless
stated otherwise. Each node created collection data packets at an interval of
1min. The time of the first packet was randomly chosen within the first 1min
after node reboot to simulate the behavior of an asynchronously started and
operated network. Buffering queues were installed on each node with a length of
30 packets to cater for intermittent disconnection of nodes in the network due
to bad radio conditions, or when incoming packets needed to be buffered before
forwarding. Unless congestion occurred, collection data were thus generally sent
during the next transmission opportunity. On the data collecting nodes, the
mean sleep interval Tslp has been set to 750ms with a random variation of 10%.
In order to achieve higher delivery, the sink has been configured to provide
opportunities to receive data (by sending beacons) every 125ms. For all nodes,
we used a waiting time of Thld = 8ms. We employed the hop count as path cost
metric and enabled the duplicate detection built into ORiNoCo.

We conducted our experiments on WiseBed (Lübeck site) [6]: This testbed is
comprised of 54 TelosB nodes, numbered from 0 to 70, with each fourth address
unallocated and 36 functioning nodes at the time of evaluation. Due to the size
of this testbed, we have used a Bloom filter of 8 bytes in size. In all experiments,
the sink issued a new command every 10min. In order to study command and
confirmation success rates and delays with an equal number of commands sent
to each node, the sink always added all nodes to the BF. We conducted three
experiments with different transmission powers (0 dBm, −7 dBm, and −15dBm)
to study the impact of connectivity, network depth, and density. Each experiment
was run for at least 20h, equivalent to 120 commands issued by the sink.
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Fig. 4. Command and confirmation delay for −7 dBm transmission power. Nodes are
ordered by average hop count. The figure also shows the average data (collection data
and confirmations) send interval. Error bars indicate the single standard deviation.

4.3 Command and Confirmation Delays

A crucial measure for control systems is the reaction time, or command delay, of
a node. By design (of RoCoCo), a node can only receive updated beacons when
it has data to send and when (at least one of) its neighbors has already received
the update. Therefore, the command delay to a node depends on several factors,
of which the most important ones are (1) the data send interval of a node (i.e.,
its traffic rate), (2) its distance to the sink (in hops), and (3) the command delay
to its neighboring nodes that are closer to the sink (i.e., its potential parents).

A detailed study is presented in Fig. 4. It shows the general trend that nodes
with a similar data send interval (second row) exhibit a similar command de-
lay (third row). Note that the data send interval may be smaller than 1min
(cf. Sec. 4.2), because nodes also forward (send) remote data. Data send inter-
vals and, hence, command delay are highly topology-dependent. The figure also
indicates an impact of the distance to the sink (first row) on the command delay.
For nodes close to the sink, however, the data send interval is the dominating
factor; e.g., compare nodes 1 and 4. However, the figure reveals exceptional be-
havior, e.g., nodes 2 and 53 have an equal hop count and a similar command
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Fig. 5. Effect of network density on the relationship of command delay vs. send interval
and hop count, respectively

delay, yet their send intervals differ by a factor of almost two. This is due to
asynchronous packet creation among all nodes (cf. Sec. 4.2) and more likely for
nodes with low traffic. In contrast, the confirmation delay is mainly affected by
the hop count, as confirmations are sent as regular collection data packets. Vari-
ations stem from link qualities and the number of neighbors per node. Results
for the two experiments with different transmission power settings are similar.

Figure 5 analyzes the impact of network density. For dense networks (0 dBm),
hop counts are lower while send intervals are longer, because shorter paths result
in less traffic per node. For sparse networks (−15 dBm), hop counts are higher
while send intervals are shorter, because longer paths result in more traffic per
node. As a consequence, the spread of command delay is higher for sparse net-
works. However, some nodes (those close to the sink with a high traffic load)
achieve extremely low command delays, whereas nodes with high distance to
the sink are faced with longer command delays.

Next, we consider the command execution confirmation that is sent when-
ever a node has received a control message. As this confirmation travels in the
usual direction (i.e., where all collected data flows) and represents an individual
packet, its collection is considerably faster than the distribution of command
messages in many cases. We assessed the round-trip time from the time when
the sink issues a new command (i.e., it updates the Bloom filter) and finally re-
ceives the confirmation. For dense networks (0 dBm) the round-trip time is very
close to the command delay. Due to the low hop count and the high number
of potential parents, confirmations are reliably and quickly transported to the
sink. On the contrary, the round-trip time may considerably deviate from the
command delay in sparse networks, where long paths and few potential parents
exist. This is supported by Fig. 6, which portrays the fraction of the round-trip
time (RTT) caused by the confirmation. For the dense network setup, this value
stayed below 14% in all cases, while it exceeded 56% in ten cases for the sparse
network (not shown in the figure).
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Table 2. Average node power consumption for RoCoCo and existing protocols

TX power CTP CTP/Drip CTP/DIP CTP/DHV ORiNoCo RoCoCo

0 dBm 2.0mW 3.9mW 2.0mW 4.5mW 1.4mW 1.4mW
−15 dBm 1.6mW 3.8mW 2.0mW 4.5mW 1.4mW 1.4mW

4.4 Command Success Rates and Energy Penalty

To assess the quality of command dissemination in RoCoCo, we analyzed the suc-
cess rates of command and confirmation reception. For the former, we calculated
the percentage of received command messages (regardless of their destination)
per node. For the testbed experiments with 0 dBm and −7 dBm, all commands
and confirmations were received. For the experiment with −15dBm, the com-
mand reception rates of all nodes range from 96% to 100% with the exception of
a single node with only 90%. The percentage of command confirmations received
at the sink is between 99% and 100%.

We also assessed the energy consumption penalty of RoCoCo vs. ORiNoCo
by analyzing the percentile of long beacons compared to the overall number of
beacons. The per-node percentile ranges from 0.1% to 1.5%. Across the entire
network, the percentile of long beacons is between 0.2% and 0.4%. For a Bloom
filter size of 8 bytes this equals an additional energy expenditure of less than
0.11% across the entire WSN and of less than 0.42% per node. We did not
analyze the additional energy consumption incurred by the extra version field in
data packets, because the impact of data packet length is minor compared to the
energy consumption due to waiting for a beacon. This, however, represents the
main source of energy consumption of asynchronous low-power MAC protocols.

4.5 Comparison against Existing Protocols

In order to put RoCoCo’s energy demand into perspective, we have compared
it against a combination of the well-known data collection protocol CTP [9]
and the dissemination protocols Drip [26], DIP [17], and DHV [7]. We used the
publicly available TinyOS implementations of these protocols and enabled the
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low-power listening MAC. The protocols were configured to use the same param-
eters as stated in Sec. 4.2, however with the command creation rate increased
to one update per minute. The experiments were run in a one-sink one-node
configuration, and the average energy consumption of the data collecting node
has been practically determined for each protocol combination. The results are
shown in Table 2 for transmission power settings of 0 dBm and −15 dBm. Besides
highlighting that RoCoCo does not increase the energy demand of ORiNoCo
measurably, the results also confirm that the RoCoCo node requires 30% less
energy than the next most energy-efficient approach that combines collection
and dissemination (CTP/DIP).

The combination of CTP/Drip was also run on the testbed, and statistics
about the success rates plus command and confirmation delays were collected.
While success rates of distributed commands are similar, CTP causes a lower
success rate of confirmations; e.g., the latter ranges from 83% to 99% for the
experiment with 0 dBm. It is even lower in the other experiments. Moreover,
Fig. 7 shows the delays for an experiment with a transmission power of −7 dBm.
In a few cases, CTP/Drip leads to a speedup factor in excess of 25 for nodes with
a low command delay and close distance to the sink (primarily one- and two-hop
neighbors). This speedup reduces to a factor of 10 to 25 for nodes farther away
from the sink. Round-trip speedups are also around a factor of 10 for these nodes.
Results for the other two experiments are similar. While the delay of command
confirmations is similar between CTP/Drip and RoCoCo, command delay (and
hence round-trip time) is higher for RoCoCo by design. However, note that
RoCoCo has deliberately been designed to accept an increased command delay
in favor of its low-power operation, while its delays (on the order of seconds) are
still practical for many WSNs.
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5 Related Work

Data collection in WSNs is predominantly based on static routing trees rooted
at the sink (e.g., MintRoute [30]). With the introduction of opportunistic data
collection, however, the restriction that each node may at most have one single
parent has been removed. This possibility to choose another node for forwarding
data has been shown to bear the potential for improving data throughput and
reducing energy consumption [20,2]. ORW is an opportunistic data collection
algorithm for sensor networks [15] and in some aspects similar to RoCoCo, al-
though there are notable differences. While RoCoCo does not track information
about its neighborhood explicitly, ORW relies on estimates such as the number
of potential parents and link qualities. Most other approaches also rely on assess-
ing link qualities, a difficult challenge in sensor networks due to the instability
and low predictability of low-power wireless links. Alizai et al. hence suggest to
exploit unstable, but bursty, links in [1]. Their proposed algorithm improves the
performance of multi-hop routing, although an additional energy expenditure
for link-quality estimation is still required.

In the domain of multicasting in WSNs, Sheth et al. presented the VLM2

system in [23], which caters for the routing of multicast messages by maintain-
ing stateful route information on intermediate nodes. Similarly, Chun and Tang
proposed a multicasting mechanism in [5] that relies on message flooding and
subsequent local matching against existing multicast group IDs. In both solu-
tions, nodes can only subscribe to pre-defined multicast groups; a dynamic com-
position of multicast groups is not possible. In [24] and [22], the application of
multicasting in IPv6-enabled sensor networks has been presented. The primary
goal of these works is to enable nodes to join and leave IPv6 multicast groups
during system operation. Neither the resulting energy demand nor the incurred
routing overhead are discussed in detail, and thus their applicability in WSNs
with limited energy budgets is unclear. While aforementioned approaches are
primarily based on the composition of multicast groups, a number of contribu-
tions have analyzed the optimum structure of the routing tree in order to achieve
delivery of messages at the smallest possible overhead ([25,31,14,10]). The pa-
pers however exclusively focus on routing when group memberships are known
and provide no support for the dynamic creation and adaptation of groups.

Marchiori and Han use Bloom filters in [18] in order to route multicast mes-
sages without previous computation of the optimum route. While their PIM-
WSN protocol is optimized for fast message delivery, it does not comprise a data
collection component. Furthermore, it does not specifically strive for low energy
consumption, rendering it inapplicable for energy-constrained data collection ap-
plications. Likewise, Heszberger et al. specify routing information by means of
BFs [11], but do not combine it with a data collection protocol. Only recently,
Duquennoy et al. have also presented an opportunistic point-to-point routing
extension to RPL [29] in [8]. Similar to RoCoCo, their solution relies on Bloom
filters to individually address nodes in the IPv6 space. In contrast to RoCoCo,
however, ORPL does not support addressing a message to multiple recipients.
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6 Conclusion

Due to the tightly limited energy budget of WSN nodes, ultra low-power pro-
tocols are essential to achieve long operation times. While a number of such
protocols have been proposed for data collection, emitting control commands
to the network is beyond their capabilities. We have thus presented RoCoCo,
a lightweight extension to ultra low-power data collection that allows the sink
to route control messages to sets of nodes. The fusion of data collection and
control command multicasting enables administrators to configure and control
the WSN during runtime. RoCoCo relies on Bloom filters to define the desti-
nation set and can thus operate in both small and large networks without any
modifications. Despite its opportunistic nature, practical testbed experimenta-
tion has shown that RoCoCo achieves command dissemination success rates of
96–100% with command delays in the order of tens of seconds, even in a 36-node
setting. While the observed command delays were higher than with CTP/Drip,
the additional energy expenditure incurred by its application was below 0.11%.
RoCoCo thus offers control command multicasting while maintaining the ultra
low-power operation of the underlying ORiNoCo collection protocol.
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Abstract. Wireless sensor-actuator networks (WSANs) offer an appeal-
ing communication technology for process automation applications. How-
ever, such networks pose unique challenges due to their critical demands
on reliability and real-time performance. While industrial WSANs have
received attention in the research community, most published results to
date focused on the theoretical aspects and were evaluated based on
simulations. There is a critical need for experimental research on this
important class of WSANs. We developed an experimental testbed by
implementing several key network protocols of WirelessHART, an open
standard for WSANs widely adopted in the process industries, including
multi-channel TDMA with shared slots at the MAC layer and reliable
graph routing supporting path redundancy. We then performed a com-
parative study of the two alternative routing approaches adopted by
WirelessHART, namely source routing and graph routing. Our study
shows that graph routing leads to significant improvement over source
routing in term of worst-case reliability, at the cost of longer latency and
higher energy consumption. It is therefore important to employ graph
routing algorithms specifically designed to optimize latency and energy
efficiency.

1 Introduction

Process automation is crucial for process industries such as oil refineries, chem-
ical plants, and factories. Today’s industry mainly relies on wired networks to
monitor and control their production processes. Cables are used for connecting
sensors and forwarding sensor readings to a control room where a controller
sends commands to actuators. However, these wired systems have significant
drawbacks. It is very costly to deploy and maintain such wired systems, since
numerous cables have to be installed and maintained, which often requires laying
cables underground in harsh environments. This severely complicates effort to
reconfigure systems to accommodate new production process requirements.
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WSAN technology is appealing to process automation applications because
it does not require any wired infrastructure. WSANs can be used to easily and
inexpensively retrofit existing industrial facilities without the need to run dedi-
cated cabling for communication and power. IEEE 802.15.4 based WSANs are
designed to operate at a low data rate and low power, making them a good fit
for industrial automation applications where battery life is often important.

Industrial WSANs pose unique challenges due to their critical demands
on reliable and real-time communication. Violation of their reliability and
real-time requirements may result in plant shutdowns, safety hazard, or eco-
nomic/environmental impacts.

To meet the stringent requirements on reliability and predictable real-time
performance, industrial WSAN standards such as WirelessHART [15] made a
set of unique network design choices.

– The network should support both source routing and reliable graph routing:
the source routing provides a single route for each data flow, whereas the
graph routing provides multiple redundant routes based on a routing graph.

– The network should also adopt a multi-channel Time Division Multiple Ac-
cess (TDMA), employing both dedicated and shared time slots, at the MAC
layer on top of the IEEE 802.15.4 physical layer. Only one transmission is
scheduled in a dedicated slot, whereas multiple transmissions can share a
same shared slot. The packet transmission occurs immediately in a dedi-
cated slot, while a CSMA/CA scheme is used for transmissions in a shared
slot.

Recently, there has been increasing interest in developing new network al-
gorithms and analysis to support industrial applications. However, there is a
critical need for experimental testbeds for validating and evaluating network
research on industrial WSANs. Without sufficient experimental evaluation, in-
dustry consequently has shown a marked reluctance to embrace new solutions.

To meet the need for experimental research on WSANs, we have developed an
experimental testbed for studying and evaluating WSAN protocols. Our testbed
supports a suite of key network protocols specific to the WirelessHART stan-
dard and a set of tools for managing wireless experiments. We then present a
comparative study of the two alternative routing approaches adopted by Wire-
lessHART, namely source routing and graph routing. Specifically, we investigate
the tradeoff among reliability, latency, and energy consumption under the differ-
ent routing approaches. This study leads to our insight on the development of
resilient industrial WSANs that graph routing leads to significant improvement
over source routing in term of worst-case reliability, at the cost of longer latency
and higher energy consumption. It is therefore important to employ graph rout-
ing algorithms specifically designed to optimize latency and energy efficiency.

The rest of the paper is organized as follows. Section 2 describes our implemen-
tation of WirelessHART protocols and Section 3 presents our experimentation of
source and graph routing. Section 4 reviews related work and Section 5 concludes
the paper.
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2 Implementation of WirelessHART Protocols

We have implemented a WSAN system comprising a network manager running
on a server and a protocol stack running on TinyOS 2.1.2 and TelosB motes. Our
network manager implements a route generator and a schedule generator. The
route generator is responsible for generating source routes or graph routes based
on the collected network topology. We use Dijkstra’s shortest-path algorithm1

to generate routes for source routing and follow the algorithm proposed in [6]
to generate the reliable graphs. The schedule generator uses rate monotonic
scheduling algorithm [7] to generate transmission schedules.

Fig. 1. Time frame format of RT-MAC

Our protocol stack adopts the CC2420x radio driver [2] as the radio core,
which provides an open-source implementation of IEEE 802.15.4 physical layer in
TinyOS [1] operating over TI CC2420 radios. The CC2420x radio stack takes care
of the low-level details of transmitting and receiving packets through the radio
hardware. On top of the radio core, we have developed a multi-channel TDMA
MAC protocol, RT-MAC, which implements the key features of WirelessHART’s
MAC protocol. As shown in Figure 1, RT-MAC divides the time into 10 ms slots
following the WirelessHART standards and reserves a Sync window (1.5 s) in
every 1650 slots. Flooding Time Synchronization Protocol (FTSP) [8] is executed
during the Sync window to synchronize the clocks of all wireless devices over the
entire network. Our micro-benchmark experiment shows that a FTSP’s time
stamp packet can finish the traversing of the entire 55-node testbed within 500
ms. Therefore, RT-MAC configures the FTSP to flood three time stamps with
500 ms intervals over the network in each Sync window to adjust the local clocks
of all devices to a global time source, which is the local time of the mote attached
to the network manager. The time window following the Sync window consists
of recurring superframes (a series of time slots) and idle intervals. We reserve
2 ms of guard time in the beginning of each slot to accommodate the clock
synchronization error and channel switching delay, since our micro-benchmark
experiments show that more than 95% of field devices over the entire network

1 An alternative is to use expected transmission count (ETX) as the routing metric. In
practice, a shortest path is usually close to a minimum-ETX path in a WirelessHART
network because of link blacklisting using a high threshold (e.g., 80%).
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can be synchronized with errors less than 2 ms and channel switching takes
only a few microseconds to write to the registers. The rest of field devices may
disconnect from the network due to larger clock synchronization errors, but
they will be reconnected in the next Sync window after they catch the new
time stamps generated by FTSP. RT-MAC supports both dedicated and shared
slots. In a dedicated slot, only one sender is allowed to transmit and the packet
transmission occurs immediately after the guard time. In a shared slot, more
than one sender can attempt to transmit and these senders contend for the
channel using CSMA/CA.

Fig. 2. Locations of access points and field devices. The bigger yellow circles denote
the access points which communicate with the network manager running on the server
through the wired backbone network. The other circles and squares denote the field
devices. The source and destination of a flow are represented as a circle and a square,
respectively. The pair of source and destination of a same flow uses the same color.
The period of each flow is randomly selected from the range of 20∼7 seconds, which
falls within the common range of periods used in process industries.

3 Experimentation of Source and Graph Routing

Our WSAN testbed includes a four-tier hardware architecture that consists of
field devices, microservers, a server, and clients. The field devices in the testbed
are 55 TelosB motes [4], a widely used wireless embedded platform integrating a
TI MSP430 microcontroller and a TI CC2420 radio compatible with the IEEE
802.15.4 standard. A subset of the field devices can be designated as access points
in an experiment. The field devices and access points form a multihop wireless
mesh network running WSAN protocols. A key capability of our testbed is a
wired backplane network that can be used for managing wireless experiments
and measurements without interfering with wireless communication. The back-
plane network consists of USB cables and hubs connecting the field devices and
microservers which are in turn connected to a server through Ethernet. The
microservers are Linksys NSLU2 microservers running Linux. Microservers are
responsible for forwarding network management traffic between the field devices
and the server. The server runs network management processes, gathers statistics
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on network behavior, and provides information to system users. The server also
serves as a gateway and runs the network manager of the WSAN. The clients
are regular computers used by users to manage their wireless experiments and
collect data from the experiments through the server and the backbone network.

Following the practice of industrial deployment, the routing algorithms used in
our study only consider reliable links with PRR higher than 80%. We use 8 data
flows in our experiments. We run our experiments long enough such that each
flow can deliver at least 500 packets from its source to its destination. Figure 2
shows the network topology along with a set of flows used in our study. We also
repeat our experiments with two other network configurations by varying the
location of access points, sources, and destinations.

We conduct a comparative study of the two alternative routing approaches
adopted by WirelessHART, namely source routing and graph routing. Specifi-
cally, we investigate the tradeoff among reliability, latency, and energy consump-
tion under the different routing approaches. We run two sets of experiments, once
with the source routing and once with the graph routing. We repeat the exper-
iments under a clean environment, a noisy environment, and a stress testing
environments.

1. Clean: we blacklist the four 802.15.4 channels overlapping with our campus
Wi-Fi network and run the experiments on the remaining 802.15.4 channels.

2. Noisy: we run the experiments by configuring the network to use channels
16 to 19, which overlap with our campus Wi-Fi network2.

3. Stress testing: we run the experiments with channels 16 to 19 under con-
trolled interference, in the form of a laptop and an access point generating
1 Mbps UDP traffic over Wi-Fi channel 6, which overlaps with 802.15.4
channels 16 to 19.

We use the packet delivery rate (PDR) as the metric for network reliability.
The PDR of a flow is defined as the percentage of packets that are success-
fully delivered to their destination. Figure 3 compares the network reliability
under source routing and graph routing in the three environments. As shown
in Figure 3, under the first network configuration, compared to source rout-
ing, graph routing improves the median PDR by a margin of 1.0% (from 0.99
to 1.0), 15.9% (from 0.82 to 0.95), and 21.4% (from 0.70 to 0.85) in the clean,
noisy, and stress testing environments, respectively. Graph routing shows similar
improvement over source routing under the other two network configurations.
More importantly, graph routing delivers a significant improvement in min PDR
and achieves a smaller variation of PDR than source routing, which represents a
significant advantage in industrial applications that demand predictable perfor-
mance. The improvements in min PDR are 35.5% and 63.5% in noisy and stress
testing, respectively. This result shows that graph routing is indeed more re-
silient to interference due to route diversity. However, as shown in Figure 4, route
diversity incurs a cost in term of latency, with graph routing suffers an average

2 Co-existence of WirelessHART devices and WiFi is common in industrial deploy-
ments since WiFi is often used as backhauls to connect multiple WSANs.
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Fig. 3. Box plot of the PDR of source routing and graph routing in the clean, noisy,
and stress testing environments. Central mark in box indicates median; bottom and
top of box represent the 25th percentile (q1) and 75th percentile (q2); crosses indicate
outliers (x > q2 + 1.5 · (q2 − q1) or x < q1 − 1.5 · (q2 − q1)); whiskers indicate range
excluding outliers. Vertical lines delineate three different network configurations.

Fig. 4. Box plot of the normalized latency of source routing and graph routing of each
flow under graph routing over that under source routing

Fig. 5. Box plot of the normalized energy consumption of source routing and graph
routing of each flow under graph routing over that under source routing
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of 80% increase in end-to-end latency. We also estimate the energy consumption
based on timestamps of radio activities and the radio’s power consumption in
each state. As Figure 5 shows, graph routing consumes an average of 130% more
energy over source routing.

Observation: Graph routing leads to significant improvement over source rout-
ing in term of worst-case reliability, at the cost of longer latency and higher
energy consumption. It is therefore important to employ graph routing algorithms
specifically designed to optimize latency and energy efficiency.

4 Related Works

In recent years, there has been increasing interest in studying industrial WSANs.
Previous research mostly focused on network algorithms and theoretical anal-
ysis. Zhang et al. [17] developed a latency-optimal link scheduling policy and
established performance bounds for convergecast in WirelessHART networks.
Chraim et al. [3] studied the decentralized sequential hypothesis testing prob-
lems for the WirelessHART networks at the theoretical level. Franchino et al. [5]
proposed a real-time energy-aware MAC layer protocol. Han et al. [6] presented
a graph routing algorithm. Saifullah et al. presented a series of theoretical results
on real-time transmission scheduling [13], rate selection for wireless control [12],
and delay analysis [14,16]. All these works are based on theoretical analysis and
simulation studies. In this paper, we present an experimental study of WSAN
protocols on a physical testbed that implements a set of network mechanisms of
the WirelessHART standard.

There has been recent work that implemented and evaluated real-time WSN
protocols experimentally. Recently, O’donovan et al. [10] developed the GIN-
SENG system which uses a WSN to support mission-critical applications in
industrial environments. Munir et al. [9] designed a scheduling algorithm that
produces latency bounds of the real-time periodic streams and accounts for both
link bursts and interference. Pottner et al. [11] designed a scheduling algorithm to
meet application requirements in terms of data delivery latency, reliability, and
transmission power. While valuable insights can be drawn from those efforts,
the novelty of our work lies in its focus on key aspects of the WirelessHART
standard such as graph routing that was not studied in earlier work.

5 Conclusion

Industrial WSANs offer a promising technology for process automation while
posing unique challenges due to their critical demands on reliable and real-
time communication. Complementary to recent research on theoretical aspects
of WSAN design, we have implemented a suite of network protocols of the Wire-
lessHART standard in TinyOS and TelosB motes and then empirically studied
the tradeoff among reliability, latency, and energy consumption under source and
graph routing in a 55-node testbed. Our experimental results show that graph
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routing leads to significant improvement over source routing in term of worst-
case reliability, at the cost of longer latency and higher energy consumption. It
is therefore important to employ graph routing algorithms specifically designed
to optimize latency and energy efficiency.
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Abstract. We propose a Corrupt Packet Recycling (CPR) approach for
WSN that processes and forwards partially-corrupt packets over mul-
tiple hops without necessitating their complete recovery. We motivate
this approach with two insights: address-agnostic routing in WSN can
forgive header errors since intermediate nodes know the next hop and
the destination; and that payload errors can be either interpolated, due
to error-tolerant nature of information in WSN applications, or recti-
fied using spatio-temporal redundancies. CPR, without introducing any
transmission overhead, improves information delivery rate by up to 4×.

Keywords: error tolerant, multihop wireless, data collection.

1 Introduction

Partially-corrupt packets contain valuable information. Since most corrupt pack-
ets have only few symbol-errors [3,11], discarding such packets results in wasteful
information loss and reduced network efficiency in terms of reliability, latency,
energy and bandwidth. Techniques such as partial-packet recovery [4] and error
checksums [5] try to recover corrupt packets at a smaller cost than traditional
ARQ but have three limitations: First, they can only repair a small subset of
corrupt packets locally (i.e., with multiple copies) [1] discarding others for which
bit-by-bit information is not recovered. Second, they introduce undesirable trans-
mission overhead in WSN, e.g., 22-64% for FEC [5] and preamble-header dupli-
cation for partial recovery [4]. Third, they operate at PHY and link layers and
do not consider the potential for packet recovery over multiple hops.

We propose an error-tolerant approach at the network layer, called CPR (cor-
rupt packet recycling), that recycles partially-corrupt packets over multiple hops
towards the base station. The term recycling refers to processing and forward-
ing corrupt packets without necessitating their complete recovery at intermediate
nodes. CPR achieves this recycling by providing a simple, best-effort service to
locally repair header errors while concealing payload errors altogether during
multihop communication. As a result, CPR is the first approach (i) that can
recycle 100% corrupt data packets1 received at an intermediate node, (ii) has

1 All network layer data packets that bypass link layer CRC.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 242–249, 2015.
c© Springer International Publishing Switzerland 2015



Recycling Corrupt Packets over Multiple Hops 243

no transmission overhead, and (iii) and operates at network layer to facilitate
multihop operation.

CPR is enabled by two key insights of WSN characteristics: First, adress-
agnostic hierarchical routing (e.g., collection tree) results in each data packet
forwarded to a single or same set of outgoing links. This allows CPR to easily
tolerate “header errors” since, once the communication paths are established,
each intermediate node antecedently knows the next hop and the destination.
Second, we see that the nature of information in WSN is often error-tolerant :
data bytes are typically a digital quantization of analog signals from poten-
tially inaccurate and heterogeneous sensors. Thus bit-level “payload errors” are
often tolerable by WSN applications as compared to TCP/IP based networks
where fidelity of content (like files and video) remains essential. For example, in
some applications [8, 7, 12], it is useful to receive a packet even if it is corrupt
because reception itself could provide information about the sensing activity.
Furthermore, base station can utilize state-of-the-art data mining techniques or
spatio-temporal redundancies in transmissions (due to dense and overlapping
node deployments) to extract meaningful information from erroneous data.

The main goal of CPR is thus to avoid data packet drop “no-matter-what”.
For this purpose, CPR enables wireless protocols at the network layer to han-
dle corrupt packets in two steps. The first step is header recovery using domain
knowledge obtained from a history of correct packets from the same source. For
example, in a typical collection tree, if the origin field in the packet header is
undamaged, the packet sequence-number can be recovered based on the trans-
mission frequency of previous packets from the same source. The second step is
forwarding of packet, whose header has been recovered in the first step, to the
next hop in the collection tree. However, CPR can also be “stubborn” in the
second step, i.e., forward packets even if the header recovery failed to achieve
recycling of 100% network-level packets.

Contributions: (i) We motivate and design an error-tolerant approach at the
network layer that recycles corrupt packets over multiple hops (Section 2 and
3). (ii) Our preliminary results — up to 4× improvement in information delivery
rate — advocate the high utility of CPR for WSN (Section 4).

2 The Need for Recycling Packets in WSN

Figure 1 motivates the need for CPR: the number of partially-corrupt packets
varies between < 10% to > 70% on just a single hop, across different deployment
conditions. Thus, every recycled packet (i) saves retransmissions and improves
latency, energy and bandwidth efficiency, and (ii) delivers valuable information
that otherwise is completely lost due to packet drop. We see that a vast ma-
jority of WSN applications are indeed tolerant to corruption of individual bytes
and thus can benefit from recycling packets over multiple hops. We now argue
this breadth of coverage by presenting how the two broad categories of WSN
applications benefit from this approach.

Passive Collection Streams is the most common category of WSN applica-
tions with a goal to maximize the network lifetime of periodic data collection.
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Fig. 1. Average packet reception over five experiments, in each we sent 1000 packets
every 128ms, at five TelosB receiver nodes radially distributed (4.5m) around a sender
indoors. The number of corrupt packets (mismatched CRC) vary over different de-
ployment conditions depicted by tx power levels. Lost packets are not notified by the
network interface. Error bars represent standard deviation.

However, most practical deployments of WSN, from the Great Duck Island [8]
to Volcano deployment [12], report the need to revisit these deployments due to
(a) insufficient amount of data collected at sink and (b) reduced network lifetime
from excessive radio hardware utilization. CPR can help improve the information
delivery rate for these applications while reducing radio activity, thus obviate
the need for manual reprovisioning.

Another category of WSN —Active Event Detection— actively monitors the
environment for an event of interest. These applications mostly remain in a
quiescent state, generating none-to-very-little traffic, but have bursts of very
critical data generated when an event is detected. We believe that, while the
delivery of the actual data (a digitized sensor reading), is important, delivering
partially-corrupt packets still conveys meaningful information to the application.
Consider a fire-monitoring application that, on event detection, send a much
higher rate of packets reporting the intensity of fire at a particular location.
From the application perspective, even the increased rate of possibly corrupt
packet-delivery is a good indication of an alarm condition that can trigger some
appropriate response.

An orthogonal benefit in employing an error-tolerant approach becomes evi-
dent for WSN deployed in extreme communication environments, such as bur-
rows, underwater, and industrial settings. Here, scientists are known to struggle
in collecting information [9, 7] since most wireless links have poor quality. CPR
can utilize such unreliable links which are otherwise rendered useless for packet
forwarding. In a DTN based burrow deployment [7], it has been demonstrated
that turning off CRC allows efficient neighborhood discovery without imposing
correct packet reception.

These examples above motivate the case for recycling corrupt packet in WSN.
We now focus on the design of one particular instance of CPR approach to
facilitate its implementation in real-world and evaluate its benefits.
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3 Designing an Instance of CPR

Using CPR, we can either develop a new routing system or upgrade an existing
protocol. Here we focus on the latter to emphasize on the CPR approach itself
rather than on protocol development related intricacies. When integrated with
existing protocols, the design of CPR is strongly dependent upon the host pro-
tocol. Therefore, we first select a host protocol and then detail our customized
solution.

3.1 The Host Protocol and Its Header

We use CTP [2], a widely used collection protocol for experimentation, as the
host protocol. We revisit each field in the CTP packet header to investigate if it
is necessary for each field to be received correctly for successful packet delivery
to the collection root. We find that an error in almost all these fields could be
ignored or repaired to improve data delivery in the network. In our scheme, a few
correctly received packets provide enough context to a node to repair these fields
in partially-corrupt packets. Unlike single-hop error-tolerant techniques used in
protocols such as Refector [10] and UDP Lite [6], our scheme can successfully
fix and forward a corrupt packet over multiple wireless hops.

P: Routing pull (1 bit) - The nodes use the P bit to request routing infor-
mation from other nodes. If this bit is flipped 0 to 1, we may have unnecessary
control packets. If this bit is flipped 1 to 0, the control information may be de-
layed until correct reception in the future. In either case, we can continue to
forward the data packet. We can use similar argument for the next four header
fields — congestion notification (1 bit), reserved (6 bits), THL (1 byte),
and ETX (1 byte) — as their integrity may be ignored temporarily to prevent
dropping packets that can be successfully forwarded. THL and ETX are used to
avoid loops which rarely occur in CTP [2].

Origin (2 bytes) - The originating address of the packet. This field is not
essential for packet forwarding. An error in this field may cause a duplicate
packet cache miss decreasing the effectiveness of duplicate suppression – a small
price to pay instead of dropping a multihop packet. It is possible to recover this
field in a corrupt packet by correlating its length, ETX, and/or seqno with a
sample of correct packets from the same source.

Seqno (1 byte) - Origin sequence number: The seqno field is required
to uniquely identify packets from the same source. This field can be recovered
if the origin field in the packet is undamaged, for example, by observing the
transmission frequency of previous packets from the same origin. Moreover, as for
the origin field, sampled header information from previous successful packets
can be used to recover this field.

Collect id (1 byte) - Higher-level protocol identifier: This field only needs to
be recovered if CTP is serving multiple flows, which is not a frequent phenomena
in application-centric WSN. Apart from the mechanism advocated for origin

and seqno above, this field additionally provides the possibility of manually
increasing Hamming distances (i.e., the number of differing bits between two bit
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Fig. 2. The decision tree for repairing routing headers

strings) between collect id of different flows. An incoming packet at the base
station with a corrupt collect id can be assigned to the flow with minimum
hamming distance.

Data (max 128 bytes for IEEE 802.15.4) - the payload. This is the don’t
care part of the packet from CPR perspective since our goal is to conceal payload
errors until packet reaches its intended destination.

Overall, we can conclude that errors in most header fields of a collection
protocol can be repaired with the knowledge of the protocol and application and
the tradeoffs we are willing to make. Important fields, such as origin, can be
recovered if some of the header fields are correctly received.

3.2 Header Recovery Algorithm

Our algorithm is based on decision tree classification method which selects a
class by descending a tree of possible decisions. Each internal node in the tree
corresponds to one of the input variables. While descending the tree, at each
node, the corresponding input variable is compared with a threshold value. This
threshold value is determined based on training data, which, in our case, is a
history of K correct packets from a particular origin. One of the two child nodes
is then selected based on the result of the comparison until leaf node, that is the
final prediction, is reached. For example, in a corrupt packet, we can determine
whether or not the origin field (input variable) is corrupt by observing if the
node has recently received packets from the same origin (threshold value from
training data).

We use decision tree analysis because of its suitability for WSN: it is simple
to implement, compute and respond when compared with alternative methods
such as neural networks. One possible instance of CPR’s decision tree is shown in
Figure 2. The position of nodes in this tree can change based on the information
gain from the training data, e.g., the origin node can be replaced by length

node and vice versa.
Please note that CPR only targets data packets. Corrupt control packets

are immediately dropped as (i) they are typically not retransmitted and (ii)
they carry vital information necessary to maintain a robust network topology.
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Fig. 3. Average (of three experiments) packets received at sink node, out of 1000
transmitted, by a sender node at one end of a linear five-hop topology with inter-node
spacing of 4.5m. CPR, with corrupt packets being recycled, outperforms the traditional
approach. The error bars represent the best and worst of these experiments.

Apart from link layer de-multiplexing, corrupt control and data packets can be
differentiated simply by using significantly different packet sizes.

4 Preliminary Results

We now describe the results from experiments that evaluate the benefits of CPR
in terms of header recovery and data delivery over traditional, non-recycling,
multihop data collection (i.e., CTP [2]). Our comparison focuses on the tradi-
tional approach since CPR operates at the network layer and any link layer
recovery techniques are orthogonal and will equally improve the performance of
routing with and without CPR.

4.1 Multihop Packet Reception Rates

We first evaluate packet reception rates (PRR) over multiple hops to quantify the
raw magnitude of improvement achievable with CPR. This implies (i) we use the
“stubborn” forwarding mechanism of CPR, i.e., forward packets even if header
recovery fails, and (ii) we disabled retransmissions in CTP so we can study the
enhancement due to only CPR’s mechanisms in a simple multihop protocol. Our
experiment setup uses a linear topology of five hops where a sender, at one end
of the topology, transmits one thousand packets to the root node at the other
end over 5 hops. Figure 3 shows the results both for CPR, with intermediate
nodes forwarding corrupt packets, and traditional, where the nodes forward only
the packets with valid CRC. With CPR, we see 2-4× improvement in PRR,
indicating a significant potential to improve throughput, latency and lifetime
(by reducing the need for retransmissions).

It is clear that improvement in PRR due to recycling depends upon the num-
ber of corrupt packets in a particular deployment. Hence, to maximize the magni-
tude of this improvement, the main goal of CPR is to ensure maximum recycling
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at an intermediate node irrespective of deployment conditions. We next evaluate
this recycling efficiency of CPR.

4.2 Network Layer Recycling and Header Recovery

We estimate the number of corrupt packets that are recycled at an intermediate
node (i) with successful header recovery, and (ii) with header errors (head recov-
ery failed). For this purpose, we first need to determine the number of packets
that are received with only header errors.With symbol-errors frequently reported
as roughly uniformly distributed in corrupt packets [3,11], we can easily estimate
the ratio of header vs payload errors for a particular packet size. However, here
we calculate this ratio through empirical observations.

We place two motes 4.5m apart. For each packet size (see Figure 4(a)), the
sender transmits packets with an interval of 128ms. We stop the experiment
when the receiver receives 1000 corrupt packets for a particular packet size. Our
results in Figure 4(a) substantiate the roughly uniform distribution of symbol
errors in packets: for 40 bytes packets (with 8 bytes header for CTP), nearly
20% of the packets have corrupt headers. Similarly, the header errors are less
likely as payload size increases. We can thus conclude that for the worst case of
the presented data (size = 40 bytes), 80% of the packets will be automatically
recycled in CPR with correct headers.

We now narrow down our focus on the remaining 20% of packets with only
corrupt headers. Figure 4(b) shows how the corruption is distributed across dif-
ferent header fields for these packets. To understand the worst case performance
of CPR, we assume that only the headers with the correct origin field can be
recovered2. As shown in the Figure 4(b), 30% of the these packets have corrup-
tion in the origin field suggesting 70% headers can be recovered in the worst
case.

Overall, in this scenario, CPR recycles two sets of packets with correct headers:
(i) 80% of the total packets with only payload errors (see Figure 4(a)), and (ii)

2 Our estimate is deliberatively conservative because we want to do worst case analysis.
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14% of the total packets (0.7 × 20% with correct origin in Figure 4(b)) whose
headers are repaired by CPR algorithm. Hence, in the worst case, CPR recycles
94% of the corrupt packets with no header errors. The remaining 6% can be
recycled using “stubborn” forwarding.

5 Conclusions and Future Work

This paper presents a network layer error-tolerant approach for recycling corrupt
packets over multiple hops. CPR, by avoiding packet drop, improves informa-
tion delivery that can benefit error-tolerant WSN applications. Our preliminary
evaluation demonstrate the high utility of CPR in terms of information delivery
(2-4× improvement) and recycling efficiency per intermediate node (100%).

A complete implementation of header recovery algorithm and thorough eval-
uation on a widely used testbed is still pending. An important implementation
aspect is to enable the link layer to issue acks for corrupt packets to avoid re-
transmissions. We also plan to extend and explore CPR’s utility for 6LoWPAN
and multi-radio systems.
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Abstract. Constructive baseband interference has been recently introduced in
low-power wireless networks as a promising technique enabling low-latency net-
work flooding and sub-µs time synchronisation among network nodes. The scala-
bility of this technique has been questioned in regards to the maximum temporal
misalignment among baseband signals, due to the variety of path delays in the
network. By contrast, we find that the scalability is compromised, in the first
place, by emerging fast fading in the composite channel, which originates in the
carrier frequency disparity of the participating repeaters nodes. We investigate
the multisource wave problem and show the resulting signal becomes vulnerable
in the presence of noise, leading to significant deterioration of the link whenever
the carriers have similar amplitudes.

1 Background and Related Work

Constructive Baseband Interference (CBI) exploits the spatial, temporal and spectral di-
versity exhibited by the wireless channel to introduce link redundancy and increase re-
liability. This diversity of the wireless channel manifests itself as a given symbol stream
reaches across different wireless channels simultaneously and each symbol is unlikely
to suffer the same level of distortion, small-scale multipath fading and attenuation in all
channels at the same time. Therefore, concurrent transmission of identical packets from
several senders can increase the quality of the wireless link towards a receiver.

CBI has been recently introduced in wireless networks by Rahul et al. [15]. Dutta et
al. employed CBI to alleviate the acknowledgement implosion problem, using
simultaneous transmissions of short acknowledgement packets, in a receiver-initiated
low-power Medium Access Control (MAC) protocol [6]. Ferrari et al. devised a com-
munication primitive for low-latency network flooding and sub-µs time synchronization
for low-power wireless nodes [9]. In following works, Ferrari et al. also proposed an
infrastructure (analogous to a shared bus), which supports mobile nodes in a multi-
hop low-power wireless network [8]. Doddavenkatappa et al. further optimise network
flooding enabling a multichannel packet pipeline across the network [3,4].

However, some limitations in the efficacy and scalability of CBI have been studied
by Wang et al. [17]. They investigate the worst case scenario in a multihop network
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showing that cumulative non-deterministic delays in the system cause the temporal dis-
placement between concurrent transmissions to exceed the symbol boundaries, leading
to poor packet reception rate. We take a different perspective on this matter by analysing
the superposition of carrier waves. The main contribution of this paper is that the scal-
ability of CBI is not only limited by the variety of temporal delays as investigated by
Wang et al. but, firstly, by specific properties of the composite signal.

The scalability of CBI is relevant because the disposition of wireless sensor nodes in
a deployment should follow application needs. Consider the plausible scenario where a
large number of fixed sensor nodes may be required in a given location, while sparse
nodes suffice in other areas. Also mobile sensors attached to humans, animals or robots
impose a dynamic spatial density. In such scenarios, bulk data transfer with high-
throughput, low-latency and low-power are important system features. For example,
the time window to transfer data might be limited in railway-bridge monitoring, as data
is uploaded to passing trains [2]. CBI enhances link performance, radio coverage and
enables node mobility. Nevertheless, we reveal a critical lack of link quality scalability
with the number of concurrent repeaters.

We present the multisource wave problem (Section 2) and investigate the error rate
and the envelope of the composite signal, which results from the superposition of all
repeater signals. Our experiments (described in Section 3) show an acute signal vulner-
ability in the presence of noise and the consequent deterioration of the link quality for
a power imbalance among two or more repeater signals smaller than 5 dB (Section 4).
We discuss the results and reach conclusions in Section 5.

2 Constructive Interference

Constructive Baseband Interference occurs when multiple-source carriers, modulated
with identical information and adequate time synchronization, add up in the receiver
antenna. The time synchronization error plus the wave propagation delay difference
among these signals must remain within symbol boundaries, to avoid intersymbol in-
terference [5]. In the case of the IEEE 802.15.4 physical layer (PHY), half the symbol
time corresponds to 0.5 µs [6,9].

Since the modulated carrier of each transmitter traverses distinct wireless channels
towards the receiver, we refer to them as individual channels as they are, in general,
statistically independent. Furthermore, the composite signal that results from the super-
position of waves can be interpreted as if it traverses a composite channel characterised
by the resulting sum of multisource carriers, in addition to the overall multipath effect
of the individual channels.

2.1 Carrier Waves

Let us now look into wave properties to understand CBI. Without losing generality,
we restrict this analysis to unmodulated carriers. The reader is referred to [17] for a
detailed discussion on the baseband signal and carrier modulation. Let the composite
unmodulated signal Ac from n sources be expressed as:

Ac =

n∑
i=1

Ai sin(wit+ φi) (1)
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Also let Ai, wi and φi represent the amplitude, angular frequency and phase of the
individual sources respectively. Note that the multisource problem in equation (1) is
similar to the multipath problem, where all frequencies are equal since they originate
at a single source. On the other hand, multiple sources implies small disparities in the
carrier frequencies, as there is always a limit in the frequency accuracy of the quartz-
crystal based oscillators used to synthesize the carrier. Section 2.2 elaborates on this.

The properties of the probability density function (pdf ) of the resultant amplitude
or envelope of equation (1) are important for the performance evaluation of wireless
systems. The modelling of fading and shadowing in the multipath problem (all wi are
equal) has been widely studied and an expression for the pdf can be found in [18].

To the best of our knowledge, an exact expression for the pdf of the envelope in
equation (1) remains an open mathematical problem. Thus, for the sake of simplicity,
let us consider the case of two sources (n = 2). Let the envelope Ec of equation (1) be:

Ec =
[
A2

1 +A2
2 + 2A1A2 cos ((ω1 − ω2) t+ ϕ)

]1/2
(2)

Equation (2) reveals a harmonic function with angular frequency wc = w1 − w2

which leads to periodic depressions in the amplitude of the composite signal. This is
known as the beating effect. It is important to note that these depressions can be quite
numerous during the packet duration, depending on wc. As the amplitude decreases,
the signal which is blurred by noise in the wireless channel, gets closer to the decision
boundary making it increasingly vulnerable. With more sources, the peak to average
ratio of the composite signal envelope increases and the problem gets worse, as we will
see in Section 4.

2.2 Hardware

The oscillator’s frequency accuracy of IEEE 802.15.4 compliant radios is mandated
below ±40 ppm [12]. This accuracy ensures tight bounds on the transmitter carrier fre-
quency and allows the receiver to use a narrow channel filter to attenuate out-of-band
noise power. However, a frequency discrepancy of up to 200 kHz is possible between
two radios operating in the same channel of the 2.4 GHz band. We examine the carrier
frequency dispersion for TelosB sensor nodes [14] employing a Software Defined Ra-
dio (SDR) from Ettus Research [7] for spectrum analysis, and an Agilent 8648C Signal
Generator as a reference (10 Hz accuracy and time-base stability below ±0.1ppm typ-
ical). We verify such a frequency offset among nodes and observe no perceptible time
variation in the frequencies, provided a constant room temperature is maintained.

The IEEE 802.15.4 standard also specifies the receiver sensitivity must be measured
at a packet error rate (PER) of 1% for 52-symbol packets [12]. Thus, the required SER
results near 10−4, which we use as the reference threshold for minimal link perfor-
mance. Note that a corresponding CER value, assuming chip errors are i.i.d., is not
applicable since errors are more probable during envelope depressions. Hence, we mea-
sure both chip and symbol errors rates (CER and SER).

2.3 The Composite Channel

The signals traversing the wireless channel reach the receiver with amplitudes that de-
pend on the path loss of the individual channels. Since the baseband signals are time
synchronised, the receiver always locks with the preamble of the strongest signal (to de-
code the symbols). Therefore, when the amplitude imbalance is sufficiently large there
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Fig. 1. GNU Radio flow graph used to measure SER and CER in the composite channel by adding
synthetic noise in an AWGN channel

is always capture. However, when the magnitudes of the carriers are similar, intrinsic
properties of the composite channel emerge.

The indoor multipath wireless channel is a time-invariant channel whose Channel
Impulse Response (CIR) is considered quasistationary with a typical rms delay spread
στ < 100 ns (see Saleh and Valenzuela [16]). Thus, the time dispersive nature of the
channel is minimal and the coherence bandwidth is larger than the IEEE 802.15.4 Di-
rect Sequence Spread Spectrum (DSSS) signal bandwidth. Also the individual channel
is very slow time varying [16], with a coherence time much larger than the symbol
duration, Tci � Ts. This regime is known as flat and slow fading [11].

On the other hand, according to equation 2, the worst-case coherence time of the
composite channel can be expressed as Tcc = π/2wc and results in 1ms ≥ Tcc ≥ 5 µs
with high probability, which is orders of magnitude shorter than what would be ob-
served due to the Doppler spread. Thus, the composite channel one observes under CBI
displays fast fading, which originates in the carrier frequency disparity of the partici-
pating repeater nodes.

3 Experimental Setup

We design our experiments to analyse the IEEE 802.15.4 PHY signals. This analysis
benefits from an SDR platform as one can tap into the digital signal processing chain
with ease. Our setup is designed around the Ettus USRP B210 board [7] and an SDR
transceiver implementation in GNU Radio by Bloessl et al., which interoperates with
IEEE 802.15.4 radios [1].

We employ a set of TelosB sensor nodes running Glossy [9] in a one-hop network
composed of the initiator and at most eight repeaters. We then record low-noise complex
baseband signals, at least 40 dB over the noise floor. We use an example application
(rx sample to file) from the USRP Hardware Driver (UHD) package running in
an overdimensioned Linux workstation to avoid buffer overflows when recording the
signal at 4Msps. The initiator sends 15 packets per second, which are retransmitted
16 and 8 times for the wired and wireless experiments, respectively. Our 480-second-
long baseband traces contain at least 1.6× 105 symbols for our error-rate study. Note
that failure to detect the PHY header invalidates the packet, thus we use payloads
smaller than 16 byte to maintain robust statistics under high noise levels.

Our first configuration requires all antenna ports (from nodes and SDR) be wired
through a 5-port 40 dB T-Network resistive power attenuator which acts as an ideal
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Fig. 2. The CER for pairs of nodes decreases for a 5-dB RF power imbalance. Each point in the
graph is computed from 9.4× 104 frames, 16 byte each. A 40-dB power attenuator fixes path
loss to resemble a non-delay and non-multipath channel. Some curves were removed for clarity.

wireless channel without multipath distortions nor external interference. One node func-
tions as the flooding initiator, transmitting at an RF power of PRF = −15 dBm. Its
signal runs through an additional 30-dB attenuator, thus reaching the SDR at −85 dBm.
The repeater operates up to PRF = −5 dBm, hence it reaches the SDR at −45 dBm.
This power allocation is intended to guarantee the repeaters get the initiator packets
with high probability but also forces its signal below the noise floor at the SDR.

Our second configuration involves a setup of sensor nodes fastened to an external
glass wall, and the B210 SDR board with a 12-dBi YAGI antenna (ANT2400Y12WRU)
fixed to a mast on the other end of the office, approximately 7 meters apart. In this case
the initiator antenna is replaced with a dummy load to attenuate its signal.

The rest of our experiments are conducted off-line, in the computer, employing the
rich component tool set in GNU Radio [10]. Using predefined payloads in Glossy,
which are not altered by repeaters, we compute CER and SER by comparing the re-
ceived frame content from the traces with the expected payload.

We extend the SDR transceiver by Bloessl et al. to export frames containing received
chips, prior to decoding DSSS symbols. We generate two separate packet capture (pcap)
files with frames containing chips and symbols respectively. In order to study link per-
formance, we develop a channel module suitable to add controlled noise quantities to
match a desired SNR value. This module requires specifying the energy-per-bit (Eb) to
spectral noise density (N0) ratio Eb/No (in dB) and simulates an Additive White Gaus-
sian Noise (AWGN) channel. The variance values σ2 are internally computed based
on the signal’s peak amplitude, the bandwidth of the IEEE 802.15.4 channel and the
specified Eb/No. By adding synthetic noise we can study a wide range of SNR ratios in
a controlled and repeatable experiment. The GNU Radio flow graph used for the error-
rate study is shown in figure 1. The flow graph consists of a file source, containing the
complex baseband signal, our channel module to add Gaussian noise, and the extended
transceiver. Frames containing decoded chips and symbols are stored in their respective
pcap files for further processing.

4 Experimental Results

The IEEE 802.15.4 PHY coding scheme for the 2.4GHz band uses pseudo-orthogonal
codes where k = 4 bits are encoded together into an n = 32 chip sequence. The raw
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Fig. 3. CBI among up to eight repeater nodes after symbols traverse a highly correlated indoor
wireless channel. Each point in the graph is computed from 4.8× 104 frames, 8 byte each. The
theoretical curve, as derived in [11, Section 6.1.2], is shown for CER only.

signalling is carried out using Offset-Quadrature-Phase-Shift-Keying with half-sine-
shaping (OQPSK-HSS) at a rate of 2Mchip/s. The code rate r = k/n = 1/8 then results
in a throughput of 250 kbps. Thus, DSSS processing gain is PG = 10 log(1r ) ≈ 9 dB.

Since symbols are encoded in phase, magnitude variations of the signal do not di-
rectly impact detection reliability. However, as intersymbol distances in the constel-
lation diagram diminish with the carrier amplitude, the envelope depressions lead to
errors (Section 2.1). A brief summary of the most significant experimental results we
have accumulated follows, illustrating the limits of the link performance under CBI.

4.1 Wired Configuration

We use a combination of up to three nodes directly wired to the SDR. This guarantees
controlled and repeatable settings, as well as very similar power levels from repeaters.
Additionally, the attenuator introduces a constant power loss across the signal band-
width and proper impedance matching avoids reflections.

Figure 2 shows CER curves for single- and two-repeater combinations. All three-
node combinations produce error rates well above 10−1 and are not shown. For pairs of
nodes, we obtain a family of curves with varied and generally poor link performance.
We observe a correlation between error rate and power (PRF ) imbalance. We show
two power configurations: (i) all repeaters use PRF = −5 dBm and (ii) decrease one
repeater to PRF = −10 dBm. As we raise the power imbalance by 5 dB, the link
performance increases. Note that 5 dBm is the minimum power step the nodes allow.

The figure also shows that power imbalance moves the curves towards the minimum
theoretically attainable error rate and near the single-repeater curve. We can relate this
result with the ameliorated beating effect brought about by power imbalances. Note that
having different amplitudes in equation (2) is better than having similar ones.

4.2 Wireless Configuration

We assess to what extent channel diversity could help reduce error rates. Figure 3 shows
CER and SER for up to eight repeaters. For the two-node curve an Eb/N0 of 16 dB is
needed to maintain a minimum SER of 10−4, a 12 dB difference relative to one re-
peater. For the cases of four and eight repeaters, both error rates remain above 10−1.
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Fig. 4. Amplitude observations in the magnitude of the signal spread as the number of repeaters
increases. Although the magnitude contains no information, the lower-end observations become
vulnerable to noise, compromising link quality.

This experimental result indicates the channel diversity gain is limited for highly cor-
related indoor wireless channels. Unfortunately, these are very common settings for
wireless sensor network deployments.

Furthermore, we estimate the pdf of the baseband signal’s envelope. The results
are shown in figure 4. As the number of repeaters increases, the envelope’s histogram
spreads, showing a large range of amplitude observations. Besides making the signal
vulnerable to noise as previously discussed, the composite signal demands a high dy-
namic range on the receiver. As there is not an automatic gain control (AGC) on the
B210 board, signal clipping may occur as more repeaters are added. We make sure the
SDR operates in linear mode, hence the large error rates in figure 3 are exclusively
due to the depressions in the composite signal. Note that the two-repeater curve in fig-
ure 4 recreates the behaviour described by equation (2). The rate of change of the cosine
function that describes the envelope’s undulations is lower on the extreme values, which
explains the two peaks in the histogram.

5 Discussion and Conclusion

We have shown that link quality under CBI does not scale with the number of repeaters
due to lack of coherence among multisource carriers. Specifically, the link layer reliabil-
ity is affected by emerging fast fading in the composite channel, wherever capture effect
is absent. Thus, we find a fundamental limitation that potentially impacts all concurrent
transmissions and puts a high demand for dynamic range in the receivers. Commer-
cial transceiver chip implementations feature greater receiver sensitivity than the SDR
board used in these experiments, and use an AGC that reacts to (not very fast) envelope
depressions by increasing the gain in the receiver’s signal chain. Combined, these at-
tributes can improve the apparent link quality, e.g. [9, figure 12]. However, we suspect
this is effective for a low-noise channel only, since amplification cannot improve SNR.

Doddavenkatappa et al. orchestrate multichannel transmissions to sustain a packet
pipeline while flooding the network [3,4]. Multichannel operation expands the degrees
of freedom and time diversity increases probability of reception, but open questions re-
main in regard to suitable repeater selection for effective network flooding, i.e., guaran-
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teeing power imbalance in all receivers, for enhanced performance. An alternative solu-
tion is to introduce channel diversity gain in the PHY layer, using space-time codes [13]
which would be suitable for low-power design.
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Abstract. Bug hunting in sensor networks is challenging: Bugs are often
prompted by a particular, complex concatenation of events. Moreover,
dynamic interactions between nodes and with the environment make it
time-consuming to track and reproduce a bug. We introduce LibReplay
to ease bug hunting in sensor networks: it provides (1) lightweight and
flexible logging and (2) deterministic replay. LibReplay logs function calls
to and from the application or another code of interest. It enables de-
terministic replay of execution traces in a controlled environment such
as a full-system simulator. This allows the user to benefit from well-
established debugging tools such as stepping through code, breakpoints,
or watchpoints. We show that the lightweight architecture of LibReplay
provides the benefits of replay debugging at an efficiency that is compa-
rable to traditional logging tools, which commonly do not allow replay
debugging.

Keywords: Cyber Physical Systems, Internet of Things, Wireless Sen-
sor Networks, Debugging, Replay, Tracing, Logging, Simulation.

1 Introduction

Bug hunting in sensor networks is challenging: (1) sensor networks are dis-
tributed and deeply embedded into a non-deterministic environment. (2) The
non-determinism of both the wireless network and the physical environment
makes it time-consuming to track and reproduce bugs. (3) Bugs are often
prompted by a particular, complex concatenation of events. Source-level
debugging capabilities as common in sequential programming, i.e., local and non-
distributed applications, would significantly ease the debugging process. For ex-
ample, stepping through code, breakpoints, and watchpoints are well-established
tools to debug sequential code. However, the distributed and embedded nature
prevents us from pausing program execution on a node to examine its state.

Large-scale distributed systems on the Internet solve this issue by employing
logging and replay capabilities [5,8,9]. These log all interaction between the code
of interest and the system itself, e.g., function calls to and from a part of an
application that is suspected to malfunction. Next, they replay the execution
of the code of interest accordingly to the logged function calls and their pa-
rameters. As a result, the local replay can be debugged using well-established
debugging tools such as GDB and allows for stepping through code, breakpoints,

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 258–265, 2015.
c© Springer International Publishing Switzerland 2015
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Fig. 1. LibReplay in a nutshell: (1) Distributed logging via serial or flash, (2) sorting
and validation of logs, and (3) replay in a full-system simulator

and watchpoints. While this technique is well-known in large-scale distributed
systems, we see limited application in the area of sensor networks due to the
resource limitations of sensor nodes.

This paper closes this gap and provides LibReplay, a lightweight and deter-
ministic solutions for distributed logging and source-level replay (see Figure 1).
It allows debugging of sensor network applications and protocols with source-
level debuggers, such as GDB.We achieve this by replaying execution traces in
a full-system simulator, such as Cooja [10], MspSim [4], Avrora [16], or QEMU
[1]. This paper makes three contributions:

– Lightweight, Distributed Logging: we introduce a system architecture
for distributed, lightweight logging that is customizable to code regions of
interest. It employs a two-phase logging to reflect resource constraints and
to minimize the side effects of logging on program execution.

– Deterministic Replaying: From the logs we replay all input events to the
code of interest. Using full-system simulators we enable deterministic, high
fidelity replay. Utilizing the debugging capabilities of these platforms, one
can now step through source-code and employ breakpoints and watchpoints.

– Implementation and Performance Evaluation:We demonstrate a work-
ing implementation of LibReplay with an efficiency that is on par with tradi-
tional logging tools, which commonly do not provide replay capabilities. We
evaluate LibReplay’s performance with respect to MCU and memory before
showing that its overhead is similar to today’s logging approaches, which
cannot provide the same functionality.

Next, we discuss the limitations of traditional debugging tools and outline the
differences of LibReplay to the state of the art (Section 2). We then introduce
LibReplay in detail (Section 3) and compare the performance of LibReplay with
the state of the art (Section 4) before addressing future directions and concluding
(Section 5).

2 Limitations of the State of the Art

Logging and tracing are two common approaches for hunting bugs in sensor net-
works. Logging tools [2,6,11] record execution details. Commonly, they store the
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log in the flash memory for off-line collection or feed them to the host system via
the serial port. In practice, bug hunting with such logging tools often follows an
iterative approach: (a) adding or refining logging statements, (b) re-executing
the system until the bug is triggered, and (c) analyzing the log and spotting bug
appearances. The developers have to repeat these steps until they understand
the bug causes, try to fix them and then check whether all bugs were removed
by again repeating these steps. Moreover, the non-deterministic and dynamic
nature of the wireless network and interactions with the environment make it
time consuming to reproduce a bug sufficiently often for this repetitive approach.
In contrast, LibReplay logs function calls and their parameters to and from the
code of interest, such as a malfunctioning routing protocol. As a result, LibRe-
play collects sufficient information to replay program execution deterministically
allowing one to employ source-level debuggers for bug hunting. In our experi-
ence, this limits the need for repeated testing, and in most cases a single logging
run is sufficient to fix the bug in replay debugging, because analysis and bug
spotting is mainly carried out off-line using an iterative debugger that replays
the log.

Tracing tools [12,14,15,17,18] follow a different approach: They trace the pro-
gram execution by logging function calls. For example, a tracer logs each function
and its parameters that a packet takes on its path through the protocol stack
from the application to the radio driver. A key challenge is that tracing program
execution leads to large traces when compared to traditional logging [13]. Some
approaches [12,15] address this challenge with additional hardware on the nodes.
For example, Minerva [12] connects a dedicated debugging-board to the JTAG
adapter of the sensor node. Controlling multiple debugging-boards over Eth-
ernet, Minerva can examine network-wide state. LibReplay, in contrast, merely
logs function calls and their parameters to and from the code of interest, limiting
its intrusiveness while not requiring additional hardware.

3 LibReplay: Design and System Architecture

We start the discussion of LibReplay by illustrating its basic idea before intro-
ducing LibReplay in detail.

3.1 Basic Idea: Flexible Logging and Deterministic Replay

With LibReplay, we log function calls to and from a user-specified code-region
of interest, such as a malfunctioning routing protocol. In the replay, we feed
the calls back to the code of interest in the same order as they were logged
on the real system (see Figure 2). Thus, in the replay every event happens in
the same order as on the real system and with the same function parameters.
Using cycle-accurate simulation of the entire system, each event will also take
the same number of cycles as on the real system. Thus, a complete log that
includes all functions to the code of interest generates a complete replay with
all local states equaling to the ones of the real-system. We note that due to
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(a) Unmodified. (b) Logging. (c) Replay.

Fig. 2. We log function calls to and from the code of interest, such as a malfunctioning
routing protocol. For replay, we feed the logs back to the code of interest. Replay in a
full-system simulator, such as Cooja, provides us with well-established debugging tools
such as stepping through code, breakpoints and watchpoints.

the run-to-completion semantics, e.g., tasks in TinyOS, of many OSs for Cyber-
Physical Systems (CPS) and Internet of Things (IoT) we do not have to log the
OS scheduler itself.

3.2 Lightweight and Flexible Logging

The first building block of LibReplay is its lightweight, flexible logging-
architecture. It has three design goals: (1) to reduce the overhead of logging
to limit potential side-effects on program execution, (2) to provide distributed
logging of events across multiple nodes, and (3) to ease integration into user-
defined applications and components.

Deferred Logging to Limit Side-Effects on Applications: Whenever a function to or
from the code-region of interest is called, LibReplay logs the function, its param-
eters, the return value, and a logical timestamp, i.e., an event sequence-number.
To limit run-time overhead, LibReplay employs a two-phase approach to logging:
As a first step, any log data is merely buffered in RAM and the execution can con-
tinue with only minimal delay. As second step, a deferred, background process –
only scheduled if no other process is to be scheduled – handles the storage itself: it
moves the log buffers to flash or the serial port for storage.

Distributed Logging of Events across Multiple Nodes: When testing and debug-
ging distributed systems, we experienced it as essential that we can trace events
and messages across multiple nodes. For example, we often needed to trace how a
single message travels through the network and which state changes it triggered
along its path, such as timeouts and re-transmissions. To trace events across mul-
tiple nodes, LibReplay adds a logical timestamp to each outgoing radio message,
which is send by the code of interest. This allows to create a globally valid order
of the events for replay. Optionally, LibReplay can also re-use sequence numbers
and source addresses that most protocols already provide to identify messages
and their order uniquely. This avoids overhead, as no additional timestamps need
to be added to messages.

Easy to Integrate into User-Defined Applications and Components: When de-
signing LibReplay, we put a special focus on its ease and flexibility of use.
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Table 1. LibReplay logging example: Without (left) and with (right) logging of the
Receive interface. Adding logging to applications requires merely few changes to the
wiring of TinyOS applications. Common logging components, such as the ReceiveLogC
component used in this example to log the Receive interface, are provided by LibRe-
play.

Listing 1.1. Without logging

[...]

App.Receive -> AMReceiverC;

[...]

Listing 1.2. With logging

[...]

components new ReceiveLogC() as Log;

App.Receive -> Log;

Log.Receive -> AMReceiverC;

[...]

For example, LibReplay can be easily integrated into own applications and tai-
lored by adding own logging interfaces. LibReplay places a logging component
between each interface of the code of interest and the OS, see Table 1. LibReplay
provides logging components for common interfaces of TinyOS.

3.3 Processing the Logs: Globally-Ordered Replay

Once events are collected from the individual nodes, we utilize the logical times-
tamps to construct a globally-ordered replay. Events such as radio events have
(or can have) a counterpart on the other nodes, such as a transmit and receive
event. This guides LibReplay to obtain a global order of events [7].

3.4 Deterministic Replay

For replay, we replace each logging component with its counterpart replay-
component. Similar to the logging components, we have one replay component
per interface and LibReplay provides these for the common interfaces in TinyOS.
Thus, we replay the code of interest and feed it the events we previously logged.

Compared to the logging components, the data flow is now reversed and replay
components feed events to the application (see Figure 2c). Bug hunting can now
utilize the advanced debugging capabilities of modern system simulators such as
monitoring of individual variables and stepping through code fragments. Note
that when performing such tasks on the deployed systems directly, they cause
high overhead and significant side effects. Additionally, we use the recorded
output to detect deviations between the log and the replay, which can indicate
subtle system bugs such as buffer overflows, etc. Note that the main replay-target
of LibReplay are full-system simulators, as these can replay multiple nodes,
and we can analyze their interaction. However, LibReplay can also replay the
execution on a real node and we can connect and debug via JTAG, for example.

3.5 Discussion: Generic Design

In TinyOS, modules are the natural integration points for logging. They en-
capsulate local state, and state changes are only triggered via their interfaces.
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Fig. 3. MCU and memory overhead of LibReplay

Nonetheless, the design of LibReplay is generic and is not bound to TinyOS. For
example, instead of interfaces we can log traditional function calls to and from
a block of code. This, for example, matches the design of other common OS in
CPS and IoT such as Contiki [3] or FreeRTOS.

4 Evaluation

After introducing LibReplay and its architecture, we evaluate its performance.
We begin with a set of micro benchmarks to determine MCU and memory ef-
ficiency. Next, we compare LibReplay to the state of art and show that its
overhead is similar to today’s approaches to logging while these commonly do
not log sufficient information for providing replay capabilities. We implemented
LibReplay in TinyOS 2.1.2 and evaluate using TelosB nodes.

4.1 MCU and Memory Efficiency of LibReplay

In LibReplay, logging consists of two steps: the fast logging itself to an in-memory
buffer and a second low-priority background process that handles the heavy lift-
ing to external storage. As a result, the logging itself has only minimal impact
on the program execution (see Figure 3a). The RAM footprint of LibReplay
strongly depends on the buffer size chosen (see Figure 3b). ROM is stable in-
dependent of the buffer size chosen. For the following, we use the default value
of 300 bytes for the buffer. Our experience shows that this is sufficient for most
application scenarios, and it is similar to the default setting in the state of the
art. Nonetheless, when compared to the overall memory footprint of the appli-
cation, the footprint of LibReplay stays small (see Figure 3c), leaving sufficient
space for complex applications.

4.2 LibReplay and Traditional Approaches to Logging

We compare the efficiency of LibReplay to traditional logging approaches: printf,
TinyLTS [11], and the customized logging layer of the Collection Tree Protocol



264 O. Landsiedel, E.M. Schiller, and S. Tomaselli

0 10 20 30 40 50
Application Size [kB]

Printf

TinyLTS

CTP custom

LibReplay

Unmodified ROM

RAM

(a) The memory footprint of LibReplay
is similar to traditional logging systems.
The footprint of TinyLTS is taken from
its publication [11], as the source code is
not available to us.
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(BG) process.

Fig. 4. The memory footprint of LibReplay and its MCU load are similar to traditional
logging approaches.The benchmark application is CTP routing (TestNetwork), we use
the default buffer size of all loggers.

(CTP) [6]. Our results show that both the memory footprint and the MCU
load of logging with LibReplay is comparable to these traditional approaches to
logging (see Figure 4). We note that these, in contrast to LibReplay, commonly
do not log sufficient information to enable replay debugging.

5 Conclusion

We introduced LibReplay, a lightweight architecture for flexible logging and de-
terministic replay in sensor networks. LibReplay enables (1) event logging with
only a small intrusion of the system, and (2) deterministic event replay in con-
trolled environments such as system simulators. As a result, we can
exploit the debugging capabilities of modern system simulators. Overall, Li-
bReplay simplifies bug hunting in deployed sensor networks and provides a
debugging experience similar to debugging (local and non-distributed) sequen-
tial programs. We discuss the architecture of LibReplay and our performance
evaluations show that the efficiency of LibReplay is similar to the state of the
art, which commonly does not log sufficient information to provide replay ca-
pabilities. We have made the source code of LibReplay publicly available at
https://github.com/olafland/LibReplay.
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Abstract. Low-power wireless networks, especially in outdoor deploy-
ments, are exposed to a wide range of temperatures. The detrimental ef-
fect of high temperatures on communication quality is well known. In this
paper, we use a testbed with self-made temperature control devices to
investigate the effects of temperature on several communication-relevant
metrics. The analyses both confirm some previously published results
and demonstrate deviations from others. Based on these results, we pro-
pose a Reed–Solomon-based FEC scheme to mitigate the negative effects
of temperature and provide results suggesting that such a scheme is both
feasible and advantageous.

Keywords: wireless sensor networks, measurements, packet corruption,
bit errors, reliability, forward error correction, temperature effects.

1 Introduction

Low-power wireless networked devices are seeing more and more uses, enabling
monitoring of areas both remote and inaccessible, and within our own homes,
from any point on Earth. Depending on the deployment scenario, those devices
can be exposed to strongly varying environmental effects. In recent publications,
it has been shown that temperature has a strong effect on communication quality
[2,3,4,5]: as temperature rises, communication becomes more challenging, up to
an eventual complete breakdown. To further investigate these effects, we designed
“HotBox”, a solution to exactly control temperature and spatial orientation
of sensor nodes. While our experiments confirm the influence of temperature,
they also highlight some deviations. In particular, we observe a more marked
link quality decrease in the case of a heated receiver, in contrast to the more
significant impact of a heated transmitter demonstrated in the literature.

Based on the gathered measurements, we propose a solution to offset the
effect that temperature has on the wireless communication by using an adap-
tive Reed–Solomon-based FEC mechanism, and discuss preliminary results. This
paper presents our investigation and paves the way for both gathering further
knowledge about the interplay between temperature and low-power wireless com-
munication, as well as possible counteractions to preserve system reliability.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 266–273, 2015.
� Springer International Publishing Switzerland 2015
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2 Related Work

We first turn our attention to the current knowledge about the impact of temper-
ature on the reliability of low-power wireless communication. Then, we survey
FEC schemes proposed for low-power wireless networks.

Bannister et al. [2] were one of the first to analyze the impact of temperature
on the performance of the CC2420 radio, the one employed in our study. The
results demonstrated a reduction of RSSI with an increase of temperature, more
marked with a heated transmitter. In [3], this behavior was also identified, again
with larger differences when the transmitter was heated than when the receiver
was. Both studies identify the cause in the loss of gain in the CC2420 Low Noise
Amplifier. The asymmetry was confirmed by Boano et al. [4] for Noise Floor, PLR
and LQI in a comprehensive study on the effects of temperature. Their Temp-
Lab [5] setup is based on remotely-controlled IR light bulbs, polystyrene foam
enclosures, and Peltier elements to build cheap and small temperature cham-
bers. In our work, we develop a similar solution to experiment with temperature
and spatial orientation of devices, which we make available for everybody to
reproduce [9]. Using this testbed, we extend the available knowledge by demon-
strating deviations from the previously reported behavior, in particular showing
a greater impact of a heated receiver on the decrease in link quality.

FEC increases transmission reliability by recovering corrupted payloads by
using correction information added to transmitted messages. The additional per-
message overhead is justified by the reduced number of retransmissions required
for a successfully delivery, reducing overall energy consumption. Reed–Solomon
(RS) codes [7], a popular choice for FEC, can be very efficient in correcting
corrupted messages while maintaining energy efficiency. Moreover, changing the
code rate dynamically [1] at run time based on link quality outperforms static
RS codes. Finally, Hermans et al. [6] exploit knowledge about mutation patterns
caused by the CC2420’s MSK demodulator used to receive OQPSK modulated
signals. They build probability distributions to infer the most likely transmitted
symbol and reconstruct the original data. In our work, we propose an adap-
tive FEC scheme that exploits the knowledge about error distributions inside
corrupted packets and the impact of temperature on the reception probability.

3 Influence of Temperature on Communication

In the following, we present results from our experimental setup investigating the
influence of temperature on the communication quality between sensor nodes.

3.1 Experimental Setup

For our experiments, we used TelosB sensor nodes from different manufacturers
as well as production runs and ages. The TelosB is a widely-used platform that
employs a CC2420 radio chip for communication which implements the IEEE
802.15.4 standard. At the physical layer, the standard defines a DSSS OQPSK
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modulation in the 2.4GHz ISM band, with a nominal data rate of 250kbps. All
experiments were conducted in a room that witnesses little interference from
surrounding IEEE 802.11 (WiFi) networks; furthermore, we used channel 26 of
the 802.15.4 standard, which is outside the band allocated to 802.11 in Europe.

For temperature control during the experiments, we designed a system we
termed “HotBox”. Its design stems from the need to accurately control the
influence of temperature on sensor motes. One of our goals with HotBox was
to design a highly accurate control system (less than 0.5 ◦C deviation) which
can be produced relatively quickly and cheaply. Thus, all hardware elements are
off-the-shelf items, while all manufacturing can be done with a soldering iron, a
PCB mill, and a laser cutter, which are often available via the rapidly-spreading
FabLab concept. For reasons of brevity, we refrain from an in-depth description
and performance evaluation of HotBox and refer to [9] for further information.

Experiments used direct (single-hop) connections between links. Each exper-
iment comprised two boxes with one node each. Both nodes were connected
to a PC via USB; the PC created the packets and sent them via USB to one
node (alternating the sender role between the two nodes every packet); the node
would then send the packet via the CC2420 radio. If the other node received the
packet, it forwarded the received version to the PC via USB, which then com-
pared the original and the received version for bit errors. Otherwise, a timeout
would be triggered at the PC to identify the missed reception. Each run com-
prised 180 000 packets, spread out over approximately 3.5 hours, during which
we gradually increased the temperature in one of the boxes from 30 ◦C to 80 ◦C,
while keeping the other at 30 ◦C. We exchanged the nodes between experimental
runs to account for potential performance differences between production runs
and different models of the TelosB nodes. However, for the metrics presented in
this paper, we could not find any noticeable performance differences.

3.2 Packet Error Dependency on Temperature

First, we aimed to reproduce the results from previous work [2, 3, 4, 5] in our
setup. We started with a temperature of 30 ◦C and gradually increased the tem-
perature in 5 or 10 ◦C increments, spending 20 minutes at each target tempera-
ture. Results for each node were saved separately, thereby creating two separate
datasets from heating the transmitter and from heating the receiver, respec-
tively. We recorded the RSSI, the Link Quality Indicator (LQI), and bit error
rate (BER) as well as packet reception rate (PRR). We split the latter into three
cases: a packet could be received without errors; received, but with errors; or
not received at all (completely lost). Figure 1 shows a typical result from one of
our experiments. All presented results are values as witnessed by the receiving
mote. Thus, the temperature shown in Figure 1b shows temperature changes
throughout the experiment. Conversely, Figure 1a does not show any changes
in the temperature, because it was the transmitter which was heated, while the
receiver, whose values are shown, was kept at a constant temperature.

Overall, it can be seen that all metrics are negatively influenced by tempera-
ture. However, the amount as to which they are influenced differs, and heating
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(a) Transmitter heated (b) Receiver heated

Fig. 1. Influence of temperature on several key communication metrics. Note that all
results are collected at the receiver, hence temperature in Fig. 1a stays stable because
only the transmitter is heated. While temperature has a negative effect on all metrics,
the effect is generally much stronger if the receiver is heated.

the transmitter and the receiver has different magnitudes of effect for most met-
rics. The only metric that is largely independent of this fact is the RSSI. All
other metrics show a much higher negative influence when the receiver is heated.
Heating the transmitter to 80 ◦C still allows communication, albeit with a packet
error rate of more than 20%. In contrast, communication completely breaks if
that temperature is applied at the receiver’s side, and even at 70 ◦C, PER is much
higher at above 50%. This is reflected in the BER, which explodes at receiver
temperature above 70 ◦C. At the same time, LQI significantly decreases.

Summarizing, our results reinforce the notion of temperature as a significant
influence on the communication quality in low-power networks. However, we
were not able to reproduce the results in [4], which showed transmitter heating
as the larger influence on quality metrics. In our experiments, heating the receiver
produces a larger impact. This has repercussions that we will discuss later.
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4 Temperature-Based FEC for Sensor Nodes

These results show that, while bit error rate increases with temperature, it typi-
cally does not do so massively until the point the connection collapses completely.
However, even those relatively small increases already lead to steadily and signif-
icantly increasing packet error rates. Considering these results, we investigated
the use of an FEC scheme that introduces redundancy into the sent messages
in challenging link conditions. Such a system should (1) be adaptable so that
an optimum tradeoff between reliability and overhead can be chosen, and (2) be
computationally simple enough to work well on constrained devices. These re-
quirements suggest the use of Reed–Solomon (RS) codes. Moreover, readily avail-
able implementations for constrained devices already exist, e.g., TinyRS [7].

A Reed–Solomon code [8] is parameterized with a tuple (m,n, k), where m
is the size of a block in bits, and the code transforms k blocks into n blocks
with n > k (which gives a so-called code rate of k/n), being able to correct up
to �(n − k + 1)/2� erroneous blocks (that is, blocks with at least one flipped
bit) in the resulting message. We decided to use 8-bit blocks because byte-level
operations are efficient to use on microcontrollers.

4.1 Simulator

To investigate the effects of RS-based FEC on reception quality, we need to ex-
actly reproduce the environmental effects during each experiment. Otherwise,
the differences in channel quality impair the comparability of results in different
runs, because the effects of channel conditions mix with those of different FEC
strengths. However, repeatability of wireless testbed results is a well-known hard
problem. To abstract from channel conditions, we created a simple trace-based
simulator. In such a simulator, a trace (i.e., a recording of a real-world com-
munication that contains bit errors, environmental conditions, etc.) is used to
translate bit errors that occurred in the real world onto a simulated connection.

The simplest way to use such a trace would be to mark which bits were
corrupted, and overlay this pattern 1:1 onto another message, regardless of length
and contents of both messages. This, however, would discount the differences in
relative errors depending on message content. It has been shown [6, 10] that
different nibbles (4-bit blocks) of data have different error rates. Hence, we first
extracted from the trace the relative BER for each nibble. The simulator would
then compute 16 values, one for each nibble, and normalize them to an average of
0 (resulting in some negative and some positive values). During the experiment,
whenever a packet was prepared for sending by the PC, instead of forwarding
it to the mote via USB, we handed it to the simulator. The simulator took the
next packet in the trace, counted its bit errors and calculated the BER for that
packet. It then added the relative per-nibble values to that rate, and finally
applied, for each nibble in the simulated message, the corresponding per-nibble
BER to its 4 bits. The resulting (potentially corrupted) packet was then handed
back to the PC application, which would compare it to the original version.
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Fig. 2. Comparison of packet reception rates between the real-world experiment pre-
sented in Figure 1b and a simulation run based on that experiment’s trace. The simu-
lator closely follows the real-world results.

Figure 2 shows a comparison of a real-world measurement and the trace-
based simulation of random packet contents of the same size. The simulation
models the real-world results well; it only slightly overestimates packet error and
loss rates. This means that results produced with the simulator will potentially
underestimate the efficacy of our FEC scheme, but not overestimate it.

4.2 Evaluation Setup

To minimize the differences between the packets in the trace and simulated
packets, we required all packets to have the same size. For our experiments, we
used 80 bytes of payload. However, different robustnesses of RS codes mean that
for a fixed k, n has to be increased. Due to the fixed packet size, we decided
to do the opposite: for the baseline experiment without any FEC, we sent 80-
byte payloads. As robustness increased, code length n stayed the same, but data
length k was reduced accordingly. Thus, at a code rate of 1/2, the packet length
was still 80 byte, but it only carried 40 bytes of data, plus 40 bytes of redundancy.

Under these circumstances, packet reception rate is not a meaningful metric
any more. Normally, if the amount of data is kept static, the packet size increases
with stronger FEC to accommodate the additional code bytes. This serves as a
trade-off in itself, since as the packets grow in size, the chance of having more bit
errors within a packet increases, too. If packet size is kept static, packet recep-
tion rate will only increase with increasing FEC robustness, as more and more
errors can be repaired. We therefore account for the amount of data bytes in each
packet by calculating a normalized throughput metric: T (80, k) = k

80 ·
PRRdecoded

PRRreceived
,

where k is the number of data bytes in the 80-byte payload, and PRRreceived and
PRRdecoded are the rate of packet with errors before and after Reed–Solomon
error correction, respectively. Thus, T yields a value of 1 for an unencoded con-
nection without packet losses. As robustness increases (and therefore the amount
of data bytes in the 80-byte packet decreases), k/80 decreases: the potential max-
imum throughput is reduced due to coding. The code can offset this by repairing
corrupted packets and therefore increasing PRRdecoded/PRRreceived.
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4.3 Evaluation Results

We then used traces from the experiments described in Section 3 to drive our sim-
ulator. To investigate the effects of different Reed–Solomon code robustnesses,
we repeated the experiments with different settings of data length k. The re-
sults presented in Figure 3 are based on the trace of the measurement shown in
Figure 1b; hence, the packet reception rates follow the same general behavior.

Fig. 3. Reed–Solomon FEC increases effec-
tive throughput in challenging conditions
by significantly reducing packet loss. This
simulation is based on the results presented
in Figure 1b. Even using as little as 5% of
the message for FEC (rate 0.95) produces
a large benefit as soon as temperatures rise
above 40 ◦C.

The figure clearly shows that the
performance of FEC strongly depends
on the channel conditions. At low
temperatures, channel conditions are
unproblematic, so the unencoded con-
nection shows the highest throughput.
As temperature rises, however, FEC
shows its advantages: while each mes-
sage can transport less information,
the information is more robust and
more rarely lost. At the very high end,
when communication breaks down al-
most completely, higher and higher
code rates are needed to keep at least
some messages uncorrupted.

Interestingly, even under condi-
tions that are common and not es-
pecially challenging (40 ◦C are easily
reached in watertight containers un-
der sunshine), FEC can already pro-
vide noticeably fewer packet losses
with a small overhead, keeping communication both more stable and reliable,
and often also increasing the throughput. We therefore suggest to always consider
whether adding FEC will provide beneficial effects to your low-power wireless
connectivity, especially if challenging conditions cannot be ruled out or can even
be expected at least intermittently.

5 Discussion and Future Work

We originally devised the presented FEC scheme in the hope that we could
reproduce previous results [4], which showed that the sender’s temperature has
a larger effect on communication quality than the receiver’s. This would allow for
a temperature-driven adaptive FEC, where the robustness of the Reed–Solomon
code is increased as temperature at the sender rises. That decision would stem
from purely locally available information: the temperature of the mote itself.

However, we could not reproduce this effect in our experiments. Instead, the
receiver’s temperature always had a larger influence on quality metrics such
as packet reception rate or LQI than the sender’s temperature. Therefore, the
temperature that produces the larger effect is not available locally to the sender,
and cannot be used to decide on code rate before sending of the message.
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We envision several possibilities that warrant further scrutiny. An adaptive
FEC scheme could nevertheless solely rely on sender temperature, which does
have some impact on the communication; such an adaptation would therefore
be merely suboptimal. When mote temperatures correlate strongly, for exam-
ple, inside rooms or on flat terrain, purely local information may already be
sufficient. Alternatively, a system of feedback should also be investigated. For
example, motes could inform their neighborhood about their temperature by pig-
gybacking this information onto other messages. However, if we already consider
feedback, we should not only focus on temperature. In the end, high communi-
cation performance always depends on low packet loss rates. Instead of feeding
back information about an influence factor on packet loss (temperature), infor-
mation about packet loss rate itself could be fed back from the receiver to the
sender. If the communication already uses acknowledgments, this information
can be effectively inferred by the sender “for free” from the number of received
acknowledgments. It can then be used to adapt the code rate to minimize packet
losses. At this point, such an FEC scheme closely resembles rate adaptation
schemes as found in WiFi networks. We consider the investigation whether and
in what fashion the myriad of contributions in the field of WiFi rate adaptation
can be applied to low-power wireless networks an exciting field for future work.

Acknowledgments. This research was partially funded by the Alexander von
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Abstract. Radiation from radioactive environments, such as those en-
countered during space flight, can cause damage to embedded systems.
One of the most common examples is the single event upset (SEU), which
occurs when a high-energy ionizing particle passes through an integrated
circuit, changing the value of a single bit by releasing its charge. The SEU
could cause damage and potentially fatal failures to spacecraft and satel-
lites. In this paper, we present an approach that extends the AVR-GCC
compiler to protect the system stack from SEUs through duplication, val-
idation, and recovery. Three applications are used to verify our approach,
and the time and space overhead characteristics are evaluated.

1 Introduction

One high-energy ionizing particle passing through an integrated circuit can re-
lease enough charge to change the state of a binary digit, causing a stored bit to
change to its opposite value (i.e., a 0-bit can become a 1-bit, and vice-versa [18]).
The results can range from system malfunction to system crash.

Modern approaches used to prevent and correct SEU errors often introduce
additional hardware to the target system. In this paper, we present a software-
only approach that detects and corrects SEUs in RAM. The paper focuses on the
system stack, which is the most important and dynamic region in memory. The
system stack is protected by injecting code into the target assembly generated
by AVR-GCC. Our approach does not introduce additional hardware, and since
it operates at the assembly level, it is language and application neutral.

2 Related Work

One of the primary hardware-level radiation hardening approaches is Silicon-
on-Insulator (SoI) technology, used in microprocessor fabrication [1]. The design
improves the circuit’s tolerance to highly-charged particles, reducing the chance
of SEU occurrence. Irom et al. [7] compare SEU error rates in SoI microproces-
sors to conventional microprocessors. SEU rates were observably lower in SoI
microprocessors. Though SoI technology protects systems from SEUs, it pre-
vents developers from using commercial off-the-shelf (COTS) devices, increasing
system cost due to the high price of SoI circuits.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 274–282, 2015.
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Redundancy is a widely used fault-tolerance technique, both via hardware and
software. The Triple Modular Redundancy (TMR) [8] approach executes instruc-
tions on three unique systems. A voting module is used to compare the results
and choose the common result. Due to the low probability that more than one
SEU will occur simultaneously at the same geographic location in more than
one device [16], TMR is a popular SEU protection technique and allows the
use of COTS components. However, hardware-based TMR introduces signifi-
cant hardware overhead and power consumption, which can present concerns for
weight-limited and power-critical systems.

Time Redundancy [2] is a software-only redundancy technique which runs
each instruction three times on a single processor. The results are stored, and
a voting module is invoked to yield the (most) common result. Error Detection
by Duplicated Instructions (EDDI) [11], a variation on Time Redundancy, du-
plicates each instruction during the compilation phase and assigns each different
registers and memory space. As a result, EDDI is able to protect systems from
not only data SEUs, but also instruction SEUs. Time Triple Modular Redun-
dancy [2] is a combination of time redundancy and hardware-based TMR. Each
instruction is executed by three unique systems, as in standard TMR, but the
systems execute the instruction in different clock cycles in a time-redundant
fashion. This allows more instructions to be executed in parallel.

A watchdog timer (WDT) [6] is a timer used to detect and recover from system
crashes by repeatedly querying the protected system and resetting the system if
no response is received. A software-based WDT is straightforward to implement
and introduces little overhead. However, it suffers the risk that an SEU may
cause the WDT itself to malfunction. Despite increased cost, hardware-based
WDT provides a reliable solution. Note, however, that WDT is typically used
with other techniques since it only detects severe system faults.

Shirvani et al. [13] examine a set of Error Detection and Correction (EDAC)
methods used to detect and correct errors in memory, such as those caused by
SEUs. The authors find that the reliability of software-based methods tends to
decrease over time more rapidly than hardware-based methods. However, the
loss rate is low enough that software-based methods are still more cost effective
than hardware-based methods.

3 System Design

We focus on the protection of the runtime stack under the following assumptions:
(i) Flash memory and registers are not affected by SEUs. (ii) Only one SEU will
occur during a given function execution. It is rare for more than one bit to be
upset simultaneously; this occurs in only 5 to 6 percent of bit flip errors [17].

Our approach is designed to align with the NASA coding standards for C
applied in space projects [10]: First, dynamic memory allocation is not allowed,
so the heap section in RAM is not used. However, for the sake of completeness,
we consider the possibility of a non-empty heap in our approach. Second, the
goto statement is not allowed. Finally, each function should have fewer than 60
lines of code, making the execution time of each function relatively short.
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Our approach protects the system stack by introducing auxiliary assembly
code. The new code is injected at both the beginning and end of each function or
interrupt handler. When a function is called, the code injected at the beginning
of the call calculates the CRC of the caller’s stack frame and saves both the
CRC and the stack frame. Before the callee returns, the code injected at the end
calculates the CRC of the caller’s stack frame again, compares it with the saved
CRC, and restores the caller’s stack frame if the CRCs do not match.

3.1 Supporting Memory Sections

To store stack frame replicas, two new sections are created in SRAM just after
the .bss section by modifying the linker script [14]. The new md section is used
to store stack frame replicas, which are referred to as Stack Frame Snapshots
(SFSs). The new sp section is used to store the address of the next available
memory space in md, similar to the stack pointer. This address is referred to as
the Snapshot Top Pointer (STP). To protect the STP from SEUs, the size of
the sp section is set to 6 bytes, and 3 STP duplicates are stored in this section.
Given that we assume only one SEU will occur during the execution of a given
function, only one STP replica could be altered by a flipped bit. The altered
STP is easily identified and corrected by comparing the values of the three STP
replicas.

3.2 Injected Code Segments

The injected code segments are designed to use only registers, reducing their
dependence on RAM. CRC Calculate is used to calculate the CRC of a memory
region. In our implementation, CRC16-CCITT is used [5]. CRC Save is used
to save the CRC to the stack. CRC Compare is used to compare two CRCs.
The comparison result indicates whether an SEU is detected. Frame Copy is
used to copy a stack frame to a given destination, and to save and restore stack
frames. Frame Size Save is used to save the size of the stack frame for the
current function. STP Initialize is used to initialize the STP so it points to the
lowest address of the md section. STP Update is used to update the STP. First, it
obtains the correct STP value by comparing the three STP replicas. The replicas
are then updated to reflect the addition or removal of a stack frame.

3.3 Modified Function Execution Process

Modified Function Invocation Process. The code segments injected at the
beginning of each function are used to calculate a CRC over the caller’s stack
frame, and to save a duplicate of the caller’s stack frame, as shown in Figure
1. Each rectangle represents two stack bytes. The “starred” steps denote stack
changes caused by the injected code. SP denotes the stack pointer, and Y denotes
the stack frame pointer.
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Fig. 1. Modified Function Invocation Process

When a function B is called by a function A, the return address is pushed onto
the stack automatically by the function call instruction (step 1). To calculate the
CRC of the caller’s stack frame, multiple registers are used, so they must be saved
before the CRC calculation process and restored when the process is finished.
To prevent the calculated CRC from being overwritten when the registers are
restored, two bytes are pushed onto the stack as a placeholder (step 2) for the
CRC result before the registers used to calculate the CRC are saved (step 3).
After the CRC of function A’s stack frame is calculated (step 4), the CRC result
is saved to the placeholder location (step 5). The registers used to calculate the
CRC are then restored (step 6).

Next, the stack frame of the caller, function A, has to be saved. The registers
used to save the frame are pushed (step 7). Next, the correct STP is selected by
comparing the values of the three STP copies (step 8). Using the correct STP,
the specified memory is then copied and saved in the SFS (step 9). After the
STP copies are updated (step 10), the CRC registers are restored (step 11).

After the stack frame pointer of function B is saved (step 12), and the stack
frame is established (step 13), three copies of the callee’s frame size are pushed
onto the stack (step 14), which is a key operation in the injected code.

When a function is called, the callee does not have sufficient context regarding
its caller, including the caller’s stack frame address and size. It is impossible for
a callee to calculate the CRC of it’s caller’s frame and to duplicate the frame
without this information. To solve this problem, each function saves its frame
size in the stack, which is used by its callee to perform the CRC calculation and
frame copy. To ensure the correctness of the frame size, three copies are saved.
Comparison is used to yield the correct value.

Modified Function Return Process. The code segments injected at the end
of each function are used to verify the stack frame of the caller, and to restore
the stack frame if an SEU is detected, as shown in Figure 2. When function B

returns, it first pops its stack frame size (step 1). After the space used to store
the arguments and local variables is released (step 2), the stack frame pointer
is restored (step 3). The CRC of function A’s stack frame is then calculated
and temporarily stored in two registers (steps 4-6). The values stored in these
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registers are saved before the function return process. Next, the calculated CRC
is compared with the CRC saved in the stack (step 7). If the two CRCs do
not match, the saved stack frame of A is restored, and the STP is updated to
release the space used to store the stack frame of A (steps 8-12). Again, the
stack frame size of function A saved in the stack is used to support the CRC
comparison and stack frame restoration (if needed). If the two CRCs match, the
STP is updated (steps 13-14). After verification of A’s stack frame is complete,
the CRC is popped from the stack (step 15). Finally, function B returns, and the
return address is popped automatically (step 16).

4 Evaluation

To evaluate our approach under varying stack conditions and SEU injection
rates, three AVR applications are considered. The stack usage pattern of each
application is shown in Figure 3.

4.1 Validation

We first validate our approach and consider the SEU protection efficacy it affords.
In our analysis, we ignore both the .data and the .bss sections, as well as the
heap section. Data stored in the .data, .bss, and heap sections can be protected
using well-known techniques based on cloning and comparison. We focus our
analysis on stack frame protection. We first assume that the currently executing
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function’s frame, which includes the return address of the injected code segment,
is not affected by SEUs. The stack frames of callers and callees are guaranteed to
be correct, so the stack is guaranteed to be correct. To verify this claim, the AVR
Simulator IDE [12] was used to manually inject SEUs, and to observe execution
results. The results showed that each function is able to detect and fix SEUs
introduced “beneath” the topmost stack frame.

However, if the stack frame of the current function is affected by an SEU,
protection is not guaranteed. If the SEU changes key data, such as the return
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Fig. 3. Stack Usage of Test Applications

address or stack frame size, the cur-
rent function will not execute as ex-
pected. We assume that only one SEU
will occur during a given function exe-
cution, and that the SEU is uniformly
likely to affect all bits in RAM. The
probability of successful SEU protec-
tion can be expressed as p = 1 −
c/(2s + e − c + 6). Where p is the
probability of successful protection, s
is the stack size, e is the size of the
unused space in RAM, 6 is the size of
the three STP copies, and c is the av-
erage size of a stack frame. Since the

return address of the injected code segment is stored in the current stack frame,
the two bytes for the return address are included in c. The total size of protected
memory is s+ e + (s − c) + 6, where s − c is the size of the stack frame copies
stored in the md section.

We extend our analysis to cases where more than one SEU may occur during
a given function execution. Due to lack of space, we omit the derivation details.
The (conservative) probability of successful protection can be expressed as:

p = (1 − c

2s + e − c + 6
)n ∗ (1 − 6

2s + e− 2c + 6
)n

∗ (1 − 6

2s + e− 2c
)n ∗ {(1 − 2c

2s + e− 2c − 6
)n

+ C1
2 ∗ (1 − c

2s + e− 2c − 6
)n ∗ [1 − (1 − c

2s + e − 3c− 6
)n]}

(1)

Where p is the probability of success, s is the size of the stack, e is the size of
the unused space in RAM, 6 is the size of the three stack frame size copies or the
three STP copies, c is the average size of the stack frame (including the return
address of the injected code segment), and n is the number of SEUs that occur
during a function’s execution. In equation 1, the number of SEUs that occur,
n, can be expressed as n = y ∗ l ∗ f/m, where y is the number of clock cycles
used to execute each instruction, m is the frequency of the microprocessor, l is
the average number of function instructions, and f is the SEU injection rate.
Most AVR instructions require 2 clock cycles to execute, and the frequency of
our ATmega644 is set to 10MHz.
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We now consider the relationship
between SEU protection probability
and SEU occurrence rate. To demon-
strate the relationship, we collect
the corresponding parameters for the
three test applications using AVR
Simulator IDE. Figure 4 plots the
change in SEU protection probability
as a function of SEU injection rate.
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The x-axis represents the rate at which SEUs are injected, and the y-axis rep-
resents the corresponding SEU protection probability. Each vertical line marks
where the number of SEUs begins to exceed 1 (for each application). When only
one SEU occurs during a given function execution (left side of the vertical line),
the SEU protection probability is constant (Delay: 99.48%, Double Function
Calls: 99.71%, Fibonacci: 99.68%) because the only case the approach cannot
handle is when the current frame is affected. When more than one SEU occurs
during a given function execution (right side of the vertical line), the SEU pro-
tection probability increases. As the SEU occurrence rate increases, the SEU
protection probability decreases, until it approaches 0. The lower the stack dy-
namism, the longer the function execution time, which increases the probability
of SEU occurrence in the current stack frame.

4.2 Performance

Since the same code is injected for every function, the execution overhead is
similar for all functions, varying only when an SEU is detected. The execution
overhead depends on the size of the (recovered) stack frame. The CRC Calculate
code segment and STP Update code segment execute twice for each function,
and the Frame Copy code segment executes either once or twice, depending on
whether an SEU is detected. Each of the other code segments executes once for
each function execution. The minimum overhead introduced in terms of number
of clock cycles is 62 ∗ S + 304, when an SEU is not detected. The worst case is
70 ∗ S + 432 clock cycles, when an SEU is detected.

We next evaluate space overhead using the three test applications. The ROM
space data was collected using avr-size. The results are summarized in Figure
5. The y-axis represents ROM size, in bytes. Delay and Fibonacci involve two
functions, and Double Function Calls involves four. From Figure 5, we can see
that the ROM overhead for the Double Function Calls application is twice the
Delay and Fibonacci applications. ROM overhead is related only to the number
of functions in the program.

4.3 Physical Hardware

To validate our approach on physical hardware, we emulate the occurrence of
SEUs by flipping random bits in the target SRAM area. To perform auditable
test runs, we developed an AVR application which continuously generates an

Fig. 5. ROM Overhead

increasing integer sequence, which is then sent to the
UART interface at a controllable speed. A Python
program running on a desktop is used to receive the
sequence and observe the impact of flipped bits by
monitoring the continuity of the sequence. A timer in-
terrupt is used to trigger the occurrence of SEUs. The
interrupt service routine generates a random address
within the range of the top of the stack and the end of
RAM space, excluding the stack frame of the current
interrupt, and then flips the bit at this location.
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We declare (observable) failure when one of the following two situations oc-
curs: (i) The AVR application stops generating integers; or (ii) the integer se-
quence received by the Python program becomes discontinuous. We monitor
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Fig. 6. Physical Hardware Results

the integer sequence and record the
maximum count before failure. The
experimental results are summarized
in Figure 6. The x-axis represents
SEU injection frequency, and the y-
axis represents the maximum count
received by the Python program. The
figure shows that as SEU injection fre-
quency increases, running time to fail-

ure decreases. This is explained as follows: As SEU injection frequency increases,
the probability that an SEU occurs in a critical area increases. When the fre-
quency is extremely high (e.g. approximately 10 MHz), the program can hardly
send any values. However, the observed SEU occurrence rate in outer space is
approximately 10−6SEU/bit-Day [16]. Given that the total RAM size of an At-
mega644 is 4K Bytes, the expected SEU occurrence rate for an Atmega644 is
0.0032 SEU/day, which is significantly lower than the lowest frequency (9765.625
SEU/second) that we used. This situation would be extremely rare in real
scenarios.

5 Conclusion

The single event upset is among the most common types of system faults in-
troduced by radiation, posing significant risk to spacecraft embedded systems.
Modern approaches to guarding against such faults typically introduce additional
hardware to detect and correct SEU errors in target systems. In this paper, we
present a software-only approach to protecting embedded system memory from
SEUs, focused on the system stack. The stack is protected by injecting auxil-
iary assembly code within the target program. The prototype implementation
is based on the AVR architecture, but is easily adapted to other architectures.
Analytical and experimental results show that our approach detects and corrects
SEU errors as expected.
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Abstract. In this paper, we present a novel approach to study and reveal
network and protocol information from energy instrumentation in wire-
less sensor network. Unlike prior approaches which focused on analyzing
the aggregate statistics of energy efficiency of a network or a protocol, our
approach aims at revealing network protocols, application workloads, and
topology information by fine-grained energy instrumentation on thenodes.
We design a set of features based on various aspects of energy data and use
those features to classify and reveal network activity. Results from experi-
ments on three testbeds indicate that our approach can achieve 97% accu-
racy to identify the routing protocols, and infer the network topology with
98% accuracy.

Keywords: Power Measurements, Wireless Sensor Networks, Protocols.

1 Introduction

Energy instrumentation has a long history of research in wireless sensor network.
Energy efficient protocols and applications are one of the objectives of Wireless
Sensor Network (WSN) research. Energy instrumentation and analysis allows us
to determine if the proposed protocol is better than the state-of-the-art. Vari-
ous hardware-based energy instrumentation, simulation based study of energy
footprint, and using radio activity as a proxy for energy has found widespread
adoption in the community.

In this paper, we argue that despite the long history of energy instrumentation
in WSN, we have not fully understood the implications of energy instrumenta-
tion in WSNs. Other communities have found that instrumentation of any type
must be performed with care. Otherwise, there can be privacy and security im-
plications. Existing work has indicated that power measurements can also act
as side channel with the potential to compromise private information about
the users [9]. We study these issues and implications in the context of sensor
networks: could the energy instrumentation we collect in almost every sensor
network deployment serve as side a channel to reveal unintended information?

We motivate the possibilities with one example from real-world devices. Mon-
ster powercontrol is a commercially available smart plug. We measure the power
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c© Springer International Publishing Switzerland 2015



284 D. Han, O. Gnawali, and A.B. Sharma

used by the plugs to reveal four properties of the system without any source
code. First, we can tell the power state (On/Off) of plug outlet from the energy
draw. Second, the current draw gives hints about the periodic communication
between the plug and base station. Third, we can verify that the devices query
the base station for new commands rather than the base station pushing mes-
sages to the devices: the periodic current crests continue even when we turn off
the base station. Fourth, the current draw can also give hints about the wireless
connectivity between the user devices and the base station.

We evaluate the design of our energy instrumentation and classification ac-
curacy of the features based on energy data by doing extensive experiments on
three WSN testbeds. Our results from analyzing four-million energy data and ra-
dio activity points, indicate that energy instrumentation and carefully designed
features can not only reveal information about the network protocol but also
some information about the application and the workload.

In this paper, we make three contributions:

– Design of classification features based on energy data with the goal of re-
vealing protocol, network, and application information.

– Experimental evaluation of those features on three testbeds across multiple
protocols, network topologies, and application workloads. We find that clas-
sification with those features can identify the routing protocol with more
than 97% accuracy and application workloads with 85% accuracy.

– Demonstrate how we revealed the routing topology in the network, including
next hop for each node, with just energy instrumentation, with 98% accuracy.

2 Related Work

In this section, we will give an overview of research related to energy measure-
ment, profiling, and their applications in sensor networks and beyond.

Energy Instrumentation: Energy consumption is a significant concern in the
design and development of WSN, hence, much progress and various measurement
methods have been designed to measure the energy used by the nodes. Flock-
Lab [8] has power meters attached to motes so the researchers could understand
energy footprint of their protocols and applications. LEAP2 [11] provides un-
precedented capabilities for directly observing energy usage for wireless sensor
nodes in real-time, with microsecond-scale time resolution enables power profil-
ing for each hardware subsystem. Researchers proposed a software based on-line
code-level energy estimation model, the mechanism uses the current draw of each
component during different period and aggregate them together to produce the
total energy consumption [4].

Applications of Energy Measurement:While the primary reason for energy
measurement is to understand the energy used by a sensor network system, re-
searchers have found other use for energy data. Power Trace Testing is presented
in [14], which designed a methodology to automatically investigate the correct-
ness of a WSN system by utilizing non-intrusive power measurement. In the
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testcase the system was able to detect an unexpected use of hardware compo-
nent, which is not as scheduled. Dunkels et al. [3] use power state tracking to
estimate the wireless network power consumption on network-level. Their ap-
proach even can break down the power consumption into individual activities
on each node, enable the power profiling the pre-activity energy cost.

Revealing Privacy and Security Information: Researchers proposed a tech-
nique that use link-layer header data to infer network topology, de-anonymize
servers present in anonymized network, to break their anonymization[10]. Re-
searchers demonstrated even without priori-knowledge of household activities, it
is still possible to extract complex usage patterns and privacy information from
the household smart meter [9].

3 Features Design

In this section, we describe two novel features that we designed to reveal infor-
mation about the network.

Radio Awake Length Counter (RALC): We define Radio Awake Length
(RAL) as the total time that a node stayed in awake mode during each awake-
sleep cycles. The RAL is not a fixed value, it depends on the packet size, the time
before a node receives acknowledgment, etc. We used the threshold values 25ms,
and half of the LPL settings 100ms to divide the RAL into three categories
corresponding to a node only performing CCA check, receiving packets and
transmitting packets, respectively. We name these three ranges as T1,T2 and T3

as defined below, where T presents the RAL of each time:

T1 : T ≤ 25ms (1)

T2 : 25ms < T ≤ 100ms (2)

T3 : 100ms < T (3)

Within 10s disjoint window size, we count the amount of RAL in each of these
ranges, and use these three counters are the feature, named Radio Awake Length
Counter, i.e., RALC = [m1, m2, m3] , where m1 is the number of RALs that
satisfy the predicate T1. m2 and m3 are defined analogously. On Indriya and
Twonet without energy meters, we measure RAL using software instrumentation.

Radio Awake Overlap Counter (RAOC): When a node successfully trans-
mits a packet, the intersection of their radio awake time must not be empty.
We count the times of two nodes have their radio awake time overlapped during
a given period of time, and call it Radio Awake Overlap Counter. We use this
feature to help us to infer the network topology in section 5.2.

4 Instrumentation Design

Protocols: A Collection Protocol is designed to reliably collect the data packets
generated from every node in the network. In our experiments, we use Collection
Tree Protocol (CTP) [5] and MultiHopLQI (LQI) [13]. A Dissemination Protocol
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is designed to reliably deliver data packet from the base station to every node
in the network. In our experiments, we use Drip [12] and DHV [1].

Testbed and Motes: We instrument the power uses and radio chips activi-
ties on three testbeds. FlockLab provides high-resolution power measurement
profiling and precise time synchronization on 30 nodes. Indriya [2] has over 100
wireless sensor nodes. Twonet [7] is a testbed with 100 dual-radio nodes, which
can operate in 2.4 GHz and 900 MHz. We set the Twonet nodes to run on 900
MHz to verify that our proposed approach works with 900 MHz as well. We use
TinyOS for our experiments.

Low Power Listening (LPL): When using LPL, the node wakes up period-
ically to perform Clear Channel Assessment (CCA) to save energy. The node
stays awake until the packet is received if it detects any preamble on the wireless
medium. Otherwise it turns off its radio and switches back to sleep mode to save
energy. In this study, we set LPL sleep interval to 200ms.

Experiment Configurations: Each experiment runs for an hour. Though it is
impossible to ensure exactly the same workload across collection and dissemina-
tion protocols, we tried out best to make the workload similar across protocols
by matching the packet sending interval, using the similar payload size with
same sink node for all of the four experiments in each set.

Classifier Training:We use a 10s disjoint window to extract the RALC. Hence,
for an one hour experiment, we have 360 feature vectors. In each set, four ex-
periments generate 1440 feature vectors. We test four classifiers, J48, Logistic,
Bagging and NaiveBayes. These are implemented in Weka [6], which has a col-
lection of machine learning algorithms for data mining tasks. We also perform
10-fold cross-validation.

5 Experiment Settings and Evaluations

In this section we describe results on how accurately we are able to infer network
and application aspects using features derived from energy instrumentation.

5.1 Identify Routing Protocols

Classify Network Protocols: We plot the classification accuracy results by
using RALC across three testbeds in figure 1(a). The first group in figure shows
all of four algorithms on FlockLab can achieve similar accuracy, and the average
accuracy to classify the network protocol from RALC is more than 90%. The 2nd
and 3rd group in figure 1(a) show the classification accuracy of using software
measured RALC on Indriya and Twonet, where the average accuracy above 97%
and 98%, respectively. This experiment show two highlights of RALC: It gives
a robust results over the four classifiers. It generates a stable accuracy results
over three testbeds, with different network layout and different radio bands.

To test the performance of RALC with external Wi-Fi interference, we repeat
same experiments using two different channels, which one is overlapped with Wi-
Fi, the other one is not. The results show the feature RALC can tolerant Wi-Fi
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Fig. 1. comparison of accuracy by using different features over 4 algorithms

interference and achieve similar classifier accuracy. We also evaluate RALC by
training it on sample sets from one experiment configuration and then testing
it on data from another experiment configuration. We have 7 such cases and
RALC’s accuracy was between 82-97%.

The reason why RALC gives a high classification results is because it can
capture the unique patterns between the protocols. The control messages of
each protocol is designed uniquely, e.g. the time interval between transmit control
packets and number of control packets. While the workloads from the application
layer are the same, using RALC makes it feasible to distinguish the protocols
by looking at the patterns in radio activities triggered by transmit and receive
packets, including data packets and control packets.

Cluster Analysis of Alternating Protocols: Next, we evaluate the effective-
ness of RALC for clustering two protocols running during different periods. We
switch back and forth between CTP and DHV protocols during a one-hour exper-
iment. We use a general non-parametric cluster algorithm, MeanShift to cluster
the RALC from the measurements. In figure 1(b), yellow and green backgrounds
show the periods with correct clustering, while red shows the mis-clustered pe-
riod. Out of 360 snapshots, only 18 of them were mis-clustered; thus, the percent-
age of correctly clustered snapshots is 95%. All of mis-clustered periods happen
right after CTP starts. During the warm up period of CTP, the nodes exchange
a lot of control packets to setup routing paths compared to the stable period.
This causes the algorithm to mis-cluster CTP as DHV. This experiment shows
that RALC can correctly identify the protocols running during different periods,
and can also detect the moment when the protocol changes. Because RALC can
capture the change in control overhead caused by a protocol switch. Hence, we
expect our proposed approach can also cluster three or more protocols.

5.2 Infer Network Topology

Next, we study the effectiveness of RAOC in revealing information about the
network topology and routing path for each node.

Parent Node and Routing Path: The RAOC across two nodes can be used
to estimate the parent-child relationship across the network running multi-hop
collection protocol . We remove the radio overlap length that are too short
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(less than 0.025s) to focus on significant overlaps in our analysis. Figure 2(a)
shows the heatmap of RAOC across every node-pair during a 200s window size.
The darker color represents those two nodes having larger overlapped times.
A heuristic to find the parent for a node is to simply designate the node with
which a node has the largest overlap as its parent. For example, for y=20, the
pixel at x=10 is darkest. Hence, we guess that node 10 is the parent of node
20. If multiple nodes have same overlap length, we use overlap information from
adjacent time window. We use this heuristic for each node in the heatmap and
construct the routing topology, which is shown in figure 2(b). We found that this
inferred topology based on the heatmap is surprisingly close to the actual routing
topology shown in figure 2(c). Only the nodes marked red had the wrong estimate
of routing parent. We ran CTP and LQI multiple times on testbed and used the
heuristics above to estimate the routing topology. The estimation accuracy across
the experiments was 97.8% and 90.2% for CTP and LQI protocol, respectively.

Sink Node: Next we study how to identify the sink with RALC. During each
100s window period, the nodes with the maximum number of T2 had the highest
possibility to be the sink node, since the T2 could reflect the number of receive
events. We ran CTP for one hour, where the sink node changed every 600s. The
red curve in figure 3 shows the true sink node ID while the blue curve shows the
predicted sink node ID. The result shows that identifying the sink using RALC
is accurate and feasible. The slight lag between predicted and actual sink is due
to the 100s window when we calculate RALC.



Revealing Protocol Information and Activity in WSN 289

5 10 20
Transmission Interval (s)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)
10s 30s

(a) Transmission interval
5s, 10s, 20s on CTP.

5 10 20 5 10 20 5 10 20 5 10 20
Transmission Interval (s)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

CTP LQI DHV Drip

(b) 12 combinations of in-
tervals and protocols.

10 50 100 10 50 100
Packet Size (B)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

CTP LQI

(c) 6 combinations of
packet size and protocols.

Fig. 4. True Positive Rate when using RALC to detect application workloads

5.3 Determine Application Workloads

In this section, we evaluate the effectiveness of RALC to distinguish different
application workloads, including application layer packet transmission interval
and payload size. In this section all of the experiments were run on FlockLab.
We used J48 algorithm to perform the classification test.

Packet Transmission Interval on Same Protocol: We first run CTP with
data being generated at three different intervals: 5s, 10s, and 20s. We calculate
the True Positive Rate (TPR) when classifying each interval from the mixed
dataset. We use 10s as the window size to calculate the RALC, and its corre-
sponding TPRs are plotted with blue color in figure 4(a). The TPR is 99.2% to
classify 5s interval, then TPR decreases to 91.9%, even drops to 76.5% for inter-
val 10s and 20s, respectively. The drop is due to the packet transmission interval
becoming larger than the RALC window. Thus, TPR increases with a larger
RALC window size (30s), significantly improved the classification accuracy, as
showed in the same figure with red color.

Packet Transmission Interval over Various Protocols: In Figure 4(b), we
plot the results from determining packet intervals across four protocols using 30s
window size. The average accuracy to classify one of the instance from all of the
12 combinations of 4 protocol and 3 intervals is 87.5%.

Packet Size: We vary the data packet size sent with CTP and LQI from 10 to
50 to 100 bytes. The dataset includes a total 6 distinct types of instances, which
are the combination of two protocols and three packet sizes. Figure 4(c) shows
the average accuracy to classify one instance from 6 combinations is 82.8%.

6 Conclusions

In this paper, we demonstrated that energy instrumentation can be a powerful
tool to study and reveal information about the network, protocol, or workload.
We designed features for classification and analysis based on energy instrumenta-
tion. We found that the feature called Radio Awake Length Counter is especially
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versatile in revealing information across protocols and application workloads,
such as 97% accurate for classify protocols, and average 87.5% accurate for clas-
sify workloads. Furthermore, another feature named Radio Awake Overlapped
Counter could reveal the parent node for each node, even to disclose the actual
network topology with 98% accuracy. Our extensive experimental results per-
formed on three different testbeds over 100 test cases suggest that our proposed
features are robust across the testbeds, frequency bands.

Acknowledgments. This work was partially supported by the National Science
Foundation under grant no. IIS-1111507.
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Abstract. Low-power wireless actuation is attracting interest in many domains,
yet it is significantly less investigated than its sensing counterpart, especially in
large-scale scenarios. As a consequence, guidelines about which protocol, among
the few existing ones, is best suited to a given scenario are generally lacking.

In this paper, we investigate the relative performance of simple dissemination-
based solutions against the standard, state-of-the-art RPL protocol. These choices
of protocols are motivated concretely by our involvement in the deployment of a
large-scale infrastructure for smart city applications, which directly informs our
evaluation, where we use the actual network topology.

Our findings, albeit in a specific scenario, suggest that RPL still leaves much to
be desired w.r.t. actuation. Two out of the three RPL implementations we consid-
ered exhibited unacceptable performance when used out-of-the-box. Even after
some tuning and debugging, simple, dissemination-based solutions perform sur-
prisingly better under several conditions. These findings motivate further research
on the topic of large-scale low-power wireless actuation.

1 Introduction

The growing importance of cyber-physical systems, where the target environment is
augmented with small devices able to sense and actuate according to the application
logic, has brought low-power wireless networks to the forefront as an enabling tech-
nology. Nevertheless, although wireless sensing has been a popular research topic in
the last decade, wireless actuation has received considerably less attention. As a result,
not only there are fewer proposals in this latter realm, but also noticeably less common
knowledge about the protocol tradeoffs, especially when applied to a real scenario.

Goal and Motivation. The work we present here stems from this observation, and was
prompted by a concrete necessity. Our research team was sought after for collaboration
by a company deploying in Trento, Italy, a large-scale wireless infrastructure of 860+
IEEE 802.15.4 nodes, for monitoring and control of public lighting and other “smart
city” applications. Our task was to improve the current network stack which is based on
simple flooding, by identifying an existing solution providing better performance, to be
used in the final deployment. “Beating flooding: that’s going to be a piece of cake” we
thought cockily—a thought probably shared by many readers. This paper shows instead

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 291–299, 2015.
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that the winner is not so clear. As our study is based on the deployment topology and
scale for a smart city—a scenario at the forefront of today’s technological trends—our
findings raise questions about the state of the art of low-power wireless actuation.

Protocols under Study. We chose RPL [13] as the main candidate because it is a stan-
dard and provides interoperability with mainstream Internet technology. Moreover, it is
designed to support both the many-to-one traffic typical of sensing and the unicast or
multicast one-to-many necessary to large-scale actuation. Several implementations of
the standard exist, which bear significant differences [9]. We focused on TinyRPL [16]
and ContikiRPL [15], arguably the most popular implementations available. We include
also ORPL [3], which aims to improve the scalability of downward routing of RPL.

The baseline for our comparison is the flooding protocol currently operational in
our reference smart city deployment. It implements a simple scheme, in which nodes
repeat incoming messages once, after a small random delay, using link-level broadcast.
A history of seen messages and time-to-live (TTL) are used to filter duplicates and
avoid loops. We also included Trickle in our comparison as another representative of
dissemination protocols. In fact, protocol complexity was an issue for the company,
therefore, Trickle constitutes an alternative to flooding less radical than RPL.

Scenario and Methodology. We cast our comparison in the real-world scenario above,
leveraging the first-hand information we can obtain from it. The planned deployment
comprises 864 nodes on lampposts, divided into 13 clusters whose size is 25 to 134
nodes, each with a dedicated gateway to the Internet. Peculiar network topologies de-
termined by the urban structure and radio interference properties make this scenario
different from the indoor testbeds typically employed to evaluate protocol performance.
Since nodes on lampposts are mains-connected, a duty-cycling MAC is not necessary.

Nevertheless, we do not have access to the actual infrastructure deployment, and
cannot perform protocol experiments directly on it. Simulation is essentially the only
option to perform our comparison. The use of simulation has well-known drawbacks,
e.g., the approximations made w.r.t. the radio channel. In our study, in the absence of
radio models or experimental traces expressly targeting a smart city environment, we
resort to the MRM model provided by the Cooja emulator and commonly used by the
literature. However, we also aim to reproduce the interference and background noise
present in diverse urban environments, based on noise measurements we acquired in
several locations, described in Section 2 along with simulation settings.

Related Work. Most experimental studies of RPL explore its data collection perfor-
mance and topology stability [5, 7, 9, 12]; only a few deal with one-to-many traffic
required for actuation. Authors of [8] study downward routing of TinyRPL in a 30 node
indoor testbed and report results matching our observations for small clusters under low
noise. The design of RPL downward routing is criticized in [1], although experiments
are limited to many-to-one routing in an indoor testbed. The one-to-many routing of
ORPL is shown to outperform RPL in an indoor environment [3], using ContikiMAC.

Other protocols like WirelessHART, ISA100.11a [11] and LWB [4], although in
principle relevant to our study, were excluded due to lack of support by simulators.
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Fig. 1. Summary statistics about the geometry of the topology of all the 13 clusters (left) and
topology of two representative clusters (right). Note the different scale of the maps.

Findings. Section 3 presents the results of our study, which is geared towards answering
a very simple question: “Is RPL ready for actuation?” Based on the results, Section 4
formulates an answer, which is not a positive one. Finally, we end the paper with brief
concluding remarks, including opportunities for future work on the topic.

2 Simulation Settings

We base our study on Cooja [10], which supports both Contiki [15] based implemen-
tatations and others (e.g., TinyRPL) thanks to its hardware emulation feature.

Topologies. The left side of Fig. 1 shows a comparison of cluster geometries, charac-
terized by three metrics: i) number of nodes in the cluster (point label); ii) distance
to the closest neighbor, averaged over all nodes (x-axis); iii) aspect ratio of a bounding
box aligned with the largest span, indicating how “linear” a cluster is (y-axis). The right
side of Fig. 1 shows the topology of two representative clusters.

Signal Propagation Model. We base our simulation on Cooja’s multi-path ray tracing
model (MRM). It models radio hardware properties, background noise and interfer-
ence through signal-to-interference-and-noise ratio (SINR), the capture and multi-path
effects; however, its simplistic obstacle model is not sufficient to define the complex
architecture of a city. We configure MRM based on the popular CC2420 radio chip.

Modeling Noise. The background radio noise (including ambient and man-generated
effects) directly influences signal-to-interference-and-noise ratio (SINR), thus also ra-
dio reception range and protocol performance. The noise floor in a dense urban envi-
ronment can be relatively high and with high short-term variations.

This is in contrast with works assuming a noise-free environment (e.g., [14]), and
with the conditions found in the testbeds commonly used in experiments. To verify this
statement we performed measurements on all IEEE 802.15.4 channels in the Indriya [2]
and TWIST [6] tesbeds as well as in several places of Trento and Moscow, including
suburbs, densely inhabited areas and the university campus. The testbed measurements
show a mean noise floor of −90 to −98 dBm and a standard deviation of 2–4 dBm,
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Table 1. Layer 3 parameters

Protocol L3 parameters L2

Flooding rebroadcast delay: 8–80ms

CSMA 1Trickle Imin=1/32s, Imax=1/2s, K=1

ContikiRPL routing table size: 70, routing
metric: ETXTinyRPL CSMA 2

ORPL routing metric: EDC RDC

Table 2. Layer 2 parameters

Parameter CSMA 1 CSMA 2 RDC

CCA backoff 128ms–1.2s 0.3–10ms 125–500ms

backoff increase exponential none linear

no-ACK retry delay as backoff 103ms as backoff

duty-cycle interval — 125ms

no-ACK TX attempts 5

neighbour table size 20 60

depending on the node and channel. In the cities, the mean noise floor is usually −85
to −95 dBm (occasionally up to −75 dBm), and the standard deviation is 0–10 dBm.

We use the notation MRM (Navg ,Nsd) to indicate an MRM model with noise floor
Navg and standard deviation Nsd . We also consider the theoretical radio reception
range, an estimate calculated using Friis transmission equation based on Navg , the pa-
rameters of the radio subsystem, and a transmission power of 0 dBm.

Protocol Settings. All the protocols under study are highly customizable through pa-
rameters such as buffer sizes, timeouts, retries and hop count. Wherever possible, we
used the default values, as these are likely to be first choice in a deployment and the ones
tested the most. We did, however, include tuned and modified versions of ContikiRPL
and ORPL, since their initial results showed clear discrepancies w.r.t. expectations. The
most important protocol parameters used in our study are summarized in Tables 1 and 2.

Application Setup and Performance Metrics. We test protocol performance in send-
ing commands from the gateway to other nodes in the cluster, as in the current infras-
tructure. Messages have a 6 B payload, enough to fit a command code and 1–2 pa-
rameters. As actuation commands are issued sparingly, we focus on the reliability and
timeliness of delivering isolated commands, rather than scalability in terms of traffic
load.

In each experiment, after a warm-up time needed to stabilize logical topology, the
gateway sends B = 2000 isolated commands, each destined to a node chosen with
uniform random selection, with an inter-command interval (ICI ) of 5 s. For statistical
relevance, simulations are run 5 times per set of parameters; the plots report the average
value along with error bars denoting the minimum and maximum values. Reliability
and timeliness are quantified by measuring the packet delivery ratio (PDR) and average
delivery delay for each destination and further averaging over all nodes of the cluster.

We also consider the network utilization per actuation command, expressed in bytes
sent over the radio. To compute it we sum up the data and control traffic transmitted
after the warm up and normalize w.r.t. the number of actuation commands sent.

3 Results

We compare the selected protocols in different radio propagation environments and
network topologies. Space limitations force us to show the effect of noise floor only
for the two distinctive clusters presented in Fig. 1: a 70-node “planar” one and a 51-
node “linear” one. The noise variance was set to Nsd = 1 dBm. We then focus on two
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Fig. 2. PDR achieved by ContikiRPL, ORPL, and their debugged variants

interesting noise configurations, and analyze the impact of topology and scale, showing
results for all the clusters.

Debugging ContikiRPL and ORPL. In our first trials, ContikiRPL showed lower per-
formance than expected. Log inspection identified routing table management as the
culprit. When a node rejoins through another DODAG branch, the next-hop entry at the
branching point is not updated until it expires. Traffic along the stale path causes rout-
ing errors, triggering unnecessary DODAG reconstructions through version increase. A
vicious circle is formed: version increase causes churn, churn brings routing errors and
version increase. Our fix to this issue has been merged into the Contiki code base.

The default ORPL configuration also performed poorly. A custom one, with bitmap
filters and a 125 ms ContikiMAC period showed better performance, though degrading
over time. The so-called false positive mechanism stalled nodes; we disabled it, as it is
anyway useless with bitmap filters. We also disabled the bitmap ageing mechanism and
modified the input filters in the reception path to solve occasional memory corruptions.

The effect of our modifications is evident in Fig. 2, showing PDR as a function
of radio range (noise floor) on our reference clusters. Our modified implementations
match or outperform the original ones on all clusters and for all the metrics, often with
remarkable performance gains. Therefore, hereafter they are the only ones we report.

Impact of Noise Floor. Fig. 3 shows the protocol performance as a function of noise
floor, similarly to Fig. 2 but this time with all metrics and for all studied protocols.

From a reliability perspective, only Trickle performs well in all cases where the
graph is still connected. This is expected, since it is the only protocol enjoying unlimited
retransmissions; in case of an isolated message, sooner or later Trickle delivers.

On the planar cluster, ContikiRPL-fix handles high noise better than flooding. In
this situation, the radio range is so small that nodes have only few neighbors with
weak links; the L2 retransmissions of ContikiRPL-fix are more effective than the multi-
path properties of flooding. Nevertheless, below −75 dBm, as the improved range and
link quality makes link-local broadcasts more efficient, flooding takes the lead. On
the linear cluster, ContikiRPL-fix provides good results below −77 dBm, against the
−80 dBm of flooding. However, ContikiRPL-fix never reaches PDR = 100%, even in
medium-noise scenarios where its competitors do, and shows poor performance at low
noise, especially on the planar cluster. The increased radio range makes the network
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Fig. 3. Effect of noise floor on protocol performance: PDR, delay, and network utilization
(columns) on the two selected clusters (rows)

denser, overfilling the neighbor tables; further, when the next-hop node is not found
among the neighbors, a global DODAG repair is triggered. ORPL-fix delivers less than
ContikiRPL-fix at high noise, but it does not suffer from higher density, and performs
in line with dissemination protocols when noise is −80 dBm in the planar cluster, and
−85 dBm in the linear one. TinyRPL follows in the ranking, consistently on both clus-
ters. It is not affected by high network density since it does not rely on the neighbor
table to resolve the next-hop link-local address for a given target. Instead, the address
is obtained directly as the last two octets of the link-local IPv6 address of the neighbor.

Regarding the average delay of packet delivery, differences were so significant that
we had to resort to a logarithmic scale. Trickle achieves best performance in low-
noise situations. At high noise, it is the only protocol with high PDR values, which
makes its seemingly larger average delay non-comparable to other protocols. Flooding
and TinyRPL follow with a significant increase in delivery times. ContikiRPL-fix and
ORPL-fix close the ranking, with delays between 500 and 800 ms. For ORPL-fix this
higher delay is partly justified by the use of the duty-cycling MAC.

For evaluating network utilization, a logarithmic scale was again required. For flood-
ing, the metric is simply proportional to the cluster-level average PDR, since each node
that receives a packet repeats it exactly once. Trickle is heavier than flooding due to its
retransmissions. Although flooding involves the whole network when delivering a sin-
gle packet, its network utilization is still less than RPL variants under most conditions,
except for very low noise situations. Indeed, RPL cannot amortize the topology main-
tenance cost under the (realistic) traffic properties used in our tests.

All Clusters: Trends and Effects of Topology. After exploring the influence of the
noise floor, we demonstrate the effects of topology characteristics under typical low and
high noise scenarios, MRM (−90 , 2 ) and MRM (−85 , 3 ) respectively. Fig. 4 shows
the results for all clusters. Note that we use the number of nodes to identify them.

Both ContikiRPL-fix and TinyRPL show scalability issues as the number of nodes
grows. Moreover, the selected radio model values fall outside the “comfort area” of
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Fig. 4. Results for all the clusters. PDR, delay and network utilization (columns); low noise and
high noise scenarios (rows).

ContikiRPL-fix, triggering its node density issues, for which it provides the worst PDR
of all protocols. ORPL-fix, on the other hand, reaches high PDR, thanks to the noise
level below −85 dBm. Other trends are the high PDR and almost flat delay recorded
for flooding and Trickle regardless the number of nodes. Network utilization instead
increases almost linearly with the number of nodes for all protocols.

There are, however, outliers from the above trends; some are correlated to topol-
ogy characteristics, as in the case of the three clusters marked by asterisks which have
“special” topologies. Clusters 31 and 51 are sparse and long, while cluster 28 is U-
shaped with the two long branches behaving like the linear topologies. In these clusters,
delays are increased for all protocols due to larger hop-counts in paths. Trickle and
TinyRPL also shows increased network utilization, while flooding is not affected. The
performance of TinyRPL is decreased in these special clusters (can only be seen in high
noise), but it is not clear whether larger node distances or longer multi-hop paths are to
blame. ContikiRPL-fix instead shows a performance increase but only at lower noise,
and in this case we know it is due to the decreased neighborhoods.

4 Discussion, Conclusions, and Future Work

Our involvement in the design of the network stack for a smart city infrastructure was
the opportunity to study the applicability of RPL and its variants to the problem of large-
scale low-power wireless actuation. We performed our study by simulation, borrowing
the actual placement of nodes to experiment with a real network scale and topology.

We were convinced that flooding was going to be left in the dust by RPL; our
results tell a different story. The RPL variants were outperformed by flooding (and
Trickle) especially in low-noise conditions (or high range and therefore neighbor den-
sity), where RPL suffered from various reasons, including scalability issues and topol-
ogy reconstructions leading to increased packet losses. ContikiRPL-fix outperforms
flooding, thanks to link-level retransmissions, in situations with high noise (low density)
where long multi-hop paths are required to deliver messages, e.g., on linear topologies.
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However, in these cases the other RPL variants are outperformed by flooding, with sig-
nificant differences among the various implementations. Further, the simple dissemina-
tion scheme of Trickle outperforms ContikiRPL-fix, and appears to be the best choice.

Trickle is also the fastest protocol, while flooding is the one with the lowest net-
work utilization, leaving few reasons to choose RPL over our dissemination baseline.
To be fair to RPL, the overhead of maintaining its topology is expected to be amor-
tized by the many-to-one data collection traffic (not considered here) for which it is
optimized, and “reused” for actuation. Our results, however, show that this reuse falls
short of expectation, suggesting that a dedicated and complementary solution, possibly
dissemination-based, should be used for the relatively lower-traffic of actuation.

These RPL shortcomings are exacerbated by implementation considerations, beyond
the difficulties we encountered in using ContikiRPL and ORPL out of the box. The
superior performance of dissemination protocols is complemented by their simplicity,
yielding less demands in terms of memory consumption. In fact, the studied RPL im-
plementations occupied almost all RAM and Flash memory of the popular TMote Sky.

In summary, the verdict is against RPL. Aside from relatively immature RPL imple-
mentations, it is hard to beat the simplicity and robustness of dissemination protocols.

There are obvious opportunities for future work on the topic of this paper: our find-
ings are specific to our smart city target scenario, and should be validated in other kinds
of large-scale actuation scenarios, possibly through real-world experiments. Finally,
this paper poses a research question, namely, whether low-power wireless actuation re-
ally needs the complexity of maintaining a routing topology, or instead dissemination
protocols should be the foundation to be optimized towards this functionality.

Acknowledgments. This work was partially funded by EIT ICT Labs (Activity 12149)
and by Algorab S.r.l., which also provided information about the smart city deployment.
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Abstract. Conventional transmission in IPv6 over Networks of Resource
Constrained Nodes (6lo) favours fixed-size packets and results in low net-
work performance when bulk data transmission is required by applica-
tions, for example firmware updating. To tackle this problem, we first
investigate performance of bulk data transmission through large pack-
ets and make two important observations. Then we propose an adaptive
mechanism at IP layer to dynamically adjust packet size in 6lo. We im-
plemented the mechanism on Contiki OS and evaluated it through a se-
ries of experiments in Cooja. Experimental results demonstrate that our
mechanism outperforms Contiki standard implementation significantly
from both reliability and goodput under various network conditions.

Keywords: 6lo, Bulk Data Transmission, Packet Size Control.

1 Introduction

IPv6 over Networks of Resource-constrained Nodes (6lo) is a network that pro-
vides IPv6 connectivity over constrained nodes such as sensors or actuators. It
introduces an adaptation layer to deal with the mapping between IPv6 packets
and link frames (hereafter referred to as packet and frame respectively). Con-
ventionally, when data are transmitted in 6lo, they are firstly encapsulated into
a fixed-size packet and then header compression is applied to reduce the packet
size. If the compressed packet fits into a single frame then it will be sent out
instantly; otherwise fragmentation-reassembly mechanism (hereafter referred to
as 6lo fragmentation) is invoked. The value of the fixed-size is preconfigured
empirically (e.g. 140 bytes for IEEE 802.15.4 in Contiki). As RFC4944 [6] points
out, in links with a small maximum transmission unit (MTU), the conventional
transmission works but with two assumptions: (i) most applications will not
use large packets and (ii) application payload is relatively small. Nevertheless,
there are application scenarios where these conditions do not hold. Considering
firmware updating on-the-fly or massive data exchanging between nodes, both
of them involve bulk data transmission for which 6lo conventional transmission
is not suitable due to low network performance.

In order to improve 6lo performance of bulk data transmission, we present
an adaptive mechanism that adjusts packet size dynamically based on network
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conditions and utilizes 6lo fragmentation (different from IP fragmentation) to
send large packets. Unlike other adaptive mechanisms [2, 3, 7], our mechanism
works at IP layer whereas others only work at link layer. Link layer mechanisms
highly rely on the link of a specific type. For example the mechanism designed for
IEEE 802.15.4 might not be feasible for Bluetooth Low Energy (BLE) or Near
Field Communication (NFC), both are documented by 6lo working group. As 6lo
operates over links of different types, an upper-layer mechanism is therefore much
more desirable. Furthermore, even if frame size can be dynamically controlled
by link layer mechanisms, there remains a need for determining IP packet size
in 6lo. Unfortunately, to the best of our knowledge, such a mechanism is still
missing so far. Our work fills in this gap and in summary it makes three key
contributions as follows:

– We investigate performance of bulk data transmission in 6lo through large
packets and make two important observations.

– We present design, implementation, and evaluation of IP layer adaptive
mechanism suitable for bulk data transmission in 6lo.

– We demonstrate that our adaptive mechanism is able to provide better re-
liability and higher goodput than Contiki standard implementation under
various network conditions.

2 Related Work

Before IPv6 is introduced to Wireless Sensor Network (WSN), frame size opti-
mization for WSN has been studied extensively in literature. Modiano et al. [5]
developed a Markov chain model to analyse the channel then performed a maxi-
mum likelihood approach to estimate frame size. Sankarasubramaniam et al. [8]
used energy-efficiency as the optimization object to determine the best frame
size based on a set of radio and channel parameters. The work from [9] discussed
the cross-layer solutions to set frame size for different environments like under-
water and underground networks. All of these studies focus on finding an optimal
fixed size. Another thread of research work suggests using adaptive approaches.
Jelenković et al. [3] designed an algorithm to divide the frame into several small
chunks to fit available channel periods. Dong’s work [2] followed a similar idea
that small chunks can be reassembled into a bigger frame. Nonetheless, these
solutions work only at link layer. Because 6lo has a wide diversity of links, a
solution working at IP layer is beneficial, which is the main contribution of this
paper.

3 Mechanism

3.1 Overview

Our motivation comes from the assumption (justified in section 4.2) that bulk
data transmission in 6lo by using large packets (invoking 6lo fragmentation if
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necessary) can improve network performance significantly. Nodes in 6lo usually
suffer from intra-path interference [4], which means that when the successor node
forwards the packet at the same time it will prevent the reception of following
packet coming from the predecessor node. Employing pipeline mechanisms to
send packets might mitigate this problem; however, a poorly-designed scheduling
policy can cause traffic congestion and lead to an even worse situation. Thus,
stop-and-wait Automatic Repeat reQuest (ARQ) is the widely-used protocol to
transmit bulk data in 6lo. One good example is Contiki TCP implementation
where the window size is 1. In stop-and-wait ARQ, transmission time decreases
as packet size increases. Nonetheless, the desire for large packets is limited by
network conditions because the whole packet has to be retransmitted if any of the
fragments gets lost. To tackle this problem, we propose an adaptive mechanism
to adjust packet size based on network conditions; if network condition becomes
better the packet size is increased, otherwise it is decreased.

For simplicity and practicality, network conditions are indicated by packet
loss rate (PLR) [1]. Through empirical experiments, we make two important
observations: (1) PLR of large packets is mainly impacted by the number of
fragments that the packet is divided into; (2) if frame length is relatively small
(approximately 100 octets), it has a trivial influence on the PLR. Due to space
limit, we omit the analysis here. Inspired by these two observations, we propose
an adaptive mechanism by following two rules:

Rule 1. Adjust packet size by fragments rather than octets, which is deduced
from observation (1).

Rule 2. Given the number of fragments, make sure each fragment fills the frame
as fully as possible, which is deduced from observation (2).

Based on these two rules, we design two modules, i.e., Unit Discovery Module
and Packet Adjustment Module, to enable the adaptive mechanism.

3.2 Unit Discovery Module

Unit Discovery Module is responsible for finding the unit value by which packet
size is increased/decreased in the mechanism. Considering a multi-hop 6lo, the
unit value should be the maximum size of packet that will not be fragmented by
any node along the path from the sender to the receiver. Note that given a packet,
the decision on whether it should be fragmented or not is different at different
nodes along the path. For example, by default 6lo employs Routing Protocol for
Low power and Lossy Networks (RPL) as its routing protocol, the intermedi-
ate nodes between the sender and the receiver might insert RPL options into
the packet. As a consequence, the packet without need of fragmentation at the
sender might be fragmented at an intermediate router. To tackle this problem,
we introduce a discovery procedure similar to Path MTU Discovery (PMTUD).
Before bulk data transmission starts, the sender pings the receiver using an In-
ternet Control Message Protocol (ICMP) Echo Request message whose size is
the current unit value. After an intermediate node receives this message it checks
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whether 6lo fragmentation is needed or not. If yes, the node drops the message
and sends back an ICMP Packet Too Big message containing the new appropriate
unit value to the sender. Upon receiving ICMP Packet Too Big message, the
sender re-pings the receiver by a new ICMP Echo Request message whose size
is the updated unit value. The discovery procedure continues until the sender
receives an ICMP Echo Reply message from the target receiver. The unit value
corresponding to the receiver is saved in a cache and ready for use in Packet
Adjustment Module.

3.3 Packet Adjustment Module

Once the unit value is discovered, Packet Adjustment Module uses it to adjust
packet size according to network conditions, assuming that the routing infor-
mation is not changed throughout the course of bulk data transmission. Packet
size is adjusted by the following equation (note that 6lo fragmentation cuts the
packets into 8-octet units):

S(n) =

{
U n = 1

�U−LF1

8 � × 8 + �M−LFN

8 � × 8× (n− 2) + (M − LFN ) n ≥ 2
(1)

where U is the unit value and M is the link MTU, LF1 and LFN (4 and 5 in
6lo) are the length of initial fragment header and non-initial fragment header.
It is important to note here that n should be less than 10 as (i) PLR increases
significantly as n grows, and (ii) constrained nodes do not have enough memory
to collect many fragments.

(a) Negative exponential relationship (b) Linear relationship

Fig. 1. Transmitting bulk data (16KiB) in medium traffic (10s) network with link
FER(15%)

Another function of Packet Adjustment Module is to adjust packet size ef-
ficiently. When running the experiments in section 4.2, we find out that there
exists a linear relationship between the end-to-end transmission time and the
number of retransmissions, as shown in Fig. 1b. For each packet size we use
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least squares method to fit the scatters by a linear function y = mx+ b, and the
fitted parameters (slope m and intercept b) with normalized root-mean-square
deviation (NRMSD) are plotted in Fig. 1a. Bothm and b have practical meaning:
m is the average value of retransmission timer (3 seconds in our experiments);
whereas b implies the end-to-end transmission time in ideal situation where no
retransmission occurs. From Fig. 1a it is clear to see that intercept b against
packet size follows a negative exponential function (dashed line in the figure),
which means that the performance gain achievable by increasing packet size is
significant when packet size is small; as packet size increases, the gain becomes
less significant. With this observation, we set up a threshold value (represented
as the number of fragments) in our mechanism. When increasing packet size, if
the threshold is not reached, we increase it by one fragment every time; and if the
threshold is passed, we increase packet size by its current number of fragments,
i.e. doubling the size. Conversely, when decreasing packet size, we half the size
if the threshold is not reached; and decrease by one fragment if the threshold is
passed.

4 Evaluation

We implemented our mechanism on Contiki OS. For the configuration of network
stack in Contiki, we chose 6lowpan as the adaptation layer and employed CSMA
at the link layer to provide media access control. As applications usually require
bulk data to be transmitted as fast as possible, we used maximum power to
transmit the data. To minimize the latency caused by wake-up synchronization
among nodes, we switched contikimac to nullrdc, in which nodes do not sleep.
In practice, nodes can switch back to contikimac after bulk data transmission
completes if necessary.

4.1 Simulation Environment

We simulated a network containing 20 nodes in Cooja, the standard simulator
for Contiki. Each node has a transmission range and a larger interference range.
Within transmission range, the frame error rate (FER) is able to be configured
and it increases as the transmission distance becomes larger; while in interference
range, FER is 100% and other nodes are interfered accordingly. We chose one
node as the sender (located at one edge of the network) and another node as
the receiver (located at the other edge); there were 4 or 5 hops between the
sender and the receiver. Moreover, to increase simulation fidelity, we generated
background traffic in the network by making each node (except the sender and
the receiver) send small packets to random nodes randomly within an interval.
If the interval was set to 0, then no background traffic was generated.

4.2 Performance through Large Packets

In section 3.1 we claimed that bulk data transmission in 6lo through large pack-
ets can improve network performance significantly. This subsection quantifies
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this claim. To start with, we consider experiments of medium traffic network
(the interval is set to 10 seconds) with different FERs (0%, 15%, 30%, and 45%)
where the bulk data (16KiB) are transmitted in different packet sizes. Each
experiment was performed 20 times and we use two metrics to compare net-
work performance: end-to-end transmission time, and total transmitted octets
by all the nodes along the path from the sender to the receiver. The result from
FER = 15% is shown in Fig. 2. Results from other FER values are similar,
thus, are omitted for brevity. The exceptional outputs (represented as outliers)
are mainly caused by network congestion resulting from the background traf-
fic. Note that the outliers are excluded when calculating the mean value in the
figure. Fig. 2a illustrates that as the packet size increases the end-to-end trans-
mission time decreases accordingly; however, when the packet size exceeds a
specific value, the transmission time increases again. The same trend occurs for
the total transmitted octets, as shown in Fig. 2b. The reasons for this are ex-
plained in section 3.1. From Fig. 2, we can see that if large packets are used, the
end-to-end transmission time is improved by 38% (from ∼ 65s to ∼ 40s), and
total transmitted octets are reduced by 20% (from ∼ 200KiB to ∼ 160KiB).

(a) End-to-end transmission time (ms) (b) Total transmitted octets

Fig. 2. Network performance with FER = 15% for different sizes of packet (repre-
sented by number of fragments)

4.3 Mechanism Effectiveness

To evaluate the effectiveness of our adaptive mechanism in terms of reliability
and goodput, we investigate a series of experiments similar to those in section 4.2
except two more types of background traffic are introduced: low traffic (the
interval is set to 0) and high traffic (the interval is set to 5 seconds). Instead of
calculating PLR continuously (cf. section 3.1) to determine network conditions,
we simply define network conditions as bad (if retransmission occurs) or good
(if the payload is successfully acknowledged). The threshold value introduced in
section 3.3 is set to 3, which means that the possible number of fragments is 1,
2, 3, or 6. Again, each experiment was performed 20 times.
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(a) Low traffic (b) Medium traffic (c) High traffic

Fig. 3. Percentage of successful transmissions [%], the higher the better

We compare our adaptive mechanism (referred to as Adaptive) with the Con-
tiki standard implementation (referred to as Contiki), as well as the approach
using a fixed-size packet (referred to as Fixed-size). Firstly, we focus on the
percentage of successful transmissions (i.e. how many tests are completed suc-
cessfully within the 20 tests), which is an indicator of reliability and robustness.
The results are shown in Fig. 3. From the figure, we can see that when network
traffic is low and link condition is good, all of the three mechanisms complete
100% of tests. When network traffic increases or link condition becomes worse,
the percentage of both Adaptive and Contiki decrease slightly, while Fixed-size
drops dramatically. We have discussed the reasons for this behaviour in sec-
tion 3.1. It is worth mentioning that even in high network traffic with the worst
link condition, Adaptive can still complete around 70% of tests, which is signifi-
cantly higher than that of Contiki. The reason is that the Unit Discovery Module
in our mechanism ensures that in the worst cases there is no 6lo fragmentation
invoked at any node along the path; while in Contiki, intermediate nodes are
still possible to trigger 6lo fragmentation that might lead to packet loss in bad
network conditions.

(a) Low traffic (b) Medium traffic (c) High traffic

Fig. 4. Estimated end-to-end transmission time [ms], the less the better

Secondly, we evaluate network goodput using end-to-end transmission time
because network goodput is inversely proportional to end-to-end transmission
time. Note that if the test gets failed, it is not possible to acquire the output
data. Thus, it is unfair to compare only successful results and exclude the failed
cases. To make up for this, we introduce a penalty function, which is defined as
1/percentage. We then compute the estimated results by successful results times
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penalty function. We present the estimated results in Fig. 4. From the figure, it
is clear that regardless of network traffic, overall transmission time for the three
mechanisms increases as link conditions get worse. Compared with Contiki and
Fixed-size, Adaptive outperforms them in all three network traffic environments.
It is also worth noting that despite the decent performance of Fixed-size for low
and medium traffic, the transmission time of it for high traffic is extremely high,
which demonstrates its severe weakness in such environments. In summary, our
adaptive mechanism is able to provide better reliability and higher goodput than
the current state-of-the-art approaches in various network conditions.

5 Conclusion

In this paper, we justified the momentum of adjusting packet size adaptively for
bulk data transmission in 6lo. Through an empirical study, we made two impor-
tant observations that inspired the adaptive mechanism design. By evaluating a
series of carefully-designed experiments in Cooja, we demonstrated the effective-
ness of our mechanism from both reliability and goodput. In the future, we will
conduct a systematic study on real devices. Furthermore, power consumption
and duty cycles will also be investigated.
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